xref: /openbmc/linux/drivers/net/ethernet/korina.c (revision 1eb4c977)
1 /*
2  *  Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
3  *
4  *  Copyright 2004 IDT Inc. (rischelp@idt.com)
5  *  Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6  *  Copyright 2008 Florian Fainelli <florian@openwrt.org>
7  *
8  *  This program is free software; you can redistribute  it and/or modify it
9  *  under  the terms of  the GNU General  Public License as published by the
10  *  Free Software Foundation;  either version 2 of the  License, or (at your
11  *  option) any later version.
12  *
13  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
14  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
15  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
16  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
17  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
19  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
21  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  *
24  *  You should have received a copy of the  GNU General Public License along
25  *  with this program; if not, write  to the Free Software Foundation, Inc.,
26  *  675 Mass Ave, Cambridge, MA 02139, USA.
27  *
28  *  Writing to a DMA status register:
29  *
30  *  When writing to the status register, you should mask the bit you have
31  *  been testing the status register with. Both Tx and Rx DMA registers
32  *  should stick to this procedure.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/moduleparam.h>
38 #include <linux/sched.h>
39 #include <linux/ctype.h>
40 #include <linux/types.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/ioport.h>
44 #include <linux/in.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/delay.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/errno.h>
52 #include <linux/platform_device.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
56 
57 #include <asm/bootinfo.h>
58 #include <asm/system.h>
59 #include <asm/bitops.h>
60 #include <asm/pgtable.h>
61 #include <asm/io.h>
62 #include <asm/dma.h>
63 
64 #include <asm/mach-rc32434/rb.h>
65 #include <asm/mach-rc32434/rc32434.h>
66 #include <asm/mach-rc32434/eth.h>
67 #include <asm/mach-rc32434/dma_v.h>
68 
69 #define DRV_NAME        "korina"
70 #define DRV_VERSION     "0.10"
71 #define DRV_RELDATE     "04Mar2008"
72 
73 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
74 				   ((dev)->dev_addr[1]))
75 #define STATION_ADDRESS_LOW(dev)  (((dev)->dev_addr[2] << 24) | \
76 				   ((dev)->dev_addr[3] << 16) | \
77 				   ((dev)->dev_addr[4] << 8)  | \
78 				   ((dev)->dev_addr[5]))
79 
80 #define MII_CLOCK 1250000 	/* no more than 2.5MHz */
81 
82 /* the following must be powers of two */
83 #define KORINA_NUM_RDS	64  /* number of receive descriptors */
84 #define KORINA_NUM_TDS	64  /* number of transmit descriptors */
85 
86 /* KORINA_RBSIZE is the hardware's default maximum receive
87  * frame size in bytes. Having this hardcoded means that there
88  * is no support for MTU sizes greater than 1500. */
89 #define KORINA_RBSIZE	1536 /* size of one resource buffer = Ether MTU */
90 #define KORINA_RDS_MASK	(KORINA_NUM_RDS - 1)
91 #define KORINA_TDS_MASK	(KORINA_NUM_TDS - 1)
92 #define RD_RING_SIZE 	(KORINA_NUM_RDS * sizeof(struct dma_desc))
93 #define TD_RING_SIZE	(KORINA_NUM_TDS * sizeof(struct dma_desc))
94 
95 #define TX_TIMEOUT 	(6000 * HZ / 1000)
96 
97 enum chain_status { desc_filled, desc_empty };
98 #define IS_DMA_FINISHED(X)   (((X) & (DMA_DESC_FINI)) != 0)
99 #define IS_DMA_DONE(X)   (((X) & (DMA_DESC_DONE)) != 0)
100 #define RCVPKT_LENGTH(X)     (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
101 
102 /* Information that need to be kept for each board. */
103 struct korina_private {
104 	struct eth_regs *eth_regs;
105 	struct dma_reg *rx_dma_regs;
106 	struct dma_reg *tx_dma_regs;
107 	struct dma_desc *td_ring; /* transmit descriptor ring */
108 	struct dma_desc *rd_ring; /* receive descriptor ring  */
109 
110 	struct sk_buff *tx_skb[KORINA_NUM_TDS];
111 	struct sk_buff *rx_skb[KORINA_NUM_RDS];
112 
113 	int rx_next_done;
114 	int rx_chain_head;
115 	int rx_chain_tail;
116 	enum chain_status rx_chain_status;
117 
118 	int tx_next_done;
119 	int tx_chain_head;
120 	int tx_chain_tail;
121 	enum chain_status tx_chain_status;
122 	int tx_count;
123 	int tx_full;
124 
125 	int rx_irq;
126 	int tx_irq;
127 	int ovr_irq;
128 	int und_irq;
129 
130 	spinlock_t lock;        /* NIC xmit lock */
131 
132 	int dma_halt_cnt;
133 	int dma_run_cnt;
134 	struct napi_struct napi;
135 	struct timer_list media_check_timer;
136 	struct mii_if_info mii_if;
137 	struct work_struct restart_task;
138 	struct net_device *dev;
139 	int phy_addr;
140 };
141 
142 extern unsigned int idt_cpu_freq;
143 
144 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
145 {
146 	writel(0, &ch->dmandptr);
