1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 #include <net/xfrm.h> 34 35 #include "ixgbevf.h" 36 37 const char ixgbevf_driver_name[] = "ixgbevf"; 38 static const char ixgbevf_driver_string[] = 39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 40 41 static char ixgbevf_copyright[] = 42 "Copyright (c) 2009 - 2018 Intel Corporation."; 43 44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 45 [board_82599_vf] = &ixgbevf_82599_vf_info, 46 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 47 [board_X540_vf] = &ixgbevf_X540_vf_info, 48 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 49 [board_X550_vf] = &ixgbevf_X550_vf_info, 50 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 51 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 52 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 53 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 54 }; 55 56 /* ixgbevf_pci_tbl - PCI Device ID Table 57 * 58 * Wildcard entries (PCI_ANY_ID) should come last 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id ixgbevf_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 66 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 74 /* required last entry */ 75 {0, } 76 }; 77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 78 79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 80 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 81 MODULE_LICENSE("GPL v2"); 82 83 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 84 static int debug = -1; 85 module_param(debug, int, 0); 86 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 87 88 static struct workqueue_struct *ixgbevf_wq; 89 90 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 91 { 92 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 93 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 94 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 95 queue_work(ixgbevf_wq, &adapter->service_task); 96 } 97 98 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 99 { 100 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 101 102 /* flush memory to make sure state is correct before next watchdog */ 103 smp_mb__before_atomic(); 104 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 105 } 106 107 /* forward decls */ 108 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 109 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 110 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 111 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 112 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 113 struct ixgbevf_rx_buffer *old_buff); 114 115 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 116 { 117 struct ixgbevf_adapter *adapter = hw->back; 118 119 if (!hw->hw_addr) 120 return; 121 hw->hw_addr = NULL; 122 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 123 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 124 ixgbevf_service_event_schedule(adapter); 125 } 126 127 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 128 { 129 u32 value; 130 131 /* The following check not only optimizes a bit by not 132 * performing a read on the status register when the 133 * register just read was a status register read that 134 * returned IXGBE_FAILED_READ_REG. It also blocks any 135 * potential recursion. 136 */ 137 if (reg == IXGBE_VFSTATUS) { 138 ixgbevf_remove_adapter(hw); 139 return; 140 } 141 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 142 if (value == IXGBE_FAILED_READ_REG) 143 ixgbevf_remove_adapter(hw); 144 } 145 146 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 147 { 148 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 149 u32 value; 150 151 if (IXGBE_REMOVED(reg_addr)) 152 return IXGBE_FAILED_READ_REG; 153 value = readl(reg_addr + reg); 154 if (unlikely(value == IXGBE_FAILED_READ_REG)) 155 ixgbevf_check_remove(hw, reg); 156 return value; 157 } 158 159 /** 160 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 161 * @adapter: pointer to adapter struct 162 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 163 * @queue: queue to map the corresponding interrupt to 164 * @msix_vector: the vector to map to the corresponding queue 165 **/ 166 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 167 u8 queue, u8 msix_vector) 168 { 169 u32 ivar, index; 170 struct ixgbe_hw *hw = &adapter->hw; 171 172 if (direction == -1) { 173 /* other causes */ 174 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 175 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 176 ivar &= ~0xFF; 177 ivar |= msix_vector; 178 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 179 } else { 180 /* Tx or Rx causes */ 181 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 182 index = ((16 * (queue & 1)) + (8 * direction)); 183 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 184 ivar &= ~(0xFF << index); 185 ivar |= (msix_vector << index); 186 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 187 } 188 } 189 190 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 191 { 192 return ring->stats.packets; 193 } 194 195 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 196 { 197 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 198 struct ixgbe_hw *hw = &adapter->hw; 199 200 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 201 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 202 203 if (head != tail) 204 return (head < tail) ? 205 tail - head : (tail + ring->count - head); 206 207 return 0; 208 } 209 210 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 211 { 212 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 213 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 214 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 215 216 clear_check_for_tx_hang(tx_ring); 217 218 /* Check for a hung queue, but be thorough. This verifies 219 * that a transmit has been completed since the previous 220 * check AND there is at least one packet pending. The 221 * ARMED bit is set to indicate a potential hang. 222 */ 223 if ((tx_done_old == tx_done) && tx_pending) { 224 /* make sure it is true for two checks in a row */ 225 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 226 &tx_ring->state); 227 } 228 /* reset the countdown */ 229 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 230 231 /* update completed stats and continue */ 232 tx_ring->tx_stats.tx_done_old = tx_done; 