1 /* 2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. 3 * 4 * Copyright (C) 2012 Marvell 5 * 6 * Rami Rosen <rosenr@marvell.com> 7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> 8 * 9 * This file is licensed under the terms of the GNU General Public 10 * License version 2. This program is licensed "as is" without any 11 * warranty of any kind, whether express or implied. 12 */ 13 14 #include <linux/clk.h> 15 #include <linux/cpu.h> 16 #include <linux/etherdevice.h> 17 #include <linux/if_vlan.h> 18 #include <linux/inetdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/io.h> 21 #include <linux/kernel.h> 22 #include <linux/mbus.h> 23 #include <linux/module.h> 24 #include <linux/netdevice.h> 25 #include <linux/of.h> 26 #include <linux/of_address.h> 27 #include <linux/of_irq.h> 28 #include <linux/of_mdio.h> 29 #include <linux/of_net.h> 30 #include <linux/phy/phy.h> 31 #include <linux/phy.h> 32 #include <linux/phylink.h> 33 #include <linux/platform_device.h> 34 #include <linux/skbuff.h> 35 #include <net/hwbm.h> 36 #include "mvneta_bm.h" 37 #include <net/ip.h> 38 #include <net/ipv6.h> 39 #include <net/tso.h> 40 #include <net/page_pool.h> 41 #include <linux/bpf_trace.h> 42 43 /* Registers */ 44 #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) 45 #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) 46 #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 47 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 48 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 49 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 50 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) 51 #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) 52 #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) 53 #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) 54 #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) 55 #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) 56 #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 57 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) 58 #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) 59 #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff 60 #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) 61 #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 62 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 63 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) 64 #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 65 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 66 #define MVNETA_PORT_RX_RESET 0x1cc0 67 #define MVNETA_PORT_RX_DMA_RESET BIT(0) 68 #define MVNETA_PHY_ADDR 0x2000 69 #define MVNETA_PHY_ADDR_MASK 0x1f 70 #define MVNETA_MBUS_RETRY 0x2010 71 #define MVNETA_UNIT_INTR_CAUSE 0x2080 72 #define MVNETA_UNIT_CONTROL 0x20B0 73 #define MVNETA_PHY_POLLING_ENABLE BIT(1) 74 #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) 75 #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) 76 #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) 77 #define MVNETA_BASE_ADDR_ENABLE 0x2290 78 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 79 #define MVNETA_PORT_CONFIG 0x2400 80 #define MVNETA_UNI_PROMISC_MODE BIT(0) 81 #define MVNETA_DEF_RXQ(q) ((q) << 1) 82 #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) 83 #define MVNETA_TX_UNSET_ERR_SUM BIT(12) 84 #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) 85 #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) 86 #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) 87 #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) 88 #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ 89 MVNETA_DEF_RXQ_ARP(q) | \ 90 MVNETA_DEF_RXQ_TCP(q) | \ 91 MVNETA_DEF_RXQ_UDP(q) | \ 92 MVNETA_DEF_RXQ_BPDU(q) | \ 93 MVNETA_TX_UNSET_ERR_SUM | \ 94 MVNETA_RX_CSUM_WITH_PSEUDO_HDR) 95 #define MVNETA_PORT_CONFIG_EXTEND 0x2404 96 #define MVNETA_MAC_ADDR_LOW 0x2414 97 #define MVNETA_MAC_ADDR_HIGH 0x2418 98 #define MVNETA_SDMA_CONFIG 0x241c 99 #define MVNETA_SDMA_BRST_SIZE_16 4 100 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) 101 #define MVNETA_RX_NO_DATA_SWAP BIT(4) 102 #define MVNETA_TX_NO_DATA_SWAP BIT(5) 103 #define MVNETA_DESC_SWAP BIT(6) 104 #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) 105 #define MVNETA_PORT_STATUS 0x2444 106 #define MVNETA_TX_IN_PRGRS BIT(1) 107 #define MVNETA_TX_FIFO_EMPTY BIT(8) 108 #define MVNETA_RX_MIN_FRAME_SIZE 0x247c 109 #define MVNETA_SERDES_CFG 0x24A0 110 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 111 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 112 #define MVNETA_TYPE_PRIO 0x24bc 113 #define MVNETA_FORCE_UNI BIT(21) 114 #define MVNETA_TXQ_CMD_1 0x24e4 115 #define MVNETA_TXQ_CMD 0x2448 116 #define MVNETA_TXQ_DISABLE_SHIFT 8 117 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff 118 #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 119 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 120 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 121 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) 122 #define MVNETA_ACC_MODE 0x2500 123 #define MVNETA_BM_ADDRESS 0x2504 124 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) 125 #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff 126 #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 127 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) 128 #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) 129 #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) 130 131 /* Exception Interrupt Port/Queue Cause register 132 * 133 * Their behavior depend of the mapping done using the PCPX2Q 134 * registers. For a given CPU if the bit associated to a queue is not 135 * set, then for the register a read from this CPU will always return 136 * 0 and a write won't do anything 137 */ 138 139 #define MVNETA_INTR_NEW_CAUSE 0x25a0 140 #define MVNETA_INTR_NEW_MASK 0x25a4 141 142 /* bits 0..7 = TXQ SENT, one bit per queue. 143 * bits 8..15 = RXQ OCCUP, one bit per queue. 144 * bits 16..23 = RXQ FREE, one bit per queue. 145 * bit 29 = OLD_REG_SUM, see old reg ? 146 * bit 30 = TX_ERR_SUM, one bit for 4 ports 147 * bit 31 = MISC_SUM, one bit for 4 ports 148 */ 149 #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) 150 #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) 151 #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) 152 #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) 153 #define MVNETA_MISCINTR_INTR_MASK BIT(31) 154 155 #define MVNETA_INTR_OLD_CAUSE 0x25a8 156 #define MVNETA_INTR_OLD_MASK 0x25ac 157 158 /* Data Path Port/Queue Cause Register */ 159 #define MVNETA_INTR_MISC_CAUSE 0x25b0 160 #define MVNETA_INTR_MISC_MASK 0x25b4 161 162 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) 163 #define MVNETA_CAUSE_LINK_CHANGE BIT(1) 164 #define MVNETA_CAUSE_PTP BIT(4) 165 166 #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) 167 #define MVNETA_CAUSE_RX_OVERRUN BIT(8) 168 #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) 169 #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) 170 #define MVNETA_CAUSE_TX_UNDERUN BIT(11) 171 #define MVNETA_CAUSE_PRBS_ERR BIT(12) 172 #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) 173 #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) 174 175 #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 176 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) 177 #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) 178 179 #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 180 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) 181 #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) 182 183 #define MVNETA_INTR_ENABLE 0x25b8 184 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 185 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff 186 187 #define MVNETA_RXQ_CMD 0x2680 188 #define MVNETA_RXQ_DISABLE_SHIFT 8 189 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff 190 #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) 191 #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) 192 #define MVNETA_GMAC_CTRL_0 0x2c00 193 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 194 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc 195 #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) 196 #define MVNETA_GMAC0_PORT_ENABLE BIT(0) 197 #define MVNETA_GMAC_CTRL_2 0x2c08 198 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) 199 #define MVNETA_GMAC2_PCS_ENABLE BIT(3) 200 #define MVNETA_GMAC2_PORT_RGMII BIT(4) 201 #define MVNETA_GMAC2_PORT_RESET BIT(6) 202 #define MVNETA_GMAC_STATUS 0x2c10 203 #define MVNETA_GMAC_LINK_UP BIT(0) 204 #define MVNETA_GMAC_SPEED_1000 BIT(1) 205 #define MVNETA_GMAC_SPEED_100 BIT(2) 206 #define MVNETA_GMAC_FULL_DUPLEX BIT(3) 207 #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) 208 #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) 209 #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) 210 #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) 211 #define MVNETA_GMAC_AN_COMPLETE BIT(11) 212 #define MVNETA_GMAC_SYNC_OK BIT(14) 213 #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c 214 #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) 215 #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) 216 #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) 217 #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) 218 #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) 219 #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) 220 #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) 221 #define MVNETA_GMAC_AN_SPEED_EN BIT(7) 222 #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) 223 #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) 224 #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) 225 #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) 226 #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) 227 #define MVNETA_GMAC_CTRL_4 0x2c90 228 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1) 229 #define MVNETA_MIB_COUNTERS_BASE 0x3000 230 #define MVNETA_MIB_LATE_COLLISION 0x7c 231 #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 232 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 233 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 234 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) 235 #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) 236 #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 237 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) 238 #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) 239 #define MVNETA_TXQ_DEC_SENT_SHIFT 16 240 #define MVNETA_TXQ_DEC_SENT_MASK 0xff 241 #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) 242 #define MVNETA_TXQ_SENT_DESC_SHIFT 16 243 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 244 #define MVNETA_PORT_TX_RESET 0x3cf0 245 #define MVNETA_PORT_TX_DMA_RESET BIT(0) 246 #define MVNETA_TX_MTU 0x3e0c 247 #define MVNETA_TX_TOKEN_SIZE 0x3e14 248 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff 249 #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) 250 #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff 251 252 #define MVNETA_LPI_CTRL_0 0x2cc0 253 #define MVNETA_LPI_CTRL_1 0x2cc4 254 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) 255 #define MVNETA_LPI_CTRL_2 0x2cc8 256 #define MVNETA_LPI_STATUS 0x2ccc 257 258 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff 259 260 /* Descriptor ring Macros */ 261 #define MVNETA_QUEUE_NEXT_DESC(q, index) \ 262 (((index) < (q)->last_desc) ? ((index) + 1) : 0) 263 264 /* Various constants */ 265 266 /* Coalescing */ 267 #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ 268 #define MVNETA_RX_COAL_PKTS 32 269 #define MVNETA_RX_COAL_USEC 100 270 271 /* The two bytes Marvell header. Either contains a special value used 272 * by Marvell switches when a specific hardware mode is enabled (not 273 * supported by this driver) or is filled automatically by zeroes on 274 * the RX side. Those two bytes being at the front of the Ethernet 275 * header, they allow to have the IP header aligned on a 4 bytes 276 * boundary automatically: the hardware skips those two bytes on its 277 * own. 278 */ 279 #define MVNETA_MH_SIZE 2 280 281 #define MVNETA_VLAN_TAG_LEN 4 282 283 #define MVNETA_TX_CSUM_DEF_SIZE 1600 284 #define MVNETA_TX_CSUM_MAX_SIZE 9800 285 #define MVNETA_ACC_MODE_EXT1 1 286 #define MVNETA_ACC_MODE_EXT2 2 287 288 #define MVNETA_MAX_DECODE_WIN 6 289 290 /* Timeout constants */ 291 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 292 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 293 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 294 295 #define MVNETA_TX_MTU_MAX 0x3ffff 296 297 /* The RSS lookup table actually has 256 entries but we do not use 298 * them yet 299 */ 300 #define MVNETA_RSS_LU_TABLE_SIZE 1 301 302 /* Max number of Rx descriptors */ 303 #define MVNETA_MAX_RXD 512 304 305 /* Max number of Tx descriptors */ 306 #define MVNETA_MAX_TXD 1024 307 308 /* Max number of allowed TCP segments for software TSO */ 309 #define MVNETA_MAX_TSO_SEGS 100 310 311 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) 312 313 /* descriptor aligned size */ 314 #define MVNETA_DESC_ALIGNED_SIZE 32 315 316 /* Number of bytes to be taken into account by HW when putting incoming data 317 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet 318 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. 319 */ 320 #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 321 322 #define MVNETA_RX_PKT_SIZE(mtu) \ 323 ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ 324 ETH_HLEN + ETH_FCS_LEN, \ 325 cache_line_size()) 326 327 #define MVNETA_SKB_HEADROOM max(XDP_PACKET_HEADROOM, NET_SKB_PAD) 328 #define MVNETA_SKB_PAD (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \ 329 MVNETA_SKB_HEADROOM)) 330 #define MVNETA_SKB_SIZE(len) (SKB_DATA_ALIGN(len) + MVNETA_SKB_PAD) 331 #define MVNETA_MAX_RX_BUF_SIZE (PAGE_SIZE - MVNETA_SKB_PAD) 332 333 #define IS_TSO_HEADER(txq, addr) \ 334 ((addr >= txq->tso_hdrs_phys) && \ 335 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) 336 337 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ 338 (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) 339 340 enum { 341 ETHTOOL_STAT_EEE_WAKEUP, 342 ETHTOOL_STAT_SKB_ALLOC_ERR, 343 ETHTOOL_STAT_REFILL_ERR, 344 ETHTOOL_XDP_REDIRECT, 345 ETHTOOL_XDP_PASS, 346 ETHTOOL_XDP_DROP, 347 ETHTOOL_XDP_TX, 348 ETHTOOL_XDP_TX_ERR, 349 ETHTOOL_XDP_XMIT, 350 ETHTOOL_XDP_XMIT_ERR, 351 ETHTOOL_MAX_STATS, 352 }; 353 354 struct mvneta_statistic { 355 unsigned short offset; 356 unsigned short type; 357 const char name[ETH_GSTRING_LEN]; 358 }; 359 360 #define T_REG_32 32 361 #define T_REG_64 64 362 #define T_SW 1 363 364 #define MVNETA_XDP_PASS 0 365 #define MVNETA_XDP_DROPPED BIT(0) 366 #define MVNETA_XDP_TX BIT(1) 367 #define MVNETA_XDP_REDIR BIT(2) 368 369 static const struct mvneta_statistic mvneta_statistics[] = { 370 { 0x3000, T_REG_64, "good_octets_received", }, 371 { 0x3010, T_REG_32, "good_frames_received", }, 372 { 0x3008, T_REG_32, "bad_octets_received", }, 373 { 0x3014, T_REG_32, "bad_frames_received", }, 374 { 0x3018, T_REG_32, "broadcast_frames_received", }, 375 { 0x301c, T_REG_32, "multicast_frames_received", }, 376 { 0x3050, T_REG_32, "unrec_mac_control_received", }, 377 { 0x3058, T_REG_32, "good_fc_received", }, 378 { 0x305c, T_REG_32, "bad_fc_received", }, 379 { 0x3060, T_REG_32, "undersize_received", }, 380 { 0x3064, T_REG_32, "fragments_received", }, 381 { 0x3068, T_REG_32, "oversize_received", }, 382 { 0x306c, T_REG_32, "jabber_received", }, 383 { 0x3070, T_REG_32, "mac_receive_error", }, 384 { 0x3074, T_REG_32, "bad_crc_event", }, 385 { 0x3078, T_REG_32, "collision", }, 386 { 0x307c, T_REG_32, "late_collision", }, 387 { 0x2484, T_REG_32, "rx_discard", }, 388 { 0x2488, T_REG_32, "rx_overrun", }, 389 { 0x3020, T_REG_32, "frames_64_octets", }, 390 { 0x3024, T_REG_32, "frames_65_to_127_octets", }, 391 { 0x3028, T_REG_32, "frames_128_to_255_octets", }, 392 { 0x302c, T_REG_32, "frames_256_to_511_octets", }, 393 { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, 394 { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, 395 { 0x3038, T_REG_64, "good_octets_sent", }, 396 { 0x3040, T_REG_32, "good_frames_sent", }, 397 { 0x3044, T_REG_32, "excessive_collision", }, 398 { 0x3048, T_REG_32, "multicast_frames_sent", }, 399 { 0x304c, T_REG_32, "broadcast_frames_sent", }, 400 { 0x3054, T_REG_32, "fc_sent", }, 401 { 0x300c, T_REG_32, "internal_mac_transmit_err", }, 402 { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, 403 { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", }, 404 { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", }, 405 { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", }, 406 { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", }, 407 { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", }, 408 { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", }, 409 { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", }, 410 { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", }, 411 { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", }, 412 }; 413 414 struct mvneta_stats { 415 u64 rx_packets; 416 u64 rx_bytes; 417 u64 tx_packets; 418 u64 tx_bytes; 419 /* xdp */ 420 u64 xdp_redirect; 421 u64 xdp_pass; 422 u64 xdp_drop; 423 u64 xdp_xmit; 424 u64 xdp_xmit_err; 425 u64 xdp_tx; 426 u64 xdp_tx_err; 427 }; 428 429 struct mvneta_ethtool_stats { 430 struct mvneta_stats ps; 431 u64 skb_alloc_error; 432 u64 refill_error; 433 }; 434 435 struct mvneta_pcpu_stats { 436 struct u64_stats_sync syncp; 437 438 struct mvneta_ethtool_stats es; 439 u64 rx_dropped; 440 u64 rx_errors; 441 }; 442 443 struct mvneta_pcpu_port { 444 /* Pointer to the shared port */ 445 struct mvneta_port *pp; 446 447 /* Pointer to the CPU-local NAPI struct */ 448 struct napi_struct napi; 449 450 /* Cause of the previous interrupt */ 451 u32 cause_rx_tx; 452 }; 453 454 struct mvneta_port { 455 u8 id; 456 struct mvneta_pcpu_port __percpu *ports; 457 struct mvneta_pcpu_stats __percpu *stats; 458 459 int pkt_size; 460 void __iomem *base; 461 struct mvneta_rx_queue *rxqs; 462 struct mvneta_tx_queue *txqs; 463 struct net_device *dev; 464 struct hlist_node node_online; 465 struct hlist_node node_dead; 466 int rxq_def; 467 /* Protect the access to the percpu interrupt registers, 468 * ensuring that the configuration remains coherent. 469 */ 470 spinlock_t lock; 471 bool is_stopped; 472 473 u32 cause_rx_tx; 474 struct napi_struct napi; 475 476 struct bpf_prog *xdp_prog; 477 478 /* Core clock */ 479 struct clk *clk; 480 /* AXI clock */ 481 struct clk *clk_bus; 482 u8 mcast_count[256]; 483 u16 tx_ring_size; 484 u16 rx_ring_size; 485 486 phy_interface_t phy_interface; 487 struct device_node *dn; 488 unsigned int tx_csum_limit; 489 struct phylink *phylink; 490 struct phylink_config phylink_config; 491 struct phy *comphy; 492 493 struct mvneta_bm *bm_priv; 494 struct mvneta_bm_pool *pool_long; 495 struct mvneta_bm_pool *pool_short; 496 int bm_win_id; 497 498 bool eee_enabled; 499 bool eee_active; 500 bool tx_lpi_enabled; 501 502 u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; 503 504 u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; 505 506 /* Flags for special SoC configurations */ 507 bool neta_armada3700; 508 u16 rx_offset_correction; 509 const struct mbus_dram_target_info *dram_target_info; 510 }; 511 512 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the 513 * layout of the transmit and reception DMA descriptors, and their 514 * layout is therefore defined by the hardware design 515 */ 516 517 #define MVNETA_TX_L3_OFF_SHIFT 0 518 #define MVNETA_TX_IP_HLEN_SHIFT 8 519 #define MVNETA_TX_L4_UDP BIT(16) 520 #define MVNETA_TX_L3_IP6 BIT(17) 521 #define MVNETA_TXD_IP_CSUM BIT(18) 522 #define MVNETA_TXD_Z_PAD BIT(19) 523 #define MVNETA_TXD_L_DESC BIT(20) 524 #define MVNETA_TXD_F_DESC BIT(21) 525 #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ 526 MVNETA_TXD_L_DESC | \ 527 MVNETA_TXD_F_DESC) 528 #define MVNETA_TX_L4_CSUM_FULL BIT(30) 529 #define MVNETA_TX_L4_CSUM_NOT BIT(31) 530 531 #define MVNETA_RXD_ERR_CRC 0x0 532 #define MVNETA_RXD_BM_POOL_SHIFT 13 533 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) 534 #define MVNETA_RXD_ERR_SUMMARY BIT(16) 535 #define MVNETA_RXD_ERR_OVERRUN BIT(17) 536 #define MVNETA_RXD_ERR_LEN BIT(18) 537 #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) 538 #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) 539 #define MVNETA_RXD_L3_IP4 BIT(25) 540 #define MVNETA_RXD_LAST_DESC BIT(26) 541 #define MVNETA_RXD_FIRST_DESC BIT(27) 542 #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \ 543 MVNETA_RXD_LAST_DESC) 544 #define MVNETA_RXD_L4_CSUM_OK BIT(30) 545 546 #if defined(__LITTLE_ENDIAN) 547 struct mvneta_tx_desc { 548 u32 command; /* Options used by HW for packet transmitting.