147 	writel(dma_addr, &ch->dmadptr);
148 }
149 
150 static inline void korina_abort_dma(struct net_device *dev,
151 					struct dma_reg *ch)
152 {
153        if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
154 	       writel(0x10, &ch->dmac);
155 
156 	       while (!(readl(&ch->dmas) & DMA_STAT_HALT))
157 		       dev->trans_start = jiffies;
158 
159 	       writel(0, &ch->dmas);
160        }
161 
162        writel(0, &ch->dmadptr);
163        writel(0, &ch->dmandptr);
164 }
165 
166 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
167 {
168 	writel(dma_addr, &ch->dmandptr);
169 }
170 
171 static void korina_abort_tx(struct net_device *dev)
172 {
173 	struct korina_private *lp = netdev_priv(dev);
174 
175 	korina_abort_dma(dev, lp->tx_dma_regs);
176 }
177 
178 static void korina_abort_rx(struct net_device *dev)
179 {
180 	struct korina_private *lp = netdev_priv(dev);
181 
182 	korina_abort_dma(dev, lp->rx_dma_regs);
183 }
184 
185 static void korina_start_rx(struct korina_private *lp,
186 					struct dma_desc *rd)
187 {
188 	korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
189 }
190 
191 static void korina_chain_rx(struct korina_private *lp,
192 					struct dma_desc *rd)
193 {
194 	korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
195 }
196 
197 /* transmit packet */
198 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
199 {
200 	struct korina_private *lp = netdev_priv(dev);
201 	unsigned long flags;
202 	u32 length;
203 	u32 chain_prev, chain_next;
204 	struct dma_desc *td;
205 
206 	spin_lock_irqsave(&lp->lock, flags);
207 
208 	td = &lp->td_ring[lp->tx_chain_tail];
209 
210 	/* stop queue when full, drop pkts if queue already full */
211 	if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
212 		lp->tx_full = 1;
213 
214 		if (lp->tx_count == (KORINA_NUM_TDS - 2))
215 			netif_stop_queue(dev);
216 		else {
217 			dev->stats.tx_dropped++;
218 			dev_kfree_skb_any(skb);
219 			spin_unlock_irqrestore(&lp->lock, flags);
220 
221 			return NETDEV_TX_BUSY;
222 		}
223 	}
224 
225 	lp->tx_count++;
226 
227 	lp->tx_skb[lp->tx_chain_tail] = skb;
228 
229 	length = skb->len;
230 	dma_cache_wback((u32)skb->data, skb->len);
231 
232 	/* Setup the transmit descriptor. */
233 	dma_cache_inv((u32) td, sizeof(*td));
234 	td->ca = CPHYSADDR(skb->data);
235 	chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
236 	chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
237 
238 	if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
239 		if (lp->tx_chain_status == desc_empty) {
240 			/* Update tail */
241 			td->control = DMA_COUNT(length) |
242 					DMA_DESC_COF | DMA_DESC_IOF;
243 			/* Move tail */
244 			lp->tx_chain_tail = chain_next;
245 			/* Write to NDPTR */
246 			writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
247 					&lp->tx_dma_regs->dmandptr);
248 			/* Move head to tail */
249 			lp->tx_chain_head = lp->tx_chain_tail;
250 		} else {
251 			/* Update tail */
252 			td->control = DMA_COUNT(length) |
253 					DMA_DESC_COF | DMA_DESC_IOF;
254 			/* Link to prev */
255 			lp->td_ring[chain_prev].control &=
256 					~DMA_DESC_COF;
257 			/* Link to prev */
258 			lp->td_ring[chain_prev].link =  CPHYSADDR(td);
259 			/* Move tail */
260 			lp->tx_chain_tail = chain_next;
261 			/* Write to NDPTR */
262 			writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
263 					&(lp->tx_dma_regs->dmandptr));
264 			/* Move head to tail */
265 			lp->tx_chain_head = lp->tx_chain_tail;
266 			lp->tx_chain_status = desc_empty;
267 		}
268 	} else {
269 		if (lp->tx_chain_status == desc_empty) {
270 			/* Update tail */
271 			td->control = DMA_COUNT(length) |
272 					DMA_DESC_COF | DMA_DESC_IOF;
273 			/* Move tail */
274 			lp->tx_chain_tail = chain_next;
275 			lp->tx_chain_status = desc_filled;
276 		} else {
277 			/* Update tail */
278 			td->control = DMA_COUNT(length) |
279 					DMA_DESC_COF | DMA_DESC_IOF;
280 			lp->td_ring[chain_prev].control &=
281 					~DMA_DESC_COF;
282 			lp->td_ring[chain_prev].link =  CPHYSADDR(td);
283 			lp->tx_chain_tail = chain_next;
284 		}
285 	}
286 	dma_cache_wback((u32) td, sizeof(*td));
287 
288 	dev->trans_start = jiffies;
289 	spin_unlock_irqrestore(&lp->lock, flags);
290 
291 	return NETDEV_TX_OK;
292 }
293 
294 static int mdio_read(struct net_device *dev, int mii_id, int reg)
295 {
296 	struct korina_private *lp = netdev_priv(dev);
297 	int ret;
298 
299 	mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
300 
301 	writel(0, &lp->eth_regs->miimcfg);
302 	writel(0, &lp->eth_regs->miimcmd);
303 	writel(mii_id | reg, &lp->eth_regs->miimaddr);
304 	writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
305 
306 	ret = (int)(readl(&lp->eth_regs->miimrdd));
307 	return ret;
308 }
309 
310 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
311 {
312 	struct korina_private *lp = netdev_priv(dev);
313 
