xref: /openbmc/linux/drivers/net/ethernet/marvell/mvneta.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy/phy.h>
31 #include <linux/phy.h>
32 #include <linux/phylink.h>
33 #include <linux/platform_device.h>
34 #include <linux/skbuff.h>
35 #include <net/hwbm.h>
36 #include "mvneta_bm.h"
37 #include <net/ip.h>
38 #include <net/ipv6.h>
39 #include <net/tso.h>
40 
41 /* Registers */
42 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
43 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
44 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
45 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
46 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
47 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
48 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
49 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
50 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
51 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
52 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
53 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
54 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
55 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
56 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
57 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
58 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
59 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
60 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
61 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
62 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
63 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
64 #define MVNETA_PORT_RX_RESET                    0x1cc0
65 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
66 #define MVNETA_PHY_ADDR                         0x2000
67 #define      MVNETA_PHY_ADDR_MASK               0x1f
68 #define MVNETA_MBUS_RETRY                       0x2010
69 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
70 #define MVNETA_UNIT_CONTROL                     0x20B0
71 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
72 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
73 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
74 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
75 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
76 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
77 #define MVNETA_PORT_CONFIG                      0x2400
78 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
79 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
80 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
81 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
82 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
83 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
84 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
85 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
86 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
87 						 MVNETA_DEF_RXQ_ARP(q)	 | \
88 						 MVNETA_DEF_RXQ_TCP(q)	 | \
89 						 MVNETA_DEF_RXQ_UDP(q)	 | \
90 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
91 						 MVNETA_TX_UNSET_ERR_SUM | \
92 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
93 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
94 #define MVNETA_MAC_ADDR_LOW                      0x2414
95 #define MVNETA_MAC_ADDR_HIGH                     0x2418
96 #define MVNETA_SDMA_CONFIG                       0x241c
97 #define      MVNETA_SDMA_BRST_SIZE_16            4
98 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
99 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
100 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
101 #define      MVNETA_DESC_SWAP                    BIT(6)
102 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
103 #define MVNETA_PORT_STATUS                       0x2444
104 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
105 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
106 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
107 #define MVNETA_SERDES_CFG			 0x24A0
108 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
109 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
110 #define MVNETA_TYPE_PRIO                         0x24bc
111 #define      MVNETA_FORCE_UNI                    BIT(21)
112 #define MVNETA_TXQ_CMD_1                         0x24e4
113 #define MVNETA_TXQ_CMD                           0x2448
114 #define      MVNETA_TXQ_DISABLE_SHIFT            8
115 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
116 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
117 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
118 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
119 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
120 #define MVNETA_ACC_MODE                          0x2500
121 #define MVNETA_BM_ADDRESS                        0x2504
122 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
123 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
124 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
125 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
126 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
127 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
128 
129 /* Exception Interrupt Port/Queue Cause register
130  *
131  * Their behavior depend of the mapping done using the PCPX2Q
132  * registers. For a given CPU if the bit associated to a queue is not
133  * set, then for the register a read from this CPU will always return
134  * 0 and a write won't do anything
135  */
136 
137 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
138 #define MVNETA_INTR_NEW_MASK                     0x25a4
139 
140 /* bits  0..7  = TXQ SENT, one bit per queue.
141  * bits  8..15 = RXQ OCCUP, one bit per queue.
142  * bits 16..23 = RXQ FREE, one bit per queue.
143  * bit  29 = OLD_REG_SUM, see old reg ?
144  * bit  30 = TX_ERR_SUM, one bit for 4 ports
145  * bit  31 = MISC_SUM,   one bit for 4 ports
146  */
147 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
148 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
149 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
150 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
151 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
152 
153 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
154 #define MVNETA_INTR_OLD_MASK                     0x25ac
155 
156 /* Data Path Port/Queue Cause Register */
157 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
158 #define MVNETA_INTR_MISC_MASK                    0x25b4
159 
160 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
161 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
162 #define      MVNETA_CAUSE_PTP                    BIT(4)
163 
164 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
165 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
166 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
167 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
168 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
169 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
170 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
171 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
172 
173 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
174 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
175 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
176 
177 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
178 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
179 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
180 
181 #define MVNETA_INTR_ENABLE                       0x25b8
182 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
183 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
184 
185 #define MVNETA_RXQ_CMD                           0x2680
186 #define      MVNETA_RXQ_DISABLE_SHIFT            8
187 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
188 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
189 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
190 #define MVNETA_GMAC_CTRL_0                       0x2c00
191 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
192 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
193 #define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
194 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
195 #define MVNETA_GMAC_CTRL_2                       0x2c08
196 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
197 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
198 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
199 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
200 #define MVNETA_GMAC_STATUS                       0x2c10
201 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
202 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
203 #define      MVNETA_GMAC_SPEED_100               BIT(2)
204 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
205 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
206 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
207 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
208 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
209 #define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
210 #define      MVNETA_GMAC_SYNC_OK                 BIT(14)
211 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
212 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
213 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
214 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
215 #define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
216 #define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
217 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
218 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
219 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
220 #define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
221 #define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
222 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
223 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
224 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
225 #define MVNETA_GMAC_CTRL_4                       0x2c90
226 #define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
227 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
228 #define      MVNETA_MIB_LATE_COLLISION           0x7c
229 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
230 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
231 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
232 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
233 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
234 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
235 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
236 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
237 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
238 #define      MVNETA_TXQ_DEC_SENT_MASK            0xff
239 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
240 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
241 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
242 #define MVNETA_PORT_TX_RESET                     0x3cf0
243 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
244 #define MVNETA_TX_MTU                            0x3e0c
245 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
246 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
247 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
248 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
249 
250 #define MVNETA_LPI_CTRL_0                        0x2cc0
251 #define MVNETA_LPI_CTRL_1                        0x2cc4
252 #define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
253 #define MVNETA_LPI_CTRL_2                        0x2cc8
254 #define MVNETA_LPI_STATUS                        0x2ccc
255 
256 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
257 
258 /* Descriptor ring Macros */
259 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
260 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
261 
262 /* Various constants */
263 
264 /* Coalescing */
265 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
266 #define MVNETA_RX_COAL_PKTS		32
267 #define MVNETA_RX_COAL_USEC		100
268 
269 /* The two bytes Marvell header. Either contains a special value used
270  * by Marvell switches when a specific hardware mode is enabled (not
271  * supported by this driver) or is filled automatically by zeroes on
272  * the RX side. Those two bytes being at the front of the Ethernet
273  * header, they allow to have the IP header aligned on a 4 bytes
274  * boundary automatically: the hardware skips those two bytes on its
275  * own.
276  */
277 #define MVNETA_MH_SIZE			2
278 
279 #define MVNETA_VLAN_TAG_LEN             4
280 
281 #define MVNETA_TX_CSUM_DEF_SIZE		1600
282 #define MVNETA_TX_CSUM_MAX_SIZE		9800
283 #define MVNETA_ACC_MODE_EXT1		1
284 #define MVNETA_ACC_MODE_EXT2		2
285 
286 #define MVNETA_MAX_DECODE_WIN		6
287 
288 /* Timeout constants */
289 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
290 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
291 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
292 
293 #define MVNETA_TX_MTU_MAX		0x3ffff
294 
295 /* The RSS lookup table actually has 256 entries but we do not use
296  * them yet
297  */
298 #define MVNETA_RSS_LU_TABLE_SIZE	1
299 
300 /* Max number of Rx descriptors */
301 #define MVNETA_MAX_RXD 512
302 
303 /* Max number of Tx descriptors */
304 #define MVNETA_MAX_TXD 1024
305 
306 /* Max number of allowed TCP segments for software TSO */
307 #define MVNETA_MAX_TSO_SEGS 100
308 
309 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
310 
311 /* descriptor aligned size */
312 #define MVNETA_DESC_ALIGNED_SIZE	32
313 
314 /* Number of bytes to be taken into account by HW when putting incoming data
315  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
316  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
317  */
318 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
319 
320 #define MVNETA_RX_PKT_SIZE(mtu) \
321 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
322 	      ETH_HLEN + ETH_FCS_LEN,			     \
323 	      cache_line_size())
324 
325 #define IS_TSO_HEADER(txq, addr) \
326 	((addr >= txq->tso_hdrs_phys) && \
327 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
328 
329 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
330 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
331 
332 enum {
333 	ETHTOOL_STAT_EEE_WAKEUP,
334 	ETHTOOL_STAT_SKB_ALLOC_ERR,
335 	ETHTOOL_STAT_REFILL_ERR,
336 	ETHTOOL_MAX_STATS,
337 };
338 
339 struct mvneta_statistic {
340 	unsigned short offset;
341 	unsigned short type;
342 	const char name[ETH_GSTRING_LEN];
343 };
344 
345 #define T_REG_32	32
346 #define T_REG_64	64
347 #define T_SW		1
348 
349 static const struct mvneta_statistic mvneta_statistics[] = {
350 	{ 0x3000, T_REG_64, "good_octets_received", },
351 	{ 0x3010, T_REG_32, "good_frames_received", },
352 	{ 0x3008, T_REG_32, "bad_octets_received", },
353 	{ 0x3014, T_REG_32, "bad_frames_received", },
354 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
355 	{ 0x301c, T_REG_32, "multicast_frames_received", },
356 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
357 	{ 0x3058, T_REG_32, "good_fc_received", },
358 	{ 0x305c, T_REG_32, "bad_fc_received", },
359 	{ 0x3060, T_REG_32, "undersize_received", },
360 	{ 0x3064, T_REG_32, "fragments_received", },
361 	{ 0x3068, T_REG_32, "oversize_received", },
362 	{ 0x306c, T_REG_32, "jabber_received", },
363 	{ 0x3070, T_REG_32, "mac_receive_error", },
364 	{ 0x3074, T_REG_32, "bad_crc_event", },
365 	{ 0x3078, T_REG_32, "collision", },
366 	{ 0x307c, T_REG_32, "late_collision", },
367 	{ 0x2484, T_REG_32, "rx_discard", },
368 	{ 0x2488, T_REG_32, "rx_overrun", },
369 	{ 0x3020, T_REG_32, "frames_64_octets", },
370 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
371 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
372 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
373 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
374 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
375 	{ 0x3038, T_REG_64, "good_octets_sent", },
376 	{ 0x3040, T_REG_32, "good_frames_sent", },
377 	{ 0x3044, T_REG_32, "excessive_collision", },
378 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
379 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
380 	{ 0x3054, T_REG_32, "fc_sent", },
381 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
382 	{ ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
383 	{ ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
384 	{ ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
385 };
386 
387 struct mvneta_pcpu_stats {
388 	struct	u64_stats_sync syncp;
389 	u64	rx_packets;
390 	u64	rx_bytes;
391 	u64	tx_packets;
392 	u64	tx_bytes;
393 };
394 
395 struct mvneta_pcpu_port {
396 	/* Pointer to the shared port */
397 	struct mvneta_port	*pp;
398 
399 	/* Pointer to the CPU-local NAPI struct */
400 	struct napi_struct	napi;
401 
402 	/* Cause of the previous interrupt */
403 	u32			cause_rx_tx;
404 };
405 
406 struct mvneta_port {
407 	u8 id;
408 	struct mvneta_pcpu_port __percpu	*ports;
409 	struct mvneta_pcpu_stats __percpu	*stats;
410 
411 	int pkt_size;
412 	void __iomem *base;
413 	struct mvneta_rx_queue *rxqs;
414 	struct mvneta_tx_queue *txqs;
415 	struct net_device *dev;
416 	struct hlist_node node_online;
417 	struct hlist_node node_dead;
418 	int rxq_def;
419 	/* Protect the access to the percpu interrupt registers,
420 	 * ensuring that the configuration remains coherent.
421 	 */
422 	spinlock_t lock;
423 	bool is_stopped;
424 
425 	u32 cause_rx_tx;
426 	struct napi_struct napi;
427 
428 	/* Core clock */
429 	struct clk *clk;
430 	/* AXI clock */
431 	struct clk *clk_bus;
432 	u8 mcast_count[256];
433 	u16 tx_ring_size;
434 	u16 rx_ring_size;
435 
436 	phy_interface_t phy_interface;
437 	struct device_node *dn;
438 	unsigned int tx_csum_limit;
439 	struct phylink *phylink;
440 	struct phy *comphy;
441 
442 	struct mvneta_bm *bm_priv;
443 	struct mvneta_bm_pool *pool_long;
444 	struct mvneta_bm_pool *pool_short;
445 	int bm_win_id;
446 
447 	bool eee_enabled;
448 	bool eee_active;
449 	bool tx_lpi_enabled;
450 
451 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
452 
453 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
454 
455 	/* Flags for special SoC configurations */
456 	bool neta_armada3700;
457 	u16 rx_offset_correction;
458 	const struct mbus_dram_target_info *dram_target_info;
459 };
460 
461 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
462  * layout of the transmit and reception DMA descriptors, and their
463  * layout is therefore defined by the hardware design
464  */
465 
466 #define MVNETA_TX_L3_OFF_SHIFT	0
467 #define MVNETA_TX_IP_HLEN_SHIFT	8
468 #define MVNETA_TX_L4_UDP	BIT(16)
469 #define MVNETA_TX_L3_IP6	BIT(17)
470 #define MVNETA_TXD_IP_CSUM	BIT(18)
471 #define MVNETA_TXD_Z_PAD	BIT(19)
472 #define MVNETA_TXD_L_DESC	BIT(20)
473 #define MVNETA_TXD_F_DESC	BIT(21)
474 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
475 				 MVNETA_TXD_L_DESC | \
476 				 MVNETA_TXD_F_DESC)
477 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
478 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
479 
480 #define MVNETA_RXD_ERR_CRC		0x0
481 #define MVNETA_RXD_BM_POOL_SHIFT	13
482 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
483 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
484 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
485 #define MVNETA_RXD_ERR_LEN		BIT(18)
486 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
487 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
488 #define MVNETA_RXD_L3_IP4		BIT(25)
489 #define MVNETA_RXD_LAST_DESC		BIT(26)
490 #define MVNETA_RXD_FIRST_DESC		BIT(27)
491 #define MVNETA_RXD_FIRST_LAST_DESC	(MVNETA_RXD_FIRST_DESC | \
492 					 MVNETA_RXD_LAST_DESC)
493 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
494 
495 #if defined(__LITTLE_ENDIAN)
496 struct mvneta_tx_desc {
497 	u32  command;		/* Options used by HW for packet transmitting.*/
498 	u16  reserved1;		/* csum_l4 (for future use)		*/
499 	u16  data_size;		/* Data size of transmitted packet in bytes */
500 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
501 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
502 	u32  reserved3[4];	/* Reserved - (for future use)		*/
503 };
504 
505 struct mvneta_rx_desc {
506 	u32  status;		/* Info about received packet		*/
507 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
508 	u16  data_size;		/* Size of received packet in bytes	*/
509 
510 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
511 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
512 
513 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
514 	u16  reserved3;		/* prefetch_cmd, for future use		*/
515 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
516 
517 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
518 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
519 };
520 #else
521 struct mvneta_tx_desc {
522 	u16  data_size;		/* Data size of transmitted packet in bytes */
523 	u16  reserved1;		/* csum_l4 (for future use)		*/
524 	u32  command;		/* Options used by HW for packet transmitting.*/
525 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
526 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
527 	u32  reserved3[4];	/* Reserved - (for future use)		*/
528 };
529 
530 struct mvneta_rx_desc {
531 	u16  data_size;		/* Size of received packet in bytes	*/
532 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
533 	u32  status;		/* Info about received packet		*/
534 
535 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
536 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
537 
538 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
539 	u16  reserved3;		/* prefetch_cmd, for future use		*/
540 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
541 
542 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
543 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
544 };
545 #endif
546 
547 struct mvneta_tx_queue {
548 	/* Number of this TX queue, in the range 0-7 */
549 	u8 id;
550 
551 	/* Number of TX DMA descriptors in the descriptor ring */
552 	int size;
553 
554 	/* Number of currently used TX DMA descriptor in the
555 	 * descriptor ring
556 	 */
557 	int count;
558 	int pending;
559 	int tx_stop_threshold;
560 	int tx_wake_threshold;
561 
562 	/* Array of transmitted skb */
563 	struct sk_buff **tx_skb;
564 
565 	/* Index of last TX DMA descriptor that was inserted */
566 	int txq_put_index;
567 
568 	/* Index of the TX DMA descriptor to be cleaned up */
569 	int txq_get_index;
570 
571 	u32 done_pkts_coal;
572 
573 	/* Virtual address of the TX DMA descriptors array */
574 	struct mvneta_tx_desc *descs;
575 
576 	/* DMA address of the TX DMA descriptors array */
577 	dma_addr_t descs_phys;
578 
579 	/* Index of the last TX DMA descriptor */
580 	int last_desc;
581 
582 	/* Index of the next TX DMA descriptor to process */
583 	int next_desc_to_proc;
584 
585 	/* DMA buffers for TSO headers */
586 	char *tso_hdrs;
587 
588 	/* DMA address of TSO headers */
589 	dma_addr_t tso_hdrs_phys;
590 
591 	/* Affinity mask for CPUs*/
592 	cpumask_t affinity_mask;
593 };
594 
595 struct mvneta_rx_queue {
596 	/* rx queue number, in the range 0-7 */
597 	u8 id;
598 
599 	/* num of rx descriptors in the rx descriptor ring */
600 	int size;
601 
602 	u32 pkts_coal;
603 	u32 time_coal;
604 
605 	/* Virtual address of the RX buffer */
606 	void  **buf_virt_addr;
607 
608 	/* Virtual address of the RX DMA descriptors array */
609 	struct mvneta_rx_desc *descs;
610 
611 	/* DMA address of the RX DMA descriptors array */
612 	dma_addr_t descs_phys;
613 
614 	/* Index of the last RX DMA descriptor */
615 	int last_desc;
616 
617 	/* Index of the next RX DMA descriptor to process */
618 	int next_desc_to_proc;
619 
620 	/* Index of first RX DMA descriptor to refill */
621 	int first_to_refill;
622 	u32 refill_num;
623 
624 	/* pointer to uncomplete skb buffer */
625 	struct sk_buff *skb;
626 	int left_size;
627 
628 	/* error counters */
629 	u32 skb_alloc_err;
630 	u32 refill_err;
631 };
632 
633 static enum cpuhp_state online_hpstate;
634 /* The hardware supports eight (8) rx queues, but we are only allowing
635  * the first one to be used. Therefore, let's just allocate one queue.
