xref: /openbmc/linux/drivers/net/ethernet/korina.c (revision f59a3ee6)
1 /*
2  *  Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
3  *
4  *  Copyright 2004 IDT Inc. (rischelp@idt.com)
5  *  Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6  *  Copyright 2008 Florian Fainelli <florian@openwrt.org>
7  *  Copyright 2017 Roman Yeryomin <roman@advem.lv>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
15  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
16  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
17  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
18  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
20  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
21  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
22  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  *  You should have received a copy of the  GNU General Public License along
26  *  with this program; if not, write  to the Free Software Foundation, Inc.,
27  *  675 Mass Ave, Cambridge, MA 02139, USA.
28  *
29  *  Writing to a DMA status register:
30  *
31  *  When writing to the status register, you should mask the bit you have
32  *  been testing the status register with. Both Tx and Rx DMA registers
33  *  should stick to this procedure.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/moduleparam.h>
39 #include <linux/sched.h>
40 #include <linux/ctype.h>
41 #include <linux/types.h>
42 #include <linux/interrupt.h>
43 #include <linux/ioport.h>
44 #include <linux/iopoll.h>
45 #include <linux/in.h>
46 #include <linux/of_device.h>
47 #include <linux/of_net.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/delay.h>
51 #include <linux/netdevice.h>
52 #include <linux/etherdevice.h>
53 #include <linux/skbuff.h>
54 #include <linux/errno.h>
55 #include <linux/platform_device.h>
56 #include <linux/mii.h>
57 #include <linux/ethtool.h>
58 #include <linux/crc32.h>
59 #include <linux/pgtable.h>
60 #include <linux/clk.h>
61 
62 #define DRV_NAME	"korina"
63 #define DRV_VERSION	"0.20"
64 #define DRV_RELDATE	"15Sep2017"
65 
66 struct eth_regs {
67 	u32 ethintfc;
68 	u32 ethfifott;
69 	u32 etharc;
70 	u32 ethhash0;
71 	u32 ethhash1;
72 	u32 ethu0[4];		/* Reserved. */
73 	u32 ethpfs;
74 	u32 ethmcp;
75 	u32 eth_u1[10];		/* Reserved. */
76 	u32 ethspare;
77 	u32 eth_u2[42];		/* Reserved. */
78 	u32 ethsal0;
79 	u32 ethsah0;
80 	u32 ethsal1;
81 	u32 ethsah1;
82 	u32 ethsal2;
83 	u32 ethsah2;
84 	u32 ethsal3;
85 	u32 ethsah3;
86 	u32 ethrbc;
87 	u32 ethrpc;
88 	u32 ethrupc;
89 	u32 ethrfc;
90 	u32 ethtbc;
91 	u32 ethgpf;
92 	u32 eth_u9[50];		/* Reserved. */
93 	u32 ethmac1;
94 	u32 ethmac2;
95 	u32 ethipgt;
96 	u32 ethipgr;
97 	u32 ethclrt;
98 	u32 ethmaxf;
99 	u32 eth_u10;		/* Reserved. */
100 	u32 ethmtest;
101 	u32 miimcfg;
102 	u32 miimcmd;
103 	u32 miimaddr;
104 	u32 miimwtd;
105 	u32 miimrdd;
106 	u32 miimind;
107 	u32 eth_u11;		/* Reserved. */
108 	u32 eth_u12;		/* Reserved. */
109 	u32 ethcfsa0;
110 	u32 ethcfsa1;
111 	u32 ethcfsa2;
112 };
113 
114 /* Ethernet interrupt registers */
115 #define ETH_INT_FC_EN		BIT(0)
116 #define ETH_INT_FC_ITS		BIT(1)
117 #define ETH_INT_FC_RIP		BIT(2)
118 #define ETH_INT_FC_JAM		BIT(3)
119 #define ETH_INT_FC_OVR		BIT(4)
120 #define ETH_INT_FC_UND		BIT(5)
121 #define ETH_INT_FC_IOC		0x000000c0
122 
123 /* Ethernet FIFO registers */
124 #define ETH_FIFI_TT_TTH_BIT	0
125 #define ETH_FIFO_TT_TTH		0x0000007f
126 
127 /* Ethernet ARC/multicast registers */
128 #define ETH_ARC_PRO		BIT(0)
129 #define ETH_ARC_AM		BIT(1)
130 #define ETH_ARC_AFM		BIT(2)
131 #define ETH_ARC_AB		BIT(3)
132 
133 /* Ethernet SAL registers */
134 #define ETH_SAL_BYTE_5		0x000000ff
135 #define ETH_SAL_BYTE_4		0x0000ff00
136 #define ETH_SAL_BYTE_3		0x00ff0000
137 #define ETH_SAL_BYTE_2		0xff000000
138 
139 /* Ethernet SAH registers */
140 #define ETH_SAH_BYTE1		0x000000ff
141 #define ETH_SAH_BYTE0		0x0000ff00
142 
143 /* Ethernet GPF register */
144 #define ETH_GPF_PTV		0x0000ffff
145 
146 /* Ethernet PFG register */
147 #define ETH_PFS_PFD		BIT(0)
148 
149 /* Ethernet CFSA[0-3] registers */
150 #define ETH_CFSA0_CFSA4		0x000000ff
151 #define ETH_CFSA0_CFSA5		0x0000ff00
152 #define ETH_CFSA1_CFSA2		0x000000ff
153 #define ETH_CFSA1_CFSA3		0x0000ff00
154 #define ETH_CFSA1_CFSA0		0x000000ff
155 #define ETH_CFSA1_CFSA1		0x0000ff00
156 
157 /* Ethernet MAC1 registers */
158 #define ETH_MAC1_RE		BIT(0)
159 #define ETH_MAC1_PAF		BIT(1)
160 #define ETH_MAC1_RFC		BIT(2)
161 #define ETH_MAC1_TFC		BIT(3)
162 #define ETH_MAC1_LB		BIT(4)
163 #define ETH_MAC1_MR		BIT(31)
164 
165 /* Ethernet MAC2 registers */
166 #define ETH_MAC2_FD		BIT(0)
167 #define ETH_MAC2_FLC		BIT(1)
168 #define ETH_MAC2_HFE		BIT(2)
169 #define ETH_MAC2_DC		BIT(3)
170 #define ETH_MAC2_CEN		BIT(4)
171 #define ETH_MAC2_PE		BIT(5)
172 #define ETH_MAC2_VPE		BIT(6)
173 #define ETH_MAC2_APE		BIT(7)
174 #define ETH_MAC2_PPE		BIT(8)
175 #define ETH_MAC2_LPE		BIT(9)
176 #define ETH_MAC2_NB		BIT(12)
177 #define ETH_MAC2_BP		BIT(13)
178 #define ETH_MAC2_ED		BIT(14)
179 
180 /* Ethernet IPGT register */
181 #define ETH_IPGT		0x0000007f
182 
183 /* Ethernet IPGR registers */
184 #define ETH_IPGR_IPGR2		0x0000007f
185 #define ETH_IPGR_IPGR1		0x00007f00
186 
187 /* Ethernet CLRT registers */
188 #define ETH_CLRT_MAX_RET	0x0000000f
189 #define ETH_CLRT_COL_WIN	0x00003f00