314 	mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
315 
316 	writel(0, &lp->eth_regs->miimcfg);
317 	writel(1, &lp->eth_regs->miimcmd);
318 	writel(mii_id | reg, &lp->eth_regs->miimaddr);
319 	writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
320 	writel(val, &lp->eth_regs->miimwtd);
321 }
322 
323 /* Ethernet Rx DMA interrupt */
324 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
325 {
326 	struct net_device *dev = dev_id;
327 	struct korina_private *lp = netdev_priv(dev);
328 	u32 dmas, dmasm;
329 	irqreturn_t retval;
330 
331 	dmas = readl(&lp->rx_dma_regs->dmas);
332 	if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
333 		dmasm = readl(&lp->rx_dma_regs->dmasm);
334 		writel(dmasm | (DMA_STAT_DONE |
335 				DMA_STAT_HALT | DMA_STAT_ERR),
336 				&lp->rx_dma_regs->dmasm);
337 
338 		napi_schedule(&lp->napi);
339 
340 		if (dmas & DMA_STAT_ERR)
341 			printk(KERN_ERR "%s: DMA error\n", dev->name);
342 
343 		retval = IRQ_HANDLED;
344 	} else
345 		retval = IRQ_NONE;
346 
347 	return retval;
348 }
349 
350 static int korina_rx(struct net_device *dev, int limit)
351 {
352 	struct korina_private *lp = netdev_priv(dev);
353 	struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
354 	struct sk_buff *skb, *skb_new;
355 	u8 *pkt_buf;
356 	u32 devcs, pkt_len, dmas;
357 	int count;
358 
359 	dma_cache_inv((u32)rd, sizeof(*rd));
360 
361 	for (count = 0; count < limit; count++) {
362 		skb = lp->rx_skb[lp->rx_next_done];
363 		skb_new = NULL;
364 
365 		devcs = rd->devcs;
366 
367 		if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
368 			break;
369 
370 		/* Update statistics counters */
371 		if (devcs & ETH_RX_CRC)
372 			dev->stats.rx_crc_errors++;
373 		if (devcs & ETH_RX_LOR)
374 			dev->stats.rx_length_errors++;
375 		if (devcs & ETH_RX_LE)
376 			dev->stats.rx_length_errors++;
377 		if (devcs & ETH_RX_OVR)
378 			dev->stats.rx_fifo_errors++;
379 		if (devcs & ETH_RX_CV)
380 			dev->stats.rx_frame_errors++;
381 		if (devcs & ETH_RX_CES)
382 			dev->stats.rx_length_errors++;
383 		if (devcs & ETH_RX_MP)
384 			dev->stats.multicast++;
385 
386 		if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
387 			/* check that this is a whole packet
388 			 * WARNING: DMA_FD bit incorrectly set
389 			 * in Rc32434 (errata ref #077) */
390 			dev->stats.rx_errors++;
391 			dev->stats.rx_dropped++;
392 		} else if ((devcs & ETH_RX_ROK)) {
393 			pkt_len = RCVPKT_LENGTH(devcs);
394 
395 			/* must be the (first and) last
396 			 * descriptor then */
397 			pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
398 
399 			/* invalidate the cache */
400 			dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
401 
402 			/* Malloc up new buffer. */
403 			skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
404 
405 			if (!skb_new)
406 				break;
407 			/* Do not count the CRC */
408 			skb_put(skb, pkt_len - 4);
409 			skb->protocol = eth_type_trans(skb, dev);
410 
411 			/* Pass the packet to upper layers */
412 			netif_receive_skb(skb);
413 			dev->stats.rx_packets++;
414 			dev->stats.rx_bytes += pkt_len;
415 
416 			/* Update the mcast stats */
417 			if (devcs & ETH_RX_MP)
418 				dev->stats.multicast++;
419 
420 			lp->rx_skb[lp->rx_next_done] = skb_new;
421 		}
422 
423 		rd->devcs = 0;
424 
425 		/* Restore descriptor's curr_addr */
426 		if (skb_new)
427 			rd->ca = CPHYSADDR(skb_new->data);
428 		else
429 			rd->ca = CPHYSADDR(skb->data);
430 
431 		rd->control = DMA_COUNT(KORINA_RBSIZE) |
432 			DMA_DESC_COD | DMA_DESC_IOD;
433 		lp->rd_ring[(lp->rx_next_done - 1) &
434 			KORINA_RDS_MASK].control &=
435 			~DMA_DESC_COD;
436 
437 		lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
438 		dma_cache_wback((u32)rd, sizeof(*rd));
439 		rd = &lp->rd_ring[lp->rx_next_done];
440 		writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
441 	}
442 
443 	dmas = readl(&lp->rx_dma_regs->dmas);
444 
445 	if (dmas & DMA_STAT_HALT) {
446 		writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
447 				&lp->rx_dma_regs->dmas);
448 
449 		lp->dma_halt_cnt++;
450 		rd->devcs = 0;
451 		skb = lp->rx_skb[lp->rx_next_done];
452 		rd->ca = CPHYSADDR(skb->data);
453 		dma_cache_wback((u32)rd, sizeof(*rd));
454 		korina_chain_rx(lp, rd);
455 	}
456 
457 	return count;
458 }
459 
460 static int korina_poll(struct napi_struct *napi, int budget)
461 {
462 	struct korina_private *lp =
463 		container_of(napi, struct korina_private, napi);
464 	struct net_device *dev = lp->dev;
465 	int work_done;
466 
467 	work_done = korina_rx(dev, budget);
468 	if (work_done < budget) {
469 		napi_complete(napi);
470 
471 		writel(readl(&lp->rx_dma_regs->dmasm) &
472 			~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
473 			&lp->rx_dma_regs->dmasm);
474 	}
475 	return work_done;
476 }
477 
478 /*
479  * Set or clear the multicast filter for this adaptor.