233 234 return false; 235 } 236 237 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 238 { 239 /* Do the reset outside of interrupt context */ 240 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 241 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 242 ixgbevf_service_event_schedule(adapter); 243 } 244 } 245 246 /** 247 * ixgbevf_tx_timeout - Respond to a Tx Hang 248 * @netdev: network interface device structure 249 * @txqueue: transmit queue hanging (unused) 250 **/ 251 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 252 { 253 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 254 255 ixgbevf_tx_timeout_reset(adapter); 256 } 257 258 /** 259 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 260 * @q_vector: board private structure 261 * @tx_ring: tx ring to clean 262 * @napi_budget: Used to determine if we are in netpoll 263 **/ 264 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 265 struct ixgbevf_ring *tx_ring, int napi_budget) 266 { 267 struct ixgbevf_adapter *adapter = q_vector->adapter; 268 struct ixgbevf_tx_buffer *tx_buffer; 269 union ixgbe_adv_tx_desc *tx_desc; 270 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; 271 unsigned int budget = tx_ring->count / 2; 272 unsigned int i = tx_ring->next_to_clean; 273 274 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 275 return true; 276 277 tx_buffer = &tx_ring->tx_buffer_info[i]; 278 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 279 i -= tx_ring->count; 280 281 do { 282 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 283 284 /* if next_to_watch is not set then there is no work pending */ 285 if (!eop_desc) 286 break; 287 288 /* prevent any other reads prior to eop_desc */ 289 smp_rmb(); 290 291 /* if DD is not set pending work has not been completed */ 292 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 293 break; 294 295 /* clear next_to_watch to prevent false hangs */ 296 tx_buffer->next_to_watch = NULL; 297 298 /* update the statistics for this packet */ 299 total_bytes += tx_buffer->bytecount; 300 total_packets += tx_buffer->gso_segs; 301 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) 302 total_ipsec++; 303 304 /* free the skb */ 305 if (ring_is_xdp(tx_ring)) 306 page_frag_free(tx_buffer->data); 307 else 308 napi_consume_skb(tx_buffer->skb, napi_budget); 309 310 /* unmap skb header data */ 311 dma_unmap_single(tx_ring->dev, 312 dma_unmap_addr(tx_buffer, dma), 313 dma_unmap_len(tx_buffer, len), 314 DMA_TO_DEVICE); 315 316 /* clear tx_buffer data */ 317 dma_unmap_len_set(tx_buffer, len, 0); 318 319 /* unmap remaining buffers */ 320 while (tx_desc != eop_desc) { 321 tx_buffer++; 322 tx_desc++; 323 i++; 324 if (unlikely(!i)) { 325 i -= tx_ring->count; 326 tx_buffer = tx_ring->tx_buffer_info; 327 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 328 } 329 330 /* unmap any remaining paged data */ 331 if (dma_unmap_len(tx_buffer, len)) { 332 dma_unmap_page(tx_ring->dev, 333 dma_unmap_addr(tx_buffer, dma), 334 dma_unmap_len(tx_buffer, len), 335 DMA_TO_DEVICE); 336 dma_unmap_len_set(tx_buffer, len, 0); 337 } 338 } 339 340 /* move us one more past the eop_desc for start of next pkt */ 341 tx_buffer++; 342 tx_desc++; 343 i++; 344 if (unlikely(!i)) { 345 i -= tx_ring->count; 346 tx_buffer = tx_ring->tx_buffer_info; 347 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 348 } 349 350 /* issue prefetch for next Tx descriptor */ 351 prefetch(tx_desc); 352 353 /* update budget accounting */ 354 budget--; 355 } while (likely(budget)); 356 357 i += tx_ring->count; 358 tx_ring->next_to_clean = i; 359 u64_stats_update_begin(&tx_ring->syncp); 360 tx_ring->stats.bytes += total_bytes; 361 tx_ring->stats.packets += total_packets; 362 u64_stats_update_end(&tx_ring->syncp); 363 q_vector->tx.total_bytes += total_bytes; 364 q_vector->tx.total_packets += total_packets; 365 adapter->tx_ipsec += total_ipsec; 366 367 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 368 struct ixgbe_hw *hw = &adapter->hw; 369 union ixgbe_adv_tx_desc *eop_desc; 370 371 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 372 373 pr_err("Detected Tx Unit Hang%s\n" 374 " Tx Queue <%d>\n" 375 " TDH, TDT <%x>, <%x>\n" 376 " next_to_use <%x>\n" 377 " next_to_clean <%x>\n" 378 "tx_buffer_info[next_to_clean]\n" 379 " next_to_watch <%p>\n" 380 " eop_desc->wb.status <%x>\n" 381 " time_stamp <%lx>\n" 382 " jiffies <%lx>\n", 383 ring_is_xdp(tx_ring) ? " XDP" : "", 384 tx_ring->queue_index, 385 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 386 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 387 tx_ring->next_to_use, i, 388 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 389 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 390 391 if (!ring_is_xdp(tx_ring)) 392 netif_stop_subqueue(tx_ring->netdev, 393 tx_ring->queue_index); 394 395 /* schedule immediate reset if we believe we hung */ 396 ixgbevf_tx_timeout_reset(adapter); 397 398 return true; 399 } 400 401 if (ring_is_xdp(tx_ring)) 402 return !!budget; 403 404 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 405 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 406 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 407 /* Make sure that anybody stopping the queue after this 408 * sees the new next_to_clean. 409 */ 410 smp_mb(); 411 412 if (__netif_subqueue_stopped(tx_ring->netdev, 413 tx_ring->queue_index) && 414 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 415 netif_wake_subqueue(tx_ring->netdev, 416 tx_ring->queue_index); 417 ++tx_ring->tx_stats.restart_queue; 418 } 419 } 420 421 return !!budget; 422 } 423 424 /** 425 * ixgbevf_rx_skb - Helper function to determine proper Rx method 426 * @q_vector: structure containing interrupt and ring information 427 * @skb: packet to send up 428 **/ 429 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 430 struct sk_buff *skb) 431 { 432 napi_gro_receive(&q_vector->napi, skb); 433 } 434 435 #define IXGBE_RSS_L4_TYPES_MASK \ 436 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 437 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 438 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 439 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 440 441 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 442 union ixgbe_adv_rx_desc *rx_desc, 443 struct sk_buff *skb) 444 { 445 u16 rss_type; 446 447 if (!