1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 #include <net/xfrm.h> 34 35 #include "ixgbevf.h" 36 37 const char ixgbevf_driver_name[] = "ixgbevf"; 38 static const char ixgbevf_driver_string[] = 39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 40 41 static char ixgbevf_copyright[] = 42 "Copyright (c) 2009 - 2018 Intel Corporation."; 43 44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 45 [board_82599_vf] = &ixgbevf_82599_vf_info, 46 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 47 [board_X540_vf] = &ixgbevf_X540_vf_info, 48 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 49 [board_X550_vf] = &ixgbevf_X550_vf_info, 50 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 51 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 52 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 53 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 54 }; 55 56 /* ixgbevf_pci_tbl - PCI Device ID Table 57 * 58 * Wildcard entries (PCI_ANY_ID) should come last 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id ixgbevf_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 66 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 74 /* required last entry */ 75 {0, } 76 }; 77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 78 79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 80 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 81 MODULE_LICENSE("GPL v2"); 82 83 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 84 static int debug = -1; 85 module_param(debug, int, 0); 86 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 87 88 static struct workqueue_struct *ixgbevf_wq; 89 90 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 91 { 92 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 93 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 94 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 95 queue_work(ixgbevf_wq, &adapter->service_task); 96 } 97 98 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 99 { 100 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 101 102 /* flush memory to make sure state is correct before next watchdog */ 103 smp_mb__before_atomic(); 104 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 105 } 106 107 /* forward decls */ 108 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 109 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 110 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 111 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 112 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 113 struct ixgbevf_rx_buffer *old_buff); 114 115 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 116 { 117 struct ixgbevf_adapter *adapter = hw->back; 118 119 if (!hw->hw_addr) 120 return; 121 hw->hw_addr = NULL; 122 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 123 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 124 ixgbevf_service_event_schedule(adapter); 125 } 126 127 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 128 { 129 u32 value; 130 131 /* The following check not only optimizes a bit by not 132 * performing a read on the status register when the 133 * register just read was a status register read that 134 * returned IXGBE_FAILED_READ_REG. It also blocks any 135 * potential recursion. 136 */ 137 if (reg == IXGBE_VFSTATUS) { 138 ixgbevf_remove_adapter(hw); 139 return; 140 } 141 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 142 if (value == IXGBE_FAILED_READ_REG) 143 ixgbevf_remove_adapter(hw); 144 } 145 146 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 147 { 148 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 149 u32 value; 150 151 if (IXGBE_REMOVED(reg_addr)) 152 return IXGBE_FAILED_READ_REG; 153 value = readl(reg_addr + reg); 154 if (unlikely(value == IXGBE_FAILED_READ_REG)) 155 ixgbevf_check_remove(hw, reg); 156 return value; 157 } 158 159 /** 160 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 161 * @adapter: pointer to adapter struct 162 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 163 * @queue: queue to map the corresponding interrupt to 164 * @msix_vector: the vector to map to the corresponding queue 165 **/ 166 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 167 u8 queue, u8 msix_vector) 168 { 169 u32 ivar, index; 170 struct ixgbe_hw *hw = &adapter->hw; 171 172 if (direction == -1) { 173 /* other causes */ 174 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 175 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 176 ivar &= ~0xFF; 177 ivar |= msix_vector; 178 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 179 } else { 180 /* Tx or Rx causes */ 181 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 182 index = ((16 * (queue & 1)) + (8 * direction)); 183 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 184 ivar &= ~(0xFF << index); 185 ivar |= (msix_vector << index); 186 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 187 } 188 } 189 190 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 191 { 192 return ring->stats.packets; 193 } 194 195 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 196 { 197 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 198 struct ixgbe_hw *hw = &adapter->hw; 199 200 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 201 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 202 203 if (head != tail) 204 return (head < tail) ? 205 tail - head : (tail + ring->count - head); 206 207 return 0; 208 } 209 210 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 211 { 212 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 213 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 214 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 215 216 clear_check_for_tx_hang(tx_ring); 217 218 /* Check for a hung queue, but be thorough. This verifies 219 * that a transmit has been completed since the previous 220 * check AND there is at least one packet pending. The 221 * ARMED bit is set to indicate a potential hang. 222 */ 223 if ((tx_done_old == tx_done) && tx_pending) { 224 /* make sure it is true for two checks in a row */ 225 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 226 &tx_ring->state); 227 } 228 /* reset the countdown */ 229 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 230 231 /* update completed stats and continue */ 232 tx_ring->tx_stats.tx_done_old = tx_done; 233 234 return false; 235 } 236 237 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 238 { 239 /* Do the reset outside of interrupt context */ 240 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 241 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 242 ixgbevf_service_event_schedule(adapter); 243 } 244 } 245 246 /** 247 * ixgbevf_tx_timeout - Respond to a Tx Hang 248 * @netdev: network interface device structure 249 * @txqueue: transmit queue hanging (unused) 250 **/ 251 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 252 { 253 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 254 255 ixgbevf_tx_timeout_reset(adapter); 256 } 257 258 /** 259 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 260 * @q_vector: board private structure 261 * @tx_ring: tx ring to clean 262 * @napi_budget: Used to determine if we are in netpoll 263 **/ 264 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 265 struct ixgbevf_ring *tx_ring, int napi_budget) 266 { 267 struct ixgbevf_adapter *adapter = q_vector->adapter; 268 struct ixgbevf_tx_buffer *tx_buffer; 269 union ixgbe_adv_tx_desc *tx_desc; 270 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; 271 unsigned int budget = tx_ring->count / 2; 272 unsigned int i = tx_ring->next_to_clean; 273 274 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 275 return true; 276 277 tx_buffer = &tx_ring->tx_buffer_info[i]; 278 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 279 i -= tx_ring->count; 280 281 do { 282 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 283 284 /* if next_to_watch is not set then there is no work pending */ 285 if (!eop_desc) 286 break; 287 288 /* prevent any other reads prior to eop_desc */ 289 smp_rmb(); 290 291 /* if DD is not set pending work has not been completed */ 292 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 293 break; 294 295 /* clear next_to_watch to prevent false hangs */ 296 tx_buffer->next_to_watch = NULL; 297 298 /* update the statistics for this packet */ 299 total_bytes += tx_buffer->bytecount; 300 total_packets += tx_buffer->gso_segs; 301 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) 302 total_ipsec++; 303 304 /* free the skb */ 305 if (ring_is_xdp(tx_ring)) 306 page_frag_free(tx_buffer->data); 307 else 308 napi_consume_skb(tx_buffer->skb, napi_budget); 309 310 /* unmap skb header data */ 311 dma_unmap_single(tx_ring->dev, 312 dma_unmap_addr(tx_buffer, dma), 313 dma_unmap_len(tx_buffer, len), 314 DMA_TO_DEVICE); 315 316 /* clear tx_buffer data */ 317 dma_unmap_len_set(tx_buffer, len, 0); 318 319 /* unmap remaining buffers */ 320 while (tx_desc != eop_desc) { 321 tx_buffer++; 322 tx_desc++; 323 i++; 324 if (unlikely(!i)) { 325 i -= tx_ring->count; 326 tx_buffer = tx_ring->tx_buffer_info; 327 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 328 } 329 330 /* unmap any remaining paged data */ 331 if (dma_unmap_len(tx_buffer, len)) { 332 dma_unmap_page(tx_ring->dev, 333 dma_unmap_addr(tx_buffer, dma), 334 dma_unmap_len(tx_buffer, len), 335 DMA_TO_DEVICE); 336 dma_unmap_len_set(tx_buffer, len, 0); 337 } 338 } 339 340 /* move us one more past the eop_desc for start of next pkt */ 341 tx_buffer++; 342 tx_desc++; 343 i++; 344 if (unlikely(!i)) { 345 i -= tx_ring->count; 346 tx_buffer = tx_ring->tx_buffer_info; 347 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 348 } 349 350 /* issue prefetch for next Tx descriptor */ 351 prefetch(tx_desc); 352 353 /* update budget accounting */ 354 budget--; 355 } while (likely(budget)); 356 357 i += tx_ring->count; 358 tx_ring->next_to_clean = i; 359 u64_stats_update_begin(&tx_ring->syncp); 360 tx_ring->stats.bytes += total_bytes; 361 tx_ring->stats.packets += total_packets; 362 u64_stats_update_end(&tx_ring->syncp); 363 q_vector->tx.total_bytes += total_bytes; 364 q_vector->tx.total_packets += total_packets; 365 adapter->tx_ipsec += total_ipsec; 366 367 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 368 struct ixgbe_hw *hw = &adapter->hw; 369 union ixgbe_adv_tx_desc *eop_desc; 370 371 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 372 373 pr_err("Detected Tx Unit Hang%s\n" 374 " Tx Queue <%d>\n" 375 " TDH, TDT <%x>, <%x>\n" 376 " next_to_use <%x>\n" 377 " next_to_clean <%x>\n" 378 "tx_buffer_info[next_to_clean]\n" 379 " next_to_watch <%p>\n" 380 " eop_desc->wb.status <%x>\n" 381 " time_stamp <%lx>\n" 382 " jiffies <%lx>\n", 383 ring_is_xdp(tx_ring) ? " XDP" : "", 384 tx_ring->queue_index, 385 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 386 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 387 tx_ring->next_to_use, i, 388 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 389 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 390 391 if (!ring_is_xdp(tx_ring)) 392 netif_stop_subqueue(tx_ring->netdev, 393 tx_ring->queue_index); 394 395 /* schedule immediate reset if we believe we hung */ 396 ixgbevf_tx_timeout_reset(adapter); 397 398 return true; 399 } 400 401 if (ring_is_xdp(tx_ring)) 402 return !!budget; 403 404 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 405 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 406 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 407 /* Make sure that anybody stopping the queue after this 408 * sees the new next_to_clean. 409 */ 410 smp_mb(); 411 412 if (__netif_subqueue_stopped(tx_ring->netdev, 413 tx_ring->queue_index) && 414 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 415 netif_wake_subqueue(tx_ring->netdev, 416 tx_ring->queue_index); 417 ++tx_ring->tx_stats.restart_queue; 418 } 419 } 420 421 return !!budget; 422 } 423 424 /** 425 * ixgbevf_rx_skb - Helper function to determine proper Rx method 426 * @q_vector: structure containing interrupt and ring information 427 * @skb: packet to send up 428 **/ 429 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 430 struct sk_buff *skb) 431 { 432 napi_gro_receive(&q_vector->napi, skb); 433 } 434 435 #define IXGBE_RSS_L4_TYPES_MASK \ 436 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 437 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 438 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 439 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 440 441 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 442 union ixgbe_adv_rx_desc *rx_desc, 443 struct sk_buff *skb) 444 { 445 u16 rss_type; 446 447 if (!(ring->netdev->features & NETIF_F_RXHASH)) 448 return; 449 450 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 451 IXGBE_RXDADV_RSSTYPE_MASK; 452 453 if (!rss_type) 454 return; 455 456 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 457 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 458 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 459 } 460 461 /** 462 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 463 * @ring: structure containig ring specific data 464 * @rx_desc: current Rx descriptor being processed 465 * @skb: skb currently being received and modified 466 **/ 467 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 468 union ixgbe_adv_rx_desc *rx_desc, 469 struct sk_buff *skb) 470 { 471 skb_checksum_none_assert(skb); 472 473 /* Rx csum disabled */ 474 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 475 return; 476 477 /* if IP and error */ 478 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 479 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 480 ring->rx_stats.csum_err++; 481 return; 482 } 483 484 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 485 return; 486 487 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 488 ring->rx_stats.csum_err++; 489 return; 490 } 491 492 /* It must be a TCP or UDP packet with a valid checksum */ 493 skb->ip_summed = CHECKSUM_UNNECESSARY; 494 } 495 496 /** 497 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 498 * @rx_ring: rx descriptor ring packet is being transacted on 499 * @rx_desc: pointer to the EOP Rx descriptor 500 * @skb: pointer to current skb being populated 501 * 502 * This function checks the ring, descriptor, and packet information in 503 * order to populate the checksum, VLAN, protocol, and other fields within 504 * the skb. 505 **/ 506 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 507 union ixgbe_adv_rx_desc *rx_desc, 508 struct sk_buff *skb) 509 { 510 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 511 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 512 513 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 514 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 515 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 516 517 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 518 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 519 } 520 521 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) 522 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); 523 524 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 525 } 526 527 static 528 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 529 const unsigned int size) 530 { 531 struct ixgbevf_rx_buffer *rx_buffer; 532 533 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 534 prefetchw(rx_buffer->page); 535 536 /* we are reusing so sync this buffer for CPU use */ 537 dma_sync_single_range_for_cpu(rx_ring->dev, 538 rx_buffer->dma, 539 rx_buffer->page_offset, 540 size, 541 DMA_FROM_DEVICE); 542 543 rx_buffer->pagecnt_bias--; 544 545 return rx_buffer; 546 } 547 548 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 549 struct ixgbevf_rx_buffer *rx_buffer, 550 struct sk_buff *skb) 551 { 552 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 553 /* hand second half of page back to the ring */ 554 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 555 } else { 556 if (IS_ERR(skb)) 557 /* We are not reusing the buffer so unmap it and free 558 * any references we are holding to it 559 */ 560 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 561 ixgbevf_rx_pg_size(rx_ring), 562 DMA_FROM_DEVICE, 563 IXGBEVF_RX_DMA_ATTR); 564 __page_frag_cache_drain(rx_buffer->page, 565 rx_buffer->pagecnt_bias); 566 } 567 568 /* clear contents of rx_buffer */ 569 rx_buffer->page = NULL; 570 } 571 572 /** 573 * ixgbevf_is_non_eop - process handling of non-EOP buffers 574 * @rx_ring: Rx ring being processed 575 * @rx_desc: Rx descriptor for current buffer 576 * 577 * This function updates next to clean. If the buffer is an EOP buffer 578 * this function exits returning false, otherwise it will place the 579 * sk_buff in the next buffer to be chained and return true indicating 580 * that this is in fact a non-EOP buffer. 