636  */
637 static int rxq_number = 8;
638 static int txq_number = 8;
639 
640 static int rxq_def;
641 
642 static int rx_copybreak __read_mostly = 256;
643 static int rx_header_size __read_mostly = 128;
644 
645 /* HW BM need that each port be identify by a unique ID */
646 static int global_port_id;
647 
648 #define MVNETA_DRIVER_NAME "mvneta"
649 #define MVNETA_DRIVER_VERSION "1.0"
650 
651 /* Utility/helper methods */
652 
653 /* Write helper method */
654 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
655 {
656 	writel(data, pp->base + offset);
657 }
658 
659 /* Read helper method */
660 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
661 {
662 	return readl(pp->base + offset);
663 }
664 
665 /* Increment txq get counter */
666 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
667 {
668 	txq->txq_get_index++;
669 	if (txq->txq_get_index == txq->size)
670 		txq->txq_get_index = 0;
671 }
672 
673 /* Increment txq put counter */
674 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
675 {
676 	txq->txq_put_index++;
677 	if (txq->txq_put_index == txq->size)
678 		txq->txq_put_index = 0;
679 }
680 
681 
682 /* Clear all MIB counters */
683 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
684 {
685 	int i;
686 	u32 dummy;
687 
688 	/* Perform dummy reads from MIB counters */
689 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
690 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
691 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
692 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
693 }
694 
695 /* Get System Network Statistics */
696 static void
697 mvneta_get_stats64(struct net_device *dev,
698 		   struct rtnl_link_stats64 *stats)
699 {
700 	struct mvneta_port *pp = netdev_priv(dev);
701 	unsigned int start;
702 	int cpu;
703 
704 	for_each_possible_cpu(cpu) {
705 		struct mvneta_pcpu_stats *cpu_stats;
706 		u64 rx_packets;
707 		u64 rx_bytes;
708 		u64 tx_packets;
709 		u64 tx_bytes;
710 
711 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
712 		do {
713 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
714 			rx_packets = cpu_stats->rx_packets;
715 			rx_bytes   = cpu_stats->rx_bytes;
716 			tx_packets = cpu_stats->tx_packets;
717 			tx_bytes   = cpu_stats->tx_bytes;
718 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
719 
720 		stats->rx_packets += rx_packets;
721 		stats->rx_bytes   += rx_bytes;
722 		stats->tx_packets += tx_packets;
723 		stats->tx_bytes   += tx_bytes;
724 	}
725 
726 	stats->rx_errors	= dev->stats.rx_errors;
727 	stats->rx_dropped	= dev->stats.rx_dropped;
728 
729 	stats->tx_dropped	= dev->stats.tx_dropped;
730 }
731 
732 /* Rx descriptors helper methods */
733 
734 /* Checks whether the RX descriptor having this status is both the first
735  * and the last descriptor for the RX packet. Each RX packet is currently
736  * received through a single RX descriptor, so not having each RX
737  * descriptor with its first and last bits set is an error
738  */
739 static int mvneta_rxq_desc_is_first_last(u32 status)
740 {
741 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
742 		MVNETA_RXD_FIRST_LAST_DESC;
743 }
744 
745 /* Add number of descriptors ready to receive new packets */
746 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
747 					  struct mvneta_rx_queue *rxq,
748 					  int ndescs)
749 {
750 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
751 	 * be added at once
752 	 */
753 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
754 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
755 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
756 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
757 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
758 	}
759 
760 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
761 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
762 }
763 
764 /* Get number of RX descriptors occupied by received packets */
765 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
766 					struct mvneta_rx_queue *rxq)
767 {
768 	u32 val;
769 
770 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
771 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
772 }
773 
774 /* Update num of rx desc called upon return from rx path or
775  * from mvneta_rxq_drop_pkts().
776  */
777 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
778 				       struct mvneta_rx_queue *rxq,
779 				       int rx_done, int rx_filled)
780 {
781 	u32 val;
782 
783 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
784 		val = rx_done |
785 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
786 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
787 		return;
788 	}
789 
790 	/* Only 255 descriptors can be added at once */
791 	while ((rx_done > 0) || (rx_filled > 0)) {
792 		if (rx_done <= 0xff) {
793 			val = rx_done;
794 			rx_done = 0;
795 		} else {
796 			val = 0xff;
797 			rx_done -= 0xff;
798 		}
799 		if (rx_filled <= 0xff) {
800 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
801 			rx_filled = 0;
802 		} else {
803 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
804 			rx_filled -= 0xff;
805 		}
806 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
807 	}
808 }
809 
810 /* Get pointer to next RX descriptor to be processed by SW */
811 static struct mvneta_rx_desc *
812 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
813 {
814 	int rx_desc = rxq->next_desc_to_proc;
815 
816 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
817 	prefetch(rxq->descs + rxq->next_desc_to_proc);
818 	return rxq->descs + rx_desc;
819 }
820 
821 /* Change maximum receive size of the port. */
822 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
823 {
824 	u32 val;
825 
826 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
827 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
828 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
829 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
830 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
831 }
832 
833 
834 /* Set rx queue offset */
835 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
836 				  struct mvneta_rx_queue *rxq,
837 				  int offset)
838 {
839 	u32 val;
840 
841 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
842 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
843 
844 	/* Offset is in */
845 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
846 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
847 }
848 
849 
850 /* Tx descriptors helper methods */
851 
852 /* Update HW with number of TX descriptors to be sent */
853 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
854 				     struct mvneta_tx_queue *txq,
855 				     int pend_desc)
856 {
857 	u32 val;
858 
859 	pend_desc += txq->pending;
860 
861 	/* Only 255 Tx descriptors can be added at once */
862 	do {
863 		val = min(pend_desc, 255);
864 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
865 		pend_desc -= val;
866 	} while (pend_desc > 0);
867 	txq->pending = 0;
868 }
869 
870 /* Get pointer to next TX descriptor to be processed (send) by HW */
871 static struct mvneta_tx_desc *
872 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
873 {
874 	int tx_desc = txq->next_desc_to_proc;
875 
876 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
877 	return txq->descs + tx_desc;
878 }
879 
880 /* Release the last allocated TX descriptor. Useful to handle DMA
881  * mapping failures in the TX path.
882  */
883 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
884 {
885 	if (txq->next_desc_to_proc == 0)
886 		txq->next_desc_to_proc = txq->last_desc - 1;
887 	else
888 		txq->next_desc_to_proc--;
889 }
890 
891 /* Set rxq buf size */
892 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
893 				    struct mvneta_rx_queue *rxq,
894 				    int buf_size)
895 {
896 	u32 val;
897 
898 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
899 
900 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
901 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
902 
903 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
904 }
905 
906 /* Disable buffer management (BM) */
907 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
908 				  struct mvneta_rx_queue *rxq)
909 {
910 	u32 val;
911 
912 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
913 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
914 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
915 }
916 
917 /* Enable buffer management (BM) */
918 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
919 				 struct mvneta_rx_queue *rxq)
920 {
921 	u32 val;
922 
923 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
924 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
925 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
926 }
927 
928 /* Notify HW about port's assignment of pool for bigger packets */
929 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
930 				     struct mvneta_rx_queue *rxq)
931 {
932 	u32 val;
933 
934 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
935 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
936 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
937 
938 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
939 }
940 
941 /* Notify HW about port's assignment of pool for smaller packets */
942 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
943 				      struct mvneta_rx_queue *rxq)
944 {
945 	u32 val;
946 
947 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
948 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
949 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
950 
951 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
952 }
953 
954 /* Set port's receive buffer size for assigned BM pool */
955 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
956 					      int buf_size,
957 					      u8 pool_id)
958 {
959 	u32 val;
960 
961 	if (!IS_ALIGNED(buf_size, 8)) {
962 		dev_warn(pp->dev->dev.parent,
963 			 "illegal buf_size value %d, round to %d\n",
964 			 buf_size, ALIGN(buf_size, 8));
965 		buf_size = ALIGN(buf_size, 8);
966 	}
967 
968 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
969 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
970 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
971 }
972 
973 /* Configure MBUS window in order to enable access BM internal SRAM */
974 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
975 				  u8 target, u8 attr)
976 {
977 	u32 win_enable, win_protect;
978 	int i;
979 
980 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
981 
982 	if (pp->bm_win_id < 0) {
983 		/* Find first not occupied window */
984 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
985 			if (win_enable & (1 << i)) {
986 				pp->bm_win_id = i;
987 				break;
988 			}
989 		}
990 		if (i == MVNETA_MAX_DECODE_WIN)
991 			return -ENOMEM;
992 	} else {
993 		i = pp->bm_win_id;
994 	}
995 
996 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
997 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
998 
999 	if (i < 4)
1000 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1001 
1002 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1003 		    (attr << 8) | target);
1004 
1005 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1006 
1007 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1008 	win_protect |= 3 << (2 * i);
1009 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1010 
1011 	win_enable &= ~(1 << i);
1012 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1013 
1014 	return 0;
1015 }
1016 
1017 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1018 {
1019 	u32 wsize;
1020 	u8 target, attr;
1021 	int err;
1022 
1023 	/* Get BM window information */
1024 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1025 					 &target, &attr);
1026 	if (err < 0)
1027 		return err;
1028 
1029 	pp->bm_win_id = -1;
1030 
1031 	/* Open NETA -> BM window */
1032 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1033 				     target, attr);
1034 	if (err < 0) {
1035 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1036 		return err;
1037 	}
1038 	return 0;
1039 }
1040 
1041 /* Assign and initialize pools for port. In case of fail
1042  * buffer manager will remain disabled for current port.
1043  */
1044 static int mvneta_bm_port_init(struct platform_device *pdev,
1045 			       struct mvneta_port *pp)
1046 {
1047 	struct device_node *dn = pdev->dev.of_node;
1048 	u32 long_pool_id, short_pool_id;
1049 
1050 	if (!pp->neta_armada3700) {
1051 		int ret;
1052 
1053 		ret = mvneta_bm_port_mbus_init(pp);
1054 		if (ret)
1055 			return ret;
1056 	}
1057 
1058 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1059 		netdev_info(pp->dev, "missing long pool id\n");
1060 		return -EINVAL;
1061 	}
1062 
1063 	/* Create port's long pool depending on mtu */
1064 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1065 					   MVNETA_BM_LONG, pp->id,
1066 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1067 	if (!pp->pool_long) {
1068 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1069 		return -ENOMEM;
1070 	}
1071 
1072 	pp->pool_long->port_map |= 1 << pp->id;
1073 
1074 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1075 				   pp->pool_long->id);
1076 
1077 	/* If short pool id is not defined, assume using single pool */
1078 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1079 		short_pool_id = long_pool_id;
1080 
1081 	/* Create port's short pool */
1082 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1083 					    MVNETA_BM_SHORT, pp->id,
1084 					    MVNETA_BM_SHORT_PKT_SIZE);
1085 	if (!pp->pool_short) {
1086 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1087 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1088 		return -ENOMEM;
1089 	}
1090 
1091 	if (short_pool_id != long_pool_id) {
1092 		pp->pool_short->port_map |= 1 << pp->id;
1093 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1094 					   pp->pool_short->id);
1095 	}
1096 
1097 	return 0;
1098 }
1099 
1100 /* Update settings of a pool for bigger packets */
1101 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1102 {
1103 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1104 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1105 	int num;
1106 
1107 	/* Release all buffers from long pool */
1108 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1109 	if (hwbm_pool->buf_num) {
1110 		WARN(1, "cannot free all buffers in pool %d\n",
1111 		     bm_pool->id);
1112 		goto bm_mtu_err;
1113 	}
1114 
1115 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1116 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1117 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1118 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1119 
1120 	/* Fill entire long pool */
1121 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1122 	if (num != hwbm_pool->size) {
1123 		WARN(1, "pool %d: %d of %d allocated\n",
1124 		     bm_pool->id, num, hwbm_pool->size);
1125 		goto bm_mtu_err;
1126 	}
1127 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1128 
1129 	return;
1130 
1131 bm_mtu_err:
1132 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1133 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1134 
1135 	pp->bm_priv = NULL;
1136 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1137 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1138 }
1139 
1140 /* Start the Ethernet port RX and TX activity */
1141 static void mvneta_port_up(struct mvneta_port *pp)
1142 {
1143 	int queue;
1144 	u32 q_map;
1145 
1146 	/* Enable all initialized TXs. */
1147 	q_map = 0;
1148 	for (queue = 0; queue < txq_number; queue++) {
1149 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1150 		if (txq->descs)
1151 			q_map |= (1 << queue);
1152 	}
1153 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1154 
1155 	q_map = 0;
1156 	/* Enable all initialized RXQs. */
1157 	for (queue = 0; queue < rxq_number; queue++) {
1158 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1159 
1160 		if (rxq->descs)
1161 			q_map |= (1 << queue);
1162 	}
1163 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1164 }
1165 
1166 /* Stop the Ethernet port activity */
1167 static void mvneta_port_down(struct mvneta_port *pp)
1168 {
1169 	u32 val;
1170 	int count;
1171 
1172 	/* Stop Rx port activity. Check port Rx activity. */
1173 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1174 
1175 	/* Issue stop command for active channels only */
1176 	if (val != 0)
1177 		mvreg_write(pp, MVNETA_RXQ_CMD,
1178 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1179 
1180 	/* Wait for all Rx activity to terminate. */
1181 	count = 0;
1182 	do {
1183 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1184 			netdev_warn(pp->dev,
1185 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1186 				    val);
1187 			break;
1188 		}
1189 		mdelay(1);
1190 
1191 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1192 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1193 
1194 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1195 	 * command for active channels only
1196 	 */
1197 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1198 
1199 	if (val != 0)
1200 		mvreg_write(pp, MVNETA_TXQ_CMD,
1201 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1202 
1203 	/* Wait for all Tx activity to terminate. */
1204 	count = 0;
1205 	do {
1206 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1207 			netdev_warn(pp->dev,
1208 				    "TIMEOUT for TX stopped status=0x%08x\n",
1209 				    val);
1210 			break;
1211 		}
1212 		mdelay(1);
1213 
1214 		/* Check TX Command reg that all Txqs are stopped */
1215 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1216 
1217 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1218 
1219 	/* Double check to verify that TX FIFO is empty */
1220 	count = 0;
1221 	do {
1222 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1223 			netdev_warn(pp->dev,
1224 				    "TX FIFO empty timeout status=0x%08x\n",
1225 				    val);
1226 			break;
1227 		}
1228 		mdelay(1);
1229 
1230 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1231 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1232 		 (val & MVNETA_TX_IN_PRGRS));
1233 
1234 	udelay(200);
1235 }
1236 
1237 /* Enable the port by setting the port enable bit of the MAC control register */
1238 static void mvneta_port_enable(struct mvneta_port *pp)
1239 {
1240 	u32 val;
1241 
1242 	/* Enable port */
1243 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1244 	val |= MVNETA_GMAC0_PORT_ENABLE;
1245 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1246 }
1247 
1248 /* Disable the port and wait for about 200 usec before retuning */
1249 static void mvneta_port_disable(struct mvneta_port *pp)
1250 {
1251 	u32 val;
1252 
1253 	/* Reset the Enable bit in the Serial Control Register */
1254 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1255 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1256 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1257 
1258 	udelay(200);
1259 }
1260 
1261 /* Multicast tables methods */
1262 
1263 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1264 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1265 {
1266 	int offset;
1267 	u32 val;
1268 
1269 	if (queue == -1) {
1270 		val = 0;
1271 	} else {
1272 		val = 0x1 | (queue << 1);
1273 		val |= (val << 24) | (val << 16) | (val << 8);
1274 	}
1275 
1276 	for (offset = 0; offset <= 0xc; offset += 4)
1277 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1278 }
1279 
1280 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1281 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1282 {
1283 	int offset;
1284 	u32 val;
1285 
1286 	if (queue == -1) {
1287 		val = 0;
1288 	} else {
1289 		val = 0x1 | (queue << 1);
1290 		val |= (val << 24) | (val << 16) | (val << 8);
1291 	}
1292 
1293 	for (offset = 0; offset <= 0xfc; offset += 4)
1294 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1295 
1296 }
1297 
1298 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1299 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1300 {
1301 	int offset;
1302 	u32 val;
1303 
1304 	if (queue == -1) {
1305 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1306 		val = 0;
1307 	} else {
1308 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1309 		val = 0x1 | (queue << 1);
1310 		val |= (val << 24) | (val << 16) | (val << 8);
1311 	}
1312 
1313 	for (offset = 0; offset <= 0xfc; offset += 4)
1314 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1315 }
1316 
1317 static void mvneta_percpu_unmask_interrupt(void *arg)
1318 {
1319 	struct mvneta_port *pp = arg;
1320 
1321 	/* All the queue are unmasked, but actually only the ones
1322 	 * mapped to this CPU will be unmasked
1323 	 */
1324 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1325 		    MVNETA_RX_INTR_MASK_ALL |
1326 		    MVNETA_TX_INTR_MASK_ALL |
1327 		    MVNETA_MISCINTR_INTR_MASK);
1328 }
1329 
1330 static void mvneta_percpu_mask_interrupt(void *arg)
1331 {
1332 	struct mvneta_port *pp = arg;
1333 
1334 	/* All the queue are masked, but actually only the ones
1335 	 * mapped to this CPU will be masked
1336 	 */
1337 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1338 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1339 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1340 }
1341 
1342 static void mvneta_percpu_clear_intr_cause(void *arg)
1343 {
1344 	struct mvneta_port *pp = arg;
1345 
1346 	/* All the queue are cleared, but actually only the ones
1347 	 * mapped to this CPU will be cleared
1348 	 */
1349 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1350 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1351 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1352 }
1353 
1354 /* This method sets defaults to the NETA port:
1355  *	Clears interrupt Cause and Mask registers.
1356  *	Clears all MAC tables.
1357  *	Sets defaults to all registers.
1358  *	Resets RX and TX descriptor rings.
1359  *	Resets PHY.
1360  * This method can be called after mvneta_port_down() to return the port
1361  *	settings to defaults.
1362  */
1363 static void mvneta_defaults_set(struct mvneta_port *pp)
1364 {
1365 	int cpu;
1366 	int queue;
1367 	u32 val;
1368 	int max_cpu = num_present_cpus();
1369 
1370 	/* Clear all Cause registers */
1371 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1372 
1373 	/* Mask all interrupts */
1374 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1375 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1376 
1377 	/* Enable MBUS Retry bit16 */
1378 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1379 
1380 	/* Set CPU queue access map. CPUs are assigned to the RX and
1381 	 * TX queues modulo their number. If there is only one TX
1382 	 * queue then it is assigned to the CPU associated to the
1383 	 * default RX queue.
