xref: /openbmc/linux/drivers/net/ethernet/korina.c (revision 20055477)
1 /*
2  *  Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
3  *
4  *  Copyright 2004 IDT Inc. (rischelp@idt.com)
5  *  Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6  *  Copyright 2008 Florian Fainelli <florian@openwrt.org>
7  *
8  *  This program is free software; you can redistribute  it and/or modify it
9  *  under  the terms of  the GNU General  Public License as published by the
10  *  Free Software Foundation;  either version 2 of the  License, or (at your
11  *  option) any later version.
12  *
13  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
14  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
15  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
16  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
17  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
19  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
21  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  *
24  *  You should have received a copy of the  GNU General Public License along
25  *  with this program; if not, write  to the Free Software Foundation, Inc.,
26  *  675 Mass Ave, Cambridge, MA 02139, USA.
27  *
28  *  Writing to a DMA status register:
29  *
30  *  When writing to the status register, you should mask the bit you have
31  *  been testing the status register with. Both Tx and Rx DMA registers
32  *  should stick to this procedure.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/moduleparam.h>
38 #include <linux/sched.h>
39 #include <linux/ctype.h>
40 #include <linux/types.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/ioport.h>
44 #include <linux/in.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/delay.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/errno.h>
52 #include <linux/platform_device.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
56 
57 #include <asm/bootinfo.h>
58 #include <asm/bitops.h>
59 #include <asm/pgtable.h>
60 #include <asm/io.h>
61 #include <asm/dma.h>
62 
63 #include <asm/mach-rc32434/rb.h>
64 #include <asm/mach-rc32434/rc32434.h>
65 #include <asm/mach-rc32434/eth.h>
66 #include <asm/mach-rc32434/dma_v.h>
67 
68 #define DRV_NAME        "korina"
69 #define DRV_VERSION     "0.10"
70 #define DRV_RELDATE     "04Mar2008"
71 
72 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
73 				   ((dev)->dev_addr[1]))
74 #define STATION_ADDRESS_LOW(dev)  (((dev)->dev_addr[2] << 24) | \
75 				   ((dev)->dev_addr[3] << 16) | \
76 				   ((dev)->dev_addr[4] << 8)  | \
77 				   ((dev)->dev_addr[5]))
78 
79 #define MII_CLOCK 1250000 	/* no more than 2.5MHz */
80 
81 /* the following must be powers of two */
82 #define KORINA_NUM_RDS	64  /* number of receive descriptors */
83 #define KORINA_NUM_TDS	64  /* number of transmit descriptors */
84 
85 /* KORINA_RBSIZE is the hardware's default maximum receive
86  * frame size in bytes. Having this hardcoded means that there
87  * is no support for MTU sizes greater than 1500. */
88 #define KORINA_RBSIZE	1536 /* size of one resource buffer = Ether MTU */
89 #define KORINA_RDS_MASK	(KORINA_NUM_RDS - 1)
90 #define KORINA_TDS_MASK	(KORINA_NUM_TDS - 1)
91 #define RD_RING_SIZE 	(KORINA_NUM_RDS * sizeof(struct dma_desc))
92 #define TD_RING_SIZE	(KORINA_NUM_TDS * sizeof(struct dma_desc))
93 
94 #define TX_TIMEOUT 	(6000 * HZ / 1000)
95 
96 enum chain_status { desc_filled, desc_empty };
97 #define IS_DMA_FINISHED(X)   (((X) & (DMA_DESC_FINI)) != 0)
98 #define IS_DMA_DONE(X)   (((X) & (DMA_DESC_DONE)) != 0)
99 #define RCVPKT_LENGTH(X)     (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
100 
101 /* Information that need to be kept for each board. */
102 struct korina_private {
103 	struct eth_regs *eth_regs;
104 	struct dma_reg *rx_dma_regs;
105 	struct dma_reg *tx_dma_regs;
106 	struct dma_desc *td_ring; /* transmit descriptor ring */
107 	struct dma_desc *rd_ring; /* receive descriptor ring  */
108 
109 	struct sk_buff *tx_skb[KORINA_NUM_TDS];
110 	struct sk_buff *rx_skb[KORINA_NUM_RDS];
111 
112 	int rx_next_done;
113 	int rx_chain_head;
114 	int rx_chain_tail;
115 	enum chain_status rx_chain_status;
116 
117 	int tx_next_done;
118 	int tx_chain_head;
119 	int tx_chain_tail;
120 	enum chain_status tx_chain_status;
121 	int tx_count;
122 	int tx_full;
123 
124 	int rx_irq;
125 	int tx_irq;
126 	int ovr_irq;
127 	int und_irq;
128 
129 	spinlock_t lock;        /* NIC xmit lock */
130 
131 	int dma_halt_cnt;
132 	int dma_run_cnt;
133 	struct napi_struct napi;
134 	struct timer_list media_check_timer;
135 	struct mii_if_info mii_if;
136 	struct work_struct restart_task;
137 	struct net_device *dev;
138 	int phy_addr;
139 };
140 
141 extern unsigned int idt_cpu_freq;
142 
143 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
144 {
145 	writel(0, &ch->dmandptr);
146 	writel(dma_addr, &ch->dmadptr);