(ring->netdev->features & NETIF_F_RXHASH)) 448 return; 449 450 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 451 IXGBE_RXDADV_RSSTYPE_MASK; 452 453 if (!rss_type) 454 return; 455 456 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 457 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 458 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 459 } 460 461 /** 462 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 463 * @ring: structure containig ring specific data 464 * @rx_desc: current Rx descriptor being processed 465 * @skb: skb currently being received and modified 466 **/ 467 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 468 union ixgbe_adv_rx_desc *rx_desc, 469 struct sk_buff *skb) 470 { 471 skb_checksum_none_assert(skb); 472 473 /* Rx csum disabled */ 474 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 475 return; 476 477 /* if IP and error */ 478 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 479 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 480 ring->rx_stats.csum_err++; 481 return; 482 } 483 484 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 485 return; 486 487 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 488 ring->rx_stats.csum_err++; 489 return; 490 } 491 492 /* It must be a TCP or UDP packet with a valid checksum */ 493 skb->ip_summed = CHECKSUM_UNNECESSARY; 494 } 495 496 /** 497 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 498 * @rx_ring: rx descriptor ring packet is being transacted on 499 * @rx_desc: pointer to the EOP Rx descriptor 500 * @skb: pointer to current skb being populated 501 * 502 * This function checks the ring, descriptor, and packet information in 503 * order to populate the checksum, VLAN, protocol, and other fields within 504 * the skb. 505 **/ 506 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 507 union ixgbe_adv_rx_desc *rx_desc, 508 struct sk_buff *skb) 509 { 510 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 511 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 512 513 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 514 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 515 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 516 517 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 518 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 519 } 520 521 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) 522 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); 523 524 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 525 } 526 527 static 528 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 529 const unsigned int size) 530 { 531 struct ixgbevf_rx_buffer *rx_buffer; 532 533 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 534 prefetchw(rx_buffer->page); 535 536 /* we are reusing so sync this buffer for CPU use */ 537 dma_sync_single_range_for_cpu(rx_ring->dev, 538 rx_buffer->dma, 539 rx_buffer->page_offset, 540 size, 541 DMA_FROM_DEVICE); 542 543 rx_buffer->pagecnt_bias--; 544 545 return rx_buffer; 546 } 547 548 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 549 struct ixgbevf_rx_buffer *rx_buffer, 550 struct sk_buff *skb) 551 { 552 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 553 /* hand second half of page back to the ring */ 554 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 555 } else { 556 if (IS_ERR(skb)) 557 /* We are not reusing the buffer so unmap it and free 558 * any references we are holding to it 559 */ 560 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 561 ixgbevf_rx_pg_size(rx_ring), 562 DMA_FROM_DEVICE, 563 IXGBEVF_RX_DMA_ATTR); 564 __page_frag_cache_drain(rx_buffer->page, 565 rx_buffer->pagecnt_bias); 566 } 567 568 /* clear contents of rx_buffer */ 569 rx_buffer->page = NULL; 570 } 571 572 /** 573 * ixgbevf_is_non_eop - process handling of non-EOP buffers 574 * @rx_ring: Rx ring being processed 575 * @rx_desc: Rx descriptor for current buffer 576 * 577 * This function updates next to clean. If the buffer is an EOP buffer 578 * this function exits returning false, otherwise it will place the 579 * sk_buff in the next buffer to be chained and return true indicating 580 * that this is in fact a non-EOP buffer. 581 **/ 582 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 583 union ixgbe_adv_rx_desc *rx_desc) 584 { 585 u32 ntc = rx_ring->next_to_clean + 1; 586 587 /* fetch, update, and store next to clean */ 588 ntc = (ntc < rx_ring->count) ? ntc : 0; 589 rx_ring->next_to_clean = ntc; 590 591 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 592 593 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 594 return false; 595 596 return true; 597 } 598 599 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 600 { 601 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 602 } 603 604 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 605 struct ixgbevf_rx_buffer *bi) 606 { 607 struct page *page = bi->page; 608 dma_addr_t dma; 609 610 /* since we are recycling buffers we should seldom need to alloc */ 611 if (likely(page)) 612 return true; 613 614 /* alloc new page for storage */ 615 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 616 if (unlikely(!page)) { 617 rx_ring->rx_stats.alloc_rx_page_failed++; 618 return false; 619 } 620 621 /* map page for use */ 622 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 623 ixgbevf_rx_pg_size(rx_ring), 624 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 625 626 /* if mapping failed free memory back to system since 627 * there isn't much point in holding memory we can't use 628 */ 629 if (dma_mapping_error(rx_ring->dev, dma)) { 630 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 631 632 rx_ring->rx_stats.alloc_rx_page_failed++; 633 return false; 634 } 635 636 bi->dma = dma; 637 bi->page = page; 638 bi->page_offset = ixgbevf_rx_offset(rx_ring); 639 bi->pagecnt_bias = 1; 640 rx_ring->rx_stats.alloc_rx_page++; 641 642 return true; 643 } 644 645 /** 646 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 647 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 648 * @cleaned_count: number of buffers to replace 649 **/ 650 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 651 u16 cleaned_count) 652 { 653 union ixgbe_adv_rx_desc *rx_desc; 654 struct ixgbevf_rx_buffer *bi; 655 unsigned int i = rx_ring->next_to_use; 656 657 /* nothing to do or no valid