190 
191 /* Ethernet MAXF register */
192 #define ETH_MAXF		0x0000ffff
193 
194 /* Ethernet test registers */
195 #define ETH_TEST_REG		BIT(2)
196 #define ETH_MCP_DIV		0x000000ff
197 
198 /* MII registers */
199 #define ETH_MII_CFG_RSVD	0x0000000c
200 #define ETH_MII_CMD_RD		BIT(0)
201 #define ETH_MII_CMD_SCN		BIT(1)
202 #define ETH_MII_REG_ADDR	0x0000001f
203 #define ETH_MII_PHY_ADDR	0x00001f00
204 #define ETH_MII_WTD_DATA	0x0000ffff
205 #define ETH_MII_RDD_DATA	0x0000ffff
206 #define ETH_MII_IND_BSY		BIT(0)
207 #define ETH_MII_IND_SCN		BIT(1)
208 #define ETH_MII_IND_NV		BIT(2)
209 
210 /* Values for the DEVCS field of the Ethernet DMA Rx and Tx descriptors. */
211 #define ETH_RX_FD		BIT(0)
212 #define ETH_RX_LD		BIT(1)
213 #define ETH_RX_ROK		BIT(2)
214 #define ETH_RX_FM		BIT(3)
215 #define ETH_RX_MP		BIT(4)
216 #define ETH_RX_BP		BIT(5)
217 #define ETH_RX_VLT		BIT(6)
218 #define ETH_RX_CF		BIT(7)
219 #define ETH_RX_OVR		BIT(8)
220 #define ETH_RX_CRC		BIT(9)
221 #define ETH_RX_CV		BIT(10)
222 #define ETH_RX_DB		BIT(11)
223 #define ETH_RX_LE		BIT(12)
224 #define ETH_RX_LOR		BIT(13)
225 #define ETH_RX_CES		BIT(14)
226 #define ETH_RX_LEN_BIT		16
227 #define ETH_RX_LEN		0xffff0000
228 
229 #define ETH_TX_FD		BIT(0)
230 #define ETH_TX_LD		BIT(1)
231 #define ETH_TX_OEN		BIT(2)
232 #define ETH_TX_PEN		BIT(3)
233 #define ETH_TX_CEN		BIT(4)
234 #define ETH_TX_HEN		BIT(5)
235 #define ETH_TX_TOK		BIT(6)
236 #define ETH_TX_MP		BIT(7)
237 #define ETH_TX_BP		BIT(8)
238 #define ETH_TX_UND		BIT(9)
239 #define ETH_TX_OF		BIT(10)
240 #define ETH_TX_ED		BIT(11)
241 #define ETH_TX_EC		BIT(12)
242 #define ETH_TX_LC		BIT(13)
243 #define ETH_TX_TD		BIT(14)
244 #define ETH_TX_CRC		BIT(15)
245 #define ETH_TX_LE		BIT(16)
246 #define ETH_TX_CC		0x001E0000
247 
248 /* DMA descriptor (in physical memory). */
249 struct dma_desc {
250 	u32 control;			/* Control. use DMAD_* */
251 	u32 ca;				/* Current Address. */
252 	u32 devcs;			/* Device control and status. */
253 	u32 link;			/* Next descriptor in chain. */
254 };
255 
256 #define DMA_DESC_COUNT_BIT		0
257 #define DMA_DESC_COUNT_MSK		0x0003ffff
258 #define DMA_DESC_DS_BIT			20
259 #define DMA_DESC_DS_MSK			0x00300000
260 
261 #define DMA_DESC_DEV_CMD_BIT		22
262 #define DMA_DESC_DEV_CMD_MSK		0x01c00000
263 
264 /* DMA descriptors interrupts */
265 #define DMA_DESC_COF			BIT(25) /* Chain on finished */
266 #define DMA_DESC_COD			BIT(26) /* Chain on done */
267 #define DMA_DESC_IOF			BIT(27) /* Interrupt on finished */
268 #define DMA_DESC_IOD			BIT(28) /* Interrupt on done */
269 #define DMA_DESC_TERM			BIT(29) /* Terminated */
270 #define DMA_DESC_DONE			BIT(30) /* Done */
271 #define DMA_DESC_FINI			BIT(31) /* Finished */
272 
273 /* DMA register (within Internal Register Map).  */
274 struct dma_reg {
275 	u32 dmac;		/* Control. */
276 	u32 dmas;		/* Status. */
277 	u32 dmasm;		/* Mask. */
278 	u32 dmadptr;		/* Descriptor pointer. */
279 	u32 dmandptr;		/* Next descriptor pointer. */
280 };
281 
282 /* DMA channels specific registers */
283 #define DMA_CHAN_RUN_BIT		BIT(0)
284 #define DMA_CHAN_DONE_BIT		BIT(1)
285 #define DMA_CHAN_MODE_BIT		BIT(2)
286 #define DMA_CHAN_MODE_MSK		0x0000000c
287 #define	 DMA_CHAN_MODE_AUTO		0
288 #define	 DMA_CHAN_MODE_BURST		1
289 #define	 DMA_CHAN_MODE_XFRT		2
290 #define	 DMA_CHAN_MODE_RSVD		3
291 #define DMA_CHAN_ACT_BIT		BIT(4)
292 
293 /* DMA status registers */
294 #define DMA_STAT_FINI			BIT(0)
295 #define DMA_STAT_DONE			BIT(1)
296 #define DMA_STAT_CHAIN			BIT(2)
297 #define DMA_STAT_ERR			BIT(3)
298 #define DMA_STAT_HALT			BIT(4)
299 
300 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
301 				   ((dev)->dev_addr[1]))
302 #define STATION_ADDRESS_LOW(dev)  (((dev)->dev_addr[2] << 24) | \
303 				   ((dev)->dev_addr[3] << 16) | \
304 				   ((dev)->dev_addr[4] << 8)  | \
305 				   ((dev)->dev_addr[5]))
306 
307 #define MII_CLOCK	1250000 /* no more than 2.5MHz */
308 
309 /* the following must be powers of two */
310 #define KORINA_NUM_RDS	64  /* number of receive descriptors */
311 #define KORINA_NUM_TDS	64  /* number of transmit descriptors */
312 
313 /* KORINA_RBSIZE is the hardware's default maximum receive
314  * frame size in bytes. Having this hardcoded means that there
315  * is no support for MTU sizes greater than 1500. */
316 #define KORINA_RBSIZE	1536 /* size of one resource buffer = Ether MTU */
317 #define KORINA_RDS_MASK	(KORINA_NUM_RDS - 1)
318 #define KORINA_TDS_MASK	(KORINA_NUM_TDS - 1)
319 #define RD_RING_SIZE	(KORINA_NUM_RDS * sizeof(struct dma_desc))
320 #define TD_RING_SIZE	(KORINA_NUM_TDS * sizeof(struct dma_desc))
321 
322 #define TX_TIMEOUT	(6000 * HZ / 1000)
323 
324 enum chain_status {
325 	desc_filled,
326 	desc_is_empty
327 };
328 
329 #define DMA_COUNT(count)	((count) & DMA_DESC_COUNT_MSK)
330 #define IS_DMA_FINISHED(X)	(((X) & (DMA_DESC_FINI)) != 0)
331 #define IS_DMA_DONE(X)		(((X) & (DMA_DESC_DONE)) != 0)
332 #define RCVPKT_LENGTH(X)	(((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
333 
334 /* Information that need to be kept for each board. */
335 struct korina_private {
336 	struct eth_regs __iomem *eth_regs;
337 	struct dma_reg __iomem *rx_dma_regs;
338 	struct dma_reg __iomem *tx_dma_regs;
339 	struct dma_desc *td_ring; /* transmit descriptor ring */
340 	struct dma_desc *rd_ring; /* receive descriptor ring  */