581 **/ 582 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 583 union ixgbe_adv_rx_desc *rx_desc) 584 { 585 u32 ntc = rx_ring->next_to_clean + 1; 586 587 /* fetch, update, and store next to clean */ 588 ntc = (ntc < rx_ring->count) ? ntc : 0; 589 rx_ring->next_to_clean = ntc; 590 591 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 592 593 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 594 return false; 595 596 return true; 597 } 598 599 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 600 { 601 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 602 } 603 604 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 605 struct ixgbevf_rx_buffer *bi) 606 { 607 struct page *page = bi->page; 608 dma_addr_t dma; 609 610 /* since we are recycling buffers we should seldom need to alloc */ 611 if (likely(page)) 612 return true; 613 614 /* alloc new page for storage */ 615 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 616 if (unlikely(!page)) { 617 rx_ring->rx_stats.alloc_rx_page_failed++; 618 return false; 619 } 620 621 /* map page for use */ 622 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 623 ixgbevf_rx_pg_size(rx_ring), 624 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 625 626 /* if mapping failed free memory back to system since 627 * there isn't much point in holding memory we can't use 628 */ 629 if (dma_mapping_error(rx_ring->dev, dma)) { 630 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 631 632 rx_ring->rx_stats.alloc_rx_page_failed++; 633 return false; 634 } 635 636 bi->dma = dma; 637 bi->page = page; 638 bi->page_offset = ixgbevf_rx_offset(rx_ring); 639 bi->pagecnt_bias = 1; 640 rx_ring->rx_stats.alloc_rx_page++; 641 642 return true; 643 } 644 645 /** 646 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 647 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 648 * @cleaned_count: number of buffers to replace 649 **/ 650 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 651 u16 cleaned_count) 652 { 653 union ixgbe_adv_rx_desc *rx_desc; 654 struct ixgbevf_rx_buffer *bi; 655 unsigned int i = rx_ring->next_to_use; 656 657 /* nothing to do or no valid netdev defined */ 658 if (!cleaned_count || !rx_ring->netdev) 659 return; 660 661 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 662 bi = &rx_ring->rx_buffer_info[i]; 663 i -= rx_ring->count; 664 665 do { 666 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 667 break; 668 669 /* sync the buffer for use by the device */ 670 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 671 bi->page_offset, 672 ixgbevf_rx_bufsz(rx_ring), 673 DMA_FROM_DEVICE); 674 675 /* Refresh the desc even if pkt_addr didn't change 676 * because each write-back erases this info. 677 */ 678 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 679 680 rx_desc++; 681 bi++; 682 i++; 683 if (unlikely(!i)) { 684 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 685 bi = rx_ring->rx_buffer_info; 686 i -= rx_ring->count; 687 } 688 689 /* clear the length for the next_to_use descriptor */ 690 rx_desc->wb.upper.length = 0; 691 692 cleaned_count--; 693 } while (cleaned_count); 694 695 i += rx_ring->count; 696 697 if (rx_ring->next_to_use != i) { 698 /* record the next descriptor to use */ 699 rx_ring->next_to_use = i; 700 701 /* update next to alloc since we have filled the ring */ 702 rx_ring->next_to_alloc = i; 703 704 /* Force memory writes to complete before letting h/w 705 * know there are new descriptors to fetch. (Only 706 * applicable for weak-ordered memory model archs, 707 * such as IA-64). 708 */ 709 wmb(); 710 ixgbevf_write_tail(rx_ring, i); 711 } 712 } 713 714 /** 715 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 716 * @rx_ring: rx descriptor ring packet is being transacted on 717 * @rx_desc: pointer to the EOP Rx descriptor 718 * @skb: pointer to current skb being fixed 719 * 720 * Check for corrupted packet headers caused by senders on the local L2 721 * embedded NIC switch not setting up their Tx Descriptors right. These 722 * should be very rare. 723 * 724 * Also address the case where we are pulling data in on pages only 725 * and as such no data is present in the skb header. 726 * 727 * In addition if skb is not at least 60 bytes we need to pad it so that 728 * it is large enough to qualify as a valid Ethernet frame. 729 * 730 * Returns true if an error was encountered and skb was freed. 731 **/ 732 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 733 union ixgbe_adv_rx_desc *rx_desc, 734 struct sk_buff *skb) 735 { 736 /* XDP packets use error pointer so abort at this point */ 737 if (IS_ERR(skb)) 738 return true; 739 740 /* verify that the packet does not have any known errors */ 741 if (unlikely(ixgbevf_test_staterr(rx_desc, 742 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 743 struct net_device *netdev = rx_ring->netdev; 744 745 if (!(netdev->features & NETIF_F_RXALL)) { 746 dev_kfree_skb_any(skb); 747 return true; 748 } 749 } 750 751 /* if eth_skb_pad returns an error the skb was freed */ 752 if (eth_skb_pad(skb)) 753 return true; 754 755 return false; 756 } 757 758 /** 759 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 760 * @rx_ring: rx descriptor ring to store buffers on 761 * @old_buff: donor buffer to have page reused 762 * 763 * Synchronizes page for reuse by the adapter 764 **/ 765 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 766 struct ixgbevf_rx_buffer *old_buff) 767 { 768 struct ixgbevf_rx_buffer *new_buff; 769 u16 nta = rx_ring->next_to_alloc; 770 771 new_buff = &rx_ring->rx_buffer_info[nta]; 772 773 /* update, and store next to alloc */ 774 nta++; 775 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 776 777 /* transfer page from old buffer to new buffer */ 778 new_buff->page = old_buff->page; 779 new_buff->dma = old_buff->dma; 780 new_buff->page_offset = old_buff->page_offset; 781 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 782 } 783 784 static inline bool ixgbevf_page_is_reserved(struct page *page) 785 { 786 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 787 } 788 789 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 790 { 791 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 792 struct page *page = rx_buffer->page; 793 794 /* avoid re-using remote pages */ 795 if (unlikely(ixgbevf_page_is_reserved(page))) 796 return false; 797 798 #if (PAGE_SIZE < 8192) 799 /* if we are only owner of page we can reuse it */ 800 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 801 return false; 802 #else 803 #define IXGBEVF_LAST_OFFSET \ 804 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 805 806 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 807 return false; 808 809 #endif 810 811 /* If we have drained the page fragment pool we need to update 812 * the pagecnt_bias and page count so that we fully restock the 813 * number of references the driver holds. 814 */ 815 if (unlikely(!pagecnt_bias)) { 816 page_ref_add(page, USHRT_MAX); 817 rx_buffer->pagecnt_bias = USHRT_MAX; 818 } 819 820 return true; 821 } 822 823 /** 824 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 825 * @rx_ring: rx descriptor ring to transact packets on 826 * @rx_buffer: buffer containing page to add 827 * @skb: sk_buff to place the data into 828 * @size: size of buffer to be added 829 * 830 * This function will add the data contained in rx_buffer->page to the skb. 831 **/ 832 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 833 struct ixgbevf_rx_buffer *rx_buffer, 834 struct sk_buff *skb, 835 unsigned int size) 836 { 837 #if (PAGE_SIZE < 8192) 838 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 839 #else 840 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 841 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 842 SKB_DATA_ALIGN(size); 843 #endif 844 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 845 rx_buffer->page_offset, size, truesize); 846 #if (PAGE_SIZE < 8192) 847 rx_buffer->page_offset ^= truesize; 848 #else 849 rx_buffer->page_offset += truesize; 850 #endif 851 } 852 853 static 854 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 855 struct ixgbevf_rx_buffer *rx_buffer, 856 struct xdp_buff *xdp, 857 union ixgbe_adv_rx_desc *rx_desc) 858 { 859 unsigned int size = xdp->data_end - xdp->data; 860 #if (PAGE_SIZE < 8192) 861 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 862 #else 863 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 864 xdp->data_hard_start); 865 #endif 866 unsigned int headlen; 867 struct sk_buff *skb; 868 869 /* prefetch first cache line of first page */ 870 net_prefetch(xdp->data); 871 872 /* Note, we get here by enabling legacy-rx via: 873 * 874 * ethtool --set-priv-flags <dev> legacy-rx on 875 * 876 * In this mode, we currently get 0 extra XDP headroom as 877 * opposed to having legacy-rx off, where we process XDP 878 * packets going to stack via ixgbevf_build_skb(). 879 * 880 * For ixgbevf_construct_skb() mode it means that the 881 * xdp->data_meta will always point to xdp->data, since 882 * the helper cannot expand the head. Should this ever 883 * changed in future for legacy-rx mode on, then lets also 884 * add xdp->data_meta handling here. 885 */ 886 887 /* allocate a skb to store the frags */ 888 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 889 if (unlikely(!skb)) 890 return NULL; 891 892 /* Determine available headroom for copy */ 893 headlen = size; 894 if (headlen > IXGBEVF_RX_HDR_SIZE) 895 headlen = eth_get_headlen(skb->dev, xdp->data, 896 IXGBEVF_RX_HDR_SIZE); 897 898 /* align pull length to size of long to optimize memcpy performance */ 899 memcpy(__skb_put(skb, headlen), xdp->data, 900 ALIGN(headlen, sizeof(long))); 901 902 /* update all of the pointers */ 903 size -= headlen; 904 if (size) { 905 skb_add_rx_frag(skb, 0, rx_buffer->page, 906 (xdp->data + headlen) - 907 page_address(rx_buffer->page), 908 size, truesize); 909 #if (PAGE_SIZE < 8192) 910 rx_buffer->page_offset ^= truesize; 911 #else 912 rx_buffer->page_offset += truesize; 913 #endif 914 } else { 915 rx_buffer->pagecnt_bias++; 916 } 917 918 return skb; 919 } 920 921 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 922 u32 qmask) 923 { 924 struct ixgbe_hw *hw = &adapter->hw; 925 926 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 927 } 928 929 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 930 struct ixgbevf_rx_buffer *rx_buffer, 931 struct xdp_buff *xdp, 932 union ixgbe_adv_rx_desc *rx_desc) 933 { 934 unsigned int metasize = xdp->data - xdp->data_meta; 935 #if (PAGE_SIZE < 8192) 936 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 937 #else 938 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 939 SKB_DATA_ALIGN(xdp->data_end - 940 xdp->data_hard_start); 941 #endif 942 struct sk_buff *skb; 943 944 /* Prefetch first cache line of first page. If xdp->data_meta 945 * is unused, this points to xdp->data, otherwise, we likely 946 * have a consumer accessing first few bytes of meta data, 947 * and then actual data. 948 */ 949 net_prefetch(xdp->data_meta); 950 951 /* build an skb around the page buffer */ 952 skb = build_skb(xdp->data_hard_start, truesize); 953 if (unlikely(!skb)) 954 return NULL; 955 956 /* update pointers within the skb to store the data */ 957 skb_reserve(skb, xdp->data - xdp->data_hard_start); 958 __skb_put(skb, xdp->data_end - xdp->data); 959 if (metasize) 960 skb_metadata_set(skb, metasize); 961 962 /* update buffer offset */ 963 #if (PAGE_SIZE < 8192) 964 rx_buffer->page_offset ^= truesize; 965 #else 966 rx_buffer->page_offset += truesize; 967 #endif 968 969 return skb; 970 } 971 972 #define IXGBEVF_XDP_PASS 0 973 #define IXGBEVF_XDP_CONSUMED 1 974 #define IXGBEVF_XDP_TX 2 975 976 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 977 struct xdp_buff *xdp) 978 { 979 struct ixgbevf_tx_buffer *tx_buffer; 980 union ixgbe_adv_tx_desc *tx_desc; 981 u32 len, cmd_type; 982 dma_addr_t dma; 983 u16 i; 984 985 len = xdp->data_end - xdp->data; 986 987 if (unlikely(!ixgbevf_desc_unused(ring))) 988 return IXGBEVF_XDP_CONSUMED; 989 990 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 991 if (dma_mapping_error(ring->dev, dma)) 992 return IXGBEVF_XDP_CONSUMED; 993 994 /* record the location of the first descriptor for this packet */ 995 i = ring->next_to_use; 996 tx_buffer = &ring->tx_buffer_info[i]; 997 998 dma_unmap_len_set(tx_buffer, len, len); 999 dma_unmap_addr_set(tx_buffer, dma, dma); 1000 tx_buffer->data = xdp->data; 1001 tx_buffer->bytecount = len; 1002 tx_buffer->gso_segs = 1; 1003 tx_buffer->protocol = 0; 1004 1005 /* Populate minimal context descriptor that will provide for the 1006 * fact that we are expected to process Ethernet frames. 1007 */ 1008 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1009 struct ixgbe_adv_tx_context_desc *context_desc; 1010 1011 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1012 1013 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1014 context_desc->vlan_macip_lens = 1015 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1016 context_desc->fceof_saidx = 0; 1017 context_desc->type_tucmd_mlhl = 1018 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1019 IXGBE_ADVTXD_DTYP_CTXT); 1020 context_desc->mss_l4len_idx = 0; 1021 1022 i = 1; 1023 } 1024 1025 /* put descriptor type bits */ 1026 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1027 IXGBE_ADVTXD_DCMD_DEXT | 1028 IXGBE_ADVTXD_DCMD_IFCS; 1029 cmd_type |= len | IXGBE_TXD_CMD; 1030 1031 tx_desc = IXGBEVF_TX_DESC(ring, i); 1032 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1033 1034 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1035 tx_desc->read.olinfo_status = 1036 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1037 IXGBE_ADVTXD_CC); 1038 1039 /* Avoid any potential race with cleanup */ 1040 smp_wmb(); 1041 1042 /* set next_to_watch value indicating a packet is present */ 1043 i++; 1044 if (i == ring->count) 1045 i = 0; 1046 1047 tx_buffer->next_to_watch = tx_desc; 1048 ring->next_to_use = i; 1049 1050 return IXGBEVF_XDP_TX; 1051 } 1052 1053 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1054 struct ixgbevf_ring *rx_ring, 1055 struct xdp_buff *xdp) 1056 { 1057 int result = IXGBEVF_XDP_PASS; 1058 struct ixgbevf_ring *xdp_ring; 1059 struct bpf_prog *xdp_prog; 1060 u32 act; 1061 1062 rcu_read_lock(); 1063 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1064 1065 if (!xdp_prog) 1066 goto xdp_out; 1067 1068 act = bpf_prog_run_xdp(xdp_prog, xdp); 1069 switch (act) { 1070 case XDP_PASS: 1071 break; 1072 case XDP_TX: 1073 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1074 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1075 break; 1076 default: 1077 bpf_warn_invalid_xdp_action(act); 1078 fallthrough; 1079 case XDP_ABORTED: 1080 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1081 fallthrough; /* handle aborts by dropping packet */ 1082 case XDP_DROP: 1083 result = IXGBEVF_XDP_CONSUMED; 1084 break; 1085 } 1086 xdp_out: 1087 rcu_read_unlock(); 1088 return ERR_PTR(-result); 1089 } 1090 1091 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring, 1092 unsigned int size) 1093 { 1094 unsigned int truesize; 1095 1096 #if (PAGE_SIZE < 8192) 1097 truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 1098 #else 1099 truesize = ring_uses_build_skb(rx_ring) ? 1100 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) + 1101 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1102 SKB_DATA_ALIGN(size); 1103 #endif 1104 return truesize; 1105 } 1106 1107 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1108 struct ixgbevf_rx_buffer *rx_buffer, 1109 unsigned int size) 1110 { 1111 unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size); 1112 1113 #if (PAGE_SIZE < 8192) 1114 rx_buffer->page_offset ^= truesize; 1115 #else 1116 rx_buffer->page_offset += truesize; 1117 #endif 1118 } 1119 1120 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1121 struct ixgbevf_ring *rx_ring, 1122 int budget) 1123 { 1124 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1125 struct ixgbevf_adapter *adapter = q_vector->adapter; 1126 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1127 struct sk_buff *skb = rx_ring->skb; 1128 bool xdp_xmit = false; 1129 struct xdp_buff xdp; 1130 1131 xdp.rxq = &rx_ring->xdp_rxq; 1132 1133 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1134 #if (PAGE_SIZE < 8192) 1135 xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0); 1136 #endif 1137 1138 while (likely(total_rx_packets < budget)) { 1139 struct ixgbevf_rx_buffer *rx_buffer; 1140 union ixgbe_adv_rx_desc *rx_desc; 1141 unsigned int size; 1142 1143 /* return some buffers to hardware, one at a time is too slow */ 1144 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1145 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1146 cleaned_count = 0; 1147 } 1148 1149 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1150 size = le16_to_cpu(rx_desc->wb.upper.length); 1151 if (!size) 1152 break; 1153 1154 /* This memory barrier is needed to keep us from reading 1155 * any other fields out of the rx_desc until we know the 1156 * RXD_STAT_DD bit is set 1157 */ 1158 rmb(); 1159 1160 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1161 1162 /* retrieve a buffer from the ring */ 1163 if (!skb) { 1164 xdp.data = page_address(rx_buffer->page) + 1165 rx_buffer->page_offset; 1166 xdp.data_meta = xdp.data; 1167 xdp.data_hard_start = xdp.data - 1168 ixgbevf_rx_offset(rx_ring); 1169 xdp.data_end = xdp.data + size; 1170 #if (PAGE_SIZE > 4096) 1171 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1172 xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size); 1173 #endif 1174 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1175 } 1176 1177 if (IS_ERR(skb)) { 1178 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1179 xdp_xmit = true; 1180 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1181 size); 1182 } else { 1183 rx_buffer->pagecnt_bias++; 1184 } 1185 total_rx_packets++; 1186 total_rx_bytes += size; 1187 } else if (skb) { 1188 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1189 } else if (ring_uses_build_skb(rx_ring)) { 1190 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1191 &xdp, rx_desc); 1192 } else { 1193 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1194 &xdp, rx_desc); 1195 } 1196 1197 /* exit if we failed to retrieve a buffer */ 1198 if (!skb) { 1199 rx_ring->rx_stats.alloc_rx_buff_failed++; 1200 rx_buffer->pagecnt_bias++; 1201 break; 1202 } 1203 1204 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1205 cleaned_count++; 1206 1207 /* fetch next buffer in frame if non-eop */ 1208 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1209 continue; 1210 1211 /* verify the packet layout is correct */ 1212 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1213 skb = NULL; 1214 continue; 1215 } 1216 1217 /* probably a little skewed due to removing CRC */ 1218 total_rx_bytes += skb->len; 1219 1220 /* Workaround hardware that can't do proper VEPA multicast 1221 * source pruning. 1222 */ 1223 if ((skb->pkt_type == PACKET_BROADCAST || 1224 skb->pkt_type == PACKET_MULTICAST) && 1225 ether_addr_equal(rx_ring->netdev->dev_addr, 1226 eth_hdr(skb)->h_source)) { 1227 dev_kfree_skb_irq(skb); 1228 continue; 1229 } 1230 1231 /* populate checksum, VLAN, and protocol */ 1232 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1233 1234 ixgbevf_rx_skb(q_vector, skb); 1235 1236 /* reset skb pointer */ 1237 skb = NULL; 1238 1239 /* update budget accounting */ 1240 total_rx_packets++; 1241 } 1242 1243 /* place incomplete frames back on ring for completion */ 1244 rx_ring->skb = skb; 1245 1246 if (xdp_xmit) { 1247 struct ixgbevf_ring *xdp_ring = 1248 adapter->xdp_ring[rx_ring->queue_index]; 1249 1250 /* Force memory writes to complete before letting h/w 1251 * know there are new descriptors to fetch. 