netdev defined */ 658 if (!cleaned_count || !rx_ring->netdev) 659 return; 660 661 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 662 bi = &rx_ring->rx_buffer_info[i]; 663 i -= rx_ring->count; 664 665 do { 666 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 667 break; 668 669 /* sync the buffer for use by the device */ 670 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 671 bi->page_offset, 672 ixgbevf_rx_bufsz(rx_ring), 673 DMA_FROM_DEVICE); 674 675 /* Refresh the desc even if pkt_addr didn't change 676 * because each write-back erases this info. 677 */ 678 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 679 680 rx_desc++; 681 bi++; 682 i++; 683 if (unlikely(!i)) { 684 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 685 bi = rx_ring->rx_buffer_info; 686 i -= rx_ring->count; 687 } 688 689 /* clear the length for the next_to_use descriptor */ 690 rx_desc->wb.upper.length = 0; 691 692 cleaned_count--; 693 } while (cleaned_count); 694 695 i += rx_ring->count; 696 697 if (rx_ring->next_to_use != i) { 698 /* record the next descriptor to use */ 699 rx_ring->next_to_use = i; 700 701 /* update next to alloc since we have filled the ring */ 702 rx_ring->next_to_alloc = i; 703 704 /* Force memory writes to complete before letting h/w 705 * know there are new descriptors to fetch. (Only 706 * applicable for weak-ordered memory model archs, 707 * such as IA-64). 708 */ 709 wmb(); 710 ixgbevf_write_tail(rx_ring, i); 711 } 712 } 713 714 /** 715 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 716 * @rx_ring: rx descriptor ring packet is being transacted on 717 * @rx_desc: pointer to the EOP Rx descriptor 718 * @skb: pointer to current skb being fixed 719 * 720 * Check for corrupted packet headers caused by senders on the local L2 721 * embedded NIC switch not setting up their Tx Descriptors right. These 722 * should be very rare. 723 * 724 * Also address the case where we are pulling data in on pages only 725 * and as such no data is present in the skb header. 726 * 727 * In addition if skb is not at least 60 bytes we need to pad it so that 728 * it is large enough to qualify as a valid Ethernet frame. 729 * 730 * Returns true if an error was encountered and skb was freed. 731 **/ 732 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 733 union ixgbe_adv_rx_desc *rx_desc, 734 struct sk_buff *skb) 735 { 736 /* XDP packets use error pointer so abort at this point */ 737 if (IS_ERR(skb)) 738 return true; 739 740 /* verify that the packet does not have any known errors */ 741 if (unlikely(ixgbevf_test_staterr(rx_desc, 742 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 743 struct net_device *netdev = rx_ring->netdev; 744 745 if (!(netdev->features & NETIF_F_RXALL)) { 746 dev_kfree_skb_any(skb); 747 return true; 748 } 749 } 750 751 /* if eth_skb_pad returns an error the skb was freed */ 752 if (eth_skb_pad(skb)) 753 return true; 754 755 return false; 756 } 757 758 /** 759 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 760 * @rx_ring: rx descriptor ring to store buffers on 761 * @old_buff: donor buffer to have page reused 762 * 763 * Synchronizes page for reuse by the adapter 764 **/ 765 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 766 struct ixgbevf_rx_buffer *old_buff) 767 { 768 struct ixgbevf_rx_buffer *new_buff; 769 u16 nta = rx_ring->next_to_alloc; 770 771 new_buff = &rx_ring->rx_buffer_info[nta]; 772 773 /* update, and store next to alloc */ 774 nta++; 775 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 776 777 /* transfer page from old buffer to new buffer */ 778 new_buff->page = old_buff->page; 779 new_buff->dma = old_buff->dma; 780 new_buff->page_offset = old_buff->page_offset; 781 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 782 } 783 784 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 785 { 786 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 787 struct page *page = rx_buffer->page; 788 789 /* avoid re-using remote and pfmemalloc pages */ 790 if (!dev_page_is_reusable(page)) 791 return false; 792 793 #if (PAGE_SIZE < 8192) 794 /* if we are only owner of page we can reuse it */ 795 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 796 return false; 797 #else 798 #define IXGBEVF_LAST_OFFSET \ 799 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 800 801 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 802 return false; 803 804 #endif 805 806 /* If we have drained the page fragment pool we need to update 807 * the pagecnt_bias and page count so that we fully restock the 808 * number of references the driver holds. 809 */ 810 if (unlikely(!pagecnt_bias)) { 811 page_ref_add(page, USHRT_MAX); 812 rx_buffer->pagecnt_bias = USHRT_MAX; 813 } 814 815 return true; 816 } 817 818 /** 819 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 820 * @rx_ring: rx descriptor ring to transact packets on 821 * @rx_buffer: buffer containing page to add 822 * @skb: sk_buff to place the data into 823 * @size: size of buffer to be added 824 * 825 * This function will add the data contained in rx_buffer->page to the skb. 826 **/ 827 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 828 struct ixgbevf_rx_buffer *rx_buffer, 829 struct sk_buff *skb, 830 unsigned int size) 831 { 832 #if (PAGE_SIZE < 8192) 833 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 834 #else 835 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 836 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 837 SKB_DATA_ALIGN(size); 838 #endif 839 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 840 rx_buffer->page_offset, size, truesize); 841 #if (PAGE_SIZE < 8192) 842 rx_buffer->page_offset ^= truesize; 843 #else 844 rx_buffer->page_offset += truesize; 845 #endif 846 } 847 848 static 849 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 850 struct ixgbevf_rx_buffer *rx_buffer, 851 struct xdp_buff *xdp, 852 union ixgbe_adv_rx_desc *rx_desc) 853 { 854 unsigned int size = xdp->data_end - xdp->data; 855 #if (PAGE_SIZE < 8192) 856 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 857 #else 858 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 859 xdp->data_hard_start); 860 #endif 861 unsigned int headlen; 862 struct sk_buff *skb; 863 864 /* prefetch first cache line of first page */ 865 net_prefetch(xdp->data); 866 867 /* Note, we get here by enabling legacy-rx via: 868 * 869 * ethtool --set-priv-flags <dev> legacy-rx on 870 * 871 * In this mode, we currently get 0 extra XDP headroom as 872 * opposed to having legacy-rx off, where we process XDP 873 * packets going to stack via ixgbevf_build_skb(). 