*/ 549 u16 reserved1; /* csum_l4 (for future use) */ 550 u16 data_size; /* Data size of transmitted packet in bytes */ 551 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 552 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 553 u32 reserved3[4]; /* Reserved - (for future use) */ 554 }; 555 556 struct mvneta_rx_desc { 557 u32 status; /* Info about received packet */ 558 u16 reserved1; /* pnc_info - (for future use, PnC) */ 559 u16 data_size; /* Size of received packet in bytes */ 560 561 u32 buf_phys_addr; /* Physical address of the buffer */ 562 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 563 564 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 565 u16 reserved3; /* prefetch_cmd, for future use */ 566 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 567 568 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 569 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 570 }; 571 #else 572 struct mvneta_tx_desc { 573 u16 data_size; /* Data size of transmitted packet in bytes */ 574 u16 reserved1; /* csum_l4 (for future use) */ 575 u32 command; /* Options used by HW for packet transmitting.*/ 576 u32 reserved2; /* hw_cmd - (for future use, PMT) */ 577 u32 buf_phys_addr; /* Physical addr of transmitted buffer */ 578 u32 reserved3[4]; /* Reserved - (for future use) */ 579 }; 580 581 struct mvneta_rx_desc { 582 u16 data_size; /* Size of received packet in bytes */ 583 u16 reserved1; /* pnc_info - (for future use, PnC) */ 584 u32 status; /* Info about received packet */ 585 586 u32 reserved2; /* pnc_flow_id (for future use, PnC) */ 587 u32 buf_phys_addr; /* Physical address of the buffer */ 588 589 u16 reserved4; /* csum_l4 - (for future use, PnC) */ 590 u16 reserved3; /* prefetch_cmd, for future use */ 591 u32 buf_cookie; /* cookie for access to RX buffer in rx path */ 592 593 u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ 594 u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ 595 }; 596 #endif 597 598 enum mvneta_tx_buf_type { 599 MVNETA_TYPE_SKB, 600 MVNETA_TYPE_XDP_TX, 601 MVNETA_TYPE_XDP_NDO, 602 }; 603 604 struct mvneta_tx_buf { 605 enum mvneta_tx_buf_type type; 606 union { 607 struct xdp_frame *xdpf; 608 struct sk_buff *skb; 609 }; 610 }; 611 612 struct mvneta_tx_queue { 613 /* Number of this TX queue, in the range 0-7 */ 614 u8 id; 615 616 /* Number of TX DMA descriptors in the descriptor ring */ 617 int size; 618 619 /* Number of currently used TX DMA descriptor in the 620 * descriptor ring 621 */ 622 int count; 623 int pending; 624 int tx_stop_threshold; 625 int tx_wake_threshold; 626 627 /* Array of transmitted buffers */ 628 struct mvneta_tx_buf *buf; 629 630 /* Index of last TX DMA descriptor that was inserted */ 631 int txq_put_index; 632 633 /* Index of the TX DMA descriptor to be cleaned up */ 634 int txq_get_index; 635 636 u32 done_pkts_coal; 637 638 /* Virtual address of the TX DMA descriptors array */ 639 struct mvneta_tx_desc *descs; 640 641 /* DMA address of the TX DMA descriptors array */ 642 dma_addr_t descs_phys; 643 644 /* Index of the last TX DMA descriptor */ 645 int last_desc; 646 647 /* Index of the next TX DMA descriptor to process */ 648 int next_desc_to_proc; 649 650 /* DMA buffers for TSO headers */ 651 char *tso_hdrs; 652 653 /* DMA address of TSO headers */ 654 dma_addr_t tso_hdrs_phys; 655 656 /* Affinity mask for CPUs*/ 657 cpumask_t affinity_mask; 658 }; 659 660 struct mvneta_rx_queue { 661 /* rx queue number, in the range 0-7 */ 662 u8 id; 663 664 /* num of rx descriptors in the rx descriptor ring */ 665 int size; 666 667 u32 pkts_coal; 668 u32 time_coal; 669 670 /* page_pool */ 671 struct page_pool *page_pool; 672 struct xdp_rxq_info xdp_rxq; 673 674 /* Virtual address of the RX buffer */ 675 void **buf_virt_addr; 676 677 /* Virtual address of the RX DMA descriptors array */ 678 struct mvneta_rx_desc *descs; 679 680 /* DMA address of the RX DMA descriptors array */ 681 dma_addr_t descs_phys; 682 683 /* Index of the last RX DMA descriptor */ 684 int last_desc; 685 686 /* Index of the next RX DMA descriptor to process */ 687 int next_desc_to_proc; 688 689 /* Index of first RX DMA descriptor to refill */ 690 int first_to_refill; 691 u32 refill_num; 692 693 /* pointer to uncomplete skb buffer */ 694 struct sk_buff *skb; 695 int left_size; 696 }; 697 698 static enum cpuhp_state online_hpstate; 699 /* The hardware supports eight (8) rx queues, but we are only allowing 700 * the first one to be used. Therefore, let's just allocate one queue. 701 */ 702 static int rxq_number = 8; 703 static int txq_number = 8; 704 705 static int rxq_def; 706 707 static int rx_copybreak __read_mostly = 256; 708 709 /* HW BM need that each port be identify by a unique ID */ 710 static int global_port_id; 711 712 #define MVNETA_DRIVER_NAME "mvneta" 713 #define MVNETA_DRIVER_VERSION "1.0" 714 715 /* Utility/helper methods */ 716 717 /* Write helper method */ 718 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) 719 { 720 writel(data, pp->base + offset); 721 } 722 723 /* Read helper method */ 724 static u32 mvreg_read(struct mvneta_port *pp, u32 offset) 725 { 726 return readl(pp->base + offset); 727 } 728 729 /* Increment txq get counter */ 730 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) 731 { 732 txq->txq_get_index++; 733 if (txq->txq_get_index == txq->size) 734 txq->txq_get_index = 0; 735 } 736 737 /* Increment txq put counter */ 738 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) 739 { 740 txq->txq_put_index++; 741 if (txq->txq_put_index == txq->size) 742 txq->txq_put_index = 0; 743 } 744 745 746 /* Clear all MIB counters */ 747 static void mvneta_mib_counters_clear(struct mvneta_port *pp) 748 { 749 int i; 750 u32 dummy; 751 752 /* Perform dummy reads from MIB counters */ 753 for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) 754 dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); 755 dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); 756 dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); 757 } 758 759 /* Get System Network Statistics */ 760 static void 761 mvneta_get_stats64(struct net_device *dev, 762 struct rtnl_link_stats64 *stats) 763 { 764 struct mvneta_port *pp = netdev_priv(dev); 765 unsigned int start; 766 int cpu; 767 768 for_each_possible_cpu(cpu) { 769 struct mvneta_pcpu_stats *cpu_stats; 770 u64 rx_packets; 771 u64 rx_bytes; 772 u64 rx_dropped; 773 u64 rx_errors; 774 u64 tx_packets; 775 u64 tx_bytes; 776 777 cpu_stats = per_cpu_ptr(pp->stats, cpu); 778 do { 779 start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); 780 rx_packets = cpu_stats->es.ps.rx_packets; 781 rx_bytes = cpu_stats->es.ps.rx_bytes; 782 rx_dropped = cpu_stats->rx_dropped; 783 rx_errors = cpu_stats->rx_errors; 784 tx_packets = cpu_stats->es.ps.tx_packets; 785 tx_bytes = cpu_stats->es.ps.tx_bytes; 786 } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); 787 788 stats->rx_packets += rx_packets; 789 stats->rx_bytes += rx_bytes; 790 stats->rx_dropped += rx_dropped; 791 stats->rx_errors += rx_errors; 792 stats->tx_packets += tx_packets; 793 stats->tx_bytes += tx_bytes; 794 } 795 796 stats->tx_dropped = dev->stats.tx_dropped; 797 } 798 799 /* Rx descriptors helper methods */ 800 801 /* Checks whether the RX descriptor having this status is both the first 802 * and the last descriptor for the RX packet. Each RX packet is currently 803 * received through a single RX descriptor, so not having each RX 804 * descriptor with its first and last bits set is an error 805 */ 806 static int mvneta_rxq_desc_is_first_last(u32 status) 807 { 808 return (status & MVNETA_RXD_FIRST_LAST_DESC) == 809 MVNETA_RXD_FIRST_LAST_DESC; 810 } 811 812 /* Add number of descriptors ready to receive new packets */ 813 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, 814 struct mvneta_rx_queue *rxq, 815 int ndescs) 816 { 817 /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can 818 * be added at once 819 */ 820 while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { 821 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 822 (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << 823 MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 824 ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; 825 } 826 827 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), 828 (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); 829 } 830 831 /* Get number of RX descriptors occupied by received packets */ 832 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, 833 struct mvneta_rx_queue *rxq) 834 { 835 u32 val; 836 837 val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); 838 return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; 839 } 840 841 /* Update num of rx desc called upon return from rx path or 842 * from mvneta_rxq_drop_pkts(). 843 */ 844 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, 845 struct mvneta_rx_queue *rxq, 846 int rx_done, int rx_filled) 847 { 848 u32 val; 849 850 if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { 851 val = rx_done | 852 (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); 853 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 854 return; 855 } 856 857 /* Only 255 descriptors can be added at once */ 858 while ((rx_done > 0) || (rx_filled > 0)) { 859 if (rx_done <= 0xff) { 860 val = rx_done; 861 rx_done = 0; 862 } else { 863 val = 0xff; 864 rx_done -= 0xff; 865 } 866 if (rx_filled <= 0xff) { 867 val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 868 rx_filled = 0; 869 } else { 870 val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; 871 rx_filled -= 0xff; 872 } 873 mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); 874 } 875 } 876 877 /* Get pointer to next RX descriptor to be processed by SW */ 878 static struct mvneta_rx_desc * 879 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) 880 { 881 int rx_desc = rxq->next_desc_to_proc; 882 883 rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); 884 prefetch(rxq->descs + rxq->next_desc_to_proc); 885 return rxq->descs + rx_desc; 886 } 887 888 /* Change maximum receive size of the port. */ 889 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) 890 { 891 u32 val; 892 893 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 894 val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; 895 val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << 896 MVNETA_GMAC_MAX_RX_SIZE_SHIFT; 897 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 898 } 899 900 901 /* Set rx queue offset */ 902 static void mvneta_rxq_offset_set(struct mvneta_port *pp, 903 struct mvneta_rx_queue *rxq, 904 int offset) 905 { 906 u32 val; 907 908 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 909 val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; 910 911 /* Offset is in */ 912 val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); 913 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 914 } 915 916 917 /* Tx descriptors helper methods */ 918 919 /* Update HW with number of TX descriptors to be sent */ 920 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, 921 struct mvneta_tx_queue *txq, 922 int pend_desc) 923 { 924 u32 val; 925 926 pend_desc += txq->pending; 927 928 /* Only 255 Tx descriptors can be added at once */ 929 do { 930 val = min(pend_desc, 255); 931 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 932 pend_desc -= val; 933 } while (pend_desc > 0); 934 txq->pending = 0; 935 } 936 937 /* Get pointer to next TX descriptor to be processed (send) by HW */ 938 static struct mvneta_tx_desc * 939 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) 940 { 941 int tx_desc = txq->next_desc_to_proc; 942 943 txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); 944 return txq->descs + tx_desc; 945 } 946 947 /* Release the last allocated TX descriptor. Useful to handle DMA 948 * mapping failures in the TX path. 949 */ 950 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) 951 { 952 if (txq->next_desc_to_proc == 0) 953 txq->next_desc_to_proc = txq->last_desc - 1; 954 else 955 txq->next_desc_to_proc--; 956 } 957 958 /* Set rxq buf size */ 959 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, 960 struct mvneta_rx_queue *rxq, 961 int buf_size) 962 { 963 u32 val; 964 965 val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); 966 967 val &= ~MVNETA_RXQ_BUF_SIZE_MASK; 968 val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); 969 970 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); 971 } 972 973 /* Disable buffer management (BM) */ 974 static void mvneta_rxq_bm_disable(struct mvneta_port *pp, 975 struct mvneta_rx_queue *rxq) 976 { 977 u32 val; 978 979 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 980 val &= ~MVNETA_RXQ_HW_BUF_ALLOC; 981 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 982 } 983 984 /* Enable buffer management (BM) */ 985 static void mvneta_rxq_bm_enable(struct mvneta_port *pp, 986 struct mvneta_rx_queue *rxq) 987 { 988 u32 val; 989 990 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 991 val |= MVNETA_RXQ_HW_BUF_ALLOC; 992 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 993 } 994 995 /* Notify HW about port's assignment of pool for bigger packets */ 996 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, 997 struct mvneta_rx_queue *rxq) 998 { 999 u32 val; 1000 1001 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1002 val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; 1003 val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); 1004 1005 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1006 } 1007 1008 /* Notify HW about port's assignment of pool for smaller packets */ 1009 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, 1010 struct mvneta_rx_queue *rxq) 1011 { 1012 u32 val; 1013 1014 val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); 1015 val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; 1016 val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); 1017 1018 mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); 1019 } 1020 1021 /* Set port's receive buffer size for assigned BM pool */ 1022 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, 1023 int buf_size, 1024 u8 pool_id) 1025 { 1026 u32 val; 1027 1028 if (!IS_ALIGNED(buf_size, 8)) { 1029 dev_warn(pp->dev->dev.parent, 1030 "illegal buf_size value %d, round to %d\n", 1031 buf_size, ALIGN(buf_size, 8)); 1032 buf_size = ALIGN(buf_size, 8); 1033 } 1034 1035 val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); 1036 val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; 1037 mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); 1038 } 1039 1040 /* Configure MBUS window in order to enable access BM internal SRAM */ 1041 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, 1042 u8 target, u8 attr) 1043 { 1044 u32 win_enable, win_protect; 1045 int i; 1046 1047 win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); 1048 1049 if (pp->bm_win_id < 0) { 1050 /* Find first not occupied window */ 1051 for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { 1052 if (win_enable & (1 << i)) { 1053 pp->bm_win_id = i; 1054 break; 1055 } 1056 } 1057 if (i == MVNETA_MAX_DECODE_WIN) 1058 return -ENOMEM; 1059 } else { 1060 i = pp->bm_win_id; 1061 } 1062 1063 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 1064 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 1065 1066 if (i < 4) 1067 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 1068 1069 mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | 1070 (attr << 8) | target); 1071 1072 mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); 1073 1074 win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); 1075 win_protect |= 3 << (2 * i); 1076 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 1077 1078 win_enable &= ~(1 << i); 1079 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 1080 1081 return 0; 1082 } 1083 1084 static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) 1085 { 1086 u32 wsize; 1087 u8 target, attr; 1088 int err; 1089 1090 /* Get BM window information */ 1091 err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, 1092 &target, &attr); 1093 if (err < 0) 1094 return err; 1095 1096 pp->bm_win_id = -1; 1097 1098 /* Open NETA -> BM window */ 1099 err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, 1100 target, attr); 1101 if (err < 0) { 1102 netdev_info(pp->dev, "fail to configure mbus window to BM\n"); 1103 return err; 1104 } 1105 return 0; 1106 } 1107 1108 /* Assign and initialize pools for port. In case of fail 1109 * buffer manager will remain disabled for current port. 1110 */ 1111 static int mvneta_bm_port_init(struct platform_device *pdev, 1112 struct mvneta_port *pp) 1113 { 1114 struct device_node *dn = pdev->dev.of_node; 1115 u32 long_pool_id, short_pool_id; 1116 1117 if (!pp->neta_armada3700) { 1118 int ret; 1119 1120 ret = mvneta_bm_port_mbus_init(pp); 1121 if (ret) 1122 return ret; 1123 } 1124 1125 if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { 1126 netdev_info(pp->dev, "missing long pool id\n"); 1127 return -EINVAL; 1128 } 1129 1130 /* Create port's long pool depending on mtu */ 1131 pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, 1132 MVNETA_BM_LONG, pp->id, 1133 MVNETA_RX_PKT_SIZE(pp->dev->mtu)); 1134 if (!pp->pool_long) { 1135 netdev_info(pp->dev, "fail to obtain long pool for port\n"); 1136 return -ENOMEM; 1137 } 1138 1139 pp->pool_long->port_map |= 1 << pp->id; 1140 1141 mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, 1142 pp->pool_long->id); 1143 1144 /* If short pool id is not defined, assume using single pool */ 1145 if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) 1146 short_pool_id = long_pool_id; 1147 1148 /* Create port's short pool */ 1149 pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, 1150 MVNETA_BM_SHORT, pp->id, 1151 MVNETA_BM_SHORT_PKT_SIZE); 1152 if (!pp->pool_short) { 1153 netdev_info(pp->dev, "fail to obtain short pool for port\n"); 1154 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1155 return -ENOMEM; 1156 } 1157 1158 if (short_pool_id != long_pool_id) { 1159 pp->pool_short->port_map |= 1 << pp->id; 1160 mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, 1161 pp->pool_short->id); 1162 } 1163 1164 return 0; 1165 } 1166 1167 /* Update settings of a pool for bigger packets */ 1168 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) 1169 { 1170 struct mvneta_bm_pool *bm_pool = pp->pool_long; 1171 struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; 1172 int num; 1173 1174 /* Release all buffers from long pool */ 1175 mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); 1176 if (hwbm_pool->buf_num) { 1177 WARN(1, "cannot free all buffers in pool %d\n", 1178 bm_pool->id); 1179 goto bm_mtu_err; 1180 } 1181 1182 bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); 1183 bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); 1184 hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 1185 SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); 1186 1187 /* Fill entire long pool */ 1188 num = hwbm_pool_add(hwbm_pool, hwbm_pool->size); 1189 if (num != hwbm_pool->size) { 1190 WARN(1, "pool %d: %d of %d allocated\n", 1191 bm_pool->id, num, hwbm_pool->size); 1192 goto bm_mtu_err; 1193 } 1194 mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); 1195 1196 return; 1197 1198 bm_mtu_err: 1199 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 1200 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); 1201 1202 pp->bm_priv = NULL; 1203 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 1204 mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); 1205 netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); 1206 } 1207 1208 /* Start the Ethernet port RX and TX activity */ 1209 static void mvneta_port_up(struct mvneta_port *pp) 1210 { 1211 int queue; 1212 u32 q_map; 1213 1214 /* Enable all initialized TXs. */ 1215 q_map = 0; 1216 for (queue = 0; queue < txq_number; queue++) { 1217 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 1218 if (txq->descs) 1219 q_map |= (1 << queue); 1220 } 1221 mvreg_write(pp, MVNETA_TXQ_CMD, q_map); 1222 1223 q_map = 0; 1224 /* Enable all initialized RXQs. */ 1225 for (queue = 0; queue < rxq_number; queue++) { 1226 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 1227 1228 if (rxq->descs) 1229 q_map |= (1 << queue); 1230 } 1231 mvreg_write(pp, MVNETA_RXQ_CMD, q_map); 1232 } 1233 1234 /* Stop the Ethernet port activity */ 1235 static void mvneta_port_down(struct mvneta_port *pp) 1236 { 1237 u32 val; 1238 int count; 1239 1240 /* Stop Rx port activity. Check port Rx activity. */ 1241 val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; 1242 1243 /* Issue stop command for active channels only */ 1244 if (val != 0) 1245 mvreg_write(pp, MVNETA_RXQ_CMD, 1246 val << MVNETA_RXQ_DISABLE_SHIFT); 1247 1248 /* Wait for all Rx activity to terminate. */ 1249 count = 0; 1250 do { 1251 if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { 1252 netdev_warn(pp->dev, 1253 "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", 1254 val); 1255 break; 1256 } 1257 mdelay(1); 1258 1259 val = mvreg_read(pp, MVNETA_RXQ_CMD); 1260 } while (val & MVNETA_RXQ_ENABLE_MASK); 1261 1262 /* Stop Tx port activity. Check port Tx activity. Issue stop 1263 * command for active channels only 1264 */ 1265 val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; 1266 1267 if (val != 0) 1268 mvreg_write(pp, MVNETA_TXQ_CMD, 1269 (val << MVNETA_TXQ_DISABLE_SHIFT)); 1270 1271 /* Wait for all Tx activity to terminate. */ 1272 count = 0; 1273 do { 1274 if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { 1275 netdev_warn(pp->dev, 1276 "TIMEOUT for TX stopped status=0x%08x\n", 1277 val); 1278 break; 1279 } 1280 mdelay(1); 1281 1282 /* Check TX Command reg that all Txqs are stopped */ 1283 val = mvreg_read(pp, MVNETA_TXQ_CMD); 1284 1285 } while (val & MVNETA_TXQ_ENABLE_MASK); 1286 1287 /* Double check to verify that TX FIFO is empty */ 1288 count = 0; 1289 do { 1290 if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { 1291 netdev_warn(pp->dev, 1292 "TX FIFO empty timeout status=0x%08x\n", 1293 val); 1294 break; 1295 } 1296 mdelay(1); 1297 1298 val = mvreg_read(pp, MVNETA_PORT_STATUS); 1299 } while (!