1252 */ 1253 wmb(); 1254 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1255 } 1256 1257 u64_stats_update_begin(&rx_ring->syncp); 1258 rx_ring->stats.packets += total_rx_packets; 1259 rx_ring->stats.bytes += total_rx_bytes; 1260 u64_stats_update_end(&rx_ring->syncp); 1261 q_vector->rx.total_packets += total_rx_packets; 1262 q_vector->rx.total_bytes += total_rx_bytes; 1263 1264 return total_rx_packets; 1265 } 1266 1267 /** 1268 * ixgbevf_poll - NAPI polling calback 1269 * @napi: napi struct with our devices info in it 1270 * @budget: amount of work driver is allowed to do this pass, in packets 1271 * 1272 * This function will clean more than one or more rings associated with a 1273 * q_vector. 1274 **/ 1275 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1276 { 1277 struct ixgbevf_q_vector *q_vector = 1278 container_of(napi, struct ixgbevf_q_vector, napi); 1279 struct ixgbevf_adapter *adapter = q_vector->adapter; 1280 struct ixgbevf_ring *ring; 1281 int per_ring_budget, work_done = 0; 1282 bool clean_complete = true; 1283 1284 ixgbevf_for_each_ring(ring, q_vector->tx) { 1285 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1286 clean_complete = false; 1287 } 1288 1289 if (budget <= 0) 1290 return budget; 1291 1292 /* attempt to distribute budget to each queue fairly, but don't allow 1293 * the budget to go below 1 because we'll exit polling 1294 */ 1295 if (q_vector->rx.count > 1) 1296 per_ring_budget = max(budget/q_vector->rx.count, 1); 1297 else 1298 per_ring_budget = budget; 1299 1300 ixgbevf_for_each_ring(ring, q_vector->rx) { 1301 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1302 per_ring_budget); 1303 work_done += cleaned; 1304 if (cleaned >= per_ring_budget) 1305 clean_complete = false; 1306 } 1307 1308 /* If all work not completed, return budget and keep polling */ 1309 if (!clean_complete) 1310 return budget; 1311 1312 /* Exit the polling mode, but don't re-enable interrupts if stack might 1313 * poll us due to busy-polling 1314 */ 1315 if (likely(napi_complete_done(napi, work_done))) { 1316 if (adapter->rx_itr_setting == 1) 1317 ixgbevf_set_itr(q_vector); 1318 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1319 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1320 ixgbevf_irq_enable_queues(adapter, 1321 BIT(q_vector->v_idx)); 1322 } 1323 1324 return min(work_done, budget - 1); 1325 } 1326 1327 /** 1328 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1329 * @q_vector: structure containing interrupt and ring information 1330 **/ 1331 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1332 { 1333 struct ixgbevf_adapter *adapter = q_vector->adapter; 1334 struct ixgbe_hw *hw = &adapter->hw; 1335 int v_idx = q_vector->v_idx; 1336 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1337 1338 /* set the WDIS bit to not clear the timer bits and cause an 1339 * immediate assertion of the interrupt 1340 */ 1341 itr_reg |= IXGBE_EITR_CNT_WDIS; 1342 1343 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1344 } 1345 1346 /** 1347 * ixgbevf_configure_msix - Configure MSI-X hardware 1348 * @adapter: board private structure 1349 * 1350 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1351 * interrupts. 1352 **/ 1353 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1354 { 1355 struct ixgbevf_q_vector *q_vector; 1356 int q_vectors, v_idx; 1357 1358 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1359 adapter->eims_enable_mask = 0; 1360 1361 /* Populate the IVAR table and set the ITR values to the 1362 * corresponding register. 1363 */ 1364 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1365 struct ixgbevf_ring *ring; 1366 1367 q_vector = adapter->q_vector[v_idx]; 1368 1369 ixgbevf_for_each_ring(ring, q_vector->rx) 1370 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1371 1372 ixgbevf_for_each_ring(ring, q_vector->tx) 1373 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1374 1375 if (q_vector->tx.ring && !q_vector->rx.ring) { 1376 /* Tx only vector */ 1377 if (adapter->tx_itr_setting == 1) 1378 q_vector->itr = IXGBE_12K_ITR; 1379 else 1380 q_vector->itr = adapter->tx_itr_setting; 1381 } else { 1382 /* Rx or Rx/Tx vector */ 1383 if (adapter->rx_itr_setting == 1) 1384 q_vector->itr = IXGBE_20K_ITR; 1385 else 1386 q_vector->itr = adapter->rx_itr_setting; 1387 } 1388 1389 /* add q_vector eims value to global eims_enable_mask */ 1390 adapter->eims_enable_mask |= BIT(v_idx); 1391 1392 ixgbevf_write_eitr(q_vector); 1393 } 1394 1395 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1396 /* setup eims_other and add value to global eims_enable_mask */ 1397 adapter->eims_other = BIT(v_idx); 1398 adapter->eims_enable_mask |= adapter->eims_other; 1399 } 1400 1401 enum latency_range { 1402 lowest_latency = 0, 1403 low_latency = 1, 1404 bulk_latency = 2, 1405 latency_invalid = 255 1406 }; 1407 1408 /** 1409 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1410 * @q_vector: structure containing interrupt and ring information 1411 * @ring_container: structure containing ring performance data 1412 * 1413 * Stores a new ITR value based on packets and byte 1414 * counts during the last interrupt. The advantage of per interrupt 1415 * computation is faster updates and more accurate ITR for the current 1416 * traffic pattern. Constants in this function were computed 1417 * based on theoretical maximum wire speed and thresholds were set based 1418 * on testing data as well as attempting to minimize response time 1419 * while increasing bulk throughput. 1420 **/ 1421 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1422 struct ixgbevf_ring_container *ring_container) 1423 { 1424 int bytes = ring_container->total_bytes; 1425 int packets = ring_container->total_packets; 1426 u32 timepassed_us; 1427 u64 bytes_perint; 1428 u8 itr_setting = ring_container->itr; 1429 1430 if (packets == 0) 1431 return; 1432 1433 /* simple throttle rate management 1434 * 0-20MB/s lowest (100000 ints/s) 1435 * 20-100MB/s low (20000 ints/s) 1436 * 100-1249MB/s bulk (12000 ints/s) 1437 */ 1438 /* what was last interrupt timeslice? */ 1439 timepassed_us = q_vector->itr >> 2; 1440 if (timepassed_us == 0) 1441 return; 1442 1443 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1444 1445 switch (itr_setting) { 1446 case lowest_latency: 1447 if (bytes_perint > 10) 1448 itr_setting = low_latency; 1449 break; 1450 case low_latency: 1451 if (bytes_perint > 20) 1452 itr_setting = bulk_latency; 1453 else if (bytes_perint <= 10) 1454 itr_setting = lowest_latency; 1455 break; 1456 case bulk_latency: 1457 if (bytes_perint <= 20) 1458 itr_setting = low_latency; 1459 break; 1460 } 1461 1462 /* clear work counters since we have the values we need */ 1463 ring_container->total_bytes = 0; 1464 ring_container->total_packets = 0; 1465 1466 /* write updated itr to ring container */ 1467 ring_container->itr = itr_setting; 1468 } 1469 1470 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1471 { 1472 u32 new_itr = q_vector->itr; 1473 u8 current_itr; 1474 1475 ixgbevf_update_itr(q_vector, &q_vector->tx); 1476 ixgbevf_update_itr(q_vector, &q_vector->rx); 1477 1478 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1479 1480 switch (current_itr) { 1481 /* counts and packets in update_itr are dependent on these numbers */ 1482 case lowest_latency: 1483 new_itr = IXGBE_100K_ITR; 1484 break; 1485 case low_latency: 1486 new_itr = IXGBE_20K_ITR; 1487 break; 1488 case bulk_latency: 1489 new_itr = IXGBE_12K_ITR; 1490 break; 1491 default: 1492 break; 1493 } 1494 1495 if (new_itr != q_vector->itr) { 1496 /* do an exponential smoothing */ 1497 new_itr = (10 * new_itr * q_vector->itr) / 1498 ((9 * new_itr) + q_vector->itr); 1499 1500 /* save the algorithm value here */ 1501 q_vector->itr = new_itr; 1502 1503 ixgbevf_write_eitr(q_vector); 1504 } 1505 } 1506 1507 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1508 { 1509 struct ixgbevf_adapter *adapter = data; 1510 struct ixgbe_hw *hw = &adapter->hw; 1511 1512 hw->mac.get_link_status = 1; 1513 1514 ixgbevf_service_event_schedule(adapter); 1515 1516 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1517 1518 return IRQ_HANDLED; 1519 } 1520 1521 /** 1522 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1523 * @irq: unused 1524 * @data: pointer to our q_vector struct for this interrupt vector 1525 **/ 1526 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1527 { 1528 struct ixgbevf_q_vector *q_vector = data; 1529 1530 /* EIAM disabled interrupts (on this vector) for us */ 1531 if (q_vector->rx.ring || q_vector->tx.ring) 1532 napi_schedule_irqoff(&q_vector->napi); 1533 1534 return IRQ_HANDLED; 1535 } 1536 1537 /** 1538 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1539 * @adapter: board private structure 1540 * 1541 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1542 * interrupts from the kernel. 1543 **/ 1544 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1545 { 1546 struct net_device *netdev = adapter->netdev; 1547 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1548 unsigned int ri = 0, ti = 0; 1549 int vector, err; 1550 1551 for (vector = 0; vector < q_vectors; vector++) { 1552 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1553 struct msix_entry *entry = &adapter->msix_entries[vector]; 1554 1555 if (q_vector->tx.ring && q_vector->rx.ring) { 1556 snprintf(q_vector->name, sizeof(q_vector->name), 1557 "%s-TxRx-%u", netdev->name, ri++); 1558 ti++; 1559 } else if (q_vector->rx.ring) { 1560 snprintf(q_vector->name, sizeof(q_vector->name), 1561 "%s-rx-%u", netdev->name, ri++); 1562 } else if (q_vector->tx.ring) { 1563 snprintf(q_vector->name, sizeof(q_vector->name), 1564 "%s-tx-%u", netdev->name, ti++); 1565 } else { 1566 /* skip this unused q_vector */ 1567 continue; 1568 } 1569 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1570 q_vector->name, q_vector); 1571 if (err) { 1572 hw_dbg(&adapter->hw, 1573 "request_irq failed for MSIX interrupt Error: %d\n", 1574 err); 1575 goto free_queue_irqs; 1576 } 1577 } 1578 1579 err = request_irq(adapter->msix_entries[vector].vector, 1580 &ixgbevf_msix_other, 0, netdev->name, adapter); 1581 if (err) { 1582 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1583 err); 1584 goto free_queue_irqs; 1585 } 1586 1587 return 0; 1588 1589 free_queue_irqs: 1590 while (vector) { 1591 vector--; 1592 free_irq(adapter->msix_entries[vector].vector, 1593 adapter->q_vector[vector]); 1594 } 1595 /* This failure is non-recoverable - it indicates the system is 1596 * out of MSIX vector resources and the VF driver cannot run 1597 * without them. Set the number of msix vectors to zero 1598 * indicating that not enough can be allocated. The error 1599 * will be returned to the user indicating device open failed. 1600 * Any further attempts to force the driver to open will also 1601 * fail. The only way to recover is to unload the driver and 1602 * reload it again. If the system has recovered some MSIX 1603 * vectors then it may succeed. 1604 */ 1605 adapter->num_msix_vectors = 0; 1606 return err; 1607 } 1608 1609 /** 1610 * ixgbevf_request_irq - initialize interrupts 1611 * @adapter: board private structure 1612 * 1613 * Attempts to configure interrupts using the best available 1614 * capabilities of the hardware and kernel. 1615 **/ 1616 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1617 { 1618 int err = ixgbevf_request_msix_irqs(adapter); 1619 1620 if (err) 1621 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1622 1623 return err; 1624 } 1625 1626 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1627 { 1628 int i, q_vectors; 1629 1630 if (!adapter->msix_entries) 1631 return; 1632 1633 q_vectors = adapter->num_msix_vectors; 1634 i = q_vectors - 1; 1635 1636 free_irq(adapter->msix_entries[i].vector, adapter); 1637 i--; 1638 1639 for (; i >= 0; i--) { 1640 /* free only the irqs that were actually requested */ 1641 if (!adapter->q_vector[i]->rx.ring && 1642 !adapter->q_vector[i]->tx.ring) 1643 continue; 1644 1645 free_irq(adapter->msix_entries[i].vector, 1646 adapter->q_vector[i]); 1647 } 1648 } 1649 1650 /** 1651 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1652 * @adapter: board private structure 1653 **/ 1654 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1655 { 1656 struct ixgbe_hw *hw = &adapter->hw; 1657 int i; 1658 1659 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1660 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1661 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1662 1663 IXGBE_WRITE_FLUSH(hw); 1664 1665 for (i = 0; i < adapter->num_msix_vectors; i++) 1666 synchronize_irq(adapter->msix_entries[i].vector); 1667 } 1668 1669 /** 1670 * ixgbevf_irq_enable - Enable default interrupt generation settings 1671 * @adapter: board private structure 1672 **/ 1673 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1674 { 1675 struct ixgbe_hw *hw = &adapter->hw; 1676 1677 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1678 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1679 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1680 } 1681 1682 /** 1683 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1684 * @adapter: board private structure 1685 * @ring: structure containing ring specific data 1686 * 1687 * Configure the Tx descriptor ring after a reset. 1688 **/ 1689 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1690 struct ixgbevf_ring *ring) 1691 { 1692 struct ixgbe_hw *hw = &adapter->hw; 1693 u64 tdba = ring->dma; 1694 int wait_loop = 10; 1695 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1696 u8 reg_idx = ring->reg_idx; 1697 1698 /* disable queue to avoid issues while updating state */ 1699 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1700 IXGBE_WRITE_FLUSH(hw); 1701 1702 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1703 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1704 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1705 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1706 1707 /* disable head writeback */ 1708 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1709 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1710 1711 /* enable relaxed ordering */ 1712 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1713 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1714 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1715 1716 /* reset head and tail pointers */ 1717 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1718 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1719 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1720 1721 /* reset ntu and ntc to place SW in sync with hardwdare */ 1722 ring->next_to_clean = 0; 1723 ring->next_to_use = 0; 1724 1725 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1726 * to or less than the number of on chip descriptors, which is 1727 * currently 40. 1728 */ 1729 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1730 1731 /* Setting PTHRESH to 32 both improves performance */ 1732 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1733 32; /* PTHRESH = 32 */ 1734 1735 /* reinitialize tx_buffer_info */ 1736 memset(ring->tx_buffer_info, 0, 1737 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1738 1739 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1740 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1741 1742 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1743 1744 /* poll to verify queue is enabled */ 1745 do { 1746 usleep_range(1000, 2000); 1747 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1748 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1749 if (!wait_loop) 1750 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1751 } 1752 1753 /** 1754 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1755 * @adapter: board private structure 1756 * 1757 * Configure the Tx unit of the MAC after a reset. 1758 **/ 1759 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1760 { 1761 u32 i; 1762 1763 /* Setup the HW Tx Head and Tail descriptor pointers */ 1764 for (i = 0; i < adapter->num_tx_queues; i++) 1765 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1766 for (i = 0; i < adapter->num_xdp_queues; i++) 1767 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1768 } 1769 1770 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1771 1772 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1773 struct ixgbevf_ring *ring, int index) 1774 { 1775 struct ixgbe_hw *hw = &adapter->hw; 1776 u32 srrctl; 1777 1778 srrctl = IXGBE_SRRCTL_DROP_EN; 1779 1780 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1781 if (ring_uses_large_buffer(ring)) 1782 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1783 else 1784 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1785 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1786 1787 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1788 } 1789 1790 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1791 { 1792 struct ixgbe_hw *hw = &adapter->hw; 1793 1794 /* PSRTYPE must be initialized in 82599 */ 1795 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1796 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1797 IXGBE_PSRTYPE_L2HDR; 1798 1799 if (adapter->num_rx_queues > 1) 1800 psrtype |= BIT(29); 1801 1802 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1803 } 1804 1805 #define IXGBEVF_MAX_RX_DESC_POLL 10 1806 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1807 struct ixgbevf_ring *ring) 1808 { 1809 struct ixgbe_hw *hw = &adapter->hw; 1810 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1811 u32 rxdctl; 1812 u8 reg_idx = ring->reg_idx; 1813 1814 if (IXGBE_REMOVED(hw->hw_addr)) 1815 return; 1816 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1817 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1818 1819 /* write value back with RXDCTL.ENABLE bit cleared */ 1820 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1821 1822 /* the hardware may take up to 100us to really disable the Rx queue */ 1823 do { 1824 udelay(10); 1825 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1826 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1827 1828 if (!wait_loop) 1829 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1830 reg_idx); 1831 } 1832 1833 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1834 struct ixgbevf_ring *ring) 1835 { 1836 struct ixgbe_hw *hw = &adapter->hw; 1837 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1838 u32 rxdctl; 1839 u8 reg_idx = ring->reg_idx; 1840 1841 if (IXGBE_REMOVED(hw->hw_addr)) 1842 return; 1843 do { 1844 usleep_range(1000, 2000); 1845 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1846 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1847 1848 if (!wait_loop) 1849 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1850 reg_idx); 1851 } 1852 1853 /** 1854 * ixgbevf_init_rss_key - Initialize adapter RSS key 1855 * @adapter: device handle 1856 * 1857 * Allocates and initializes the RSS key if it is not allocated. 