1384 	 */
1385 	for_each_present_cpu(cpu) {
1386 		int rxq_map = 0, txq_map = 0;
1387 		int rxq, txq;
1388 		if (!pp->neta_armada3700) {
1389 			for (rxq = 0; rxq < rxq_number; rxq++)
1390 				if ((rxq % max_cpu) == cpu)
1391 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1392 
1393 			for (txq = 0; txq < txq_number; txq++)
1394 				if ((txq % max_cpu) == cpu)
1395 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1396 
1397 			/* With only one TX queue we configure a special case
1398 			 * which will allow to get all the irq on a single
1399 			 * CPU
1400 			 */
1401 			if (txq_number == 1)
1402 				txq_map = (cpu == pp->rxq_def) ?
1403 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1404 
1405 		} else {
1406 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1407 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1408 		}
1409 
1410 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1411 	}
1412 
1413 	/* Reset RX and TX DMAs */
1414 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1415 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1416 
1417 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1418 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1419 	for (queue = 0; queue < txq_number; queue++) {
1420 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1421 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1422 	}
1423 
1424 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1425 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1426 
1427 	/* Set Port Acceleration Mode */
1428 	if (pp->bm_priv)
1429 		/* HW buffer management + legacy parser */
1430 		val = MVNETA_ACC_MODE_EXT2;
1431 	else
1432 		/* SW buffer management + legacy parser */
1433 		val = MVNETA_ACC_MODE_EXT1;
1434 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1435 
1436 	if (pp->bm_priv)
1437 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1438 
1439 	/* Update val of portCfg register accordingly with all RxQueue types */
1440 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1441 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1442 
1443 	val = 0;
1444 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1445 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1446 
1447 	/* Build PORT_SDMA_CONFIG_REG */
1448 	val = 0;
1449 
1450 	/* Default burst size */
1451 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1452 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1453 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1454 
1455 #if defined(__BIG_ENDIAN)
1456 	val |= MVNETA_DESC_SWAP;
1457 #endif
1458 
1459 	/* Assign port SDMA configuration */
1460 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1461 
1462 	/* Disable PHY polling in hardware, since we're using the
1463 	 * kernel phylib to do this.
1464 	 */
1465 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1466 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1467 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1468 
1469 	mvneta_set_ucast_table(pp, -1);
1470 	mvneta_set_special_mcast_table(pp, -1);
1471 	mvneta_set_other_mcast_table(pp, -1);
1472 
1473 	/* Set port interrupt enable register - default enable all */
1474 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1475 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1476 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1477 
1478 	mvneta_mib_counters_clear(pp);
1479 }
1480 
1481 /* Set max sizes for tx queues */
1482 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1483 
1484 {
1485 	u32 val, size, mtu;
1486 	int queue;
1487 
1488 	mtu = max_tx_size * 8;
1489 	if (mtu > MVNETA_TX_MTU_MAX)
1490 		mtu = MVNETA_TX_MTU_MAX;
1491 
1492 	/* Set MTU */
1493 	val = mvreg_read(pp, MVNETA_TX_MTU);
1494 	val &= ~MVNETA_TX_MTU_MAX;
1495 	val |= mtu;
1496 	mvreg_write(pp, MVNETA_TX_MTU, val);
1497 
1498 	/* TX token size and all TXQs token size must be larger that MTU */
1499 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1500 
1501 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1502 	if (size < mtu) {
1503 		size = mtu;
1504 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1505 		val |= size;
1506 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1507 	}
1508 	for (queue = 0; queue < txq_number; queue++) {
1509 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1510 
1511 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1512 		if (size < mtu) {
1513 			size = mtu;
1514 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1515 			val |= size;
1516 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1517 		}
1518 	}
1519 }
1520 
1521 /* Set unicast address */
1522 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1523 				  int queue)
1524 {
1525 	unsigned int unicast_reg;
1526 	unsigned int tbl_offset;
1527 	unsigned int reg_offset;
1528 
1529 	/* Locate the Unicast table entry */
1530 	last_nibble = (0xf & last_nibble);
1531 
1532 	/* offset from unicast tbl base */
1533 	tbl_offset = (last_nibble / 4) * 4;
1534 
1535 	/* offset within the above reg  */
1536 	reg_offset = last_nibble % 4;
1537 
1538 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1539 
1540 	if (queue == -1) {
1541 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1542 		unicast_reg &= ~(0xff << (8 * reg_offset));
1543 	} else {
1544 		unicast_reg &= ~(0xff << (8 * reg_offset));
1545 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1546 	}
1547 
1548 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1549 }
1550 
1551 /* Set mac address */
1552 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1553 				int queue)
1554 {
1555 	unsigned int mac_h;
1556 	unsigned int mac_l;
1557 
1558 	if (queue != -1) {
1559 		mac_l = (addr[4] << 8) | (addr[5]);
1560 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1561 			(addr[2] << 8) | (addr[3] << 0);
1562 
1563 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1564 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1565 	}
1566 
1567 	/* Accept frames of this address */
1568 	mvneta_set_ucast_addr(pp, addr[5], queue);
1569 }
1570 
1571 /* Set the number of packets that will be received before RX interrupt
1572  * will be generated by HW.
1573  */
1574 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1575 				    struct mvneta_rx_queue *rxq, u32 value)
1576 {
1577 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1578 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1579 }
1580 
1581 /* Set the time delay in usec before RX interrupt will be generated by
1582  * HW.
1583  */
1584 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1585 				    struct mvneta_rx_queue *rxq, u32 value)
1586 {
1587 	u32 val;
1588 	unsigned long clk_rate;
1589 
1590 	clk_rate = clk_get_rate(pp->clk);
1591 	val = (clk_rate / 1000000) * value;
1592 
1593 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1594 }
1595 
1596 /* Set threshold for TX_DONE pkts coalescing */
1597 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1598 					 struct mvneta_tx_queue *txq, u32 value)
1599 {
1600 	u32 val;
1601 
1602 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1603 
1604 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1605 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1606 
1607 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1608 }
1609 
1610 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1611 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1612 				u32 phys_addr, void *virt_addr,
1613 				struct mvneta_rx_queue *rxq)
1614 {
1615 	int i;
1616 
1617 	rx_desc->buf_phys_addr = phys_addr;
1618 	i = rx_desc - rxq->descs;
1619 	rxq->buf_virt_addr[i] = virt_addr;
1620 }
1621 
1622 /* Decrement sent descriptors counter */
1623 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1624 				     struct mvneta_tx_queue *txq,
1625 				     int sent_desc)
1626 {
1627 	u32 val;
1628 
1629 	/* Only 255 TX descriptors can be updated at once */
1630 	while (sent_desc > 0xff) {
1631 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1632 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1633 		sent_desc = sent_desc - 0xff;
1634 	}
1635 
1636 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1637 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1638 }
1639 
1640 /* Get number of TX descriptors already sent by HW */
1641 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1642 					struct mvneta_tx_queue *txq)
1643 {
1644 	u32 val;
1645 	int sent_desc;
1646 
1647 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1648 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1649 		MVNETA_TXQ_SENT_DESC_SHIFT;
1650 
1651 	return sent_desc;
1652 }
1653 
1654 /* Get number of sent descriptors and decrement counter.
1655  *  The number of sent descriptors is returned.
1656  */
1657 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1658 				     struct mvneta_tx_queue *txq)
1659 {
1660 	int sent_desc;
1661 
1662 	/* Get number of sent descriptors */
1663 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1664 
1665 	/* Decrement sent descriptors counter */
1666 	if (sent_desc)
1667 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1668 
1669 	return sent_desc;
1670 }
1671 
1672 /* Set TXQ descriptors fields relevant for CSUM calculation */
1673 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1674 				int ip_hdr_len, int l4_proto)
1675 {
1676 	u32 command;
1677 
1678 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1679 	 * G_L4_chk, L4_type; required only for checksum
1680 	 * calculation
1681 	 */
1682 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1683 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1684 
1685 	if (l3_proto == htons(ETH_P_IP))
1686 		command |= MVNETA_TXD_IP_CSUM;
1687 	else
1688 		command |= MVNETA_TX_L3_IP6;
1689 
1690 	if (l4_proto == IPPROTO_TCP)
1691 		command |=  MVNETA_TX_L4_CSUM_FULL;
1692 	else if (l4_proto == IPPROTO_UDP)
1693 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1694 	else
1695 		command |= MVNETA_TX_L4_CSUM_NOT;
1696 
1697 	return command;
1698 }
1699 
1700 
1701 /* Display more error info */
1702 static void mvneta_rx_error(struct mvneta_port *pp,
1703 			    struct mvneta_rx_desc *rx_desc)
1704 {
1705 	u32 status = rx_desc->status;
1706 
1707 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1708 	case MVNETA_RXD_ERR_CRC:
1709 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1710 			   status, rx_desc->data_size);
1711 		break;
1712 	case MVNETA_RXD_ERR_OVERRUN:
1713 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1714 			   status, rx_desc->data_size);
1715 		break;
1716 	case MVNETA_RXD_ERR_LEN:
1717 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1718 			   status, rx_desc->data_size);
1719 		break;
1720 	case MVNETA_RXD_ERR_RESOURCE:
1721 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1722 			   status, rx_desc->data_size);
1723 		break;
1724 	}
1725 }
1726 
1727 /* Handle RX checksum offload based on the descriptor's status */
1728 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1729 			   struct sk_buff *skb)
1730 {
1731 	if ((pp->dev->features & NETIF_F_RXCSUM) &&
1732 	    (status & MVNETA_RXD_L3_IP4) &&
1733 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1734 		skb->csum = 0;
1735 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1736 		return;
1737 	}
1738 
1739 	skb->ip_summed = CHECKSUM_NONE;
1740 }
1741 
1742 /* Return tx queue pointer (find last set bit) according to <cause> returned
1743  * form tx_done reg. <cause> must not be null. The return value is always a
1744  * valid queue for matching the first one found in <cause>.
1745  */
1746 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1747 						     u32 cause)
1748 {
1749 	int queue = fls(cause) - 1;
1750 
1751 	return &pp->txqs[queue];
1752 }
1753 
1754 /* Free tx queue skbuffs */
1755 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1756 				 struct mvneta_tx_queue *txq, int num,
1757 				 struct netdev_queue *nq)
1758 {
1759 	unsigned int bytes_compl = 0, pkts_compl = 0;
1760 	int i;
1761 
1762 	for (i = 0; i < num; i++) {
1763 		struct mvneta_tx_desc *tx_desc = txq->descs +
1764 			txq->txq_get_index;
1765 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1766 
1767 		if (skb) {
1768 			bytes_compl += skb->len;
1769 			pkts_compl++;
1770 		}
1771 
1772 		mvneta_txq_inc_get(txq);
1773 
1774 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1775 			dma_unmap_single(pp->dev->dev.parent,
1776 					 tx_desc->buf_phys_addr,
1777 					 tx_desc->data_size, DMA_TO_DEVICE);
1778 		if (!skb)
1779 			continue;
1780 		dev_kfree_skb_any(skb);
1781 	}
1782 
1783 	netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1784 }
1785 
1786 /* Handle end of transmission */
1787 static void mvneta_txq_done(struct mvneta_port *pp,
1788 			   struct mvneta_tx_queue *txq)
1789 {
1790 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1791 	int tx_done;
1792 
1793 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1794 	if (!tx_done)
1795 		return;
1796 
1797 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
1798 
1799 	txq->count -= tx_done;
1800 
1801 	if (netif_tx_queue_stopped(nq)) {
1802 		if (txq->count <= txq->tx_wake_threshold)
1803 			netif_tx_wake_queue(nq);
1804 	}
1805 }
1806 
1807 /* Refill processing for SW buffer management */
1808 /* Allocate page per descriptor */
1809 static int mvneta_rx_refill(struct mvneta_port *pp,
1810 			    struct mvneta_rx_desc *rx_desc,
1811 			    struct mvneta_rx_queue *rxq,
1812 			    gfp_t gfp_mask)
1813 {
1814 	dma_addr_t phys_addr;
1815 	struct page *page;
1816 
1817 	page = __dev_alloc_page(gfp_mask);
1818 	if (!page)
1819 		return -ENOMEM;
1820 
1821 	/* map page for use */
1822 	phys_addr = dma_map_page(pp->dev->dev.parent, page, 0, PAGE_SIZE,
1823 				 DMA_FROM_DEVICE);
1824 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1825 		__free_page(page);
1826 		return -ENOMEM;
1827 	}
1828 
1829 	phys_addr += pp->rx_offset_correction;
1830 	mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1831 	return 0;
1832 }
1833 
1834 /* Handle tx checksum */
1835 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1836 {
1837 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1838 		int ip_hdr_len = 0;
1839 		__be16 l3_proto = vlan_get_protocol(skb);
1840 		u8 l4_proto;
1841 
1842 		if (l3_proto == htons(ETH_P_IP)) {
1843 			struct iphdr *ip4h = ip_hdr(skb);
1844 
1845 			/* Calculate IPv4 checksum and L4 checksum */
1846 			ip_hdr_len = ip4h->ihl;
1847 			l4_proto = ip4h->protocol;
1848 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1849 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1850 
1851 			/* Read l4_protocol from one of IPv6 extra headers */
1852 			if (skb_network_header_len(skb) > 0)
1853 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1854 			l4_proto = ip6h->nexthdr;
1855 		} else
1856 			return MVNETA_TX_L4_CSUM_NOT;
1857 
1858 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1859 					    l3_proto, ip_hdr_len, l4_proto);
1860 	}
1861 
1862 	return MVNETA_TX_L4_CSUM_NOT;
1863 }
1864 
1865 /* Drop packets received by the RXQ and free buffers */
1866 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1867 				 struct mvneta_rx_queue *rxq)
1868 {
1869 	int rx_done, i;
1870 
1871 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1872 	if (rx_done)
1873 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1874 
1875 	if (pp->bm_priv) {
1876 		for (i = 0; i < rx_done; i++) {
1877 			struct mvneta_rx_desc *rx_desc =
1878 						  mvneta_rxq_next_desc_get(rxq);
1879 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1880 			struct mvneta_bm_pool *bm_pool;
1881 
1882 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1883 			/* Return dropped buffer to the pool */
1884 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1885 					      rx_desc->buf_phys_addr);
1886 		}
1887 		return;
1888 	}
1889 
1890 	for (i = 0; i < rxq->size; i++) {
1891 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1892 		void *data = rxq->buf_virt_addr[i];
1893 		if (!data || !(rx_desc->buf_phys_addr))
1894 			continue;
1895 
1896 		dma_unmap_page(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1897 			       PAGE_SIZE, DMA_FROM_DEVICE);
1898 		__free_page(data);
1899 	}
1900 }
1901 
1902 static inline
1903 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
1904 {
1905 	struct mvneta_rx_desc *rx_desc;
1906 	int curr_desc = rxq->first_to_refill;
1907 	int i;
1908 
1909 	for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
1910 		rx_desc = rxq->descs + curr_desc;
1911 		if (!(rx_desc->buf_phys_addr)) {
1912 			if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
1913 				pr_err("Can't refill queue %d. Done %d from %d\n",
1914 				       rxq->id, i, rxq->refill_num);
1915 				rxq->refill_err++;
1916 				break;
1917 			}
1918 		}
1919 		curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
1920 	}
1921 	rxq->refill_num -= i;
1922 	rxq->first_to_refill = curr_desc;
1923 
1924 	return i;
1925 }
1926 
1927 /* Main rx processing when using software buffer management */
1928 static int mvneta_rx_swbm(struct napi_struct *napi,
1929 			  struct mvneta_port *pp, int budget,
1930 			  struct mvneta_rx_queue *rxq)
1931 {
1932 	struct net_device *dev = pp->dev;
1933 	int rx_todo, rx_proc;
1934 	int refill = 0;
1935 	u32 rcvd_pkts = 0;
1936 	u32 rcvd_bytes = 0;
1937 
1938 	/* Get number of received packets */
1939 	rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
1940 	rx_proc = 0;
1941 
1942 	/* Fairness NAPI loop */
1943 	while ((rcvd_pkts < budget) && (rx_proc < rx_todo)) {
1944 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1945 		unsigned char *data;
1946 		struct page *page;
1947 		dma_addr_t phys_addr;
1948 		u32 rx_status, index;
1949 		int rx_bytes, skb_size, copy_size;
1950 		int frag_num, frag_size, frag_offset;
1951 
1952 		index = rx_desc - rxq->descs;
1953 		page = (struct page *)rxq->buf_virt_addr[index];
1954 		data = page_address(page);
1955 		/* Prefetch header */
1956 		prefetch(data);
1957 