(val & MVNETA_TX_FIFO_EMPTY) && 1300 (val & MVNETA_TX_IN_PRGRS)); 1301 1302 udelay(200); 1303 } 1304 1305 /* Enable the port by setting the port enable bit of the MAC control register */ 1306 static void mvneta_port_enable(struct mvneta_port *pp) 1307 { 1308 u32 val; 1309 1310 /* Enable port */ 1311 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1312 val |= MVNETA_GMAC0_PORT_ENABLE; 1313 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1314 } 1315 1316 /* Disable the port and wait for about 200 usec before retuning */ 1317 static void mvneta_port_disable(struct mvneta_port *pp) 1318 { 1319 u32 val; 1320 1321 /* Reset the Enable bit in the Serial Control Register */ 1322 val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 1323 val &= ~MVNETA_GMAC0_PORT_ENABLE; 1324 mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); 1325 1326 udelay(200); 1327 } 1328 1329 /* Multicast tables methods */ 1330 1331 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ 1332 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) 1333 { 1334 int offset; 1335 u32 val; 1336 1337 if (queue == -1) { 1338 val = 0; 1339 } else { 1340 val = 0x1 | (queue << 1); 1341 val |= (val << 24) | (val << 16) | (val << 8); 1342 } 1343 1344 for (offset = 0; offset <= 0xc; offset += 4) 1345 mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); 1346 } 1347 1348 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ 1349 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) 1350 { 1351 int offset; 1352 u32 val; 1353 1354 if (queue == -1) { 1355 val = 0; 1356 } else { 1357 val = 0x1 | (queue << 1); 1358 val |= (val << 24) | (val << 16) | (val << 8); 1359 } 1360 1361 for (offset = 0; offset <= 0xfc; offset += 4) 1362 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); 1363 1364 } 1365 1366 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ 1367 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) 1368 { 1369 int offset; 1370 u32 val; 1371 1372 if (queue == -1) { 1373 memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); 1374 val = 0; 1375 } else { 1376 memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); 1377 val = 0x1 | (queue << 1); 1378 val |= (val << 24) | (val << 16) | (val << 8); 1379 } 1380 1381 for (offset = 0; offset <= 0xfc; offset += 4) 1382 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); 1383 } 1384 1385 static void mvneta_percpu_unmask_interrupt(void *arg) 1386 { 1387 struct mvneta_port *pp = arg; 1388 1389 /* All the queue are unmasked, but actually only the ones 1390 * mapped to this CPU will be unmasked 1391 */ 1392 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 1393 MVNETA_RX_INTR_MASK_ALL | 1394 MVNETA_TX_INTR_MASK_ALL | 1395 MVNETA_MISCINTR_INTR_MASK); 1396 } 1397 1398 static void mvneta_percpu_mask_interrupt(void *arg) 1399 { 1400 struct mvneta_port *pp = arg; 1401 1402 /* All the queue are masked, but actually only the ones 1403 * mapped to this CPU will be masked 1404 */ 1405 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 1406 mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); 1407 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); 1408 } 1409 1410 static void mvneta_percpu_clear_intr_cause(void *arg) 1411 { 1412 struct mvneta_port *pp = arg; 1413 1414 /* All the queue are cleared, but actually only the ones 1415 * mapped to this CPU will be cleared 1416 */ 1417 mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); 1418 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 1419 mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); 1420 } 1421 1422 /* This method sets defaults to the NETA port: 1423 * Clears interrupt Cause and Mask registers. 1424 * Clears all MAC tables. 1425 * Sets defaults to all registers. 1426 * Resets RX and TX descriptor rings. 1427 * Resets PHY. 1428 * This method can be called after mvneta_port_down() to return the port 1429 * settings to defaults. 1430 */ 1431 static void mvneta_defaults_set(struct mvneta_port *pp) 1432 { 1433 int cpu; 1434 int queue; 1435 u32 val; 1436 int max_cpu = num_present_cpus(); 1437 1438 /* Clear all Cause registers */ 1439 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 1440 1441 /* Mask all interrupts */ 1442 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 1443 mvreg_write(pp, MVNETA_INTR_ENABLE, 0); 1444 1445 /* Enable MBUS Retry bit16 */ 1446 mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); 1447 1448 /* Set CPU queue access map. CPUs are assigned to the RX and 1449 * TX queues modulo their number. If there is only one TX 1450 * queue then it is assigned to the CPU associated to the 1451 * default RX queue. 1452 */ 1453 for_each_present_cpu(cpu) { 1454 int rxq_map = 0, txq_map = 0; 1455 int rxq, txq; 1456 if (!pp->neta_armada3700) { 1457 for (rxq = 0; rxq < rxq_number; rxq++) 1458 if ((rxq % max_cpu) == cpu) 1459 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 1460 1461 for (txq = 0; txq < txq_number; txq++) 1462 if ((txq % max_cpu) == cpu) 1463 txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); 1464 1465 /* With only one TX queue we configure a special case 1466 * which will allow to get all the irq on a single 1467 * CPU 1468 */ 1469 if (txq_number == 1) 1470 txq_map = (cpu == pp->rxq_def) ? 1471 MVNETA_CPU_TXQ_ACCESS(1) : 0; 1472 1473 } else { 1474 txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 1475 rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; 1476 } 1477 1478 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 1479 } 1480 1481 /* Reset RX and TX DMAs */ 1482 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 1483 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 1484 1485 /* Disable Legacy WRR, Disable EJP, Release from reset */ 1486 mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); 1487 for (queue = 0; queue < txq_number; queue++) { 1488 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); 1489 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); 1490 } 1491 1492 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 1493 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 1494 1495 /* Set Port Acceleration Mode */ 1496 if (pp->bm_priv) 1497 /* HW buffer management + legacy parser */ 1498 val = MVNETA_ACC_MODE_EXT2; 1499 else 1500 /* SW buffer management + legacy parser */ 1501 val = MVNETA_ACC_MODE_EXT1; 1502 mvreg_write(pp, MVNETA_ACC_MODE, val); 1503 1504 if (pp->bm_priv) 1505 mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); 1506 1507 /* Update val of portCfg register accordingly with all RxQueue types */ 1508 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 1509 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 1510 1511 val = 0; 1512 mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); 1513 mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); 1514 1515 /* Build PORT_SDMA_CONFIG_REG */ 1516 val = 0; 1517 1518 /* Default burst size */ 1519 val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1520 val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); 1521 val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; 1522 1523 #if defined(__BIG_ENDIAN) 1524 val |= MVNETA_DESC_SWAP; 1525 #endif 1526 1527 /* Assign port SDMA configuration */ 1528 mvreg_write(pp, MVNETA_SDMA_CONFIG, val); 1529 1530 /* Disable PHY polling in hardware, since we're using the 1531 * kernel phylib to do this. 1532 */ 1533 val = mvreg_read(pp, MVNETA_UNIT_CONTROL); 1534 val &= ~MVNETA_PHY_POLLING_ENABLE; 1535 mvreg_write(pp, MVNETA_UNIT_CONTROL, val); 1536 1537 mvneta_set_ucast_table(pp, -1); 1538 mvneta_set_special_mcast_table(pp, -1); 1539 mvneta_set_other_mcast_table(pp, -1); 1540 1541 /* Set port interrupt enable register - default enable all */ 1542 mvreg_write(pp, MVNETA_INTR_ENABLE, 1543 (MVNETA_RXQ_INTR_ENABLE_ALL_MASK 1544 | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); 1545 1546 mvneta_mib_counters_clear(pp); 1547 } 1548 1549 /* Set max sizes for tx queues */ 1550 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) 1551 1552 { 1553 u32 val, size, mtu; 1554 int queue; 1555 1556 mtu = max_tx_size * 8; 1557 if (mtu > MVNETA_TX_MTU_MAX) 1558 mtu = MVNETA_TX_MTU_MAX; 1559 1560 /* Set MTU */ 1561 val = mvreg_read(pp, MVNETA_TX_MTU); 1562 val &= ~MVNETA_TX_MTU_MAX; 1563 val |= mtu; 1564 mvreg_write(pp, MVNETA_TX_MTU, val); 1565 1566 /* TX token size and all TXQs token size must be larger that MTU */ 1567 val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); 1568 1569 size = val & MVNETA_TX_TOKEN_SIZE_MAX; 1570 if (size < mtu) { 1571 size = mtu; 1572 val &= ~MVNETA_TX_TOKEN_SIZE_MAX; 1573 val |= size; 1574 mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); 1575 } 1576 for (queue = 0; queue < txq_number; queue++) { 1577 val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); 1578 1579 size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; 1580 if (size < mtu) { 1581 size = mtu; 1582 val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; 1583 val |= size; 1584 mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); 1585 } 1586 } 1587 } 1588 1589 /* Set unicast address */ 1590 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, 1591 int queue) 1592 { 1593 unsigned int unicast_reg; 1594 unsigned int tbl_offset; 1595 unsigned int reg_offset; 1596 1597 /* Locate the Unicast table entry */ 1598 last_nibble = (0xf & last_nibble); 1599 1600 /* offset from unicast tbl base */ 1601 tbl_offset = (last_nibble / 4) * 4; 1602 1603 /* offset within the above reg */ 1604 reg_offset = last_nibble % 4; 1605 1606 unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); 1607 1608 if (queue == -1) { 1609 /* Clear accepts frame bit at specified unicast DA tbl entry */ 1610 unicast_reg &= ~(0xff << (8 * reg_offset)); 1611 } else { 1612 unicast_reg &= ~(0xff << (8 * reg_offset)); 1613 unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 1614 } 1615 1616 mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); 1617 } 1618 1619 /* Set mac address */ 1620 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, 1621 int queue) 1622 { 1623 unsigned int mac_h; 1624 unsigned int mac_l; 1625 1626 if (queue != -1) { 1627 mac_l = (addr[4] << 8) | (addr[5]); 1628 mac_h = (addr[0] << 24) | (addr[1] << 16) | 1629 (addr[2] << 8) | (addr[3] << 0); 1630 1631 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); 1632 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); 1633 } 1634 1635 /* Accept frames of this address */ 1636 mvneta_set_ucast_addr(pp, addr[5], queue); 1637 } 1638 1639 /* Set the number of packets that will be received before RX interrupt 1640 * will be generated by HW. 1641 */ 1642 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, 1643 struct mvneta_rx_queue *rxq, u32 value) 1644 { 1645 mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), 1646 value | MVNETA_RXQ_NON_OCCUPIED(0)); 1647 } 1648 1649 /* Set the time delay in usec before RX interrupt will be generated by 1650 * HW. 1651 */ 1652 static void mvneta_rx_time_coal_set(struct mvneta_port *pp, 1653 struct mvneta_rx_queue *rxq, u32 value) 1654 { 1655 u32 val; 1656 unsigned long clk_rate; 1657 1658 clk_rate = clk_get_rate(pp->clk); 1659 val = (clk_rate / 1000000) * value; 1660 1661 mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); 1662 } 1663 1664 /* Set threshold for TX_DONE pkts coalescing */ 1665 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, 1666 struct mvneta_tx_queue *txq, u32 value) 1667 { 1668 u32 val; 1669 1670 val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); 1671 1672 val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; 1673 val |= MVNETA_TXQ_SENT_THRESH_MASK(value); 1674 1675 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); 1676 } 1677 1678 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ 1679 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, 1680 u32 phys_addr, void *virt_addr, 1681 struct mvneta_rx_queue *rxq) 1682 { 1683 int i; 1684 1685 rx_desc->buf_phys_addr = phys_addr; 1686 i = rx_desc - rxq->descs; 1687 rxq->buf_virt_addr[i] = virt_addr; 1688 } 1689 1690 /* Decrement sent descriptors counter */ 1691 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, 1692 struct mvneta_tx_queue *txq, 1693 int sent_desc) 1694 { 1695 u32 val; 1696 1697 /* Only 255 TX descriptors can be updated at once */ 1698 while (sent_desc > 0xff) { 1699 val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; 1700 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1701 sent_desc = sent_desc - 0xff; 1702 } 1703 1704 val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; 1705 mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); 1706 } 1707 1708 /* Get number of TX descriptors already sent by HW */ 1709 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, 1710 struct mvneta_tx_queue *txq) 1711 { 1712 u32 val; 1713 int sent_desc; 1714 1715 val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); 1716 sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> 1717 MVNETA_TXQ_SENT_DESC_SHIFT; 1718 1719 return sent_desc; 1720 } 1721 1722 /* Get number of sent descriptors and decrement counter. 1723 * The number of sent descriptors is returned. 1724 */ 1725 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, 1726 struct mvneta_tx_queue *txq) 1727 { 1728 int sent_desc; 1729 1730 /* Get number of sent descriptors */ 1731 sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); 1732 1733 /* Decrement sent descriptors counter */ 1734 if (sent_desc) 1735 mvneta_txq_sent_desc_dec(pp, txq, sent_desc); 1736 1737 return sent_desc; 1738 } 1739 1740 /* Set TXQ descriptors fields relevant for CSUM calculation */ 1741 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, 1742 int ip_hdr_len, int l4_proto) 1743 { 1744 u32 command; 1745 1746 /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, 1747 * G_L4_chk, L4_type; required only for checksum 1748 * calculation 1749 */ 1750 command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; 1751 command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; 1752 1753 if (l3_proto == htons(ETH_P_IP)) 1754 command |= MVNETA_TXD_IP_CSUM; 1755 else 1756 command |= MVNETA_TX_L3_IP6; 1757 1758 if (l4_proto == IPPROTO_TCP) 1759 command |= MVNETA_TX_L4_CSUM_FULL; 1760 else if (l4_proto == IPPROTO_UDP) 1761 command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; 1762 else 1763 command |= MVNETA_TX_L4_CSUM_NOT; 1764 1765 return command; 1766 } 1767 1768 1769 /* Display more error info */ 1770 static void mvneta_rx_error(struct mvneta_port *pp, 1771 struct mvneta_rx_desc *rx_desc) 1772 { 1773 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1774 u32 status = rx_desc->status; 1775 1776 /* update per-cpu counter */ 1777 u64_stats_update_begin(&stats->syncp); 1778 stats->rx_errors++; 1779 u64_stats_update_end(&stats->syncp); 1780 1781 switch (status & MVNETA_RXD_ERR_CODE_MASK) { 1782 case MVNETA_RXD_ERR_CRC: 1783 netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", 1784 status, rx_desc->data_size); 1785 break; 1786 case MVNETA_RXD_ERR_OVERRUN: 1787 netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", 1788 status, rx_desc->data_size); 1789 break; 1790 case MVNETA_RXD_ERR_LEN: 1791 netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", 1792 status, rx_desc->data_size); 1793 break; 1794 case MVNETA_RXD_ERR_RESOURCE: 1795 netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", 1796 status, rx_desc->data_size); 1797 break; 1798 } 1799 } 1800 1801 /* Handle RX checksum offload based on the descriptor's status */ 1802 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, 1803 struct sk_buff *skb) 1804 { 1805 if ((pp->dev->features & NETIF_F_RXCSUM) && 1806 (status & MVNETA_RXD_L3_IP4) && 1807 (status & MVNETA_RXD_L4_CSUM_OK)) { 1808 skb->csum = 0; 1809 skb->ip_summed = CHECKSUM_UNNECESSARY; 1810 return; 1811 } 1812 1813 skb->ip_summed = CHECKSUM_NONE; 1814 } 1815 1816 /* Return tx queue pointer (find last set bit) according to <cause> returned 1817 * form tx_done reg. <cause> must not be null. The return value is always a 1818 * valid queue for matching the first one found in <cause>. 1819 */ 1820 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, 1821 u32 cause) 1822 { 1823 int queue = fls(cause) - 1; 1824 1825 return &pp->txqs[queue]; 1826 } 1827 1828 /* Free tx queue skbuffs */ 1829 static void mvneta_txq_bufs_free(struct mvneta_port *pp, 1830 struct mvneta_tx_queue *txq, int num, 1831 struct netdev_queue *nq) 1832 { 1833 unsigned int bytes_compl = 0, pkts_compl = 0; 1834 int i; 1835 1836 for (i = 0; i < num; i++) { 1837 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index]; 1838 struct mvneta_tx_desc *tx_desc = txq->descs + 1839 txq->txq_get_index; 1840 1841 mvneta_txq_inc_get(txq); 1842 1843 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) && 1844 buf->type != MVNETA_TYPE_XDP_TX) 1845 dma_unmap_single(pp->dev->dev.parent, 1846 tx_desc->buf_phys_addr, 1847 tx_desc->data_size, DMA_TO_DEVICE); 1848 if (buf->type == MVNETA_TYPE_SKB && buf->skb) { 1849 bytes_compl += buf->skb->len; 1850 pkts_compl++; 1851 dev_kfree_skb_any(buf->skb); 1852 } else if (buf->type == MVNETA_TYPE_XDP_TX || 1853 buf->type == MVNETA_TYPE_XDP_NDO) { 1854 xdp_return_frame(buf->xdpf); 1855 } 1856 } 1857 1858 netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); 1859 } 1860 1861 /* Handle end of transmission */ 1862 static void mvneta_txq_done(struct mvneta_port *pp, 1863 struct mvneta_tx_queue *txq) 1864 { 1865 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 1866 int tx_done; 1867 1868 tx_done = mvneta_txq_sent_desc_proc(pp, txq); 1869 if (!tx_done) 1870 return; 1871 1872 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 1873 1874 txq->count -= tx_done; 1875 1876 if (netif_tx_queue_stopped(nq)) { 1877 if (txq->count <= txq->tx_wake_threshold) 1878 netif_tx_wake_queue(nq); 1879 } 1880 } 1881 1882 /* Refill processing for SW buffer management */ 1883 /* Allocate page per descriptor */ 1884 static int mvneta_rx_refill(struct mvneta_port *pp, 1885 struct mvneta_rx_desc *rx_desc, 1886 struct mvneta_rx_queue *rxq, 1887 gfp_t gfp_mask) 1888 { 1889 dma_addr_t phys_addr; 1890 struct page *page; 1891 1892 page = page_pool_alloc_pages(rxq->page_pool, 1893 gfp_mask | __GFP_NOWARN); 1894 if (!page) 1895 return -ENOMEM; 1896 1897 phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction; 1898 mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq); 1899 1900 return 0; 1901 } 1902 1903 /* Handle tx checksum */ 1904 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) 1905 { 1906 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1907 int ip_hdr_len = 0; 1908 __be16 l3_proto = vlan_get_protocol(skb); 1909 u8 l4_proto; 1910 1911 if (l3_proto == htons(ETH_P_IP)) { 1912 struct iphdr *ip4h = ip_hdr(skb); 1913 1914 /* Calculate IPv4 checksum and L4 checksum */ 1915 ip_hdr_len = ip4h->ihl; 1916 l4_proto = ip4h->protocol; 1917 } else if (l3_proto == htons(ETH_P_IPV6)) { 1918 struct ipv6hdr *ip6h = ipv6_hdr(skb); 1919 1920 /* Read l4_protocol from one of IPv6 extra headers */ 1921 if (skb_network_header_len(skb) > 0) 1922 ip_hdr_len = (skb_network_header_len(skb) >> 2); 1923 l4_proto = ip6h->nexthdr; 1924 } else 1925 return MVNETA_TX_L4_CSUM_NOT; 1926 1927 return mvneta_txq_desc_csum(skb_network_offset(skb), 1928 l3_proto, ip_hdr_len, l4_proto); 1929 } 1930 1931 return MVNETA_TX_L4_CSUM_NOT; 1932 } 1933 1934 /* Drop packets received by the RXQ and free buffers */ 1935 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, 1936 struct mvneta_rx_queue *rxq) 1937 { 1938 int rx_done, i; 1939 1940 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 1941 if (rx_done) 1942 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 1943 1944 if (pp->bm_priv) { 1945 for (i = 0; i < rx_done; i++) { 1946 struct mvneta_rx_desc *rx_desc = 1947 mvneta_rxq_next_desc_get(rxq); 1948 u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 1949 struct mvneta_bm_pool *bm_pool; 1950 1951 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 1952 /* Return dropped buffer to the pool */ 1953 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 1954 rx_desc->buf_phys_addr); 1955 } 1956 return; 1957 } 1958 1959 for (i = 0; i < rxq->size; i++) { 1960 struct mvneta_rx_desc *rx_desc = rxq->descs + i; 1961 void *data = rxq->buf_virt_addr[i]; 1962 if (!data || !