1 /* 2 * Driver for the IDT RC32434 (Korina) on-chip ethernet controller. 3 * 4 * Copyright 2004 IDT Inc. (rischelp@idt.com) 5 * Copyright 2006 Felix Fietkau <nbd@openwrt.org> 6 * Copyright 2008 Florian Fainelli <florian@openwrt.org> 7 * 8 * This program is free software; you can redistribute it and/or modify it 9 * under the terms of the GNU General Public License as published by the 10 * Free Software Foundation; either version 2 of the License, or (at your 11 * option) any later version. 12 * 13 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 14 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 15 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN 16 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 19 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 20 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 23 * 24 * You should have received a copy of the GNU General Public License along 25 * with this program; if not, write to the Free Software Foundation, Inc., 26 * 675 Mass Ave, Cambridge, MA 02139, USA. 27 * 28 * Writing to a DMA status register: 29 * 30 * When writing to the status register, you should mask the bit you have 31 * been testing the status register with. Both Tx and Rx DMA registers 32 * should stick to this procedure. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/kernel.h> 37 #include <linux/moduleparam.h> 38 #include <linux/sched.h> 39 #include <linux/ctype.h> 40 #include <linux/types.h> 41 #include <linux/interrupt.h> 42 #include <linux/init.h> 43 #include <linux/ioport.h> 44 #include <linux/in.h> 45 #include <linux/slab.h> 46 #include <linux/string.h> 47 #include <linux/delay.h> 48 #include <linux/netdevice.h> 49 #include <linux/etherdevice.h> 50 #include <linux/skbuff.h> 51 #include <linux/errno.h> 52 #include <linux/platform_device.h> 53 #include <linux/mii.h> 54 #include <linux/ethtool.h> 55 #include <linux/crc32.h> 56 57 #include <asm/bootinfo.h> 58 #include <asm/bitops.h> 59 #include <asm/pgtable.h> 60 #include <asm/io.h> 61 #include <asm/dma.h> 62 63 #include <asm/mach-rc32434/rb.h> 64 #include <asm/mach-rc32434/rc32434.h> 65 #include <asm/mach-rc32434/eth.h> 66 #include <asm/mach-rc32434/dma_v.h> 67 68 #define DRV_NAME "korina" 69 #define DRV_VERSION "0.10" 70 #define DRV_RELDATE "04Mar2008" 71 72 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \ 73 ((dev)->dev_addr[1])) 74 #define STATION_ADDRESS_LOW(dev) (((dev)->dev_addr[2] << 24) | \ 75 ((dev)->dev_addr[3] << 16) | \ 76 ((dev)->dev_addr[4] << 8) | \ 77 ((dev)->dev_addr[5])) 78 79 #define MII_CLOCK 1250000 /* no more than 2.5MHz */ 80 81 /* the following must be powers of two */ 82 #define KORINA_NUM_RDS 64 /* number of receive descriptors */ 83 #define KORINA_NUM_TDS 64 /* number of transmit descriptors */ 84 85 /* KORINA_RBSIZE is the hardware's default maximum receive 86 * frame size in bytes. Having this hardcoded means that there 87 * is no support for MTU sizes greater than 1500. */ 88 #define KORINA_RBSIZE 1536 /* size of one resource buffer = Ether MTU */ 89 #define KORINA_RDS_MASK (KORINA_NUM_RDS - 1) 90 #define KORINA_TDS_MASK (KORINA_NUM_TDS - 1) 91 #define RD_RING_SIZE (KORINA_NUM_RDS * sizeof(struct dma_desc)) 92 #define TD_RING_SIZE (KORINA_NUM_TDS * sizeof(struct dma_desc)) 93 94 #define TX_TIMEOUT (6000 * HZ / 1000) 95 96 enum chain_status { desc_filled, desc_empty }; 97 #define IS_DMA_FINISHED(X) (((X) & (DMA_DESC_FINI)) != 0) 98 #define IS_DMA_DONE(X) (((X) & (DMA_DESC_DONE)) != 0) 99 #define RCVPKT_LENGTH(X) (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT) 100 101 /* Information that need to be kept for each board. */ 102 struct korina_private { 103 struct eth_regs *eth_regs; 104 struct dma_reg *rx_dma_regs; 105 struct dma_reg *tx_dma_regs; 106 struct dma_desc *td_ring; /* transmit descriptor ring */ 107 struct dma_desc *rd_ring; /* receive descriptor ring */ 108 109 struct sk_buff *tx_skb[KORINA_NUM_TDS]; 110 struct sk_buff *rx_skb[KORINA_NUM_RDS]; 111 112 int rx_next_done; 113 int rx_chain_head; 114 int rx_chain_tail; 115 enum chain_status rx_chain_status; 116 117 int tx_next_done; 118 int tx_chain_head; 119 int tx_chain_tail; 120 enum chain_status tx_chain_status; 121 int tx_count; 122 int tx_full; 123 124 int rx_irq; 125 int tx_irq; 126 int ovr_irq; 127 int und_irq; 128 129 spinlock_t lock; /* NIC xmit lock */ 130 131 int dma_halt_cnt; 132 int dma_run_cnt; 133 struct napi_struct napi; 134 struct timer_list media_check_timer; 135 struct mii_if_info mii_if; 136 struct work_struct restart_task; 137 struct net_device *dev; 138 int phy_addr; 139 }; 140 141 extern unsigned int idt_cpu_freq; 142 143 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr) 144 { 145 writel(0, &ch->dmandptr); 146 writel(dma_addr, &ch->dmadptr); 147 } 148 149 static inline void korina_abort_dma(struct net_device *dev, 150 struct dma_reg *ch) 151 { 152 if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) { 153 writel(0x10, &ch->dmac); 154 155 while (!