147 }
148 
149 static inline void korina_abort_dma(struct net_device *dev,
150 					struct dma_reg *ch)
151 {
152        if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
153 	       writel(0x10, &ch->dmac);
154 
155 	       while (!(readl(&ch->dmas) & DMA_STAT_HALT))
156 		       dev->trans_start = jiffies;
157 
158 	       writel(0, &ch->dmas);
159        }
160 
161        writel(0, &ch->dmadptr);
162        writel(0, &ch->dmandptr);
163 }
164 
165 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
166 {
167 	writel(dma_addr, &ch->dmandptr);
168 }
169 
170 static void korina_abort_tx(struct net_device *dev)
171 {
172 	struct korina_private *lp = netdev_priv(dev);
173 
174 	korina_abort_dma(dev, lp->tx_dma_regs);
175 }
176 
177 static void korina_abort_rx(struct net_device *dev)
178 {
179 	struct korina_private *lp = netdev_priv(dev);
180 
181 	korina_abort_dma(dev, lp->rx_dma_regs);
182 }
183 
184 static void korina_start_rx(struct korina_private *lp,
185 					struct dma_desc *rd)
186 {
187 	korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
188 }
189 
190 static void korina_chain_rx(struct korina_private *lp,
191 					struct dma_desc *rd)
192 {
193 	korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
194 }
195 
196 /* transmit packet */
197 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
198 {
199 	struct korina_private *lp = netdev_priv(dev);
200 	unsigned long flags;
201 	u32 length;
202 	u32 chain_prev, chain_next;
203 	struct dma_desc *td;
204 
205 	spin_lock_irqsave(&lp->lock, flags);
206 
207 	td = &lp->td_ring[lp->tx_chain_tail];
208 
209 	/* stop queue when full, drop pkts if queue already full */
210 	if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
211 		lp->tx_full = 1;
212 
213 		if (lp->tx_count == (KORINA_NUM_TDS - 2))
214 			netif_stop_queue(dev);
215 		else {
216 			dev->stats.tx_dropped++;
217 			dev_kfree_skb_any(skb);
218 			spin_unlock_irqrestore(&lp->lock, flags);
219 
220 			return NETDEV_TX_BUSY;
221 		}
222 	}
223 
224 	lp->tx_count++;
225 
226 	lp->tx_skb[lp->tx_chain_tail] = skb;
227 
228 	length = skb->len;
229 	dma_cache_wback((u32)skb->data, skb->len);
230 
231 	/* Setup the transmit descriptor. */
232 	dma_cache_inv((u32) td, sizeof(*td));
233 	td->ca = CPHYSADDR(skb->data);
234 	chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
235 	chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
236 
237 	if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
238 		if (lp->tx_chain_status == desc_empty) {
239 			/* Update tail */
240 			td->control = DMA_COUNT(length) |
241 					DMA_DESC_COF | DMA_DESC_IOF;
242 			/* Move tail */
243 			lp->tx_chain_tail = chain_next;
244 			/* Write to NDPTR */
245 			writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
246 					&lp->tx_dma_regs->dmandptr);
247 			/* Move head to tail */
248 			lp->tx_chain_head = lp->tx_chain_tail;
249 		} else {
250 			/* Update tail */
251 			td->control = DMA_COUNT(length) |
252 					DMA_DESC_COF | DMA_DESC_IOF;
253 			/* Link to prev */
254 			lp->td_ring[chain_prev].control &=
255 					~DMA_DESC_COF;
256 			/* Link to prev */
257 			lp->td_ring[chain_prev].link =  CPHYSADDR(td);
258 			/* Move tail */
259 			lp->tx_chain_tail = chain_next;
260 			/* Write to NDPTR */
261 			writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
262 					&(lp->tx_dma_regs->dmandptr));
263 			/* Move head to tail */
264 			lp->tx_chain_head = lp->tx_chain_tail;
265 			lp->tx_chain_status = desc_empty;
266 		}
267 	} else {
268 		if (lp->tx_chain_status == desc_empty) {
269 			/* Update tail */
270 			td->control = DMA_COUNT(length) |
271 					DMA_DESC_COF | DMA_DESC_IOF;
272 			/* Move tail */
273 			lp->tx_chain_tail = chain_next;
274 			lp->tx_chain_status = desc_filled;
275 		} else {
276 			/* Update tail */
277 			td->control = DMA_COUNT(length) |
278 					DMA_DESC_COF | DMA_DESC_IOF;
279 			lp->td_ring[chain_prev].control &=
280 					~DMA_DESC_COF;
281 			lp->td_ring[chain_prev].link =  CPHYSADDR(td);
282 			lp->tx_chain_tail = chain_next;
283 		}
284 	}
285 	dma_cache_wback((u32) td, sizeof(*td));
286 
287 	dev->trans_start = jiffies;
288 	spin_unlock_irqrestore(&lp->lock, flags);
289 
290 	return NETDEV_TX_OK;
291 }
292 
293 static int mdio_read(struct net_device *dev, int mii_id, int reg)
294 {
295 	struct korina_private *lp = netdev_priv(dev);
296 	int ret;
297 
298 	mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
299 
300 	writel(0, &lp->eth_regs->miimcfg);
301 	writel(0, &lp->eth_regs->miimcmd);
302 	writel(mii_id | reg, &lp->eth_regs->miimaddr);
303 	writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
304 
305 	ret = (int)(readl(&lp->eth_regs->miimrdd));
306 	return ret;
307 }
308 
309 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
310 {
311 	struct korina_private *lp = netdev_priv(dev);
312 