480  */
481 static void korina_multicast_list(struct net_device *dev)
482 {
483 	struct korina_private *lp = netdev_priv(dev);
484 	unsigned long flags;
485 	struct netdev_hw_addr *ha;
486 	u32 recognise = ETH_ARC_AB;	/* always accept broadcasts */
487 	int i;
488 
489 	/* Set promiscuous mode */
490 	if (dev->flags & IFF_PROMISC)
491 		recognise |= ETH_ARC_PRO;
492 
493 	else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
494 		/* All multicast and broadcast */
495 		recognise |= ETH_ARC_AM;
496 
497 	/* Build the hash table */
498 	if (netdev_mc_count(dev) > 4) {
499 		u16 hash_table[4];
500 		u32 crc;
501 
502 		for (i = 0; i < 4; i++)
503 			hash_table[i] = 0;
504 
505 		netdev_for_each_mc_addr(ha, dev) {
506 			crc = ether_crc_le(6, ha->addr);
507 			crc >>= 26;
508 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
509 		}
510 		/* Accept filtered multicast */
511 		recognise |= ETH_ARC_AFM;
512 
513 		/* Fill the MAC hash tables with their values */
514 		writel((u32)(hash_table[1] << 16 | hash_table[0]),
515 					&lp->eth_regs->ethhash0);
516 		writel((u32)(hash_table[3] << 16 | hash_table[2]),
517 					&lp->eth_regs->ethhash1);
518 	}
519 
520 	spin_lock_irqsave(&lp->lock, flags);
521 	writel(recognise, &lp->eth_regs->etharc);
522 	spin_unlock_irqrestore(&lp->lock, flags);
523 }
524 
525 static void korina_tx(struct net_device *dev)
526 {
527 	struct korina_private *lp = netdev_priv(dev);
528 	struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
529 	u32 devcs;
530 	u32 dmas;
531 
532 	spin_lock(&lp->lock);
533 
534 	/* Process all desc that are done */
535 	while (IS_DMA_FINISHED(td->control)) {
536 		if (lp->tx_full == 1) {
537 			netif_wake_queue(dev);
538 			lp->tx_full = 0;
539 		}
540 
541 		devcs = lp->td_ring[lp->tx_next_done].devcs;
542 		if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
543 				(ETH_TX_FD | ETH_TX_LD)) {
544 			dev->stats.tx_errors++;
545 			dev->stats.tx_dropped++;
546 
547 			/* Should never happen */
548 			printk(KERN_ERR "%s: split tx ignored\n",
549 							dev->name);
550 		} else if (devcs & ETH_TX_TOK) {
551 			dev->stats.tx_packets++;
552 			dev->stats.tx_bytes +=
553 					lp->tx_skb[lp->tx_next_done]->len;
554 		} else {
555 			dev->stats.tx_errors++;
556 			dev->stats.tx_dropped++;
557 
558 			/* Underflow */
559 			if (devcs & ETH_TX_UND)
560 				dev->stats.tx_fifo_errors++;
561 
562 			/* Oversized frame */
563 			if (devcs & ETH_TX_OF)
564 				dev->stats.tx_aborted_errors++;
565 
566 			/* Excessive deferrals */
567 			if (devcs & ETH_TX_ED)
568 				dev->stats.tx_carrier_errors++;
569 
570 			/* Collisions: medium busy */
571 			if (devcs & ETH_TX_EC)
572 				dev->stats.collisions++;
573 
574 			/* Late collision */
575 			if (devcs & ETH_TX_LC)
576 				dev->stats.tx_window_errors++;
577 		}
578 
579 		/* We must always free the original skb */
580 		if (lp->tx_skb[lp->tx_next_done]) {
581 			dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
582 			lp->tx_skb[lp->tx_next_done] = NULL;
583 		}
584 
585 		lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
586 		lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
587 		lp->td_ring[lp->tx_next_done].link = 0;
588 		lp->td_ring[lp->tx_next_done].ca = 0;
589 		lp->tx_count--;
590 
591 		/* Go on to next transmission */
592 		lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
593 		td = &lp->td_ring[lp->tx_next_done];
594 
595 	}
596 
597 	/* Clear the DMA status register */
598 	dmas = readl(&lp->tx_dma_regs->dmas);
599 	writel(~dmas, &lp->tx_dma_regs->dmas);
600 
601 	writel(readl(&lp->tx_dma_regs->dmasm) &
602 			~(DMA_STAT_FINI | DMA_STAT_ERR),
603 			&lp->tx_dma_regs->dmasm);
604 
605 	spin_unlock(&lp->lock);
606 }
607 
608 static irqreturn_t
609 korina_tx_dma_interrupt(int irq, void *dev_id)
610 {
611 	struct net_device *dev = dev_id;
612 	struct korina_private *lp = netdev_priv(dev);
613 	u32 dmas, dmasm;
614 	irqreturn_t retval;
615 
616 	dmas = readl(&lp->tx_dma_regs->dmas);
617 
618 	if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
619 		dmasm = readl(&lp->tx_dma_regs->dmasm);
620 		writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
621 				&lp->tx_dma_regs->dmasm);
622 
623 		korina_tx(dev);
624 
625 		if (lp->tx_chain_status == desc_filled &&
626 			(readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
627 			writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
628 				&(lp->tx_dma_regs->dmandptr));
629 			lp->tx_chain_status = desc_empty;
630 			lp->tx_chain_head = lp->tx_chain_tail;
631 			dev->trans_start = jiffies;
632 		}
633 		if (dmas & DMA_STAT_ERR)
634 			printk(KERN_ERR "%s: DMA error\n", dev->name);
635 
636 		retval = IRQ_HANDLED;
637 	} else
638 		retval = IRQ_NONE;
639 
640 	return retval;
641 }
642 
643 