1858 **/ 1859 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1860 { 1861 u32 *rss_key; 1862 1863 if (!adapter->rss_key) { 1864 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1865 if (unlikely(!rss_key)) 1866 return -ENOMEM; 1867 1868 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1869 adapter->rss_key = rss_key; 1870 } 1871 1872 return 0; 1873 } 1874 1875 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1876 { 1877 struct ixgbe_hw *hw = &adapter->hw; 1878 u32 vfmrqc = 0, vfreta = 0; 1879 u16 rss_i = adapter->num_rx_queues; 1880 u8 i, j; 1881 1882 /* Fill out hash function seeds */ 1883 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1884 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1885 1886 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1887 if (j == rss_i) 1888 j = 0; 1889 1890 adapter->rss_indir_tbl[i] = j; 1891 1892 vfreta |= j << (i & 0x3) * 8; 1893 if ((i & 3) == 3) { 1894 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1895 vfreta = 0; 1896 } 1897 } 1898 1899 /* Perform hash on these packet types */ 1900 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1901 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1902 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1903 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1904 1905 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1906 1907 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1908 } 1909 1910 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1911 struct ixgbevf_ring *ring) 1912 { 1913 struct ixgbe_hw *hw = &adapter->hw; 1914 union ixgbe_adv_rx_desc *rx_desc; 1915 u64 rdba = ring->dma; 1916 u32 rxdctl; 1917 u8 reg_idx = ring->reg_idx; 1918 1919 /* disable queue to avoid issues while updating state */ 1920 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1921 ixgbevf_disable_rx_queue(adapter, ring); 1922 1923 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1924 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1925 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1926 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1927 1928 #ifndef CONFIG_SPARC 1929 /* enable relaxed ordering */ 1930 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1931 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1932 #else 1933 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1934 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1935 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1936 #endif 1937 1938 /* reset head and tail pointers */ 1939 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1940 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1941 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1942 1943 /* initialize rx_buffer_info */ 1944 memset(ring->rx_buffer_info, 0, 1945 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1946 1947 /* initialize Rx descriptor 0 */ 1948 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1949 rx_desc->wb.upper.length = 0; 1950 1951 /* reset ntu and ntc to place SW in sync with hardwdare */ 1952 ring->next_to_clean = 0; 1953 ring->next_to_use = 0; 1954 ring->next_to_alloc = 0; 1955 1956 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1957 1958 /* RXDCTL.RLPML does not work on 82599 */ 1959 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1960 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1961 IXGBE_RXDCTL_RLPML_EN); 1962 1963 #if (PAGE_SIZE < 8192) 1964 /* Limit the maximum frame size so we don't overrun the skb */ 1965 if (ring_uses_build_skb(ring) && 1966 !ring_uses_large_buffer(ring)) 1967 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1968 IXGBE_RXDCTL_RLPML_EN; 1969 #endif 1970 } 1971 1972 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1973 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1974 1975 ixgbevf_rx_desc_queue_enable(adapter, ring); 1976 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1977 } 1978 1979 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1980 struct ixgbevf_ring *rx_ring) 1981 { 1982 struct net_device *netdev = adapter->netdev; 1983 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1984 1985 /* set build_skb and buffer size flags */ 1986 clear_ring_build_skb_enabled(rx_ring); 1987 clear_ring_uses_large_buffer(rx_ring); 1988 1989 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1990 return; 1991 1992 set_ring_build_skb_enabled(rx_ring); 1993 1994 if (PAGE_SIZE < 8192) { 1995 if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB) 1996 return; 1997 1998 set_ring_uses_large_buffer(rx_ring); 1999 } 2000 } 2001 2002 /** 2003 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 2004 * @adapter: board private structure 2005 * 2006 * Configure the Rx unit of the MAC after a reset. 2007 **/ 2008 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 2009 { 2010 struct ixgbe_hw *hw = &adapter->hw; 2011 struct net_device *netdev = adapter->netdev; 2012 int i, ret; 2013 2014 ixgbevf_setup_psrtype(adapter); 2015 if (hw->mac.type >= ixgbe_mac_X550_vf) 2016 ixgbevf_setup_vfmrqc(adapter); 2017 2018 spin_lock_bh(&adapter->mbx_lock); 2019 /* notify the PF of our intent to use this size of frame */ 2020 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 2021 spin_unlock_bh(&adapter->mbx_lock); 2022 if (ret) 2023 dev_err(&adapter->pdev->dev, 2024 "Failed to set MTU at %d\n", netdev->mtu); 2025 2026 /* Setup the HW Rx Head and Tail Descriptor Pointers and 2027 * the Base and Length of the Rx Descriptor Ring 2028 */ 2029 for (i = 0; i < adapter->num_rx_queues; i++) { 2030 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2031 2032 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2033 ixgbevf_configure_rx_ring(adapter, rx_ring); 2034 } 2035 } 2036 2037 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2038 __be16 proto, u16 vid) 2039 { 2040 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2041 struct ixgbe_hw *hw = &adapter->hw; 2042 int err; 2043 2044 spin_lock_bh(&adapter->mbx_lock); 2045 2046 /* add VID to filter table */ 2047 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2048 2049 spin_unlock_bh(&adapter->mbx_lock); 2050 2051 /* translate error return types so error makes sense */ 2052 if (err == IXGBE_ERR_MBX) 2053 return -EIO; 2054 2055 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2056 return -EACCES; 2057 2058 set_bit(vid, adapter->active_vlans); 2059 2060 return err; 2061 } 2062 2063 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2064 __be16 proto, u16 vid) 2065 { 2066 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2067 struct ixgbe_hw *hw = &adapter->hw; 2068 int err; 2069 2070 spin_lock_bh(&adapter->mbx_lock); 2071 2072 /* remove VID from filter table */ 2073 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2074 2075 spin_unlock_bh(&adapter->mbx_lock); 2076 2077 clear_bit(vid, adapter->active_vlans); 2078 2079 return err; 2080 } 2081 2082 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2083 { 2084 u16 vid; 2085 2086 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2087 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2088 htons(ETH_P_8021Q), vid); 2089 } 2090 2091 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2092 { 2093 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2094 struct ixgbe_hw *hw = &adapter->hw; 2095 int count = 0; 2096 2097 if (!netdev_uc_empty(netdev)) { 2098 struct netdev_hw_addr *ha; 2099 2100 netdev_for_each_uc_addr(ha, netdev) { 2101 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2102 udelay(200); 2103 } 2104 } else { 2105 /* If the list is empty then send message to PF driver to 2106 * clear all MAC VLANs on this VF. 2107 */ 2108 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2109 } 2110 2111 return count; 2112 } 2113 2114 /** 2115 * ixgbevf_set_rx_mode - Multicast and unicast set 2116 * @netdev: network interface device structure 2117 * 2118 * The set_rx_method entry point is called whenever the multicast address 2119 * list, unicast address list or the network interface flags are updated. 2120 * This routine is responsible for configuring the hardware for proper 2121 * multicast mode and configuring requested unicast filters. 2122 **/ 2123 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2124 { 2125 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2126 struct ixgbe_hw *hw = &adapter->hw; 2127 unsigned int flags = netdev->flags; 2128 int xcast_mode; 2129 2130 /* request the most inclusive mode we need */ 2131 if (flags & IFF_PROMISC) 2132 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2133 else if (flags & IFF_ALLMULTI) 2134 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2135 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2136 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2137 else 2138 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2139 2140 spin_lock_bh(&adapter->mbx_lock); 2141 2142 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2143 2144 /* reprogram multicast list */ 2145 hw->mac.ops.update_mc_addr_list(hw, netdev); 2146 2147 ixgbevf_write_uc_addr_list(netdev); 2148 2149 spin_unlock_bh(&adapter->mbx_lock); 2150 } 2151 2152 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2153 { 2154 int q_idx; 2155 struct ixgbevf_q_vector *q_vector; 2156 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2157 2158 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2159 q_vector = adapter->q_vector[q_idx]; 2160 napi_enable(&q_vector->napi); 2161 } 2162 } 2163 2164 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2165 { 2166 int q_idx; 2167 struct ixgbevf_q_vector *q_vector; 2168 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2169 2170 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2171 q_vector = adapter->q_vector[q_idx]; 2172 napi_disable(&q_vector->napi); 2173 } 2174 } 2175 2176 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2177 { 2178 struct ixgbe_hw *hw = &adapter->hw; 2179 unsigned int def_q = 0; 2180 unsigned int num_tcs = 0; 2181 unsigned int num_rx_queues = adapter->num_rx_queues; 2182 unsigned int num_tx_queues = adapter->num_tx_queues; 2183 int err; 2184 2185 spin_lock_bh(&adapter->mbx_lock); 2186 2187 /* fetch queue configuration from the PF */ 2188 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2189 2190 spin_unlock_bh(&adapter->mbx_lock); 2191 2192 if (err) 2193 return err; 2194 2195 if (num_tcs > 1) { 2196 /* we need only one Tx queue */ 2197 num_tx_queues = 1; 2198 2199 /* update default Tx ring register index */ 2200 adapter->tx_ring[0]->reg_idx = def_q; 2201 2202 /* we need as many queues as traffic classes */ 2203 num_rx_queues = num_tcs; 2204 } 2205 2206 /* if we have a bad config abort request queue reset */ 2207 if ((adapter->num_rx_queues != num_rx_queues) || 2208 (adapter->num_tx_queues != num_tx_queues)) { 2209 /* force mailbox timeout to prevent further messages */ 2210 hw->mbx.timeout = 0; 2211 2212 /* wait for watchdog to come around and bail us out */ 2213 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2214 } 2215 2216 return 0; 2217 } 2218 2219 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2220 { 2221 ixgbevf_configure_dcb(adapter); 2222 2223 ixgbevf_set_rx_mode(adapter->netdev); 2224 2225 ixgbevf_restore_vlan(adapter); 2226 ixgbevf_ipsec_restore(adapter); 2227 2228 ixgbevf_configure_tx(adapter); 2229 ixgbevf_configure_rx(adapter); 2230 } 2231 2232 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2233 { 2234 /* Only save pre-reset stats if there are some */ 2235 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2236 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2237 adapter->stats.base_vfgprc; 2238 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2239 adapter->stats.base_vfgptc; 2240 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2241 adapter->stats.base_vfgorc; 2242 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2243 adapter->stats.base_vfgotc; 2244 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2245 adapter->stats.base_vfmprc; 2246 } 2247 } 2248 2249 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2250 { 2251 struct ixgbe_hw *hw = &adapter->hw; 2252 2253 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2254 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2255 adapter->stats.last_vfgorc |= 2256 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2257 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2258 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2259 adapter->stats.last_vfgotc |= 2260 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2261 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2262 2263 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2264 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2265 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2266 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2267 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2268 } 2269 2270 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2271 { 2272 struct ixgbe_hw *hw = &adapter->hw; 2273 static const int api[] = { 2274 ixgbe_mbox_api_14, 2275 ixgbe_mbox_api_13, 2276 ixgbe_mbox_api_12, 2277 ixgbe_mbox_api_11, 2278 ixgbe_mbox_api_10, 2279 ixgbe_mbox_api_unknown 2280 }; 2281 int err, idx = 0; 2282 2283 spin_lock_bh(&adapter->mbx_lock); 2284 2285 while (api[idx] != ixgbe_mbox_api_unknown) { 2286 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2287 if (!err) 2288 break; 2289 idx++; 2290 } 2291 2292 spin_unlock_bh(&adapter->mbx_lock); 2293 } 2294 2295 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2296 { 2297 struct net_device *netdev = adapter->netdev; 2298 struct ixgbe_hw *hw = &adapter->hw; 2299 2300 ixgbevf_configure_msix(adapter); 2301 2302 spin_lock_bh(&adapter->mbx_lock); 2303 2304 if (is_valid_ether_addr(hw->mac.addr)) 2305 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2306 else 2307 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2308 2309 spin_unlock_bh(&adapter->mbx_lock); 2310 2311 smp_mb__before_atomic(); 2312 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2313 ixgbevf_napi_enable_all(adapter); 2314 2315 /* clear any pending interrupts, may auto mask */ 2316 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2317 ixgbevf_irq_enable(adapter); 2318 2319 /* enable transmits */ 2320 netif_tx_start_all_queues(netdev); 2321 2322 ixgbevf_save_reset_stats(adapter); 2323 ixgbevf_init_last_counter_stats(adapter); 2324 2325 hw->mac.get_link_status = 1; 2326 mod_timer(&adapter->service_timer, jiffies); 2327 } 2328 2329 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2330 { 2331 ixgbevf_configure(adapter); 2332 2333 ixgbevf_up_complete(adapter); 2334 } 2335 2336 /** 2337 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2338 * @rx_ring: ring to free buffers from 2339 **/ 2340 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2341 { 2342 u16 i = rx_ring->next_to_clean; 2343 2344 /* Free Rx ring sk_buff */ 2345 if (rx_ring->skb) { 2346 dev_kfree_skb(rx_ring->skb); 2347 rx_ring->skb = NULL; 2348 } 2349 2350 /* Free all the Rx ring pages */ 2351 while (i != rx_ring->next_to_alloc) { 2352 struct ixgbevf_rx_buffer *rx_buffer; 2353 2354 rx_buffer = &rx_ring->rx_buffer_info[i]; 2355 2356 /* Invalidate cache lines that may have been written to by 2357 * device so that we avoid corrupting memory. 