313 	mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
314 
315 	writel(0, &lp->eth_regs->miimcfg);
316 	writel(1, &lp->eth_regs->miimcmd);
317 	writel(mii_id | reg, &lp->eth_regs->miimaddr);
318 	writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
319 	writel(val, &lp->eth_regs->miimwtd);
320 }
321 
322 /* Ethernet Rx DMA interrupt */
323 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
324 {
325 	struct net_device *dev = dev_id;
326 	struct korina_private *lp = netdev_priv(dev);
327 	u32 dmas, dmasm;
328 	irqreturn_t retval;
329 
330 	dmas = readl(&lp->rx_dma_regs->dmas);
331 	if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
332 		dmasm = readl(&lp->rx_dma_regs->dmasm);
333 		writel(dmasm | (DMA_STAT_DONE |
334 				DMA_STAT_HALT | DMA_STAT_ERR),
335 				&lp->rx_dma_regs->dmasm);
336 
337 		napi_schedule(&lp->napi);
338 
339 		if (dmas & DMA_STAT_ERR)
340 			printk(KERN_ERR "%s: DMA error\n", dev->name);
341 
342 		retval = IRQ_HANDLED;
343 	} else
344 		retval = IRQ_NONE;
345 
346 	return retval;
347 }
348 
349 static int korina_rx(struct net_device *dev, int limit)
350 {
351 	struct korina_private *lp = netdev_priv(dev);
352 	struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
353 	struct sk_buff *skb, *skb_new;
354 	u8 *pkt_buf;
355 	u32 devcs, pkt_len, dmas;
356 	int count;
357 
358 	dma_cache_inv((u32)rd, sizeof(*rd));
359 
360 	for (count = 0; count < limit; count++) {
361 		skb = lp->rx_skb[lp->rx_next_done];
362 		skb_new = NULL;
363 
364 		devcs = rd->devcs;
365 
366 		if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
367 			break;
368 
369 		/* Update statistics counters */
370 		if (devcs & ETH_RX_CRC)
371 			dev->stats.rx_crc_errors++;
372 		if (devcs & ETH_RX_LOR)
373 			dev->stats.rx_length_errors++;
374 		if (devcs & ETH_RX_LE)
375 			dev->stats.rx_length_errors++;
376 		if (devcs & ETH_RX_OVR)
377 			dev->stats.rx_fifo_errors++;
378 		if (devcs & ETH_RX_CV)
379 			dev->stats.rx_frame_errors++;
380 		if (devcs & ETH_RX_CES)
381 			dev->stats.rx_length_errors++;
382 		if (devcs & ETH_RX_MP)
383 			dev->stats.multicast++;
384 
385 		if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
386 			/* check that this is a whole packet
387 			 * WARNING: DMA_FD bit incorrectly set
388 			 * in Rc32434 (errata ref #077) */
389 			dev->stats.rx_errors++;
390 			dev->stats.rx_dropped++;
391 		} else if ((devcs & ETH_RX_ROK)) {
392 			pkt_len = RCVPKT_LENGTH(devcs);
393 
394 			/* must be the (first and) last
395 			 * descriptor then */
396 			pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
397 
398 			/* invalidate the cache */
399 			dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
400 
401 			/* Malloc up new buffer. */
402 			skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
403 
404 			if (!skb_new)
405 				break;
406 			/* Do not count the CRC */
407 			skb_put(skb, pkt_len - 4);
408 			skb->protocol = eth_type_trans(skb, dev);
409 
410 			/* Pass the packet to upper layers */
411 			netif_receive_skb(skb);
412 			dev->stats.rx_packets++;
413 			dev->stats.rx_bytes += pkt_len;
414 
415 			/* Update the mcast stats */
416 			if (devcs & ETH_RX_MP)
417 				dev->stats.multicast++;
418 
419 			lp->rx_skb[lp->rx_next_done] = skb_new;
420 		}
421 
422 		rd->devcs = 0;
423 
424 		/* Restore descriptor's curr_addr */
425 		if (skb_new)
426 			rd->ca = CPHYSADDR(skb_new->data);
427 		else
428 			rd->ca = CPHYSADDR(skb->data);
429 
430 		rd->control = DMA_COUNT(KORINA_RBSIZE) |
431 			DMA_DESC_COD | DMA_DESC_IOD;
432 		lp->rd_ring[(lp->rx_next_done - 1) &
433 			KORINA_RDS_MASK].control &=
434 			~DMA_DESC_COD;
435 
436 		lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
437 		dma_cache_wback((u32)rd, sizeof(*rd));
438 		rd = &lp->rd_ring[lp->rx_next_done];
439 		writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
440 	}
441 
442 	dmas = readl(&lp->rx_dma_regs->dmas);
443 
444 	if (dmas & DMA_STAT_HALT) {
445 		writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
446 				&lp->rx_dma_regs->dmas);
447 
448 		lp->dma_halt_cnt++;
449 		rd->devcs = 0;
450 		skb = lp->rx_skb[lp->rx_next_done];
451 		rd->ca = CPHYSADDR(skb->data);
452 		dma_cache_wback((u32)rd, sizeof(*rd));
453 		korina_chain_rx(lp, rd);
454 	}
455 
456 	return count;
457 }
458 
459 static int korina_poll(struct napi_struct *napi, int budget)
460 {
461 	struct korina_private *lp =
462 		container_of(napi, struct korina_private, napi);
463 	struct net_device *dev = lp->dev;
464 	int work_done;
465 
466 	work_done = korina_rx(dev, budget);
467 	if (work_done < budget) {
468 		napi_complete(napi);
469 
470 		writel(readl(&lp->rx_dma_regs->dmasm) &
471 			~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
472 			&lp->rx_dma_regs->dmasm);
473 	}
474 	return work_done;
475 }
476 
477 /*
478  * Set or clear the multicast filter for this adaptor.