644 static void korina_check_media(struct net_device *dev, unsigned int init_media)
645 {
646 	struct korina_private *lp = netdev_priv(dev);
647 
648 	mii_check_media(&lp->mii_if, 0, init_media);
649 
650 	if (lp->mii_if.full_duplex)
651 		writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
652 						&lp->eth_regs->ethmac2);
653 	else
654 		writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
655 						&lp->eth_regs->ethmac2);
656 }
657 
658 static void korina_poll_media(unsigned long data)
659 {
660 	struct net_device *dev = (struct net_device *) data;
661 	struct korina_private *lp = netdev_priv(dev);
662 
663 	korina_check_media(dev, 0);
664 	mod_timer(&lp->media_check_timer, jiffies + HZ);
665 }
666 
667 static void korina_set_carrier(struct mii_if_info *mii)
668 {
669 	if (mii->force_media) {
670 		/* autoneg is off: Link is always assumed to be up */
671 		if (!netif_carrier_ok(mii->dev))
672 			netif_carrier_on(mii->dev);
673 	} else  /* Let MMI library update carrier status */
674 		korina_check_media(mii->dev, 0);
675 }
676 
677 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
678 {
679 	struct korina_private *lp = netdev_priv(dev);
680 	struct mii_ioctl_data *data = if_mii(rq);
681 	int rc;
682 
683 	if (!netif_running(dev))
684 		return -EINVAL;
685 	spin_lock_irq(&lp->lock);
686 	rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
687 	spin_unlock_irq(&lp->lock);
688 	korina_set_carrier(&lp->mii_if);
689 
690 	return rc;
691 }
692 
693 /* ethtool helpers */
694 static void netdev_get_drvinfo(struct net_device *dev,
695 			struct ethtool_drvinfo *info)
696 {
697 	struct korina_private *lp = netdev_priv(dev);
698 
699 	strcpy(info->driver, DRV_NAME);
700 	strcpy(info->version, DRV_VERSION);
701 	strcpy(info->bus_info, lp->dev->name);
702 }
703 
704 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
705 {
706 	struct korina_private *lp = netdev_priv(dev);
707 	int rc;
708 
709 	spin_lock_irq(&lp->lock);
710 	rc = mii_ethtool_gset(&lp->mii_if, cmd);
711 	spin_unlock_irq(&lp->lock);
712 
713 	return rc;
714 }
715 
716 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
717 {
718 	struct korina_private *lp = netdev_priv(dev);
719 	int rc;
720 
721 	spin_lock_irq(&lp->lock);
722 	rc = mii_ethtool_sset(&lp->mii_if, cmd);
723 	spin_unlock_irq(&lp->lock);
724 	korina_set_carrier(&lp->mii_if);
725 
726 	return rc;
727 }
728 
729 static u32 netdev_get_link(struct net_device *dev)
730 {
731 	struct korina_private *lp = netdev_priv(dev);
732 
733 	return mii_link_ok(&lp->mii_if);
734 }
735 
736 static const struct ethtool_ops netdev_ethtool_ops = {
737 	.get_drvinfo            = netdev_get_drvinfo,
738 	.get_settings           = netdev_get_settings,
739 	.set_settings           = netdev_set_settings,
740 	.get_link               = netdev_get_link,
741 };
742 
743 static int korina_alloc_ring(struct net_device *dev)
744 {
745 	struct korina_private *lp = netdev_priv(dev);
746 	struct sk_buff *skb;
747 	int i;
748 
749 	/* Initialize the transmit descriptors */
750 	for (i = 0; i < KORINA_NUM_TDS; i++) {
751 		lp->td_ring[i].control = DMA_DESC_IOF;
752 		lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
753 		lp->td_ring[i].ca = 0;
754 		lp->td_ring[i].link = 0;
755 	}
756 	lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
757 			lp->tx_full = lp->tx_count = 0;
758 	lp->tx_chain_status = desc_empty;
759 
760 	/* Initialize the receive descriptors */
761 	for (i = 0; i < KORINA_NUM_RDS; i++) {
762 		skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
763 		if (!skb)
764 			return -ENOMEM;
765 		lp->rx_skb[i] = skb;
766 		lp->rd_ring[i].control = DMA_DESC_IOD |
767 				DMA_COUNT(KORINA_RBSIZE);
768 		lp->rd_ring[i].devcs = 0;
769 		lp->rd_ring[i].ca = CPHYSADDR(skb->data);
770 		lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
771 	}
772 
773 	/* loop back receive descriptors, so the last
774 	 * descriptor points to the first one */
775 	lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
776 	lp->rd_ring[i - 1].control |= DMA_DESC_COD;
777 
778 	lp->rx_next_done  = 0;
779 	lp->rx_chain_head = 0;
780 	lp->rx_chain_tail = 0;
781 	lp->rx_chain_status = desc_empty;
782 
783 	return 0;
784 }
785 
786 static void korina_free_ring(struct net_device *dev)
787 {
788 	struct korina_private *lp = netdev_priv(dev);
789 	int i;
790 
791 	for (i = 0; i < KORINA_NUM_RDS; i++) {
792 		lp->rd_ring[i].control = 0;
793 		if (lp->rx_skb[i])
794 			dev_kfree_skb_any(lp->rx_skb[i]);
795 		lp->rx_skb[i] = NULL;
796 	}
797 
798 	for (i = 0; i < KORINA_NUM_TDS; i++) {
799 		lp->td_ring[i].control = 0;
800 		if (lp->tx_skb[i])
801 			dev_kfree_skb_any(lp->tx_skb[i]);
802 		lp->tx_skb[i] = NULL;
803 	}
804 }
805 
806 /*
807  * Initialize the RC32434 ethernet controller.