341 	dma_addr_t td_dma;
342 	dma_addr_t rd_dma;
343 
344 	struct sk_buff *tx_skb[KORINA_NUM_TDS];
345 	struct sk_buff *rx_skb[KORINA_NUM_RDS];
346 
347 	dma_addr_t rx_skb_dma[KORINA_NUM_RDS];
348 	dma_addr_t tx_skb_dma[KORINA_NUM_TDS];
349 
350 	int rx_next_done;
351 	int rx_chain_head;
352 	int rx_chain_tail;
353 	enum chain_status rx_chain_status;
354 
355 	int tx_next_done;
356 	int tx_chain_head;
357 	int tx_chain_tail;
358 	enum chain_status tx_chain_status;
359 	int tx_count;
360 	int tx_full;
361 
362 	int rx_irq;
363 	int tx_irq;
364 
365 	spinlock_t lock;	/* NIC xmit lock */
366 
367 	int dma_halt_cnt;
368 	int dma_run_cnt;
369 	struct napi_struct napi;
370 	struct timer_list media_check_timer;
371 	struct mii_if_info mii_if;
372 	struct work_struct restart_task;
373 	struct net_device *dev;
374 	struct device *dmadev;
375 	int mii_clock_freq;
376 };
377 
378 static dma_addr_t korina_tx_dma(struct korina_private *lp, int idx)
379 {
380 	return lp->td_dma + (idx * sizeof(struct dma_desc));
381 }
382 
383 static dma_addr_t korina_rx_dma(struct korina_private *lp, int idx)
384 {
385 	return lp->rd_dma + (idx * sizeof(struct dma_desc));
386 }
387 
388 static inline void korina_abort_dma(struct net_device *dev,
389 					struct dma_reg *ch)
390 {
391 	if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
392 		writel(0x10, &ch->dmac);
393 
394 		while (!(readl(&ch->dmas) & DMA_STAT_HALT))
395 			netif_trans_update(dev);
396 
397 		writel(0, &ch->dmas);
398 	}
399 
400 	writel(0, &ch->dmadptr);
401 	writel(0, &ch->dmandptr);
402 }
403 
404 static void korina_abort_tx(struct net_device *dev)
405 {
406 	struct korina_private *lp = netdev_priv(dev);
407 
408 	korina_abort_dma(dev, lp->tx_dma_regs);
409 }
410 
411 static void korina_abort_rx(struct net_device *dev)
412 {
413 	struct korina_private *lp = netdev_priv(dev);
414 
415 	korina_abort_dma(dev, lp->rx_dma_regs);
416 }
417 
418 /* transmit packet */
419 static netdev_tx_t korina_send_packet(struct sk_buff *skb,
420 				      struct net_device *dev)
421 {
422 	struct korina_private *lp = netdev_priv(dev);
423 	u32 chain_prev, chain_next;
424 	unsigned long flags;
425 	struct dma_desc *td;
426 	dma_addr_t ca;
427 	u32 length;
428 	int idx;
429 
430 	spin_lock_irqsave(&lp->lock, flags);
431 
432 	idx = lp->tx_chain_tail;
433 	td = &lp->td_ring[idx];
434 
435 	/* stop queue when full, drop pkts if queue already full */
436 	if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
437 		lp->tx_full = 1;
438 
439 		if (lp->tx_count == (KORINA_NUM_TDS - 2))
440 			netif_stop_queue(dev);
441 		else
442 			goto drop_packet;
443 	}
444 
445 	lp->tx_count++;
446 
447 	lp->tx_skb[idx] = skb;
448 
449 	length = skb->len;
450 
451 	/* Setup the transmit descriptor. */
452 	ca = dma_map_single(lp->dmadev, skb->data, length, DMA_TO_DEVICE);
453 	if (dma_mapping_error(lp->dmadev, ca))
454 		goto drop_packet;
455 
456 	lp->tx_skb_dma[idx] = ca;
457 	td->ca = ca;
458 
459 	chain_prev = (idx - 1) & KORINA_TDS_MASK;
460 	chain_next = (idx + 1) & KORINA_TDS_MASK;
461 
462 	if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
463 		if (lp->tx_chain_status == desc_is_empty) {
464 			/* Update tail */
465 			td->control = DMA_COUNT(length) |
466 					DMA_DESC_COF | DMA_DESC_IOF;
467 			/* Move tail */
468 			lp->tx_chain_tail = chain_next;
469 			/* Write to NDPTR */
470 			writel(korina_tx_dma(lp, lp->tx_chain_head),
471 			       &lp->tx_dma_regs->dmandptr);
472 			/* Move head to tail */
473 			lp->tx_chain_head = lp->tx_chain_tail;
474 		} else {
475 			/* Update tail */
476 			td->control = DMA_COUNT(length) |
477 					DMA_DESC_COF | DMA_DESC_IOF;
478 			/* Link to prev */
479 			lp->td_ring[chain_prev].control &=
480 					~DMA_DESC_COF;
481 			/* Link to prev */
482 			lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
483 			/* Move tail */
484 			lp->tx_chain_tail = chain_next;
485 			/* Write to NDPTR */
486 			writel(korina_tx_dma(lp, lp->tx_chain_head),
487 			       &lp->tx_dma_regs->dmandptr);
488 			/* Move head to tail */
489 			lp->tx_chain_head = lp->tx_chain_tail;
490 			lp->tx_chain_status = desc_is_empty;
491 		}
492 	} else {
493 		if (lp->tx_chain_status == desc_is_empty) {
494 			/* Update tail */
495 			td->control = DMA_COUNT(length) |
496 					DMA_DESC_COF | DMA_DESC_IOF;
497 			/* Move tail */
498 			lp->tx_chain_tail = chain_next;
499 			lp->tx_chain_status = desc_filled;
500 		} else {
501 			/* Update tail */
502 			td->control = DMA_COUNT(length) |
503 					DMA_DESC_COF | DMA_DESC_IOF;
504 			lp->td_ring[chain_prev].control &=
505 					~DMA_DESC_COF;
506 			lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
507 			lp->tx_chain_tail = chain_next;
508 		}
509 	}
510 
511 	netif_trans_update(dev);
512 	spin_unlock_irqrestore(&lp->lock, flags);
513 
514 	return NETDEV_TX_OK;
515 
516 drop_packet:
517 	dev->stats.tx_dropped++;
518 	dev_kfree_skb_any(skb);
519 	spin_unlock_irqrestore(&lp->lock, flags);
520 
521 	return NETDEV_TX_OK;
522 }
523 
524 static int korina_mdio_wait(struct korina_private *lp)
525 {
526 	u32 value;
527 
528 	return readl_poll_timeout_atomic(&lp->eth_regs->miimind,
529 					 value, value & ETH_MII_IND_BSY,
530 					 1, 1000);
531 }
532 
533 static int korina_mdio_read(struct net_device *dev, int phy, int reg)