479  */
480 static void korina_multicast_list(struct net_device *dev)
481 {
482 	struct korina_private *lp = netdev_priv(dev);
483 	unsigned long flags;
484 	struct netdev_hw_addr *ha;
485 	u32 recognise = ETH_ARC_AB;	/* always accept broadcasts */
486 
487 	/* Set promiscuous mode */
488 	if (dev->flags & IFF_PROMISC)
489 		recognise |= ETH_ARC_PRO;
490 
491 	else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
492 		/* All multicast and broadcast */
493 		recognise |= ETH_ARC_AM;
494 
495 	/* Build the hash table */
496 	if (netdev_mc_count(dev) > 4) {
497 		u16 hash_table[4] = { 0 };
498 		u32 crc;
499 
500 		netdev_for_each_mc_addr(ha, dev) {
501 			crc = ether_crc_le(6, ha->addr);
502 			crc >>= 26;
503 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
504 		}
505 		/* Accept filtered multicast */
506 		recognise |= ETH_ARC_AFM;
507 
508 		/* Fill the MAC hash tables with their values */
509 		writel((u32)(hash_table[1] << 16 | hash_table[0]),
510 					&lp->eth_regs->ethhash0);
511 		writel((u32)(hash_table[3] << 16 | hash_table[2]),
512 					&lp->eth_regs->ethhash1);
513 	}
514 
515 	spin_lock_irqsave(&lp->lock, flags);
516 	writel(recognise, &lp->eth_regs->etharc);
517 	spin_unlock_irqrestore(&lp->lock, flags);
518 }
519 
520 static void korina_tx(struct net_device *dev)
521 {
522 	struct korina_private *lp = netdev_priv(dev);
523 	struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
524 	u32 devcs;
525 	u32 dmas;
526 
527 	spin_lock(&lp->lock);
528 
529 	/* Process all desc that are done */
530 	while (IS_DMA_FINISHED(td->control)) {
531 		if (lp->tx_full == 1) {
532 			netif_wake_queue(dev);
533 			lp->tx_full = 0;
534 		}
535 
536 		devcs = lp->td_ring[lp->tx_next_done].devcs;
537 		if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
538 				(ETH_TX_FD | ETH_TX_LD)) {
539 			dev->stats.tx_errors++;
540 			dev->stats.tx_dropped++;
541 
542 			/* Should never happen */
543 			printk(KERN_ERR "%s: split tx ignored\n",
544 							dev->name);
545 		} else if (devcs & ETH_TX_TOK) {
546 			dev->stats.tx_packets++;
547 			dev->stats.tx_bytes +=
548 					lp->tx_skb[lp->tx_next_done]->len;
549 		} else {
550 			dev->stats.tx_errors++;
551 			dev->stats.tx_dropped++;
552 
553 			/* Underflow */
554 			if (devcs & ETH_TX_UND)
555 				dev->stats.tx_fifo_errors++;
556 
557 			/* Oversized frame */
558 			if (devcs & ETH_TX_OF)
559 				dev->stats.tx_aborted_errors++;
560 
561 			/* Excessive deferrals */
562 			if (devcs & ETH_TX_ED)
563 				dev->stats.tx_carrier_errors++;
564 
565 			/* Collisions: medium busy */
566 			if (devcs & ETH_TX_EC)
567 				dev->stats.collisions++;
568 
569 			/* Late collision */
570 			if (devcs & ETH_TX_LC)
571 				dev->stats.tx_window_errors++;
572 		}
573 
574 		/* We must always free the original skb */
575 		if (lp->tx_skb[lp->tx_next_done]) {
576 			dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
577 			lp->tx_skb[lp->tx_next_done] = NULL;
578 		}
579 
580 		lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
581 		lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
582 		lp->td_ring[lp->tx_next_done].link = 0;
583 		lp->td_ring[lp->tx_next_done].ca = 0;
584 		lp->tx_count--;
585 
586 		/* Go on to next transmission */
587 		lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
588 		td = &lp->td_ring[lp->tx_next_done];
589 
590 	}
591 
592 	/* Clear the DMA status register */
593 	dmas = readl(&lp->tx_dma_regs->dmas);
594 	writel(~dmas, &lp->tx_dma_regs->dmas);
595 
596 	writel(readl(&lp->tx_dma_regs->dmasm) &
597 			~(DMA_STAT_FINI | DMA_STAT_ERR),
598 			&lp->tx_dma_regs->dmasm);
599 
600 	spin_unlock(&lp->lock);
601 }
602 
603 static irqreturn_t
604 korina_tx_dma_interrupt(int irq, void *dev_id)
605 {
606 	struct net_device *dev = dev_id;
607 	struct korina_private *lp = netdev_priv(dev);
608 	u32 dmas, dmasm;
609 	irqreturn_t retval;
610 
611 	dmas = readl(&lp->tx_dma_regs->dmas);
612 
613 	if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
614 		dmasm = readl(&lp->tx_dma_regs->dmasm);
615 		writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
616 				&lp->tx_dma_regs->dmasm);
617 
618 		korina_tx(dev);
619 
620 		if (lp->tx_chain_status == desc_filled &&
621 			(readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
622 			writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
623 				&(lp->tx_dma_regs->dmandptr));
624 			lp->tx_chain_status = desc_empty;
625 			lp->tx_chain_head = lp->tx_chain_tail;
626 			dev->trans_start = jiffies;
627 		}
628 		if (dmas & DMA_STAT_ERR)
629 			printk(KERN_ERR "%s: DMA error\n", dev->name);
630 
631 		retval = IRQ_HANDLED;
632 	} else
633 		retval = IRQ_NONE;
634 
635 	return retval;
636 }
637 
638 
639 static void korina_check_media(struct net_device *dev, unsigned int init_media)