1958 		phys_addr = rx_desc->buf_phys_addr;
1959 		rx_status = rx_desc->status;
1960 		rx_proc++;
1961 		rxq->refill_num++;
1962 
1963 		if (rx_status & MVNETA_RXD_FIRST_DESC) {
1964 			/* Check errors only for FIRST descriptor */
1965 			if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
1966 				mvneta_rx_error(pp, rx_desc);
1967 				dev->stats.rx_errors++;
1968 				/* leave the descriptor untouched */
1969 				continue;
1970 			}
1971 			rx_bytes = rx_desc->data_size -
1972 				   (ETH_FCS_LEN + MVNETA_MH_SIZE);
1973 
1974 			/* Allocate small skb for each new packet */
1975 			skb_size = max(rx_copybreak, rx_header_size);
1976 			rxq->skb = netdev_alloc_skb_ip_align(dev, skb_size);
1977 			if (unlikely(!rxq->skb)) {
1978 				netdev_err(dev,
1979 					   "Can't allocate skb on queue %d\n",
1980 					   rxq->id);
1981 				dev->stats.rx_dropped++;
1982 				rxq->skb_alloc_err++;
1983 				continue;
1984 			}
1985 			copy_size = min(skb_size, rx_bytes);
1986 
1987 			/* Copy data from buffer to SKB, skip Marvell header */
1988 			memcpy(rxq->skb->data, data + MVNETA_MH_SIZE,
1989 			       copy_size);
1990 			skb_put(rxq->skb, copy_size);
1991 			rxq->left_size = rx_bytes - copy_size;
1992 
1993 			mvneta_rx_csum(pp, rx_status, rxq->skb);
1994 			if (rxq->left_size == 0) {
1995 				int size = copy_size + MVNETA_MH_SIZE;
1996 
1997 				dma_sync_single_range_for_cpu(dev->dev.parent,
1998 							      phys_addr, 0,
1999 							      size,
2000 							      DMA_FROM_DEVICE);
2001 
2002 				/* leave the descriptor and buffer untouched */
2003 			} else {
2004 				/* refill descriptor with new buffer later */
2005 				rx_desc->buf_phys_addr = 0;
2006 
2007 				frag_num = 0;
2008 				frag_offset = copy_size + MVNETA_MH_SIZE;
2009 				frag_size = min(rxq->left_size,
2010 						(int)(PAGE_SIZE - frag_offset));
2011 				skb_add_rx_frag(rxq->skb, frag_num, page,
2012 						frag_offset, frag_size,
2013 						PAGE_SIZE);
2014 				dma_unmap_page(dev->dev.parent, phys_addr,
2015 					       PAGE_SIZE, DMA_FROM_DEVICE);
2016 				rxq->left_size -= frag_size;
2017 			}
2018 		} else {
2019 			/* Middle or Last descriptor */
2020 			if (unlikely(!rxq->skb)) {
2021 				pr_debug("no skb for rx_status 0x%x\n",
2022 					 rx_status);
2023 				continue;
2024 			}
2025 			if (!rxq->left_size) {
2026 				/* last descriptor has only FCS */
2027 				/* and can be discarded */
2028 				dma_sync_single_range_for_cpu(dev->dev.parent,
2029 							      phys_addr, 0,
2030 							      ETH_FCS_LEN,
2031 							      DMA_FROM_DEVICE);
2032 				/* leave the descriptor and buffer untouched */
2033 			} else {
2034 				/* refill descriptor with new buffer later */
2035 				rx_desc->buf_phys_addr = 0;
2036 
2037 				frag_num = skb_shinfo(rxq->skb)->nr_frags;
2038 				frag_offset = 0;
2039 				frag_size = min(rxq->left_size,
2040 						(int)(PAGE_SIZE - frag_offset));
2041 				skb_add_rx_frag(rxq->skb, frag_num, page,
2042 						frag_offset, frag_size,
2043 						PAGE_SIZE);
2044 
2045 				dma_unmap_page(dev->dev.parent, phys_addr,
2046 					       PAGE_SIZE, DMA_FROM_DEVICE);
2047 
2048 				rxq->left_size -= frag_size;
2049 			}
2050 		} /* Middle or Last descriptor */
2051 
2052 		if (!(rx_status & MVNETA_RXD_LAST_DESC))
2053 			/* no last descriptor this time */
2054 			continue;
2055 
2056 		if (rxq->left_size) {
2057 			pr_err("get last desc, but left_size (%d) != 0\n",
2058 			       rxq->left_size);
2059 			dev_kfree_skb_any(rxq->skb);
2060 			rxq->left_size = 0;
2061 			rxq->skb = NULL;
2062 			continue;
2063 		}
2064 		rcvd_pkts++;
2065 		rcvd_bytes += rxq->skb->len;
2066 
2067 		/* Linux processing */
2068 		rxq->skb->protocol = eth_type_trans(rxq->skb, dev);
2069 
2070 		napi_gro_receive(napi, rxq->skb);
2071 
2072 		/* clean uncomplete skb pointer in queue */
2073 		rxq->skb = NULL;
2074 		rxq->left_size = 0;
2075 	}
2076 
2077 	if (rcvd_pkts) {
2078 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2079 
2080 		u64_stats_update_begin(&stats->syncp);
2081 		stats->rx_packets += rcvd_pkts;
2082 		stats->rx_bytes   += rcvd_bytes;
2083 		u64_stats_update_end(&stats->syncp);
2084 	}
2085 
2086 	/* return some buffers to hardware queue, one at a time is too slow */
2087 	refill = mvneta_rx_refill_queue(pp, rxq);
2088 
2089 	/* Update rxq management counters */
2090 	mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2091 
2092 	return rcvd_pkts;
2093 }
2094 
2095 /* Main rx processing when using hardware buffer management */
2096 static int mvneta_rx_hwbm(struct napi_struct *napi,
2097 			  struct mvneta_port *pp, int rx_todo,
2098 			  struct mvneta_rx_queue *rxq)
2099 {
2100 	struct net_device *dev = pp->dev;
2101 	int rx_done;
2102 	u32 rcvd_pkts = 0;
2103 	u32 rcvd_bytes = 0;
2104 
2105 	/* Get number of received packets */
2106 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2107 
2108 	if (rx_todo > rx_done)
2109 		rx_todo = rx_done;
2110 
2111 	rx_done = 0;
2112 
2113 	/* Fairness NAPI loop */
2114 	while (rx_done < rx_todo) {
2115 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2116 		struct mvneta_bm_pool *bm_pool = NULL;
2117 		struct sk_buff *skb;
2118 		unsigned char *data;
2119 		dma_addr_t phys_addr;
2120 		u32 rx_status, frag_size;
2121 		int rx_bytes, err;
2122 		u8 pool_id;
2123 
2124 		rx_done++;
2125 		rx_status = rx_desc->status;
2126 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2127 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2128 		phys_addr = rx_desc->buf_phys_addr;
2129 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2130 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2131 
2132 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2133 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2134 err_drop_frame_ret_pool:
2135 			/* Return the buffer to the pool */
2136 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2137 					      rx_desc->buf_phys_addr);
2138 err_drop_frame:
2139 			dev->stats.rx_errors++;
2140 			mvneta_rx_error(pp, rx_desc);
2141 			/* leave the descriptor untouched */
2142 			continue;
2143 		}
2144 
2145 		if (rx_bytes <= rx_copybreak) {
2146 			/* better copy a small frame and not unmap the DMA region */
2147 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2148 			if (unlikely(!skb))
2149 				goto err_drop_frame_ret_pool;
2150 
2151 			dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2152 			                              rx_desc->buf_phys_addr,
2153 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2154 			                              rx_bytes,
2155 			                              DMA_FROM_DEVICE);
2156 			skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2157 				     rx_bytes);
2158 
2159 			skb->protocol = eth_type_trans(skb, dev);
2160 			mvneta_rx_csum(pp, rx_status, skb);
2161 			napi_gro_receive(napi, skb);
2162 
2163 			rcvd_pkts++;
2164 			rcvd_bytes += rx_bytes;
2165 
2166 			/* Return the buffer to the pool */
2167 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2168 					      rx_desc->buf_phys_addr);
2169 
2170 			/* leave the descriptor and buffer untouched */
2171 			continue;
2172 		}
2173 
2174 		/* Refill processing */
2175 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2176 		if (err) {
2177 			netdev_err(dev, "Linux processing - Can't refill\n");
2178 			rxq->refill_err++;
2179 			goto err_drop_frame_ret_pool;
2180 		}
2181 
2182 		frag_size = bm_pool->hwbm_pool.frag_size;
2183 
2184 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2185 
2186 		/* After refill old buffer has to be unmapped regardless
2187 		 * the skb is successfully built or not.
2188 		 */
2189 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2190 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2191 		if (!skb)
2192 			goto err_drop_frame;
2193 
2194 		rcvd_pkts++;
2195 		rcvd_bytes += rx_bytes;
2196 
2197 		/* Linux processing */
2198 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2199 		skb_put(skb, rx_bytes);
2200 
2201 		skb->protocol = eth_type_trans(skb, dev);
2202 
2203 		mvneta_rx_csum(pp, rx_status, skb);
2204 
2205 		napi_gro_receive(napi, skb);
2206 	}
2207 
2208 	if (rcvd_pkts) {
2209 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2210 
2211 		u64_stats_update_begin(&stats->syncp);
2212 		stats->rx_packets += rcvd_pkts;
2213 		stats->rx_bytes   += rcvd_bytes;
2214 		u64_stats_update_end(&stats->syncp);
2215 	}
2216 
2217 	/* Update rxq management counters */
2218 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2219 
2220 	return rx_done;
2221 }
2222 
2223 static inline void
2224 mvneta_tso_put_hdr(struct sk_buff *skb,
2225 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2226 {
2227 	struct mvneta_tx_desc *tx_desc;
2228 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2229 
2230 	txq->tx_skb[txq->txq_put_index] = NULL;
2231 	tx_desc = mvneta_txq_next_desc_get(txq);
2232 	tx_desc->data_size = hdr_len;
2233 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2234 	tx_desc->command |= MVNETA_TXD_F_DESC;
2235 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2236 				 txq->txq_put_index * TSO_HEADER_SIZE;
2237 	mvneta_txq_inc_put(txq);
2238 }
2239 
2240 static inline int
2241 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2242 		    struct sk_buff *skb, char *data, int size,
2243 		    bool last_tcp, bool is_last)
2244 {
2245 	struct mvneta_tx_desc *tx_desc;
2246 
2247 	tx_desc = mvneta_txq_next_desc_get(txq);
2248 	tx_desc->data_size = size;
2249 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2250 						size, DMA_TO_DEVICE);
2251 	if (unlikely(dma_mapping_error(dev->dev.parent,
2252 		     tx_desc->buf_phys_addr))) {
2253 		mvneta_txq_desc_put(txq);
2254 		return -ENOMEM;
2255 	}
2256 
2257 	tx_desc->command = 0;
2258 	txq->tx_skb[txq->txq_put_index] = NULL;
2259 
2260 	if (last_tcp) {
2261 		/* last descriptor in the TCP packet */
2262 		tx_desc->command = MVNETA_TXD_L_DESC;
2263 
2264 		/* last descriptor in SKB */
2265 		if (is_last)
2266 			txq->tx_skb[txq->txq_put_index] = skb;
2267 	}
2268 	mvneta_txq_inc_put(txq);
2269 	return 0;
2270 }
2271 
2272 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2273 			 struct mvneta_tx_queue *txq)
2274 {
2275 	int total_len, data_left;
2276 	int desc_count = 0;
2277 	struct mvneta_port *pp = netdev_priv(dev);
2278 	struct tso_t tso;
2279 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2280 	int i;
2281 
2282 	/* Count needed descriptors */
2283 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2284 		return 0;
2285 
2286 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2287 		pr_info("*** Is this even  possible???!?!?\n");
2288 		return 0;
2289 	}
2290 
2291 	/* Initialize the TSO handler, and prepare the first payload */
2292 	tso_start(skb, &tso);
2293 
2294 	total_len = skb->len - hdr_len;
2295 	while (total_len > 0) {
2296 		char *hdr;
2297 
2298 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2299 		total_len -= data_left;
2300 		desc_count++;
2301 
2302 		/* prepare packet headers: MAC + IP + TCP */
2303 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2304 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2305 
2306 		mvneta_tso_put_hdr(skb, pp, txq);
2307 
2308 		while (data_left > 0) {
2309 			int size;
2310 			desc_count++;
2311 
2312 			size = min_t(int, tso.size, data_left);
2313 
2314 			if (mvneta_tso_put_data(dev, txq, skb,
2315 						 tso.data, size,
2316 						 size == data_left,
2317 						 total_len == 0))
2318 				goto err_release;
2319 			data_left -= size;
2320 
2321 			tso_build_data(skb, &tso, size);
2322 		}
2323 	}
2324 
2325 	return desc_count;
2326 
2327 err_release:
2328 	/* Release all used data descriptors; header descriptors must not
2329 	 * be DMA-unmapped.
2330 	 */
2331 	for (i = desc_count - 1; i >= 0; i--) {
2332 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2333 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2334 			dma_unmap_single(pp->dev->dev.parent,
2335 					 tx_desc->buf_phys_addr,
2336 					 tx_desc->data_size,
2337 					 DMA_TO_DEVICE);
2338 		mvneta_txq_desc_put(txq);
2339 	}
2340 	return 0;
2341 }
2342 
2343 /* Handle tx fragmentation processing */
2344 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2345 				  struct mvneta_tx_queue *txq)
2346 {
2347 	struct mvneta_tx_desc *tx_desc;
2348 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2349 
2350 	for (i = 0; i < nr_frags; i++) {
2351 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2352 		void *addr = page_address(frag->page.p) + frag->page_offset;
2353 
2354 		tx_desc = mvneta_txq_next_desc_get(txq);
2355 		tx_desc->data_size = frag->size;
2356 
2357 		tx_desc->buf_phys_addr =
2358 			dma_map_single(pp->dev->dev.parent, addr,
2359 				       tx_desc->data_size, DMA_TO_DEVICE);
2360 
2361 		if (dma_mapping_error(pp->dev->dev.parent,
2362 				      tx_desc->buf_phys_addr)) {
2363 			mvneta_txq_desc_put(txq);
2364 			goto error;
2365 		}
2366 
2367 		if (i == nr_frags - 1) {
2368 			/* Last descriptor */
2369 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2370 			txq->tx_skb[txq->txq_put_index] = skb;
2371 		} else {
2372 			/* Descriptor in the middle: Not First, Not Last */
2373 			tx_desc->command = 0;
2374 			txq->tx_skb[txq->txq_put_index] = NULL;
2375 		}
2376 		mvneta_txq_inc_put(txq);
2377 	}
2378 
2379 	return 0;
2380 
2381 error:
2382 	/* Release all descriptors that were used to map fragments of
2383 	 * this packet, as well as the corresponding DMA mappings
2384 	 */
2385 	for (i = i - 1; i >= 0; i--) {
2386 		tx_desc = txq->descs + i;
2387 		dma_unmap_single(pp->dev->dev.parent,
2388 				 tx_desc->buf_phys_addr,
2389 				 tx_desc->data_size,
2390 				 DMA_TO_DEVICE);
2391 		mvneta_txq_desc_put(txq);
2392 	}
2393 
2394 	return -ENOMEM;
2395 }
2396 
2397 /* Main tx processing */
2398 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2399 {
2400 	struct mvneta_port *pp = netdev_priv(dev);
2401 	u16 txq_id = skb_get_queue_mapping(skb);
2402 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2403 	struct mvneta_tx_desc *tx_desc;
2404 	int len = skb->len;
2405 	int frags = 0;
2406 	u32 tx_cmd;
2407 
2408 	if (!netif_running(dev))
2409 		goto out;
2410 
2411 	if (skb_is_gso(skb)) {
2412 		frags = mvneta_tx_tso(skb, dev, txq);
2413 		goto out;
2414 	}
2415 
2416 	frags = skb_shinfo(skb)->nr_frags + 1;
2417 
2418 	/* Get a descriptor for the first part of the packet */
2419 	tx_desc = mvneta_txq_next_desc_get(txq);
2420 
2421 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2422 
2423 	tx_desc->data_size = skb_headlen(skb);
2424 
2425 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2426 						tx_desc->data_size,
2427 						DMA_TO_DEVICE);
2428 	if (unlikely(dma_mapping_error(dev->dev.parent,
2429 				       tx_desc->buf_phys_addr))) {
2430 		mvneta_txq_desc_put(txq);
2431 		frags = 0;
2432 		goto out;
2433 	}
2434 
2435 	if (frags == 1) {
2436 		/* First and Last descriptor */
2437 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2438 		tx_desc->command = tx_cmd;
2439 		txq->tx_skb[txq->txq_put_index] = skb;
2440 		mvneta_txq_inc_put(txq);
2441 	} else {
2442 		/* First but not Last */
2443 		tx_cmd |= MVNETA_TXD_F_DESC;
2444 		txq->tx_skb[txq->txq_put_index] = NULL;
2445 		mvneta_txq_inc_put(txq);
2446 		tx_desc->command = tx_cmd;
2447 		/* Continue with other skb fragments */
2448 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2449 			dma_unmap_single(dev->dev.parent,
2450 					 tx_desc->buf_phys_addr,
2451 					 tx_desc->data_size,
2452 					 DMA_TO_DEVICE);
2453 			mvneta_txq_desc_put(txq);
2454 			frags = 0;
2455 			goto out;
2456 		}
2457 	}
2458 
2459 out:
2460 	if (frags > 0) {
2461 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2462 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2463 
2464 		netdev_tx_sent_queue(nq, len);
2465 
2466 		txq->count += frags;
2467 		if (txq->count >= txq->tx_stop_threshold)
2468 			netif_tx_stop_queue(nq);
2469 
2470 		if (!skb->xmit_more || netif_xmit_stopped(nq) ||
2471 		    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2472 			mvneta_txq_pend_desc_add(pp, txq, frags);
2473 		else
2474 			txq->pending += frags;
2475 
2476 		u64_stats_update_begin(&stats->syncp);
2477 		stats->tx_packets++;
2478 		stats->tx_bytes  += len;
2479 		u64_stats_update_end(&stats->syncp);
2480 	} else {
2481 		dev->stats.tx_dropped++;
2482 		dev_kfree_skb_any(skb);
2483 	}
2484 
2485 	return NETDEV_TX_OK;
2486 }
2487 
2488 
2489 /* Free tx resources, when resetting a port */
2490 static void mvneta_txq_done_force(struct mvneta_port *pp,
2491 				  struct mvneta_tx_queue *txq)
2492 
2493 {
2494 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2495 	int tx_done = txq->count;
2496 
2497 	mvneta_txq_bufs_free(pp, txq, tx_done, nq);
2498 
2499 	/* reset txq */
2500 	txq->count = 0;
2501 	txq->txq_put_index = 0;
2502 	txq->txq_get_index = 0;
2503 }
2504 
2505 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2506  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2507  */
2508 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2509 {
2510 	struct mvneta_tx_queue *txq;
2511 	struct netdev_queue *nq;
2512 	int cpu = smp_processor_id();
2513 
2514 	while (cause_tx_done) {
2515 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2516 
2517 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2518 		__netif_tx_lock(nq, cpu);
2519 
2520 		if (txq->count)
2521 			mvneta_txq_done(pp, txq);
2522 
2523 		__netif_tx_unlock(nq);
2524 		cause_tx_done &= ~((1 << txq->id));
2525 	}
2526 }
2527 
2528 /* Compute crc8 of the specified address, using a unique algorithm ,
2529  * according to hw spec, different than generic crc8 algorithm
2530  */
2531 static int mvneta_addr_crc(unsigned char *addr)
2532 {
2533 	int crc = 0;
2534 	int i;
2535 
2536 	for (i = 0; i < ETH_ALEN; i++) {
2537 		int j;
2538 
2539 		crc = (crc ^ addr[i]) << 8;
2540 		for (j = 7; j >= 0; j--) {
2541 			if (crc & (0x100 << j))
2542 				crc ^= 0x107 << j;
2543 		}
2544 	}
2545 
2546 	return crc;
2547 }
2548 
2549 /* This method controls the net device special MAC multicast support.