(rx_desc->buf_phys_addr)) 1963 continue; 1964 1965 page_pool_put_full_page(rxq->page_pool, data, false); 1966 } 1967 if (xdp_rxq_info_is_reg(&rxq->xdp_rxq)) 1968 xdp_rxq_info_unreg(&rxq->xdp_rxq); 1969 page_pool_destroy(rxq->page_pool); 1970 rxq->page_pool = NULL; 1971 } 1972 1973 static void 1974 mvneta_update_stats(struct mvneta_port *pp, 1975 struct mvneta_stats *ps) 1976 { 1977 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 1978 1979 u64_stats_update_begin(&stats->syncp); 1980 stats->es.ps.rx_packets += ps->rx_packets; 1981 stats->es.ps.rx_bytes += ps->rx_bytes; 1982 /* xdp */ 1983 stats->es.ps.xdp_redirect += ps->xdp_redirect; 1984 stats->es.ps.xdp_pass += ps->xdp_pass; 1985 stats->es.ps.xdp_drop += ps->xdp_drop; 1986 u64_stats_update_end(&stats->syncp); 1987 } 1988 1989 static inline 1990 int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) 1991 { 1992 struct mvneta_rx_desc *rx_desc; 1993 int curr_desc = rxq->first_to_refill; 1994 int i; 1995 1996 for (i = 0; (i < rxq->refill_num) && (i < 64); i++) { 1997 rx_desc = rxq->descs + curr_desc; 1998 if (!(rx_desc->buf_phys_addr)) { 1999 if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) { 2000 struct mvneta_pcpu_stats *stats; 2001 2002 pr_err("Can't refill queue %d. Done %d from %d\n", 2003 rxq->id, i, rxq->refill_num); 2004 2005 stats = this_cpu_ptr(pp->stats); 2006 u64_stats_update_begin(&stats->syncp); 2007 stats->es.refill_error++; 2008 u64_stats_update_end(&stats->syncp); 2009 break; 2010 } 2011 } 2012 curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc); 2013 } 2014 rxq->refill_num -= i; 2015 rxq->first_to_refill = curr_desc; 2016 2017 return i; 2018 } 2019 2020 static int 2021 mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq, 2022 struct xdp_frame *xdpf, bool dma_map) 2023 { 2024 struct mvneta_tx_desc *tx_desc; 2025 struct mvneta_tx_buf *buf; 2026 dma_addr_t dma_addr; 2027 2028 if (txq->count >= txq->tx_stop_threshold) 2029 return MVNETA_XDP_DROPPED; 2030 2031 tx_desc = mvneta_txq_next_desc_get(txq); 2032 2033 buf = &txq->buf[txq->txq_put_index]; 2034 if (dma_map) { 2035 /* ndo_xdp_xmit */ 2036 dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data, 2037 xdpf->len, DMA_TO_DEVICE); 2038 if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) { 2039 mvneta_txq_desc_put(txq); 2040 return MVNETA_XDP_DROPPED; 2041 } 2042 buf->type = MVNETA_TYPE_XDP_NDO; 2043 } else { 2044 struct page *page = virt_to_page(xdpf->data); 2045 2046 dma_addr = page_pool_get_dma_addr(page) + 2047 sizeof(*xdpf) + xdpf->headroom; 2048 dma_sync_single_for_device(pp->dev->dev.parent, dma_addr, 2049 xdpf->len, DMA_BIDIRECTIONAL); 2050 buf->type = MVNETA_TYPE_XDP_TX; 2051 } 2052 buf->xdpf = xdpf; 2053 2054 tx_desc->command = MVNETA_TXD_FLZ_DESC; 2055 tx_desc->buf_phys_addr = dma_addr; 2056 tx_desc->data_size = xdpf->len; 2057 2058 mvneta_txq_inc_put(txq); 2059 txq->pending++; 2060 txq->count++; 2061 2062 return MVNETA_XDP_TX; 2063 } 2064 2065 static int 2066 mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp) 2067 { 2068 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2069 struct mvneta_tx_queue *txq; 2070 struct netdev_queue *nq; 2071 struct xdp_frame *xdpf; 2072 int cpu; 2073 u32 ret; 2074 2075 xdpf = convert_to_xdp_frame(xdp); 2076 if (unlikely(!xdpf)) 2077 return MVNETA_XDP_DROPPED; 2078 2079 cpu = smp_processor_id(); 2080 txq = &pp->txqs[cpu % txq_number]; 2081 nq = netdev_get_tx_queue(pp->dev, txq->id); 2082 2083 __netif_tx_lock(nq, cpu); 2084 ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false); 2085 if (ret == MVNETA_XDP_TX) { 2086 u64_stats_update_begin(&stats->syncp); 2087 stats->es.ps.tx_bytes += xdpf->len; 2088 stats->es.ps.tx_packets++; 2089 stats->es.ps.xdp_tx++; 2090 u64_stats_update_end(&stats->syncp); 2091 2092 mvneta_txq_pend_desc_add(pp, txq, 0); 2093 } else { 2094 u64_stats_update_begin(&stats->syncp); 2095 stats->es.ps.xdp_tx_err++; 2096 u64_stats_update_end(&stats->syncp); 2097 } 2098 __netif_tx_unlock(nq); 2099 2100 return ret; 2101 } 2102 2103 static int 2104 mvneta_xdp_xmit(struct net_device *dev, int num_frame, 2105 struct xdp_frame **frames, u32 flags) 2106 { 2107 struct mvneta_port *pp = netdev_priv(dev); 2108 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2109 int i, nxmit_byte = 0, nxmit = num_frame; 2110 int cpu = smp_processor_id(); 2111 struct mvneta_tx_queue *txq; 2112 struct netdev_queue *nq; 2113 u32 ret; 2114 2115 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 2116 return -EINVAL; 2117 2118 txq = &pp->txqs[cpu % txq_number]; 2119 nq = netdev_get_tx_queue(pp->dev, txq->id); 2120 2121 __netif_tx_lock(nq, cpu); 2122 for (i = 0; i < num_frame; i++) { 2123 ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true); 2124 if (ret == MVNETA_XDP_TX) { 2125 nxmit_byte += frames[i]->len; 2126 } else { 2127 xdp_return_frame_rx_napi(frames[i]); 2128 nxmit--; 2129 } 2130 } 2131 2132 if (unlikely(flags & XDP_XMIT_FLUSH)) 2133 mvneta_txq_pend_desc_add(pp, txq, 0); 2134 __netif_tx_unlock(nq); 2135 2136 u64_stats_update_begin(&stats->syncp); 2137 stats->es.ps.tx_bytes += nxmit_byte; 2138 stats->es.ps.tx_packets += nxmit; 2139 stats->es.ps.xdp_xmit += nxmit; 2140 stats->es.ps.xdp_xmit_err += num_frame - nxmit; 2141 u64_stats_update_end(&stats->syncp); 2142 2143 return nxmit; 2144 } 2145 2146 static int 2147 mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 2148 struct bpf_prog *prog, struct xdp_buff *xdp, 2149 struct mvneta_stats *stats) 2150 { 2151 unsigned int len; 2152 u32 ret, act; 2153 2154 len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction; 2155 act = bpf_prog_run_xdp(prog, xdp); 2156 2157 switch (act) { 2158 case XDP_PASS: 2159 stats->xdp_pass++; 2160 return MVNETA_XDP_PASS; 2161 case XDP_REDIRECT: { 2162 int err; 2163 2164 err = xdp_do_redirect(pp->dev, xdp, prog); 2165 if (unlikely(err)) { 2166 ret = MVNETA_XDP_DROPPED; 2167 page_pool_put_page(rxq->page_pool, 2168 virt_to_head_page(xdp->data), len, 2169 true); 2170 } else { 2171 ret = MVNETA_XDP_REDIR; 2172 stats->xdp_redirect++; 2173 } 2174 break; 2175 } 2176 case XDP_TX: 2177 ret = mvneta_xdp_xmit_back(pp, xdp); 2178 if (ret != MVNETA_XDP_TX) 2179 page_pool_put_page(rxq->page_pool, 2180 virt_to_head_page(xdp->data), len, 2181 true); 2182 break; 2183 default: 2184 bpf_warn_invalid_xdp_action(act); 2185 /* fall through */ 2186 case XDP_ABORTED: 2187 trace_xdp_exception(pp->dev, prog, act); 2188 /* fall through */ 2189 case XDP_DROP: 2190 page_pool_put_page(rxq->page_pool, 2191 virt_to_head_page(xdp->data), len, true); 2192 ret = MVNETA_XDP_DROPPED; 2193 stats->xdp_drop++; 2194 break; 2195 } 2196 2197 stats->rx_bytes += xdp->data_end - xdp->data; 2198 stats->rx_packets++; 2199 2200 return ret; 2201 } 2202 2203 static int 2204 mvneta_swbm_rx_frame(struct mvneta_port *pp, 2205 struct mvneta_rx_desc *rx_desc, 2206 struct mvneta_rx_queue *rxq, 2207 struct xdp_buff *xdp, 2208 struct bpf_prog *xdp_prog, 2209 struct page *page, 2210 struct mvneta_stats *stats) 2211 { 2212 unsigned char *data = page_address(page); 2213 int data_len = -MVNETA_MH_SIZE, len; 2214 struct net_device *dev = pp->dev; 2215 enum dma_data_direction dma_dir; 2216 int ret = 0; 2217 2218 if (MVNETA_SKB_SIZE(rx_desc->data_size) > PAGE_SIZE) { 2219 len = MVNETA_MAX_RX_BUF_SIZE; 2220 data_len += len; 2221 } else { 2222 len = rx_desc->data_size; 2223 data_len += len - ETH_FCS_LEN; 2224 } 2225 2226 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2227 dma_sync_single_for_cpu(dev->dev.parent, 2228 rx_desc->buf_phys_addr, 2229 len, dma_dir); 2230 2231 /* Prefetch header */ 2232 prefetch(data); 2233 2234 xdp->data_hard_start = data; 2235 xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE; 2236 xdp->data_end = xdp->data + data_len; 2237 xdp_set_data_meta_invalid(xdp); 2238 2239 if (xdp_prog) { 2240 ret = mvneta_run_xdp(pp, rxq, xdp_prog, xdp, stats); 2241 if (ret) 2242 goto out; 2243 } 2244 2245 rxq->skb = build_skb(xdp->data_hard_start, PAGE_SIZE); 2246 if (unlikely(!rxq->skb)) { 2247 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2248 2249 netdev_err(dev, "Can't allocate skb on queue %d\n", rxq->id); 2250 2251 u64_stats_update_begin(&stats->syncp); 2252 stats->es.skb_alloc_error++; 2253 stats->rx_dropped++; 2254 u64_stats_update_end(&stats->syncp); 2255 2256 return -ENOMEM; 2257 } 2258 page_pool_release_page(rxq->page_pool, page); 2259 2260 skb_reserve(rxq->skb, 2261 xdp->data - xdp->data_hard_start); 2262 skb_put(rxq->skb, xdp->data_end - xdp->data); 2263 mvneta_rx_csum(pp, rx_desc->status, rxq->skb); 2264 2265 rxq->left_size = rx_desc->data_size - len; 2266 2267 out: 2268 rx_desc->buf_phys_addr = 0; 2269 2270 return ret; 2271 } 2272 2273 static void 2274 mvneta_swbm_add_rx_fragment(struct mvneta_port *pp, 2275 struct mvneta_rx_desc *rx_desc, 2276 struct mvneta_rx_queue *rxq, 2277 struct page *page) 2278 { 2279 struct net_device *dev = pp->dev; 2280 enum dma_data_direction dma_dir; 2281 int data_len, len; 2282 2283 if (rxq->left_size > MVNETA_MAX_RX_BUF_SIZE) { 2284 len = MVNETA_MAX_RX_BUF_SIZE; 2285 data_len = len; 2286 } else { 2287 len = rxq->left_size; 2288 data_len = len - ETH_FCS_LEN; 2289 } 2290 dma_dir = page_pool_get_dma_dir(rxq->page_pool); 2291 dma_sync_single_for_cpu(dev->dev.parent, 2292 rx_desc->buf_phys_addr, 2293 len, dma_dir); 2294 if (data_len > 0) { 2295 /* refill descriptor with new buffer later */ 2296 skb_add_rx_frag(rxq->skb, 2297 skb_shinfo(rxq->skb)->nr_frags, 2298 page, pp->rx_offset_correction, data_len, 2299 PAGE_SIZE); 2300 } 2301 page_pool_release_page(rxq->page_pool, page); 2302 rx_desc->buf_phys_addr = 0; 2303 rxq->left_size -= len; 2304 } 2305 2306 /* Main rx processing when using software buffer management */ 2307 static int mvneta_rx_swbm(struct napi_struct *napi, 2308 struct mvneta_port *pp, int budget, 2309 struct mvneta_rx_queue *rxq) 2310 { 2311 int rx_proc = 0, rx_todo, refill; 2312 struct net_device *dev = pp->dev; 2313 struct mvneta_stats ps = {}; 2314 struct bpf_prog *xdp_prog; 2315 struct xdp_buff xdp_buf; 2316 2317 /* Get number of received packets */ 2318 rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq); 2319 2320 rcu_read_lock(); 2321 xdp_prog = READ_ONCE(pp->xdp_prog); 2322 xdp_buf.rxq = &rxq->xdp_rxq; 2323 2324 /* Fairness NAPI loop */ 2325 while (rx_proc < budget && rx_proc < rx_todo) { 2326 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2327 u32 rx_status, index; 2328 struct page *page; 2329 2330 index = rx_desc - rxq->descs; 2331 page = (struct page *)rxq->buf_virt_addr[index]; 2332 2333 rx_status = rx_desc->status; 2334 rx_proc++; 2335 rxq->refill_num++; 2336 2337 if (rx_status & MVNETA_RXD_FIRST_DESC) { 2338 int err; 2339 2340 /* Check errors only for FIRST descriptor */ 2341 if (rx_status & MVNETA_RXD_ERR_SUMMARY) { 2342 mvneta_rx_error(pp, rx_desc); 2343 /* leave the descriptor untouched */ 2344 continue; 2345 } 2346 2347 err = mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf, 2348 xdp_prog, page, &ps); 2349 if (err) 2350 continue; 2351 } else { 2352 if (unlikely(!rxq->skb)) { 2353 pr_debug("no skb for rx_status 0x%x\n", 2354 rx_status); 2355 continue; 2356 } 2357 mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, page); 2358 } /* Middle or Last descriptor */ 2359 2360 if (!(rx_status & MVNETA_RXD_LAST_DESC)) 2361 /* no last descriptor this time */ 2362 continue; 2363 2364 if (rxq->left_size) { 2365 pr_err("get last desc, but left_size (%d) != 0\n", 2366 rxq->left_size); 2367 dev_kfree_skb_any(rxq->skb); 2368 rxq->left_size = 0; 2369 rxq->skb = NULL; 2370 continue; 2371 } 2372 2373 ps.rx_bytes += rxq->skb->len; 2374 ps.rx_packets++; 2375 2376 /* Linux processing */ 2377 rxq->skb->protocol = eth_type_trans(rxq->skb, dev); 2378 2379 napi_gro_receive(napi, rxq->skb); 2380 2381 /* clean uncomplete skb pointer in queue */ 2382 rxq->skb = NULL; 2383 } 2384 rcu_read_unlock(); 2385 2386 if (ps.xdp_redirect) 2387 xdp_do_flush_map(); 2388 2389 if (ps.rx_packets) 2390 mvneta_update_stats(pp, &ps); 2391 2392 /* return some buffers to hardware queue, one at a time is too slow */ 2393 refill = mvneta_rx_refill_queue(pp, rxq); 2394 2395 /* Update rxq management counters */ 2396 mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill); 2397 2398 return ps.rx_packets; 2399 } 2400 2401 /* Main rx processing when using hardware buffer management */ 2402 static int mvneta_rx_hwbm(struct napi_struct *napi, 2403 struct mvneta_port *pp, int rx_todo, 2404 struct mvneta_rx_queue *rxq) 2405 { 2406 struct net_device *dev = pp->dev; 2407 int rx_done; 2408 u32 rcvd_pkts = 0; 2409 u32 rcvd_bytes = 0; 2410 2411 /* Get number of received packets */ 2412 rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); 2413 2414 if (rx_todo > rx_done) 2415 rx_todo = rx_done; 2416 2417 rx_done = 0; 2418 2419 /* Fairness NAPI loop */ 2420 while (rx_done < rx_todo) { 2421 struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); 2422 struct mvneta_bm_pool *bm_pool = NULL; 2423 struct sk_buff *skb; 2424 unsigned char *data; 2425 dma_addr_t phys_addr; 2426 u32 rx_status, frag_size; 2427 int rx_bytes, err; 2428 u8 pool_id; 2429 2430 rx_done++; 2431 rx_status = rx_desc->status; 2432 rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); 2433 data = (u8 *)(uintptr_t)rx_desc->buf_cookie; 2434 phys_addr = rx_desc->buf_phys_addr; 2435 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); 2436 bm_pool = &pp->bm_priv->bm_pools[pool_id]; 2437 2438 if (!mvneta_rxq_desc_is_first_last(rx_status) || 2439 (rx_status & MVNETA_RXD_ERR_SUMMARY)) { 2440 err_drop_frame_ret_pool: 2441 /* Return the buffer to the pool */ 2442 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2443 rx_desc->buf_phys_addr); 2444 err_drop_frame: 2445 mvneta_rx_error(pp, rx_desc); 2446 /* leave the descriptor untouched */ 2447 continue; 2448 } 2449 2450 if (rx_bytes <= rx_copybreak) { 2451 /* better copy a small frame and not unmap the DMA region */ 2452 skb = netdev_alloc_skb_ip_align(dev, rx_bytes); 2453 if (unlikely(!skb)) 2454 goto err_drop_frame_ret_pool; 2455 2456 dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev, 2457 rx_desc->buf_phys_addr, 2458 MVNETA_MH_SIZE + NET_SKB_PAD, 2459 rx_bytes, 2460 DMA_FROM_DEVICE); 2461 skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, 2462 rx_bytes); 2463 2464 skb->protocol = eth_type_trans(skb, dev); 2465 mvneta_rx_csum(pp, rx_status, skb); 2466 napi_gro_receive(napi, skb); 2467 2468 rcvd_pkts++; 2469 rcvd_bytes += rx_bytes; 2470 2471 /* Return the buffer to the pool */ 2472 mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, 2473 rx_desc->buf_phys_addr); 2474 2475 /* leave the descriptor and buffer untouched */ 2476 continue; 2477 } 2478 2479 /* Refill processing */ 2480 err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); 2481 if (err) { 2482 struct mvneta_pcpu_stats *stats; 2483 2484 netdev_err(dev, "Linux processing - Can't refill\n"); 2485 2486 stats = this_cpu_ptr(pp->stats); 2487 u64_stats_update_begin(&stats->syncp); 2488 stats->es.refill_error++; 2489 u64_stats_update_end(&stats->syncp); 2490 2491 goto err_drop_frame_ret_pool; 2492 } 2493 2494 frag_size = bm_pool->hwbm_pool.frag_size; 2495 2496 skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); 2497 2498 /* After refill old buffer has to be unmapped regardless 2499 * the skb is successfully built or not. 2500 */ 2501 dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, 2502 bm_pool->buf_size, DMA_FROM_DEVICE); 2503 if (!skb) 2504 goto err_drop_frame; 2505 2506 rcvd_pkts++; 2507 rcvd_bytes += rx_bytes; 2508 2509 /* Linux processing */ 2510 skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); 2511 skb_put(skb, rx_bytes); 2512 2513 skb->protocol = eth_type_trans(skb, dev); 2514 2515 mvneta_rx_csum(pp, rx_status, skb); 2516 2517 napi_gro_receive(napi, skb); 2518 } 2519 2520 if (rcvd_pkts) { 2521 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2522 2523 u64_stats_update_begin(&stats->syncp); 2524 stats->es.ps.rx_packets += rcvd_pkts; 2525 stats->es.ps.rx_bytes += rcvd_bytes; 2526 u64_stats_update_end(&stats->syncp); 2527 } 2528 2529 /* Update rxq management counters */ 2530 mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); 2531 2532 return rx_done; 2533 } 2534 2535 static inline void 2536 mvneta_tso_put_hdr(struct sk_buff *skb, 2537 struct mvneta_port *pp, struct mvneta_tx_queue *txq) 2538 { 2539 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2540 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2541 struct mvneta_tx_desc *tx_desc; 2542 2543 tx_desc = mvneta_txq_next_desc_get(txq); 2544 tx_desc->data_size = hdr_len; 2545 tx_desc->command = mvneta_skb_tx_csum(pp, skb); 2546 tx_desc->command |= MVNETA_TXD_F_DESC; 2547 tx_desc->buf_phys_addr = txq->tso_hdrs_phys + 2548 txq->txq_put_index * TSO_HEADER_SIZE; 2549 buf->type = MVNETA_TYPE_SKB; 2550 buf->skb = NULL; 2551 2552 mvneta_txq_inc_put(txq); 2553 } 2554 2555 static inline int 2556 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, 2557 struct sk_buff *skb, char *data, int size, 2558 bool last_tcp, bool is_last) 2559 { 2560 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2561 struct mvneta_tx_desc *tx_desc; 2562 2563 tx_desc = mvneta_txq_next_desc_get(txq); 2564 tx_desc->data_size = size; 2565 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, 2566 size, DMA_TO_DEVICE); 2567 if (unlikely(dma_mapping_error(dev->dev.parent, 2568 tx_desc->buf_phys_addr))) { 2569 mvneta_txq_desc_put(txq); 2570 return -ENOMEM; 2571 } 2572 2573 tx_desc->command = 0; 2574 buf->type = MVNETA_TYPE_SKB; 2575 buf->skb = NULL; 2576 2577 if (last_tcp) { 2578 /* last descriptor in the TCP packet */ 2579 tx_desc->command = MVNETA_TXD_L_DESC; 2580 2581 /* last descriptor in SKB */ 2582 if (is_last) 2583 buf->skb = skb; 2584 } 2585 mvneta_txq_inc_put(txq); 2586 return 0; 2587 } 2588 2589 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, 2590 struct mvneta_tx_queue *txq) 2591 { 2592 int total_len, data_left; 2593 int desc_count = 0; 2594 struct mvneta_port *pp = netdev_priv(dev); 2595 struct tso_t tso; 2596 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2597 int i; 2598 2599 /* Count needed descriptors */ 2600 if ((txq->count + tso_count_descs(skb)) >= txq->size) 2601 return 0; 2602 2603 if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { 2604 pr_info("*** Is this even possible???!?!?\n"); 2605 return 0; 2606 } 2607 2608 /* Initialize the TSO handler, and prepare the first payload */ 2609 tso_start(skb, &tso); 2610 2611 total_len = skb->len - hdr_len; 2612 while (total_len > 0) { 2613 char *hdr; 2614 2615 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); 2616 total_len -= data_left; 2617 desc_count++; 2618 2619 /* prepare packet headers: MAC + IP + TCP */ 2620 hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; 2621 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); 2622 2623 mvneta_tso_put_hdr(skb, pp, txq); 2624 2625 while (data_left > 0) { 2626 int size; 2627 desc_count++; 2628 2629 size = min_t(int, tso.size, data_left); 2630 2631 if (mvneta_tso_put_data(dev, txq, skb, 2632 tso.data, size, 2633 size == data_left, 2634 total_len == 0)) 2635 goto err_release; 2636 data_left -= size; 2637 2638 tso_build_data(skb, &tso, size); 2639 } 2640 } 2641 2642 return desc_count; 2643 2644 err_release: 2645 /* Release all used data descriptors; header descriptors must not 2646 * be DMA-unmapped. 