640 {
641 	struct korina_private *lp = netdev_priv(dev);
642 
643 	mii_check_media(&lp->mii_if, 0, init_media);
644 
645 	if (lp->mii_if.full_duplex)
646 		writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
647 						&lp->eth_regs->ethmac2);
648 	else
649 		writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
650 						&lp->eth_regs->ethmac2);
651 }
652 
653 static void korina_poll_media(unsigned long data)
654 {
655 	struct net_device *dev = (struct net_device *) data;
656 	struct korina_private *lp = netdev_priv(dev);
657 
658 	korina_check_media(dev, 0);
659 	mod_timer(&lp->media_check_timer, jiffies + HZ);
660 }
661 
662 static void korina_set_carrier(struct mii_if_info *mii)
663 {
664 	if (mii->force_media) {
665 		/* autoneg is off: Link is always assumed to be up */
666 		if (!netif_carrier_ok(mii->dev))
667 			netif_carrier_on(mii->dev);
668 	} else  /* Let MMI library update carrier status */
669 		korina_check_media(mii->dev, 0);
670 }
671 
672 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
673 {
674 	struct korina_private *lp = netdev_priv(dev);
675 	struct mii_ioctl_data *data = if_mii(rq);
676 	int rc;
677 
678 	if (!netif_running(dev))
679 		return -EINVAL;
680 	spin_lock_irq(&lp->lock);
681 	rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
682 	spin_unlock_irq(&lp->lock);
683 	korina_set_carrier(&lp->mii_if);
684 
685 	return rc;
686 }
687 
688 /* ethtool helpers */
689 static void netdev_get_drvinfo(struct net_device *dev,
690 			struct ethtool_drvinfo *info)
691 {
692 	struct korina_private *lp = netdev_priv(dev);
693 
694 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
695 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
696 	strlcpy(info->bus_info, lp->dev->name, sizeof(info->bus_info));
697 }
698 
699 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
700 {
701 	struct korina_private *lp = netdev_priv(dev);
702 	int rc;
703 
704 	spin_lock_irq(&lp->lock);
705 	rc = mii_ethtool_gset(&lp->mii_if, cmd);
706 	spin_unlock_irq(&lp->lock);
707 
708 	return rc;
709 }
710 
711 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
712 {
713 	struct korina_private *lp = netdev_priv(dev);
714 	int rc;
715 
716 	spin_lock_irq(&lp->lock);
717 	rc = mii_ethtool_sset(&lp->mii_if, cmd);
718 	spin_unlock_irq(&lp->lock);
719 	korina_set_carrier(&lp->mii_if);
720 
721 	return rc;
722 }
723 
724 static u32 netdev_get_link(struct net_device *dev)
725 {
726 	struct korina_private *lp = netdev_priv(dev);
727 
728 	return mii_link_ok(&lp->mii_if);
729 }
730 
731 static const struct ethtool_ops netdev_ethtool_ops = {
732 	.get_drvinfo            = netdev_get_drvinfo,
733 	.get_settings           = netdev_get_settings,
734 	.set_settings           = netdev_set_settings,
735 	.get_link               = netdev_get_link,
736 };
737 
738 static int korina_alloc_ring(struct net_device *dev)
739 {
740 	struct korina_private *lp = netdev_priv(dev);
741 	struct sk_buff *skb;
742 	int i;
743 
744 	/* Initialize the transmit descriptors */
745 	for (i = 0; i < KORINA_NUM_TDS; i++) {
746 		lp->td_ring[i].control = DMA_DESC_IOF;
747 		lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
748 		lp->td_ring[i].ca = 0;
749 		lp->td_ring[i].link = 0;
750 	}
751 	lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
752 			lp->tx_full = lp->tx_count = 0;
753 	lp->tx_chain_status = desc_empty;
754 
755 	/* Initialize the receive descriptors */
756 	for (i = 0; i < KORINA_NUM_RDS; i++) {
757 		skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
758 		if (!skb)
759 			return -ENOMEM;
760 		lp->rx_skb[i] = skb;
761 		lp->rd_ring[i].control = DMA_DESC_IOD |
762 				DMA_COUNT(KORINA_RBSIZE);
763 		lp->rd_ring[i].devcs = 0;
764 		lp->rd_ring[i].ca = CPHYSADDR(skb->data);
765 		lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
766 	}
767 
768 	/* loop back receive descriptors, so the last
769 	 * descriptor points to the first one */
770 	lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
771 	lp->rd_ring[i - 1].control |= DMA_DESC_COD;
772 
773 	lp->rx_next_done  = 0;
774 	lp->rx_chain_head = 0;
775 	lp->rx_chain_tail = 0;
776 	lp->rx_chain_status = desc_empty;
777 
778 	return 0;
779 }
780 
781 static void korina_free_ring(struct net_device *dev)
782 {
783 	struct korina_private *lp = netdev_priv(dev);
784 	int i;
785 
786 	for (i = 0; i < KORINA_NUM_RDS; i++) {
787 		lp->rd_ring[i].control = 0;
788 		if (lp->rx_skb[i])
789 			dev_kfree_skb_any(lp->rx_skb[i]);
790 		lp->rx_skb[i] = NULL;
791 	}
792 
793 	for (i = 0; i < KORINA_NUM_TDS; i++) {
794 		lp->td_ring[i].control = 0;
795 		if (lp->tx_skb[i])
796 			dev_kfree_skb_any(lp->tx_skb[i]);
797 		lp->tx_skb[i] = NULL;
798 	}
799 }
800 
801 /*
802  * Initialize the RC32434 ethernet controller.