2358 */ 2359 dma_sync_single_range_for_cpu(rx_ring->dev, 2360 rx_buffer->dma, 2361 rx_buffer->page_offset, 2362 ixgbevf_rx_bufsz(rx_ring), 2363 DMA_FROM_DEVICE); 2364 2365 /* free resources associated with mapping */ 2366 dma_unmap_page_attrs(rx_ring->dev, 2367 rx_buffer->dma, 2368 ixgbevf_rx_pg_size(rx_ring), 2369 DMA_FROM_DEVICE, 2370 IXGBEVF_RX_DMA_ATTR); 2371 2372 __page_frag_cache_drain(rx_buffer->page, 2373 rx_buffer->pagecnt_bias); 2374 2375 i++; 2376 if (i == rx_ring->count) 2377 i = 0; 2378 } 2379 2380 rx_ring->next_to_alloc = 0; 2381 rx_ring->next_to_clean = 0; 2382 rx_ring->next_to_use = 0; 2383 } 2384 2385 /** 2386 * ixgbevf_clean_tx_ring - Free Tx Buffers 2387 * @tx_ring: ring to be cleaned 2388 **/ 2389 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2390 { 2391 u16 i = tx_ring->next_to_clean; 2392 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2393 2394 while (i != tx_ring->next_to_use) { 2395 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2396 2397 /* Free all the Tx ring sk_buffs */ 2398 if (ring_is_xdp(tx_ring)) 2399 page_frag_free(tx_buffer->data); 2400 else 2401 dev_kfree_skb_any(tx_buffer->skb); 2402 2403 /* unmap skb header data */ 2404 dma_unmap_single(tx_ring->dev, 2405 dma_unmap_addr(tx_buffer, dma), 2406 dma_unmap_len(tx_buffer, len), 2407 DMA_TO_DEVICE); 2408 2409 /* check for eop_desc to determine the end of the packet */ 2410 eop_desc = tx_buffer->next_to_watch; 2411 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2412 2413 /* unmap remaining buffers */ 2414 while (tx_desc != eop_desc) { 2415 tx_buffer++; 2416 tx_desc++; 2417 i++; 2418 if (unlikely(i == tx_ring->count)) { 2419 i = 0; 2420 tx_buffer = tx_ring->tx_buffer_info; 2421 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2422 } 2423 2424 /* unmap any remaining paged data */ 2425 if (dma_unmap_len(tx_buffer, len)) 2426 dma_unmap_page(tx_ring->dev, 2427 dma_unmap_addr(tx_buffer, dma), 2428 dma_unmap_len(tx_buffer, len), 2429 DMA_TO_DEVICE); 2430 } 2431 2432 /* move us one more past the eop_desc for start of next pkt */ 2433 tx_buffer++; 2434 i++; 2435 if (unlikely(i == tx_ring->count)) { 2436 i = 0; 2437 tx_buffer = tx_ring->tx_buffer_info; 2438 } 2439 } 2440 2441 /* reset next_to_use and next_to_clean */ 2442 tx_ring->next_to_use = 0; 2443 tx_ring->next_to_clean = 0; 2444 2445 } 2446 2447 /** 2448 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2449 * @adapter: board private structure 2450 **/ 2451 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2452 { 2453 int i; 2454 2455 for (i = 0; i < adapter->num_rx_queues; i++) 2456 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2457 } 2458 2459 /** 2460 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2461 * @adapter: board private structure 2462 **/ 2463 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2464 { 2465 int i; 2466 2467 for (i = 0; i < adapter->num_tx_queues; i++) 2468 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2469 for (i = 0; i < adapter->num_xdp_queues; i++) 2470 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2471 } 2472 2473 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2474 { 2475 struct net_device *netdev = adapter->netdev; 2476 struct ixgbe_hw *hw = &adapter->hw; 2477 int i; 2478 2479 /* signal that we are down to the interrupt handler */ 2480 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2481 return; /* do nothing if already down */ 2482 2483 /* disable all enabled Rx queues */ 2484 for (i = 0; i < adapter->num_rx_queues; i++) 2485 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2486 2487 usleep_range(10000, 20000); 2488 2489 netif_tx_stop_all_queues(netdev); 2490 2491 /* call carrier off first to avoid false dev_watchdog timeouts */ 2492 netif_carrier_off(netdev); 2493 netif_tx_disable(netdev); 2494 2495 ixgbevf_irq_disable(adapter); 2496 2497 ixgbevf_napi_disable_all(adapter); 2498 2499 del_timer_sync(&adapter->service_timer); 2500 2501 /* disable transmits in the hardware now that interrupts are off */ 2502 for (i = 0; i < adapter->num_tx_queues; i++) { 2503 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2504 2505 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2506 IXGBE_TXDCTL_SWFLSH); 2507 } 2508 2509 for (i = 0; i < adapter->num_xdp_queues; i++) { 2510 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2511 2512 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2513 IXGBE_TXDCTL_SWFLSH); 2514 } 2515 2516 if (!pci_channel_offline(adapter->pdev)) 2517 ixgbevf_reset(adapter); 2518 2519 ixgbevf_clean_all_tx_rings(adapter); 2520 ixgbevf_clean_all_rx_rings(adapter); 2521 } 2522 2523 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2524 { 2525 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2526 msleep(1); 2527 2528 ixgbevf_down(adapter); 2529 pci_set_master(adapter->pdev); 2530 ixgbevf_up(adapter); 2531 2532 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2533 } 2534 2535 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2536 { 2537 struct ixgbe_hw *hw = &adapter->hw; 2538 struct net_device *netdev = adapter->netdev; 2539 2540 if (hw->mac.ops.reset_hw(hw)) { 2541 hw_dbg(hw, "PF still resetting\n"); 2542 } else { 2543 hw->mac.ops.init_hw(hw); 2544 ixgbevf_negotiate_api(adapter); 2545 } 2546 2547 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2548 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2549 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2550 } 2551 2552 adapter->last_reset = jiffies; 2553 } 2554 2555 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2556 int vectors) 2557 { 2558 int vector_threshold; 2559 2560 /* We'll want at least 2 (vector_threshold): 2561 * 1) TxQ[0] + RxQ[0] handler 2562 * 2) Other (Link Status Change, etc.) 2563 */ 2564 vector_threshold = MIN_MSIX_COUNT; 2565 2566 /* The more we get, the more we will assign to Tx/Rx Cleanup 2567 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2568 * Right now, we simply care about how many we'll get; we'll 2569 * set them up later while requesting irq's. 2570 */ 2571 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2572 vector_threshold, vectors); 2573 2574 if (vectors < 0) { 2575 dev_err(&adapter->pdev->dev, 2576 "Unable to allocate MSI-X interrupts\n"); 2577 kfree(adapter->msix_entries); 2578 adapter->msix_entries = NULL; 2579 return vectors; 2580 } 2581 2582 /* Adjust for only the vectors we'll use, which is minimum 2583 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2584 * vectors we were allocated. 2585 */ 2586 adapter->num_msix_vectors = vectors; 2587 2588 return 0; 2589 } 2590 2591 /** 2592 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2593 * @adapter: board private structure to initialize 2594 * 2595 * This is the top level queue allocation routine. The order here is very 2596 * important, starting with the "most" number of features turned on at once, 2597 * and ending with the smallest set of features. This way large combinations 2598 * can be allocated if they're turned on, and smaller combinations are the 2599 * fall through conditions. 2600 * 2601 **/ 2602 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2603 { 2604 struct ixgbe_hw *hw = &adapter->hw; 2605 unsigned int def_q = 0; 2606 unsigned int num_tcs = 0; 2607 int err; 2608 2609 /* Start with base case */ 2610 adapter->num_rx_queues = 1; 2611 adapter->num_tx_queues = 1; 2612 adapter->num_xdp_queues = 0; 2613 2614 spin_lock_bh(&adapter->mbx_lock); 2615 2616 /* fetch queue configuration from the PF */ 2617 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2618 2619 spin_unlock_bh(&adapter->mbx_lock); 2620 2621 if (err) 2622 return; 2623 2624 /* we need as many queues as traffic classes */ 2625 if (num_tcs > 1) { 2626 adapter->num_rx_queues = num_tcs; 2627 } else { 2628 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2629 2630 switch (hw->api_version) { 2631 case ixgbe_mbox_api_11: 2632 case ixgbe_mbox_api_12: 2633 case ixgbe_mbox_api_13: 2634 case ixgbe_mbox_api_14: 2635 if (adapter->xdp_prog && 2636 hw->mac.max_tx_queues == rss) 2637 rss = rss > 3 ? 2 : 1; 2638 2639 adapter->num_rx_queues = rss; 2640 adapter->num_tx_queues = rss; 2641 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2642 default: 2643 break; 2644 } 2645 } 2646 } 2647 2648 /** 2649 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2650 * @adapter: board private structure to initialize 2651 * 2652 * Attempt to configure the interrupts using the best available 2653 * capabilities of the hardware and the kernel. 2654 **/ 2655 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2656 { 2657 int vector, v_budget; 2658 2659 /* It's easy to be greedy for MSI-X vectors, but it really 2660 * doesn't do us much good if we have a lot more vectors 2661 * than CPU's. So let's be conservative and only ask for 2662 * (roughly) the same number of vectors as there are CPU's. 2663 * The default is to use pairs of vectors. 2664 */ 2665 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2666 v_budget = min_t(int, v_budget, num_online_cpus()); 2667 v_budget += NON_Q_VECTORS; 2668 2669 adapter->msix_entries = kcalloc(v_budget, 2670 sizeof(struct msix_entry), GFP_KERNEL); 2671 if (!adapter->msix_entries) 2672 return -ENOMEM; 2673 2674 for (vector = 0; vector < v_budget; vector++) 2675 adapter->msix_entries[vector].entry = vector; 2676 2677 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2678 * does not support any other modes, so we will simply fail here. Note 2679 * that we clean up the msix_entries pointer else-where. 2680 */ 2681 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2682 } 2683 2684 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2685 struct ixgbevf_ring_container *head) 2686 { 2687 ring->next = head->ring; 2688 head->ring = ring; 2689 head->count++; 2690 } 2691 2692 /** 2693 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2694 * @adapter: board private structure to initialize 2695 * @v_idx: index of vector in adapter struct 2696 * @txr_count: number of Tx rings for q vector 2697 * @txr_idx: index of first Tx ring to assign 2698 * @xdp_count: total number of XDP rings to allocate 2699 * @xdp_idx: index of first XDP ring to allocate 2700 * @rxr_count: number of Rx rings for q vector 2701 * @rxr_idx: index of first Rx ring to assign 2702 * 2703 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2704 **/ 2705 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2706 int txr_count, int txr_idx, 2707 int xdp_count, int xdp_idx, 2708 int rxr_count, int rxr_idx) 2709 { 2710 struct ixgbevf_q_vector *q_vector; 2711 int reg_idx = txr_idx + xdp_idx; 2712 struct ixgbevf_ring *ring; 2713 int ring_count, size; 2714 2715 ring_count = txr_count + xdp_count + rxr_count; 2716 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2717 2718 /* allocate q_vector and rings */ 2719 q_vector = kzalloc(size, GFP_KERNEL); 2720 if (!q_vector) 2721 return -ENOMEM; 2722 2723 /* initialize NAPI */ 2724 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64); 2725 2726 /* tie q_vector and adapter together */ 2727 adapter->q_vector[v_idx] = q_vector; 2728 q_vector->adapter = adapter; 2729 q_vector->v_idx = v_idx; 2730 2731 /* initialize pointer to rings */ 2732 ring = q_vector->ring; 2733 2734 while (txr_count) { 2735 /* assign generic ring traits */ 2736 ring->dev = &adapter->pdev->dev; 2737 ring->netdev = adapter->netdev; 2738 2739 /* configure backlink on ring */ 2740 ring->q_vector = q_vector; 2741 2742 /* update q_vector Tx values */ 2743 ixgbevf_add_ring(ring, &q_vector->tx); 2744 2745 /* apply Tx specific ring traits */ 2746 ring->count = adapter->tx_ring_count; 2747 ring->queue_index = txr_idx; 2748 ring->reg_idx = reg_idx; 2749 2750 /* assign ring to adapter */ 2751 adapter->tx_ring[txr_idx] = ring; 2752 2753 /* update count and index */ 2754 txr_count--; 2755 txr_idx++; 2756 reg_idx++; 2757 2758 /* push pointer to next ring */ 2759 ring++; 2760 } 2761 2762 while (xdp_count) { 2763 /* assign generic ring traits */ 2764 ring->dev = &adapter->pdev->dev; 2765 ring->netdev = adapter->netdev; 2766 2767 /* configure backlink on ring */ 2768 ring->q_vector = q_vector; 2769 2770 /* update q_vector Tx values */ 2771 ixgbevf_add_ring(ring, &q_vector->tx); 2772 2773 /* apply Tx specific ring traits */ 2774 ring->count = adapter->tx_ring_count; 2775 ring->queue_index = xdp_idx; 2776 ring->reg_idx = reg_idx; 2777 set_ring_xdp(ring); 2778 2779 /* assign ring to adapter */ 2780 adapter->xdp_ring[xdp_idx] = ring; 2781 2782 /* update count and index */ 2783 xdp_count--; 2784 xdp_idx++; 2785 reg_idx++; 2786 2787 /* push pointer to next ring */ 2788 ring++; 2789 } 2790 2791 while (rxr_count) { 2792 /* assign generic ring traits */ 2793 ring->dev = &adapter->pdev->dev; 2794 ring->netdev = adapter->netdev; 2795 2796 /* configure backlink on ring */ 2797 ring->q_vector = q_vector; 2798 2799 /* update q_vector Rx values */ 2800 ixgbevf_add_ring(ring, &q_vector->rx); 2801 2802 /* apply Rx specific ring traits */ 2803 ring->count = adapter->rx_ring_count; 2804 ring->queue_index = rxr_idx; 2805 ring->reg_idx = rxr_idx; 2806 2807 /* assign ring to adapter */ 2808 adapter->rx_ring[rxr_idx] = ring; 2809 2810 /* update count and index */ 2811 rxr_count--; 2812 rxr_idx++; 2813 2814 /* push pointer to next ring */ 2815 ring++; 2816 } 2817 2818 return 0; 2819 } 2820 2821 /** 2822 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2823 * @adapter: board private structure to initialize 2824 * @v_idx: index of vector in adapter struct 2825 * 2826 * This function frees the memory allocated to the q_vector. In addition if 2827 * NAPI is enabled it will delete any references to the NAPI struct prior 2828 * to freeing the q_vector. 2829 **/ 2830 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2831 { 2832 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2833 struct ixgbevf_ring *ring; 2834 2835 ixgbevf_for_each_ring(ring, q_vector->tx) { 2836 if (ring_is_xdp(ring)) 2837 adapter->xdp_ring[ring->queue_index] = NULL; 2838 else 2839 adapter->tx_ring[ring->queue_index] = NULL; 2840 } 2841 2842 ixgbevf_for_each_ring(ring, q_vector->rx) 2843 adapter->rx_ring[ring->queue_index] = NULL; 2844 2845 adapter->q_vector[v_idx] = NULL; 2846 netif_napi_del(&q_vector->napi); 2847 2848 /* ixgbevf_get_stats() might access the rings on this vector, 2849 * we must wait a grace period before freeing it. 2850 */ 2851 kfree_rcu(q_vector, rcu); 2852 } 2853 2854 /** 2855 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2856 * @adapter: board private structure to initialize 2857 * 2858 * We allocate one q_vector per queue interrupt. If allocation fails we 2859 * return -ENOMEM. 2860 **/ 2861 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2862 { 2863 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2864 int rxr_remaining = adapter->num_rx_queues; 2865 int txr_remaining = adapter->num_tx_queues; 2866 int xdp_remaining = adapter->num_xdp_queues; 2867 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2868 int err; 2869 2870 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2871 for (; rxr_remaining; v_idx++, q_vectors--) { 2872 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2873 2874 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2875 0, 0, 0, 0, rqpv, rxr_idx); 2876 if (err) 2877 goto err_out; 2878 2879 /* update counts and index */ 2880 rxr_remaining -= rqpv; 2881 rxr_idx += rqpv; 2882 } 2883 } 2884 2885 for (; q_vectors; v_idx++, q_vectors--) { 2886 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2887 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2888 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2889 2890 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2891 tqpv, txr_idx, 2892 xqpv, xdp_idx, 2893 rqpv, rxr_idx); 2894 2895 if (err) 2896 goto err_out; 2897 2898 /* update counts and index */ 2899 rxr_remaining -= rqpv; 2900 rxr_idx += rqpv; 2901 txr_remaining -= tqpv; 2902 txr_idx += tqpv; 2903 xdp_remaining -= xqpv; 2904 xdp_idx += xqpv; 2905 } 2906 2907 return 0; 2908 2909 err_out: 2910 while (v_idx) { 2911 v_idx--; 2912 ixgbevf_free_q_vector(adapter, v_idx); 2913 } 2914 2915 return -ENOMEM; 2916 } 2917 2918 /** 2919 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2920 * @adapter: board private structure to initialize 2921 * 2922 * This function frees the memory allocated to the q_vectors. In addition if 2923 * NAPI is enabled it will delete any references to the NAPI struct prior 2924 * to freeing the q_vector. 2925 **/ 2926 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2927 { 2928 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2929 2930 while (q_vectors) { 2931 q_vectors--; 2932 ixgbevf_free_q_vector(adapter, q_vectors); 2933 } 2934 } 2935 2936 /** 2937 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2938 * @adapter: board private structure 2939 * 2940 **/ 2941 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2942 { 2943 if (!adapter->msix_entries) 2944 return; 2945 2946 pci_disable_msix(adapter->pdev); 2947 kfree(adapter->msix_entries); 2948 adapter->msix_entries = NULL; 2949 } 2950 2951 /** 2952 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2953 * @adapter: board private structure to initialize 2954 * 2955 **/ 2956 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2957 { 2958 int err; 2959 2960 /* Number of supported queues */ 2961 ixgbevf_set_num_queues(adapter); 2962 2963 err = ixgbevf_set_interrupt_capability(adapter); 2964 if (err) { 2965 hw_dbg(&adapter->hw, 2966 "Unable to setup interrupt capabilities\n"); 2967 goto err_set_interrupt; 2968 } 2969 2970 err = ixgbevf_alloc_q_vectors(adapter); 2971 if (err) { 2972 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2973 goto err_alloc_q_vectors; 2974 } 2975 2976 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2977 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2978 adapter->num_rx_queues, adapter->num_tx_queues, 2979 adapter->num_xdp_queues); 2980 2981 set_bit(__IXGBEVF_DOWN, &adapter->state); 2982 2983 return 0; 2984 err_alloc_q_vectors: 2985 ixgbevf_reset_interrupt_capability(adapter); 2986 err_set_interrupt: 2987 return err; 2988 } 2989 2990 /** 2991 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2992 * @adapter: board private structure to clear interrupt scheme on 2993 * 2994 * We go through and clear interrupt specific resources and reset the structure 2995 * to pre-load conditions 2996 **/ 2997 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2998 { 2999 adapter->num_tx_queues = 0; 3000 adapter->num_xdp_queues = 0; 3001 adapter->num_rx_queues = 0; 3002 3003 ixgbevf_free_q_vectors(adapter); 3004 ixgbevf_reset_interrupt_capability(adapter); 3005 } 3006 3007 /** 3008 * ixgbevf_sw_init - Initialize general software structures 3009 * @adapter: board private structure to initialize 3010 * 3011 * ixgbevf_sw_init initializes the Adapter private data structure. 3012 * Fields are initialized based on PCI device information and 3013 * OS network device settings (MTU size). 3014 **/ 3015 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 3016 { 3017 struct ixgbe_hw *hw = &adapter->hw; 3018 struct pci_dev *pdev = adapter->pdev; 3019 struct net_device *netdev = adapter->netdev; 3020 int err; 3021 3022 /* PCI config space info */ 3023 hw->vendor_id = pdev->vendor; 3024 hw->device_id = pdev->device; 3025 hw->revision_id = pdev->revision; 3026 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3027 hw->subsystem_device_id = pdev->subsystem_device; 3028 3029 hw->mbx.ops.init_params(hw); 3030 3031 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3032 err = ixgbevf_init_rss_key(adapter); 3033 if (err) 3034 goto out; 3035 } 3036 3037 /* assume legacy case in which PF would only give VF 2 queues */ 3038 hw->mac.max_tx_queues = 2; 3039 hw->mac.max_rx_queues = 2; 3040 3041 /* lock to protect mailbox accesses */ 3042 spin_lock_init(&adapter->mbx_lock); 3043 3044 err = hw->mac.ops.reset_hw(hw); 3045 if (err) { 3046 dev_info(&pdev->dev, 3047 "PF still in reset state. Is the PF interface up?\n"); 3048 } else { 3049 err = hw->mac.ops.init_hw(hw); 3050 if (err) { 3051 pr_err("init_shared_code failed: %d\n", err); 3052 goto out; 3053 } 3054 ixgbevf_negotiate_api(adapter); 3055 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3056 if (err) 3057 dev_info(&pdev->dev, "Error reading MAC address\n"); 3058 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3059 dev_info(&pdev->dev, 3060 "MAC address not assigned by administrator.