xref: /openbmc/linux/drivers/net/ethernet/korina.c (revision 405db98b)
1 /*
2  *  Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
3  *
4  *  Copyright 2004 IDT Inc. (rischelp@idt.com)
5  *  Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6  *  Copyright 2008 Florian Fainelli <florian@openwrt.org>
7  *  Copyright 2017 Roman Yeryomin <roman@advem.lv>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
15  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
16  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
17  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
18  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
20  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
21  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
22  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  *
25  *  You should have received a copy of the  GNU General Public License along
26  *  with this program; if not, write  to the Free Software Foundation, Inc.,
27  *  675 Mass Ave, Cambridge, MA 02139, USA.
28  *
29  *  Writing to a DMA status register:
30  *
31  *  When writing to the status register, you should mask the bit you have
32  *  been testing the status register with. Both Tx and Rx DMA registers
33  *  should stick to this procedure.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/moduleparam.h>
39 #include <linux/sched.h>
40 #include <linux/ctype.h>
41 #include <linux/types.h>
42 #include <linux/interrupt.h>
43 #include <linux/ioport.h>
44 #include <linux/iopoll.h>
45 #include <linux/in.h>
46 #include <linux/of_device.h>
47 #include <linux/of_net.h>
48 #include <linux/slab.h>
49 #include <linux/string.h>
50 #include <linux/delay.h>
51 #include <linux/netdevice.h>
52 #include <linux/etherdevice.h>
53 #include <linux/skbuff.h>
54 #include <linux/errno.h>
55 #include <linux/platform_device.h>
56 #include <linux/mii.h>
57 #include <linux/ethtool.h>
58 #include <linux/crc32.h>
59 #include <linux/pgtable.h>
60 #include <linux/clk.h>
61 
62 #define DRV_NAME	"korina"
63 #define DRV_VERSION	"0.20"
64 #define DRV_RELDATE	"15Sep2017"
65 
66 struct eth_regs {
67 	u32 ethintfc;
68 	u32 ethfifott;
69 	u32 etharc;
70 	u32 ethhash0;
71 	u32 ethhash1;
72 	u32 ethu0[4];		/* Reserved. */
73 	u32 ethpfs;
74 	u32 ethmcp;
75 	u32 eth_u1[10];		/* Reserved. */
76 	u32 ethspare;
77 	u32 eth_u2[42];		/* Reserved. */
78 	u32 ethsal0;
79 	u32 ethsah0;
80 	u32 ethsal1;
81 	u32 ethsah1;
82 	u32 ethsal2;
83 	u32 ethsah2;
84 	u32 ethsal3;
85 	u32 ethsah3;
86 	u32 ethrbc;
87 	u32 ethrpc;
88 	u32 ethrupc;
89 	u32 ethrfc;
90 	u32 ethtbc;
91 	u32 ethgpf;
92 	u32 eth_u9[50];		/* Reserved. */
93 	u32 ethmac1;
94 	u32 ethmac2;
95 	u32 ethipgt;
96 	u32 ethipgr;
97 	u32 ethclrt;
98 	u32 ethmaxf;
99 	u32 eth_u10;		/* Reserved. */
100 	u32 ethmtest;
101 	u32 miimcfg;
102 	u32 miimcmd;
103 	u32 miimaddr;
104 	u32 miimwtd;
105 	u32 miimrdd;
106 	u32 miimind;
107 	u32 eth_u11;		/* Reserved. */
108 	u32 eth_u12;		/* Reserved. */
109 	u32 ethcfsa0;
110 	u32 ethcfsa1;
111 	u32 ethcfsa2;
112 };
113 
114 /* Ethernet interrupt registers */
115 #define ETH_INT_FC_EN		BIT(0)
116 #define ETH_INT_FC_ITS		BIT(1)
117 #define ETH_INT_FC_RIP		BIT(2)
118 #define ETH_INT_FC_JAM		BIT(3)
119 #define ETH_INT_FC_OVR		BIT(4)
120 #define ETH_INT_FC_UND		BIT(5)
121 #define ETH_INT_FC_IOC		0x000000c0
122 
123 /* Ethernet FIFO registers */
124 #define ETH_FIFI_TT_TTH_BIT	0
125 #define ETH_FIFO_TT_TTH		0x0000007f
126 
127 /* Ethernet ARC/multicast registers */
128 #define ETH_ARC_PRO		BIT(0)
129 #define ETH_ARC_AM		BIT(1)
130 #define ETH_ARC_AFM		BIT(2)
131 #define ETH_ARC_AB		BIT(3)
132 
133 /* Ethernet SAL registers */
134 #define ETH_SAL_BYTE_5		0x000000ff
135 #define ETH_SAL_BYTE_4		0x0000ff00
136 #define ETH_SAL_BYTE_3		0x00ff0000
137 #define ETH_SAL_BYTE_2		0xff000000
138 
139 /* Ethernet SAH registers */
140 #define ETH_SAH_BYTE1		0x000000ff
141 #define ETH_SAH_BYTE0		0x0000ff00
142 
143 /* Ethernet GPF register */
144 #define ETH_GPF_PTV		0x0000ffff
145 
146 /* Ethernet PFG register */
147 #define ETH_PFS_PFD		BIT(0)
148 
149 /* Ethernet CFSA[0-3] registers */
150 #define ETH_CFSA0_CFSA4		0x000000ff
151 #define ETH_CFSA0_CFSA5		0x0000ff00
152 #define ETH_CFSA1_CFSA2		0x000000ff
153 #define ETH_CFSA1_CFSA3		0x0000ff00
154 #define ETH_CFSA1_CFSA0		0x000000ff
155 #define ETH_CFSA1_CFSA1		0x0000ff00
156 
157 /* Ethernet MAC1 registers */
158 #define ETH_MAC1_RE		BIT(0)
159 #define ETH_MAC1_PAF		BIT(1)
160 #define ETH_MAC1_RFC		BIT(2)
161 #define ETH_MAC1_TFC		BIT(3)
162 #define ETH_MAC1_LB		BIT(4)
163 #define ETH_MAC1_MR		BIT(31)
164 
165 /* Ethernet MAC2 registers */
166 #define ETH_MAC2_FD		BIT(0)
167 #define ETH_MAC2_FLC		BIT(1)
168 #define ETH_MAC2_HFE		BIT(2)
169 #define ETH_MAC2_DC		BIT(3)
170 #define ETH_MAC2_CEN		BIT(4)
171 #define ETH_MAC2_PE		BIT(5)
172 #define ETH_MAC2_VPE		BIT(6)
173 #define ETH_MAC2_APE		BIT(7)
174 #define ETH_MAC2_PPE		BIT(8)
175 #define ETH_MAC2_LPE		BIT(9)
176 #define ETH_MAC2_NB		BIT(12)
177 #define ETH_MAC2_BP		BIT(13)
178 #define ETH_MAC2_ED		BIT(14)
179 
180 /* Ethernet IPGT register */
181 #define ETH_IPGT		0x0000007f
182 
183 /* Ethernet IPGR registers */
184 #define ETH_IPGR_IPGR2		0x0000007f
185 #define ETH_IPGR_IPGR1		0x00007f00
186 
187 /* Ethernet CLRT registers */
188 #define ETH_CLRT_MAX_RET	0x0000000f