803  */
804 static int korina_init(struct net_device *dev)
805 {
806 	struct korina_private *lp = netdev_priv(dev);
807 
808 	/* Disable DMA */
809 	korina_abort_tx(dev);
810 	korina_abort_rx(dev);
811 
812 	/* reset ethernet logic */
813 	writel(0, &lp->eth_regs->ethintfc);
814 	while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
815 		dev->trans_start = jiffies;
816 
817 	/* Enable Ethernet Interface */
818 	writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
819 
820 	/* Allocate rings */
821 	if (korina_alloc_ring(dev)) {
822 		printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
823 		korina_free_ring(dev);
824 		return -ENOMEM;
825 	}
826 
827 	writel(0, &lp->rx_dma_regs->dmas);
828 	/* Start Rx DMA */
829 	korina_start_rx(lp, &lp->rd_ring[0]);
830 
831 	writel(readl(&lp->tx_dma_regs->dmasm) &
832 			~(DMA_STAT_FINI | DMA_STAT_ERR),
833 			&lp->tx_dma_regs->dmasm);
834 	writel(readl(&lp->rx_dma_regs->dmasm) &
835 			~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
836 			&lp->rx_dma_regs->dmasm);
837 
838 	/* Accept only packets destined for this Ethernet device address */
839 	writel(ETH_ARC_AB, &lp->eth_regs->etharc);
840 
841 	/* Set all Ether station address registers to their initial values */
842 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
843 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
844 
845 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
846 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
847 
848 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
849 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
850 
851 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
852 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
853 
854 
855 	/* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
856 	writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
857 			&lp->eth_regs->ethmac2);
858 
859 	/* Back to back inter-packet-gap */
860 	writel(0x15, &lp->eth_regs->ethipgt);
861 	/* Non - Back to back inter-packet-gap */
862 	writel(0x12, &lp->eth_regs->ethipgr);
863 
864 	/* Management Clock Prescaler Divisor
865 	 * Clock independent setting */
866 	writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
867 		       &lp->eth_regs->ethmcp);
868 
869 	/* don't transmit until fifo contains 48b */
870 	writel(48, &lp->eth_regs->ethfifott);
871 
872 	writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
873 
874 	napi_enable(&lp->napi);
875 	netif_start_queue(dev);
876 
877 	return 0;
878 }
879 
880 /*
881  * Restart the RC32434 ethernet controller.
882  */
883 static void korina_restart_task(struct work_struct *work)
884 {
885 	struct korina_private *lp = container_of(work,
886 			struct korina_private, restart_task);
887 	struct net_device *dev = lp->dev;
888 
889 	/*
890 	 * Disable interrupts
891 	 */
892 	disable_irq(lp->rx_irq);
893 	disable_irq(lp->tx_irq);
894 	disable_irq(lp->ovr_irq);
895 	disable_irq(lp->und_irq);
896 
897 	writel(readl(&lp->tx_dma_regs->dmasm) |
898 				DMA_STAT_FINI | DMA_STAT_ERR,
899 				&lp->tx_dma_regs->dmasm);
900 	writel(readl(&lp->rx_dma_regs->dmasm) |
901 				DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
902 				&lp->rx_dma_regs->dmasm);
903 
904 	korina_free_ring(dev);
905 
906 	napi_disable(&lp->napi);
907 
908 	if (korina_init(dev) < 0) {
909 		printk(KERN_ERR "%s: cannot restart device\n", dev->name);
910 		return;
911 	}
912 	korina_multicast_list(dev);
913 
914 	enable_irq(lp->und_irq);
915 	enable_irq(lp->ovr_irq);
916 	enable_irq(lp->tx_irq);
917 	enable_irq(lp->rx_irq);
918 }
919 
920 static void korina_clear_and_restart(struct net_device *dev, u32 value)
921 {
922 	struct korina_private *lp = netdev_priv(dev);
923 
924 	netif_stop_queue(dev);
925 	writel(value, &lp->eth_regs->ethintfc);
926 	schedule_work(&lp->restart_task);
927 }
928 
929 /* Ethernet Tx Underflow interrupt */
930 static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
931 {
932 	struct net_device *dev = dev_id;
933 	struct korina_private *lp = netdev_priv(dev);
934 	unsigned int und;
935 
936 	spin_lock(&lp->lock);
937 
938 	und = readl(&lp->eth_regs->ethintfc);
939 
940 	if (und & ETH_INT_FC_UND)
941 		korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
942 
943 	spin_unlock(&lp->lock);