2550  * The Special Multicast Table for MAC addresses supports MAC of the form
2551  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2552  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2553  * Table entries in the DA-Filter table. This method set the Special
2554  * Multicast Table appropriate entry.
2555  */
2556 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2557 					  unsigned char last_byte,
2558 					  int queue)
2559 {
2560 	unsigned int smc_table_reg;
2561 	unsigned int tbl_offset;
2562 	unsigned int reg_offset;
2563 
2564 	/* Register offset from SMC table base    */
2565 	tbl_offset = (last_byte / 4);
2566 	/* Entry offset within the above reg */
2567 	reg_offset = last_byte % 4;
2568 
2569 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2570 					+ tbl_offset * 4));
2571 
2572 	if (queue == -1)
2573 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2574 	else {
2575 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2576 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2577 	}
2578 
2579 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2580 		    smc_table_reg);
2581 }
2582 
2583 /* This method controls the network device Other MAC multicast support.
2584  * The Other Multicast Table is used for multicast of another type.
2585  * A CRC-8 is used as an index to the Other Multicast Table entries
2586  * in the DA-Filter table.
2587  * The method gets the CRC-8 value from the calling routine and
2588  * sets the Other Multicast Table appropriate entry according to the
2589  * specified CRC-8 .
2590  */
2591 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2592 					unsigned char crc8,
2593 					int queue)
2594 {
2595 	unsigned int omc_table_reg;
2596 	unsigned int tbl_offset;
2597 	unsigned int reg_offset;
2598 
2599 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2600 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2601 
2602 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2603 
2604 	if (queue == -1) {
2605 		/* Clear accepts frame bit at specified Other DA table entry */
2606 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2607 	} else {
2608 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2609 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2610 	}
2611 
2612 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2613 }
2614 
2615 /* The network device supports multicast using two tables:
2616  *    1) Special Multicast Table for MAC addresses of the form
2617  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2618  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2619  *       Table entries in the DA-Filter table.
2620  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2621  *       is used as an index to the Other Multicast Table entries in the
2622  *       DA-Filter table.
2623  */
2624 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2625 				 int queue)
2626 {
2627 	unsigned char crc_result = 0;
2628 
2629 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2630 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2631 		return 0;
2632 	}
2633 
2634 	crc_result = mvneta_addr_crc(p_addr);
2635 	if (queue == -1) {
2636 		if (pp->mcast_count[crc_result] == 0) {
2637 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2638 				    crc_result);
2639 			return -EINVAL;
2640 		}
2641 
2642 		pp->mcast_count[crc_result]--;
2643 		if (pp->mcast_count[crc_result] != 0) {
2644 			netdev_info(pp->dev,
2645 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2646 				    pp->mcast_count[crc_result], crc_result);
2647 			return -EINVAL;
2648 		}
2649 	} else
2650 		pp->mcast_count[crc_result]++;
2651 
2652 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2653 
2654 	return 0;
2655 }
2656 
2657 /* Configure Fitering mode of Ethernet port */
2658 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2659 					  int is_promisc)
2660 {
2661 	u32 port_cfg_reg, val;
2662 
2663 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2664 
2665 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2666 
2667 	/* Set / Clear UPM bit in port configuration register */
2668 	if (is_promisc) {
2669 		/* Accept all Unicast addresses */
2670 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2671 		val |= MVNETA_FORCE_UNI;
2672 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2673 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2674 	} else {
2675 		/* Reject all Unicast addresses */
2676 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2677 		val &= ~MVNETA_FORCE_UNI;
2678 	}
2679 
2680 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2681 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2682 }
2683 
2684 /* register unicast and multicast addresses */
2685 static void mvneta_set_rx_mode(struct net_device *dev)
2686 {
2687 	struct mvneta_port *pp = netdev_priv(dev);
2688 	struct netdev_hw_addr *ha;
2689 
2690 	if (dev->flags & IFF_PROMISC) {
2691 		/* Accept all: Multicast + Unicast */
2692 		mvneta_rx_unicast_promisc_set(pp, 1);
2693 		mvneta_set_ucast_table(pp, pp->rxq_def);
2694 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
2695 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2696 	} else {
2697 		/* Accept single Unicast */
2698 		mvneta_rx_unicast_promisc_set(pp, 0);
2699 		mvneta_set_ucast_table(pp, -1);
2700 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2701 
2702 		if (dev->flags & IFF_ALLMULTI) {
2703 			/* Accept all multicast */
2704 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
2705 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2706 		} else {
2707 			/* Accept only initialized multicast */
2708 			mvneta_set_special_mcast_table(pp, -1);
2709 			mvneta_set_other_mcast_table(pp, -1);
2710 
2711 			if (!netdev_mc_empty(dev)) {
2712 				netdev_for_each_mc_addr(ha, dev) {
2713 					mvneta_mcast_addr_set(pp, ha->addr,
2714 							      pp->rxq_def);
2715 				}
2716 			}
2717 		}
2718 	}
2719 }
2720 
2721 /* Interrupt handling - the callback for request_irq() */
2722 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2723 {
2724 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2725 
2726 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2727 	napi_schedule(&pp->napi);
2728 
2729 	return IRQ_HANDLED;
2730 }
2731 
2732 /* Interrupt handling - the callback for request_percpu_irq() */
2733 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2734 {
2735 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2736 
2737 	disable_percpu_irq(port->pp->dev->irq);
2738 	napi_schedule(&port->napi);
2739 
2740 	return IRQ_HANDLED;
2741 }
2742 
2743 static void mvneta_link_change(struct mvneta_port *pp)
2744 {
2745 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2746 
2747 	phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
2748 }
2749 
2750 /* NAPI handler
2751  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2752  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2753  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2754  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2755  * Each CPU has its own causeRxTx register
2756  */
2757 static int mvneta_poll(struct napi_struct *napi, int budget)
2758 {
2759 	int rx_done = 0;
2760 	u32 cause_rx_tx;
2761 	int rx_queue;
2762 	struct mvneta_port *pp = netdev_priv(napi->dev);
2763 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2764 
2765 	if (!netif_running(pp->dev)) {
2766 		napi_complete(napi);
2767 		return rx_done;
2768 	}
2769 
2770 	/* Read cause register */
2771 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2772 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2773 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2774 
2775 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2776 
2777 		if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
2778 				  MVNETA_CAUSE_LINK_CHANGE))
2779 			mvneta_link_change(pp);
2780 	}
2781 
2782 	/* Release Tx descriptors */
2783 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2784 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2785 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2786 	}
2787 
2788 	/* For the case where the last mvneta_poll did not process all
2789 	 * RX packets
2790 	 */
2791 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2792 
2793 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2794 		port->cause_rx_tx;
2795 
2796 	if (rx_queue) {
2797 		rx_queue = rx_queue - 1;
2798 		if (pp->bm_priv)
2799 			rx_done = mvneta_rx_hwbm(napi, pp, budget,
2800 						 &pp->rxqs[rx_queue]);
2801 		else
2802 			rx_done = mvneta_rx_swbm(napi, pp, budget,
2803 						 &pp->rxqs[rx_queue]);
2804 	}
2805 
2806 	if (rx_done < budget) {
2807 		cause_rx_tx = 0;
2808 		napi_complete_done(napi, rx_done);
2809 
2810 		if (pp->neta_armada3700) {
2811 			unsigned long flags;
2812 
2813 			local_irq_save(flags);
2814 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2815 				    MVNETA_RX_INTR_MASK(rxq_number) |
2816 				    MVNETA_TX_INTR_MASK(txq_number) |
2817 				    MVNETA_MISCINTR_INTR_MASK);
2818 			local_irq_restore(flags);
2819 		} else {
2820 			enable_percpu_irq(pp->dev->irq, 0);
2821 		}
2822 	}
2823 
2824 	if (pp->neta_armada3700)
2825 		pp->cause_rx_tx = cause_rx_tx;
2826 	else
2827 		port->cause_rx_tx = cause_rx_tx;
2828 
2829 	return rx_done;
2830 }
2831 
2832 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2833 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2834 			   int num)
2835 {
2836 	int i;
2837 
2838 	for (i = 0; i < num; i++) {
2839 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2840 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
2841 				     GFP_KERNEL) != 0) {
2842 			netdev_err(pp->dev,
2843 				   "%s:rxq %d, %d of %d buffs  filled\n",
2844 				   __func__, rxq->id, i, num);
2845 			break;
2846 		}
2847 	}
2848 
2849 	/* Add this number of RX descriptors as non occupied (ready to
2850 	 * get packets)
2851 	 */
2852 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2853 
2854 	return i;
2855 }
2856 
2857 /* Free all packets pending transmit from all TXQs and reset TX port */
2858 static void mvneta_tx_reset(struct mvneta_port *pp)
2859 {
2860 	int queue;
2861 
2862 	/* free the skb's in the tx ring */
2863 	for (queue = 0; queue < txq_number; queue++)
2864 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2865 
2866 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2867 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2868 }
2869 
2870 static void mvneta_rx_reset(struct mvneta_port *pp)
2871 {
2872 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2873 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2874 }
2875 
2876 /* Rx/Tx queue initialization/cleanup methods */
2877 
2878 static int mvneta_rxq_sw_init(struct mvneta_port *pp,
2879 			      struct mvneta_rx_queue *rxq)
2880 {
2881 	rxq->size = pp->rx_ring_size;
2882 
2883 	/* Allocate memory for RX descriptors */
2884 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2885 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2886 					&rxq->descs_phys, GFP_KERNEL);
2887 	if (!rxq->descs)
2888 		return -ENOMEM;
2889 
2890 	rxq->last_desc = rxq->size - 1;
2891 
2892 	return 0;
2893 }
2894 
2895 static void mvneta_rxq_hw_init(struct mvneta_port *pp,
2896 			       struct mvneta_rx_queue *rxq)
2897 {
2898 	/* Set Rx descriptors queue starting address */
2899 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2900 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2901 
2902 	/* Set coalescing pkts and time */
2903 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2904 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2905 
2906 	if (!pp->bm_priv) {
2907 		/* Set Offset */
2908 		mvneta_rxq_offset_set(pp, rxq, 0);
2909 		mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
2910 					PAGE_SIZE :
2911 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
2912 		mvneta_rxq_bm_disable(pp, rxq);
2913 		mvneta_rxq_fill(pp, rxq, rxq->size);
2914 	} else {
2915 		/* Set Offset */
2916 		mvneta_rxq_offset_set(pp, rxq,
2917 				      NET_SKB_PAD - pp->rx_offset_correction);
2918 
2919 		mvneta_rxq_bm_enable(pp, rxq);
2920 		/* Fill RXQ with buffers from RX pool */
2921 		mvneta_rxq_long_pool_set(pp, rxq);
2922 		mvneta_rxq_short_pool_set(pp, rxq);
2923 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2924 	}
2925 }
2926 
2927 /* Create a specified RX queue */
2928 static int mvneta_rxq_init(struct mvneta_port *pp,
2929 			   struct mvneta_rx_queue *rxq)
2930 
2931 {
2932 	int ret;
2933 
2934 	ret = mvneta_rxq_sw_init(pp, rxq);
2935 	if (ret < 0)
2936 		return ret;
2937 
2938 	mvneta_rxq_hw_init(pp, rxq);
2939 
2940 	return 0;
2941 }
2942 
2943 /* Cleanup Rx queue */
2944 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2945 			      struct mvneta_rx_queue *rxq)
2946 {
2947 	mvneta_rxq_drop_pkts(pp, rxq);
2948 
2949 	if (rxq->skb)
2950 		dev_kfree_skb_any(rxq->skb);
2951 
2952 	if (rxq->descs)
2953 		dma_free_coherent(pp->dev->dev.parent,
2954 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2955 				  rxq->descs,
2956 				  rxq->descs_phys);
2957 
2958 	rxq->descs             = NULL;
2959 	rxq->last_desc         = 0;
2960 	rxq->next_desc_to_proc = 0;
2961 	rxq->descs_phys        = 0;
2962 	rxq->first_to_refill   = 0;
2963 	rxq->refill_num        = 0;
2964 	rxq->skb               = NULL;
2965 	rxq->left_size         = 0;
2966 }
2967 
2968 static int mvneta_txq_sw_init(struct mvneta_port *pp,
2969 			      struct mvneta_tx_queue *txq)
2970 {
2971 	int cpu;
2972 
2973 	txq->size = pp->tx_ring_size;
2974 
2975 	/* A queue must always have room for at least one skb.
2976 	 * Therefore, stop the queue when the free entries reaches
2977 	 * the maximum number of descriptors per skb.
2978 	 */
2979 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2980 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2981 
2982 	/* Allocate memory for TX descriptors */
2983 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2984 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2985 					&txq->descs_phys, GFP_KERNEL);
2986 	if (!txq->descs)
2987 		return -ENOMEM;
2988 
2989 	txq->last_desc = txq->size - 1;
2990 
2991 	txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb),
2992 				    GFP_KERNEL);
2993 	if (!txq->tx_skb) {
2994 		dma_free_coherent(pp->dev->dev.parent,
2995 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2996 				  txq->descs, txq->descs_phys);
2997 		return -ENOMEM;
2998 	}
2999 
3000 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3001 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3002 					   txq->size * TSO_HEADER_SIZE,
3003 					   &txq->tso_hdrs_phys, GFP_KERNEL);
3004 	if (!txq->tso_hdrs) {
3005 		kfree(txq->tx_skb);
3006 		dma_free_coherent(pp->dev->dev.parent,
3007 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3008 				  txq->descs, txq->descs_phys);
3009 		return -ENOMEM;
3010 	}
3011 
3012 	/* Setup XPS mapping */
3013 	if (txq_number > 1)
3014 		cpu = txq->id % num_present_cpus();
3015 	else
3016 		cpu = pp->rxq_def % num_present_cpus();
3017 	cpumask_set_cpu(cpu, &txq->affinity_mask);
3018 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3019 
3020 	return 0;
3021 }
3022 
3023 static void mvneta_txq_hw_init(struct mvneta_port *pp,
3024 			       struct mvneta_tx_queue *txq)
3025 {
3026 	/* Set maximum bandwidth for enabled TXQs */
3027 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3028 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3029 
3030 	/* Set Tx descriptors queue starting address */
3031 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3032 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3033 
3034 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3035 }
3036 
3037 /* Create and initialize a tx queue */
3038 static int mvneta_txq_init(struct mvneta_port *pp,
3039 			   struct mvneta_tx_queue *txq)
3040 {
3041 	int ret;
3042 
3043 	ret = mvneta_txq_sw_init(pp, txq);
3044 	if (ret < 0)
3045 		return ret;
3046 
3047 	mvneta_txq_hw_init(pp, txq);
3048 
3049 	return 0;
3050 }
3051 
3052 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3053 static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3054 				 struct mvneta_tx_queue *txq)
3055 {
3056 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3057 
3058 	kfree(txq->tx_skb);
3059 
3060 	if (txq->tso_hdrs)
3061 		dma_free_coherent(pp->dev->dev.parent,
3062 				  txq->size * TSO_HEADER_SIZE,
3063 				  txq->tso_hdrs, txq->tso_hdrs_phys);
3064 	if (txq->descs)
3065 		dma_free_coherent(pp->dev->dev.parent,
3066 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3067 				  txq->descs, txq->descs_phys);
3068 
3069 	netdev_tx_reset_queue(nq);
3070 
3071 	txq->descs             = NULL;
3072 	txq->last_desc         = 0;
3073 	txq->next_desc_to_proc = 0;
3074 	txq->descs_phys        = 0;
3075 }
3076 
3077 static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3078 				 struct mvneta_tx_queue *txq)
3079 {
3080 	/* Set minimum bandwidth for disabled TXQs */
3081 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3082 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3083 
3084 	/* Set Tx descriptors queue starting address and size */
3085 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3086 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3087 }
3088 
3089 static void mvneta_txq_deinit(struct mvneta_port *pp,
3090 			      struct mvneta_tx_queue *txq)
3091 {
3092 	mvneta_txq_sw_deinit(pp, txq);
3093 	mvneta_txq_hw_deinit(pp, txq);
3094 }
3095 
3096 /* Cleanup all Tx queues */
3097 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3098 {
3099 	int queue;
3100 
3101 	for (queue = 0; queue < txq_number; queue++)
3102 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
3103 }
3104 
3105 /* Cleanup all Rx queues */
3106 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3107 {
3108 	int queue;
3109 
3110 	for (queue = 0; queue < rxq_number; queue++)
3111 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3112 }
3113 
3114 
3115 /* Init all Rx queues */
3116 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3117 {
3118 	int queue;
3119 
3120 	for (queue = 0; queue < rxq_number; queue++) {
3121 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3122 
3123 		if (err) {
3124 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3125 				   __func__, queue);
3126 			mvneta_cleanup_rxqs(pp);
3127 			return err;
3128 		}
3129 	}
3130 
3131 	return 0;
3132 }
3133 
3134 /* Init all tx queues */
3135 static int mvneta_setup_txqs(struct mvneta_port *pp)
3136 {
3137 	int queue;
3138 
3139 	for (queue = 0; queue < txq_number; queue++) {
3140 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3141 		if (err) {
3142 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3143 				   __func__, queue);
3144 			mvneta_cleanup_txqs(pp);
3145 			return err;
3146 		}
3147 	}
3148 
3149 	return 0;
3150 }
3151 
3152 static int mvneta_comphy_init(struct mvneta_port *pp)
3153 {
3154 	int ret;
3155 
3156 	if (!pp->comphy)
3157 		return 0;
3158 
3159 	ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET,
3160 			       pp->phy_interface);
3161 	if (ret)
3162 		return ret;
3163 
3164 	return phy_power_on(pp->comphy);
3165 }
3166 
3167 static void mvneta_start_dev(struct mvneta_port *pp)
3168 {
3169 	int cpu;
3170 
3171 	WARN_ON(mvneta_comphy_init(pp));
3172 
3173 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3174 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3175 
3176 	/* start the Rx/Tx activity */
3177 	mvneta_port_enable(pp);
3178 
3179 	if (!pp->neta_armada3700) {
3180 		/* Enable polling on the port */
3181 		for_each_online_cpu(cpu) {
3182 			struct mvneta_pcpu_port *port =
3183 				per_cpu_ptr(pp->ports, cpu);