534 {
535 	struct korina_private *lp = netdev_priv(dev);
536 	int ret;
537 
538 	ret = korina_mdio_wait(lp);
539 	if (ret < 0)
540 		return ret;
541 
542 	writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
543 	writel(1, &lp->eth_regs->miimcmd);
544 
545 	ret = korina_mdio_wait(lp);
546 	if (ret < 0)
547 		return ret;
548 
549 	if (readl(&lp->eth_regs->miimind) & ETH_MII_IND_NV)
550 		return -EINVAL;
551 
552 	ret = readl(&lp->eth_regs->miimrdd);
553 	writel(0, &lp->eth_regs->miimcmd);
554 	return ret;
555 }
556 
557 static void korina_mdio_write(struct net_device *dev, int phy, int reg, int val)
558 {
559 	struct korina_private *lp = netdev_priv(dev);
560 
561 	if (korina_mdio_wait(lp))
562 		return;
563 
564 	writel(0, &lp->eth_regs->miimcmd);
565 	writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
566 	writel(val, &lp->eth_regs->miimwtd);
567 }
568 
569 /* Ethernet Rx DMA interrupt */
570 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
571 {
572 	struct net_device *dev = dev_id;
573 	struct korina_private *lp = netdev_priv(dev);
574 	u32 dmas, dmasm;
575 	irqreturn_t retval;
576 
577 	dmas = readl(&lp->rx_dma_regs->dmas);
578 	if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
579 		dmasm = readl(&lp->rx_dma_regs->dmasm);
580 		writel(dmasm | (DMA_STAT_DONE |
581 				DMA_STAT_HALT | DMA_STAT_ERR),
582 				&lp->rx_dma_regs->dmasm);
583 
584 		napi_schedule(&lp->napi);
585 
586 		if (dmas & DMA_STAT_ERR)
587 			printk(KERN_ERR "%s: DMA error\n", dev->name);
588 
589 		retval = IRQ_HANDLED;
590 	} else
591 		retval = IRQ_NONE;
592 
593 	return retval;
594 }
595 
596 static int korina_rx(struct net_device *dev, int limit)
597 {
598 	struct korina_private *lp = netdev_priv(dev);
599 	struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
600 	struct sk_buff *skb, *skb_new;
601 	u32 devcs, pkt_len, dmas;
602 	dma_addr_t ca;
603 	int count;
604 
605 	for (count = 0; count < limit; count++) {
606 		skb = lp->rx_skb[lp->rx_next_done];
607 		skb_new = NULL;
608 
609 		devcs = rd->devcs;
610 
611 		if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
612 			break;
613 
614 		/* check that this is a whole packet
615 		 * WARNING: DMA_FD bit incorrectly set
616 		 * in Rc32434 (errata ref #077) */
617 		if (!(devcs & ETH_RX_LD))
618 			goto next;
619 
620 		if (!(devcs & ETH_RX_ROK)) {
621 			/* Update statistics counters */
622 			dev->stats.rx_errors++;
623 			dev->stats.rx_dropped++;
624 			if (devcs & ETH_RX_CRC)
625 				dev->stats.rx_crc_errors++;
626 			if (devcs & ETH_RX_LE)
627 				dev->stats.rx_length_errors++;
628 			if (devcs & ETH_RX_OVR)
629 				dev->stats.rx_fifo_errors++;
630 			if (devcs & ETH_RX_CV)
631 				dev->stats.rx_frame_errors++;
632 			if (devcs & ETH_RX_CES)
633 				dev->stats.rx_frame_errors++;
634 
635 			goto next;
636 		}
637 
638 		/* Malloc up new buffer. */
639 		skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
640 		if (!skb_new)
641 			break;
642 
643 		ca = dma_map_single(lp->dmadev, skb_new->data, KORINA_RBSIZE,
644 				    DMA_FROM_DEVICE);
645 		if (dma_mapping_error(lp->dmadev, ca)) {
646 			dev_kfree_skb_any(skb_new);
647 			break;
648 		}
649 
650 		pkt_len = RCVPKT_LENGTH(devcs);
651 		dma_unmap_single(lp->dmadev, lp->rx_skb_dma[lp->rx_next_done],
652 				 pkt_len, DMA_FROM_DEVICE);
653 
654 		/* Do not count the CRC */
655 		skb_put(skb, pkt_len - 4);
656 		skb->protocol = eth_type_trans(skb, dev);
657 
658 		/* Pass the packet to upper layers */
659 		napi_gro_receive(&lp->napi, skb);
660 		dev->stats.rx_packets++;
661 		dev->stats.rx_bytes += pkt_len;
662 
663 		/* Update the mcast stats */
664 		if (devcs & ETH_RX_MP)
665 			dev->stats.multicast++;
666 
667 		lp->rx_skb[lp->rx_next_done] = skb_new;
668 		lp->rx_skb_dma[lp->rx_next_done] = ca;
669 
670 next:
671 		rd->devcs = 0;
672 
673 		/* Restore descriptor's curr_addr */
674 		rd->ca = lp->rx_skb_dma[lp->rx_next_done];
675 
676 		rd->control = DMA_COUNT(KORINA_RBSIZE) |
677 			DMA_DESC_COD | DMA_DESC_IOD;
678 		lp->rd_ring[(lp->rx_next_done - 1) &
679 			KORINA_RDS_MASK].control &=
680 			~DMA_DESC_COD;
681 
682 		lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
683 		rd = &lp->rd_ring[lp->rx_next_done];
684 		writel((u32)~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
685 	}
686 
687 	dmas = readl(&lp->rx_dma_regs->dmas);
688 
689 	if (dmas & DMA_STAT_HALT) {
690 		writel((u32)~(DMA_STAT_HALT | DMA_STAT_ERR),
691 		       &lp->rx_dma_regs->dmas);
692 
693 		lp->dma_halt_cnt++;
694 		rd->devcs = 0;
695 		rd->ca = lp->rx_skb_dma[lp->rx_next_done];
696 		writel(korina_rx_dma(lp, rd - lp->rd_ring),
697 		       &lp->rx_dma_regs->dmandptr);
698 	}
699 
700 	return count;
701 }
702 
703 static int korina_poll(struct napi_struct *napi, int budget)
704 {
705 	struct korina_private *lp =
706 		container_of(napi, struct korina_private, napi);
707 	struct net_device *dev = lp->dev;
708 	int work_done;
709 
710 	work_done = korina_rx(dev, budget);
711 	if (work_done < budget) {
712 		napi_complete_done(napi, work_done);
713 
714 		writel(readl(&lp->rx_dma_regs->dmasm) &
715 			~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
716 			&lp->rx_dma_regs->dmasm);
717 	}
718 	return work_done;
719 }
720 
721 /*
722  * Set or clear the multicast filter for this adaptor.