944 
945 	return IRQ_HANDLED;
946 }
947 
948 static void korina_tx_timeout(struct net_device *dev)
949 {
950 	struct korina_private *lp = netdev_priv(dev);
951 
952 	schedule_work(&lp->restart_task);
953 }
954 
955 /* Ethernet Rx Overflow interrupt */
956 static irqreturn_t
957 korina_ovr_interrupt(int irq, void *dev_id)
958 {
959 	struct net_device *dev = dev_id;
960 	struct korina_private *lp = netdev_priv(dev);
961 	unsigned int ovr;
962 
963 	spin_lock(&lp->lock);
964 	ovr = readl(&lp->eth_regs->ethintfc);
965 
966 	if (ovr & ETH_INT_FC_OVR)
967 		korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
968 
969 	spin_unlock(&lp->lock);
970 
971 	return IRQ_HANDLED;
972 }
973 
974 #ifdef CONFIG_NET_POLL_CONTROLLER
975 static void korina_poll_controller(struct net_device *dev)
976 {
977 	disable_irq(dev->irq);
978 	korina_tx_dma_interrupt(dev->irq, dev);
979 	enable_irq(dev->irq);
980 }
981 #endif
982 
983 static int korina_open(struct net_device *dev)
984 {
985 	struct korina_private *lp = netdev_priv(dev);
986 	int ret;
987 
988 	/* Initialize */
989 	ret = korina_init(dev);
990 	if (ret < 0) {
991 		printk(KERN_ERR "%s: cannot open device\n", dev->name);
992 		goto out;
993 	}
994 
995 	/* Install the interrupt handler
996 	 * that handles the Done Finished
997 	 * Ovr and Und Events */
998 	ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
999 			0, "Korina ethernet Rx", dev);
1000 	if (ret < 0) {
1001 		printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1002 		    dev->name, lp->rx_irq);
1003 		goto err_release;
1004 	}
1005 	ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
1006 			0, "Korina ethernet Tx", dev);
1007 	if (ret < 0) {
1008 		printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1009 		    dev->name, lp->tx_irq);
1010 		goto err_free_rx_irq;
1011 	}
1012 
1013 	/* Install handler for overrun error. */
1014 	ret = request_irq(lp->ovr_irq, korina_ovr_interrupt,
1015 			0, "Ethernet Overflow", dev);
1016 	if (ret < 0) {
1017 		printk(KERN_ERR "%s: unable to get OVR IRQ %d\n",
1018 		    dev->name, lp->ovr_irq);
1019 		goto err_free_tx_irq;
1020 	}
1021 
1022 	/* Install handler for underflow error. */
1023 	ret = request_irq(lp->und_irq, korina_und_interrupt,
1024 			0, "Ethernet Underflow", dev);
1025 	if (ret < 0) {
1026 		printk(KERN_ERR "%s: unable to get UND IRQ %d\n",
1027 		    dev->name, lp->und_irq);
1028 		goto err_free_ovr_irq;
1029 	}
1030 	mod_timer(&lp->media_check_timer, jiffies + 1);
1031 out:
1032 	return ret;
1033 
1034 err_free_ovr_irq:
1035 	free_irq(lp->ovr_irq, dev);
1036 err_free_tx_irq:
1037 	free_irq(lp->tx_irq, dev);
1038 err_free_rx_irq:
1039 	free_irq(lp->rx_irq, dev);
1040 err_release:
1041 	korina_free_ring(dev);
1042 	goto out;
1043 }
1044 
1045 static int korina_close(struct net_device *dev)
1046 {
1047 	struct korina_private *lp = netdev_priv(dev);
1048 	u32 tmp;
1049 
1050 	del_timer(&lp->media_check_timer);
1051 
1052 	/* Disable interrupts */
1053 	disable_irq(lp->rx_irq);
1054 	disable_irq(lp->tx_irq);
1055 	disable_irq(lp->ovr_irq);
1056 	disable_irq(lp->und_irq);
1057 
1058 	korina_abort_tx(dev);
1059 	tmp = readl(&lp->tx_dma_regs->dmasm);
1060 	tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1061 	writel(tmp, &lp->tx_dma_regs->dmasm);
1062 
1063 	korina_abort_rx(dev);
1064 	tmp = readl(&lp->rx_dma_regs->dmasm);
1065 	tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1066 	writel(tmp, &lp->rx_dma_regs->dmasm);
1067 
1068 	korina_free_ring(dev);
1069 
1070 	napi_disable(&lp->napi);
1071 
1072 	cancel_work_sync(&lp->restart_task);
1073 
1074 	free_irq(lp->rx_irq, dev);
1075 	free_irq(lp->tx_irq, dev);
1076 	free_irq(lp->ovr_irq, dev);
1077 	free_irq(lp->und_irq, dev);
1078 
1079 	return 0;
1080 }
1081 
1082 static const struct net_device_ops korina_netdev_ops = {
1083 	.ndo_open		= korina_open,
1084 	.ndo_stop		= korina_close,
1085 	.ndo_start_xmit		= korina_send_packet,
1086 	.ndo_set_rx_mode	= korina_multicast_list,
1087 	.ndo_tx_timeout		= korina_tx_timeout,
1088 	.ndo_do_ioctl		= korina_ioctl,
1089 	.ndo_change_mtu		= eth_change_mtu,
1090 	.ndo_validate_addr	= eth_validate_addr,
1091 	.ndo_set_mac_address	= eth_mac_addr,
1092 #ifdef CONFIG_NET_POLL_CONTROLLER
1093 	.ndo_poll_controller	= korina_poll_controller,