3184 
3185 			napi_enable(&port->napi);
3186 		}
3187 	} else {
3188 		napi_enable(&pp->napi);
3189 	}
3190 
3191 	/* Unmask interrupts. It has to be done from each CPU */
3192 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3193 
3194 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3195 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3196 		    MVNETA_CAUSE_LINK_CHANGE);
3197 
3198 	phylink_start(pp->phylink);
3199 	netif_tx_start_all_queues(pp->dev);
3200 }
3201 
3202 static void mvneta_stop_dev(struct mvneta_port *pp)
3203 {
3204 	unsigned int cpu;
3205 
3206 	phylink_stop(pp->phylink);
3207 
3208 	if (!pp->neta_armada3700) {
3209 		for_each_online_cpu(cpu) {
3210 			struct mvneta_pcpu_port *port =
3211 				per_cpu_ptr(pp->ports, cpu);
3212 
3213 			napi_disable(&port->napi);
3214 		}
3215 	} else {
3216 		napi_disable(&pp->napi);
3217 	}
3218 
3219 	netif_carrier_off(pp->dev);
3220 
3221 	mvneta_port_down(pp);
3222 	netif_tx_stop_all_queues(pp->dev);
3223 
3224 	/* Stop the port activity */
3225 	mvneta_port_disable(pp);
3226 
3227 	/* Clear all ethernet port interrupts */
3228 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3229 
3230 	/* Mask all ethernet port interrupts */
3231 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3232 
3233 	mvneta_tx_reset(pp);
3234 	mvneta_rx_reset(pp);
3235 
3236 	WARN_ON(phy_power_off(pp->comphy));
3237 }
3238 
3239 static void mvneta_percpu_enable(void *arg)
3240 {
3241 	struct mvneta_port *pp = arg;
3242 
3243 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3244 }
3245 
3246 static void mvneta_percpu_disable(void *arg)
3247 {
3248 	struct mvneta_port *pp = arg;
3249 
3250 	disable_percpu_irq(pp->dev->irq);
3251 }
3252 
3253 /* Change the device mtu */
3254 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3255 {
3256 	struct mvneta_port *pp = netdev_priv(dev);
3257 	int ret;
3258 
3259 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3260 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3261 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3262 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3263 	}
3264 
3265 	dev->mtu = mtu;
3266 
3267 	if (!netif_running(dev)) {
3268 		if (pp->bm_priv)
3269 			mvneta_bm_update_mtu(pp, mtu);
3270 
3271 		netdev_update_features(dev);
3272 		return 0;
3273 	}
3274 
3275 	/* The interface is running, so we have to force a
3276 	 * reallocation of the queues
3277 	 */
3278 	mvneta_stop_dev(pp);
3279 	on_each_cpu(mvneta_percpu_disable, pp, true);
3280 
3281 	mvneta_cleanup_txqs(pp);
3282 	mvneta_cleanup_rxqs(pp);
3283 
3284 	if (pp->bm_priv)
3285 		mvneta_bm_update_mtu(pp, mtu);
3286 
3287 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3288 
3289 	ret = mvneta_setup_rxqs(pp);
3290 	if (ret) {
3291 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3292 		return ret;
3293 	}
3294 
3295 	ret = mvneta_setup_txqs(pp);
3296 	if (ret) {
3297 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3298 		return ret;
3299 	}
3300 
3301 	on_each_cpu(mvneta_percpu_enable, pp, true);
3302 	mvneta_start_dev(pp);
3303 
3304 	netdev_update_features(dev);
3305 
3306 	return 0;
3307 }
3308 
3309 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3310 					     netdev_features_t features)
3311 {
3312 	struct mvneta_port *pp = netdev_priv(dev);
3313 
3314 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3315 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3316 		netdev_info(dev,
3317 			    "Disable IP checksum for MTU greater than %dB\n",
3318 			    pp->tx_csum_limit);
3319 	}
3320 
3321 	return features;
3322 }
3323 
3324 /* Get mac address */
3325 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3326 {
3327 	u32 mac_addr_l, mac_addr_h;
3328 
3329 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3330 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3331 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3332 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3333 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3334 	addr[3] = mac_addr_h & 0xFF;
3335 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3336 	addr[5] = mac_addr_l & 0xFF;
3337 }
3338 
3339 /* Handle setting mac address */
3340 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3341 {
3342 	struct mvneta_port *pp = netdev_priv(dev);
3343 	struct sockaddr *sockaddr = addr;
3344 	int ret;
3345 
3346 	ret = eth_prepare_mac_addr_change(dev, addr);
3347 	if (ret < 0)
3348 		return ret;
3349 	/* Remove previous address table entry */
3350 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3351 
3352 	/* Set new addr in hw */
3353 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3354 
3355 	eth_commit_mac_addr_change(dev, addr);
3356 	return 0;
3357 }
3358 
3359 static void mvneta_validate(struct net_device *ndev, unsigned long *supported,
3360 			    struct phylink_link_state *state)
3361 {
3362 	struct mvneta_port *pp = netdev_priv(ndev);
3363 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3364 
3365 	/* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3366 	if (state->interface != PHY_INTERFACE_MODE_NA &&
3367 	    state->interface != PHY_INTERFACE_MODE_QSGMII &&
3368 	    state->interface != PHY_INTERFACE_MODE_SGMII &&
3369 	    !phy_interface_mode_is_8023z(state->interface) &&
3370 	    !phy_interface_mode_is_rgmii(state->interface)) {
3371 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3372 		return;
3373 	}
3374 
3375 	/* Allow all the expected bits */
3376 	phylink_set(mask, Autoneg);
3377 	phylink_set_port_modes(mask);
3378 
3379 	/* Asymmetric pause is unsupported */
3380 	phylink_set(mask, Pause);
3381 
3382 	/* Half-duplex at speeds higher than 100Mbit is unsupported */
3383 	if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3384 		phylink_set(mask, 1000baseT_Full);
3385 		phylink_set(mask, 1000baseX_Full);
3386 	}
3387 	if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3388 		phylink_set(mask, 2500baseX_Full);
3389 	}
3390 
3391 	if (!phy_interface_mode_is_8023z(state->interface)) {
3392 		/* 10M and 100M are only supported in non-802.3z mode */
3393 		phylink_set(mask, 10baseT_Half);
3394 		phylink_set(mask, 10baseT_Full);
3395 		phylink_set(mask, 100baseT_Half);
3396 		phylink_set(mask, 100baseT_Full);
3397 	}
3398 
3399 	bitmap_and(supported, supported, mask,
3400 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3401 	bitmap_and(state->advertising, state->advertising, mask,
3402 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
3403 
3404 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
3405 	 * to advertise both, only report advertising at 2500BaseX.
3406 	 */
3407 	phylink_helper_basex_speed(state);
3408 }
3409 
3410 static int mvneta_mac_link_state(struct net_device *ndev,
3411 				 struct phylink_link_state *state)
3412 {
3413 	struct mvneta_port *pp = netdev_priv(ndev);
3414 	u32 gmac_stat;
3415 
3416 	gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3417 
3418 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3419 		state->speed =
3420 			state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3421 			SPEED_2500 : SPEED_1000;
3422 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3423 		state->speed = SPEED_100;
3424 	else
3425 		state->speed = SPEED_10;
3426 
3427 	state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3428 	state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3429 	state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3430 
3431 	state->pause = 0;
3432 	if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3433 		state->pause |= MLO_PAUSE_RX;
3434 	if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3435 		state->pause |= MLO_PAUSE_TX;
3436 
3437 	return 1;
3438 }
3439 
3440 static void mvneta_mac_an_restart(struct net_device *ndev)
3441 {
3442 	struct mvneta_port *pp = netdev_priv(ndev);
3443 	u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3444 
3445 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3446 		    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3447 	mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3448 		    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3449 }
3450 
3451 static void mvneta_mac_config(struct net_device *ndev, unsigned int mode,
3452 	const struct phylink_link_state *state)
3453 {
3454 	struct mvneta_port *pp = netdev_priv(ndev);
3455 	u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3456 	u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3457 	u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3458 	u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3459 	u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3460 
3461 	new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3462 	new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3463 				   MVNETA_GMAC2_PORT_RESET);
3464 	new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3465 	new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3466 	new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3467 			     MVNETA_GMAC_INBAND_RESTART_AN |
3468 			     MVNETA_GMAC_CONFIG_MII_SPEED |
3469 			     MVNETA_GMAC_CONFIG_GMII_SPEED |
3470 			     MVNETA_GMAC_AN_SPEED_EN |
3471 			     MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3472 			     MVNETA_GMAC_CONFIG_FLOW_CTRL |
3473 			     MVNETA_GMAC_AN_FLOW_CTRL_EN |
3474 			     MVNETA_GMAC_CONFIG_FULL_DUPLEX |
3475 			     MVNETA_GMAC_AN_DUPLEX_EN);
3476 
3477 	/* Even though it might look weird, when we're configured in
3478 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
3479 	 */
3480 	new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3481 
3482 	if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3483 	    state->interface == PHY_INTERFACE_MODE_SGMII ||
3484 	    phy_interface_mode_is_8023z(state->interface))
3485 		new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3486 
3487 	if (phylink_test(state->advertising, Pause))
3488 		new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3489 	if (state->pause & MLO_PAUSE_TXRX_MASK)
3490 		new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
3491 
3492 	if (!phylink_autoneg_inband(mode)) {
3493 		/* Phy or fixed speed */
3494 		if (state->duplex)
3495 			new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3496 
3497 		if (state->speed == SPEED_1000 || state->speed == SPEED_2500)
3498 			new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3499 		else if (state->speed == SPEED_100)
3500 			new_an |= MVNETA_GMAC_CONFIG_MII_SPEED;
3501 	} else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3502 		/* SGMII mode receives the state from the PHY */
3503 		new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3504 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3505 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3506 				     MVNETA_GMAC_FORCE_LINK_PASS)) |
3507 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3508 			 MVNETA_GMAC_AN_SPEED_EN |
3509 			 MVNETA_GMAC_AN_DUPLEX_EN;
3510 	} else {
3511 		/* 802.3z negotiation - only 1000base-X */
3512 		new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3513 		new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3514 		new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3515 				     MVNETA_GMAC_FORCE_LINK_PASS)) |
3516 			 MVNETA_GMAC_INBAND_AN_ENABLE |
3517 			 MVNETA_GMAC_CONFIG_GMII_SPEED |
3518 			 /* The MAC only supports FD mode */
3519 			 MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3520 
3521 		if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3522 			new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3523 	}
3524 
3525 	/* Armada 370 documentation says we can only change the port mode
3526 	 * and in-band enable when the link is down, so force it down
3527 	 * while making these changes. We also do this for GMAC_CTRL2 */
3528 	if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3529 	    (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3530 	    (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
3531 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3532 			    (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
3533 			    MVNETA_GMAC_FORCE_LINK_DOWN);
3534 	}
3535 
3536 
3537 	/* When at 2.5G, the link partner can send frames with shortened
3538 	 * preambles.
3539 	 */
3540 	if (state->speed == SPEED_2500)
3541 		new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
3542 
3543 	if (pp->comphy && pp->phy_interface != state->interface &&
3544 	    (state->interface == PHY_INTERFACE_MODE_SGMII ||
3545 	     state->interface == PHY_INTERFACE_MODE_1000BASEX ||
3546 	     state->interface == PHY_INTERFACE_MODE_2500BASEX)) {
3547 		pp->phy_interface = state->interface;
3548 
3549 		WARN_ON(phy_power_off(pp->comphy));
3550 		WARN_ON(mvneta_comphy_init(pp));
3551 	}
3552 
3553 	if (new_ctrl0 != gmac_ctrl0)
3554 		mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
3555 	if (new_ctrl2 != gmac_ctrl2)
3556 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
3557 	if (new_ctrl4 != gmac_ctrl4)
3558 		mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
3559 	if (new_clk != gmac_clk)
3560 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
3561 	if (new_an != gmac_an)
3562 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
3563 
3564 	if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
3565 		while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
3566 			MVNETA_GMAC2_PORT_RESET) != 0)
3567 			continue;
3568 	}
3569 }
3570 
3571 static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
3572 {
3573 	u32 lpi_ctl1;
3574 
3575 	lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
3576 	if (enable)
3577 		lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
3578 	else
3579 		lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
3580 	mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
3581 }
3582 
3583 static void mvneta_mac_link_down(struct net_device *ndev, unsigned int mode,
3584 				 phy_interface_t interface)
3585 {
3586 	struct mvneta_port *pp = netdev_priv(ndev);
3587 	u32 val;
3588 
3589 	mvneta_port_down(pp);
3590 
3591 	if (!phylink_autoneg_inband(mode)) {
3592 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3593 		val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3594 		val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3595 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3596 	}
3597 
3598 	pp->eee_active = false;
3599 	mvneta_set_eee(pp, false);
3600 }
3601 
3602 static void mvneta_mac_link_up(struct net_device *ndev, unsigned int mode,
3603 			       phy_interface_t interface,
3604 			       struct phy_device *phy)
3605 {
3606 	struct mvneta_port *pp = netdev_priv(ndev);
3607 	u32 val;
3608 
3609 	if (!phylink_autoneg_inband(mode)) {
3610 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3611 		val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3612 		val |= MVNETA_GMAC_FORCE_LINK_PASS;
3613 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3614 	}
3615 
3616 	mvneta_port_up(pp);
3617 
3618 	if (phy && pp->eee_enabled) {
3619 		pp->eee_active = phy_init_eee(phy, 0) >= 0;
3620 		mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
3621 	}
3622 }
3623 
3624 static const struct phylink_mac_ops mvneta_phylink_ops = {
3625 	.validate = mvneta_validate,
3626 	.mac_link_state = mvneta_mac_link_state,
3627 	.mac_an_restart = mvneta_mac_an_restart,
3628 	.mac_config = mvneta_mac_config,
3629 	.mac_link_down = mvneta_mac_link_down,
3630 	.mac_link_up = mvneta_mac_link_up,
3631 };
3632 
3633 static int mvneta_mdio_probe(struct mvneta_port *pp)
3634 {
3635 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
3636 	int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
3637 
3638 	if (err)
3639 		netdev_err(pp->dev, "could not attach PHY: %d\n", err);
3640 
3641 	phylink_ethtool_get_wol(pp->phylink, &wol);
3642 	device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
3643 
3644 	return err;
3645 }
3646 
3647 static void mvneta_mdio_remove(struct mvneta_port *pp)
3648 {
3649 	phylink_disconnect_phy(pp->phylink);
3650 }
3651 
3652 /* Electing a CPU must be done in an atomic way: it should be done
3653  * after or before the removal/insertion of a CPU and this function is
3654  * not reentrant.
3655  */
3656 static void mvneta_percpu_elect(struct mvneta_port *pp)
3657 {
3658 	int elected_cpu = 0, max_cpu, cpu, i = 0;
3659 
3660 	/* Use the cpu associated to the rxq when it is online, in all
3661 	 * the other cases, use the cpu 0 which can't be offline.
3662 	 */
3663 	if (cpu_online(pp->rxq_def))
3664 		elected_cpu = pp->rxq_def;
3665 
3666 	max_cpu = num_present_cpus();
3667 
3668 	for_each_online_cpu(cpu) {
3669 		int rxq_map = 0, txq_map = 0;
3670 		int rxq;
3671 
3672 		for (rxq = 0; rxq < rxq_number; rxq++)
3673 			if ((rxq % max_cpu) == cpu)
3674 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3675 
3676 		if (cpu == elected_cpu)
3677 			/* Map the default receive queue queue to the
3678 			 * elected CPU
3679 			 */
3680 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3681 
3682 		/* We update the TX queue map only if we have one
3683 		 * queue. In this case we associate the TX queue to
3684 		 * the CPU bound to the default RX queue
3685 		 */
3686 		if (txq_number == 1)
3687 			txq_map = (cpu == elected_cpu) ?
3688 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
3689 		else
3690 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3691 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3692 
3693 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3694 
3695 		/* Update the interrupt mask on each CPU according the
3696 		 * new mapping
3697 		 */
3698 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3699 					 pp, true);
3700 		i++;
3701 
3702 	}
3703 };
3704 
3705 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3706 {
3707 	int other_cpu;
3708 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3709 						  node_online);
3710 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3711 
3712 
3713 	spin_lock(&pp->lock);
3714 	/*
3715 	 * Configuring the driver for a new CPU while the driver is
3716 	 * stopping is racy, so just avoid it.
3717 	 */
3718 	if (pp->is_stopped) {
3719 		spin_unlock(&pp->lock);
3720 		return 0;
3721 	}
3722 	netif_tx_stop_all_queues(pp->dev);
3723 
3724 	/*
3725 	 * We have to synchronise on tha napi of each CPU except the one
3726 	 * just being woken up
3727 	 */
3728 	for_each_online_cpu(other_cpu) {
3729 		if (other_cpu != cpu) {
3730 			struct mvneta_pcpu_port *other_port =
3731 				per_cpu_ptr(pp->ports, other_cpu);
3732 
3733 			napi_synchronize(&other_port->napi);
3734 		}
3735 	}
3736 
3737 	/* Mask all ethernet port interrupts */
3738 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3739 	napi_enable(&port->napi);
3740 
3741 	/*
3742 	 * Enable per-CPU interrupts on the CPU that is
3743 	 * brought up.
3744 	 */
3745 	mvneta_percpu_enable(pp);
3746 
3747 	/*
3748 	 * Enable per-CPU interrupt on the one CPU we care
3749 	 * about.
3750 	 */
3751 	mvneta_percpu_elect(pp);
3752 
3753 	/* Unmask all ethernet port interrupts */
3754 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3755 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3756 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3757 		    MVNETA_CAUSE_LINK_CHANGE);
3758 	netif_tx_start_all_queues(pp->dev);
3759 	spin_unlock(&pp->lock);
3760 	return 0;
3761 }
3762 
3763 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3764 {
3765 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3766 						  node_online);
3767 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3768 
3769 	/*
3770 	 * Thanks to this lock we are sure that any pending cpu election is
3771 	 * done.