189 #define ETH_CLRT_COL_WIN	0x00003f00
190 
191 /* Ethernet MAXF register */
192 #define ETH_MAXF		0x0000ffff
193 
194 /* Ethernet test registers */
195 #define ETH_TEST_REG		BIT(2)
196 #define ETH_MCP_DIV		0x000000ff
197 
198 /* MII registers */
199 #define ETH_MII_CFG_RSVD	0x0000000c
200 #define ETH_MII_CMD_RD		BIT(0)
201 #define ETH_MII_CMD_SCN		BIT(1)
202 #define ETH_MII_REG_ADDR	0x0000001f
203 #define ETH_MII_PHY_ADDR	0x00001f00
204 #define ETH_MII_WTD_DATA	0x0000ffff
205 #define ETH_MII_RDD_DATA	0x0000ffff
206 #define ETH_MII_IND_BSY		BIT(0)
207 #define ETH_MII_IND_SCN		BIT(1)
208 #define ETH_MII_IND_NV		BIT(2)
209 
210 /* Values for the DEVCS field of the Ethernet DMA Rx and Tx descriptors. */
211 #define ETH_RX_FD		BIT(0)
212 #define ETH_RX_LD		BIT(1)
213 #define ETH_RX_ROK		BIT(2)
214 #define ETH_RX_FM		BIT(3)
215 #define ETH_RX_MP		BIT(4)
216 #define ETH_RX_BP		BIT(5)
217 #define ETH_RX_VLT		BIT(6)
218 #define ETH_RX_CF		BIT(7)
219 #define ETH_RX_OVR		BIT(8)
220 #define ETH_RX_CRC		BIT(9)
221 #define ETH_RX_CV		BIT(10)
222 #define ETH_RX_DB		BIT(11)
223 #define ETH_RX_LE		BIT(12)
224 #define ETH_RX_LOR		BIT(13)
225 #define ETH_RX_CES		BIT(14)
226 #define ETH_RX_LEN_BIT		16
227 #define ETH_RX_LEN		0xffff0000
228 
229 #define ETH_TX_FD		BIT(0)
230 #define ETH_TX_LD		BIT(1)
231 #define ETH_TX_OEN		BIT(2)
232 #define ETH_TX_PEN		BIT(3)
233 #define ETH_TX_CEN		BIT(4)
234 #define ETH_TX_HEN		BIT(5)
235 #define ETH_TX_TOK		BIT(6)
236 #define ETH_TX_MP		BIT(7)
237 #define ETH_TX_BP		BIT(8)
238 #define ETH_TX_UND		BIT(9)
239 #define ETH_TX_OF		BIT(10)
240 #define ETH_TX_ED		BIT(11)
241 #define ETH_TX_EC		BIT(12)
242 #define ETH_TX_LC		BIT(13)
243 #define ETH_TX_TD		BIT(14)
244 #define ETH_TX_CRC		BIT(15)
245 #define ETH_TX_LE		BIT(16)
246 #define ETH_TX_CC		0x001E0000
247 
248 /* DMA descriptor (in physical memory). */
249 struct dma_desc {
250 	u32 control;			/* Control. use DMAD_* */
251 	u32 ca;				/* Current Address. */
252 	u32 devcs;			/* Device control and status. */
253 	u32 link;			/* Next descriptor in chain. */
254 };
255 
256 #define DMA_DESC_COUNT_BIT		0
257 #define DMA_DESC_COUNT_MSK		0x0003ffff
258 #define DMA_DESC_DS_BIT			20
259 #define DMA_DESC_DS_MSK			0x00300000
260 
261 #define DMA_DESC_DEV_CMD_BIT		22
262 #define DMA_DESC_DEV_CMD_MSK		0x01c00000
263 
264 /* DMA descriptors interrupts */
265 #define DMA_DESC_COF			BIT(25) /* Chain on finished */
266 #define DMA_DESC_COD			BIT(26) /* Chain on done */
267 #define DMA_DESC_IOF			BIT(27) /* Interrupt on finished */
268 #define DMA_DESC_IOD			BIT(28) /* Interrupt on done */
269 #define DMA_DESC_TERM			BIT(29) /* Terminated */
270 #define DMA_DESC_DONE			BIT(30) /* Done */
271 #define DMA_DESC_FINI			BIT(31) /* Finished */
272 
273 /* DMA register (within Internal Register Map).  */
274 struct dma_reg {
275 	u32 dmac;		/* Control. */
276 	u32 dmas;		/* Status. */
277 	u32 dmasm;		/* Mask. */
278 	u32 dmadptr;		/* Descriptor pointer. */
279 	u32 dmandptr;		/* Next descriptor pointer. */
280 };
281 
282 /* DMA channels specific registers */
283 #define DMA_CHAN_RUN_BIT		BIT(0)
284 #define DMA_CHAN_DONE_BIT		BIT(1)
285 #define DMA_CHAN_MODE_BIT		BIT(2)
286 #define DMA_CHAN_MODE_MSK		0x0000000c
287 #define	 DMA_CHAN_MODE_AUTO		0
288 #define	 DMA_CHAN_MODE_BURST		1
289 #define	 DMA_CHAN_MODE_XFRT		2
290 #define	 DMA_CHAN_MODE_RSVD		3
291 #define DMA_CHAN_ACT_BIT		BIT(4)
292 
293 /* DMA status registers */
294 #define DMA_STAT_FINI			BIT(0)
295 #define DMA_STAT_DONE			BIT(1)
296 #define DMA_STAT_CHAIN			BIT(2)
297 #define DMA_STAT_ERR			BIT(3)
298 #define DMA_STAT_HALT			BIT(4)
299 
300 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
301 				   ((dev)->dev_addr[1]))
302 #define STATION_ADDRESS_LOW(dev)  (((dev)->dev_addr[2] << 24) | \
303 				   ((dev)->dev_addr[3] << 16) | \
304 				   ((dev)->dev_addr[4] << 8)  | \
305 				   ((dev)->dev_addr[5]))
306 
307 #define MII_CLOCK	1250000 /* no more than 2.5MHz */
308 
309 /* the following must be powers of two */
310 #define KORINA_NUM_RDS	64  /* number of receive descriptors */
311 #define KORINA_NUM_TDS	64  /* number of transmit descriptors */
312 
313 /* KORINA_RBSIZE is the hardware's default maximum receive
314  * frame size in bytes. Having this hardcoded means that there
315  * is no support for MTU sizes greater than 1500. */
316 #define KORINA_RBSIZE	1536 /* size of one resource buffer = Ether MTU */
317 #define KORINA_RDS_MASK	(KORINA_NUM_RDS - 1)
318 #define KORINA_TDS_MASK	(KORINA_NUM_TDS - 1)
319 #define RD_RING_SIZE	(KORINA_NUM_RDS * sizeof(struct dma_desc))
320 #define TD_RING_SIZE	(KORINA_NUM_TDS * sizeof(struct dma_desc))
321 
322 #define TX_TIMEOUT	(6000 * HZ / 1000)
323 
324 enum chain_status {
325 	desc_filled,
326 	desc_is_empty
327 };
328 
329 #define DMA_COUNT(count)	((count) & DMA_DESC_COUNT_MSK)
330 #define IS_DMA_FINISHED(X)	(((X) & (DMA_DESC_FINI)) != 0)
331 #define IS_DMA_DONE(X)		(((X) & (DMA_DESC_DONE)) != 0)
332 #define RCVPKT_LENGTH(X)	(((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
333 
334 /* Information that need to be kept for each board. */
335 struct korina_private {
336 	struct eth_regs __iomem *eth_regs;
337 	struct dma_reg __iomem *rx_dma_regs;
338 	struct dma_reg __iomem *tx_dma_regs;
339 	struct dma_desc *td_ring; /* transmit descriptor ring */