(readl(&ch->dmas) & DMA_STAT_HALT)) 156 dev->trans_start = jiffies; 157 158 writel(0, &ch->dmas); 159 } 160 161 writel(0, &ch->dmadptr); 162 writel(0, &ch->dmandptr); 163 } 164 165 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr) 166 { 167 writel(dma_addr, &ch->dmandptr); 168 } 169 170 static void korina_abort_tx(struct net_device *dev) 171 { 172 struct korina_private *lp = netdev_priv(dev); 173 174 korina_abort_dma(dev, lp->tx_dma_regs); 175 } 176 177 static void korina_abort_rx(struct net_device *dev) 178 { 179 struct korina_private *lp = netdev_priv(dev); 180 181 korina_abort_dma(dev, lp->rx_dma_regs); 182 } 183 184 static void korina_start_rx(struct korina_private *lp, 185 struct dma_desc *rd) 186 { 187 korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd)); 188 } 189 190 static void korina_chain_rx(struct korina_private *lp, 191 struct dma_desc *rd) 192 { 193 korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd)); 194 } 195 196 /* transmit packet */ 197 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev) 198 { 199 struct korina_private *lp = netdev_priv(dev); 200 unsigned long flags; 201 u32 length; 202 u32 chain_prev, chain_next; 203 struct dma_desc *td; 204 205 spin_lock_irqsave(&lp->lock, flags); 206 207 td = &lp->td_ring[lp->tx_chain_tail]; 208 209 /* stop queue when full, drop pkts if queue already full */ 210 if (lp->tx_count >= (KORINA_NUM_TDS - 2)) { 211 lp->tx_full = 1; 212 213 if (lp->tx_count == (KORINA_NUM_TDS - 2)) 214 netif_stop_queue(dev); 215 else { 216 dev->stats.tx_dropped++; 217 dev_kfree_skb_any(skb); 218 spin_unlock_irqrestore(&lp->lock, flags); 219 220 return NETDEV_TX_BUSY; 221 } 222 } 223 224 lp->tx_count++; 225 226 lp->tx_skb[lp->tx_chain_tail] = skb; 227 228 length = skb->len; 229 dma_cache_wback((u32)skb->data, skb->len); 230 231 /* Setup the transmit descriptor. */ 232 dma_cache_inv((u32) td, sizeof(*td)); 233 td->ca = CPHYSADDR(skb->data); 234 chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK; 235 chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK; 236 237 if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) { 238 if (lp->tx_chain_status == desc_empty) { 239 /* Update tail */ 240 td->control = DMA_COUNT(length) | 241 DMA_DESC_COF | DMA_DESC_IOF; 242 /* Move tail */ 243 lp->tx_chain_tail = chain_next; 244 /* Write to NDPTR */ 245 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), 246 &lp->tx_dma_regs->dmandptr); 247 /* Move head to tail */ 248 lp->tx_chain_head = lp->tx_chain_tail; 249 } else { 250 /* Update tail */ 251 td->control = DMA_COUNT(length) | 252 DMA_DESC_COF | DMA_DESC_IOF; 253 /* Link to prev */ 254 lp->td_ring[chain_prev].control &= 255 ~DMA_DESC_COF; 256 /* Link to prev */ 257 lp->td_ring[chain_prev].link = CPHYSADDR(td); 258 /* Move tail */ 259 lp->tx_chain_tail = chain_next; 260 /* Write to NDPTR */ 261 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), 262 &(lp->tx_dma_regs->dmandptr)); 263 /* Move head to tail */ 264 lp->tx_chain_head = lp->tx_chain_tail; 265 lp->tx_chain_status = desc_empty; 266 } 267 } else { 268 if (lp->tx_chain_status == desc_empty) { 269 /* Update tail */ 270 td->control = DMA_COUNT(length) | 271 DMA_DESC_COF | DMA_DESC_IOF; 272 /* Move tail */ 273 lp->tx_chain_tail = chain_next; 274 lp->tx_chain_status = desc_filled; 275 } else { 276 /* Update tail */ 277 td->control = DMA_COUNT(length) | 278 DMA_DESC_COF | DMA_DESC_IOF; 279 lp->td_ring[chain_prev].control &= 280 ~DMA_DESC_COF; 281 lp->td_ring[chain_prev].link = CPHYSADDR(td); 282 lp->tx_chain_tail = chain_next; 283 } 284 } 285 dma_cache_wback((u32) td, sizeof(*td)); 286 287 dev->trans_start = jiffies; 288 spin_unlock_irqrestore(&lp->lock, flags); 289 290 return NETDEV_TX_OK; 291 } 292 293 static int mdio_read(struct net_device *dev, int mii_id, int reg) 294 { 295 struct korina_private *lp = netdev_priv(dev); 296 int ret; 297 298 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8); 