723  */
724 static void korina_multicast_list(struct net_device *dev)
725 {
726 	struct korina_private *lp = netdev_priv(dev);
727 	unsigned long flags;
728 	struct netdev_hw_addr *ha;
729 	u32 recognise = ETH_ARC_AB;	/* always accept broadcasts */
730 
731 	/* Set promiscuous mode */
732 	if (dev->flags & IFF_PROMISC)
733 		recognise |= ETH_ARC_PRO;
734 
735 	else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
736 		/* All multicast and broadcast */
737 		recognise |= ETH_ARC_AM;
738 
739 	/* Build the hash table */
740 	if (netdev_mc_count(dev) > 4) {
741 		u16 hash_table[4] = { 0 };
742 		u32 crc;
743 
744 		netdev_for_each_mc_addr(ha, dev) {
745 			crc = ether_crc_le(6, ha->addr);
746 			crc >>= 26;
747 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
748 		}
749 		/* Accept filtered multicast */
750 		recognise |= ETH_ARC_AFM;
751 
752 		/* Fill the MAC hash tables with their values */
753 		writel((u32)(hash_table[1] << 16 | hash_table[0]),
754 					&lp->eth_regs->ethhash0);
755 		writel((u32)(hash_table[3] << 16 | hash_table[2]),
756 					&lp->eth_regs->ethhash1);
757 	}
758 
759 	spin_lock_irqsave(&lp->lock, flags);
760 	writel(recognise, &lp->eth_regs->etharc);
761 	spin_unlock_irqrestore(&lp->lock, flags);
762 }
763 
764 static void korina_tx(struct net_device *dev)
765 {
766 	struct korina_private *lp = netdev_priv(dev);
767 	struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
768 	u32 devcs;
769 	u32 dmas;
770 
771 	spin_lock(&lp->lock);
772 
773 	/* Process all desc that are done */
774 	while (IS_DMA_FINISHED(td->control)) {
775 		if (lp->tx_full == 1) {
776 			netif_wake_queue(dev);
777 			lp->tx_full = 0;
778 		}
779 
780 		devcs = lp->td_ring[lp->tx_next_done].devcs;
781 		if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
782 				(ETH_TX_FD | ETH_TX_LD)) {
783 			dev->stats.tx_errors++;
784 			dev->stats.tx_dropped++;
785 
786 			/* Should never happen */
787 			printk(KERN_ERR "%s: split tx ignored\n",
788 							dev->name);
789 		} else if (devcs & ETH_TX_TOK) {
790 			dev->stats.tx_packets++;
791 			dev->stats.tx_bytes +=
792 					lp->tx_skb[lp->tx_next_done]->len;
793 		} else {
794 			dev->stats.tx_errors++;
795 			dev->stats.tx_dropped++;
796 
797 			/* Underflow */
798 			if (devcs & ETH_TX_UND)
799 				dev->stats.tx_fifo_errors++;
800 
801 			/* Oversized frame */
802 			if (devcs & ETH_TX_OF)
803 				dev->stats.tx_aborted_errors++;
804 
805 			/* Excessive deferrals */
806 			if (devcs & ETH_TX_ED)
807 				dev->stats.tx_carrier_errors++;
808 
809 			/* Collisions: medium busy */
810 			if (devcs & ETH_TX_EC)
811 				dev->stats.collisions++;
812 
813 			/* Late collision */
814 			if (devcs & ETH_TX_LC)
815 				dev->stats.tx_window_errors++;
816 		}
817 
818 		/* We must always free the original skb */
819 		if (lp->tx_skb[lp->tx_next_done]) {
820 			dma_unmap_single(lp->dmadev,
821 					 lp->tx_skb_dma[lp->tx_next_done],
822 					 lp->tx_skb[lp->tx_next_done]->len,
823 					 DMA_TO_DEVICE);
824 			dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
825 			lp->tx_skb[lp->tx_next_done] = NULL;
826 		}
827 
828 		lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
829 		lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
830 		lp->td_ring[lp->tx_next_done].link = 0;
831 		lp->td_ring[lp->tx_next_done].ca = 0;
832 		lp->tx_count--;
833 
834 		/* Go on to next transmission */
835 		lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
836 		td = &lp->td_ring[lp->tx_next_done];
837 
838 	}
839 
840 	/* Clear the DMA status register */
841 	dmas = readl(&lp->tx_dma_regs->dmas);
842 	writel(~dmas, &lp->tx_dma_regs->dmas);
843 
844 	writel(readl(&lp->tx_dma_regs->dmasm) &
845 			~(DMA_STAT_FINI | DMA_STAT_ERR),
846 			&lp->tx_dma_regs->dmasm);
847 
848 	spin_unlock(&lp->lock);
849 }
850 
851 static irqreturn_t
852 korina_tx_dma_interrupt(int irq, void *dev_id)
853 {
854 	struct net_device *dev = dev_id;
855 	struct korina_private *lp = netdev_priv(dev);
856 	u32 dmas, dmasm;
857 	irqreturn_t retval;
858 
859 	dmas = readl(&lp->tx_dma_regs->dmas);
860 
861 	if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
862 		dmasm = readl(&lp->tx_dma_regs->dmasm);
863 		writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
864 				&lp->tx_dma_regs->dmasm);
865 
866 		korina_tx(dev);
867 
868 		if (lp->tx_chain_status == desc_filled &&
869 			(readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
870 			writel(korina_tx_dma(lp, lp->tx_chain_head),
871 			       &lp->tx_dma_regs->dmandptr);
872 			lp->tx_chain_status = desc_is_empty;
873 			lp->tx_chain_head = lp->tx_chain_tail;
874 			netif_trans_update(dev);
875 		}
876 		if (dmas & DMA_STAT_ERR)
877 			printk(KERN_ERR "%s: DMA error\n", dev->name);
878 
879 		retval = IRQ_HANDLED;
880 	} else
881 		retval = IRQ_NONE;
882 
883 	return retval;
884 }
885 
886 
887 static void korina_check_media(struct net_device *dev, unsigned int init_media)
888 {
889 	struct korina_private *lp = netdev_priv(dev);
890 
891 	mii_check_media(&lp->mii_if, 1, init_media);
892 
893 	if (lp->mii_if.full_duplex)
894 		writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