2647 */ 2648 for (i = desc_count - 1; i >= 0; i--) { 2649 struct mvneta_tx_desc *tx_desc = txq->descs + i; 2650 if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) 2651 dma_unmap_single(pp->dev->dev.parent, 2652 tx_desc->buf_phys_addr, 2653 tx_desc->data_size, 2654 DMA_TO_DEVICE); 2655 mvneta_txq_desc_put(txq); 2656 } 2657 return 0; 2658 } 2659 2660 /* Handle tx fragmentation processing */ 2661 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, 2662 struct mvneta_tx_queue *txq) 2663 { 2664 struct mvneta_tx_desc *tx_desc; 2665 int i, nr_frags = skb_shinfo(skb)->nr_frags; 2666 2667 for (i = 0; i < nr_frags; i++) { 2668 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2669 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2670 void *addr = skb_frag_address(frag); 2671 2672 tx_desc = mvneta_txq_next_desc_get(txq); 2673 tx_desc->data_size = skb_frag_size(frag); 2674 2675 tx_desc->buf_phys_addr = 2676 dma_map_single(pp->dev->dev.parent, addr, 2677 tx_desc->data_size, DMA_TO_DEVICE); 2678 2679 if (dma_mapping_error(pp->dev->dev.parent, 2680 tx_desc->buf_phys_addr)) { 2681 mvneta_txq_desc_put(txq); 2682 goto error; 2683 } 2684 2685 if (i == nr_frags - 1) { 2686 /* Last descriptor */ 2687 tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; 2688 buf->skb = skb; 2689 } else { 2690 /* Descriptor in the middle: Not First, Not Last */ 2691 tx_desc->command = 0; 2692 buf->skb = NULL; 2693 } 2694 buf->type = MVNETA_TYPE_SKB; 2695 mvneta_txq_inc_put(txq); 2696 } 2697 2698 return 0; 2699 2700 error: 2701 /* Release all descriptors that were used to map fragments of 2702 * this packet, as well as the corresponding DMA mappings 2703 */ 2704 for (i = i - 1; i >= 0; i--) { 2705 tx_desc = txq->descs + i; 2706 dma_unmap_single(pp->dev->dev.parent, 2707 tx_desc->buf_phys_addr, 2708 tx_desc->data_size, 2709 DMA_TO_DEVICE); 2710 mvneta_txq_desc_put(txq); 2711 } 2712 2713 return -ENOMEM; 2714 } 2715 2716 /* Main tx processing */ 2717 static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev) 2718 { 2719 struct mvneta_port *pp = netdev_priv(dev); 2720 u16 txq_id = skb_get_queue_mapping(skb); 2721 struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; 2722 struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index]; 2723 struct mvneta_tx_desc *tx_desc; 2724 int len = skb->len; 2725 int frags = 0; 2726 u32 tx_cmd; 2727 2728 if (!netif_running(dev)) 2729 goto out; 2730 2731 if (skb_is_gso(skb)) { 2732 frags = mvneta_tx_tso(skb, dev, txq); 2733 goto out; 2734 } 2735 2736 frags = skb_shinfo(skb)->nr_frags + 1; 2737 2738 /* Get a descriptor for the first part of the packet */ 2739 tx_desc = mvneta_txq_next_desc_get(txq); 2740 2741 tx_cmd = mvneta_skb_tx_csum(pp, skb); 2742 2743 tx_desc->data_size = skb_headlen(skb); 2744 2745 tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, 2746 tx_desc->data_size, 2747 DMA_TO_DEVICE); 2748 if (unlikely(dma_mapping_error(dev->dev.parent, 2749 tx_desc->buf_phys_addr))) { 2750 mvneta_txq_desc_put(txq); 2751 frags = 0; 2752 goto out; 2753 } 2754 2755 buf->type = MVNETA_TYPE_SKB; 2756 if (frags == 1) { 2757 /* First and Last descriptor */ 2758 tx_cmd |= MVNETA_TXD_FLZ_DESC; 2759 tx_desc->command = tx_cmd; 2760 buf->skb = skb; 2761 mvneta_txq_inc_put(txq); 2762 } else { 2763 /* First but not Last */ 2764 tx_cmd |= MVNETA_TXD_F_DESC; 2765 buf->skb = NULL; 2766 mvneta_txq_inc_put(txq); 2767 tx_desc->command = tx_cmd; 2768 /* Continue with other skb fragments */ 2769 if (mvneta_tx_frag_process(pp, skb, txq)) { 2770 dma_unmap_single(dev->dev.parent, 2771 tx_desc->buf_phys_addr, 2772 tx_desc->data_size, 2773 DMA_TO_DEVICE); 2774 mvneta_txq_desc_put(txq); 2775 frags = 0; 2776 goto out; 2777 } 2778 } 2779 2780 out: 2781 if (frags > 0) { 2782 struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); 2783 struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); 2784 2785 netdev_tx_sent_queue(nq, len); 2786 2787 txq->count += frags; 2788 if (txq->count >= txq->tx_stop_threshold) 2789 netif_tx_stop_queue(nq); 2790 2791 if (!netdev_xmit_more() || netif_xmit_stopped(nq) || 2792 txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) 2793 mvneta_txq_pend_desc_add(pp, txq, frags); 2794 else 2795 txq->pending += frags; 2796 2797 u64_stats_update_begin(&stats->syncp); 2798 stats->es.ps.tx_bytes += len; 2799 stats->es.ps.tx_packets++; 2800 u64_stats_update_end(&stats->syncp); 2801 } else { 2802 dev->stats.tx_dropped++; 2803 dev_kfree_skb_any(skb); 2804 } 2805 2806 return NETDEV_TX_OK; 2807 } 2808 2809 2810 /* Free tx resources, when resetting a port */ 2811 static void mvneta_txq_done_force(struct mvneta_port *pp, 2812 struct mvneta_tx_queue *txq) 2813 2814 { 2815 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 2816 int tx_done = txq->count; 2817 2818 mvneta_txq_bufs_free(pp, txq, tx_done, nq); 2819 2820 /* reset txq */ 2821 txq->count = 0; 2822 txq->txq_put_index = 0; 2823 txq->txq_get_index = 0; 2824 } 2825 2826 /* Handle tx done - called in softirq context. The <cause_tx_done> argument 2827 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. 2828 */ 2829 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) 2830 { 2831 struct mvneta_tx_queue *txq; 2832 struct netdev_queue *nq; 2833 int cpu = smp_processor_id(); 2834 2835 while (cause_tx_done) { 2836 txq = mvneta_tx_done_policy(pp, cause_tx_done); 2837 2838 nq = netdev_get_tx_queue(pp->dev, txq->id); 2839 __netif_tx_lock(nq, cpu); 2840 2841 if (txq->count) 2842 mvneta_txq_done(pp, txq); 2843 2844 __netif_tx_unlock(nq); 2845 cause_tx_done &= ~((1 << txq->id)); 2846 } 2847 } 2848 2849 /* Compute crc8 of the specified address, using a unique algorithm , 2850 * according to hw spec, different than generic crc8 algorithm 2851 */ 2852 static int mvneta_addr_crc(unsigned char *addr) 2853 { 2854 int crc = 0; 2855 int i; 2856 2857 for (i = 0; i < ETH_ALEN; i++) { 2858 int j; 2859 2860 crc = (crc ^ addr[i]) << 8; 2861 for (j = 7; j >= 0; j--) { 2862 if (crc & (0x100 << j)) 2863 crc ^= 0x107 << j; 2864 } 2865 } 2866 2867 return crc; 2868 } 2869 2870 /* This method controls the net device special MAC multicast support. 2871 * The Special Multicast Table for MAC addresses supports MAC of the form 2872 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2873 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2874 * Table entries in the DA-Filter table. This method set the Special 2875 * Multicast Table appropriate entry. 2876 */ 2877 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, 2878 unsigned char last_byte, 2879 int queue) 2880 { 2881 unsigned int smc_table_reg; 2882 unsigned int tbl_offset; 2883 unsigned int reg_offset; 2884 2885 /* Register offset from SMC table base */ 2886 tbl_offset = (last_byte / 4); 2887 /* Entry offset within the above reg */ 2888 reg_offset = last_byte % 4; 2889 2890 smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST 2891 + tbl_offset * 4)); 2892 2893 if (queue == -1) 2894 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2895 else { 2896 smc_table_reg &= ~(0xff << (8 * reg_offset)); 2897 smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2898 } 2899 2900 mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, 2901 smc_table_reg); 2902 } 2903 2904 /* This method controls the network device Other MAC multicast support. 2905 * The Other Multicast Table is used for multicast of another type. 2906 * A CRC-8 is used as an index to the Other Multicast Table entries 2907 * in the DA-Filter table. 2908 * The method gets the CRC-8 value from the calling routine and 2909 * sets the Other Multicast Table appropriate entry according to the 2910 * specified CRC-8 . 2911 */ 2912 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, 2913 unsigned char crc8, 2914 int queue) 2915 { 2916 unsigned int omc_table_reg; 2917 unsigned int tbl_offset; 2918 unsigned int reg_offset; 2919 2920 tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ 2921 reg_offset = crc8 % 4; /* Entry offset within the above reg */ 2922 2923 omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); 2924 2925 if (queue == -1) { 2926 /* Clear accepts frame bit at specified Other DA table entry */ 2927 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2928 } else { 2929 omc_table_reg &= ~(0xff << (8 * reg_offset)); 2930 omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); 2931 } 2932 2933 mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); 2934 } 2935 2936 /* The network device supports multicast using two tables: 2937 * 1) Special Multicast Table for MAC addresses of the form 2938 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). 2939 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast 2940 * Table entries in the DA-Filter table. 2941 * 2) Other Multicast Table for multicast of another type. A CRC-8 value 2942 * is used as an index to the Other Multicast Table entries in the 2943 * DA-Filter table. 2944 */ 2945 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, 2946 int queue) 2947 { 2948 unsigned char crc_result = 0; 2949 2950 if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { 2951 mvneta_set_special_mcast_addr(pp, p_addr[5], queue); 2952 return 0; 2953 } 2954 2955 crc_result = mvneta_addr_crc(p_addr); 2956 if (queue == -1) { 2957 if (pp->mcast_count[crc_result] == 0) { 2958 netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", 2959 crc_result); 2960 return -EINVAL; 2961 } 2962 2963 pp->mcast_count[crc_result]--; 2964 if (pp->mcast_count[crc_result] != 0) { 2965 netdev_info(pp->dev, 2966 "After delete there are %d valid Mcast for crc8=0x%02x\n", 2967 pp->mcast_count[crc_result], crc_result); 2968 return -EINVAL; 2969 } 2970 } else 2971 pp->mcast_count[crc_result]++; 2972 2973 mvneta_set_other_mcast_addr(pp, crc_result, queue); 2974 2975 return 0; 2976 } 2977 2978 /* Configure Fitering mode of Ethernet port */ 2979 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, 2980 int is_promisc) 2981 { 2982 u32 port_cfg_reg, val; 2983 2984 port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); 2985 2986 val = mvreg_read(pp, MVNETA_TYPE_PRIO); 2987 2988 /* Set / Clear UPM bit in port configuration register */ 2989 if (is_promisc) { 2990 /* Accept all Unicast addresses */ 2991 port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; 2992 val |= MVNETA_FORCE_UNI; 2993 mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); 2994 mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); 2995 } else { 2996 /* Reject all Unicast addresses */ 2997 port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; 2998 val &= ~MVNETA_FORCE_UNI; 2999 } 3000 3001 mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); 3002 mvreg_write(pp, MVNETA_TYPE_PRIO, val); 3003 } 3004 3005 /* register unicast and multicast addresses */ 3006 static void mvneta_set_rx_mode(struct net_device *dev) 3007 { 3008 struct mvneta_port *pp = netdev_priv(dev); 3009 struct netdev_hw_addr *ha; 3010 3011 if (dev->flags & IFF_PROMISC) { 3012 /* Accept all: Multicast + Unicast */ 3013 mvneta_rx_unicast_promisc_set(pp, 1); 3014 mvneta_set_ucast_table(pp, pp->rxq_def); 3015 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3016 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3017 } else { 3018 /* Accept single Unicast */ 3019 mvneta_rx_unicast_promisc_set(pp, 0); 3020 mvneta_set_ucast_table(pp, -1); 3021 mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); 3022 3023 if (dev->flags & IFF_ALLMULTI) { 3024 /* Accept all multicast */ 3025 mvneta_set_special_mcast_table(pp, pp->rxq_def); 3026 mvneta_set_other_mcast_table(pp, pp->rxq_def); 3027 } else { 3028 /* Accept only initialized multicast */ 3029 mvneta_set_special_mcast_table(pp, -1); 3030 mvneta_set_other_mcast_table(pp, -1); 3031 3032 if (!netdev_mc_empty(dev)) { 3033 netdev_for_each_mc_addr(ha, dev) { 3034 mvneta_mcast_addr_set(pp, ha->addr, 3035 pp->rxq_def); 3036 } 3037 } 3038 } 3039 } 3040 } 3041 3042 /* Interrupt handling - the callback for request_irq() */ 3043 static irqreturn_t mvneta_isr(int irq, void *dev_id) 3044 { 3045 struct mvneta_port *pp = (struct mvneta_port *)dev_id; 3046 3047 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); 3048 napi_schedule(&pp->napi); 3049 3050 return IRQ_HANDLED; 3051 } 3052 3053 /* Interrupt handling - the callback for request_percpu_irq() */ 3054 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) 3055 { 3056 struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; 3057 3058 disable_percpu_irq(port->pp->dev->irq); 3059 napi_schedule(&port->napi); 3060 3061 return IRQ_HANDLED; 3062 } 3063 3064 static void mvneta_link_change(struct mvneta_port *pp) 3065 { 3066 u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3067 3068 phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); 3069 } 3070 3071 /* NAPI handler 3072 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted 3073 * packets on the corresponding TXQ (Bit 0 is for TX queue 1). 3074 * Bits 8 -15 of the cause Rx Tx register indicate that are received 3075 * packets on the corresponding RXQ (Bit 8 is for RX queue 0). 3076 * Each CPU has its own causeRxTx register 3077 */ 3078 static int mvneta_poll(struct napi_struct *napi, int budget) 3079 { 3080 int rx_done = 0; 3081 u32 cause_rx_tx; 3082 int rx_queue; 3083 struct mvneta_port *pp = netdev_priv(napi->dev); 3084 struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); 3085 3086 if (!netif_running(pp->dev)) { 3087 napi_complete(napi); 3088 return rx_done; 3089 } 3090 3091 /* Read cause register */ 3092 cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); 3093 if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { 3094 u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); 3095 3096 mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); 3097 3098 if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | 3099 MVNETA_CAUSE_LINK_CHANGE)) 3100 mvneta_link_change(pp); 3101 } 3102 3103 /* Release Tx descriptors */ 3104 if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { 3105 mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); 3106 cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; 3107 } 3108 3109 /* For the case where the last mvneta_poll did not process all 3110 * RX packets 3111 */ 3112 cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : 3113 port->cause_rx_tx; 3114 3115 rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); 3116 if (rx_queue) { 3117 rx_queue = rx_queue - 1; 3118 if (pp->bm_priv) 3119 rx_done = mvneta_rx_hwbm(napi, pp, budget, 3120 &pp->rxqs[rx_queue]); 3121 else 3122 rx_done = mvneta_rx_swbm(napi, pp, budget, 3123 &pp->rxqs[rx_queue]); 3124 } 3125 3126 if (rx_done < budget) { 3127 cause_rx_tx = 0; 3128 napi_complete_done(napi, rx_done); 3129 3130 if (pp->neta_armada3700) { 3131 unsigned long flags; 3132 3133 local_irq_save(flags); 3134 mvreg_write(pp, MVNETA_INTR_NEW_MASK, 3135 MVNETA_RX_INTR_MASK(rxq_number) | 3136 MVNETA_TX_INTR_MASK(txq_number) | 3137 MVNETA_MISCINTR_INTR_MASK); 3138 local_irq_restore(flags); 3139 } else { 3140 enable_percpu_irq(pp->dev->irq, 0); 3141 } 3142 } 3143 3144 if (pp->neta_armada3700) 3145 pp->cause_rx_tx = cause_rx_tx; 3146 else 3147 port->cause_rx_tx = cause_rx_tx; 3148 3149 return rx_done; 3150 } 3151 3152 static int mvneta_create_page_pool(struct mvneta_port *pp, 3153 struct mvneta_rx_queue *rxq, int size) 3154 { 3155 struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog); 3156 struct page_pool_params pp_params = { 3157 .order = 0, 3158 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, 3159 .pool_size = size, 3160 .nid = NUMA_NO_NODE, 3161 .dev = pp->dev->dev.parent, 3162 .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE, 3163 .offset = pp->rx_offset_correction, 3164 .max_len = MVNETA_MAX_RX_BUF_SIZE, 3165 }; 3166 int err; 3167 3168 rxq->page_pool = page_pool_create(&pp_params); 3169 if (IS_ERR(rxq->page_pool)) { 3170 err = PTR_ERR(rxq->page_pool); 3171 rxq->page_pool = NULL; 3172 return err; 3173 } 3174 3175 err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id); 3176 if (err < 0) 3177 goto err_free_pp; 3178 3179 err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL, 3180 rxq->page_pool); 3181 if (err) 3182 goto err_unregister_rxq; 3183 3184 return 0; 3185 3186 err_unregister_rxq: 3187 xdp_rxq_info_unreg(&rxq->xdp_rxq); 3188 err_free_pp: 3189 page_pool_destroy(rxq->page_pool); 3190 rxq->page_pool = NULL; 3191 return err; 3192 } 3193 3194 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ 3195 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, 3196 int num) 3197 { 3198 int i, err; 3199 3200 err = mvneta_create_page_pool(pp, rxq, num); 3201 if (err < 0) 3202 return err; 3203 3204 for (i = 0; i < num; i++) { 3205 memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); 3206 if (mvneta_rx_refill(pp, rxq->descs + i, rxq, 3207 GFP_KERNEL) != 0) { 3208 netdev_err(pp->dev, 3209 "%s:rxq %d, %d of %d buffs filled\n", 3210 __func__, rxq->id, i, num); 3211 break; 3212 } 3213 } 3214 3215 /* Add this number of RX descriptors as non occupied (ready to 3216 * get packets) 3217 */ 3218 mvneta_rxq_non_occup_desc_add(pp, rxq, i); 3219 3220 return i; 3221 } 3222 3223 /* Free all packets pending transmit from all TXQs and reset TX port */ 3224 static void mvneta_tx_reset(struct mvneta_port *pp) 3225 { 3226 int queue; 3227 3228 /* free the skb's in the tx ring */ 3229 for (queue = 0; queue < txq_number; queue++) 3230 mvneta_txq_done_force(pp, &pp->txqs[queue]); 3231 3232 mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); 3233 mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); 3234 } 3235 3236 static void mvneta_rx_reset(struct mvneta_port *pp) 3237 { 3238 mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); 3239 mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); 3240 } 3241 3242 /* Rx/Tx queue initialization/cleanup methods */ 3243 3244 static int mvneta_rxq_sw_init(struct mvneta_port *pp, 3245 struct mvneta_rx_queue *rxq) 3246 { 3247 rxq->size = pp->rx_ring_size; 3248 3249 /* Allocate memory for RX descriptors */ 3250 rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3251 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3252 &rxq->descs_phys, GFP_KERNEL); 3253 if (!rxq->descs) 3254 return -ENOMEM; 3255 3256 rxq->last_desc = rxq->size - 1; 3257 3258 return 0; 3259 } 3260 3261 static void mvneta_rxq_hw_init(struct mvneta_port *pp, 3262 struct mvneta_rx_queue *rxq) 3263 { 3264 /* Set Rx descriptors queue starting address */ 3265 mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); 3266 mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); 3267 3268 /* Set coalescing pkts and time */ 3269 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 3270 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 3271 3272 if (!pp->bm_priv) { 3273 /* Set Offset */ 3274 mvneta_rxq_offset_set(pp, rxq, 0); 3275 mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ? 