3772 	 */
3773 	spin_lock(&pp->lock);
3774 	/* Mask all ethernet port interrupts */
3775 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3776 	spin_unlock(&pp->lock);
3777 
3778 	napi_synchronize(&port->napi);
3779 	napi_disable(&port->napi);
3780 	/* Disable per-CPU interrupts on the CPU that is brought down. */
3781 	mvneta_percpu_disable(pp);
3782 	return 0;
3783 }
3784 
3785 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3786 {
3787 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3788 						  node_dead);
3789 
3790 	/* Check if a new CPU must be elected now this on is down */
3791 	spin_lock(&pp->lock);
3792 	mvneta_percpu_elect(pp);
3793 	spin_unlock(&pp->lock);
3794 	/* Unmask all ethernet port interrupts */
3795 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3796 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3797 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3798 		    MVNETA_CAUSE_LINK_CHANGE);
3799 	netif_tx_start_all_queues(pp->dev);
3800 	return 0;
3801 }
3802 
3803 static int mvneta_open(struct net_device *dev)
3804 {
3805 	struct mvneta_port *pp = netdev_priv(dev);
3806 	int ret;
3807 
3808 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3809 
3810 	ret = mvneta_setup_rxqs(pp);
3811 	if (ret)
3812 		return ret;
3813 
3814 	ret = mvneta_setup_txqs(pp);
3815 	if (ret)
3816 		goto err_cleanup_rxqs;
3817 
3818 	/* Connect to port interrupt line */
3819 	if (pp->neta_armada3700)
3820 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3821 				  dev->name, pp);
3822 	else
3823 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3824 					 dev->name, pp->ports);
3825 	if (ret) {
3826 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3827 		goto err_cleanup_txqs;
3828 	}
3829 
3830 	if (!pp->neta_armada3700) {
3831 		/* Enable per-CPU interrupt on all the CPU to handle our RX
3832 		 * queue interrupts
3833 		 */
3834 		on_each_cpu(mvneta_percpu_enable, pp, true);
3835 
3836 		pp->is_stopped = false;
3837 		/* Register a CPU notifier to handle the case where our CPU
3838 		 * might be taken offline.
3839 		 */
3840 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3841 						       &pp->node_online);
3842 		if (ret)
3843 			goto err_free_irq;
3844 
3845 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3846 						       &pp->node_dead);
3847 		if (ret)
3848 			goto err_free_online_hp;
3849 	}
3850 
3851 	ret = mvneta_mdio_probe(pp);
3852 	if (ret < 0) {
3853 		netdev_err(dev, "cannot probe MDIO bus\n");
3854 		goto err_free_dead_hp;
3855 	}
3856 
3857 	mvneta_start_dev(pp);
3858 
3859 	return 0;
3860 
3861 err_free_dead_hp:
3862 	if (!pp->neta_armada3700)
3863 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3864 						    &pp->node_dead);
3865 err_free_online_hp:
3866 	if (!pp->neta_armada3700)
3867 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3868 						    &pp->node_online);
3869 err_free_irq:
3870 	if (pp->neta_armada3700) {
3871 		free_irq(pp->dev->irq, pp);
3872 	} else {
3873 		on_each_cpu(mvneta_percpu_disable, pp, true);
3874 		free_percpu_irq(pp->dev->irq, pp->ports);
3875 	}
3876 err_cleanup_txqs:
3877 	mvneta_cleanup_txqs(pp);
3878 err_cleanup_rxqs:
3879 	mvneta_cleanup_rxqs(pp);
3880 	return ret;
3881 }
3882 
3883 /* Stop the port, free port interrupt line */
3884 static int mvneta_stop(struct net_device *dev)
3885 {
3886 	struct mvneta_port *pp = netdev_priv(dev);
3887 
3888 	if (!pp->neta_armada3700) {
3889 		/* Inform that we are stopping so we don't want to setup the
3890 		 * driver for new CPUs in the notifiers. The code of the
3891 		 * notifier for CPU online is protected by the same spinlock,
3892 		 * so when we get the lock, the notifer work is done.
3893 		 */
3894 		spin_lock(&pp->lock);
3895 		pp->is_stopped = true;
3896 		spin_unlock(&pp->lock);
3897 
3898 		mvneta_stop_dev(pp);
3899 		mvneta_mdio_remove(pp);
3900 
3901 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3902 						    &pp->node_online);
3903 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3904 						    &pp->node_dead);
3905 		on_each_cpu(mvneta_percpu_disable, pp, true);
3906 		free_percpu_irq(dev->irq, pp->ports);
3907 	} else {
3908 		mvneta_stop_dev(pp);
3909 		mvneta_mdio_remove(pp);
3910 		free_irq(dev->irq, pp);
3911 	}
3912 
3913 	mvneta_cleanup_rxqs(pp);
3914 	mvneta_cleanup_txqs(pp);
3915 
3916 	return 0;
3917 }
3918 
3919 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3920 {
3921 	struct mvneta_port *pp = netdev_priv(dev);
3922 
3923 	return phylink_mii_ioctl(pp->phylink, ifr, cmd);
3924 }
3925 
3926 /* Ethtool methods */
3927 
3928 /* Set link ksettings (phy address, speed) for ethtools */
3929 static int
3930 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3931 				  const struct ethtool_link_ksettings *cmd)
3932 {
3933 	struct mvneta_port *pp = netdev_priv(ndev);
3934 
3935 	return phylink_ethtool_ksettings_set(pp->phylink, cmd);
3936 }
3937 
3938 /* Get link ksettings for ethtools */
3939 static int
3940 mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
3941 				  struct ethtool_link_ksettings *cmd)
3942 {
3943 	struct mvneta_port *pp = netdev_priv(ndev);
3944 
3945 	return phylink_ethtool_ksettings_get(pp->phylink, cmd);
3946 }
3947 
3948 static int mvneta_ethtool_nway_reset(struct net_device *dev)
3949 {
3950 	struct mvneta_port *pp = netdev_priv(dev);
3951 
3952 	return phylink_ethtool_nway_reset(pp->phylink);
3953 }
3954 
3955 /* Set interrupt coalescing for ethtools */
3956 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3957 				       struct ethtool_coalesce *c)
3958 {
3959 	struct mvneta_port *pp = netdev_priv(dev);
3960 	int queue;
3961 
3962 	for (queue = 0; queue < rxq_number; queue++) {
3963 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3964 		rxq->time_coal = c->rx_coalesce_usecs;
3965 		rxq->pkts_coal = c->rx_max_coalesced_frames;
3966 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3967 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3968 	}
3969 
3970 	for (queue = 0; queue < txq_number; queue++) {
3971 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3972 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
3973 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3974 	}
3975 
3976 	return 0;
3977 }
3978 
3979 /* get coalescing for ethtools */
3980 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3981 				       struct ethtool_coalesce *c)
3982 {
3983 	struct mvneta_port *pp = netdev_priv(dev);
3984 
3985 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3986 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3987 
3988 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3989 	return 0;
3990 }
3991 
3992 
3993 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3994 				    struct ethtool_drvinfo *drvinfo)
3995 {
3996 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3997 		sizeof(drvinfo->driver));
3998 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3999 		sizeof(drvinfo->version));
4000 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4001 		sizeof(drvinfo->bus_info));
4002 }
4003 
4004 
4005 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4006 					 struct ethtool_ringparam *ring)
4007 {
4008 	struct mvneta_port *pp = netdev_priv(netdev);
4009 
4010 	ring->rx_max_pending = MVNETA_MAX_RXD;
4011 	ring->tx_max_pending = MVNETA_MAX_TXD;
4012 	ring->rx_pending = pp->rx_ring_size;
4013 	ring->tx_pending = pp->tx_ring_size;
4014 }
4015 
4016 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4017 					struct ethtool_ringparam *ring)
4018 {
4019 	struct mvneta_port *pp = netdev_priv(dev);
4020 
4021 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4022 		return -EINVAL;
4023 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4024 		ring->rx_pending : MVNETA_MAX_RXD;
4025 
4026 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4027 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4028 	if (pp->tx_ring_size != ring->tx_pending)
4029 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4030 			    pp->tx_ring_size, ring->tx_pending);
4031 
4032 	if (netif_running(dev)) {
4033 		mvneta_stop(dev);
4034 		if (mvneta_open(dev)) {
4035 			netdev_err(dev,
4036 				   "error on opening device after ring param change\n");
4037 			return -ENOMEM;
4038 		}
4039 	}
4040 
4041 	return 0;
4042 }
4043 
4044 static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4045 					  struct ethtool_pauseparam *pause)
4046 {
4047 	struct mvneta_port *pp = netdev_priv(dev);
4048 
4049 	phylink_ethtool_get_pauseparam(pp->phylink, pause);
4050 }
4051 
4052 static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4053 					 struct ethtool_pauseparam *pause)
4054 {
4055 	struct mvneta_port *pp = netdev_priv(dev);
4056 
4057 	return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4058 }
4059 
4060 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4061 				       u8 *data)
4062 {
4063 	if (sset == ETH_SS_STATS) {
4064 		int i;
4065 
4066 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4067 			memcpy(data + i * ETH_GSTRING_LEN,
4068 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
4069 	}
4070 }
4071 
4072 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4073 {
4074 	const struct mvneta_statistic *s;
4075 	void __iomem *base = pp->base;
4076 	u32 high, low;
4077 	u64 val;
4078 	int i;
4079 
4080 	for (i = 0, s = mvneta_statistics;
4081 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4082 	     s++, i++) {
4083 		val = 0;
4084 
4085 		switch (s->type) {
4086 		case T_REG_32:
4087 			val = readl_relaxed(base + s->offset);
4088 			break;
4089 		case T_REG_64:
4090 			/* Docs say to read low 32-bit then high */
4091 			low = readl_relaxed(base + s->offset);
4092 			high = readl_relaxed(base + s->offset + 4);
4093 			val = (u64)high << 32 | low;
4094 			break;
4095 		case T_SW:
4096 			switch (s->offset) {
4097 			case ETHTOOL_STAT_EEE_WAKEUP:
4098 				val = phylink_get_eee_err(pp->phylink);
4099 				break;
4100 			case ETHTOOL_STAT_SKB_ALLOC_ERR:
4101 				val = pp->rxqs[0].skb_alloc_err;
4102 				break;
4103 			case ETHTOOL_STAT_REFILL_ERR:
4104 				val = pp->rxqs[0].refill_err;
4105 				break;
4106 			}
4107 			break;
4108 		}
4109 
4110 		pp->ethtool_stats[i] += val;
4111 	}
4112 }
4113 
4114 static void mvneta_ethtool_get_stats(struct net_device *dev,
4115 				     struct ethtool_stats *stats, u64 *data)
4116 {
4117 	struct mvneta_port *pp = netdev_priv(dev);
4118 	int i;
4119 
4120 	mvneta_ethtool_update_stats(pp);
4121 
4122 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4123 		*data++ = pp->ethtool_stats[i];
4124 }
4125 
4126 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4127 {
4128 	if (sset == ETH_SS_STATS)
4129 		return ARRAY_SIZE(mvneta_statistics);
4130 	return -EOPNOTSUPP;
4131 }
4132 
4133 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4134 {
4135 	return MVNETA_RSS_LU_TABLE_SIZE;
4136 }
4137 
4138 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4139 				    struct ethtool_rxnfc *info,
4140 				    u32 *rules __always_unused)
4141 {
4142 	switch (info->cmd) {
4143 	case ETHTOOL_GRXRINGS:
4144 		info->data =  rxq_number;
4145 		return 0;
4146 	case ETHTOOL_GRXFH:
4147 		return -EOPNOTSUPP;
4148 	default:
4149 		return -EOPNOTSUPP;
4150 	}
4151 }
4152 
4153 static int  mvneta_config_rss(struct mvneta_port *pp)
4154 {
4155 	int cpu;
4156 	u32 val;
4157 
4158 	netif_tx_stop_all_queues(pp->dev);
4159 
4160 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4161 
4162 	if (!pp->neta_armada3700) {
4163 		/* We have to synchronise on the napi of each CPU */
4164 		for_each_online_cpu(cpu) {
4165 			struct mvneta_pcpu_port *pcpu_port =
4166 				per_cpu_ptr(pp->ports, cpu);
4167 
4168 			napi_synchronize(&pcpu_port->napi);
4169 			napi_disable(&pcpu_port->napi);
4170 		}
4171 	} else {
4172 		napi_synchronize(&pp->napi);
4173 		napi_disable(&pp->napi);
4174 	}
4175 
4176 	pp->rxq_def = pp->indir[0];
4177 
4178 	/* Update unicast mapping */
4179 	mvneta_set_rx_mode(pp->dev);
4180 
4181 	/* Update val of portCfg register accordingly with all RxQueue types */
4182 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4183 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4184 
4185 	/* Update the elected CPU matching the new rxq_def */
4186 	spin_lock(&pp->lock);
4187 	mvneta_percpu_elect(pp);
4188 	spin_unlock(&pp->lock);
4189 
4190 	if (!pp->neta_armada3700) {
4191 		/* We have to synchronise on the napi of each CPU */
4192 		for_each_online_cpu(cpu) {
4193 			struct mvneta_pcpu_port *pcpu_port =
4194 				per_cpu_ptr(pp->ports, cpu);
4195 
4196 			napi_enable(&pcpu_port->napi);
4197 		}
4198 	} else {
4199 		napi_enable(&pp->napi);
4200 	}
4201 
4202 	netif_tx_start_all_queues(pp->dev);
4203 
4204 	return 0;
4205 }
4206 
4207 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4208 				   const u8 *key, const u8 hfunc)
4209 {
4210 	struct mvneta_port *pp = netdev_priv(dev);
4211 
4212 	/* Current code for Armada 3700 doesn't support RSS features yet */
4213 	if (pp->neta_armada3700)
4214 		return -EOPNOTSUPP;
4215 
4216 	/* We require at least one supported parameter to be changed
4217 	 * and no change in any of the unsupported parameters
4218 	 */
4219 	if (key ||
4220 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4221 		return -EOPNOTSUPP;
4222 
4223 	if (!indir)
4224 		return 0;
4225 
4226 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4227 
4228 	return mvneta_config_rss(pp);
4229 }
4230 
4231 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4232 				   u8 *hfunc)
4233 {
4234 	struct mvneta_port *pp = netdev_priv(dev);
4235 
4236 	/* Current code for Armada 3700 doesn't support RSS features yet */
4237 	if (pp->neta_armada3700)
4238 		return -EOPNOTSUPP;
4239 
4240 	if (hfunc)
4241 		*hfunc = ETH_RSS_HASH_TOP;
4242 
4243 	if (!indir)
4244 		return 0;
4245 
4246 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4247 
4248 	return 0;
4249 }
4250 
4251 static void mvneta_ethtool_get_wol(struct net_device *dev,
4252 				   struct ethtool_wolinfo *wol)
4253 {
4254 	struct mvneta_port *pp = netdev_priv(dev);
4255 
4256 	phylink_ethtool_get_wol(pp->phylink, wol);
4257 }
4258 
4259 static int mvneta_ethtool_set_wol(struct net_device *dev,
4260 				  struct ethtool_wolinfo *wol)
4261 {
4262 	struct mvneta_port *pp = netdev_priv(dev);
4263 	int ret;
4264 
4265 	ret = phylink_ethtool_set_wol(pp->phylink, wol);
4266 	if (!ret)
4267 		device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4268 
4269 	return ret;
4270 }
4271 
4272 static int mvneta_ethtool_get_eee(struct net_device *dev,
4273 				  struct ethtool_eee *eee)
4274 {
4275 	struct mvneta_port *pp = netdev_priv(dev);
4276 	u32 lpi_ctl0;
4277 
4278 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4279 
4280 	eee->eee_enabled = pp->eee_enabled;
4281 	eee->eee_active = pp->eee_active;
4282 	eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4283 	eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4284 
4285 	return phylink_ethtool_get_eee(pp->phylink, eee);
4286 }
4287 
4288 static int mvneta_ethtool_set_eee(struct net_device *dev,
4289 				  struct ethtool_eee *eee)
4290 {
4291 	struct mvneta_port *pp = netdev_priv(dev);
4292 	u32 lpi_ctl0;
4293 
4294 	/* The Armada 37x documents do not give limits for this other than
4295 	 * it being an 8-bit register. */
4296 	if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4297 		return -EINVAL;
4298 
4299 	lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4300 	lpi_ctl0 &= ~(0xff << 8);
4301 	lpi_ctl0 |= eee->tx_lpi_timer << 8;
4302 	mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4303 
4304 	pp->eee_enabled = eee->eee_enabled;
4305 	pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4306 
4307 	mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4308 
4309 	return phylink_ethtool_set_eee(pp->phylink, eee);
4310 }
4311 
4312 static const struct net_device_ops mvneta_netdev_ops = {
4313 	.ndo_open            = mvneta_open,
4314 	.ndo_stop            = mvneta_stop,
4315 	.ndo_start_xmit      = mvneta_tx,
4316 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
4317 	.ndo_set_mac_address = mvneta_set_mac_addr,
4318 	.ndo_change_mtu      = mvneta_change_mtu,
4319 	.ndo_fix_features    = mvneta_fix_features,
4320 	.ndo_get_stats64     = mvneta_get_stats64,
4321 	.ndo_do_ioctl        = mvneta_ioctl,
4322 };
4323 
4324 static const struct ethtool_ops mvneta_eth_tool_ops = {
4325 	.nway_reset	= mvneta_ethtool_nway_reset,
4326 	.get_link       = ethtool_op_get_link,
4327 	.set_coalesce   = mvneta_ethtool_set_coalesce,
4328 	.get_coalesce   = mvneta_ethtool_get_coalesce,
4329 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
4330 	.get_ringparam  = mvneta_ethtool_get_ringparam,
4331 	.set_ringparam	= mvneta_ethtool_set_ringparam,
4332 	.get_pauseparam	= mvneta_ethtool_get_pauseparam,
4333 	.set_pauseparam	= mvneta_ethtool_set_pauseparam,
4334 	.get_strings	= mvneta_ethtool_get_strings,
4335 	.get_ethtool_stats = mvneta_ethtool_get_stats,
4336 	.get_sset_count	= mvneta_ethtool_get_sset_count,
4337 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4338 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
4339 	.get_rxfh	= mvneta_ethtool_get_rxfh,
4340 	.set_rxfh	= mvneta_ethtool_set_rxfh,
4341 	.get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4342 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4343 	.get_wol        = mvneta_ethtool_get_wol,
4344 	.set_wol        = mvneta_ethtool_set_wol,
4345 	.get_eee	= mvneta_ethtool_get_eee,
4346 	.set_eee	= mvneta_ethtool_set_eee,
4347 };
4348 
4349 /* Initialize hw */
4350 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4351 {
4352 	int queue;
4353 
4354 	/* Disable port */
4355 	mvneta_port_disable(pp);
4356 
4357 	/* Set port default values */
4358 	mvneta_defaults_set(pp);
4359 
4360 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4361 	if (!pp->txqs)
4362 		return -ENOMEM;
4363 
4364 	/* Initialize TX descriptor rings */
4365 	for (queue = 0; queue < txq_number; queue++) {
4366 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4367 		txq->id = queue;
4368 		txq->size = pp->tx_ring_size;
4369 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4370 	}
4371 
4372 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4373 	if (!pp->rxqs)
4374 		return -ENOMEM;
4375 
4376 	/* Create Rx descriptor rings */
4377 	for (queue = 0; queue < rxq_number; queue++) {
4378 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4379 		rxq->id = queue;
4380 		rxq->size = pp->rx_ring_size;
4381 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4382 		rxq->time_coal = MVNETA_RX_COAL_USEC;
4383 		rxq->buf_virt_addr
4384 			= devm_kmalloc_array(pp->dev->dev.parent,
4385 					     rxq->size,
4386 					     sizeof(*rxq->buf_virt_addr),
4387 					     GFP_KERNEL);
4388 		if (!rxq->buf_virt_addr)
4389 			return -ENOMEM;
4390 	}
4391 
4392 	return 0;
4393 }
4394 
4395 /* platform glue : initialize decoding windows */
4396 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
4397 				     const struct mbus_dram_target_info *dram)
4398 {
4399 	u32 win_enable;
4400 	u32 win_protect;
4401 	int i;
4402 
4403 	for (i = 0; i < 6; i++) {
4404 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
4405 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
4406 
4407 		if (i < 4)
4408 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4409 	}
4410 
4411 	win_enable = 0x3f;
4412 	win_protect = 0;
4413 
4414 	if (dram) {
4415 		for (i = 0; i < dram->num_cs; i++) {
4416 			const struct mbus_dram_window *cs = dram->cs + i;
4417 
4418 			mvreg_write(pp, MVNETA_WIN_BASE(i),
4419 				    (cs->base & 0xffff0000) |
4420 				    (cs->mbus_attr << 8) |
4421 				    dram->mbus_dram_target_id);
4422 
4423 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
4424 				    (cs->size - 1) & 0xffff0000);
4425 
4426 			win_enable &= ~(1 << i);
4427 			win_protect |= 3 << (2 * i);
4428 		}
4429 	} else {
4430 		/* For Armada3700 open default 4GB Mbus window, leaving
4431 		 * arbitration of target/attribute to a different layer
4432 		 * of configuration.