340 	struct dma_desc *rd_ring; /* receive descriptor ring  */
341 	dma_addr_t td_dma;
342 	dma_addr_t rd_dma;
343 
344 	struct sk_buff *tx_skb[KORINA_NUM_TDS];
345 	struct sk_buff *rx_skb[KORINA_NUM_RDS];
346 
347 	dma_addr_t rx_skb_dma[KORINA_NUM_RDS];
348 	dma_addr_t tx_skb_dma[KORINA_NUM_TDS];
349 
350 	int rx_next_done;
351 	int rx_chain_head;
352 	int rx_chain_tail;
353 	enum chain_status rx_chain_status;
354 
355 	int tx_next_done;
356 	int tx_chain_head;
357 	int tx_chain_tail;
358 	enum chain_status tx_chain_status;
359 	int tx_count;
360 	int tx_full;
361 
362 	int rx_irq;
363 	int tx_irq;
364 
365 	spinlock_t lock;	/* NIC xmit lock */
366 
367 	int dma_halt_cnt;
368 	int dma_run_cnt;
369 	struct napi_struct napi;
370 	struct timer_list media_check_timer;
371 	struct mii_if_info mii_if;
372 	struct work_struct restart_task;
373 	struct net_device *dev;
374 	struct device *dmadev;
375 	int mii_clock_freq;
376 };
377 
378 static dma_addr_t korina_tx_dma(struct korina_private *lp, int idx)
379 {
380 	return lp->td_dma + (idx * sizeof(struct dma_desc));
381 }
382 
383 static dma_addr_t korina_rx_dma(struct korina_private *lp, int idx)
384 {
385 	return lp->rd_dma + (idx * sizeof(struct dma_desc));
386 }
387 
388 static inline void korina_abort_dma(struct net_device *dev,
389 					struct dma_reg *ch)
390 {
391 	if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
392 		writel(0x10, &ch->dmac);
393 
394 		while (!(readl(&ch->dmas) & DMA_STAT_HALT))
395 			netif_trans_update(dev);
396 
397 		writel(0, &ch->dmas);
398 	}
399 
400 	writel(0, &ch->dmadptr);
401 	writel(0, &ch->dmandptr);
402 }
403 
404 static void korina_abort_tx(struct net_device *dev)
405 {
406 	struct korina_private *lp = netdev_priv(dev);
407 
408 	korina_abort_dma(dev, lp->tx_dma_regs);
409 }
410 
411 static void korina_abort_rx(struct net_device *dev)
412 {
413 	struct korina_private *lp = netdev_priv(dev);
414 
415 	korina_abort_dma(dev, lp->rx_dma_regs);
416 }
417 
418 /* transmit packet */
419 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
420 {
421 	struct korina_private *lp = netdev_priv(dev);
422 	u32 chain_prev, chain_next;
423 	unsigned long flags;
424 	struct dma_desc *td;
425 	dma_addr_t ca;
426 	u32 length;
427 	int idx;
428 
429 	spin_lock_irqsave(&lp->lock, flags);
430 
431 	idx = lp->tx_chain_tail;
432 	td = &lp->td_ring[idx];
433 
434 	/* stop queue when full, drop pkts if queue already full */
435 	if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
436 		lp->tx_full = 1;
437 
438 		if (lp->tx_count == (KORINA_NUM_TDS - 2))
439 			netif_stop_queue(dev);
440 		else
441 			goto drop_packet;
442 	}
443 
444 	lp->tx_count++;
445 
446 	lp->tx_skb[idx] = skb;
447 
448 	length = skb->len;
449 
450 	/* Setup the transmit descriptor. */
451 	ca = dma_map_single(lp->dmadev, skb->data, length, DMA_TO_DEVICE);
452 	if (dma_mapping_error(lp->dmadev, ca))
453 		goto drop_packet;
454 
455 	lp->tx_skb_dma[idx] = ca;
456 	td->ca = ca;
457 
458 	chain_prev = (idx - 1) & KORINA_TDS_MASK;
459 	chain_next = (idx + 1) & KORINA_TDS_MASK;
460 
461 	if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
462 		if (lp->tx_chain_status == desc_is_empty) {
463 			/* Update tail */
464 			td->control = DMA_COUNT(length) |
465 					DMA_DESC_COF | DMA_DESC_IOF;
466 			/* Move tail */
467 			lp->tx_chain_tail = chain_next;
468 			/* Write to NDPTR */
469 			writel(korina_tx_dma(lp, lp->tx_chain_head),
470 			       &lp->tx_dma_regs->dmandptr);
471 			/* Move head to tail */
472 			lp->tx_chain_head = lp->tx_chain_tail;
473 		} else {
474 			/* Update tail */
475 			td->control = DMA_COUNT(length) |
476 					DMA_DESC_COF | DMA_DESC_IOF;
477 			/* Link to prev */
478 			lp->td_ring[chain_prev].control &=
479 					~DMA_DESC_COF;
480 			/* Link to prev */
481 			lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
482 			/* Move tail */
483 			lp->tx_chain_tail = chain_next;
484 			/* Write to NDPTR */
485 			writel(korina_tx_dma(lp, lp->tx_chain_head),
486 			       &lp->tx_dma_regs->dmandptr);
487 			/* Move head to tail */
488 			lp->tx_chain_head = lp->tx_chain_tail;
489 			lp->tx_chain_status = desc_is_empty;
490 		}
491 	} else {
492 		if (lp->tx_chain_status == desc_is_empty) {
493 			/* Update tail */
494 			td->control = DMA_COUNT(length) |
495 					DMA_DESC_COF | DMA_DESC_IOF;
496 			/* Move tail */
497 			lp->tx_chain_tail = chain_next;
498 			lp->tx_chain_status = desc_filled;
499 		} else {
500 			/* Update tail */
501 			td->control = DMA_COUNT(length) |
502 					DMA_DESC_COF | DMA_DESC_IOF;
503 			lp->td_ring[chain_prev].control &=
504 					~DMA_DESC_COF;
505 			lp->td_ring[chain_prev].link = korina_tx_dma(lp, idx);
506 			lp->tx_chain_tail = chain_next;
507 		}
508 	}
509 
510 	netif_trans_update(dev);
511 	spin_unlock_irqrestore(&lp->lock, flags);
512 
513 	return NETDEV_TX_OK;
514 
515 drop_packet:
516 	dev->stats.tx_dropped++;
517 	dev_kfree_skb_any(skb);
518 	spin_unlock_irqrestore(&lp->lock, flags);
519 
520 	return NETDEV_TX_OK;
521 }
522 
523 static int korina_mdio_wait(struct korina_private *lp)
524 {
525 	u32 value;
526 
527 	return readl_poll_timeout_atomic(&lp->eth_regs->miimind,
528 					 value, value & ETH_MII_IND_BSY,
529 					 1, 1000);
530 }
531 
532 static int korina_mdio_read(struct net_device *dev, int phy, int reg)