3276 MVNETA_MAX_RX_BUF_SIZE : 3277 MVNETA_RX_BUF_SIZE(pp->pkt_size)); 3278 mvneta_rxq_bm_disable(pp, rxq); 3279 mvneta_rxq_fill(pp, rxq, rxq->size); 3280 } else { 3281 /* Set Offset */ 3282 mvneta_rxq_offset_set(pp, rxq, 3283 NET_SKB_PAD - pp->rx_offset_correction); 3284 3285 mvneta_rxq_bm_enable(pp, rxq); 3286 /* Fill RXQ with buffers from RX pool */ 3287 mvneta_rxq_long_pool_set(pp, rxq); 3288 mvneta_rxq_short_pool_set(pp, rxq); 3289 mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); 3290 } 3291 } 3292 3293 /* Create a specified RX queue */ 3294 static int mvneta_rxq_init(struct mvneta_port *pp, 3295 struct mvneta_rx_queue *rxq) 3296 3297 { 3298 int ret; 3299 3300 ret = mvneta_rxq_sw_init(pp, rxq); 3301 if (ret < 0) 3302 return ret; 3303 3304 mvneta_rxq_hw_init(pp, rxq); 3305 3306 return 0; 3307 } 3308 3309 /* Cleanup Rx queue */ 3310 static void mvneta_rxq_deinit(struct mvneta_port *pp, 3311 struct mvneta_rx_queue *rxq) 3312 { 3313 mvneta_rxq_drop_pkts(pp, rxq); 3314 3315 if (rxq->skb) 3316 dev_kfree_skb_any(rxq->skb); 3317 3318 if (rxq->descs) 3319 dma_free_coherent(pp->dev->dev.parent, 3320 rxq->size * MVNETA_DESC_ALIGNED_SIZE, 3321 rxq->descs, 3322 rxq->descs_phys); 3323 3324 rxq->descs = NULL; 3325 rxq->last_desc = 0; 3326 rxq->next_desc_to_proc = 0; 3327 rxq->descs_phys = 0; 3328 rxq->first_to_refill = 0; 3329 rxq->refill_num = 0; 3330 rxq->skb = NULL; 3331 rxq->left_size = 0; 3332 } 3333 3334 static int mvneta_txq_sw_init(struct mvneta_port *pp, 3335 struct mvneta_tx_queue *txq) 3336 { 3337 int cpu; 3338 3339 txq->size = pp->tx_ring_size; 3340 3341 /* A queue must always have room for at least one skb. 3342 * Therefore, stop the queue when the free entries reaches 3343 * the maximum number of descriptors per skb. 3344 */ 3345 txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; 3346 txq->tx_wake_threshold = txq->tx_stop_threshold / 2; 3347 3348 /* Allocate memory for TX descriptors */ 3349 txq->descs = dma_alloc_coherent(pp->dev->dev.parent, 3350 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3351 &txq->descs_phys, GFP_KERNEL); 3352 if (!txq->descs) 3353 return -ENOMEM; 3354 3355 txq->last_desc = txq->size - 1; 3356 3357 txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL); 3358 if (!txq->buf) { 3359 dma_free_coherent(pp->dev->dev.parent, 3360 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3361 txq->descs, txq->descs_phys); 3362 return -ENOMEM; 3363 } 3364 3365 /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ 3366 txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, 3367 txq->size * TSO_HEADER_SIZE, 3368 &txq->tso_hdrs_phys, GFP_KERNEL); 3369 if (!txq->tso_hdrs) { 3370 kfree(txq->buf); 3371 dma_free_coherent(pp->dev->dev.parent, 3372 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3373 txq->descs, txq->descs_phys); 3374 return -ENOMEM; 3375 } 3376 3377 /* Setup XPS mapping */ 3378 if (txq_number > 1) 3379 cpu = txq->id % num_present_cpus(); 3380 else 3381 cpu = pp->rxq_def % num_present_cpus(); 3382 cpumask_set_cpu(cpu, &txq->affinity_mask); 3383 netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); 3384 3385 return 0; 3386 } 3387 3388 static void mvneta_txq_hw_init(struct mvneta_port *pp, 3389 struct mvneta_tx_queue *txq) 3390 { 3391 /* Set maximum bandwidth for enabled TXQs */ 3392 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); 3393 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); 3394 3395 /* Set Tx descriptors queue starting address */ 3396 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); 3397 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); 3398 3399 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 3400 } 3401 3402 /* Create and initialize a tx queue */ 3403 static int mvneta_txq_init(struct mvneta_port *pp, 3404 struct mvneta_tx_queue *txq) 3405 { 3406 int ret; 3407 3408 ret = mvneta_txq_sw_init(pp, txq); 3409 if (ret < 0) 3410 return ret; 3411 3412 mvneta_txq_hw_init(pp, txq); 3413 3414 return 0; 3415 } 3416 3417 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ 3418 static void mvneta_txq_sw_deinit(struct mvneta_port *pp, 3419 struct mvneta_tx_queue *txq) 3420 { 3421 struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); 3422 3423 kfree(txq->buf); 3424 3425 if (txq->tso_hdrs) 3426 dma_free_coherent(pp->dev->dev.parent, 3427 txq->size * TSO_HEADER_SIZE, 3428 txq->tso_hdrs, txq->tso_hdrs_phys); 3429 if (txq->descs) 3430 dma_free_coherent(pp->dev->dev.parent, 3431 txq->size * MVNETA_DESC_ALIGNED_SIZE, 3432 txq->descs, txq->descs_phys); 3433 3434 netdev_tx_reset_queue(nq); 3435 3436 txq->descs = NULL; 3437 txq->last_desc = 0; 3438 txq->next_desc_to_proc = 0; 3439 txq->descs_phys = 0; 3440 } 3441 3442 static void mvneta_txq_hw_deinit(struct mvneta_port *pp, 3443 struct mvneta_tx_queue *txq) 3444 { 3445 /* Set minimum bandwidth for disabled TXQs */ 3446 mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); 3447 mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); 3448 3449 /* Set Tx descriptors queue starting address and size */ 3450 mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); 3451 mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); 3452 } 3453 3454 static void mvneta_txq_deinit(struct mvneta_port *pp, 3455 struct mvneta_tx_queue *txq) 3456 { 3457 mvneta_txq_sw_deinit(pp, txq); 3458 mvneta_txq_hw_deinit(pp, txq); 3459 } 3460 3461 /* Cleanup all Tx queues */ 3462 static void mvneta_cleanup_txqs(struct mvneta_port *pp) 3463 { 3464 int queue; 3465 3466 for (queue = 0; queue < txq_number; queue++) 3467 mvneta_txq_deinit(pp, &pp->txqs[queue]); 3468 } 3469 3470 /* Cleanup all Rx queues */ 3471 static void mvneta_cleanup_rxqs(struct mvneta_port *pp) 3472 { 3473 int queue; 3474 3475 for (queue = 0; queue < rxq_number; queue++) 3476 mvneta_rxq_deinit(pp, &pp->rxqs[queue]); 3477 } 3478 3479 3480 /* Init all Rx queues */ 3481 static int mvneta_setup_rxqs(struct mvneta_port *pp) 3482 { 3483 int queue; 3484 3485 for (queue = 0; queue < rxq_number; queue++) { 3486 int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); 3487 3488 if (err) { 3489 netdev_err(pp->dev, "%s: can't create rxq=%d\n", 3490 __func__, queue); 3491 mvneta_cleanup_rxqs(pp); 3492 return err; 3493 } 3494 } 3495 3496 return 0; 3497 } 3498 3499 /* Init all tx queues */ 3500 static int mvneta_setup_txqs(struct mvneta_port *pp) 3501 { 3502 int queue; 3503 3504 for (queue = 0; queue < txq_number; queue++) { 3505 int err = mvneta_txq_init(pp, &pp->txqs[queue]); 3506 if (err) { 3507 netdev_err(pp->dev, "%s: can't create txq=%d\n", 3508 __func__, queue); 3509 mvneta_cleanup_txqs(pp); 3510 return err; 3511 } 3512 } 3513 3514 return 0; 3515 } 3516 3517 static int mvneta_comphy_init(struct mvneta_port *pp) 3518 { 3519 int ret; 3520 3521 if (!pp->comphy) 3522 return 0; 3523 3524 ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, 3525 pp->phy_interface); 3526 if (ret) 3527 return ret; 3528 3529 return phy_power_on(pp->comphy); 3530 } 3531 3532 static void mvneta_start_dev(struct mvneta_port *pp) 3533 { 3534 int cpu; 3535 3536 WARN_ON(mvneta_comphy_init(pp)); 3537 3538 mvneta_max_rx_size_set(pp, pp->pkt_size); 3539 mvneta_txq_max_tx_size_set(pp, pp->pkt_size); 3540 3541 /* start the Rx/Tx activity */ 3542 mvneta_port_enable(pp); 3543 3544 if (!pp->neta_armada3700) { 3545 /* Enable polling on the port */ 3546 for_each_online_cpu(cpu) { 3547 struct mvneta_pcpu_port *port = 3548 per_cpu_ptr(pp->ports, cpu); 3549 3550 napi_enable(&port->napi); 3551 } 3552 } else { 3553 napi_enable(&pp->napi); 3554 } 3555 3556 /* Unmask interrupts. It has to be done from each CPU */ 3557 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 3558 3559 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 3560 MVNETA_CAUSE_PHY_STATUS_CHANGE | 3561 MVNETA_CAUSE_LINK_CHANGE); 3562 3563 phylink_start(pp->phylink); 3564 netif_tx_start_all_queues(pp->dev); 3565 } 3566 3567 static void mvneta_stop_dev(struct mvneta_port *pp) 3568 { 3569 unsigned int cpu; 3570 3571 phylink_stop(pp->phylink); 3572 3573 if (!pp->neta_armada3700) { 3574 for_each_online_cpu(cpu) { 3575 struct mvneta_pcpu_port *port = 3576 per_cpu_ptr(pp->ports, cpu); 3577 3578 napi_disable(&port->napi); 3579 } 3580 } else { 3581 napi_disable(&pp->napi); 3582 } 3583 3584 netif_carrier_off(pp->dev); 3585 3586 mvneta_port_down(pp); 3587 netif_tx_stop_all_queues(pp->dev); 3588 3589 /* Stop the port activity */ 3590 mvneta_port_disable(pp); 3591 3592 /* Clear all ethernet port interrupts */ 3593 on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); 3594 3595 /* Mask all ethernet port interrupts */ 3596 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 3597 3598 mvneta_tx_reset(pp); 3599 mvneta_rx_reset(pp); 3600 3601 WARN_ON(phy_power_off(pp->comphy)); 3602 } 3603 3604 static void mvneta_percpu_enable(void *arg) 3605 { 3606 struct mvneta_port *pp = arg; 3607 3608 enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); 3609 } 3610 3611 static void mvneta_percpu_disable(void *arg) 3612 { 3613 struct mvneta_port *pp = arg; 3614 3615 disable_percpu_irq(pp->dev->irq); 3616 } 3617 3618 /* Change the device mtu */ 3619 static int mvneta_change_mtu(struct net_device *dev, int mtu) 3620 { 3621 struct mvneta_port *pp = netdev_priv(dev); 3622 int ret; 3623 3624 if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { 3625 netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", 3626 mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); 3627 mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); 3628 } 3629 3630 if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) { 3631 netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu); 3632 return -EINVAL; 3633 } 3634 3635 dev->mtu = mtu; 3636 3637 if (!netif_running(dev)) { 3638 if (pp->bm_priv) 3639 mvneta_bm_update_mtu(pp, mtu); 3640 3641 netdev_update_features(dev); 3642 return 0; 3643 } 3644 3645 /* The interface is running, so we have to force a 3646 * reallocation of the queues 3647 */ 3648 mvneta_stop_dev(pp); 3649 on_each_cpu(mvneta_percpu_disable, pp, true); 3650 3651 mvneta_cleanup_txqs(pp); 3652 mvneta_cleanup_rxqs(pp); 3653 3654 if (pp->bm_priv) 3655 mvneta_bm_update_mtu(pp, mtu); 3656 3657 pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); 3658 3659 ret = mvneta_setup_rxqs(pp); 3660 if (ret) { 3661 netdev_err(dev, "unable to setup rxqs after MTU change\n"); 3662 return ret; 3663 } 3664 3665 ret = mvneta_setup_txqs(pp); 3666 if (ret) { 3667 netdev_err(dev, "unable to setup txqs after MTU change\n"); 3668 return ret; 3669 } 3670 3671 on_each_cpu(mvneta_percpu_enable, pp, true); 3672 mvneta_start_dev(pp); 3673 3674 netdev_update_features(dev); 3675 3676 return 0; 3677 } 3678 3679 static netdev_features_t mvneta_fix_features(struct net_device *dev, 3680 netdev_features_t features) 3681 { 3682 struct mvneta_port *pp = netdev_priv(dev); 3683 3684 if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { 3685 features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); 3686 netdev_info(dev, 3687 "Disable IP checksum for MTU greater than %dB\n", 3688 pp->tx_csum_limit); 3689 } 3690 3691 return features; 3692 } 3693 3694 /* Get mac address */ 3695 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) 3696 { 3697 u32 mac_addr_l, mac_addr_h; 3698 3699 mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); 3700 mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); 3701 addr[0] = (mac_addr_h >> 24) & 0xFF; 3702 addr[1] = (mac_addr_h >> 16) & 0xFF; 3703 addr[2] = (mac_addr_h >> 8) & 0xFF; 3704 addr[3] = mac_addr_h & 0xFF; 3705 addr[4] = (mac_addr_l >> 8) & 0xFF; 3706 addr[5] = mac_addr_l & 0xFF; 3707 } 3708 3709 /* Handle setting mac address */ 3710 static int mvneta_set_mac_addr(struct net_device *dev, void *addr) 3711 { 3712 struct mvneta_port *pp = netdev_priv(dev); 3713 struct sockaddr *sockaddr = addr; 3714 int ret; 3715 3716 ret = eth_prepare_mac_addr_change(dev, addr); 3717 if (ret < 0) 3718 return ret; 3719 /* Remove previous address table entry */ 3720 mvneta_mac_addr_set(pp, dev->dev_addr, -1); 3721 3722 /* Set new addr in hw */ 3723 mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); 3724 3725 eth_commit_mac_addr_change(dev, addr); 3726 return 0; 3727 } 3728 3729 static void mvneta_validate(struct phylink_config *config, 3730 unsigned long *supported, 3731 struct phylink_link_state *state) 3732 { 3733 struct net_device *ndev = to_net_dev(config->dev); 3734 struct mvneta_port *pp = netdev_priv(ndev); 3735 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 3736 3737 /* We only support QSGMII, SGMII, 802.3z and RGMII modes */ 3738 if (state->interface != PHY_INTERFACE_MODE_NA && 3739 state->interface != PHY_INTERFACE_MODE_QSGMII && 3740 state->interface != PHY_INTERFACE_MODE_SGMII && 3741 !phy_interface_mode_is_8023z(state->interface) && 3742 !phy_interface_mode_is_rgmii(state->interface)) { 3743 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); 3744 return; 3745 } 3746 3747 /* Allow all the expected bits */ 3748 phylink_set(mask, Autoneg); 3749 phylink_set_port_modes(mask); 3750 3751 /* Asymmetric pause is unsupported */ 3752 phylink_set(mask, Pause); 3753 3754 /* Half-duplex at speeds higher than 100Mbit is unsupported */ 3755 if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) { 3756 phylink_set(mask, 1000baseT_Full); 3757 phylink_set(mask, 1000baseX_Full); 3758 } 3759 if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) { 3760 phylink_set(mask, 2500baseT_Full); 3761 phylink_set(mask, 2500baseX_Full); 3762 } 3763 3764 if (!phy_interface_mode_is_8023z(state->interface)) { 3765 /* 10M and 100M are only supported in non-802.3z mode */ 3766 phylink_set(mask, 10baseT_Half); 3767 phylink_set(mask, 10baseT_Full); 3768 phylink_set(mask, 100baseT_Half); 3769 phylink_set(mask, 100baseT_Full); 3770 } 3771 3772 bitmap_and(supported, supported, mask, 3773 __ETHTOOL_LINK_MODE_MASK_NBITS); 3774 bitmap_and(state->advertising, state->advertising, mask, 3775 __ETHTOOL_LINK_MODE_MASK_NBITS); 3776 3777 /* We can only operate at 2500BaseX or 1000BaseX. If requested 3778 * to advertise both, only report advertising at 2500BaseX. 3779 */ 3780 phylink_helper_basex_speed(state); 3781 } 3782 3783 static void mvneta_mac_pcs_get_state(struct phylink_config *config, 3784 struct phylink_link_state *state) 3785 { 3786 struct net_device *ndev = to_net_dev(config->dev); 3787 struct mvneta_port *pp = netdev_priv(ndev); 3788 u32 gmac_stat; 3789 3790 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); 3791 3792 if (gmac_stat & MVNETA_GMAC_SPEED_1000) 3793 state->speed = 3794 state->interface == PHY_INTERFACE_MODE_2500BASEX ? 3795 SPEED_2500 : SPEED_1000; 3796 else if (gmac_stat & MVNETA_GMAC_SPEED_100) 3797 state->speed = SPEED_100; 3798 else 3799 state->speed = SPEED_10; 3800 3801 state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); 3802 state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); 3803 state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); 3804 3805 state->pause = 0; 3806 if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) 3807 state->pause |= MLO_PAUSE_RX; 3808 if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) 3809 state->pause |= MLO_PAUSE_TX; 3810 } 3811 3812 static void mvneta_mac_an_restart(struct phylink_config *config) 3813 { 3814 struct net_device *ndev = to_net_dev(config->dev); 3815 struct mvneta_port *pp = netdev_priv(ndev); 3816 u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3817 3818 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3819 gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); 3820 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3821 gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); 3822 } 3823 3824 static void mvneta_mac_config(struct phylink_config *config, unsigned int mode, 3825 const struct phylink_link_state *state) 3826 { 3827 struct net_device *ndev = to_net_dev(config->dev); 3828 struct mvneta_port *pp = netdev_priv(ndev); 3829 u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); 3830 u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); 3831 u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4); 3832 u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); 3833 u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3834 3835 new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; 3836 new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | 3837 MVNETA_GMAC2_PORT_RESET); 3838 new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE); 3839 new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE; 3840 new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE | 3841 MVNETA_GMAC_INBAND_RESTART_AN | 3842 MVNETA_GMAC_AN_SPEED_EN | 3843 MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL | 3844 MVNETA_GMAC_AN_FLOW_CTRL_EN | 3845 MVNETA_GMAC_AN_DUPLEX_EN); 3846 3847 /* Even though it might look weird, when we're configured in 3848 * SGMII or QSGMII mode, the RGMII bit needs to be set. 3849 */ 3850 new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; 3851 3852 if (state->interface == PHY_INTERFACE_MODE_QSGMII || 3853 state->interface == PHY_INTERFACE_MODE_SGMII || 3854 phy_interface_mode_is_8023z(state->interface)) 3855 new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; 3856 3857 if (phylink_test(state->advertising, Pause)) 3858 new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; 3859 3860 if (!phylink_autoneg_inband(mode)) { 3861 /* Phy or fixed speed - nothing to do, leave the 3862 * configured speed, duplex and flow control as-is. 3863 */ 3864 } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { 3865 /* SGMII mode receives the state from the PHY */ 3866 new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; 3867 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3868 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3869 MVNETA_GMAC_FORCE_LINK_PASS | 3870 MVNETA_GMAC_CONFIG_MII_SPEED | 3871 MVNETA_GMAC_CONFIG_GMII_SPEED | 3872 MVNETA_GMAC_CONFIG_FULL_DUPLEX)) | 3873 MVNETA_GMAC_INBAND_AN_ENABLE | 3874 MVNETA_GMAC_AN_SPEED_EN | 3875 MVNETA_GMAC_AN_DUPLEX_EN; 3876 } else { 3877 /* 802.3z negotiation - only 1000base-X */ 3878 new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; 3879 new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; 3880 new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3881 MVNETA_GMAC_FORCE_LINK_PASS | 3882 MVNETA_GMAC_CONFIG_MII_SPEED)) | 3883 MVNETA_GMAC_INBAND_AN_ENABLE | 3884 MVNETA_GMAC_CONFIG_GMII_SPEED | 3885 /* The MAC only supports FD mode */ 3886 MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3887 3888 if (state->pause & MLO_PAUSE_AN && state->an_enabled) 3889 new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN; 3890 } 3891 3892 /* Armada 370 documentation says we can only change the port mode 3893 * and in-band enable when the link is down, so force it down 3894 * while making these changes. We also do this for GMAC_CTRL2 */ 3895 if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X || 3896 (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE || 3897 (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) { 3898 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, 3899 (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) | 3900 MVNETA_GMAC_FORCE_LINK_DOWN); 3901 } 3902 3903 3904 /* When at 2.5G, the link partner can send frames with shortened 3905 * preambles. 3906 */ 3907 if (state->speed == SPEED_2500) 3908 new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE; 3909 3910 if (pp->comphy && pp->phy_interface != state->interface && 3911 (state->interface == PHY_INTERFACE_MODE_SGMII || 3912 state->interface == PHY_INTERFACE_MODE_1000BASEX || 3913 state->interface == PHY_INTERFACE_MODE_2500BASEX)) { 3914 pp->phy_interface = state->interface; 3915 3916 WARN_ON(phy_power_off(pp->comphy)); 3917 WARN_ON(mvneta_comphy_init(pp)); 3918 } 3919 3920 if (new_ctrl0 != gmac_ctrl0) 3921 mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); 3922 if (new_ctrl2 != gmac_ctrl2) 3923 mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); 3924 if (new_ctrl4 != gmac_ctrl4) 3925 mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4); 3926 if (new_clk != gmac_clk) 3927 mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk); 3928 if (new_an != gmac_an) 3929 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an); 3930 3931 if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { 3932 while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & 3933 MVNETA_GMAC2_PORT_RESET) != 0) 3934 continue; 3935 } 3936 } 3937 3938 static void mvneta_set_eee(struct mvneta_port *pp, bool enable) 3939 { 3940 u32 lpi_ctl1; 3941 3942 lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); 3943 if (enable) 3944 lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; 3945 else 3946 lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; 3947 mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); 3948 } 3949 3950 static void mvneta_mac_link_down(struct phylink_config *config, 3951 unsigned int mode, phy_interface_t interface) 3952 { 3953 struct net_device *ndev = to_net_dev(config->dev); 3954 struct mvneta_port *pp = netdev_priv(ndev); 3955 u32 val; 3956 3957 mvneta_port_down(pp); 3958 3959 if (!phylink_autoneg_inband(mode)) { 3960 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3961 val &= ~MVNETA_GMAC_FORCE_LINK_PASS; 3962 val |= MVNETA_GMAC_FORCE_LINK_DOWN; 3963 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 3964 } 3965 3966 pp->eee_active = false; 3967 mvneta_set_eee(pp, false); 3968 } 3969 3970 static void mvneta_mac_link_up(struct phylink_config *config, 3971 struct phy_device *phy, 3972 unsigned int mode, phy_interface_t interface, 3973 int speed, int duplex, 3974 bool tx_pause, bool rx_pause) 3975 { 3976 struct net_device *ndev = to_net_dev(config->dev); 3977 struct mvneta_port *pp = netdev_priv(ndev); 3978 u32 val; 3979 3980 if (!phylink_autoneg_inband(mode)) { 3981 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 3982 val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN | 3983 MVNETA_GMAC_CONFIG_MII_SPEED | 3984 MVNETA_GMAC_CONFIG_GMII_SPEED | 3985 MVNETA_GMAC_CONFIG_FLOW_CTRL | 3986 MVNETA_GMAC_CONFIG_FULL_DUPLEX); 3987 val |= MVNETA_GMAC_FORCE_LINK_PASS; 3988 3989 if (speed == SPEED_1000 || speed == SPEED_2500) 3990 val |= MVNETA_GMAC_CONFIG_GMII_SPEED; 3991 else if (speed == SPEED_100) 3992 val |= MVNETA_GMAC_CONFIG_MII_SPEED; 3993 3994 if (duplex == DUPLEX_FULL) 3995 val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; 3996 3997 if (tx_pause || rx_pause) 3998 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 3999 4000 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4001 } else { 4002 /* When inband doesn't cover flow control or flow control is 4003 * disabled, we need to manually configure it. This bit will 4004 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset. 4005 */ 4006 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); 4007 val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL; 4008 4009 if (tx_pause || rx_pause) 4010 val |= MVNETA_GMAC_CONFIG_FLOW_CTRL; 4011 4012 mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); 4013 } 4014 4015 mvneta_port_up(pp); 4016 4017 if (phy && pp->eee_enabled) { 4018 pp->eee_active = phy_init_eee(phy, 0) >= 0; 4019 mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); 4020 } 4021 } 4022 4023 static const struct phylink_mac_ops mvneta_phylink_ops = { 4024 .validate = mvneta_validate, 4025 .mac_pcs_get_state = mvneta_mac_pcs_get_state, 4026 .mac_an_restart = mvneta_mac_an_restart, 4027 .mac_config = mvneta_mac_config, 4028 .mac_link_down = mvneta_mac_link_down, 4029 .mac_link_up = mvneta_mac_link_up, 4030 }; 4031 4032 static int mvneta_mdio_probe(struct mvneta_port *pp) 4033 { 4034 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 4035 int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); 4036 4037 if (err) 4038 netdev_err(pp->dev, "could not attach PHY: %d\n", err); 4039 4040 phylink_ethtool_get_wol(pp->phylink, &wol); 4041 device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); 4042 4043 return err; 4044 } 4045 4046 static void mvneta_mdio_remove(struct mvneta_port *pp) 4047 { 4048 phylink_disconnect_phy(pp->phylink); 4049 } 4050 4051 /* Electing a CPU must be done in an atomic way: it should be done 4052 * after or before the removal/insertion of a CPU and this function is 4053 * not reentrant. 