895 						&lp->eth_regs->ethmac2);
896 	else
897 		writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
898 						&lp->eth_regs->ethmac2);
899 }
900 
901 static void korina_poll_media(struct timer_list *t)
902 {
903 	struct korina_private *lp = from_timer(lp, t, media_check_timer);
904 	struct net_device *dev = lp->dev;
905 
906 	korina_check_media(dev, 0);
907 	mod_timer(&lp->media_check_timer, jiffies + HZ);
908 }
909 
910 static void korina_set_carrier(struct mii_if_info *mii)
911 {
912 	if (mii->force_media) {
913 		/* autoneg is off: Link is always assumed to be up */
914 		if (!netif_carrier_ok(mii->dev))
915 			netif_carrier_on(mii->dev);
916 	} else  /* Let MMI library update carrier status */
917 		korina_check_media(mii->dev, 0);
918 }
919 
920 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
921 {
922 	struct korina_private *lp = netdev_priv(dev);
923 	struct mii_ioctl_data *data = if_mii(rq);
924 	int rc;
925 
926 	if (!netif_running(dev))
927 		return -EINVAL;
928 	spin_lock_irq(&lp->lock);
929 	rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
930 	spin_unlock_irq(&lp->lock);
931 	korina_set_carrier(&lp->mii_if);
932 
933 	return rc;
934 }
935 
936 /* ethtool helpers */
937 static void netdev_get_drvinfo(struct net_device *dev,
938 				struct ethtool_drvinfo *info)
939 {
940 	struct korina_private *lp = netdev_priv(dev);
941 
942 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
943 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
944 	strscpy(info->bus_info, lp->dev->name, sizeof(info->bus_info));
945 }
946 
947 static int netdev_get_link_ksettings(struct net_device *dev,
948 				     struct ethtool_link_ksettings *cmd)
949 {
950 	struct korina_private *lp = netdev_priv(dev);
951 
952 	spin_lock_irq(&lp->lock);
953 	mii_ethtool_get_link_ksettings(&lp->mii_if, cmd);
954 	spin_unlock_irq(&lp->lock);
955 
956 	return 0;
957 }
958 
959 static int netdev_set_link_ksettings(struct net_device *dev,
960 				     const struct ethtool_link_ksettings *cmd)
961 {
962 	struct korina_private *lp = netdev_priv(dev);
963 	int rc;
964 
965 	spin_lock_irq(&lp->lock);
966 	rc = mii_ethtool_set_link_ksettings(&lp->mii_if, cmd);
967 	spin_unlock_irq(&lp->lock);
968 	korina_set_carrier(&lp->mii_if);
969 
970 	return rc;
971 }
972 
973 static u32 netdev_get_link(struct net_device *dev)
974 {
975 	struct korina_private *lp = netdev_priv(dev);
976 
977 	return mii_link_ok(&lp->mii_if);
978 }
979 
980 static const struct ethtool_ops netdev_ethtool_ops = {
981 	.get_drvinfo		= netdev_get_drvinfo,
982 	.get_link		= netdev_get_link,
983 	.get_link_ksettings	= netdev_get_link_ksettings,
984 	.set_link_ksettings	= netdev_set_link_ksettings,
985 };
986 
987 static int korina_alloc_ring(struct net_device *dev)
988 {
989 	struct korina_private *lp = netdev_priv(dev);
990 	struct sk_buff *skb;
991 	dma_addr_t ca;
992 	int i;
993 
994 	/* Initialize the transmit descriptors */
995 	for (i = 0; i < KORINA_NUM_TDS; i++) {
996 		lp->td_ring[i].control = DMA_DESC_IOF;
997 		lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
998 		lp->td_ring[i].ca = 0;
999 		lp->td_ring[i].link = 0;
1000 	}
1001 	lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
1002 			lp->tx_full = lp->tx_count = 0;
1003 	lp->tx_chain_status = desc_is_empty;
1004 
1005 	/* Initialize the receive descriptors */
1006 	for (i = 0; i < KORINA_NUM_RDS; i++) {
1007 		skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
1008 		if (!skb)
1009 			return -ENOMEM;
1010 		lp->rx_skb[i] = skb;
1011 		lp->rd_ring[i].control = DMA_DESC_IOD |
1012 				DMA_COUNT(KORINA_RBSIZE);
1013 		lp->rd_ring[i].devcs = 0;
1014 		ca = dma_map_single(lp->dmadev, skb->data, KORINA_RBSIZE,
1015 				    DMA_FROM_DEVICE);
1016 		if (dma_mapping_error(lp->dmadev, ca))
1017 			return -ENOMEM;
1018 		lp->rd_ring[i].ca = ca;
1019 		lp->rx_skb_dma[i] = ca;
1020 		lp->rd_ring[i].link = korina_rx_dma(lp, i + 1);
1021 	}
1022 
1023 	/* loop back receive descriptors, so the last
1024 	 * descriptor points to the first one */
1025 	lp->rd_ring[i - 1].link = lp->rd_dma;
1026 	lp->rd_ring[i - 1].control |= DMA_DESC_COD;
1027 
1028 	lp->rx_next_done  = 0;
1029 	lp->rx_chain_head = 0;
1030 	lp->rx_chain_tail = 0;
1031 	lp->rx_chain_status = desc_is_empty;
1032 
1033 	return 0;
1034 }
1035 
1036 static void korina_free_ring(struct net_device *dev)
1037 {
1038 	struct korina_private *lp = netdev_priv(dev);
1039 	int i;
1040 
1041 	for (i = 0; i < KORINA_NUM_RDS; i++) {
1042 		lp->rd_ring[i].control = 0;
1043 		if (lp->rx_skb[i]) {
1044 			dma_unmap_single(lp->dmadev, lp->rx_skb_dma[i],
1045 					 KORINA_RBSIZE, DMA_FROM_DEVICE);
1046 			dev_kfree_skb_any(lp->rx_skb[i]);
1047 			lp->rx_skb[i] = NULL;
1048 		}
1049 	}
1050 
1051 	for (i = 0; i < KORINA_NUM_TDS; i++) {
1052 		lp->td_ring[i].control = 0;
1053 		if (lp->tx_skb[i]) {
1054 			dma_unmap_single(lp->dmadev, lp->tx_skb_dma[i],
1055 					 lp->tx_skb[i]->len, DMA_TO_DEVICE);
1056 			dev_kfree_skb_any(lp->tx_skb[i]);
1057 			lp->tx_skb[i] = NULL;
1058 		}
1059 	}
1060 }
1061 
1062 /*
1063  * Initialize the RC32434 ethernet controller.