\n"); 3061 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 3062 } 3063 3064 if (!is_valid_ether_addr(netdev->dev_addr)) { 3065 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3066 eth_hw_addr_random(netdev); 3067 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3068 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3069 } 3070 3071 /* Enable dynamic interrupt throttling rates */ 3072 adapter->rx_itr_setting = 1; 3073 adapter->tx_itr_setting = 1; 3074 3075 /* set default ring sizes */ 3076 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3077 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3078 3079 set_bit(__IXGBEVF_DOWN, &adapter->state); 3080 return 0; 3081 3082 out: 3083 return err; 3084 } 3085 3086 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3087 { \ 3088 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3089 if (current_counter < last_counter) \ 3090 counter += 0x100000000LL; \ 3091 last_counter = current_counter; \ 3092 counter &= 0xFFFFFFFF00000000LL; \ 3093 counter |= current_counter; \ 3094 } 3095 3096 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3097 { \ 3098 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3099 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3100 u64 current_counter = (current_counter_msb << 32) | \ 3101 current_counter_lsb; \ 3102 if (current_counter < last_counter) \ 3103 counter += 0x1000000000LL; \ 3104 last_counter = current_counter; \ 3105 counter &= 0xFFFFFFF000000000LL; \ 3106 counter |= current_counter; \ 3107 } 3108 /** 3109 * ixgbevf_update_stats - Update the board statistics counters. 3110 * @adapter: board private structure 3111 **/ 3112 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3113 { 3114 struct ixgbe_hw *hw = &adapter->hw; 3115 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3116 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3117 int i; 3118 3119 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3120 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3121 return; 3122 3123 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3124 adapter->stats.vfgprc); 3125 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3126 adapter->stats.vfgptc); 3127 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3128 adapter->stats.last_vfgorc, 3129 adapter->stats.vfgorc); 3130 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3131 adapter->stats.last_vfgotc, 3132 adapter->stats.vfgotc); 3133 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3134 adapter->stats.vfmprc); 3135 3136 for (i = 0; i < adapter->num_rx_queues; i++) { 3137 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3138 3139 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3140 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3141 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3142 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3143 } 3144 3145 adapter->hw_csum_rx_error = hw_csum_rx_error; 3146 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3147 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3148 adapter->alloc_rx_page = alloc_rx_page; 3149 } 3150 3151 /** 3152 * ixgbevf_service_timer - Timer Call-back 3153 * @t: pointer to timer_list struct 3154 **/ 3155 static void ixgbevf_service_timer(struct timer_list *t) 3156 { 3157 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3158 service_timer); 3159 3160 /* Reset the timer */ 3161 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3162 3163 ixgbevf_service_event_schedule(adapter); 3164 } 3165 3166 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3167 { 3168 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3169 return; 3170 3171 rtnl_lock(); 3172 /* If we're already down or resetting, just bail */ 3173 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3174 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3175 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3176 rtnl_unlock(); 3177 return; 3178 } 3179 3180 adapter->tx_timeout_count++; 3181 3182 ixgbevf_reinit_locked(adapter); 3183 rtnl_unlock(); 3184 } 3185 3186 /** 3187 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3188 * @adapter: pointer to the device adapter structure 3189 * 3190 * This function serves two purposes. First it strobes the interrupt lines 3191 * in order to make certain interrupts are occurring. Secondly it sets the 3192 * bits needed to check for TX hangs. As a result we should immediately 3193 * determine if a hang has occurred. 3194 **/ 3195 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3196 { 3197 struct ixgbe_hw *hw = &adapter->hw; 3198 u32 eics = 0; 3199 int i; 3200 3201 /* If we're down or resetting, just bail */ 3202 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3203 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3204 return; 3205 3206 /* Force detection of hung controller */ 3207 if (netif_carrier_ok(adapter->netdev)) { 3208 for (i = 0; i < adapter->num_tx_queues; i++) 3209 set_check_for_tx_hang(adapter->tx_ring[i]); 3210 for (i = 0; i < adapter->num_xdp_queues; i++) 3211 set_check_for_tx_hang(adapter->xdp_ring[i]); 3212 } 3213 3214 /* get one bit for every active Tx/Rx interrupt vector */ 3215 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3216 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3217 3218 if (qv->rx.ring || qv->tx.ring) 3219 eics |= BIT(i); 3220 } 3221 3222 /* Cause software interrupt to ensure rings are cleaned */ 3223 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3224 } 3225 3226 /** 3227 * ixgbevf_watchdog_update_link - update the link status 3228 * @adapter: pointer to the device adapter structure 3229 **/ 3230 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3231 { 3232 struct ixgbe_hw *hw = &adapter->hw; 3233 u32 link_speed = adapter->link_speed; 3234 bool link_up = adapter->link_up; 3235 s32 err; 3236 3237 spin_lock_bh(&adapter->mbx_lock); 3238 3239 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3240 3241 spin_unlock_bh(&adapter->mbx_lock); 3242 3243 /* if check for link returns error we will need to reset */ 3244 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3245 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3246 link_up = false; 3247 } 3248 3249 adapter->link_up = link_up; 3250 adapter->link_speed = link_speed; 3251 } 3252 3253 /** 3254 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3255 * print link up message 3256 * @adapter: pointer to the device adapter structure 3257 **/ 3258 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3259 { 3260 struct net_device *netdev = adapter->netdev; 3261 3262 /* only continue if link was previously down */ 3263 if (netif_carrier_ok(netdev)) 3264 return; 3265 3266 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3267 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3268 "10 Gbps" : 3269 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3270 "1 Gbps" : 3271 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3272 "100 Mbps" : 3273 "unknown speed"); 3274 3275 netif_carrier_on(netdev); 3276 } 3277 3278 /** 3279 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3280 * print link down message 3281 * @adapter: pointer to the adapter structure 3282 **/ 3283 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3284 { 3285 struct net_device *netdev = adapter->netdev; 3286 3287 adapter->link_speed = 0; 3288 3289 /* only continue if link was up previously */ 3290 if (!netif_carrier_ok(netdev)) 3291 return; 3292 3293 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3294 3295 netif_carrier_off(netdev); 3296 } 3297 3298 /** 3299 * ixgbevf_watchdog_subtask - worker thread to bring link up 3300 * @adapter: board private structure 3301 **/ 3302 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3303 { 3304 /* if interface is down do nothing */ 3305 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3306 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3307 return; 3308 3309 ixgbevf_watchdog_update_link(adapter); 3310 3311 if (adapter->link_up) 3312 ixgbevf_watchdog_link_is_up(adapter); 3313 else 3314 ixgbevf_watchdog_link_is_down(adapter); 3315 3316 ixgbevf_update_stats(adapter); 3317 } 3318 3319 /** 3320 * ixgbevf_service_task - manages and runs subtasks 3321 * @work: pointer to work_struct containing our data 3322 **/ 3323 static void ixgbevf_service_task(struct work_struct *work) 3324 { 3325 struct ixgbevf_adapter *adapter = container_of(work, 3326 struct ixgbevf_adapter, 3327 service_task); 3328 struct ixgbe_hw *hw = &adapter->hw; 3329 3330 if (IXGBE_REMOVED(hw->hw_addr)) { 3331 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3332 rtnl_lock(); 3333 ixgbevf_down(adapter); 3334 rtnl_unlock(); 3335 } 3336 return; 3337 } 3338 3339 ixgbevf_queue_reset_subtask(adapter); 3340 ixgbevf_reset_subtask(adapter); 3341 ixgbevf_watchdog_subtask(adapter); 3342 ixgbevf_check_hang_subtask(adapter); 3343 3344 ixgbevf_service_event_complete(adapter); 3345 } 3346 3347 /** 3348 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3349 * @tx_ring: Tx descriptor ring for a specific queue 3350 * 3351 * Free all transmit software resources 3352 **/ 3353 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3354 { 3355 ixgbevf_clean_tx_ring(tx_ring); 3356 3357 vfree(tx_ring->tx_buffer_info); 3358 tx_ring->tx_buffer_info = NULL; 3359 3360 /* if not set, then don't free */ 3361 if (!tx_ring->desc) 3362 return; 3363 3364 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3365 tx_ring->dma); 3366 3367 tx_ring->desc = NULL; 3368 } 3369 3370 /** 3371 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3372 * @adapter: board private structure 3373 * 3374 * Free all transmit software resources 3375 **/ 3376 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3377 { 3378 int i; 3379 3380 for (i = 0; i < adapter->num_tx_queues; i++) 3381 if (adapter->tx_ring[i]->desc) 3382 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3383 for (i = 0; i < adapter->num_xdp_queues; i++) 3384 if (adapter->xdp_ring[i]->desc) 3385 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3386 } 3387 3388 /** 3389 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3390 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3391 * 3392 * Return 0 on success, negative on failure 3393 **/ 3394 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3395 { 3396 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3397 int size; 3398 3399 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3400 tx_ring->tx_buffer_info = vmalloc(size); 3401 if (!tx_ring->tx_buffer_info) 3402 goto err; 3403 3404 u64_stats_init(&tx_ring->syncp); 3405 3406 /* round up to nearest 4K */ 3407 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3408 tx_ring->size = ALIGN(tx_ring->size, 4096); 3409 3410 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3411 &tx_ring->dma, GFP_KERNEL); 3412 if (!tx_ring->desc) 3413 goto err; 3414 3415 return 0; 3416 3417 err: 3418 vfree(tx_ring->tx_buffer_info); 3419 tx_ring->tx_buffer_info = NULL; 3420 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3421 return -ENOMEM; 3422 } 3423 3424 /** 3425 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3426 * @adapter: board private structure 3427 * 3428 * If this function returns with an error, then it's possible one or 3429 * more of the rings is populated (while the rest are not). It is the 3430 * callers duty to clean those orphaned rings. 3431 * 3432 * Return 0 on success, negative on failure 3433 **/ 3434 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3435 { 3436 int i, j = 0, err = 0; 3437 3438 for (i = 0; i < adapter->num_tx_queues; i++) { 3439 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3440 if (!err) 3441 continue; 3442 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3443 goto err_setup_tx; 3444 } 3445 3446 for (j = 0; j < adapter->num_xdp_queues; j++) { 3447 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3448 if (!err) 3449 continue; 3450 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3451 goto err_setup_tx; 3452 } 3453 3454 return 0; 3455 err_setup_tx: 3456 /* rewind the index freeing the rings as we go */ 3457 while (j--) 3458 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3459 while (i--) 3460 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3461 3462 return err; 3463 } 3464 3465 /** 3466 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3467 * @adapter: board private structure 3468 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3469 * 3470 * Returns 0 on success, negative on failure 3471 **/ 3472 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3473 struct ixgbevf_ring *rx_ring) 3474 { 3475 int size; 3476 3477 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3478 rx_ring->rx_buffer_info = vmalloc(size); 3479 if (!rx_ring->rx_buffer_info) 3480 goto err; 3481 3482 u64_stats_init(&rx_ring->syncp); 3483 3484 /* Round up to nearest 4K */ 3485 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3486 rx_ring->size = ALIGN(rx_ring->size, 4096); 3487 3488 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3489 &rx_ring->dma, GFP_KERNEL); 3490 3491 if (!rx_ring->desc) 3492 goto err; 3493 3494 /* XDP RX-queue info */ 3495 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3496 rx_ring->queue_index, 0) < 0) 3497 goto err; 3498 3499 rx_ring->xdp_prog = adapter->xdp_prog; 3500 3501 return 0; 3502 err: 3503 vfree(rx_ring->rx_buffer_info); 3504 rx_ring->rx_buffer_info = NULL; 3505 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3506 return -ENOMEM; 3507 } 3508 3509 /** 3510 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3511 * @adapter: board private structure 3512 * 3513 * If this function returns with an error, then it's possible one or 3514 * more of the rings is populated (while the rest are not). It is the 3515 * callers duty to clean those orphaned rings. 3516 * 3517 * Return 0 on success, negative on failure 3518 **/ 3519 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3520 { 3521 int i, err = 0; 3522 3523 for (i = 0; i < adapter->num_rx_queues; i++) { 3524 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3525 if (!err) 3526 continue; 3527 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3528 goto err_setup_rx; 3529 } 3530 3531 return 0; 3532 err_setup_rx: 3533 /* rewind the index freeing the rings as we go */ 3534 while (i--) 3535 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3536 return err; 3537 } 3538 3539 /** 3540 * ixgbevf_free_rx_resources - Free Rx Resources 3541 * @rx_ring: ring to clean the resources from 3542 * 3543 * Free all receive software resources 3544 **/ 3545 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3546 { 3547 ixgbevf_clean_rx_ring(rx_ring); 3548 3549 rx_ring->xdp_prog = NULL; 3550 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3551 vfree(rx_ring->rx_buffer_info); 3552 rx_ring->rx_buffer_info = NULL; 3553 3554 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3555 rx_ring->dma); 3556 3557 rx_ring->desc = NULL; 3558 } 3559 3560 /** 3561 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3562 * @adapter: board private structure 3563 * 3564 * Free all receive software resources 3565 **/ 3566 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3567 { 3568 int i; 3569 3570 for (i = 0; i < adapter->num_rx_queues; i++) 3571 if (adapter->rx_ring[i]->desc) 3572 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3573 } 3574 3575 /** 3576 * ixgbevf_open - Called when a network interface is made active 3577 * @netdev: network interface device structure 3578 * 3579 * Returns 0 on success, negative value on failure 3580 * 3581 * The open entry point is called when a network interface is made 3582 * active by the system (IFF_UP). At this point all resources needed 3583 * for transmit and receive operations are allocated, the interrupt 3584 * handler is registered with the OS, the watchdog timer is started, 3585 * and the stack is notified that the interface is ready. 3586 **/ 3587 int ixgbevf_open(struct net_device *netdev) 3588 { 3589 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3590 struct ixgbe_hw *hw = &adapter->hw; 3591 int err; 3592 3593 /* A previous failure to open the device because of a lack of 3594 * available MSIX vector resources may have reset the number 3595 * of msix vectors variable to zero. The only way to recover 3596 * is to unload/reload the driver and hope that the system has 3597 * been able to recover some MSIX vector resources. 3598 */ 3599 if (!adapter->num_msix_vectors) 3600 return -ENOMEM; 3601 3602 if (hw->adapter_stopped) { 3603 ixgbevf_reset(adapter); 3604 /* if adapter is still stopped then PF isn't up and 3605 * the VF can't start. 3606 */ 3607 if (hw->adapter_stopped) { 3608 err = IXGBE_ERR_MBX; 3609 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3610 goto err_setup_reset; 3611 } 3612 } 3613 3614 /* disallow open during test */ 3615 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3616 return -EBUSY; 3617 3618 netif_carrier_off(netdev); 3619 3620 /* allocate transmit descriptors */ 3621 err = ixgbevf_setup_all_tx_resources(adapter); 3622 if (err) 3623 goto err_setup_tx; 3624 3625 /* allocate receive descriptors */ 3626 err = ixgbevf_setup_all_rx_resources(adapter); 3627 if (err) 3628 goto err_setup_rx; 3629 3630 ixgbevf_configure(adapter); 3631 3632 err = ixgbevf_request_irq(adapter); 3633 if (err) 3634 goto err_req_irq; 3635 3636 /* Notify the stack of the actual queue counts. */ 3637 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3638 if (err) 3639 goto err_set_queues; 3640 3641 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3642 if (err) 3643 goto err_set_queues; 3644 3645 ixgbevf_up_complete(adapter); 3646 3647 return 0; 3648 3649 err_set_queues: 3650 ixgbevf_free_irq(adapter); 3651 err_req_irq: 3652 ixgbevf_free_all_rx_resources(adapter); 3653 err_setup_rx: 3654 ixgbevf_free_all_tx_resources(adapter); 3655 err_setup_tx: 3656 ixgbevf_reset(adapter); 3657 err_setup_reset: 3658 3659 return err; 3660 } 3661 3662 /** 3663 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3664 * @adapter: the private adapter struct 3665 * 3666 * This function should contain the necessary work common to both suspending 3667 * and closing of the device. 3668 */ 3669 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3670 { 3671 ixgbevf_down(adapter); 3672 ixgbevf_free_irq(adapter); 3673 ixgbevf_free_all_tx_resources(adapter); 3674 ixgbevf_free_all_rx_resources(adapter); 3675 } 3676 3677 /** 3678 * ixgbevf_close - Disables a network interface 3679 * @netdev: network interface device structure 3680 * 3681 * Returns 0, this is not allowed to fail 3682 * 3683 * The close entry point is called when an interface is de-activated 3684 * by the OS. The hardware is still under the drivers control, but 3685 * needs to be disabled. A global MAC reset is issued to stop the 3686 * hardware, and all transmit and receive resources are freed. 