299 300 writel(0, &lp->eth_regs->miimcfg); 301 writel(0, &lp->eth_regs->miimcmd); 302 writel(mii_id | reg, &lp->eth_regs->miimaddr); 303 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd); 304 305 ret = (int)(readl(&lp->eth_regs->miimrdd)); 306 return ret; 307 } 308 309 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val) 310 { 311 struct korina_private *lp = netdev_priv(dev); 312 313 mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8); 314 315 writel(0, &lp->eth_regs->miimcfg); 316 writel(1, &lp->eth_regs->miimcmd); 317 writel(mii_id | reg, &lp->eth_regs->miimaddr); 318 writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd); 319 writel(val, &lp->eth_regs->miimwtd); 320 } 321 322 /* Ethernet Rx DMA interrupt */ 323 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id) 324 { 325 struct net_device *dev = dev_id; 326 struct korina_private *lp = netdev_priv(dev); 327 u32 dmas, dmasm; 328 irqreturn_t retval; 329 330 dmas = readl(&lp->rx_dma_regs->dmas); 331 if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) { 332 dmasm = readl(&lp->rx_dma_regs->dmasm); 333 writel(dmasm | (DMA_STAT_DONE | 334 DMA_STAT_HALT | DMA_STAT_ERR), 335 &lp->rx_dma_regs->dmasm); 336 337 napi_schedule(&lp->napi); 338 339 if (dmas & DMA_STAT_ERR) 340 printk(KERN_ERR "%s: DMA error\n", dev->name); 341 342 retval = IRQ_HANDLED; 343 } else 344 retval = IRQ_NONE; 345 346 return retval; 347 } 348 349 static int korina_rx(struct net_device *dev, int limit) 350 { 351 struct korina_private *lp = netdev_priv(dev); 352 struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done]; 353 struct sk_buff *skb, *skb_new; 354 u8 *pkt_buf; 355 u32 devcs, pkt_len, dmas; 356 int count; 357 358 dma_cache_inv((u32)rd, sizeof(*rd)); 359 360 for (count = 0; count < limit; count++) { 361 skb = lp->rx_skb[lp->rx_next_done]; 362 skb_new = NULL; 363 364 devcs = rd->devcs; 365 366 if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0) 367 break; 368 369 /* Update statistics counters */ 370 if (devcs & ETH_RX_CRC) 371 dev->stats.rx_crc_errors++; 372 if (devcs & ETH_RX_LOR) 373 dev->stats.rx_length_errors++; 374 if (devcs & ETH_RX_LE) 375 dev->stats.rx_length_errors++; 376 if (devcs & ETH_RX_OVR) 377 dev->stats.rx_fifo_errors++; 378 if (devcs & ETH_RX_CV) 379 dev->stats.rx_frame_errors++; 380 if (devcs & ETH_RX_CES) 381 dev->stats.rx_length_errors++; 382 if (devcs & ETH_RX_MP) 383 dev->stats.multicast++; 384 385 if ((devcs & ETH_RX_LD) != ETH_RX_LD) { 386 /* check that this is a whole packet 387 * WARNING: DMA_FD bit incorrectly set 388 * in Rc32434 (errata ref #077) */ 389 dev->stats.rx_errors++; 390 dev->stats.rx_dropped++; 391 } else if ((devcs & ETH_RX_ROK)) { 392 pkt_len = RCVPKT_LENGTH(devcs); 393 394 /* must be the (first and) last 395 * descriptor then */ 396 pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data; 397 398 /* invalidate the cache */ 399 dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4); 400 401 /* Malloc up new buffer. */ 402 skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE); 403 404 if (!skb_new) 405 break; 406 /* Do not count the CRC */ 407 skb_put(skb, pkt_len - 4); 408 skb->protocol = eth_type_trans(skb, dev); 409 410 /* Pass the packet to upper layers */ 411 netif_receive_skb(skb); 412 dev->stats.rx_packets++; 413 dev->stats.rx_bytes += pkt_len; 414 415 /* Update the mcast stats */ 416 if (devcs & ETH_RX_MP) 417 dev->stats.multicast++; 418 419 lp->rx_skb[lp->rx_next_done] = skb_new; 420 } 421 422 rd->devcs = 0; 423 424 /* Restore descriptor's curr_addr */ 425 if (skb_new) 426 rd->ca = CPHYSADDR(skb_new->data); 427 else 428 rd->ca = CPHYSADDR(skb->data); 429 430 rd->control = DMA_COUNT(KORINA_RBSIZE) | 431 DMA_DESC_COD | DMA_DESC_IOD; 432 lp->rd_ring[(lp->rx_next_done - 1) & 433 KORINA_RDS_MASK].control &= 434 ~DMA_DESC_COD; 435 436 lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK; 437 dma_cache_wback((u32)rd, sizeof(*rd)); 438 rd = &lp->rd_ring[lp->rx_next_done]; 439 writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas); 440 } 441 442 dmas = readl(&lp->rx_dma_regs->dmas); 443 444 if (dmas & DMA_STAT_HALT) { 445 writel(~(DMA_STAT_HALT | DMA_STAT_ERR), 446 &lp->rx_dma_regs->dmas); 447 448 lp->dma_halt_cnt++; 449 rd->devcs = 0; 450 skb = lp->rx_skb[lp->rx_next_done]; 451 rd->ca = CPHYSADDR(skb->data); 452 dma_cache_wback((u32)rd, sizeof(*rd)); 453 korina_chain_rx(lp, rd); 454 } 455 456 return count; 457 } 458 459 static int korina_poll(struct napi_struct *napi, int budget) 460 { 461 struct korina_private *lp = 462 container_of(napi, struct korina_private, napi); 463 struct net_device *dev = lp->dev; 464 int work_done; 465 466 work_done = korina_rx(dev, budget); 467 if (work_done < budget) { 468 napi_complete(napi); 469 470 writel(readl(&lp->rx_dma_regs->dmasm) & 471 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR), 472 &lp->rx_dma_regs->dmasm); 473 } 474 return work_done; 475 } 476 477 /* 478 * Set or clear the multicast filter for this adaptor. 