4433 		 */
4434 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4435 		win_enable &= ~BIT(0);
4436 		win_protect = 3;
4437 	}
4438 
4439 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4440 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4441 }
4442 
4443 /* Power up the port */
4444 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4445 {
4446 	/* MAC Cause register should be cleared */
4447 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4448 
4449 	if (phy_mode == PHY_INTERFACE_MODE_QSGMII)
4450 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4451 	else if (phy_mode == PHY_INTERFACE_MODE_SGMII ||
4452 		 phy_interface_mode_is_8023z(phy_mode))
4453 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4454 	else if (!phy_interface_mode_is_rgmii(phy_mode))
4455 		return -EINVAL;
4456 
4457 	return 0;
4458 }
4459 
4460 /* Device initialization routine */
4461 static int mvneta_probe(struct platform_device *pdev)
4462 {
4463 	struct resource *res;
4464 	struct device_node *dn = pdev->dev.of_node;
4465 	struct device_node *bm_node;
4466 	struct mvneta_port *pp;
4467 	struct net_device *dev;
4468 	struct phylink *phylink;
4469 	struct phy *comphy;
4470 	const char *dt_mac_addr;
4471 	char hw_mac_addr[ETH_ALEN];
4472 	const char *mac_from;
4473 	int tx_csum_limit;
4474 	int phy_mode;
4475 	int err;
4476 	int cpu;
4477 
4478 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4479 	if (!dev)
4480 		return -ENOMEM;
4481 
4482 	dev->irq = irq_of_parse_and_map(dn, 0);
4483 	if (dev->irq == 0) {
4484 		err = -EINVAL;
4485 		goto err_free_netdev;
4486 	}
4487 
4488 	phy_mode = of_get_phy_mode(dn);
4489 	if (phy_mode < 0) {
4490 		dev_err(&pdev->dev, "incorrect phy-mode\n");
4491 		err = -EINVAL;
4492 		goto err_free_irq;
4493 	}
4494 
4495 	comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
4496 	if (comphy == ERR_PTR(-EPROBE_DEFER)) {
4497 		err = -EPROBE_DEFER;
4498 		goto err_free_irq;
4499 	} else if (IS_ERR(comphy)) {
4500 		comphy = NULL;
4501 	}
4502 
4503 	phylink = phylink_create(dev, pdev->dev.fwnode, phy_mode,
4504 				 &mvneta_phylink_ops);
4505 	if (IS_ERR(phylink)) {
4506 		err = PTR_ERR(phylink);
4507 		goto err_free_irq;
4508 	}
4509 
4510 	dev->tx_queue_len = MVNETA_MAX_TXD;
4511 	dev->watchdog_timeo = 5 * HZ;
4512 	dev->netdev_ops = &mvneta_netdev_ops;
4513 
4514 	dev->ethtool_ops = &mvneta_eth_tool_ops;
4515 
4516 	pp = netdev_priv(dev);
4517 	spin_lock_init(&pp->lock);
4518 	pp->phylink = phylink;
4519 	pp->comphy = comphy;
4520 	pp->phy_interface = phy_mode;
4521 	pp->dn = dn;
4522 
4523 	pp->rxq_def = rxq_def;
4524 	pp->indir[0] = rxq_def;
4525 
4526 	/* Get special SoC configurations */
4527 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4528 		pp->neta_armada3700 = true;
4529 
4530 	pp->clk = devm_clk_get(&pdev->dev, "core");
4531 	if (IS_ERR(pp->clk))
4532 		pp->clk = devm_clk_get(&pdev->dev, NULL);
4533 	if (IS_ERR(pp->clk)) {
4534 		err = PTR_ERR(pp->clk);
4535 		goto err_free_phylink;
4536 	}
4537 
4538 	clk_prepare_enable(pp->clk);
4539 
4540 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4541 	if (!IS_ERR(pp->clk_bus))
4542 		clk_prepare_enable(pp->clk_bus);
4543 
4544 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4545 	pp->base = devm_ioremap_resource(&pdev->dev, res);
4546 	if (IS_ERR(pp->base)) {
4547 		err = PTR_ERR(pp->base);
4548 		goto err_clk;
4549 	}
4550 
4551 	/* Alloc per-cpu port structure */
4552 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4553 	if (!pp->ports) {
4554 		err = -ENOMEM;
4555 		goto err_clk;
4556 	}
4557 
4558 	/* Alloc per-cpu stats */
4559 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4560 	if (!pp->stats) {
4561 		err = -ENOMEM;
4562 		goto err_free_ports;
4563 	}
4564 
4565 	dt_mac_addr = of_get_mac_address(dn);
4566 	if (dt_mac_addr) {
4567 		mac_from = "device tree";
4568 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4569 	} else {
4570 		mvneta_get_mac_addr(pp, hw_mac_addr);
4571 		if (is_valid_ether_addr(hw_mac_addr)) {
4572 			mac_from = "hardware";
4573 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4574 		} else {
4575 			mac_from = "random";
4576 			eth_hw_addr_random(dev);
4577 		}
4578 	}
4579 
4580 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4581 		if (tx_csum_limit < 0 ||
4582 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4583 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4584 			dev_info(&pdev->dev,
4585 				 "Wrong TX csum limit in DT, set to %dB\n",
4586 				 MVNETA_TX_CSUM_DEF_SIZE);
4587 		}
4588 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4589 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4590 	} else {
4591 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4592 	}
4593 
4594 	pp->tx_csum_limit = tx_csum_limit;
4595 
4596 	pp->dram_target_info = mv_mbus_dram_info();
4597 	/* Armada3700 requires setting default configuration of Mbus
4598 	 * windows, however without using filled mbus_dram_target_info
4599 	 * structure.
4600 	 */
4601 	if (pp->dram_target_info || pp->neta_armada3700)
4602 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4603 
4604 	pp->tx_ring_size = MVNETA_MAX_TXD;
4605 	pp->rx_ring_size = MVNETA_MAX_RXD;
4606 
4607 	pp->dev = dev;
4608 	SET_NETDEV_DEV(dev, &pdev->dev);
4609 
4610 	pp->id = global_port_id++;
4611 	pp->rx_offset_correction = 0; /* not relevant for SW BM */
4612 
4613 	/* Obtain access to BM resources if enabled and already initialized */
4614 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4615 	if (bm_node) {
4616 		pp->bm_priv = mvneta_bm_get(bm_node);
4617 		if (pp->bm_priv) {
4618 			err = mvneta_bm_port_init(pdev, pp);
4619 			if (err < 0) {
4620 				dev_info(&pdev->dev,
4621 					 "use SW buffer management\n");
4622 				mvneta_bm_put(pp->bm_priv);
4623 				pp->bm_priv = NULL;
4624 			}
4625 		}
4626 		/* Set RX packet offset correction for platforms, whose
4627 		 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4628 		 * platforms and 0B for 32-bit ones.
4629 		 */
4630 		pp->rx_offset_correction = max(0,
4631 					       NET_SKB_PAD -
4632 					       MVNETA_RX_PKT_OFFSET_CORRECTION);
4633 	}
4634 	of_node_put(bm_node);
4635 
4636 	err = mvneta_init(&pdev->dev, pp);
4637 	if (err < 0)
4638 		goto err_netdev;
4639 
4640 	err = mvneta_port_power_up(pp, phy_mode);
4641 	if (err < 0) {
4642 		dev_err(&pdev->dev, "can't power up port\n");
4643 		goto err_netdev;
4644 	}
4645 
4646 	/* Armada3700 network controller does not support per-cpu
4647 	 * operation, so only single NAPI should be initialized.
4648 	 */
4649 	if (pp->neta_armada3700) {
4650 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4651 	} else {
4652 		for_each_present_cpu(cpu) {
4653 			struct mvneta_pcpu_port *port =
4654 				per_cpu_ptr(pp->ports, cpu);
4655 
4656 			netif_napi_add(dev, &port->napi, mvneta_poll,
4657 				       NAPI_POLL_WEIGHT);
4658 			port->pp = pp;
4659 		}
4660 	}
4661 
4662 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4663 			NETIF_F_TSO | NETIF_F_RXCSUM;
4664 	dev->hw_features |= dev->features;
4665 	dev->vlan_features |= dev->features;
4666 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4667 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4668 
4669 	/* MTU range: 68 - 9676 */
4670 	dev->min_mtu = ETH_MIN_MTU;
4671 	/* 9676 == 9700 - 20 and rounding to 8 */
4672 	dev->max_mtu = 9676;
4673 
4674 	err = register_netdev(dev);
4675 	if (err < 0) {
4676 		dev_err(&pdev->dev, "failed to register\n");
4677 		goto err_free_stats;
4678 	}
4679 
4680 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4681 		    dev->dev_addr);
4682 
4683 	platform_set_drvdata(pdev, pp->dev);
4684 
4685 	return 0;
4686 
4687 err_netdev:
4688 	unregister_netdev(dev);
4689 	if (pp->bm_priv) {
4690 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4691 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4692 				       1 << pp->id);
4693 		mvneta_bm_put(pp->bm_priv);
4694 	}
4695 err_free_stats:
4696 	free_percpu(pp->stats);
4697 err_free_ports:
4698 	free_percpu(pp->ports);
4699 err_clk:
4700 	clk_disable_unprepare(pp->clk_bus);
4701 	clk_disable_unprepare(pp->clk);
4702 err_free_phylink:
4703 	if (pp->phylink)
4704 		phylink_destroy(pp->phylink);
4705 err_free_irq:
4706 	irq_dispose_mapping(dev->irq);
4707 err_free_netdev:
4708 	free_netdev(dev);
4709 	return err;
4710 }
4711 
4712 /* Device removal routine */
4713 static int mvneta_remove(struct platform_device *pdev)
4714 {
4715 	struct net_device  *dev = platform_get_drvdata(pdev);
4716 	struct mvneta_port *pp = netdev_priv(dev);
4717 
4718 	unregister_netdev(dev);
4719 	clk_disable_unprepare(pp->clk_bus);
4720 	clk_disable_unprepare(pp->clk);
4721 	free_percpu(pp->ports);
4722 	free_percpu(pp->stats);
4723 	irq_dispose_mapping(dev->irq);
4724 	phylink_destroy(pp->phylink);
4725 	free_netdev(dev);
4726 
4727 	if (pp->bm_priv) {
4728 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4729 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4730 				       1 << pp->id);
4731 		mvneta_bm_put(pp->bm_priv);
4732 	}
4733 
4734 	return 0;
4735 }
4736 
4737 #ifdef CONFIG_PM_SLEEP
4738 static int mvneta_suspend(struct device *device)
4739 {
4740 	int queue;
4741 	struct net_device *dev = dev_get_drvdata(device);
4742 	struct mvneta_port *pp = netdev_priv(dev);
4743 
4744 	if (!netif_running(dev))
4745 		goto clean_exit;
4746 
4747 	if (!pp->neta_armada3700) {
4748 		spin_lock(&pp->lock);
4749 		pp->is_stopped = true;
4750 		spin_unlock(&pp->lock);
4751 
4752 		cpuhp_state_remove_instance_nocalls(online_hpstate,
4753 						    &pp->node_online);
4754 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4755 						    &pp->node_dead);
4756 	}
4757 
4758 	rtnl_lock();
4759 	mvneta_stop_dev(pp);
4760 	rtnl_unlock();
4761 
4762 	for (queue = 0; queue < rxq_number; queue++) {
4763 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4764 
4765 		mvneta_rxq_drop_pkts(pp, rxq);
4766 	}
4767 
4768 	for (queue = 0; queue < txq_number; queue++) {
4769 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4770 
4771 		mvneta_txq_hw_deinit(pp, txq);
4772 	}
4773 
4774 clean_exit:
4775 	netif_device_detach(dev);
4776 	clk_disable_unprepare(pp->clk_bus);
4777 	clk_disable_unprepare(pp->clk);
4778 
4779 	return 0;
4780 }
4781 
4782 static int mvneta_resume(struct device *device)
4783 {
4784 	struct platform_device *pdev = to_platform_device(device);
4785 	struct net_device *dev = dev_get_drvdata(device);
4786 	struct mvneta_port *pp = netdev_priv(dev);
4787 	int err, queue;
4788 
4789 	clk_prepare_enable(pp->clk);
4790 	if (!IS_ERR(pp->clk_bus))
4791 		clk_prepare_enable(pp->clk_bus);
4792 	if (pp->dram_target_info || pp->neta_armada3700)
4793 		mvneta_conf_mbus_windows(pp, pp->dram_target_info);
4794 	if (pp->bm_priv) {
4795 		err = mvneta_bm_port_init(pdev, pp);
4796 		if (err < 0) {
4797 			dev_info(&pdev->dev, "use SW buffer management\n");
4798 			pp->bm_priv = NULL;
4799 		}
4800 	}
4801 	mvneta_defaults_set(pp);
4802 	err = mvneta_port_power_up(pp, pp->phy_interface);
4803 	if (err < 0) {
4804 		dev_err(device, "can't power up port\n");
4805 		return err;
4806 	}
4807 
4808 	netif_device_attach(dev);
4809 
4810 	if (!netif_running(dev))
4811 		return 0;
4812 
4813 	for (queue = 0; queue < rxq_number; queue++) {
4814 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4815 
4816 		rxq->next_desc_to_proc = 0;
4817 		mvneta_rxq_hw_init(pp, rxq);
4818 	}
4819 
4820 	for (queue = 0; queue < txq_number; queue++) {
4821 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
4822 
4823 		txq->next_desc_to_proc = 0;
4824 		mvneta_txq_hw_init(pp, txq);
4825 	}
4826 
4827 	if (!pp->neta_armada3700) {
4828 		spin_lock(&pp->lock);
4829 		pp->is_stopped = false;
4830 		spin_unlock(&pp->lock);
4831 		cpuhp_state_add_instance_nocalls(online_hpstate,
4832 						 &pp->node_online);
4833 		cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4834 						 &pp->node_dead);
4835 	}
4836 
4837 	rtnl_lock();
4838 	mvneta_start_dev(pp);
4839 	rtnl_unlock();
4840 	mvneta_set_rx_mode(dev);
4841 
4842 	return 0;
4843 }
4844 #endif
4845 
4846 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
4847 
4848 static const struct of_device_id mvneta_match[] = {
4849 	{ .compatible = "marvell,armada-370-neta" },
4850 	{ .compatible = "marvell,armada-xp-neta" },
4851 	{ .compatible = "marvell,armada-3700-neta" },
4852 	{ }
4853 };
4854 MODULE_DEVICE_TABLE(of, mvneta_match);
4855 
4856 static struct platform_driver mvneta_driver = {
4857 	.probe = mvneta_probe,
4858 	.remove = mvneta_remove,
4859 	.driver = {
4860 		.name = MVNETA_DRIVER_NAME,
4861 		.of_match_table = mvneta_match,
4862 		.pm = &mvneta_pm_ops,
4863 	},
4864 };
4865 
4866 static int __init mvneta_driver_init(void)
4867 {
4868 	int ret;
4869 
4870 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4871 				      mvneta_cpu_online,
4872 				      mvneta_cpu_down_prepare);
4873 	if (ret < 0)
4874 		goto out;
4875 	online_hpstate = ret;
4876 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4877 				      NULL, mvneta_cpu_dead);
4878 	if (ret)
4879 		goto err_dead;
4880 
4881 	ret = platform_driver_register(&mvneta_driver);
4882 	if (ret)
4883 		goto err;
4884 	return 0;
4885 
4886 err:
4887 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4888 err_dead:
4889 	cpuhp_remove_multi_state(online_hpstate);
4890 out:
4891 	return ret;
4892 }
4893 module_init(mvneta_driver_init);
4894 
4895 static void __exit mvneta_driver_exit(void)
4896 {
4897 	platform_driver_unregister(&mvneta_driver);
4898 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4899 	cpuhp_remove_multi_state(online_hpstate);
4900 }
4901 module_exit(mvneta_driver_exit);
4902 
4903 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4904 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4905 MODULE_LICENSE("GPL");
4906 
4907 module_param(rxq_number, int, 0444);
4908 module_param(txq_number, int, 0444);
4909 
4910 module_param(rxq_def, int, 0444);
4911 module_param(rx_copybreak, int, 0644);
4912