3687 **/ 3688 int ixgbevf_close(struct net_device *netdev) 3689 { 3690 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3691 3692 if (netif_device_present(netdev)) 3693 ixgbevf_close_suspend(adapter); 3694 3695 return 0; 3696 } 3697 3698 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3699 { 3700 struct net_device *dev = adapter->netdev; 3701 3702 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3703 &adapter->state)) 3704 return; 3705 3706 /* if interface is down do nothing */ 3707 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3708 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3709 return; 3710 3711 /* Hardware has to reinitialize queues and interrupts to 3712 * match packet buffer alignment. Unfortunately, the 3713 * hardware is not flexible enough to do this dynamically. 3714 */ 3715 rtnl_lock(); 3716 3717 if (netif_running(dev)) 3718 ixgbevf_close(dev); 3719 3720 ixgbevf_clear_interrupt_scheme(adapter); 3721 ixgbevf_init_interrupt_scheme(adapter); 3722 3723 if (netif_running(dev)) 3724 ixgbevf_open(dev); 3725 3726 rtnl_unlock(); 3727 } 3728 3729 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3730 u32 vlan_macip_lens, u32 fceof_saidx, 3731 u32 type_tucmd, u32 mss_l4len_idx) 3732 { 3733 struct ixgbe_adv_tx_context_desc *context_desc; 3734 u16 i = tx_ring->next_to_use; 3735 3736 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3737 3738 i++; 3739 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3740 3741 /* set bits to identify this as an advanced context descriptor */ 3742 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3743 3744 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3745 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); 3746 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3747 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3748 } 3749 3750 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3751 struct ixgbevf_tx_buffer *first, 3752 u8 *hdr_len, 3753 struct ixgbevf_ipsec_tx_data *itd) 3754 { 3755 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3756 struct sk_buff *skb = first->skb; 3757 union { 3758 struct iphdr *v4; 3759 struct ipv6hdr *v6; 3760 unsigned char *hdr; 3761 } ip; 3762 union { 3763 struct tcphdr *tcp; 3764 unsigned char *hdr; 3765 } l4; 3766 u32 paylen, l4_offset; 3767 u32 fceof_saidx = 0; 3768 int err; 3769 3770 if (skb->ip_summed != CHECKSUM_PARTIAL) 3771 return 0; 3772 3773 if (!skb_is_gso(skb)) 3774 return 0; 3775 3776 err = skb_cow_head(skb, 0); 3777 if (err < 0) 3778 return err; 3779 3780 if (eth_p_mpls(first->protocol)) 3781 ip.hdr = skb_inner_network_header(skb); 3782 else 3783 ip.hdr = skb_network_header(skb); 3784 l4.hdr = skb_checksum_start(skb); 3785 3786 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3787 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3788 3789 /* initialize outer IP header fields */ 3790 if (ip.v4->version == 4) { 3791 unsigned char *csum_start = skb_checksum_start(skb); 3792 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3793 int len = csum_start - trans_start; 3794 3795 /* IP header will have to cancel out any data that 3796 * is not a part of the outer IP header, so set to 3797 * a reverse csum if needed, else init check to 0. 3798 */ 3799 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? 3800 csum_fold(csum_partial(trans_start, 3801 len, 0)) : 0; 3802 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3803 3804 ip.v4->tot_len = 0; 3805 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3806 IXGBE_TX_FLAGS_CSUM | 3807 IXGBE_TX_FLAGS_IPV4; 3808 } else { 3809 ip.v6->payload_len = 0; 3810 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3811 IXGBE_TX_FLAGS_CSUM; 3812 } 3813 3814 /* determine offset of inner transport header */ 3815 l4_offset = l4.hdr - skb->data; 3816 3817 /* compute length of segmentation header */ 3818 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3819 3820 /* remove payload length from inner checksum */ 3821 paylen = skb->len - l4_offset; 3822 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3823 3824 /* update gso size and bytecount with header size */ 3825 first->gso_segs = skb_shinfo(skb)->gso_segs; 3826 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3827 3828 /* mss_l4len_id: use 1 as index for TSO */ 3829 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3830 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3831 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3832 3833 fceof_saidx |= itd->pfsa; 3834 type_tucmd |= itd->flags | itd->trailer_len; 3835 3836 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3837 vlan_macip_lens = l4.hdr - ip.hdr; 3838 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3839 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3840 3841 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 3842 mss_l4len_idx); 3843 3844 return 1; 3845 } 3846 3847 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) 3848 { 3849 unsigned int offset = 0; 3850 3851 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 3852 3853 return offset == skb_checksum_start_offset(skb); 3854 } 3855 3856 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3857 struct ixgbevf_tx_buffer *first, 3858 struct ixgbevf_ipsec_tx_data *itd) 3859 { 3860 struct sk_buff *skb = first->skb; 3861 u32 vlan_macip_lens = 0; 3862 u32 fceof_saidx = 0; 3863 u32 type_tucmd = 0; 3864 3865 if (skb->ip_summed != CHECKSUM_PARTIAL) 3866 goto no_csum; 3867 3868 switch (skb->csum_offset) { 3869 case offsetof(struct tcphdr, check): 3870 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3871 fallthrough; 3872 case offsetof(struct udphdr, check): 3873 break; 3874 case offsetof(struct sctphdr, checksum): 3875 /* validate that this is actually an SCTP request */ 3876 if (((first->protocol == htons(ETH_P_IP)) && 3877 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 3878 ((first->protocol == htons(ETH_P_IPV6)) && 3879 ixgbevf_ipv6_csum_is_sctp(skb))) { 3880 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3881 break; 3882 } 3883 fallthrough; 3884 default: 3885 skb_checksum_help(skb); 3886 goto no_csum; 3887 } 3888 3889 if (first->protocol == htons(ETH_P_IP)) 3890 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3891 3892 /* update TX checksum flag */ 3893 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3894 vlan_macip_lens = skb_checksum_start_offset(skb) - 3895 skb_network_offset(skb); 3896 no_csum: 3897 /* vlan_macip_lens: MACLEN, VLAN tag */ 3898 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3899 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3900 3901 fceof_saidx |= itd->pfsa; 3902 type_tucmd |= itd->flags | itd->trailer_len; 3903 3904 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3905 fceof_saidx, type_tucmd, 0); 3906 } 3907 3908 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3909 { 3910 /* set type for advanced descriptor with frame checksum insertion */ 3911 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3912 IXGBE_ADVTXD_DCMD_IFCS | 3913 IXGBE_ADVTXD_DCMD_DEXT); 3914 3915 /* set HW VLAN bit if VLAN is present */ 3916 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3917 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3918 3919 /* set segmentation enable bits for TSO/FSO */ 3920 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3921 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3922 3923 return cmd_type; 3924 } 3925 3926 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3927 u32 tx_flags, unsigned int paylen) 3928 { 3929 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3930 3931 /* enable L4 checksum for TSO and TX checksum offload */ 3932 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3933 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3934 3935 /* enble IPv4 checksum for TSO */ 3936 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3937 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3938 3939 /* enable IPsec */ 3940 if (tx_flags & IXGBE_TX_FLAGS_IPSEC) 3941 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); 3942 3943 /* use index 1 context for TSO/FSO/FCOE/IPSEC */ 3944 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) 3945 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3946 3947 /* Check Context must be set if Tx switch is enabled, which it 3948 * always is for case where virtual functions are running 3949 */ 3950 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3951 3952 tx_desc->read.olinfo_status = olinfo_status; 3953 } 3954 3955 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3956 struct ixgbevf_tx_buffer *first, 3957 const u8 hdr_len) 3958 { 3959 struct sk_buff *skb = first->skb; 3960 struct ixgbevf_tx_buffer *tx_buffer; 3961 union ixgbe_adv_tx_desc *tx_desc; 3962 skb_frag_t *frag; 3963 dma_addr_t dma; 3964 unsigned int data_len, size; 3965 u32 tx_flags = first->tx_flags; 3966 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3967 u16 i = tx_ring->next_to_use; 3968 3969 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3970 3971 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3972 3973 size = skb_headlen(skb); 3974 data_len = skb->data_len; 3975 3976 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3977 3978 tx_buffer = first; 3979 3980 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3981 if (dma_mapping_error(tx_ring->dev, dma)) 3982 goto dma_error; 3983 3984 /* record length, and DMA address */ 3985 dma_unmap_len_set(tx_buffer, len, size); 3986 dma_unmap_addr_set(tx_buffer, dma, dma); 3987 3988 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3989 3990 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3991 tx_desc->read.cmd_type_len = 3992 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3993 3994 i++; 3995 tx_desc++; 3996 if (i == tx_ring->count) { 3997 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3998 i = 0; 3999 } 4000 tx_desc->read.olinfo_status = 0; 4001 4002 dma += IXGBE_MAX_DATA_PER_TXD; 4003 size -= IXGBE_MAX_DATA_PER_TXD; 4004 4005 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4006 } 4007 4008 if (likely(!data_len)) 4009 break; 4010 4011 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 4012 4013 i++; 4014 tx_desc++; 4015 if (i == tx_ring->count) { 4016 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4017 i = 0; 4018 } 4019 tx_desc->read.olinfo_status = 0; 4020 4021 size = skb_frag_size(frag); 4022 data_len -= size; 4023 4024 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 4025 DMA_TO_DEVICE); 4026 4027 tx_buffer = &tx_ring->tx_buffer_info[i]; 4028 } 4029 4030 /* write last descriptor with RS and EOP bits */ 4031 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 4032 tx_desc->read.cmd_type_len = cmd_type; 4033 4034 /* set the timestamp */ 4035 first->time_stamp = jiffies; 4036 4037 skb_tx_timestamp(skb); 4038 4039 /* Force memory writes to complete before letting h/w know there 4040 * are new descriptors to fetch. (Only applicable for weak-ordered 4041 * memory model archs, such as IA-64). 4042 * 4043 * We also need this memory barrier (wmb) to make certain all of the 4044 * status bits have been updated before next_to_watch is written. 4045 */ 4046 wmb(); 4047 4048 /* set next_to_watch value indicating a packet is present */ 4049 first->next_to_watch = tx_desc; 4050 4051 i++; 4052 if (i == tx_ring->count) 4053 i = 0; 4054 4055 tx_ring->next_to_use = i; 4056 4057 /* notify HW of packet */ 4058 ixgbevf_write_tail(tx_ring, i); 4059 4060 return; 4061 dma_error: 4062 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4063 tx_buffer = &tx_ring->tx_buffer_info[i]; 4064 4065 /* clear dma mappings for failed tx_buffer_info map */ 4066 while (tx_buffer != first) { 4067 if (dma_unmap_len(tx_buffer, len)) 4068 dma_unmap_page(tx_ring->dev, 4069 dma_unmap_addr(tx_buffer, dma), 4070 dma_unmap_len(tx_buffer, len), 4071 DMA_TO_DEVICE); 4072 dma_unmap_len_set(tx_buffer, len, 0); 4073 4074 if (i-- == 0) 4075 i += tx_ring->count; 4076 tx_buffer = &tx_ring->tx_buffer_info[i]; 4077 } 4078 4079 if (dma_unmap_len(tx_buffer, len)) 4080 dma_unmap_single(tx_ring->dev, 4081 dma_unmap_addr(tx_buffer, dma), 4082 dma_unmap_len(tx_buffer, len), 4083 DMA_TO_DEVICE); 4084 dma_unmap_len_set(tx_buffer, len, 0); 4085 4086 dev_kfree_skb_any(tx_buffer->skb); 4087 tx_buffer->skb = NULL; 4088 4089 tx_ring->next_to_use = i; 4090 } 4091 4092 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4093 { 4094 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4095 /* Herbert's original patch had: 4096 * smp_mb__after_netif_stop_queue(); 4097 * but since that doesn't exist yet, just open code it. 4098 */ 4099 smp_mb(); 4100 4101 /* We need to check again in a case another CPU has just 4102 * made room available. 4103 */ 4104 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4105 return -EBUSY; 4106 4107 /* A reprieve! - use start_queue because it doesn't call schedule */ 4108 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4109 ++tx_ring->tx_stats.restart_queue; 4110 4111 return 0; 4112 } 4113 4114 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4115 { 4116 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4117 return 0; 4118 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4119 } 4120 4121 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4122 struct ixgbevf_ring *tx_ring) 4123 { 4124 struct ixgbevf_tx_buffer *first; 4125 int tso; 4126 u32 tx_flags = 0; 4127 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4128 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; 4129 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4130 unsigned short f; 4131 #endif 4132 u8 hdr_len = 0; 4133 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4134 4135 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4136 dev_kfree_skb_any(skb); 4137 return NETDEV_TX_OK; 4138 } 4139 4140 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4141 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4142 * + 2 desc gap to keep tail from touching head, 4143 * + 1 desc for context descriptor, 4144 * otherwise try next time 4145 */ 4146 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4147 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 4148 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 4149 4150 count += TXD_USE_COUNT(skb_frag_size(frag)); 4151 } 4152 #else 4153 count += skb_shinfo(skb)->nr_frags; 4154 #endif 4155 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4156 tx_ring->tx_stats.tx_busy++; 4157 return NETDEV_TX_BUSY; 4158 } 4159 4160 /* record the location of the first descriptor for this packet */ 4161 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4162 first->skb = skb; 4163 first->bytecount = skb->len; 4164 first->gso_segs = 1; 4165 4166 if (skb_vlan_tag_present(skb)) { 4167 tx_flags |= skb_vlan_tag_get(skb); 4168 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4169 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4170 } 4171 4172 /* record initial flags and protocol */ 4173 first->tx_flags = tx_flags; 4174 first->protocol = vlan_get_protocol(skb); 4175 4176 #ifdef CONFIG_IXGBEVF_IPSEC 4177 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) 4178 goto out_drop; 4179 #endif 4180 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); 4181 if (tso < 0) 4182 goto out_drop; 4183 else if (!tso) 4184 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); 4185 4186 ixgbevf_tx_map(tx_ring, first, hdr_len); 4187 4188 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4189 4190 return NETDEV_TX_OK; 4191 4192 out_drop: 4193 dev_kfree_skb_any(first->skb); 4194 first->skb = NULL; 4195 4196 return NETDEV_TX_OK; 4197 } 4198 4199 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4200 { 4201 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4202 struct ixgbevf_ring *tx_ring; 4203 4204 if (skb->len <= 0) { 4205 dev_kfree_skb_any(skb); 4206 return NETDEV_TX_OK; 4207 } 4208 4209 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4210 * in order to meet this minimum size requirement. 