479 */ 480 static void korina_multicast_list(struct net_device *dev) 481 { 482 struct korina_private *lp = netdev_priv(dev); 483 unsigned long flags; 484 struct netdev_hw_addr *ha; 485 u32 recognise = ETH_ARC_AB; /* always accept broadcasts */ 486 int i; 487 488 /* Set promiscuous mode */ 489 if (dev->flags & IFF_PROMISC) 490 recognise |= ETH_ARC_PRO; 491 492 else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4)) 493 /* All multicast and broadcast */ 494 recognise |= ETH_ARC_AM; 495 496 /* Build the hash table */ 497 if (netdev_mc_count(dev) > 4) { 498 u16 hash_table[4]; 499 u32 crc; 500 501 for (i = 0; i < 4; i++) 502 hash_table[i] = 0; 503 504 netdev_for_each_mc_addr(ha, dev) { 505 crc = ether_crc_le(6, ha->addr); 506 crc >>= 26; 507 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); 508 } 509 /* Accept filtered multicast */ 510 recognise |= ETH_ARC_AFM; 511 512 /* Fill the MAC hash tables with their values */ 513 writel((u32)(hash_table[1] << 16 | hash_table[0]), 514 &lp->eth_regs->ethhash0); 515 writel((u32)(hash_table[3] << 16 | hash_table[2]), 516 &lp->eth_regs->ethhash1); 517 } 518 519 spin_lock_irqsave(&lp->lock, flags); 520 writel(recognise, &lp->eth_regs->etharc); 521 spin_unlock_irqrestore(&lp->lock, flags); 522 } 523 524 static void korina_tx(struct net_device *dev) 525 { 526 struct korina_private *lp = netdev_priv(dev); 527 struct dma_desc *td = &lp->td_ring[lp->tx_next_done]; 528 u32 devcs; 529 u32 dmas; 530 531 spin_lock(&lp->lock); 532 533 /* Process all desc that are done */ 534 while (IS_DMA_FINISHED(td->control)) { 535 if (lp->tx_full == 1) { 536 netif_wake_queue(dev); 537 lp->tx_full = 0; 538 } 539 540 devcs = lp->td_ring[lp->tx_next_done].devcs; 541 if ((devcs & (ETH_TX_FD | ETH_TX_LD)) != 542 (ETH_TX_FD | ETH_TX_LD)) { 543 dev->stats.tx_errors++; 544 dev->stats.tx_dropped++; 545 546 /* Should never happen */ 547 printk(KERN_ERR "%s: split tx ignored\n", 548 dev->name); 549 } else if (devcs & ETH_TX_TOK) { 550 dev->stats.tx_packets++; 551 dev->stats.tx_bytes += 552 lp->tx_skb[lp->tx_next_done]->len; 553 } else { 554 dev->stats.tx_errors++; 555 dev->stats.tx_dropped++; 556 557 /* Underflow */ 558 if (devcs & ETH_TX_UND) 559 dev->stats.tx_fifo_errors++; 560 561 /* Oversized frame */ 562 if (devcs & ETH_TX_OF) 563 dev->stats.tx_aborted_errors++; 564 565 /* Excessive deferrals */ 566 if (devcs & ETH_TX_ED) 567 dev->stats.tx_carrier_errors++; 568 569 /* Collisions: medium busy */ 570 if (devcs & ETH_TX_EC) 571 dev->stats.collisions++; 572 573 /* Late collision */ 574 if (devcs & ETH_TX_LC) 575 dev->stats.tx_window_errors++; 576 } 577 578 /* We must always free the original skb */ 579 if (lp->tx_skb[lp->tx_next_done]) { 580 dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]); 581 lp->tx_skb[lp->tx_next_done] = NULL; 582 } 583 584 lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF; 585 lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD; 586 lp->td_ring[lp->tx_next_done].link = 0; 587 lp->td_ring[lp->tx_next_done].ca = 0; 588 lp->tx_count--; 589 590 /* Go on to next transmission */ 591 lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK; 592 td = &lp->td_ring[lp->tx_next_done]; 593 594 } 595 596 /* Clear the DMA status register */ 597 dmas = readl(&lp->tx_dma_regs->dmas); 598 writel(~dmas, &lp->tx_dma_regs->dmas); 599 600 writel(readl(&lp->tx_dma_regs->dmasm) & 601 ~(DMA_STAT_FINI | DMA_STAT_ERR), 602 &lp->tx_dma_regs->dmasm); 603 604 spin_unlock(&lp->lock); 605 } 606 607 static irqreturn_t 608 korina_tx_dma_interrupt(int irq, void *dev_id) 609 { 610 struct net_device *dev = dev_id; 611 struct korina_private *lp = netdev_priv(dev); 612 u32 dmas, dmasm; 613 irqreturn_t retval; 614 615 dmas = readl(&lp->tx_dma_regs->dmas); 616 617 if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) { 618 dmasm = readl(&lp->tx_dma_regs->dmasm); 619 writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR), 