808  */
809 static int korina_init(struct net_device *dev)
810 {
811 	struct korina_private *lp = netdev_priv(dev);
812 
813 	/* Disable DMA */
814 	korina_abort_tx(dev);
815 	korina_abort_rx(dev);
816 
817 	/* reset ethernet logic */
818 	writel(0, &lp->eth_regs->ethintfc);
819 	while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
820 		dev->trans_start = jiffies;
821 
822 	/* Enable Ethernet Interface */
823 	writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
824 
825 	/* Allocate rings */
826 	if (korina_alloc_ring(dev)) {
827 		printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
828 		korina_free_ring(dev);
829 		return -ENOMEM;
830 	}
831 
832 	writel(0, &lp->rx_dma_regs->dmas);
833 	/* Start Rx DMA */
834 	korina_start_rx(lp, &lp->rd_ring[0]);
835 
836 	writel(readl(&lp->tx_dma_regs->dmasm) &
837 			~(DMA_STAT_FINI | DMA_STAT_ERR),
838 			&lp->tx_dma_regs->dmasm);
839 	writel(readl(&lp->rx_dma_regs->dmasm) &
840 			~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
841 			&lp->rx_dma_regs->dmasm);
842 
843 	/* Accept only packets destined for this Ethernet device address */
844 	writel(ETH_ARC_AB, &lp->eth_regs->etharc);
845 
846 	/* Set all Ether station address registers to their initial values */
847 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
848 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
849 
850 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
851 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
852 
853 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
854 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
855 
856 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
857 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
858 
859 
860 	/* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
861 	writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
862 			&lp->eth_regs->ethmac2);
863 
864 	/* Back to back inter-packet-gap */
865 	writel(0x15, &lp->eth_regs->ethipgt);
866 	/* Non - Back to back inter-packet-gap */
867 	writel(0x12, &lp->eth_regs->ethipgr);
868 
869 	/* Management Clock Prescaler Divisor
870 	 * Clock independent setting */
871 	writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
872 		       &lp->eth_regs->ethmcp);
873 
874 	/* don't transmit until fifo contains 48b */
875 	writel(48, &lp->eth_regs->ethfifott);
876 
877 	writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
878 
879 	napi_enable(&lp->napi);
880 	netif_start_queue(dev);
881 
882 	return 0;
883 }
884 
885 /*
886  * Restart the RC32434 ethernet controller.
887  */
888 static void korina_restart_task(struct work_struct *work)
889 {
890 	struct korina_private *lp = container_of(work,
891 			struct korina_private, restart_task);
892 	struct net_device *dev = lp->dev;
893 
894 	/*
895 	 * Disable interrupts
896 	 */
897 	disable_irq(lp->rx_irq);
898 	disable_irq(lp->tx_irq);
899 	disable_irq(lp->ovr_irq);
900 	disable_irq(lp->und_irq);
901 
902 	writel(readl(&lp->tx_dma_regs->dmasm) |
903 				DMA_STAT_FINI | DMA_STAT_ERR,
904 				&lp->tx_dma_regs->dmasm);
905 	writel(readl(&lp->rx_dma_regs->dmasm) |
906 				DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
907 				&lp->rx_dma_regs->dmasm);
908 
909 	korina_free_ring(dev);
910 
911 	napi_disable(&lp->napi);
912 
913 	if (korina_init(dev) < 0) {
914 		printk(KERN_ERR "%s: cannot restart device\n", dev->name);
915 		return;
916 	}
917 	korina_multicast_list(dev);
918 
919 	enable_irq(lp->und_irq);
920 	enable_irq(lp->ovr_irq);
921 	enable_irq(lp->tx_irq);
922 	enable_irq(lp->rx_irq);
923 }
924 
925 static void korina_clear_and_restart(struct net_device *dev, u32 value)
926 {
927 	struct korina_private *lp = netdev_priv(dev);
928 
929 	netif_stop_queue(dev);
930 	writel(value, &lp->eth_regs->ethintfc);
931 	schedule_work(&lp->restart_task);
932 }
933 
934 /* Ethernet Tx Underflow interrupt */
935 static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
936 {
937 	struct net_device *dev = dev_id;
938 	struct korina_private *lp = netdev_priv(dev);
939 	unsigned int und;
940 
941 	spin_lock(&lp->lock);
942 
943 	und = readl(&lp->eth_regs->ethintfc);
944 
945 	if (und & ETH_INT_FC_UND)
946 		korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
947 
948 	spin_unlock(&lp->lock);
949 
950 	return IRQ_HANDLED;