4054 */ 4055 static void mvneta_percpu_elect(struct mvneta_port *pp) 4056 { 4057 int elected_cpu = 0, max_cpu, cpu, i = 0; 4058 4059 /* Use the cpu associated to the rxq when it is online, in all 4060 * the other cases, use the cpu 0 which can't be offline. 4061 */ 4062 if (cpu_online(pp->rxq_def)) 4063 elected_cpu = pp->rxq_def; 4064 4065 max_cpu = num_present_cpus(); 4066 4067 for_each_online_cpu(cpu) { 4068 int rxq_map = 0, txq_map = 0; 4069 int rxq; 4070 4071 for (rxq = 0; rxq < rxq_number; rxq++) 4072 if ((rxq % max_cpu) == cpu) 4073 rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); 4074 4075 if (cpu == elected_cpu) 4076 /* Map the default receive queue queue to the 4077 * elected CPU 4078 */ 4079 rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); 4080 4081 /* We update the TX queue map only if we have one 4082 * queue. In this case we associate the TX queue to 4083 * the CPU bound to the default RX queue 4084 */ 4085 if (txq_number == 1) 4086 txq_map = (cpu == elected_cpu) ? 4087 MVNETA_CPU_TXQ_ACCESS(1) : 0; 4088 else 4089 txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & 4090 MVNETA_CPU_TXQ_ACCESS_ALL_MASK; 4091 4092 mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); 4093 4094 /* Update the interrupt mask on each CPU according the 4095 * new mapping 4096 */ 4097 smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, 4098 pp, true); 4099 i++; 4100 4101 } 4102 }; 4103 4104 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) 4105 { 4106 int other_cpu; 4107 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4108 node_online); 4109 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4110 4111 4112 spin_lock(&pp->lock); 4113 /* 4114 * Configuring the driver for a new CPU while the driver is 4115 * stopping is racy, so just avoid it. 4116 */ 4117 if (pp->is_stopped) { 4118 spin_unlock(&pp->lock); 4119 return 0; 4120 } 4121 netif_tx_stop_all_queues(pp->dev); 4122 4123 /* 4124 * We have to synchronise on tha napi of each CPU except the one 4125 * just being woken up 4126 */ 4127 for_each_online_cpu(other_cpu) { 4128 if (other_cpu != cpu) { 4129 struct mvneta_pcpu_port *other_port = 4130 per_cpu_ptr(pp->ports, other_cpu); 4131 4132 napi_synchronize(&other_port->napi); 4133 } 4134 } 4135 4136 /* Mask all ethernet port interrupts */ 4137 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4138 napi_enable(&port->napi); 4139 4140 /* 4141 * Enable per-CPU interrupts on the CPU that is 4142 * brought up. 4143 */ 4144 mvneta_percpu_enable(pp); 4145 4146 /* 4147 * Enable per-CPU interrupt on the one CPU we care 4148 * about. 4149 */ 4150 mvneta_percpu_elect(pp); 4151 4152 /* Unmask all ethernet port interrupts */ 4153 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4154 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4155 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4156 MVNETA_CAUSE_LINK_CHANGE); 4157 netif_tx_start_all_queues(pp->dev); 4158 spin_unlock(&pp->lock); 4159 return 0; 4160 } 4161 4162 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) 4163 { 4164 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4165 node_online); 4166 struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); 4167 4168 /* 4169 * Thanks to this lock we are sure that any pending cpu election is 4170 * done. 4171 */ 4172 spin_lock(&pp->lock); 4173 /* Mask all ethernet port interrupts */ 4174 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4175 spin_unlock(&pp->lock); 4176 4177 napi_synchronize(&port->napi); 4178 napi_disable(&port->napi); 4179 /* Disable per-CPU interrupts on the CPU that is brought down. */ 4180 mvneta_percpu_disable(pp); 4181 return 0; 4182 } 4183 4184 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) 4185 { 4186 struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, 4187 node_dead); 4188 4189 /* Check if a new CPU must be elected now this on is down */ 4190 spin_lock(&pp->lock); 4191 mvneta_percpu_elect(pp); 4192 spin_unlock(&pp->lock); 4193 /* Unmask all ethernet port interrupts */ 4194 on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); 4195 mvreg_write(pp, MVNETA_INTR_MISC_MASK, 4196 MVNETA_CAUSE_PHY_STATUS_CHANGE | 4197 MVNETA_CAUSE_LINK_CHANGE); 4198 netif_tx_start_all_queues(pp->dev); 4199 return 0; 4200 } 4201 4202 static int mvneta_open(struct net_device *dev) 4203 { 4204 struct mvneta_port *pp = netdev_priv(dev); 4205 int ret; 4206 4207 pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); 4208 4209 ret = mvneta_setup_rxqs(pp); 4210 if (ret) 4211 return ret; 4212 4213 ret = mvneta_setup_txqs(pp); 4214 if (ret) 4215 goto err_cleanup_rxqs; 4216 4217 /* Connect to port interrupt line */ 4218 if (pp->neta_armada3700) 4219 ret = request_irq(pp->dev->irq, mvneta_isr, 0, 4220 dev->name, pp); 4221 else 4222 ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, 4223 dev->name, pp->ports); 4224 if (ret) { 4225 netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); 4226 goto err_cleanup_txqs; 4227 } 4228 4229 if (!pp->neta_armada3700) { 4230 /* Enable per-CPU interrupt on all the CPU to handle our RX 4231 * queue interrupts 4232 */ 4233 on_each_cpu(mvneta_percpu_enable, pp, true); 4234 4235 pp->is_stopped = false; 4236 /* Register a CPU notifier to handle the case where our CPU 4237 * might be taken offline. 4238 */ 4239 ret = cpuhp_state_add_instance_nocalls(online_hpstate, 4240 &pp->node_online); 4241 if (ret) 4242 goto err_free_irq; 4243 4244 ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4245 &pp->node_dead); 4246 if (ret) 4247 goto err_free_online_hp; 4248 } 4249 4250 ret = mvneta_mdio_probe(pp); 4251 if (ret < 0) { 4252 netdev_err(dev, "cannot probe MDIO bus\n"); 4253 goto err_free_dead_hp; 4254 } 4255 4256 mvneta_start_dev(pp); 4257 4258 return 0; 4259 4260 err_free_dead_hp: 4261 if (!pp->neta_armada3700) 4262 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4263 &pp->node_dead); 4264 err_free_online_hp: 4265 if (!pp->neta_armada3700) 4266 cpuhp_state_remove_instance_nocalls(online_hpstate, 4267 &pp->node_online); 4268 err_free_irq: 4269 if (pp->neta_armada3700) { 4270 free_irq(pp->dev->irq, pp); 4271 } else { 4272 on_each_cpu(mvneta_percpu_disable, pp, true); 4273 free_percpu_irq(pp->dev->irq, pp->ports); 4274 } 4275 err_cleanup_txqs: 4276 mvneta_cleanup_txqs(pp); 4277 err_cleanup_rxqs: 4278 mvneta_cleanup_rxqs(pp); 4279 return ret; 4280 } 4281 4282 /* Stop the port, free port interrupt line */ 4283 static int mvneta_stop(struct net_device *dev) 4284 { 4285 struct mvneta_port *pp = netdev_priv(dev); 4286 4287 if (!pp->neta_armada3700) { 4288 /* Inform that we are stopping so we don't want to setup the 4289 * driver for new CPUs in the notifiers. The code of the 4290 * notifier for CPU online is protected by the same spinlock, 4291 * so when we get the lock, the notifer work is done. 4292 */ 4293 spin_lock(&pp->lock); 4294 pp->is_stopped = true; 4295 spin_unlock(&pp->lock); 4296 4297 mvneta_stop_dev(pp); 4298 mvneta_mdio_remove(pp); 4299 4300 cpuhp_state_remove_instance_nocalls(online_hpstate, 4301 &pp->node_online); 4302 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 4303 &pp->node_dead); 4304 on_each_cpu(mvneta_percpu_disable, pp, true); 4305 free_percpu_irq(dev->irq, pp->ports); 4306 } else { 4307 mvneta_stop_dev(pp); 4308 mvneta_mdio_remove(pp); 4309 free_irq(dev->irq, pp); 4310 } 4311 4312 mvneta_cleanup_rxqs(pp); 4313 mvneta_cleanup_txqs(pp); 4314 4315 return 0; 4316 } 4317 4318 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 4319 { 4320 struct mvneta_port *pp = netdev_priv(dev); 4321 4322 return phylink_mii_ioctl(pp->phylink, ifr, cmd); 4323 } 4324 4325 static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog, 4326 struct netlink_ext_ack *extack) 4327 { 4328 bool need_update, running = netif_running(dev); 4329 struct mvneta_port *pp = netdev_priv(dev); 4330 struct bpf_prog *old_prog; 4331 4332 if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) { 4333 NL_SET_ERR_MSG_MOD(extack, "Jumbo frames not supported on XDP"); 4334 return -EOPNOTSUPP; 4335 } 4336 4337 if (pp->bm_priv) { 4338 NL_SET_ERR_MSG_MOD(extack, 4339 "Hardware Buffer Management not supported on XDP"); 4340 return -EOPNOTSUPP; 4341 } 4342 4343 need_update = !!pp->xdp_prog != !!prog; 4344 if (running && need_update) 4345 mvneta_stop(dev); 4346 4347 old_prog = xchg(&pp->xdp_prog, prog); 4348 if (old_prog) 4349 bpf_prog_put(old_prog); 4350 4351 if (running && need_update) 4352 return mvneta_open(dev); 4353 4354 return 0; 4355 } 4356 4357 static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4358 { 4359 struct mvneta_port *pp = netdev_priv(dev); 4360 4361 switch (xdp->command) { 4362 case XDP_SETUP_PROG: 4363 return mvneta_xdp_setup(dev, xdp->prog, xdp->extack); 4364 case XDP_QUERY_PROG: 4365 xdp->prog_id = pp->xdp_prog ? pp->xdp_prog->aux->id : 0; 4366 return 0; 4367 default: 4368 return -EINVAL; 4369 } 4370 } 4371 4372 /* Ethtool methods */ 4373 4374 /* Set link ksettings (phy address, speed) for ethtools */ 4375 static int 4376 mvneta_ethtool_set_link_ksettings(struct net_device *ndev, 4377 const struct ethtool_link_ksettings *cmd) 4378 { 4379 struct mvneta_port *pp = netdev_priv(ndev); 4380 4381 return phylink_ethtool_ksettings_set(pp->phylink, cmd); 4382 } 4383 4384 /* Get link ksettings for ethtools */ 4385 static int 4386 mvneta_ethtool_get_link_ksettings(struct net_device *ndev, 4387 struct ethtool_link_ksettings *cmd) 4388 { 4389 struct mvneta_port *pp = netdev_priv(ndev); 4390 4391 return phylink_ethtool_ksettings_get(pp->phylink, cmd); 4392 } 4393 4394 static int mvneta_ethtool_nway_reset(struct net_device *dev) 4395 { 4396 struct mvneta_port *pp = netdev_priv(dev); 4397 4398 return phylink_ethtool_nway_reset(pp->phylink); 4399 } 4400 4401 /* Set interrupt coalescing for ethtools */ 4402 static int mvneta_ethtool_set_coalesce(struct net_device *dev, 4403 struct ethtool_coalesce *c) 4404 { 4405 struct mvneta_port *pp = netdev_priv(dev); 4406 int queue; 4407 4408 for (queue = 0; queue < rxq_number; queue++) { 4409 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4410 rxq->time_coal = c->rx_coalesce_usecs; 4411 rxq->pkts_coal = c->rx_max_coalesced_frames; 4412 mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); 4413 mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); 4414 } 4415 4416 for (queue = 0; queue < txq_number; queue++) { 4417 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4418 txq->done_pkts_coal = c->tx_max_coalesced_frames; 4419 mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); 4420 } 4421 4422 return 0; 4423 } 4424 4425 /* get coalescing for ethtools */ 4426 static int mvneta_ethtool_get_coalesce(struct net_device *dev, 4427 struct ethtool_coalesce *c) 4428 { 4429 struct mvneta_port *pp = netdev_priv(dev); 4430 4431 c->rx_coalesce_usecs = pp->rxqs[0].time_coal; 4432 c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; 4433 4434 c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; 4435 return 0; 4436 } 4437 4438 4439 static void mvneta_ethtool_get_drvinfo(struct net_device *dev, 4440 struct ethtool_drvinfo *drvinfo) 4441 { 4442 strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, 4443 sizeof(drvinfo->driver)); 4444 strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, 4445 sizeof(drvinfo->version)); 4446 strlcpy(drvinfo->bus_info, dev_name(&dev->dev), 4447 sizeof(drvinfo->bus_info)); 4448 } 4449 4450 4451 static void mvneta_ethtool_get_ringparam(struct net_device *netdev, 4452 struct ethtool_ringparam *ring) 4453 { 4454 struct mvneta_port *pp = netdev_priv(netdev); 4455 4456 ring->rx_max_pending = MVNETA_MAX_RXD; 4457 ring->tx_max_pending = MVNETA_MAX_TXD; 4458 ring->rx_pending = pp->rx_ring_size; 4459 ring->tx_pending = pp->tx_ring_size; 4460 } 4461 4462 static int mvneta_ethtool_set_ringparam(struct net_device *dev, 4463 struct ethtool_ringparam *ring) 4464 { 4465 struct mvneta_port *pp = netdev_priv(dev); 4466 4467 if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) 4468 return -EINVAL; 4469 pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? 4470 ring->rx_pending : MVNETA_MAX_RXD; 4471 4472 pp->tx_ring_size = clamp_t(u16, ring->tx_pending, 4473 MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); 4474 if (pp->tx_ring_size != ring->tx_pending) 4475 netdev_warn(dev, "TX queue size set to %u (requested %u)\n", 4476 pp->tx_ring_size, ring->tx_pending); 4477 4478 if (netif_running(dev)) { 4479 mvneta_stop(dev); 4480 if (mvneta_open(dev)) { 4481 netdev_err(dev, 4482 "error on opening device after ring param change\n"); 4483 return -ENOMEM; 4484 } 4485 } 4486 4487 return 0; 4488 } 4489 4490 static void mvneta_ethtool_get_pauseparam(struct net_device *dev, 4491 struct ethtool_pauseparam *pause) 4492 { 4493 struct mvneta_port *pp = netdev_priv(dev); 4494 4495 phylink_ethtool_get_pauseparam(pp->phylink, pause); 4496 } 4497 4498 static int mvneta_ethtool_set_pauseparam(struct net_device *dev, 4499 struct ethtool_pauseparam *pause) 4500 { 4501 struct mvneta_port *pp = netdev_priv(dev); 4502 4503 return phylink_ethtool_set_pauseparam(pp->phylink, pause); 4504 } 4505 4506 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, 4507 u8 *data) 4508 { 4509 if (sset == ETH_SS_STATS) { 4510 int i; 4511 4512 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4513 memcpy(data + i * ETH_GSTRING_LEN, 4514 mvneta_statistics[i].name, ETH_GSTRING_LEN); 4515 } 4516 } 4517 4518 static void 4519 mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp, 4520 struct mvneta_ethtool_stats *es) 4521 { 4522 unsigned int start; 4523 int cpu; 4524 4525 for_each_possible_cpu(cpu) { 4526 struct mvneta_pcpu_stats *stats; 4527 u64 skb_alloc_error; 4528 u64 refill_error; 4529 u64 xdp_redirect; 4530 u64 xdp_xmit_err; 4531 u64 xdp_tx_err; 4532 u64 xdp_pass; 4533 u64 xdp_drop; 4534 u64 xdp_xmit; 4535 u64 xdp_tx; 4536 4537 stats = per_cpu_ptr(pp->stats, cpu); 4538 do { 4539 start = u64_stats_fetch_begin_irq(&stats->syncp); 4540 skb_alloc_error = stats->es.skb_alloc_error; 4541 refill_error = stats->es.refill_error; 4542 xdp_redirect = stats->es.ps.xdp_redirect; 4543 xdp_pass = stats->es.ps.xdp_pass; 4544 xdp_drop = stats->es.ps.xdp_drop; 4545 xdp_xmit = stats->es.ps.xdp_xmit; 4546 xdp_xmit_err = stats->es.ps.xdp_xmit_err; 4547 xdp_tx = stats->es.ps.xdp_tx; 4548 xdp_tx_err = stats->es.ps.xdp_tx_err; 4549 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 4550 4551 es->skb_alloc_error += skb_alloc_error; 4552 es->refill_error += refill_error; 4553 es->ps.xdp_redirect += xdp_redirect; 4554 es->ps.xdp_pass += xdp_pass; 4555 es->ps.xdp_drop += xdp_drop; 4556 es->ps.xdp_xmit += xdp_xmit; 4557 es->ps.xdp_xmit_err += xdp_xmit_err; 4558 es->ps.xdp_tx += xdp_tx; 4559 es->ps.xdp_tx_err += xdp_tx_err; 4560 } 4561 } 4562 4563 static void mvneta_ethtool_update_stats(struct mvneta_port *pp) 4564 { 4565 struct mvneta_ethtool_stats stats = {}; 4566 const struct mvneta_statistic *s; 4567 void __iomem *base = pp->base; 4568 u32 high, low; 4569 u64 val; 4570 int i; 4571 4572 mvneta_ethtool_update_pcpu_stats(pp, &stats); 4573 for (i = 0, s = mvneta_statistics; 4574 s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); 4575 s++, i++) { 4576 switch (s->type) { 4577 case T_REG_32: 4578 val = readl_relaxed(base + s->offset); 4579 pp->ethtool_stats[i] += val; 4580 break; 4581 case T_REG_64: 4582 /* Docs say to read low 32-bit then high */ 4583 low = readl_relaxed(base + s->offset); 4584 high = readl_relaxed(base + s->offset + 4); 4585 val = (u64)high << 32 | low; 4586 pp->ethtool_stats[i] += val; 4587 break; 4588 case T_SW: 4589 switch (s->offset) { 4590 case ETHTOOL_STAT_EEE_WAKEUP: 4591 val = phylink_get_eee_err(pp->phylink); 4592 pp->ethtool_stats[i] += val; 4593 break; 4594 case ETHTOOL_STAT_SKB_ALLOC_ERR: 4595 pp->ethtool_stats[i] = stats.skb_alloc_error; 4596 break; 4597 case ETHTOOL_STAT_REFILL_ERR: 4598 pp->ethtool_stats[i] = stats.refill_error; 4599 break; 4600 case ETHTOOL_XDP_REDIRECT: 4601 pp->ethtool_stats[i] = stats.ps.xdp_redirect; 4602 break; 4603 case ETHTOOL_XDP_PASS: 4604 pp->ethtool_stats[i] = stats.ps.xdp_pass; 4605 break; 4606 case ETHTOOL_XDP_DROP: 4607 pp->ethtool_stats[i] = stats.ps.xdp_drop; 4608 break; 4609 case ETHTOOL_XDP_TX: 4610 pp->ethtool_stats[i] = stats.ps.xdp_tx; 4611 break; 4612 case ETHTOOL_XDP_TX_ERR: 4613 pp->ethtool_stats[i] = stats.ps.xdp_tx_err; 4614 break; 4615 case ETHTOOL_XDP_XMIT: 4616 pp->ethtool_stats[i] = stats.ps.xdp_xmit; 4617 break; 4618 case ETHTOOL_XDP_XMIT_ERR: 4619 pp->ethtool_stats[i] = stats.ps.xdp_xmit_err; 4620 break; 4621 } 4622 break; 4623 } 4624 } 4625 } 4626 4627 static void mvneta_ethtool_get_stats(struct net_device *dev, 4628 struct ethtool_stats *stats, u64 *data) 4629 { 4630 struct mvneta_port *pp = netdev_priv(dev); 4631 int i; 4632 4633 mvneta_ethtool_update_stats(pp); 4634 4635 for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) 4636 *data++ = pp->ethtool_stats[i]; 4637 } 4638 4639 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) 4640 { 4641 if (sset == ETH_SS_STATS) 4642 return ARRAY_SIZE(mvneta_statistics); 4643 return -EOPNOTSUPP; 4644 } 4645 4646 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) 4647 { 4648 return MVNETA_RSS_LU_TABLE_SIZE; 4649 } 4650 4651 static int mvneta_ethtool_get_rxnfc(struct net_device *dev, 4652 struct ethtool_rxnfc *info, 4653 u32 *rules __always_unused) 4654 { 4655 switch (info->cmd) { 4656 case ETHTOOL_GRXRINGS: 4657 info->data = rxq_number; 4658 return 0; 4659 case ETHTOOL_GRXFH: 4660 return -EOPNOTSUPP; 4661 default: 4662 return -EOPNOTSUPP; 4663 } 4664 } 4665 4666 static int mvneta_config_rss(struct mvneta_port *pp) 4667 { 4668 int cpu; 4669 u32 val; 4670 4671 netif_tx_stop_all_queues(pp->dev); 4672 4673 on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); 4674 4675 if (!pp->neta_armada3700) { 4676 /* We have to synchronise on the napi of each CPU */ 4677 for_each_online_cpu(cpu) { 4678 struct mvneta_pcpu_port *pcpu_port = 4679 per_cpu_ptr(pp->ports, cpu); 4680 4681 napi_synchronize(&pcpu_port->napi); 4682 napi_disable(&pcpu_port->napi); 4683 } 4684 } else { 4685 napi_synchronize(&pp->napi); 4686 napi_disable(&pp->napi); 4687 } 4688 4689 pp->rxq_def = pp->indir[0]; 4690 4691 /* Update unicast mapping */ 4692 mvneta_set_rx_mode(pp->dev); 4693 4694 /* Update val of portCfg register accordingly with all RxQueue types */ 4695 val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); 4696 mvreg_write(pp, MVNETA_PORT_CONFIG, val); 4697 4698 /* Update the elected CPU matching the new rxq_def */ 4699 spin_lock(&pp->lock); 4700 mvneta_percpu_elect(pp); 4701 spin_unlock(&pp->lock); 4702 4703 if (!pp->neta_armada3700) { 4704 /* We have to synchronise on the napi of each CPU */ 4705 for_each_online_cpu(cpu) { 4706 struct mvneta_pcpu_port *pcpu_port = 4707 per_cpu_ptr(pp->ports, cpu); 4708 4709 napi_enable(&pcpu_port->napi); 4710 } 4711 } else { 4712 napi_enable(&pp->napi); 