620 &lp->tx_dma_regs->dmasm); 621 622 korina_tx(dev); 623 624 if (lp->tx_chain_status == desc_filled && 625 (readl(&(lp->tx_dma_regs->dmandptr)) == 0)) { 626 writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]), 627 &(lp->tx_dma_regs->dmandptr)); 628 lp->tx_chain_status = desc_empty; 629 lp->tx_chain_head = lp->tx_chain_tail; 630 dev->trans_start = jiffies; 631 } 632 if (dmas & DMA_STAT_ERR) 633 printk(KERN_ERR "%s: DMA error\n", dev->name); 634 635 retval = IRQ_HANDLED; 636 } else 637 retval = IRQ_NONE; 638 639 return retval; 640 } 641 642 643 static void korina_check_media(struct net_device *dev, unsigned int init_media) 644 { 645 struct korina_private *lp = netdev_priv(dev); 646 647 mii_check_media(&lp->mii_if, 0, init_media); 648 649 if (lp->mii_if.full_duplex) 650 writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD, 651 &lp->eth_regs->ethmac2); 652 else 653 writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD, 654 &lp->eth_regs->ethmac2); 655 } 656 657 static void korina_poll_media(unsigned long data) 658 { 659 struct net_device *dev = (struct net_device *) data; 660 struct korina_private *lp = netdev_priv(dev); 661 662 korina_check_media(dev, 0); 663 mod_timer(&lp->media_check_timer, jiffies + HZ); 664 } 665 666 static void korina_set_carrier(struct mii_if_info *mii) 667 { 668 if (mii->force_media) { 669 /* autoneg is off: Link is always assumed to be up */ 670 if (!netif_carrier_ok(mii->dev)) 671 netif_carrier_on(mii->dev); 672 } else /* Let MMI library update carrier status */ 673 korina_check_media(mii->dev, 0); 674 } 675 676 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 677 { 678 struct korina_private *lp = netdev_priv(dev); 679 struct mii_ioctl_data *data = if_mii(rq); 680 int rc; 681 682 if (!netif_running(dev)) 683 return -EINVAL; 684 spin_lock_irq(&lp->lock); 685 rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL); 686 spin_unlock_irq(&lp->lock); 687 korina_set_carrier(&lp->mii_if); 688 689 return rc; 690 } 691 692 /* ethtool helpers */ 693 static void netdev_get_drvinfo(struct net_device *dev, 694 struct ethtool_drvinfo *info) 695 { 696 struct korina_private *lp = netdev_priv(dev); 697 698 strcpy(info->driver, DRV_NAME); 699 strcpy(info->version, DRV_VERSION); 700 strcpy(info->bus_info, lp->dev->name); 701 } 702 703 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 704 { 705 struct korina_private *lp = netdev_priv(dev); 706 int rc; 707 708 spin_lock_irq(&lp->lock); 709 rc = mii_ethtool_gset(&lp->mii_if, cmd); 710 spin_unlock_irq(&lp->lock); 711 712 return rc; 713 } 714 715 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 716 { 717 struct korina_private *lp = netdev_priv(dev); 718 int rc; 719 720 spin_lock_irq(&lp->lock); 721 rc = mii_ethtool_sset(&lp->mii_if, cmd); 722 spin_unlock_irq(&lp->lock); 723 korina_set_carrier(&lp->mii_if); 724 725 return rc; 726 } 727 728 static u32 netdev_get_link(struct net_device *dev) 729 { 730 struct korina_private *lp = netdev_priv(dev); 731 732 return mii_link_ok(&lp->mii_if); 733 } 734 735 static const struct ethtool_ops netdev_ethtool_ops = { 736 .get_drvinfo = netdev_get_drvinfo, 737 .get_settings = netdev_get_settings, 738 .set_settings = netdev_set_settings, 739 .get_link = netdev_get_link, 740 }; 741 742 static int korina_alloc_ring(struct net_device *dev) 743 { 744 struct korina_private *lp = netdev_priv(dev); 745 struct sk_buff *skb; 746 int i; 747 748 /* Initialize the transmit descriptors */ 749 for (i = 0; i < KORINA_NUM_TDS; i++) { 750 lp->td_ring[i].control = DMA_DESC_IOF; 751 lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD; 752 lp->td_ring[i].ca = 0; 753 lp->td_ring[i].link = 0; 754 } 755 lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail = 756 lp->tx_full = lp->tx_count = 0; 757 lp->tx_chain_status = desc_empty; 758 759 /* Initialize the receive descriptors */ 760 for (i = 0; i < KORINA_NUM_RDS; i++) { 761 skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE); 762 if (!skb) 763 return -ENOMEM; 764 lp->rx_skb[i] = skb; 765 lp->rd_ring[i].control = DMA_DESC_IOD | 766 DMA_COUNT(KORINA_RBSIZE); 767 lp->rd_ring[i].devcs = 0; 768 lp->rd_ring[i].ca = CPHYSADDR(skb->data); 769 lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]); 770 } 771 772 /* loop back receive descriptors, so the last 773 * descriptor points to the first one */ 774 lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]); 775 lp->rd_ring[i - 