874 * 875 * For ixgbevf_construct_skb() mode it means that the 876 * xdp->data_meta will always point to xdp->data, since 877 * the helper cannot expand the head. Should this ever 878 * changed in future for legacy-rx mode on, then lets also 879 * add xdp->data_meta handling here. 880 */ 881 882 /* allocate a skb to store the frags */ 883 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 884 if (unlikely(!skb)) 885 return NULL; 886 887 /* Determine available headroom for copy */ 888 headlen = size; 889 if (headlen > IXGBEVF_RX_HDR_SIZE) 890 headlen = eth_get_headlen(skb->dev, xdp->data, 891 IXGBEVF_RX_HDR_SIZE); 892 893 /* align pull length to size of long to optimize memcpy performance */ 894 memcpy(__skb_put(skb, headlen), xdp->data, 895 ALIGN(headlen, sizeof(long))); 896 897 /* update all of the pointers */ 898 size -= headlen; 899 if (size) { 900 skb_add_rx_frag(skb, 0, rx_buffer->page, 901 (xdp->data + headlen) - 902 page_address(rx_buffer->page), 903 size, truesize); 904 #if (PAGE_SIZE < 8192) 905 rx_buffer->page_offset ^= truesize; 906 #else 907 rx_buffer->page_offset += truesize; 908 #endif 909 } else { 910 rx_buffer->pagecnt_bias++; 911 } 912 913 return skb; 914 } 915 916 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 917 u32 qmask) 918 { 919 struct ixgbe_hw *hw = &adapter->hw; 920 921 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 922 } 923 924 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 925 struct ixgbevf_rx_buffer *rx_buffer, 926 struct xdp_buff *xdp, 927 union ixgbe_adv_rx_desc *rx_desc) 928 { 929 unsigned int metasize = xdp->data - xdp->data_meta; 930 #if (PAGE_SIZE < 8192) 931 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 932 #else 933 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 934 SKB_DATA_ALIGN(xdp->data_end - 935 xdp->data_hard_start); 936 #endif 937 struct sk_buff *skb; 938 939 /* Prefetch first cache line of first page. If xdp->data_meta 940 * is unused, this points to xdp->data, otherwise, we likely 941 * have a consumer accessing first few bytes of meta data, 942 * and then actual data. 943 */ 944 net_prefetch(xdp->data_meta); 945 946 /* build an skb around the page buffer */ 947 skb = napi_build_skb(xdp->data_hard_start, truesize); 948 if (unlikely(!skb)) 949 return NULL; 950 951 /* update pointers within the skb to store the data */ 952 skb_reserve(skb, xdp->data - xdp->data_hard_start); 953 __skb_put(skb, xdp->data_end - xdp->data); 954 if (metasize) 955 skb_metadata_set(skb, metasize); 956 957 /* update buffer offset */ 958 #if (PAGE_SIZE < 8192) 959 rx_buffer->page_offset ^= truesize; 960 #else 961 rx_buffer->page_offset += truesize; 962 #endif 963 964 return skb; 965 } 966 967 #define IXGBEVF_XDP_PASS 0 968 #define IXGBEVF_XDP_CONSUMED 1 969 #define IXGBEVF_XDP_TX 2 970 971 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 972 struct xdp_buff *xdp) 973 { 974 struct ixgbevf_tx_buffer *tx_buffer; 975 union ixgbe_adv_tx_desc *tx_desc; 976 u32 len, cmd_type; 977 dma_addr_t dma; 978 u16 i; 979 980 len = xdp->data_end - xdp->data; 981 982 if (unlikely(!ixgbevf_desc_unused(ring))) 983 return IXGBEVF_XDP_CONSUMED; 984 985 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 986 if (dma_mapping_error(ring->dev, dma)) 987 return IXGBEVF_XDP_CONSUMED; 988 989 /* record the location of the first descriptor for this packet */ 990 i = ring->next_to_use; 991 tx_buffer = &ring->tx_buffer_info[i]; 992 993 dma_unmap_len_set(tx_buffer, len, len); 994 dma_unmap_addr_set(tx_buffer, dma, dma); 995 tx_buffer->data = xdp->data; 996 tx_buffer->bytecount = len; 997 tx_buffer->gso_segs = 1; 998 tx_buffer->protocol = 0; 999 1000 /* Populate minimal context descriptor that will provide for the 1001 * fact that we are expected to process Ethernet frames. 1002 */ 1003 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1004 struct ixgbe_adv_tx_context_desc *context_desc; 1005 1006 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1007 1008 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1009 context_desc->vlan_macip_lens = 1010 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1011 context_desc->fceof_saidx = 0; 1012 context_desc->type_tucmd_mlhl = 1013 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1014 IXGBE_ADVTXD_DTYP_CTXT); 1015 context_desc->mss_l4len_idx = 0; 1016 1017 i = 1; 1018 } 1019 1020 /* put descriptor type bits */ 1021 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1022 IXGBE_ADVTXD_DCMD_DEXT | 1023 IXGBE_ADVTXD_DCMD_IFCS; 1024 cmd_type |= len | IXGBE_TXD_CMD; 1025 1026 tx_desc = IXGBEVF_TX_DESC(ring, i); 1027 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1028 1029 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1030 tx_desc->read.olinfo_status = 1031 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1032 IXGBE_ADVTXD_CC); 1033 1034 /* Avoid any potential race with cleanup */ 1035 smp_wmb(); 1036 1037 /* set next_to_watch value indicating a packet is present */ 1038 i++; 1039 if (i == ring->count) 1040 i = 0; 1041 1042 tx_buffer->next_to_watch = tx_desc; 1043 ring->next_to_use = i; 1044 1045 return IXGBEVF_XDP_TX; 1046 } 1047 1048 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1049 struct ixgbevf_ring *rx_ring, 1050 struct xdp_buff *xdp) 1051 { 1052 int result = IXGBEVF_XDP_PASS; 1053 struct ixgbevf_ring *xdp_ring; 1054 struct bpf_prog *xdp_prog; 1055 u32 act; 1056 1057 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1058 1059 if (!xdp_prog) 1060 goto xdp_out; 1061 1062 act = bpf_prog_run_xdp(xdp_prog, xdp); 1063 switch (act) { 1064 case XDP_PASS: 1065 break; 1066 case XDP_TX: 1067 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1068 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1069 if (result == IXGBEVF_XDP_CONSUMED) 1070 goto out_failure; 1071 break; 1072 default: 1073 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act); 1074 fallthrough; 1075 case XDP_ABORTED: 1076 out_failure: 1077 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1078 fallthrough; /* handle aborts by dropping packet */ 1079 case XDP_DROP: 1080 result = IXGBEVF_XDP_CONSUMED; 1081 break; 1082 } 1083 xdp_out: 1084 return ERR_PTR(-result); 1085 } 1086 1087 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring, 1088 unsigned int size) 1089 { 1090 unsigned int truesize; 1091 1092 #if (PAGE_SIZE < 8192) 1093 truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 1094 #else 1095 truesize = ring_uses_build_skb(rx_ring) ? 