1094 #endif
1095 };
1096 
1097 static int korina_probe(struct platform_device *pdev)
1098 {
1099 	struct korina_device *bif = platform_get_drvdata(pdev);
1100 	struct korina_private *lp;
1101 	struct net_device *dev;
1102 	struct resource *r;
1103 	int rc;
1104 
1105 	dev = alloc_etherdev(sizeof(struct korina_private));
1106 	if (!dev)
1107 		return -ENOMEM;
1108 
1109 	SET_NETDEV_DEV(dev, &pdev->dev);
1110 	lp = netdev_priv(dev);
1111 
1112 	bif->dev = dev;
1113 	memcpy(dev->dev_addr, bif->mac, 6);
1114 
1115 	lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
1116 	lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
1117 	lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
1118 	lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
1119 
1120 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
1121 	dev->base_addr = r->start;
1122 	lp->eth_regs = ioremap_nocache(r->start, resource_size(r));
1123 	if (!lp->eth_regs) {
1124 		printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1125 		rc = -ENXIO;
1126 		goto probe_err_out;
1127 	}
1128 
1129 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
1130 	lp->rx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1131 	if (!lp->rx_dma_regs) {
1132 		printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1133 		rc = -ENXIO;
1134 		goto probe_err_dma_rx;
1135 	}
1136 
1137 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
1138 	lp->tx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1139 	if (!lp->tx_dma_regs) {
1140 		printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1141 		rc = -ENXIO;
1142 		goto probe_err_dma_tx;
1143 	}
1144 
1145 	lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
1146 	if (!lp->td_ring) {
1147 		rc = -ENXIO;
1148 		goto probe_err_td_ring;
1149 	}
1150 
1151 	dma_cache_inv((unsigned long)(lp->td_ring),
1152 			TD_RING_SIZE + RD_RING_SIZE);
1153 
1154 	/* now convert TD_RING pointer to KSEG1 */
1155 	lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
1156 	lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
1157 
1158 	spin_lock_init(&lp->lock);
1159 	/* just use the rx dma irq */
1160 	dev->irq = lp->rx_irq;
1161 	lp->dev = dev;
1162 
1163 	dev->netdev_ops = &korina_netdev_ops;
1164 	dev->ethtool_ops = &netdev_ethtool_ops;
1165 	dev->watchdog_timeo = TX_TIMEOUT;
1166 	netif_napi_add(dev, &lp->napi, korina_poll, 64);
1167 
1168 	lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
1169 	lp->mii_if.dev = dev;
1170 	lp->mii_if.mdio_read = mdio_read;
1171 	lp->mii_if.mdio_write = mdio_write;
1172 	lp->mii_if.phy_id = lp->phy_addr;
1173 	lp->mii_if.phy_id_mask = 0x1f;
1174 	lp->mii_if.reg_num_mask = 0x1f;
1175 
1176 	rc = register_netdev(dev);
1177 	if (rc < 0) {
1178 		printk(KERN_ERR DRV_NAME
1179 			": cannot register net device: %d\n", rc);
1180 		goto probe_err_register;
1181 	}
1182 	setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
1183 
1184 	INIT_WORK(&lp->restart_task, korina_restart_task);
1185 
1186 	printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1187 			dev->name);
1188 out:
1189 	return rc;
1190 
1191 probe_err_register:
1192 	kfree(lp->td_ring);
1193 probe_err_td_ring:
1194 	iounmap(lp->tx_dma_regs);
1195 probe_err_dma_tx:
1196 	iounmap(lp->rx_dma_regs);
1197 probe_err_dma_rx:
1198 	iounmap(lp->eth_regs);
1199 probe_err_out:
1200 	free_netdev(dev);
1201 	goto out;
1202 }
1203 
1204 static int korina_remove(struct platform_device *pdev)
1205 {
1206 	struct korina_device *bif = platform_get_drvdata(pdev);
1207 	struct korina_private *lp = netdev_priv(bif->dev);
1208 
1209 	iounmap(lp->eth_regs);
1210 	iounmap(lp->rx_dma_regs);
1211 	iounmap(lp->tx_dma_regs);
1212 
1213 	unregister_netdev(bif->dev);
1214 	free_netdev(bif->dev);
1215 
1216 	return 0;
1217 }
1218 
1219 static struct platform_driver korina_driver = {
1220 	.driver.name = "korina",
1221 	.probe = korina_probe,
1222 	.remove = korina_remove,
1223 };
1224 
1225 module_platform_driver(korina_driver);
1226 
1227 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1228 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1229 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1230 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1231 MODULE_LICENSE("GPL");
1232