1].control |= DMA_DESC_COD; 776 777 lp->rx_next_done = 0; 778 lp->rx_chain_head = 0; 779 lp->rx_chain_tail = 0; 780 lp->rx_chain_status = desc_empty; 781 782 return 0; 783 } 784 785 static void korina_free_ring(struct net_device *dev) 786 { 787 struct korina_private *lp = netdev_priv(dev); 788 int i; 789 790 for (i = 0; i < KORINA_NUM_RDS; i++) { 791 lp->rd_ring[i].control = 0; 792 if (lp->rx_skb[i]) 793 dev_kfree_skb_any(lp->rx_skb[i]); 794 lp->rx_skb[i] = NULL; 795 } 796 797 for (i = 0; i < KORINA_NUM_TDS; i++) { 798 lp->td_ring[i].control = 0; 799 if (lp->tx_skb[i]) 800 dev_kfree_skb_any(lp->tx_skb[i]); 801 lp->tx_skb[i] = NULL; 802 } 803 } 804 805 /* 806 * Initialize the RC32434 ethernet controller. 807 */ 808 static int korina_init(struct net_device *dev) 809 { 810 struct korina_private *lp = netdev_priv(dev); 811 812 /* Disable DMA */ 813 korina_abort_tx(dev); 814 korina_abort_rx(dev); 815 816 /* reset ethernet logic */ 817 writel(0, &lp->eth_regs->ethintfc); 818 while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP)) 819 dev->trans_start = jiffies; 820 821 /* Enable Ethernet Interface */ 822 writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc); 823 824 /* Allocate rings */ 825 if (korina_alloc_ring(dev)) { 826 printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name); 827 korina_free_ring(dev); 828 return -ENOMEM; 829 } 830 831 writel(0, &lp->rx_dma_regs->dmas); 832 /* Start Rx DMA */ 833 korina_start_rx(lp, &lp->rd_ring[0]); 834 835 writel(readl(&lp->tx_dma_regs->dmasm) & 836 ~(DMA_STAT_FINI | DMA_STAT_ERR), 837 &lp->tx_dma_regs->dmasm); 838 writel(readl(&lp->rx_dma_regs->dmasm) & 839 ~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR), 840 &lp->rx_dma_regs->dmasm); 841 842 /* Accept only packets destined for this Ethernet device address */ 843 writel(ETH_ARC_AB, &lp->eth_regs->etharc); 844 845 /* Set all Ether station address registers to their initial values */ 846 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0); 847 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0); 848 849 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1); 850 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1); 851 852 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2); 853 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2); 854 855 writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3); 856 writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3); 857 858 859 /* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */ 860 writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD, 861 &lp->eth_regs->ethmac2); 862 863 /* Back to back inter-packet-gap */ 864 writel(0x15, &lp->eth_regs->ethipgt); 865 /* Non - Back to back inter-packet-gap */ 866 writel(0x12, &lp->eth_regs->ethipgr); 867 868 /* Management Clock Prescaler Divisor 869 * Clock independent setting */ 870 writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1, 871 &lp->eth_regs->ethmcp); 872 873 /* don't transmit until fifo contains 48b */ 874 writel(48, &lp->eth_regs->ethfifott); 875 876 writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1); 877 878 napi_enable(&lp->napi); 879 netif_start_queue(dev); 880 881 return 0; 882 } 883 884 /* 885 * Restart the RC32434 ethernet controller. 886 */ 887 static void korina_restart_task(struct work_struct *work) 888 { 889 struct korina_private *lp = container_of(work, 890 struct korina_private, restart_task); 891 struct net_device *dev = lp->dev; 892 893 /* 894 * Disable interrupts 895 */ 896 disable_irq(lp->rx_irq); 897 disable_irq(lp->tx_irq); 898 disable_irq(lp->ovr_irq); 899 disable_irq(lp->und_irq); 900 901 writel(readl(&lp->tx_dma_regs->dmasm) | 902 DMA_STAT_FINI | DMA_STAT_ERR, 903 &lp->tx_dma_regs->dmasm); 904 writel(readl(&lp->rx_dma_regs->dmasm) | 905 DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR, 906 &lp->rx_dma_regs->dmasm); 907 908 korina_free_ring(dev); 909 910 napi_disable(&lp->napi); 911 912 if (korina_init(dev) < 0) { 913 printk(KERN_ERR "%s: cannot restart device\n", dev->name); 914 return; 915 } 916 korina_multicast_list(dev); 917 918 enable_irq(lp->und_irq); 919 enable_irq(lp->ovr_irq); 920 enable_irq(lp->tx_irq); 921 enable_irq(lp->rx_irq); 922 } 923 924 static void korina_clear_and_restart(struct net_device *dev, u32 value) 925 { 926 struct korina_private *lp = netdev_priv(dev); 927 928 netif_stop_queue(dev); 929 writel(value, &lp->eth_regs->ethintfc); 930 schedule_work(&lp->restart_task); 