1064  */
1065 static int korina_init(struct net_device *dev)
1066 {
1067 	struct korina_private *lp = netdev_priv(dev);
1068 
1069 	/* Disable DMA */
1070 	korina_abort_tx(dev);
1071 	korina_abort_rx(dev);
1072 
1073 	/* reset ethernet logic */
1074 	writel(0, &lp->eth_regs->ethintfc);
1075 	while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
1076 		netif_trans_update(dev);
1077 
1078 	/* Enable Ethernet Interface */
1079 	writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
1080 
1081 	/* Allocate rings */
1082 	if (korina_alloc_ring(dev)) {
1083 		printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
1084 		korina_free_ring(dev);
1085 		return -ENOMEM;
1086 	}
1087 
1088 	writel(0, &lp->rx_dma_regs->dmas);
1089 	/* Start Rx DMA */
1090 	writel(0, &lp->rx_dma_regs->dmandptr);
1091 	writel(korina_rx_dma(lp, 0), &lp->rx_dma_regs->dmadptr);
1092 
1093 	writel(readl(&lp->tx_dma_regs->dmasm) &
1094 			~(DMA_STAT_FINI | DMA_STAT_ERR),
1095 			&lp->tx_dma_regs->dmasm);
1096 	writel(readl(&lp->rx_dma_regs->dmasm) &
1097 			~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
1098 			&lp->rx_dma_regs->dmasm);
1099 
1100 	/* Accept only packets destined for this Ethernet device address */
1101 	writel(ETH_ARC_AB, &lp->eth_regs->etharc);
1102 
1103 	/* Set all Ether station address registers to their initial values */
1104 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
1105 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
1106 
1107 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
1108 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
1109 
1110 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
1111 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
1112 
1113 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
1114 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
1115 
1116 
1117 	/* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
1118 	writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
1119 			&lp->eth_regs->ethmac2);
1120 
1121 	/* Back to back inter-packet-gap */
1122 	writel(0x15, &lp->eth_regs->ethipgt);
1123 	/* Non - Back to back inter-packet-gap */
1124 	writel(0x12, &lp->eth_regs->ethipgr);
1125 
1126 	/* Management Clock Prescaler Divisor
1127 	 * Clock independent setting */
1128 	writel(((lp->mii_clock_freq) / MII_CLOCK + 1) & ~1,
1129 	       &lp->eth_regs->ethmcp);
1130 	writel(0, &lp->eth_regs->miimcfg);
1131 
1132 	/* don't transmit until fifo contains 48b */
1133 	writel(48, &lp->eth_regs->ethfifott);
1134 
1135 	writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
1136 
1137 	korina_check_media(dev, 1);
1138 
1139 	napi_enable(&lp->napi);
1140 	netif_start_queue(dev);
1141 
1142 	return 0;
1143 }
1144 
1145 /*
1146  * Restart the RC32434 ethernet controller.
1147  */
1148 static void korina_restart_task(struct work_struct *work)
1149 {
1150 	struct korina_private *lp = container_of(work,
1151 			struct korina_private, restart_task);
1152 	struct net_device *dev = lp->dev;
1153 
1154 	/*
1155 	 * Disable interrupts
1156 	 */
1157 	disable_irq(lp->rx_irq);
1158 	disable_irq(lp->tx_irq);
1159 
1160 	writel(readl(&lp->tx_dma_regs->dmasm) |
1161 				DMA_STAT_FINI | DMA_STAT_ERR,
1162 				&lp->tx_dma_regs->dmasm);
1163 	writel(readl(&lp->rx_dma_regs->dmasm) |
1164 				DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
1165 				&lp->rx_dma_regs->dmasm);
1166 
1167 	napi_disable(&lp->napi);
1168 
1169 	korina_free_ring(dev);
1170 
1171 	if (korina_init(dev) < 0) {
1172 		printk(KERN_ERR "%s: cannot restart device\n", dev->name);
1173 		return;
1174 	}
1175 	korina_multicast_list(dev);
1176 
1177 	enable_irq(lp->tx_irq);
1178 	enable_irq(lp->rx_irq);
1179 }
1180 
1181 static void korina_tx_timeout(struct net_device *dev, unsigned int txqueue)
1182 {
1183 	struct korina_private *lp = netdev_priv(dev);
1184 
1185 	schedule_work(&lp->restart_task);
1186 }
1187 
1188 #ifdef CONFIG_NET_POLL_CONTROLLER
1189 static void korina_poll_controller(struct net_device *dev)
1190 {
1191 	disable_irq(dev->irq);
1192 	korina_tx_dma_interrupt(dev->irq, dev);
1193 	enable_irq(dev->irq);
1194 }
1195 #endif
1196 
1197 static int korina_open(struct net_device *dev)
1198 {
1199 	struct korina_private *lp = netdev_priv(dev);
1200 	int ret;
1201 
1202 	/* Initialize */
1203 	ret = korina_init(dev);
1204 	if (ret < 0) {
1205 		printk(KERN_ERR "%s: cannot open device\n", dev->name);
1206 		goto out;
1207 	}
1208 
1209 	/* Install the interrupt handler
1210 	 * that handles the Done Finished */
1211 	ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
1212 			0, "Korina ethernet Rx", dev);
1213 	if (ret < 0) {
1214 		printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1215 			dev->name, lp->rx_irq);
1216 		goto err_release;
1217 	}
1218 	ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
1219 			0, "Korina ethernet Tx", dev);
1220 	if (ret < 0) {
1221 		printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1222 			dev->name, lp->tx_irq);
1223 		goto err_free_rx_irq;
1224 	}
1225 
1226 	mod_timer(&lp->media_check_timer, jiffies + 1);
1227 out:
1228 	return ret;
1229 
1230 err_free_rx_irq:
1231 	free_irq(lp->rx_irq, dev);
1232 err_release:
1233 	korina_free_ring(dev);
1234 	goto out;
1235 }
1236 
1237 static int korina_close(struct net_device *dev)
1238 {