1096 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) + 1097 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1098 SKB_DATA_ALIGN(size); 1099 #endif 1100 return truesize; 1101 } 1102 1103 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1104 struct ixgbevf_rx_buffer *rx_buffer, 1105 unsigned int size) 1106 { 1107 unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size); 1108 1109 #if (PAGE_SIZE < 8192) 1110 rx_buffer->page_offset ^= truesize; 1111 #else 1112 rx_buffer->page_offset += truesize; 1113 #endif 1114 } 1115 1116 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1117 struct ixgbevf_ring *rx_ring, 1118 int budget) 1119 { 1120 unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0; 1121 struct ixgbevf_adapter *adapter = q_vector->adapter; 1122 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1123 struct sk_buff *skb = rx_ring->skb; 1124 bool xdp_xmit = false; 1125 struct xdp_buff xdp; 1126 1127 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1128 #if (PAGE_SIZE < 8192) 1129 frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0); 1130 #endif 1131 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1132 1133 while (likely(total_rx_packets < budget)) { 1134 struct ixgbevf_rx_buffer *rx_buffer; 1135 union ixgbe_adv_rx_desc *rx_desc; 1136 unsigned int size; 1137 1138 /* return some buffers to hardware, one at a time is too slow */ 1139 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1140 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1141 cleaned_count = 0; 1142 } 1143 1144 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1145 size = le16_to_cpu(rx_desc->wb.upper.length); 1146 if (!size) 1147 break; 1148 1149 /* This memory barrier is needed to keep us from reading 1150 * any other fields out of the rx_desc until we know the 1151 * RXD_STAT_DD bit is set 1152 */ 1153 rmb(); 1154 1155 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1156 1157 /* retrieve a buffer from the ring */ 1158 if (!skb) { 1159 unsigned int offset = ixgbevf_rx_offset(rx_ring); 1160 unsigned char *hard_start; 1161 1162 hard_start = page_address(rx_buffer->page) + 1163 rx_buffer->page_offset - offset; 1164 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1165 #if (PAGE_SIZE > 4096) 1166 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1167 xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size); 1168 #endif 1169 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1170 } 1171 1172 if (IS_ERR(skb)) { 1173 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1174 xdp_xmit = true; 1175 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1176 size); 1177 } else { 1178 rx_buffer->pagecnt_bias++; 1179 } 1180 total_rx_packets++; 1181 total_rx_bytes += size; 1182 } else if (skb) { 1183 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1184 } else if (ring_uses_build_skb(rx_ring)) { 1185 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1186 &xdp, rx_desc); 1187 } else { 1188 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1189 &xdp, rx_desc); 1190 } 1191 1192 /* exit if we failed to retrieve a buffer */ 1193 if (!skb) { 1194 rx_ring->rx_stats.alloc_rx_buff_failed++; 1195 rx_buffer->pagecnt_bias++; 1196 break; 1197 } 1198 1199 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1200 cleaned_count++; 1201 1202 /* fetch next buffer in frame if non-eop */ 1203 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1204 continue; 1205 1206 /* verify the packet layout is correct */ 1207 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1208 skb = NULL; 1209 continue; 1210 } 1211 1212 /* probably a little skewed due to removing CRC */ 1213 total_rx_bytes += skb->len; 1214 1215 /* Workaround hardware that can't do proper VEPA multicast 1216 * source pruning. 1217 */ 1218 if ((skb->pkt_type == PACKET_BROADCAST || 1219 skb->pkt_type == PACKET_MULTICAST) && 1220 ether_addr_equal(rx_ring->netdev->dev_addr, 1221 eth_hdr(skb)->h_source)) { 1222 dev_kfree_skb_irq(skb); 1223 continue; 1224 } 1225 1226 /* populate checksum, VLAN, and protocol */ 1227 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1228 1229 ixgbevf_rx_skb(q_vector, skb); 1230 1231 /* reset skb pointer */ 1232 skb = NULL; 1233 1234 /* update budget accounting */ 1235 total_rx_packets++; 1236 } 1237 1238 /* place incomplete frames back on ring for completion */ 1239 rx_ring->skb = skb; 1240 1241 if (xdp_xmit) { 1242 struct ixgbevf_ring *xdp_ring = 1243 adapter->xdp_ring[rx_ring->queue_index]; 1244 1245 /* Force memory writes to complete before letting h/w 1246 * know there are new descriptors to fetch. 1247 */ 1248 wmb(); 1249 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1250 } 1251 1252 u64_stats_update_begin(&rx_ring->syncp); 1253 rx_ring->stats.packets += total_rx_packets; 1254 rx_ring->stats.bytes += total_rx_bytes; 1255 u64_stats_update_end(&rx_ring->syncp); 1256 q_vector->rx.total_packets += total_rx_packets; 1257 q_vector->rx.total_bytes += total_rx_bytes; 1258 1259 return total_rx_packets; 1260 } 1261 1262 /** 1263 * ixgbevf_poll - NAPI polling calback 1264 * @napi: napi struct with our devices info in it 1265 * @budget: amount of work driver is allowed to do this pass, in packets 1266 * 1267 * This function will clean more than one or more rings associated with a 1268 * q_vector. 