533 {
534 	struct korina_private *lp = netdev_priv(dev);
535 	int ret;
536 
537 	ret = korina_mdio_wait(lp);
538 	if (ret < 0)
539 		return ret;
540 
541 	writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
542 	writel(1, &lp->eth_regs->miimcmd);
543 
544 	ret = korina_mdio_wait(lp);
545 	if (ret < 0)
546 		return ret;
547 
548 	if (readl(&lp->eth_regs->miimind) & ETH_MII_IND_NV)
549 		return -EINVAL;
550 
551 	ret = readl(&lp->eth_regs->miimrdd);
552 	writel(0, &lp->eth_regs->miimcmd);
553 	return ret;
554 }
555 
556 static void korina_mdio_write(struct net_device *dev, int phy, int reg, int val)
557 {
558 	struct korina_private *lp = netdev_priv(dev);
559 
560 	if (korina_mdio_wait(lp))
561 		return;
562 
563 	writel(0, &lp->eth_regs->miimcmd);
564 	writel(phy << 8 | reg, &lp->eth_regs->miimaddr);
565 	writel(val, &lp->eth_regs->miimwtd);
566 }
567 
568 /* Ethernet Rx DMA interrupt */
569 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
570 {
571 	struct net_device *dev = dev_id;
572 	struct korina_private *lp = netdev_priv(dev);
573 	u32 dmas, dmasm;
574 	irqreturn_t retval;
575 
576 	dmas = readl(&lp->rx_dma_regs->dmas);
577 	if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
578 		dmasm = readl(&lp->rx_dma_regs->dmasm);
579 		writel(dmasm | (DMA_STAT_DONE |
580 				DMA_STAT_HALT | DMA_STAT_ERR),
581 				&lp->rx_dma_regs->dmasm);
582 
583 		napi_schedule(&lp->napi);
584 
585 		if (dmas & DMA_STAT_ERR)
586 			printk(KERN_ERR "%s: DMA error\n", dev->name);
587 
588 		retval = IRQ_HANDLED;
589 	} else
590 		retval = IRQ_NONE;
591 
592 	return retval;
593 }
594 
595 static int korina_rx(struct net_device *dev, int limit)
596 {
597 	struct korina_private *lp = netdev_priv(dev);
598 	struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
599 	struct sk_buff *skb, *skb_new;
600 	u32 devcs, pkt_len, dmas;
601 	dma_addr_t ca;
602 	int count;
603 
604 	for (count = 0; count < limit; count++) {
605 		skb = lp->rx_skb[lp->rx_next_done];
606 		skb_new = NULL;
607 
608 		devcs = rd->devcs;
609 
610 		if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
611 			break;
612 
613 		/* check that this is a whole packet
614 		 * WARNING: DMA_FD bit incorrectly set
615 		 * in Rc32434 (errata ref #077) */
616 		if (!(devcs & ETH_RX_LD))
617 			goto next;
618 
619 		if (!(devcs & ETH_RX_ROK)) {
620 			/* Update statistics counters */
621 			dev->stats.rx_errors++;
622 			dev->stats.rx_dropped++;
623 			if (devcs & ETH_RX_CRC)
624 				dev->stats.rx_crc_errors++;
625 			if (devcs & ETH_RX_LE)
626 				dev->stats.rx_length_errors++;
627 			if (devcs & ETH_RX_OVR)
628 				dev->stats.rx_fifo_errors++;
629 			if (devcs & ETH_RX_CV)
630 				dev->stats.rx_frame_errors++;
631 			if (devcs & ETH_RX_CES)
632 				dev->stats.rx_frame_errors++;
633 
634 			goto next;
635 		}
636 
637 		/* Malloc up new buffer. */
638 		skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
639 		if (!skb_new)
640 			break;
641 
642 		ca = dma_map_single(lp->dmadev, skb_new->data, KORINA_RBSIZE,
643 				    DMA_FROM_DEVICE);
644 		if (dma_mapping_error(lp->dmadev, ca)) {
645 			dev_kfree_skb_any(skb_new);
646 			break;
647 		}
648 
649 		pkt_len = RCVPKT_LENGTH(devcs);
650 		dma_unmap_single(lp->dmadev, lp->rx_skb_dma[lp->rx_next_done],
651 				 pkt_len, DMA_FROM_DEVICE);
652 
653 		/* Do not count the CRC */
654 		skb_put(skb, pkt_len - 4);
655 		skb->protocol = eth_type_trans(skb, dev);
656 
657 		/* Pass the packet to upper layers */
658 		napi_gro_receive(&lp->napi, skb);
659 		dev->stats.rx_packets++;
660 		dev->stats.rx_bytes += pkt_len;
661 
662 		/* Update the mcast stats */
663 		if (devcs & ETH_RX_MP)
664 			dev->stats.multicast++;
665 
666 		lp->rx_skb[lp->rx_next_done] = skb_new;
667 		lp->rx_skb_dma[lp->rx_next_done] = ca;
668 
669 next:
670 		rd->devcs = 0;
671 
672 		/* Restore descriptor's curr_addr */
673 		rd->ca = lp->rx_skb_dma[lp->rx_next_done];
674 
675 		rd->control = DMA_COUNT(KORINA_RBSIZE) |
676 			DMA_DESC_COD | DMA_DESC_IOD;
677 		lp->rd_ring[(lp->rx_next_done - 1) &
678 			KORINA_RDS_MASK].control &=
679 			~DMA_DESC_COD;
680 
681 		lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
682 		rd = &lp->rd_ring[lp->rx_next_done];
683 		writel((u32)~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
684 	}
685 
686 	dmas = readl(&lp->rx_dma_regs->dmas);
687 
688 	if (dmas & DMA_STAT_HALT) {
689 		writel((u32)~(DMA_STAT_HALT | DMA_STAT_ERR),
690 		       &lp->rx_dma_regs->dmas);
691 
692 		lp->dma_halt_cnt++;
693 		rd->devcs = 0;
694 		rd->ca = lp->rx_skb_dma[lp->rx_next_done];
695 		writel(korina_rx_dma(lp, rd - lp->rd_ring),
696 		       &lp->rx_dma_regs->dmandptr);
697 	}
698 
699 	return count;
700 }
701 
702 static int korina_poll(struct napi_struct *napi, int budget)
703 {
704 	struct korina_private *lp =
705 		container_of(napi, struct korina_private, napi);
706 	struct net_device *dev = lp->dev;
707 	int work_done;
708 
709 	work_done = korina_rx(dev, budget);
710 	if (work_done < budget) {
711 		napi_complete_done(napi, work_done);
712 
713 		writel(readl(&lp->rx_dma_regs->dmasm) &
714 			~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
715 			&lp->rx_dma_regs->dmasm);
716 	}
717 	return work_done;
718 }
719 
720 /*
721  * Set or clear the multicast filter for this adaptor.