951 }
952 
953 static void korina_tx_timeout(struct net_device *dev)
954 {
955 	struct korina_private *lp = netdev_priv(dev);
956 
957 	schedule_work(&lp->restart_task);
958 }
959 
960 /* Ethernet Rx Overflow interrupt */
961 static irqreturn_t
962 korina_ovr_interrupt(int irq, void *dev_id)
963 {
964 	struct net_device *dev = dev_id;
965 	struct korina_private *lp = netdev_priv(dev);
966 	unsigned int ovr;
967 
968 	spin_lock(&lp->lock);
969 	ovr = readl(&lp->eth_regs->ethintfc);
970 
971 	if (ovr & ETH_INT_FC_OVR)
972 		korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
973 
974 	spin_unlock(&lp->lock);
975 
976 	return IRQ_HANDLED;
977 }
978 
979 #ifdef CONFIG_NET_POLL_CONTROLLER
980 static void korina_poll_controller(struct net_device *dev)
981 {
982 	disable_irq(dev->irq);
983 	korina_tx_dma_interrupt(dev->irq, dev);
984 	enable_irq(dev->irq);
985 }
986 #endif
987 
988 static int korina_open(struct net_device *dev)
989 {
990 	struct korina_private *lp = netdev_priv(dev);
991 	int ret;
992 
993 	/* Initialize */
994 	ret = korina_init(dev);
995 	if (ret < 0) {
996 		printk(KERN_ERR "%s: cannot open device\n", dev->name);
997 		goto out;
998 	}
999 
1000 	/* Install the interrupt handler
1001 	 * that handles the Done Finished
1002 	 * Ovr and Und Events */
1003 	ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
1004 			IRQF_DISABLED, "Korina ethernet Rx", dev);
1005 	if (ret < 0) {
1006 		printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1007 		    dev->name, lp->rx_irq);
1008 		goto err_release;
1009 	}
1010 	ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
1011 			IRQF_DISABLED, "Korina ethernet Tx", dev);
1012 	if (ret < 0) {
1013 		printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1014 		    dev->name, lp->tx_irq);
1015 		goto err_free_rx_irq;
1016 	}
1017 
1018 	/* Install handler for overrun error. */
1019 	ret = request_irq(lp->ovr_irq, korina_ovr_interrupt,
1020 			IRQF_DISABLED, "Ethernet Overflow", dev);
1021 	if (ret < 0) {
1022 		printk(KERN_ERR "%s: unable to get OVR IRQ %d\n",
1023 		    dev->name, lp->ovr_irq);
1024 		goto err_free_tx_irq;
1025 	}
1026 
1027 	/* Install handler for underflow error. */
1028 	ret = request_irq(lp->und_irq, korina_und_interrupt,
1029 			IRQF_DISABLED, "Ethernet Underflow", dev);
1030 	if (ret < 0) {
1031 		printk(KERN_ERR "%s: unable to get UND IRQ %d\n",
1032 		    dev->name, lp->und_irq);
1033 		goto err_free_ovr_irq;
1034 	}
1035 	mod_timer(&lp->media_check_timer, jiffies + 1);
1036 out:
1037 	return ret;
1038 
1039 err_free_ovr_irq:
1040 	free_irq(lp->ovr_irq, dev);
1041 err_free_tx_irq:
1042 	free_irq(lp->tx_irq, dev);
1043 err_free_rx_irq:
1044 	free_irq(lp->rx_irq, dev);
1045 err_release:
1046 	korina_free_ring(dev);
1047 	goto out;
1048 }
1049 
1050 static int korina_close(struct net_device *dev)
1051 {
1052 	struct korina_private *lp = netdev_priv(dev);
1053 	u32 tmp;
1054 
1055 	del_timer(&lp->media_check_timer);
1056 
1057 	/* Disable interrupts */
1058 	disable_irq(lp->rx_irq);
1059 	disable_irq(lp->tx_irq);
1060 	disable_irq(lp->ovr_irq);
1061 	disable_irq(lp->und_irq);
1062 
1063 	korina_abort_tx(dev);
1064 	tmp = readl(&lp->tx_dma_regs->dmasm);
1065 	tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1066 	writel(tmp, &lp->tx_dma_regs->dmasm);
1067 
1068 	korina_abort_rx(dev);
1069 	tmp = readl(&lp->rx_dma_regs->dmasm);
1070 	tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1071 	writel(tmp, &lp->rx_dma_regs->dmasm);
1072 
1073 	korina_free_ring(dev);
1074 
1075 	napi_disable(&lp->napi);
1076 
1077 	cancel_work_sync(&lp->restart_task);
1078 
1079 	free_irq(lp->rx_irq, dev);
1080 	free_irq(lp->tx_irq, dev);
1081 	free_irq(lp->ovr_irq, dev);
1082 	free_irq(lp->und_irq, dev);
1083 
1084 	return 0;
1085 }
1086 
1087 static const struct net_device_ops korina_netdev_ops = {
1088 	.ndo_open		= korina_open,
1089 	.ndo_stop		= korina_close,
1090 	.ndo_start_xmit		= korina_send_packet,
1091 	.ndo_set_rx_mode	= korina_multicast_list,
1092 	.ndo_tx_timeout		= korina_tx_timeout,
1093 	.ndo_do_ioctl		= korina_ioctl,
1094 	.ndo_change_mtu		= eth_change_mtu,
1095 	.ndo_validate_addr	= eth_validate_addr,
1096 	.ndo_set_mac_address	= eth_mac_addr,
1097 #ifdef CONFIG_NET_POLL_CONTROLLER
1098 	.ndo_poll_controller	= korina_poll_controller,