4713 } 4714 4715 netif_tx_start_all_queues(pp->dev); 4716 4717 return 0; 4718 } 4719 4720 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, 4721 const u8 *key, const u8 hfunc) 4722 { 4723 struct mvneta_port *pp = netdev_priv(dev); 4724 4725 /* Current code for Armada 3700 doesn't support RSS features yet */ 4726 if (pp->neta_armada3700) 4727 return -EOPNOTSUPP; 4728 4729 /* We require at least one supported parameter to be changed 4730 * and no change in any of the unsupported parameters 4731 */ 4732 if (key || 4733 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) 4734 return -EOPNOTSUPP; 4735 4736 if (!indir) 4737 return 0; 4738 4739 memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); 4740 4741 return mvneta_config_rss(pp); 4742 } 4743 4744 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 4745 u8 *hfunc) 4746 { 4747 struct mvneta_port *pp = netdev_priv(dev); 4748 4749 /* Current code for Armada 3700 doesn't support RSS features yet */ 4750 if (pp->neta_armada3700) 4751 return -EOPNOTSUPP; 4752 4753 if (hfunc) 4754 *hfunc = ETH_RSS_HASH_TOP; 4755 4756 if (!indir) 4757 return 0; 4758 4759 memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); 4760 4761 return 0; 4762 } 4763 4764 static void mvneta_ethtool_get_wol(struct net_device *dev, 4765 struct ethtool_wolinfo *wol) 4766 { 4767 struct mvneta_port *pp = netdev_priv(dev); 4768 4769 phylink_ethtool_get_wol(pp->phylink, wol); 4770 } 4771 4772 static int mvneta_ethtool_set_wol(struct net_device *dev, 4773 struct ethtool_wolinfo *wol) 4774 { 4775 struct mvneta_port *pp = netdev_priv(dev); 4776 int ret; 4777 4778 ret = phylink_ethtool_set_wol(pp->phylink, wol); 4779 if (!ret) 4780 device_set_wakeup_enable(&dev->dev, !!wol->wolopts); 4781 4782 return ret; 4783 } 4784 4785 static int mvneta_ethtool_get_eee(struct net_device *dev, 4786 struct ethtool_eee *eee) 4787 { 4788 struct mvneta_port *pp = netdev_priv(dev); 4789 u32 lpi_ctl0; 4790 4791 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4792 4793 eee->eee_enabled = pp->eee_enabled; 4794 eee->eee_active = pp->eee_active; 4795 eee->tx_lpi_enabled = pp->tx_lpi_enabled; 4796 eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; 4797 4798 return phylink_ethtool_get_eee(pp->phylink, eee); 4799 } 4800 4801 static int mvneta_ethtool_set_eee(struct net_device *dev, 4802 struct ethtool_eee *eee) 4803 { 4804 struct mvneta_port *pp = netdev_priv(dev); 4805 u32 lpi_ctl0; 4806 4807 /* The Armada 37x documents do not give limits for this other than 4808 * it being an 8-bit register. */ 4809 if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255) 4810 return -EINVAL; 4811 4812 lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); 4813 lpi_ctl0 &= ~(0xff << 8); 4814 lpi_ctl0 |= eee->tx_lpi_timer << 8; 4815 mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); 4816 4817 pp->eee_enabled = eee->eee_enabled; 4818 pp->tx_lpi_enabled = eee->tx_lpi_enabled; 4819 4820 mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); 4821 4822 return phylink_ethtool_set_eee(pp->phylink, eee); 4823 } 4824 4825 static const struct net_device_ops mvneta_netdev_ops = { 4826 .ndo_open = mvneta_open, 4827 .ndo_stop = mvneta_stop, 4828 .ndo_start_xmit = mvneta_tx, 4829 .ndo_set_rx_mode = mvneta_set_rx_mode, 4830 .ndo_set_mac_address = mvneta_set_mac_addr, 4831 .ndo_change_mtu = mvneta_change_mtu, 4832 .ndo_fix_features = mvneta_fix_features, 4833 .ndo_get_stats64 = mvneta_get_stats64, 4834 .ndo_do_ioctl = mvneta_ioctl, 4835 .ndo_bpf = mvneta_xdp, 4836 .ndo_xdp_xmit = mvneta_xdp_xmit, 4837 }; 4838 4839 static const struct ethtool_ops mvneta_eth_tool_ops = { 4840 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS | 4841 ETHTOOL_COALESCE_MAX_FRAMES, 4842 .nway_reset = mvneta_ethtool_nway_reset, 4843 .get_link = ethtool_op_get_link, 4844 .set_coalesce = mvneta_ethtool_set_coalesce, 4845 .get_coalesce = mvneta_ethtool_get_coalesce, 4846 .get_drvinfo = mvneta_ethtool_get_drvinfo, 4847 .get_ringparam = mvneta_ethtool_get_ringparam, 4848 .set_ringparam = mvneta_ethtool_set_ringparam, 4849 .get_pauseparam = mvneta_ethtool_get_pauseparam, 4850 .set_pauseparam = mvneta_ethtool_set_pauseparam, 4851 .get_strings = mvneta_ethtool_get_strings, 4852 .get_ethtool_stats = mvneta_ethtool_get_stats, 4853 .get_sset_count = mvneta_ethtool_get_sset_count, 4854 .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, 4855 .get_rxnfc = mvneta_ethtool_get_rxnfc, 4856 .get_rxfh = mvneta_ethtool_get_rxfh, 4857 .set_rxfh = mvneta_ethtool_set_rxfh, 4858 .get_link_ksettings = mvneta_ethtool_get_link_ksettings, 4859 .set_link_ksettings = mvneta_ethtool_set_link_ksettings, 4860 .get_wol = mvneta_ethtool_get_wol, 4861 .set_wol = mvneta_ethtool_set_wol, 4862 .get_eee = mvneta_ethtool_get_eee, 4863 .set_eee = mvneta_ethtool_set_eee, 4864 }; 4865 4866 /* Initialize hw */ 4867 static int mvneta_init(struct device *dev, struct mvneta_port *pp) 4868 { 4869 int queue; 4870 4871 /* Disable port */ 4872 mvneta_port_disable(pp); 4873 4874 /* Set port default values */ 4875 mvneta_defaults_set(pp); 4876 4877 pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); 4878 if (!pp->txqs) 4879 return -ENOMEM; 4880 4881 /* Initialize TX descriptor rings */ 4882 for (queue = 0; queue < txq_number; queue++) { 4883 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 4884 txq->id = queue; 4885 txq->size = pp->tx_ring_size; 4886 txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; 4887 } 4888 4889 pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); 4890 if (!pp->rxqs) 4891 return -ENOMEM; 4892 4893 /* Create Rx descriptor rings */ 4894 for (queue = 0; queue < rxq_number; queue++) { 4895 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 4896 rxq->id = queue; 4897 rxq->size = pp->rx_ring_size; 4898 rxq->pkts_coal = MVNETA_RX_COAL_PKTS; 4899 rxq->time_coal = MVNETA_RX_COAL_USEC; 4900 rxq->buf_virt_addr 4901 = devm_kmalloc_array(pp->dev->dev.parent, 4902 rxq->size, 4903 sizeof(*rxq->buf_virt_addr), 4904 GFP_KERNEL); 4905 if (!rxq->buf_virt_addr) 4906 return -ENOMEM; 4907 } 4908 4909 return 0; 4910 } 4911 4912 /* platform glue : initialize decoding windows */ 4913 static void mvneta_conf_mbus_windows(struct mvneta_port *pp, 4914 const struct mbus_dram_target_info *dram) 4915 { 4916 u32 win_enable; 4917 u32 win_protect; 4918 int i; 4919 4920 for (i = 0; i < 6; i++) { 4921 mvreg_write(pp, MVNETA_WIN_BASE(i), 0); 4922 mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); 4923 4924 if (i < 4) 4925 mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); 4926 } 4927 4928 win_enable = 0x3f; 4929 win_protect = 0; 4930 4931 if (dram) { 4932 for (i = 0; i < dram->num_cs; i++) { 4933 const struct mbus_dram_window *cs = dram->cs + i; 4934 4935 mvreg_write(pp, MVNETA_WIN_BASE(i), 4936 (cs->base & 0xffff0000) | 4937 (cs->mbus_attr << 8) | 4938 dram->mbus_dram_target_id); 4939 4940 mvreg_write(pp, MVNETA_WIN_SIZE(i), 4941 (cs->size - 1) & 0xffff0000); 4942 4943 win_enable &= ~(1 << i); 4944 win_protect |= 3 << (2 * i); 4945 } 4946 } else { 4947 /* For Armada3700 open default 4GB Mbus window, leaving 4948 * arbitration of target/attribute to a different layer 4949 * of configuration. 4950 */ 4951 mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); 4952 win_enable &= ~BIT(0); 4953 win_protect = 3; 4954 } 4955 4956 mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); 4957 mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); 4958 } 4959 4960 /* Power up the port */ 4961 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) 4962 { 4963 /* MAC Cause register should be cleared */ 4964 mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); 4965 4966 if (phy_mode == PHY_INTERFACE_MODE_QSGMII) 4967 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); 4968 else if (phy_mode == PHY_INTERFACE_MODE_SGMII || 4969 phy_interface_mode_is_8023z(phy_mode)) 4970 mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); 4971 else if (!phy_interface_mode_is_rgmii(phy_mode)) 4972 return -EINVAL; 4973 4974 return 0; 4975 } 4976 4977 /* Device initialization routine */ 4978 static int mvneta_probe(struct platform_device *pdev) 4979 { 4980 struct device_node *dn = pdev->dev.of_node; 4981 struct device_node *bm_node; 4982 struct mvneta_port *pp; 4983 struct net_device *dev; 4984 struct phylink *phylink; 4985 struct phy *comphy; 4986 const char *dt_mac_addr; 4987 char hw_mac_addr[ETH_ALEN]; 4988 phy_interface_t phy_mode; 4989 const char *mac_from; 4990 int tx_csum_limit; 4991 int err; 4992 int cpu; 4993 4994 dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port), 4995 txq_number, rxq_number); 4996 if (!dev) 4997 return -ENOMEM; 4998 4999 dev->irq = irq_of_parse_and_map(dn, 0); 5000 if (dev->irq == 0) 5001 return -EINVAL; 5002 5003 err = of_get_phy_mode(dn, &phy_mode); 5004 if (err) { 5005 dev_err(&pdev->dev, "incorrect phy-mode\n"); 5006 goto err_free_irq; 5007 } 5008 5009 comphy = devm_of_phy_get(&pdev->dev, dn, NULL); 5010 if (comphy == ERR_PTR(-EPROBE_DEFER)) { 5011 err = -EPROBE_DEFER; 5012 goto err_free_irq; 5013 } else if (IS_ERR(comphy)) { 5014 comphy = NULL; 5015 } 5016 5017 pp = netdev_priv(dev); 5018 spin_lock_init(&pp->lock); 5019 5020 pp->phylink_config.dev = &dev->dev; 5021 pp->phylink_config.type = PHYLINK_NETDEV; 5022 5023 phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode, 5024 phy_mode, &mvneta_phylink_ops); 5025 if (IS_ERR(phylink)) { 5026 err = PTR_ERR(phylink); 5027 goto err_free_irq; 5028 } 5029 5030 dev->tx_queue_len = MVNETA_MAX_TXD; 5031 dev->watchdog_timeo = 5 * HZ; 5032 dev->netdev_ops = &mvneta_netdev_ops; 5033 5034 dev->ethtool_ops = &mvneta_eth_tool_ops; 5035 5036 pp->phylink = phylink; 5037 pp->comphy = comphy; 5038 pp->phy_interface = phy_mode; 5039 pp->dn = dn; 5040 5041 pp->rxq_def = rxq_def; 5042 pp->indir[0] = rxq_def; 5043 5044 /* Get special SoC configurations */ 5045 if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) 5046 pp->neta_armada3700 = true; 5047 5048 pp->clk = devm_clk_get(&pdev->dev, "core"); 5049 if (IS_ERR(pp->clk)) 5050 pp->clk = devm_clk_get(&pdev->dev, NULL); 5051 if (IS_ERR(pp->clk)) { 5052 err = PTR_ERR(pp->clk); 5053 goto err_free_phylink; 5054 } 5055 5056 clk_prepare_enable(pp->clk); 5057 5058 pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); 5059 if (!IS_ERR(pp->clk_bus)) 5060 clk_prepare_enable(pp->clk_bus); 5061 5062 pp->base = devm_platform_ioremap_resource(pdev, 0); 5063 if (IS_ERR(pp->base)) { 5064 err = PTR_ERR(pp->base); 5065 goto err_clk; 5066 } 5067 5068 /* Alloc per-cpu port structure */ 5069 pp->ports = alloc_percpu(struct mvneta_pcpu_port); 5070 if (!pp->ports) { 5071 err = -ENOMEM; 5072 goto err_clk; 5073 } 5074 5075 /* Alloc per-cpu stats */ 5076 pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); 5077 if (!pp->stats) { 5078 err = -ENOMEM; 5079 goto err_free_ports; 5080 } 5081 5082 dt_mac_addr = of_get_mac_address(dn); 5083 if (!IS_ERR(dt_mac_addr)) { 5084 mac_from = "device tree"; 5085 ether_addr_copy(dev->dev_addr, dt_mac_addr); 5086 } else { 5087 mvneta_get_mac_addr(pp, hw_mac_addr); 5088 if (is_valid_ether_addr(hw_mac_addr)) { 5089 mac_from = "hardware"; 5090 memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); 5091 } else { 5092 mac_from = "random"; 5093 eth_hw_addr_random(dev); 5094 } 5095 } 5096 5097 if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { 5098 if (tx_csum_limit < 0 || 5099 tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { 5100 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5101 dev_info(&pdev->dev, 5102 "Wrong TX csum limit in DT, set to %dB\n", 5103 MVNETA_TX_CSUM_DEF_SIZE); 5104 } 5105 } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { 5106 tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; 5107 } else { 5108 tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; 5109 } 5110 5111 pp->tx_csum_limit = tx_csum_limit; 5112 5113 pp->dram_target_info = mv_mbus_dram_info(); 5114 /* Armada3700 requires setting default configuration of Mbus 5115 * windows, however without using filled mbus_dram_target_info 5116 * structure. 5117 */ 5118 if (pp->dram_target_info || pp->neta_armada3700) 5119 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5120 5121 pp->tx_ring_size = MVNETA_MAX_TXD; 5122 pp->rx_ring_size = MVNETA_MAX_RXD; 5123 5124 pp->dev = dev; 5125 SET_NETDEV_DEV(dev, &pdev->dev); 5126 5127 pp->id = global_port_id++; 5128 5129 /* Obtain access to BM resources if enabled and already initialized */ 5130 bm_node = of_parse_phandle(dn, "buffer-manager", 0); 5131 if (bm_node) { 5132 pp->bm_priv = mvneta_bm_get(bm_node); 5133 if (pp->bm_priv) { 5134 err = mvneta_bm_port_init(pdev, pp); 5135 if (err < 0) { 5136 dev_info(&pdev->dev, 5137 "use SW buffer management\n"); 5138 mvneta_bm_put(pp->bm_priv); 5139 pp->bm_priv = NULL; 5140 } 5141 } 5142 /* Set RX packet offset correction for platforms, whose 5143 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit 5144 * platforms and 0B for 32-bit ones. 5145 */ 5146 pp->rx_offset_correction = max(0, 5147 NET_SKB_PAD - 5148 MVNETA_RX_PKT_OFFSET_CORRECTION); 5149 } 5150 of_node_put(bm_node); 5151 5152 /* sw buffer management */ 5153 if (!pp->bm_priv) 5154 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5155 5156 err = mvneta_init(&pdev->dev, pp); 5157 if (err < 0) 5158 goto err_netdev; 5159 5160 err = mvneta_port_power_up(pp, phy_mode); 5161 if (err < 0) { 5162 dev_err(&pdev->dev, "can't power up port\n"); 5163 goto err_netdev; 5164 } 5165 5166 /* Armada3700 network controller does not support per-cpu 5167 * operation, so only single NAPI should be initialized. 5168 */ 5169 if (pp->neta_armada3700) { 5170 netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); 5171 } else { 5172 for_each_present_cpu(cpu) { 5173 struct mvneta_pcpu_port *port = 5174 per_cpu_ptr(pp->ports, cpu); 5175 5176 netif_napi_add(dev, &port->napi, mvneta_poll, 5177 NAPI_POLL_WEIGHT); 5178 port->pp = pp; 5179 } 5180 } 5181 5182 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 5183 NETIF_F_TSO | NETIF_F_RXCSUM; 5184 dev->hw_features |= dev->features; 5185 dev->vlan_features |= dev->features; 5186 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 5187 dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; 5188 5189 /* MTU range: 68 - 9676 */ 5190 dev->min_mtu = ETH_MIN_MTU; 5191 /* 9676 == 9700 - 20 and rounding to 8 */ 5192 dev->max_mtu = 9676; 5193 5194 err = register_netdev(dev); 5195 if (err < 0) { 5196 dev_err(&pdev->dev, "failed to register\n"); 5197 goto err_netdev; 5198 } 5199 5200 netdev_info(dev, "Using %s mac address %pM\n", mac_from, 5201 dev->dev_addr); 5202 5203 platform_set_drvdata(pdev, pp->dev); 5204 5205 return 0; 5206 5207 err_netdev: 5208 if (pp->bm_priv) { 5209 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5210 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5211 1 << pp->id); 5212 mvneta_bm_put(pp->bm_priv); 5213 } 5214 free_percpu(pp->stats); 5215 err_free_ports: 5216 free_percpu(pp->ports); 5217 err_clk: 5218 clk_disable_unprepare(pp->clk_bus); 5219 clk_disable_unprepare(pp->clk); 5220 err_free_phylink: 5221 if (pp->phylink) 5222 phylink_destroy(pp->phylink); 5223 err_free_irq: 5224 irq_dispose_mapping(dev->irq); 5225 return err; 5226 } 5227 5228 /* Device removal routine */ 5229 static int mvneta_remove(struct platform_device *pdev) 5230 { 5231 struct net_device *dev = platform_get_drvdata(pdev); 5232 struct mvneta_port *pp = netdev_priv(dev); 5233 5234 unregister_netdev(dev); 5235 clk_disable_unprepare(pp->clk_bus); 5236 clk_disable_unprepare(pp->clk); 5237 free_percpu(pp->ports); 5238 free_percpu(pp->stats); 5239 irq_dispose_mapping(dev->irq); 5240 phylink_destroy(pp->phylink); 5241 5242 if (pp->bm_priv) { 5243 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); 5244 mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 5245 1 << pp->id); 5246 mvneta_bm_put(pp->bm_priv); 5247 } 5248 5249 return 0; 5250 } 5251 5252 #ifdef CONFIG_PM_SLEEP 5253 static int mvneta_suspend(struct device *device) 5254 { 5255 int queue; 5256 struct net_device *dev = dev_get_drvdata(device); 5257 struct mvneta_port *pp = netdev_priv(dev); 5258 5259 if (!netif_running(dev)) 5260 goto clean_exit; 5261 5262 if (!pp->neta_armada3700) { 5263 spin_lock(&pp->lock); 5264 pp->is_stopped = true; 5265 spin_unlock(&pp->lock); 5266 5267 cpuhp_state_remove_instance_nocalls(online_hpstate, 5268 &pp->node_online); 5269 cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5270 &pp->node_dead); 5271 } 5272 5273 rtnl_lock(); 5274 mvneta_stop_dev(pp); 5275 rtnl_unlock(); 5276 5277 for (queue = 0; queue < rxq_number; queue++) { 5278 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5279 5280 mvneta_rxq_drop_pkts(pp, rxq); 5281 } 5282 5283 for (queue = 0; queue < txq_number; queue++) { 5284 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5285 5286 mvneta_txq_hw_deinit(pp, txq); 5287 } 5288 5289 clean_exit: 5290 netif_device_detach(dev); 5291 clk_disable_unprepare(pp->clk_bus); 5292 clk_disable_unprepare(pp->clk); 5293 5294 return 0; 5295 } 5296 5297 static int mvneta_resume(struct device *device) 5298 { 5299 struct platform_device *pdev = to_platform_device(device); 5300 struct net_device *dev = dev_get_drvdata(device); 5301 struct mvneta_port *pp = netdev_priv(dev); 5302 int err, queue; 5303 5304 clk_prepare_enable(pp->clk); 5305 if (!IS_ERR(pp->clk_bus)) 5306 clk_prepare_enable(pp->clk_bus); 5307 if (pp->dram_target_info || pp->neta_armada3700) 5308 mvneta_conf_mbus_windows(pp, pp->dram_target_info); 5309 if (pp->bm_priv) { 5310 err = mvneta_bm_port_init(pdev, pp); 5311 if (err < 0) { 5312 dev_info(&pdev->dev, "use SW buffer management\n"); 5313 pp->rx_offset_correction = MVNETA_SKB_HEADROOM; 5314 pp->bm_priv = NULL; 5315 } 5316 } 5317 mvneta_defaults_set(pp); 5318 err = mvneta_port_power_up(pp, pp->phy_interface); 5319 if (err < 0) { 5320 dev_err(device, "can't power up port\n"); 5321 return err; 5322 } 5323 5324 netif_device_attach(dev); 5325 5326 if (!netif_running(dev)) 5327 return 0; 5328 5329 for (queue = 0; queue < rxq_number; queue++) { 5330 struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; 5331 5332 rxq->next_desc_to_proc = 0; 5333 mvneta_rxq_hw_init(pp, rxq); 5334 } 5335 5336 for (queue = 0; queue < txq_number; queue++) { 5337 struct mvneta_tx_queue *txq = &pp->txqs[queue]; 5338 5339 txq->next_desc_to_proc = 0; 5340 mvneta_txq_hw_init(pp, txq); 5341 } 5342 5343 if (!pp->neta_armada3700) { 5344 spin_lock(&pp->lock); 5345 pp->is_stopped = false; 5346 spin_unlock(&pp->lock); 5347 cpuhp_state_add_instance_nocalls(online_hpstate, 5348 &pp->node_online); 5349 cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, 5350 &pp->node_dead); 5351 } 5352 5353 rtnl_lock(); 5354 mvneta_start_dev(pp); 5355 rtnl_unlock(); 5356 mvneta_set_rx_mode(dev); 5357 5358 return 0; 5359 } 5360 #endif 5361 5362 static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); 5363 5364 static const struct of_device_id mvneta_match[] = { 5365 { .compatible = "marvell,armada-370-neta" }, 5366 { .compatible = "marvell,armada-xp-neta" }, 5367 { .compatible = "marvell,armada-3700-neta" }, 5368 { } 5369 }; 5370 MODULE_DEVICE_TABLE(of, mvneta_match); 5371 5372 static struct platform_driver mvneta_driver = { 5373 .probe = mvneta_probe, 5374 .remove = mvneta_remove, 5375 .driver = { 5376 .name = MVNETA_DRIVER_NAME, 5377 .of_match_table = mvneta_match, 5378 .pm = &mvneta_pm_ops, 5379 }, 5380 }; 5381 5382 static int __init mvneta_driver_init(void) 5383 { 5384 int ret; 5385 5386 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online", 5387 mvneta_cpu_online, 5388 mvneta_cpu_down_prepare); 5389 if (ret < 0) 5390 goto out; 5391 online_hpstate = ret; 5392 ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", 5393 NULL, mvneta_cpu_dead); 5394 if (ret) 5395 goto err_dead; 5396 5397 ret = platform_driver_register(&mvneta_driver); 5398 if (ret) 5399 goto err; 5400 return 0; 5401 5402 err: 5403 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5404 err_dead: 5405 cpuhp_remove_multi_state(online_hpstate); 5406 out: 5407 return ret; 5408 } 5409 module_init(mvneta_driver_init); 5410 5411 static void __exit mvneta_driver_exit(void) 5412 { 5413 platform_driver_unregister(&mvneta_driver); 5414 cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); 5415 cpuhp_remove_multi_state(online_hpstate); 5416 } 5417 module_exit(mvneta_driver_exit); 5418 5419 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); 5420 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); 5421 MODULE_LICENSE("GPL"); 5422 5423 module_param(rxq_number, int, 0444); 5424 module_param(txq_number, int, 0444); 5425 5426 module_param(rxq_def, int, 0444); 5427 module_param(rx_copybreak, int, 0644); 5428