1239 	struct korina_private *lp = netdev_priv(dev);
1240 	u32 tmp;
1241 
1242 	del_timer(&lp->media_check_timer);
1243 
1244 	/* Disable interrupts */
1245 	disable_irq(lp->rx_irq);
1246 	disable_irq(lp->tx_irq);
1247 
1248 	korina_abort_tx(dev);
1249 	tmp = readl(&lp->tx_dma_regs->dmasm);
1250 	tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1251 	writel(tmp, &lp->tx_dma_regs->dmasm);
1252 
1253 	korina_abort_rx(dev);
1254 	tmp = readl(&lp->rx_dma_regs->dmasm);
1255 	tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1256 	writel(tmp, &lp->rx_dma_regs->dmasm);
1257 
1258 	napi_disable(&lp->napi);
1259 
1260 	cancel_work_sync(&lp->restart_task);
1261 
1262 	korina_free_ring(dev);
1263 
1264 	free_irq(lp->rx_irq, dev);
1265 	free_irq(lp->tx_irq, dev);
1266 
1267 	return 0;
1268 }
1269 
1270 static const struct net_device_ops korina_netdev_ops = {
1271 	.ndo_open		= korina_open,
1272 	.ndo_stop		= korina_close,
1273 	.ndo_start_xmit		= korina_send_packet,
1274 	.ndo_set_rx_mode	= korina_multicast_list,
1275 	.ndo_tx_timeout		= korina_tx_timeout,
1276 	.ndo_eth_ioctl		= korina_ioctl,
1277 	.ndo_validate_addr	= eth_validate_addr,
1278 	.ndo_set_mac_address	= eth_mac_addr,
1279 #ifdef CONFIG_NET_POLL_CONTROLLER
1280 	.ndo_poll_controller	= korina_poll_controller,
1281 #endif
1282 };
1283 
1284 static int korina_probe(struct platform_device *pdev)
1285 {
1286 	u8 *mac_addr = dev_get_platdata(&pdev->dev);
1287 	struct korina_private *lp;
1288 	struct net_device *dev;
1289 	struct clk *clk;
1290 	void __iomem *p;
1291 	int rc;
1292 
1293 	dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct korina_private));
1294 	if (!dev)
1295 		return -ENOMEM;
1296 
1297 	SET_NETDEV_DEV(dev, &pdev->dev);
1298 	lp = netdev_priv(dev);
1299 
1300 	if (mac_addr)
1301 		eth_hw_addr_set(dev, mac_addr);
1302 	else if (of_get_ethdev_address(pdev->dev.of_node, dev) < 0)
1303 		eth_hw_addr_random(dev);
1304 
1305 	clk = devm_clk_get_optional(&pdev->dev, "mdioclk");
1306 	if (IS_ERR(clk))
1307 		return PTR_ERR(clk);
1308 	if (clk) {
1309 		clk_prepare_enable(clk);
1310 		lp->mii_clock_freq = clk_get_rate(clk);
1311 	} else {
1312 		lp->mii_clock_freq = 200000000; /* max possible input clk */
1313 	}
1314 
1315 	lp->rx_irq = platform_get_irq_byname(pdev, "rx");
1316 	lp->tx_irq = platform_get_irq_byname(pdev, "tx");
1317 
1318 	p = devm_platform_ioremap_resource_byname(pdev, "emac");
1319 	if (IS_ERR(p)) {
1320 		printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1321 		return PTR_ERR(p);
1322 	}
1323 	lp->eth_regs = p;
1324 
1325 	p = devm_platform_ioremap_resource_byname(pdev, "dma_rx");
1326 	if (IS_ERR(p)) {
1327 		printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1328 		return PTR_ERR(p);
1329 	}
1330 	lp->rx_dma_regs = p;
1331 
1332 	p = devm_platform_ioremap_resource_byname(pdev, "dma_tx");
1333 	if (IS_ERR(p)) {
1334 		printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1335 		return PTR_ERR(p);
1336 	}
1337 	lp->tx_dma_regs = p;
1338 
1339 	lp->td_ring = dmam_alloc_coherent(&pdev->dev, TD_RING_SIZE,
1340 					  &lp->td_dma, GFP_KERNEL);
1341 	if (!lp->td_ring)
1342 		return -ENOMEM;
1343 
1344 	lp->rd_ring = dmam_alloc_coherent(&pdev->dev, RD_RING_SIZE,
1345 					  &lp->rd_dma, GFP_KERNEL);
1346 	if (!lp->rd_ring)
1347 		return -ENOMEM;
1348 
1349 	spin_lock_init(&lp->lock);
1350 	/* just use the rx dma irq */
1351 	dev->irq = lp->rx_irq;
1352 	lp->dev = dev;
1353 	lp->dmadev = &pdev->dev;
1354 
1355 	dev->netdev_ops = &korina_netdev_ops;
1356 	dev->ethtool_ops = &netdev_ethtool_ops;
1357 	dev->watchdog_timeo = TX_TIMEOUT;
1358 	netif_napi_add(dev, &lp->napi, korina_poll);
1359 
1360 	lp->mii_if.dev = dev;
1361 	lp->mii_if.mdio_read = korina_mdio_read;
1362 	lp->mii_if.mdio_write = korina_mdio_write;
1363 	lp->mii_if.phy_id = 1;
1364 	lp->mii_if.phy_id_mask = 0x1f;
1365 	lp->mii_if.reg_num_mask = 0x1f;
1366 
1367 	platform_set_drvdata(pdev, dev);
1368 
1369 	rc = register_netdev(dev);
1370 	if (rc < 0) {
1371 		printk(KERN_ERR DRV_NAME
1372 			": cannot register net device: %d\n", rc);
1373 		return rc;
1374 	}
1375 	timer_setup(&lp->media_check_timer, korina_poll_media, 0);
1376 
1377 	INIT_WORK(&lp->restart_task, korina_restart_task);
1378 
1379 	printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1380 			dev->name);
1381 	return rc;
1382 }
1383 
1384 static int korina_remove(struct platform_device *pdev)
1385 {
1386 	struct net_device *dev = platform_get_drvdata(pdev);
1387 
1388 	unregister_netdev(dev);
1389 
1390 	return 0;
1391 }
1392 
1393 #ifdef CONFIG_OF
1394 static const struct of_device_id korina_match[] = {
1395 	{
1396 		.compatible = "idt,3243x-emac",
1397 	},
1398 	{ }
1399 };
1400 MODULE_DEVICE_TABLE(of, korina_match);
1401 #endif
1402 
1403 static struct platform_driver korina_driver = {
1404 	.driver = {
1405 		.name = "korina",
1406 		.of_match_table = of_match_ptr(korina_match),
1407 	},
1408 	.probe = korina_probe,
1409 	.remove = korina_remove,
1410 };
1411 
1412 module_platform_driver(korina_driver);
1413 
1414 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1415 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1416 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1417 MODULE_AUTHOR("Roman Yeryomin <roman@advem.lv>");
1418 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1419 MODULE_LICENSE("GPL");
1420