4211 */ 4212 if (skb->len < 17) { 4213 if (skb_padto(skb, 17)) 4214 return NETDEV_TX_OK; 4215 skb->len = 17; 4216 } 4217 4218 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4219 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4220 } 4221 4222 /** 4223 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4224 * @netdev: network interface device structure 4225 * @p: pointer to an address structure 4226 * 4227 * Returns 0 on success, negative on failure 4228 **/ 4229 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4230 { 4231 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4232 struct ixgbe_hw *hw = &adapter->hw; 4233 struct sockaddr *addr = p; 4234 int err; 4235 4236 if (!is_valid_ether_addr(addr->sa_data)) 4237 return -EADDRNOTAVAIL; 4238 4239 spin_lock_bh(&adapter->mbx_lock); 4240 4241 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4242 4243 spin_unlock_bh(&adapter->mbx_lock); 4244 4245 if (err) 4246 return -EPERM; 4247 4248 ether_addr_copy(hw->mac.addr, addr->sa_data); 4249 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4250 ether_addr_copy(netdev->dev_addr, addr->sa_data); 4251 4252 return 0; 4253 } 4254 4255 /** 4256 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4257 * @netdev: network interface device structure 4258 * @new_mtu: new value for maximum frame size 4259 * 4260 * Returns 0 on success, negative on failure 4261 **/ 4262 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4263 { 4264 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4265 struct ixgbe_hw *hw = &adapter->hw; 4266 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4267 int ret; 4268 4269 /* prevent MTU being changed to a size unsupported by XDP */ 4270 if (adapter->xdp_prog) { 4271 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4272 return -EPERM; 4273 } 4274 4275 spin_lock_bh(&adapter->mbx_lock); 4276 /* notify the PF of our intent to use this size of frame */ 4277 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4278 spin_unlock_bh(&adapter->mbx_lock); 4279 if (ret) 4280 return -EINVAL; 4281 4282 hw_dbg(hw, "changing MTU from %d to %d\n", 4283 netdev->mtu, new_mtu); 4284 4285 /* must set new MTU before calling down or up */ 4286 netdev->mtu = new_mtu; 4287 4288 if (netif_running(netdev)) 4289 ixgbevf_reinit_locked(adapter); 4290 4291 return 0; 4292 } 4293 4294 static int __maybe_unused ixgbevf_suspend(struct device *dev_d) 4295 { 4296 struct net_device *netdev = dev_get_drvdata(dev_d); 4297 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4298 4299 rtnl_lock(); 4300 netif_device_detach(netdev); 4301 4302 if (netif_running(netdev)) 4303 ixgbevf_close_suspend(adapter); 4304 4305 ixgbevf_clear_interrupt_scheme(adapter); 4306 rtnl_unlock(); 4307 4308 return 0; 4309 } 4310 4311 static int __maybe_unused ixgbevf_resume(struct device *dev_d) 4312 { 4313 struct pci_dev *pdev = to_pci_dev(dev_d); 4314 struct net_device *netdev = pci_get_drvdata(pdev); 4315 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4316 u32 err; 4317 4318 adapter->hw.hw_addr = adapter->io_addr; 4319 smp_mb__before_atomic(); 4320 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4321 pci_set_master(pdev); 4322 4323 ixgbevf_reset(adapter); 4324 4325 rtnl_lock(); 4326 err = ixgbevf_init_interrupt_scheme(adapter); 4327 if (!err && netif_running(netdev)) 4328 err = ixgbevf_open(netdev); 4329 rtnl_unlock(); 4330 if (err) 4331 return err; 4332 4333 netif_device_attach(netdev); 4334 4335 return err; 4336 } 4337 4338 static void ixgbevf_shutdown(struct pci_dev *pdev) 4339 { 4340 ixgbevf_suspend(&pdev->dev); 4341 } 4342 4343 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4344 const struct ixgbevf_ring *ring) 4345 { 4346 u64 bytes, packets; 4347 unsigned int start; 4348 4349 if (ring) { 4350 do { 4351 start = u64_stats_fetch_begin_irq(&ring->syncp); 4352 bytes = ring->stats.bytes; 4353 packets = ring->stats.packets; 4354 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4355 stats->tx_bytes += bytes; 4356 stats->tx_packets += packets; 4357 } 4358 } 4359 4360 static void ixgbevf_get_stats(struct net_device *netdev, 4361 struct rtnl_link_stats64 *stats) 4362 { 4363 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4364 unsigned int start; 4365 u64 bytes, packets; 4366 const struct ixgbevf_ring *ring; 4367 int i; 4368 4369 ixgbevf_update_stats(adapter); 4370 4371 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4372 4373 rcu_read_lock(); 4374 for (i = 0; i < adapter->num_rx_queues; i++) { 4375 ring = adapter->rx_ring[i]; 4376 do { 4377 start = u64_stats_fetch_begin_irq(&ring->syncp); 4378 bytes = ring->stats.bytes; 4379 packets = ring->stats.packets; 4380 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4381 stats->rx_bytes += bytes; 4382 stats->rx_packets += packets; 4383 } 4384 4385 for (i = 0; i < adapter->num_tx_queues; i++) { 4386 ring = adapter->tx_ring[i]; 4387 ixgbevf_get_tx_ring_stats(stats, ring); 4388 } 4389 4390 for (i = 0; i < adapter->num_xdp_queues; i++) { 4391 ring = adapter->xdp_ring[i]; 4392 ixgbevf_get_tx_ring_stats(stats, ring); 4393 } 4394 rcu_read_unlock(); 4395 } 4396 4397 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4398 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4399 4400 static netdev_features_t 4401 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4402 netdev_features_t features) 4403 { 4404 unsigned int network_hdr_len, mac_hdr_len; 4405 4406 /* Make certain the headers can be described by a context descriptor */ 4407 mac_hdr_len = skb_network_header(skb) - skb->data; 4408 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4409 return features & ~(NETIF_F_HW_CSUM | 4410 NETIF_F_SCTP_CRC | 4411 NETIF_F_HW_VLAN_CTAG_TX | 4412 NETIF_F_TSO | 4413 NETIF_F_TSO6); 4414 4415 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4416 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4417 return features & ~(NETIF_F_HW_CSUM | 4418 NETIF_F_SCTP_CRC | 4419 NETIF_F_TSO | 4420 NETIF_F_TSO6); 4421 4422 /* We can only support IPV4 TSO in tunnels if we can mangle the 4423 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4424 */ 4425 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4426 features &= ~NETIF_F_TSO; 4427 4428 return features; 4429 } 4430 4431 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4432 { 4433 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4434 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4435 struct bpf_prog *old_prog; 4436 4437 /* verify ixgbevf ring attributes are sufficient for XDP */ 4438 for (i = 0; i < adapter->num_rx_queues; i++) { 4439 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4440 4441 if (frame_size > ixgbevf_rx_bufsz(ring)) 4442 return -EINVAL; 4443 } 4444 4445 old_prog = xchg(&adapter->xdp_prog, prog); 4446 4447 /* If transitioning XDP modes reconfigure rings */ 4448 if (!!prog != !!old_prog) { 4449 /* Hardware has to reinitialize queues and interrupts to 4450 * match packet buffer alignment. Unfortunately, the 4451 * hardware is not flexible enough to do this dynamically. 4452 */ 4453 if (netif_running(dev)) 4454 ixgbevf_close(dev); 4455 4456 ixgbevf_clear_interrupt_scheme(adapter); 4457 ixgbevf_init_interrupt_scheme(adapter); 4458 4459 if (netif_running(dev)) 4460 ixgbevf_open(dev); 4461 } else { 4462 for (i = 0; i < adapter->num_rx_queues; i++) 4463 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4464 } 4465 4466 if (old_prog) 4467 bpf_prog_put(old_prog); 4468 4469 return 0; 4470 } 4471 4472 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4473 { 4474 switch (xdp->command) { 4475 case XDP_SETUP_PROG: 4476 return ixgbevf_xdp_setup(dev, xdp->prog); 4477 default: 4478 return -EINVAL; 4479 } 4480 } 4481 4482 static const struct net_device_ops ixgbevf_netdev_ops = { 4483 .ndo_open = ixgbevf_open, 4484 .ndo_stop = ixgbevf_close, 4485 .ndo_start_xmit = ixgbevf_xmit_frame, 4486 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4487 .ndo_get_stats64 = ixgbevf_get_stats, 4488 .ndo_validate_addr = eth_validate_addr, 4489 .ndo_set_mac_address = ixgbevf_set_mac, 4490 .ndo_change_mtu = ixgbevf_change_mtu, 4491 .ndo_tx_timeout = ixgbevf_tx_timeout, 4492 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4493 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4494 .ndo_features_check = ixgbevf_features_check, 4495 .ndo_bpf = ixgbevf_xdp, 4496 }; 4497 4498 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4499 { 4500 dev->netdev_ops = &ixgbevf_netdev_ops; 4501 ixgbevf_set_ethtool_ops(dev); 4502 dev->watchdog_timeo = 5 * HZ; 4503 } 4504 4505 /** 4506 * ixgbevf_probe - Device Initialization Routine 4507 * @pdev: PCI device information struct 4508 * @ent: entry in ixgbevf_pci_tbl 4509 * 4510 * Returns 0 on success, negative on failure 4511 * 4512 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4513 * The OS initialization, configuring of the adapter private structure, 4514 * and a hardware reset occur. 4515 **/ 4516 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4517 { 4518 struct net_device *netdev; 4519 struct ixgbevf_adapter *adapter = NULL; 4520 struct ixgbe_hw *hw = NULL; 4521 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4522 int err, pci_using_dac; 4523 bool disable_dev = false; 4524 4525 err = pci_enable_device(pdev); 4526 if (err) 4527 return err; 4528 4529 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 4530 pci_using_dac = 1; 4531 } else { 4532 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4533 if (err) { 4534 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4535 goto err_dma; 4536 } 4537 pci_using_dac = 0; 4538 } 4539 4540 err = pci_request_regions(pdev, ixgbevf_driver_name); 4541 if (err) { 4542 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4543 goto err_pci_reg; 4544 } 4545 4546 pci_set_master(pdev); 4547 4548 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4549 MAX_TX_QUEUES); 4550 if (!netdev) { 4551 err = -ENOMEM; 4552 goto err_alloc_etherdev; 4553 } 4554 4555 SET_NETDEV_DEV(netdev, &pdev->dev); 4556 4557 adapter = netdev_priv(netdev); 4558 4559 adapter->netdev = netdev; 4560 adapter->pdev = pdev; 4561 hw = &adapter->hw; 4562 hw->back = adapter; 4563 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4564 4565 /* call save state here in standalone driver because it relies on 4566 * adapter struct to exist, and needs to call netdev_priv 4567 */ 4568 pci_save_state(pdev); 4569 4570 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4571 pci_resource_len(pdev, 0)); 4572 adapter->io_addr = hw->hw_addr; 4573 if (!hw->hw_addr) { 4574 err = -EIO; 4575 goto err_ioremap; 4576 } 4577 4578 ixgbevf_assign_netdev_ops(netdev); 4579 4580 /* Setup HW API */ 4581 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4582 hw->mac.type = ii->mac; 4583 4584 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4585 sizeof(struct ixgbe_mbx_operations)); 4586 4587 /* setup the private structure */ 4588 err = ixgbevf_sw_init(adapter); 4589 if (err) 4590 goto err_sw_init; 4591 4592 /* The HW MAC address was set and/or determined in sw_init */ 4593 if (!is_valid_ether_addr(netdev->dev_addr)) { 4594 pr_err("invalid MAC address\n"); 4595 err = -EIO; 4596 goto err_sw_init; 4597 } 4598 4599 netdev->hw_features = NETIF_F_SG | 4600 NETIF_F_TSO | 4601 NETIF_F_TSO6 | 4602 NETIF_F_RXCSUM | 4603 NETIF_F_HW_CSUM | 4604 NETIF_F_SCTP_CRC; 4605 4606 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4607 NETIF_F_GSO_GRE_CSUM | \ 4608 NETIF_F_GSO_IPXIP4 | \ 4609 NETIF_F_GSO_IPXIP6 | \ 4610 NETIF_F_GSO_UDP_TUNNEL | \ 4611 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4612 4613 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4614 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4615 IXGBEVF_GSO_PARTIAL_FEATURES; 4616 4617 netdev->features = netdev->hw_features; 4618 4619 if (pci_using_dac) 4620 netdev->features |= NETIF_F_HIGHDMA; 4621 4622 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4623 netdev->mpls_features |= NETIF_F_SG | 4624 NETIF_F_TSO | 4625 NETIF_F_TSO6 | 4626 NETIF_F_HW_CSUM; 4627 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4628 netdev->hw_enc_features |= netdev->vlan_features; 4629 4630 /* set this bit last since it cannot be part of vlan_features */ 4631 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4632 NETIF_F_HW_VLAN_CTAG_RX | 4633 NETIF_F_HW_VLAN_CTAG_TX; 4634 4635 netdev->priv_flags |= IFF_UNICAST_FLT; 4636 4637 /* MTU range: 68 - 1504 or 9710 */ 4638 netdev->min_mtu = ETH_MIN_MTU; 4639 switch (adapter->hw.api_version) { 4640 case ixgbe_mbox_api_11: 4641 case ixgbe_mbox_api_12: 4642 case ixgbe_mbox_api_13: 4643 case ixgbe_mbox_api_14: 4644 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4645 (ETH_HLEN + ETH_FCS_LEN); 4646 break; 4647 default: 4648 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4649 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4650 (ETH_HLEN + ETH_FCS_LEN); 4651 else 4652 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4653 break; 4654 } 4655 4656 if (IXGBE_REMOVED(hw->hw_addr)) { 4657 err = -EIO; 4658 goto err_sw_init; 4659 } 4660 4661 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4662 4663 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4664 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4665 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4666 4667 err = ixgbevf_init_interrupt_scheme(adapter); 4668 if (err) 4669 goto err_sw_init; 4670 4671 strcpy(netdev->name, "eth%d"); 4672 4673 err = register_netdev(netdev); 4674 if (err) 4675 goto err_register; 4676 4677 pci_set_drvdata(pdev, netdev); 4678 netif_carrier_off(netdev); 4679 ixgbevf_init_ipsec_offload(adapter); 4680 4681 ixgbevf_init_last_counter_stats(adapter); 4682 4683 /* print the VF info */ 4684 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4685 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4686 4687 switch (hw->mac.type) { 4688 case ixgbe_mac_X550_vf: 4689 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4690 break; 4691 case ixgbe_mac_X540_vf: 4692 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4693 break; 4694 case ixgbe_mac_82599_vf: 4695 default: 4696 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4697 break; 4698 } 4699 4700 return 0; 4701 4702 err_register: 4703 ixgbevf_clear_interrupt_scheme(adapter); 4704 err_sw_init: 4705 ixgbevf_reset_interrupt_capability(adapter); 4706 iounmap(adapter->io_addr); 4707 kfree(adapter->rss_key); 4708 err_ioremap: 4709 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4710 free_netdev(netdev); 4711 err_alloc_etherdev: 4712 pci_release_regions(pdev); 4713 err_pci_reg: 4714 err_dma: 4715 if (!adapter || disable_dev) 4716 pci_disable_device(pdev); 4717 return err; 4718 } 4719 4720 /** 4721 * ixgbevf_remove - Device Removal Routine 4722 * @pdev: PCI device information struct 4723 * 4724 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4725 * that it should release a PCI device. The could be caused by a 4726 * Hot-Plug event, or because the driver is going to be removed from 4727 * memory. 4728 **/ 4729 static void ixgbevf_remove(struct pci_dev *pdev) 4730 { 4731 struct net_device *netdev = pci_get_drvdata(pdev); 4732 struct ixgbevf_adapter *adapter; 4733 bool disable_dev; 4734 4735 if (!netdev) 4736 return; 4737 4738 adapter = netdev_priv(netdev); 4739 4740 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4741 cancel_work_sync(&adapter->service_task); 4742 4743 if (netdev->reg_state == NETREG_REGISTERED) 4744 unregister_netdev(netdev); 4745 4746 ixgbevf_stop_ipsec_offload(adapter); 4747 ixgbevf_clear_interrupt_scheme(adapter); 4748 ixgbevf_reset_interrupt_capability(adapter); 4749 4750 iounmap(adapter->io_addr); 4751 pci_release_regions(pdev); 4752 4753 hw_dbg(&adapter->hw, "Remove complete\n"); 4754 4755 kfree(adapter->rss_key); 4756 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4757 free_netdev(netdev); 4758 4759 if (disable_dev) 4760 pci_disable_device(pdev); 4761 } 4762 4763 /** 4764 * ixgbevf_io_error_detected - called when PCI error is detected 4765 * @pdev: Pointer to PCI device 4766 * @state: The current pci connection state 4767 * 4768 * This function is called after a PCI bus error affecting 4769 * this device has been detected. 4770 **/ 4771 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4772 pci_channel_state_t state) 4773 { 4774 struct net_device *netdev = pci_get_drvdata(pdev); 4775 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4776 4777 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4778 return PCI_ERS_RESULT_DISCONNECT; 4779 4780 rtnl_lock(); 4781 netif_device_detach(netdev); 4782 4783 if (netif_running(netdev)) 4784 ixgbevf_close_suspend(adapter); 4785 4786 if (state == pci_channel_io_perm_failure) { 4787 rtnl_unlock(); 4788 return PCI_ERS_RESULT_DISCONNECT; 4789 } 4790 4791 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4792 pci_disable_device(pdev); 4793 rtnl_unlock(); 4794 4795 /* Request a slot slot reset. */ 4796 return PCI_ERS_RESULT_NEED_RESET; 4797 } 4798 4799 /** 4800 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4801 * @pdev: Pointer to PCI device 4802 * 4803 * Restart the card from scratch, as if from a cold-boot. Implementation 4804 * resembles the first-half of the ixgbevf_resume routine. 4805 **/ 4806 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4807 { 4808 struct net_device *netdev = pci_get_drvdata(pdev); 4809 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4810 4811 if (pci_enable_device_mem(pdev)) { 4812 dev_err(&pdev->dev, 4813 "Cannot re-enable PCI device after reset.\n"); 4814 return PCI_ERS_RESULT_DISCONNECT; 4815 } 4816 4817 adapter->hw.hw_addr = adapter->io_addr; 4818 smp_mb__before_atomic(); 4819 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4820 pci_set_master(pdev); 4821 4822 ixgbevf_reset(adapter); 4823 4824 return PCI_ERS_RESULT_RECOVERED; 4825 } 4826 4827 /** 4828 * ixgbevf_io_resume - called when traffic can start flowing again. 4829 * @pdev: Pointer to PCI device 4830 * 4831 * This callback is called when the error recovery driver tells us that 4832 * its OK to resume normal operation. Implementation resembles the 4833 * second-half of the ixgbevf_resume routine. 4834 **/ 4835 static void ixgbevf_io_resume(struct pci_dev *pdev) 4836 { 4837 struct net_device *netdev = pci_get_drvdata(pdev); 4838 4839 rtnl_lock(); 4840 if (netif_running(netdev)) 4841 ixgbevf_open(netdev); 4842 4843 netif_device_attach(netdev); 4844 rtnl_unlock(); 4845 } 4846 4847 /* PCI Error Recovery (ERS) */ 4848 static const struct pci_error_handlers ixgbevf_err_handler = { 4849 .error_detected = ixgbevf_io_error_detected, 4850 .slot_reset = ixgbevf_io_slot_reset, 4851 .resume = ixgbevf_io_resume, 4852 }; 4853 4854 static SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume); 4855 4856 static struct pci_driver ixgbevf_driver = { 4857 .name = ixgbevf_driver_name, 4858 .id_table = ixgbevf_pci_tbl, 4859 .probe = ixgbevf_probe, 4860 .remove = ixgbevf_remove, 4861 4862 /* Power Management Hooks */ 4863 .driver.pm = &ixgbevf_pm_ops, 4864 4865 .shutdown = ixgbevf_shutdown, 4866 .err_handler = &ixgbevf_err_handler 4867 }; 4868 4869 /** 4870 * ixgbevf_init_module - Driver Registration Routine 4871 * 4872 * ixgbevf_init_module is the first routine called when the driver is 4873 * loaded. All it does is register with the PCI subsystem. 4874 **/ 4875 static int __init ixgbevf_init_module(void) 4876 { 4877 pr_info("%s\n", ixgbevf_driver_string); 4878 pr_info("%s\n", ixgbevf_copyright); 4879 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4880 if (!ixgbevf_wq) { 4881 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4882 return -ENOMEM; 4883 } 4884 4885 return pci_register_driver(&ixgbevf_driver); 4886 } 4887 4888 module_init(ixgbevf_init_module); 4889 4890 /** 4891 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4892 * 4893 * ixgbevf_exit_module is called just before the driver is removed 4894 * from memory. 4895 **/ 4896 static void __exit ixgbevf_exit_module(void) 4897 { 4898 pci_unregister_driver(&ixgbevf_driver); 4899 if (ixgbevf_wq) { 4900 destroy_workqueue(ixgbevf_wq); 4901 ixgbevf_wq = NULL; 4902 } 4903 } 4904 4905 #ifdef DEBUG 4906 /** 4907 * ixgbevf_get_hw_dev_name - return device name string 4908 * used by hardware layer to print debugging information 4909 * @hw: pointer to private hardware struct 4910 **/ 4911 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4912 { 4913 struct ixgbevf_adapter *adapter = hw->back; 4914 4915 return adapter->netdev->name; 4916 } 4917 4918 #endif 4919 module_exit(ixgbevf_exit_module); 4920 4921 /* ixgbevf_main.c */ 4922