931 } 932 933 /* Ethernet Tx Underflow interrupt */ 934 static irqreturn_t korina_und_interrupt(int irq, void *dev_id) 935 { 936 struct net_device *dev = dev_id; 937 struct korina_private *lp = netdev_priv(dev); 938 unsigned int und; 939 940 spin_lock(&lp->lock); 941 942 und = readl(&lp->eth_regs->ethintfc); 943 944 if (und & ETH_INT_FC_UND) 945 korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND); 946 947 spin_unlock(&lp->lock); 948 949 return IRQ_HANDLED; 950 } 951 952 static void korina_tx_timeout(struct net_device *dev) 953 { 954 struct korina_private *lp = netdev_priv(dev); 955 956 schedule_work(&lp->restart_task); 957 } 958 959 /* Ethernet Rx Overflow interrupt */ 960 static irqreturn_t 961 korina_ovr_interrupt(int irq, void *dev_id) 962 { 963 struct net_device *dev = dev_id; 964 struct korina_private *lp = netdev_priv(dev); 965 unsigned int ovr; 966 967 spin_lock(&lp->lock); 968 ovr = readl(&lp->eth_regs->ethintfc); 969 970 if (ovr & ETH_INT_FC_OVR) 971 korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR); 972 973 spin_unlock(&lp->lock); 974 975 return IRQ_HANDLED; 976 } 977 978 #ifdef CONFIG_NET_POLL_CONTROLLER 979 static void korina_poll_controller(struct net_device *dev) 980 { 981 disable_irq(dev->irq); 982 korina_tx_dma_interrupt(dev->irq, dev); 983 enable_irq(dev->irq); 984 } 985 #endif 986 987 static int korina_open(struct net_device *dev) 988 { 989 struct korina_private *lp = netdev_priv(dev); 990 int ret; 991 992 /* Initialize */ 993 ret = korina_init(dev); 994 if (ret < 0) { 995 printk(KERN_ERR "%s: cannot open device\n", dev->name); 996 goto out; 997 } 998 999 /* Install the interrupt handler 1000 * that handles the Done Finished 1001 * Ovr and Und Events */ 1002 ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt, 1003 IRQF_DISABLED, "Korina ethernet Rx", dev); 1004 if (ret < 0) { 1005 printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n", 1006 dev->name, lp->rx_irq); 1007 goto err_release; 1008 } 1009 ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt, 1010 IRQF_DISABLED, "Korina ethernet Tx", dev); 1011 if (ret < 0) { 1012 printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n", 1013 dev->name, lp->tx_irq); 1014 goto err_free_rx_irq; 1015 } 1016 1017 /* Install handler for overrun error. */ 1018 ret = request_irq(lp->ovr_irq, korina_ovr_interrupt, 1019 IRQF_DISABLED, "Ethernet Overflow", dev); 1020 if (ret < 0) { 1021 printk(KERN_ERR "%s: unable to get OVR IRQ %d\n", 1022 dev->name, lp->ovr_irq); 1023 goto err_free_tx_irq; 1024 } 1025 1026 /* Install handler for underflow error. */ 1027 ret = request_irq(lp->und_irq, korina_und_interrupt, 1028 IRQF_DISABLED, "Ethernet Underflow", dev); 1029 if (ret < 0) { 1030 printk(KERN_ERR "%s: unable to get UND IRQ %d\n", 1031 dev->name, lp->und_irq); 1032 goto err_free_ovr_irq; 1033 } 1034 mod_timer(&lp->media_check_timer, jiffies + 1); 1035 out: 1036 return ret; 1037 1038 err_free_ovr_irq: 1039 free_irq(lp->ovr_irq, dev); 1040 err_free_tx_irq: 1041 free_irq(lp->tx_irq, dev); 1042 err_free_rx_irq: 1043 free_irq(lp->rx_irq, dev); 1044 err_release: 1045 korina_free_ring(dev); 1046 goto out; 1047 } 1048 1049 static int korina_close(struct net_device *dev) 1050 { 1051 struct korina_private *lp = netdev_priv(dev); 1052 u32 tmp; 1053 1054 del_timer(&lp->media_check_timer); 1055 1056 /* Disable interrupts */ 1057 disable_irq(lp->rx_irq); 1058 disable_irq(lp->tx_irq); 1059 disable_irq(lp->ovr_irq); 1060 disable_irq(lp->und_irq); 1061 1062 korina_abort_tx(dev); 1063 tmp = readl(&lp->tx_dma_regs->dmasm); 1064 tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR; 1065 writel(tmp, &lp->tx_dma_regs->dmasm); 1066 1067 korina_abort_rx(dev); 1068 tmp = readl(&lp->rx_dma_regs->dmasm); 1069 tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR; 1070 writel(tmp, &lp->rx_dma_regs->dmasm); 1071 1072 korina_free_ring(dev); 1073 1074 napi_disable(&lp->napi); 1075 1076 cancel_work_sync(&lp->restart_task); 1077 1078 free_irq(lp->rx_irq, dev); 1079 free_irq(lp->tx_irq, dev); 1080 free_irq(lp->ovr_irq, dev); 1081 free_irq(lp->und_irq, dev); 1082 1083 return 0; 1084 } 1085 1086 static const struct net_device_ops korina_netdev_ops = { 1087 .ndo_open = korina_open, 1088 .ndo_stop = korina_close, 1089 .ndo_start_xmit = korina_send_packet, 1090 .ndo_set_rx_mode = korina_multicast_list, 1091 .ndo_tx_timeout = korina_tx_timeout, 1092 .ndo_do_ioctl = korina_ioctl, 1093 .ndo_change_mtu = eth_change_mtu, 1094 .ndo_validate_addr = eth_validate_addr, 1095 .ndo_set_mac_address = eth_mac_addr, 1096 #ifdef CONFIG_NET_POLL_CONTROLLER 1097 .ndo_poll_controller = korina_poll_controller, 1098 #endif 1099 }; 1100 1101 static int korina_probe(struct platform_device *pdev) 1102 { 1103 struct korina_device *bif = platform_get_drvdata(pdev); 1104 struct korina_private *lp; 1105 struct net_device *dev; 1106 struct resource *r; 1107 int rc; 1108 1109 dev = alloc_etherdev(sizeof(struct korina_private)); 1110 if (!dev) 1111 return -ENOMEM; 1112 1113 SET_NETDEV_DEV(dev, &pdev->dev); 1114 lp = netdev_priv(dev); 1115 1116 bif->dev = dev; 1117 memcpy(dev->dev_addr, bif->mac, 6); 1118 1119 lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx"); 1120 lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx"); 1121 lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr"); 1122 lp->und_irq = platform_get_irq_byname(pdev, "korina_und"); 1123 1124 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs"); 1125 dev->base_addr = r->start; 1126 lp->eth_regs = ioremap_nocache(r->start, resource_size(r)); 1127 if (!lp->eth_regs) { 1128 printk(KERN_ERR DRV_NAME ": cannot remap registers\n"); 1129 rc = -ENXIO; 1130 goto probe_err_out; 1131 } 1132 1133 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx"); 1134 lp->rx_dma_regs = ioremap_nocache(r->start, resource_size(r)); 1135 if (!lp->rx_dma_regs) { 1136 printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n"); 1137 rc = -ENXIO; 1138 goto probe_err_dma_rx; 1139 } 1140 1141 r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx"); 1142 lp->tx_dma_regs = ioremap_nocache(r->start, resource_size(r)); 1143 if (!lp->tx_dma_regs) { 1144 printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n"); 1145 rc = -ENXIO; 1146 goto probe_err_dma_tx; 1147 } 1148 1149 lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL); 1150 if (!lp->td_ring) { 1151 rc = -ENXIO; 1152 goto probe_err_td_ring; 1153 } 1154 1155 dma_cache_inv((unsigned long)(lp->td_ring), 1156 TD_RING_SIZE + RD_RING_SIZE); 1157 1158 /* now convert TD_RING pointer to KSEG1 */ 1159 lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring); 1160 lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS]; 1161 1162 spin_lock_init(&lp->lock); 1163 /* just use the rx dma irq */ 1164 dev->irq = lp->rx_irq; 1165 lp->dev = dev; 1166 1167 dev->netdev_ops = &korina_netdev_ops; 1168 dev->ethtool_ops = &netdev_ethtool_ops; 1169 dev->watchdog_timeo = TX_TIMEOUT; 1170 netif_napi_add(dev, &lp->napi, korina_poll, 64); 1171 1172 lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05); 1173 lp->mii_if.dev = dev; 1174 lp->mii_if.mdio_read = mdio_read; 1175 lp->mii_if.mdio_write = mdio_write; 1176 lp->mii_if.phy_id = lp->phy_addr; 1177 lp->mii_if.phy_id_mask = 0x1f; 1178 lp->mii_if.reg_num_mask = 0x1f; 1179 1180 rc = register_netdev(dev); 1181 if (rc < 0) { 1182 printk(KERN_ERR DRV_NAME 1183 ": cannot register net device: %d\n", rc); 1184 goto probe_err_register; 1185 } 1186 setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev); 1187 1188 INIT_WORK(&lp->restart_task, korina_restart_task); 1189 1190 printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n", 1191 dev->name); 1192 out: 1193 return rc; 1194 1195 probe_err_register: 1196 kfree(lp->td_ring); 1197 probe_err_td_ring: 1198 iounmap(lp->tx_dma_regs); 1199 probe_err_dma_tx: 1200 iounmap(lp->rx_dma_regs); 1201 probe_err_dma_rx: 1202 iounmap(lp->eth_regs); 1203 probe_err_out: 1204 free_netdev(dev); 1205 goto out; 1206 } 1207 1208 static int korina_remove(struct platform_device *pdev) 1209 { 1210 struct korina_device *bif = platform_get_drvdata(pdev); 1211 struct korina_private *lp = netdev_priv(bif->dev); 1212 1213 iounmap(lp->eth_regs); 1214 iounmap(lp->rx_dma_regs); 1215 iounmap(lp->tx_dma_regs); 1216 1217 platform_set_drvdata(pdev, NULL); 1218 unregister_netdev(bif->dev); 1219 free_netdev(bif->dev); 1220 1221 return 0; 1222 } 1223 1224 static struct platform_driver korina_driver = { 1225 .driver.name = "korina", 1226 .probe = korina_probe, 1227 .remove = korina_remove, 1228 }; 1229 1230 module_platform_driver(korina_driver); 1231 1232 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>"); 1233 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>"); 1234 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>"); 1235 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver"); 1236 MODULE_LICENSE("GPL"); 1237