722  */
723 static void korina_multicast_list(struct net_device *dev)
724 {
725 	struct korina_private *lp = netdev_priv(dev);
726 	unsigned long flags;
727 	struct netdev_hw_addr *ha;
728 	u32 recognise = ETH_ARC_AB;	/* always accept broadcasts */
729 
730 	/* Set promiscuous mode */
731 	if (dev->flags & IFF_PROMISC)
732 		recognise |= ETH_ARC_PRO;
733 
734 	else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
735 		/* All multicast and broadcast */
736 		recognise |= ETH_ARC_AM;
737 
738 	/* Build the hash table */
739 	if (netdev_mc_count(dev) > 4) {
740 		u16 hash_table[4] = { 0 };
741 		u32 crc;
742 
743 		netdev_for_each_mc_addr(ha, dev) {
744 			crc = ether_crc_le(6, ha->addr);
745 			crc >>= 26;
746 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
747 		}
748 		/* Accept filtered multicast */
749 		recognise |= ETH_ARC_AFM;
750 
751 		/* Fill the MAC hash tables with their values */
752 		writel((u32)(hash_table[1] << 16 | hash_table[0]),
753 					&lp->eth_regs->ethhash0);
754 		writel((u32)(hash_table[3] << 16 | hash_table[2]),
755 					&lp->eth_regs->ethhash1);
756 	}
757 
758 	spin_lock_irqsave(&lp->lock, flags);
759 	writel(recognise, &lp->eth_regs->etharc);
760 	spin_unlock_irqrestore(&lp->lock, flags);
761 }
762 
763 static void korina_tx(struct net_device *dev)
764 {
765 	struct korina_private *lp = netdev_priv(dev);
766 	struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
767 	u32 devcs;
768 	u32 dmas;
769 
770 	spin_lock(&lp->lock);
771 
772 	/* Process all desc that are done */
773 	while (IS_DMA_FINISHED(td->control)) {
774 		if (lp->tx_full == 1) {
775 			netif_wake_queue(dev);
776 			lp->tx_full = 0;
777 		}
778 
779 		devcs = lp->td_ring[lp->tx_next_done].devcs;
780 		if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
781 				(ETH_TX_FD | ETH_TX_LD)) {
782 			dev->stats.tx_errors++;
783 			dev->stats.tx_dropped++;
784 
785 			/* Should never happen */
786 			printk(KERN_ERR "%s: split tx ignored\n",
787 							dev->name);
788 		} else if (devcs & ETH_TX_TOK) {
789 			dev->stats.tx_packets++;
790 			dev->stats.tx_bytes +=
791 					lp->tx_skb[lp->tx_next_done]->len;
792 		} else {
793 			dev->stats.tx_errors++;
794 			dev->stats.tx_dropped++;
795 
796 			/* Underflow */
797 			if (devcs & ETH_TX_UND)
798 				dev->stats.tx_fifo_errors++;
799 
800 			/* Oversized frame */
801 			if (devcs & ETH_TX_OF)
802 				dev->stats.tx_aborted_errors++;
803 
804 			/* Excessive deferrals */
805 			if (devcs & ETH_TX_ED)
806 				dev->stats.tx_carrier_errors++;
807 
808 			/* Collisions: medium busy */
809 			if (devcs & ETH_TX_EC)
810 				dev->stats.collisions++;
811 
812 			/* Late collision */
813 			if (devcs & ETH_TX_LC)
814 				dev->stats.tx_window_errors++;
815 		}
816 
817 		/* We must always free the original skb */
818 		if (lp->tx_skb[lp->tx_next_done]) {
819 			dma_unmap_single(lp->dmadev,
820 					 lp->tx_skb_dma[lp->tx_next_done],
821 					 lp->tx_skb[lp->tx_next_done]->len,
822 					 DMA_TO_DEVICE);
823 			dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
824 			lp->tx_skb[lp->tx_next_done] = NULL;
825 		}
826 
827 		lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
828 		lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
829 		lp->td_ring[lp->tx_next_done].link = 0;
830 		lp->td_ring[lp->tx_next_done].ca = 0;
831 		lp->tx_count--;
832 
833 		/* Go on to next transmission */
834 		lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
835 		td = &lp->td_ring[lp->tx_next_done];
836 
837 	}
838 
839 	/* Clear the DMA status register */
840 	dmas = readl(&lp->tx_dma_regs->dmas);
841 	writel(~dmas, &lp->tx_dma_regs->dmas);
842 
843 	writel(readl(&lp->tx_dma_regs->dmasm) &
844 			~(DMA_STAT_FINI | DMA_STAT_ERR),
845 			&lp->tx_dma_regs->dmasm);
846 
847 	spin_unlock(&lp->lock);
848 }
849 
850 static irqreturn_t
851 korina_tx_dma_interrupt(int irq, void *dev_id)
852 {
853 	struct net_device *dev = dev_id;
854 	struct korina_private *lp = netdev_priv(dev);
855 	u32 dmas, dmasm;
856 	irqreturn_t retval;
857 
858 	dmas = readl(&lp->tx_dma_regs->dmas);
859 
860 	if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
861 		dmasm = readl(&lp->tx_dma_regs->dmasm);
862 		writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
863 				&lp->tx_dma_regs->dmasm);
864 
865 		korina_tx(dev);
866 
867 		if (lp->tx_chain_status == desc_filled &&
868 			(readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
869 			writel(korina_tx_dma(lp, lp->tx_chain_head),
870 			       &lp->tx_dma_regs->dmandptr);
871 			lp->tx_chain_status = desc_is_empty;
872 			lp->tx_chain_head = lp->tx_chain_tail;
873 			netif_trans_update(dev);
874 		}
875 		if (dmas & DMA_STAT_ERR)
876 			printk(KERN_ERR "%s: DMA error\n", dev->name);
877 
878 		retval = IRQ_HANDLED;
879 	} else
880 		retval = IRQ_NONE;
881 
882 	return retval;
883 }
884 
885 
886 static void korina_check_media(struct net_device *dev, unsigned int init_media)
887 {
888 	struct korina_private *lp = netdev_priv(dev);
889 
890 	mii_check_media(&lp->mii_if, 1, init_media);
891 
892 	if (lp->mii_if.full_duplex)
893 		writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