1099 #endif
1100 };
1101 
1102 static int korina_probe(struct platform_device *pdev)
1103 {
1104 	struct korina_device *bif = platform_get_drvdata(pdev);
1105 	struct korina_private *lp;
1106 	struct net_device *dev;
1107 	struct resource *r;
1108 	int rc;
1109 
1110 	dev = alloc_etherdev(sizeof(struct korina_private));
1111 	if (!dev)
1112 		return -ENOMEM;
1113 
1114 	SET_NETDEV_DEV(dev, &pdev->dev);
1115 	lp = netdev_priv(dev);
1116 
1117 	bif->dev = dev;
1118 	memcpy(dev->dev_addr, bif->mac, 6);
1119 
1120 	lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
1121 	lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
1122 	lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
1123 	lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
1124 
1125 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
1126 	dev->base_addr = r->start;
1127 	lp->eth_regs = ioremap_nocache(r->start, resource_size(r));
1128 	if (!lp->eth_regs) {
1129 		printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1130 		rc = -ENXIO;
1131 		goto probe_err_out;
1132 	}
1133 
1134 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
1135 	lp->rx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1136 	if (!lp->rx_dma_regs) {
1137 		printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1138 		rc = -ENXIO;
1139 		goto probe_err_dma_rx;
1140 	}
1141 
1142 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
1143 	lp->tx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1144 	if (!lp->tx_dma_regs) {
1145 		printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1146 		rc = -ENXIO;
1147 		goto probe_err_dma_tx;
1148 	}
1149 
1150 	lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
1151 	if (!lp->td_ring) {
1152 		rc = -ENXIO;
1153 		goto probe_err_td_ring;
1154 	}
1155 
1156 	dma_cache_inv((unsigned long)(lp->td_ring),
1157 			TD_RING_SIZE + RD_RING_SIZE);
1158 
1159 	/* now convert TD_RING pointer to KSEG1 */
1160 	lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
1161 	lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
1162 
1163 	spin_lock_init(&lp->lock);
1164 	/* just use the rx dma irq */
1165 	dev->irq = lp->rx_irq;
1166 	lp->dev = dev;
1167 
1168 	dev->netdev_ops = &korina_netdev_ops;
1169 	dev->ethtool_ops = &netdev_ethtool_ops;
1170 	dev->watchdog_timeo = TX_TIMEOUT;
1171 	netif_napi_add(dev, &lp->napi, korina_poll, 64);
1172 
1173 	lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
1174 	lp->mii_if.dev = dev;
1175 	lp->mii_if.mdio_read = mdio_read;
1176 	lp->mii_if.mdio_write = mdio_write;
1177 	lp->mii_if.phy_id = lp->phy_addr;
1178 	lp->mii_if.phy_id_mask = 0x1f;
1179 	lp->mii_if.reg_num_mask = 0x1f;
1180 
1181 	rc = register_netdev(dev);
1182 	if (rc < 0) {
1183 		printk(KERN_ERR DRV_NAME
1184 			": cannot register net device: %d\n", rc);
1185 		goto probe_err_register;
1186 	}
1187 	setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
1188 
1189 	INIT_WORK(&lp->restart_task, korina_restart_task);
1190 
1191 	printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1192 			dev->name);
1193 out:
1194 	return rc;
1195 
1196 probe_err_register:
1197 	kfree(lp->td_ring);
1198 probe_err_td_ring:
1199 	iounmap(lp->tx_dma_regs);
1200 probe_err_dma_tx:
1201 	iounmap(lp->rx_dma_regs);
1202 probe_err_dma_rx:
1203 	iounmap(lp->eth_regs);
1204 probe_err_out:
1205 	free_netdev(dev);
1206 	goto out;
1207 }
1208 
1209 static int korina_remove(struct platform_device *pdev)
1210 {
1211 	struct korina_device *bif = platform_get_drvdata(pdev);
1212 	struct korina_private *lp = netdev_priv(bif->dev);
1213 
1214 	iounmap(lp->eth_regs);
1215 	iounmap(lp->rx_dma_regs);
1216 	iounmap(lp->tx_dma_regs);
1217 
1218 	platform_set_drvdata(pdev, NULL);
1219 	unregister_netdev(bif->dev);
1220 	free_netdev(bif->dev);
1221 
1222 	return 0;
1223 }
1224 
1225 static struct platform_driver korina_driver = {
1226 	.driver.name = "korina",
1227 	.probe = korina_probe,
1228 	.remove = korina_remove,
1229 };
1230 
1231 module_platform_driver(korina_driver);
1232 
1233 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1234 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1235 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1236 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1237 MODULE_LICENSE("GPL");
1238