1269 **/ 1270 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1271 { 1272 struct ixgbevf_q_vector *q_vector = 1273 container_of(napi, struct ixgbevf_q_vector, napi); 1274 struct ixgbevf_adapter *adapter = q_vector->adapter; 1275 struct ixgbevf_ring *ring; 1276 int per_ring_budget, work_done = 0; 1277 bool clean_complete = true; 1278 1279 ixgbevf_for_each_ring(ring, q_vector->tx) { 1280 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1281 clean_complete = false; 1282 } 1283 1284 if (budget <= 0) 1285 return budget; 1286 1287 /* attempt to distribute budget to each queue fairly, but don't allow 1288 * the budget to go below 1 because we'll exit polling 1289 */ 1290 if (q_vector->rx.count > 1) 1291 per_ring_budget = max(budget/q_vector->rx.count, 1); 1292 else 1293 per_ring_budget = budget; 1294 1295 ixgbevf_for_each_ring(ring, q_vector->rx) { 1296 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1297 per_ring_budget); 1298 work_done += cleaned; 1299 if (cleaned >= per_ring_budget) 1300 clean_complete = false; 1301 } 1302 1303 /* If all work not completed, return budget and keep polling */ 1304 if (!clean_complete) 1305 return budget; 1306 1307 /* Exit the polling mode, but don't re-enable interrupts if stack might 1308 * poll us due to busy-polling 1309 */ 1310 if (likely(napi_complete_done(napi, work_done))) { 1311 if (adapter->rx_itr_setting == 1) 1312 ixgbevf_set_itr(q_vector); 1313 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1314 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1315 ixgbevf_irq_enable_queues(adapter, 1316 BIT(q_vector->v_idx)); 1317 } 1318 1319 return min(work_done, budget - 1); 1320 } 1321 1322 /** 1323 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1324 * @q_vector: structure containing interrupt and ring information 1325 **/ 1326 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1327 { 1328 struct ixgbevf_adapter *adapter = q_vector->adapter; 1329 struct ixgbe_hw *hw = &adapter->hw; 1330 int v_idx = q_vector->v_idx; 1331 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1332 1333 /* set the WDIS bit to not clear the timer bits and cause an 1334 * immediate assertion of the interrupt 1335 */ 1336 itr_reg |= IXGBE_EITR_CNT_WDIS; 1337 1338 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1339 } 1340 1341 /** 1342 * ixgbevf_configure_msix - Configure MSI-X hardware 1343 * @adapter: board private structure 1344 * 1345 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1346 * interrupts. 1347 **/ 1348 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1349 { 1350 struct ixgbevf_q_vector *q_vector; 1351 int q_vectors, v_idx; 1352 1353 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1354 adapter->eims_enable_mask = 0; 1355 1356 /* Populate the IVAR table and set the ITR values to the 1357 * corresponding register. 1358 */ 1359 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1360 struct ixgbevf_ring *ring; 1361 1362 q_vector = adapter->q_vector[v_idx]; 1363 1364 ixgbevf_for_each_ring(ring, q_vector->rx) 1365 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1366 1367 ixgbevf_for_each_ring(ring, q_vector->tx) 1368 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1369 1370 if (q_vector->tx.ring && !q_vector->rx.ring) { 1371 /* Tx only vector */ 1372 if (adapter->tx_itr_setting == 1) 1373 q_vector->itr = IXGBE_12K_ITR; 1374 else 1375 q_vector->itr = adapter->tx_itr_setting; 1376 } else { 1377 /* Rx or Rx/Tx vector */ 1378 if (adapter->rx_itr_setting == 1) 1379 q_vector->itr = IXGBE_20K_ITR; 1380 else 1381 q_vector->itr = adapter->rx_itr_setting; 1382 } 1383 1384 /* add q_vector eims value to global eims_enable_mask */ 1385 adapter->eims_enable_mask |= BIT(v_idx); 1386 1387 ixgbevf_write_eitr(q_vector); 1388 } 1389 1390 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1391 /* setup eims_other and add value to global eims_enable_mask */ 1392 adapter->eims_other = BIT(v_idx); 1393 adapter->eims_enable_mask |= adapter->eims_other; 1394 } 1395 1396 enum latency_range { 1397 lowest_latency = 0, 1398 low_latency = 1, 1399 bulk_latency = 2, 1400 latency_invalid = 255 1401 }; 1402 1403 /** 1404 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1405 * @q_vector: structure containing interrupt and ring information 1406 * @ring_container: structure containing ring performance data 1407 * 1408 * Stores a new ITR value based on packets and byte 1409 * counts during the last interrupt. The advantage of per interrupt 1410 * computation is faster updates and more accurate ITR for the current 1411 * traffic pattern. Constants in this function were computed 1412 * based on theoretical maximum wire speed and thresholds were set based 1413 * on testing data as well as attempting to minimize response time 1414 * while increasing bulk throughput. 1415 **/ 1416 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1417 struct ixgbevf_ring_container *ring_container) 1418 { 1419 int bytes = ring_container->total_bytes; 1420 int packets = ring_container->total_packets; 1421 u32 timepassed_us; 1422 u64 bytes_perint; 1423 u8 itr_setting = ring_container->itr; 1424 1425 if (packets == 0) 1426 return; 1427 1428 /* simple throttle rate management 1429 * 0-20MB/s lowest (100000 ints/s) 1430 * 20-100MB/s low (20000 ints/s) 1431 * 100-1249MB/s bulk (12000 ints/s) 1432 */ 1433 /* what was last interrupt timeslice? */ 1434 timepassed_us = q_vector->itr >> 2; 1435 if (timepassed_us == 0) 1436 return; 1437 1438 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1439 1440 switch (itr_setting) { 1441 case lowest_latency: 1442 if (bytes_perint > 10) 1443 itr_setting = low_latency; 1444 break; 1445 case low_latency: 1446 if (bytes_perint > 20) 1447 itr_setting = bulk_latency; 1448 else if (bytes_perint <= 10) 1449 itr_setting = lowest_latency; 1450 break; 1451 case bulk_latency: 1452 if (bytes_perint <= 20) 1453 itr_setting = low_latency; 1454 break; 1455 } 1456 1457 /* clear work counters since we have the values we need */ 1458 ring_container->total_bytes = 0; 1459 ring_container->total_packets = 0; 1460 1461 /* write updated itr to ring container */ 1462 ring_container->itr = itr_setting; 1463 } 1464 1465 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1466 { 1467 u32 new_itr = q_vector->itr; 1468 u8 current_itr; 1469 1470 ixgbevf_update_itr(q_vector, &q_vector->tx); 1471 ixgbevf_update_itr(q_vector, &q_vector->rx); 1472 1473 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1474 1475 switch (current_itr) { 1476 /* counts and packets in update_itr are dependent on these numbers */ 1477 case lowest_latency: 1478 new_itr = IXGBE_100K_ITR; 1479 break; 1480 case low_latency: 1481 new_itr = IXGBE_20K_ITR; 1482 break; 1483 case bulk_latency: 1484 new_itr = IXGBE_12K_ITR; 1485 break; 1486 default: 1487 break; 1488 } 1489 1490 if (new_itr != q_vector->itr) { 1491 /* do an exponential smoothing */ 1492 new_itr = (10 * new_itr * q_vector->itr) / 1493 ((9 * new_itr) + q_vector->itr); 1494 1495 /* save the algorithm value here */ 1496 q_vector->itr = new_itr; 1497 1498 ixgbevf_write_eitr(q_vector); 