894 						&lp->eth_regs->ethmac2);
895 	else
896 		writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
897 						&lp->eth_regs->ethmac2);
898 }
899 
900 static void korina_poll_media(struct timer_list *t)
901 {
902 	struct korina_private *lp = from_timer(lp, t, media_check_timer);
903 	struct net_device *dev = lp->dev;
904 
905 	korina_check_media(dev, 0);
906 	mod_timer(&lp->media_check_timer, jiffies + HZ);
907 }
908 
909 static void korina_set_carrier(struct mii_if_info *mii)
910 {
911 	if (mii->force_media) {
912 		/* autoneg is off: Link is always assumed to be up */
913 		if (!netif_carrier_ok(mii->dev))
914 			netif_carrier_on(mii->dev);
915 	} else  /* Let MMI library update carrier status */
916 		korina_check_media(mii->dev, 0);
917 }
918 
919 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
920 {
921 	struct korina_private *lp = netdev_priv(dev);
922 	struct mii_ioctl_data *data = if_mii(rq);
923 	int rc;
924 
925 	if (!netif_running(dev))
926 		return -EINVAL;
927 	spin_lock_irq(&lp->lock);
928 	rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
929 	spin_unlock_irq(&lp->lock);
930 	korina_set_carrier(&lp->mii_if);
931 
932 	return rc;
933 }
934 
935 /* ethtool helpers */
936 static void netdev_get_drvinfo(struct net_device *dev,
937 				struct ethtool_drvinfo *info)
938 {
939 	struct korina_private *lp = netdev_priv(dev);
940 
941 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
942 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
943 	strlcpy(info->bus_info, lp->dev->name, sizeof(info->bus_info));
944 }
945 
946 static int netdev_get_link_ksettings(struct net_device *dev,
947 				     struct ethtool_link_ksettings *cmd)
948 {
949 	struct korina_private *lp = netdev_priv(dev);
950 
951 	spin_lock_irq(&lp->lock);
952 	mii_ethtool_get_link_ksettings(&lp->mii_if, cmd);
953 	spin_unlock_irq(&lp->lock);
954 
955 	return 0;
956 }
957 
958 static int netdev_set_link_ksettings(struct net_device *dev,
959 				     const struct ethtool_link_ksettings *cmd)
960 {
961 	struct korina_private *lp = netdev_priv(dev);
962 	int rc;
963 
964 	spin_lock_irq(&lp->lock);
965 	rc = mii_ethtool_set_link_ksettings(&lp->mii_if, cmd);
966 	spin_unlock_irq(&lp->lock);
967 	korina_set_carrier(&lp->mii_if);
968 
969 	return rc;
970 }
971 
972 static u32 netdev_get_link(struct net_device *dev)
973 {
974 	struct korina_private *lp = netdev_priv(dev);
975 
976 	return mii_link_ok(&lp->mii_if);
977 }
978 
979 static const struct ethtool_ops netdev_ethtool_ops = {
980 	.get_drvinfo		= netdev_get_drvinfo,
981 	.get_link		= netdev_get_link,
982 	.get_link_ksettings	= netdev_get_link_ksettings,
983 	.set_link_ksettings	= netdev_set_link_ksettings,
984 };
985 
986 static int korina_alloc_ring(struct net_device *dev)
987 {
988 	struct korina_private *lp = netdev_priv(dev);
989 	struct sk_buff *skb;
990 	dma_addr_t ca;
991 	int i;
992 
993 	/* Initialize the transmit descriptors */
994 	for (i = 0; i < KORINA_NUM_TDS; i++) {
995 		lp->td_ring[i].control = DMA_DESC_IOF;
996 		lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
997 		lp->td_ring[i].ca = 0;
998 		lp->td_ring[i].link = 0;
999 	}
1000 	lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
1001 			lp->tx_full = lp->tx_count = 0;
1002 	lp->tx_chain_status = desc_is_empty;
1003 
1004 	/* Initialize the receive descriptors */
1005 	for (i = 0; i < KORINA_NUM_RDS; i++) {
1006 		skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
1007 		if (!skb)
1008 			return -ENOMEM;
1009 		lp->rx_skb[i] = skb;
1010 		lp->rd_ring[i].control = DMA_DESC_IOD |
1011 				DMA_COUNT(KORINA_RBSIZE);
1012 		lp->rd_ring[i].devcs = 0;
1013 		ca = dma_map_single(lp->dmadev, skb->data, KORINA_RBSIZE,
1014 				    DMA_FROM_DEVICE);
1015 		if (dma_mapping_error(lp->dmadev, ca))
1016 			return -ENOMEM;
1017 		lp->rd_ring[i].ca = ca;
1018 		lp->rx_skb_dma[i] = ca;
1019 		lp->rd_ring[i].link = korina_rx_dma(lp, i + 1);
1020 	}
1021 
1022 	/* loop back receive descriptors, so the last
1023 	 * descriptor points to the first one */
1024 	lp->rd_ring[i - 1].link = lp->rd_dma;
1025 	lp->rd_ring[i - 1].control |= DMA_DESC_COD;
1026 
1027 	lp->rx_next_done  = 0;
1028 	lp->rx_chain_head = 0;
1029 	lp->rx_chain_tail = 0;
1030 	lp->rx_chain_status = desc_is_empty;
1031 
1032 	return 0;
1033 }
1034 
1035 static void korina_free_ring(struct net_device *dev)
1036 {
1037 	struct korina_private *lp = netdev_priv(dev);
1038 	int i;
1039 
1040 	for (i = 0; i < KORINA_NUM_RDS; i++) {
1041 		lp->rd_ring[i].control = 0;
1042 		if (lp->rx_skb[i]) {
1043 			dma_unmap_single(lp->dmadev, lp->rx_skb_dma[i],
1044 					 KORINA_RBSIZE, DMA_FROM_DEVICE);
1045 			dev_kfree_skb_any(lp->rx_skb[i]);
1046 			lp->rx_skb[i] = NULL;
1047 		}
1048 	}
1049 
1050 	for (i = 0; i < KORINA_NUM_TDS; i++) {
1051 		lp->td_ring[i].control = 0;
1052 		if (lp->tx_skb[i]) {
1053 			dma_unmap_single(lp->dmadev, lp->tx_skb_dma[i],
1054 					 lp->tx_skb[i]->len, DMA_TO_DEVICE);
1055 			dev_kfree_skb_any(lp->tx_skb[i]);
1056 			lp->tx_skb[i] = NULL;
1057 		}
1058 	}
1059 }
1060 
1061 /*
1062  * Initialize the RC32434 ethernet controller.
1063  */
1064 static int korina_init(struct net_device *dev)
1065 {
1066 	struct korina_private *lp = netdev_priv(dev);
1067 
1068 	/* Disable DMA */
1069 	korina_abort_tx(dev);
1070 	korina_abort_rx(dev);
1071 
1072 	/* reset ethernet logic */
1073 	writel(0, &lp->eth_regs->ethintfc);
1074 	while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
1075 		netif_trans_update(dev);
1076 
1077 	/* Enable Ethernet Interface */
1078 	writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
1079 
1080 	/* Allocate rings */
1081 	if (korina_alloc_ring(dev)) {
1082 		printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
1083 		korina_free_ring(dev);
1084 		return -ENOMEM;
1085 	}
1086 
1087 	writel(0, &lp->rx_dma_regs->dmas);
1088 	/* Start Rx DMA */
1089 	writel(0, &lp->rx_dma_regs->dmandptr);
1090 	writel(korina_rx_dma(lp, 0), &lp->rx_dma_regs->dmadptr);
1091 
1092 	writel(readl(&lp->tx_dma_regs->dmasm) &
1093 			~(DMA_STAT_FINI | DMA_STAT_ERR),
1094 			&lp->tx_dma_regs->dmasm);
1095 	writel(readl(&lp->rx_dma_regs->dmasm) &
1096 			~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
1097 			&lp->rx_dma_regs->dmasm);
1098 
1099 	/* Accept only packets destined for this Ethernet device address */
1100 	writel(ETH_ARC_AB, &lp->eth_regs->etharc);
1101 
1102 	/* Set all Ether station address registers to their initial values */
1103 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
1104 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
1105 
1106 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
1107 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
1108 
1109 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
1110 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
1111 
1112 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
1113 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
1114 
1115 
1116 	/* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
1117 	writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
1118 			&lp->eth_regs->ethmac2);
1119 
1120 	/* Back to back inter-packet-gap */
1121 	writel(0x15, &lp->eth_regs->ethipgt);
1122 	/* Non - Back to back inter-packet-gap */
1123 	writel(0x12, &lp->eth_regs->ethipgr);
1124 
1125 	/* Management Clock Prescaler Divisor
1126 	 * Clock independent setting */
1127 	writel(((lp->mii_clock_freq) / MII_CLOCK + 1) & ~1,
1128 	       &lp->eth_regs->ethmcp);
1129 	writel(0, &lp->eth_regs->miimcfg);
1130 
1131 	/* don't transmit until fifo contains 48b */
1132 	writel(48, &lp->eth_regs->ethfifott);
1133 
1134 	writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
1135 
1136 	korina_check_media(dev, 1);
1137 
1138 	napi_enable(&lp->napi);
1139 	netif_start_queue(dev);
1140 
1141 	return 0;
1142 }
1143 
1144 /*
1145  * Restart the RC32434 ethernet controller.
1146  */
1147 static void korina_restart_task(struct work_struct *work)
1148 {
1149 	struct korina_private *lp = container_of(work,
1150 			struct korina_private, restart_task);
1151 	struct net_device *dev = lp->dev;
1152 
1153 	/*
1154 	 * Disable interrupts
1155 	 */
1156 	disable_irq(lp->rx_irq);
1157 	disable_irq(lp->tx_irq);
1158 
1159 	writel(readl(&lp->tx_dma_regs->dmasm) |
1160 				DMA_STAT_FINI | DMA_STAT_ERR,
1161 				&lp->tx_dma_regs->dmasm);
1162 	writel(readl(&lp->rx_dma_regs->dmasm) |
1163 				DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
1164 				&lp->rx_dma_regs->dmasm);
1165 
1166 	napi_disable(&lp->napi);
1167 
1168 	korina_free_ring(dev);
1169 
1170 	if (korina_init(dev) < 0) {
1171 		printk(KERN_ERR "%s: cannot restart device\n", dev->name);
1172 		return;
1173 	}
1174 	korina_multicast_list(dev);
1175 
1176 	enable_irq(lp->tx_irq);
1177 	enable_irq(lp->rx_irq);
1178 }
1179 
1180 static void korina_tx_timeout(struct net_device *dev, unsigned int txqueue)
1181 {
1182 	struct korina_private *lp = netdev_priv(dev);
1183 
1184 	schedule_work(&lp->restart_task);
1185 }
1186 
1187 #ifdef CONFIG_NET_POLL_CONTROLLER
1188 static void korina_poll_controller(struct net_device *dev)
1189 {
1190 	disable_irq(dev->irq);
1191 	korina_tx_dma_interrupt(dev->irq, dev);
1192 	enable_irq(dev->irq);
1193 }
1194 #endif
1195 
1196 static int korina_open(struct net_device *dev)
1197 {
1198 	struct korina_private *lp = netdev_priv(dev);
1199 	int ret;
1200 
1201 	/* Initialize */
1202 	ret = korina_init(dev);
1203 	if (ret < 0) {
1204 		printk(KERN_ERR "%s: cannot open device\n", dev->name);
1205 		goto out;
1206 	}
1207 
1208 	/* Install the interrupt handler
1209 	 * that handles the Done Finished */
1210 	ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
1211 			0, "Korina ethernet Rx", dev);
1212 	if (ret < 0) {
1213 		printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1214 			dev->name, lp->rx_irq);
1215 		goto err_release;
1216 	}
1217 	ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
1218 			0, "Korina ethernet Tx", dev);
1219 	if (ret < 0) {
1220 		printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1221 			dev->name, lp->tx_irq);
1222 		goto err_free_rx_irq;
1223 	}
1224 
1225 	mod_timer(&lp->media_check_timer, jiffies + 1);
1226 out:
1227 	return ret;
1228 
1229 err_free_rx_irq:
1230 	free_irq(lp->rx_irq, dev);
1231 err_release:
1232 	korina_free_ring(dev);
1233 	goto out;
1234 }
1235 
1236 static int korina_close(struct net_device *dev)
1237 {
1238 	struct korina_private *lp = netdev_priv(dev);
1239 	u32 tmp;
1240 
1241 	del_timer(&lp->media_check_timer);
1242 
1243 	/* Disable interrupts */
1244 	disable_irq(lp->rx_irq);
1245 	disable_irq(lp->tx_irq);
1246 
1247 	korina_abort_tx(dev);
1248 	tmp = readl(&lp->tx_dma_regs->dmasm);
1249 	tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1250 	writel(tmp, &lp->tx_dma_regs->dmasm);
1251 
1252 	korina_abort_rx(dev);
1253 	tmp = readl(&lp->rx_dma_regs->dmasm);
1254 	tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1255 	writel(tmp, &lp->rx_dma_regs->dmasm);
1256 
1257 	napi_disable(&lp->napi);
1258 
1259 	cancel_work_sync(&lp->restart_task);
1260 
1261 	korina_free_ring(dev);
1262 
1263 	free_irq(lp->rx_irq, dev);
1264 	free_irq(lp->tx_irq, dev);
1265 
1266 	return 0;
1267 }
1268 
1269 static const struct net_device_ops korina_netdev_ops = {
1270 	.ndo_open		= korina_open,
1271 	.ndo_stop		= korina_close,
1272 	.ndo_start_xmit		= korina_send_packet,
1273 	.ndo_set_rx_mode	= korina_multicast_list,
1274 	.ndo_tx_timeout		= korina_tx_timeout,
1275 	.ndo_eth_ioctl		= korina_ioctl,
1276 	.ndo_validate_addr	= eth_validate_addr,
1277 	.ndo_set_mac_address	= eth_mac_addr,
1278 #ifdef CONFIG_NET_POLL_CONTROLLER
1279 	.ndo_poll_controller	= korina_poll_controller,
1280 #endif
1281 };
1282 
1283 static int korina_probe(struct platform_device *pdev)
1284 {
1285 	u8 *mac_addr = dev_get_platdata(&pdev->dev);
1286 	struct korina_private *lp;
1287 	struct net_device *dev;
1288 	struct clk *clk;
1289 	void __iomem *p;
1290 	int rc;
1291 
1292 	dev = devm_alloc_etherdev(&pdev->dev, sizeof(struct korina_private));
1293 	if (!dev)
1294 		return -ENOMEM;
1295 
1296 	SET_NETDEV_DEV(dev, &pdev->dev);
1297 	lp = netdev_priv(dev);
1298 
1299 	if (mac_addr)
1300 		eth_hw_addr_set(dev, mac_addr);
1301 	else if (of_get_ethdev_address(pdev->dev.of_node, dev) < 0)
1302 		eth_hw_addr_random(dev);
1303 
1304 	clk = devm_clk_get_optional(&pdev->dev, "mdioclk");
1305 	if (IS_ERR(clk))
1306 		return PTR_ERR(clk);
1307 	if (clk) {
1308 		clk_prepare_enable(clk);
1309 		lp->mii_clock_freq = clk_get_rate(clk);
1310 	} else {
1311 		lp->mii_clock_freq = 200000000; /* max possible input clk */
1312 	}
1313 
1314 	lp->rx_irq = platform_get_irq_byname(pdev, "rx");
1315 	lp->tx_irq = platform_get_irq_byname(pdev, "tx");
1316 
1317 	p = devm_platform_ioremap_resource_byname(pdev, "emac");
1318 	if (IS_ERR(p)) {
1319 		printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1320 		return PTR_ERR(p);
1321 	}
1322 	lp->eth_regs = p;
1323 
1324 	p = devm_platform_ioremap_resource_byname(pdev, "dma_rx");
1325 	if (IS_ERR(p)) {
1326 		printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1327 		return PTR_ERR(p);
1328 	}
1329 	lp->rx_dma_regs = p;
1330 
1331 	p = devm_platform_ioremap_resource_byname(pdev, "dma_tx");
1332 	if (IS_ERR(p)) {
1333 		printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1334 		return PTR_ERR(p);
1335 	}
1336 	lp->tx_dma_regs = p;
1337 
1338 	lp->td_ring = dmam_alloc_coherent(&pdev->dev, TD_RING_SIZE,
1339 					  &lp->td_dma, GFP_KERNEL);
1340 	if (!lp->td_ring)
1341 		return -ENOMEM;
1342 
1343 	lp->rd_ring = dmam_alloc_coherent(&pdev->dev, RD_RING_SIZE,
1344 					  &lp->rd_dma, GFP_KERNEL);
1345 	if (!lp->rd_ring)
1346 		return -ENOMEM;
1347 
1348 	spin_lock_init(&lp->lock);
1349 	/* just use the rx dma irq */
1350 	dev->irq = lp->rx_irq;
1351 	lp->dev = dev;
1352 	lp->dmadev = &pdev->dev;
1353 
1354 	dev->netdev_ops = &korina_netdev_ops;
1355 	dev->ethtool_ops = &netdev_ethtool_ops;
1356 	dev->watchdog_timeo = TX_TIMEOUT;
1357 	netif_napi_add(dev, &lp->napi, korina_poll, NAPI_POLL_WEIGHT);
1358 
1359 	lp->mii_if.dev = dev;
1360 	lp->mii_if.mdio_read = korina_mdio_read;
1361 	lp->mii_if.mdio_write = korina_mdio_write;
1362 	lp->mii_if.phy_id = 1;
1363 	lp->mii_if.phy_id_mask = 0x1f;
1364 	lp->mii_if.reg_num_mask = 0x1f;
1365 
1366 	platform_set_drvdata(pdev, dev);
1367 
1368 	rc = register_netdev(dev);
1369 	if (rc < 0) {
1370 		printk(KERN_ERR DRV_NAME
1371 			": cannot register net device: %d\n", rc);
1372 		return rc;
1373 	}
1374 	timer_setup(&lp->media_check_timer, korina_poll_media, 0);
1375 
1376 	INIT_WORK(&lp->restart_task, korina_restart_task);
1377 
1378 	printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1379 			dev->name);
1380 	return rc;
1381 }
1382 
1383 static int korina_remove(struct platform_device *pdev)
1384 {
1385 	struct net_device *dev = platform_get_drvdata(pdev);
1386 
1387 	unregister_netdev(dev);
1388 
1389 	return 0;
1390 }
1391 
1392 #ifdef CONFIG_OF
1393 static const struct of_device_id korina_match[] = {
1394 	{
1395 		.compatible = "idt,3243x-emac",
1396 	},
1397 	{ }
1398 };
1399 MODULE_DEVICE_TABLE(of, korina_match);
1400 #endif
1401 
1402 static struct platform_driver korina_driver = {
1403 	.driver = {
1404 		.name = "korina",
1405 		.of_match_table = of_match_ptr(korina_match),
1406 	},
1407 	.probe = korina_probe,
1408 	.remove = korina_remove,
1409 };
1410 
1411 module_platform_driver(korina_driver);
1412 
1413 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1414 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1415 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1416 MODULE_AUTHOR("Roman Yeryomin <roman@advem.lv>");
1417 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1418 MODULE_LICENSE("GPL");
1419