1499 } 1500 } 1501 1502 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1503 { 1504 struct ixgbevf_adapter *adapter = data; 1505 struct ixgbe_hw *hw = &adapter->hw; 1506 1507 hw->mac.get_link_status = 1; 1508 1509 ixgbevf_service_event_schedule(adapter); 1510 1511 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1512 1513 return IRQ_HANDLED; 1514 } 1515 1516 /** 1517 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1518 * @irq: unused 1519 * @data: pointer to our q_vector struct for this interrupt vector 1520 **/ 1521 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1522 { 1523 struct ixgbevf_q_vector *q_vector = data; 1524 1525 /* EIAM disabled interrupts (on this vector) for us */ 1526 if (q_vector->rx.ring || q_vector->tx.ring) 1527 napi_schedule_irqoff(&q_vector->napi); 1528 1529 return IRQ_HANDLED; 1530 } 1531 1532 /** 1533 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1534 * @adapter: board private structure 1535 * 1536 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1537 * interrupts from the kernel. 1538 **/ 1539 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1540 { 1541 struct net_device *netdev = adapter->netdev; 1542 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1543 unsigned int ri = 0, ti = 0; 1544 int vector, err; 1545 1546 for (vector = 0; vector < q_vectors; vector++) { 1547 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1548 struct msix_entry *entry = &adapter->msix_entries[vector]; 1549 1550 if (q_vector->tx.ring && q_vector->rx.ring) { 1551 snprintf(q_vector->name, sizeof(q_vector->name), 1552 "%s-TxRx-%u", netdev->name, ri++); 1553 ti++; 1554 } else if (q_vector->rx.ring) { 1555 snprintf(q_vector->name, sizeof(q_vector->name), 1556 "%s-rx-%u", netdev->name, ri++); 1557 } else if (q_vector->tx.ring) { 1558 snprintf(q_vector->name, sizeof(q_vector->name), 1559 "%s-tx-%u", netdev->name, ti++); 1560 } else { 1561 /* skip this unused q_vector */ 1562 continue; 1563 } 1564 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1565 q_vector->name, q_vector); 1566 if (err) { 1567 hw_dbg(&adapter->hw, 1568 "request_irq failed for MSIX interrupt Error: %d\n", 1569 err); 1570 goto free_queue_irqs; 1571 } 1572 } 1573 1574 err = request_irq(adapter->msix_entries[vector].vector, 1575 &ixgbevf_msix_other, 0, netdev->name, adapter); 1576 if (err) { 1577 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1578 err); 1579 goto free_queue_irqs; 1580 } 1581 1582 return 0; 1583 1584 free_queue_irqs: 1585 while (vector) { 1586 vector--; 1587 free_irq(adapter->msix_entries[vector].vector, 1588 adapter->q_vector[vector]); 1589 } 1590 /* This failure is non-recoverable - it indicates the system is 1591 * out of MSIX vector resources and the VF driver cannot run 1592 * without them. Set the number of msix vectors to zero 1593 * indicating that not enough can be allocated. The error 1594 * will be returned to the user indicating device open failed. 1595 * Any further attempts to force the driver to open will also 1596 * fail. The only way to recover is to unload the driver and 1597 * reload it again. If the system has recovered some MSIX 1598 * vectors then it may succeed. 1599 */ 1600 adapter->num_msix_vectors = 0; 1601 return err; 1602 } 1603 1604 /** 1605 * ixgbevf_request_irq - initialize interrupts 1606 * @adapter: board private structure 1607 * 1608 * Attempts to configure interrupts using the best available 1609 * capabilities of the hardware and kernel. 1610 **/ 1611 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1612 { 1613 int err = ixgbevf_request_msix_irqs(adapter); 1614 1615 if (err) 1616 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1617 1618 return err; 1619 } 1620 1621 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1622 { 1623 int i, q_vectors; 1624 1625 if (!adapter->msix_entries) 1626 return; 1627 1628 q_vectors = adapter->num_msix_vectors; 1629 i = q_vectors - 1; 1630 1631 free_irq(adapter->msix_entries[i].vector, adapter); 1632 i--; 1633 1634 for (; i >= 0; i--) { 1635 /* free only the irqs that were actually requested */ 1636 if (!adapter->q_vector[i]->rx.ring && 1637 !adapter->q_vector[i]->tx.ring) 1638 continue; 1639 1640 free_irq(adapter->msix_entries[i].vector, 1641 adapter->q_vector[i]); 1642 } 1643 } 1644 1645 /** 1646 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1647 * @adapter: board private structure 1648 **/ 1649 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1650 { 1651 struct ixgbe_hw *hw = &adapter->hw; 1652 int i; 1653 1654 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1655 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1656 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1657 1658 IXGBE_WRITE_FLUSH(hw); 1659 1660 for (i = 0; i < adapter->num_msix_vectors; i++) 1661 synchronize_irq(adapter->msix_entries[i].vector); 1662 } 1663 1664 /** 1665 * ixgbevf_irq_enable - Enable default interrupt generation settings 1666 * @adapter: board private structure 1667 **/ 1668 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1669 { 1670 struct ixgbe_hw *hw = &adapter->hw; 1671 1672 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1673 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1674 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1675 } 1676 1677 /** 1678 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1679 * @adapter: board private structure 1680 * @ring: structure containing ring specific data 1681 * 1682 * Configure the Tx descriptor ring after a reset. 1683 **/ 1684 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1685 struct ixgbevf_ring *ring) 1686 { 1687 struct ixgbe_hw *hw = &adapter->hw; 1688 u64 tdba = ring->dma; 1689 int wait_loop = 10; 1690 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1691 u8 reg_idx = ring->reg_idx; 1692 1693 /* disable queue to avoid issues while updating state */ 1694 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1695 IXGBE_WRITE_FLUSH(hw); 1696 1697 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1698 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1699 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1700 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1701 1702 /* disable head writeback */ 1703 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1704 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1705 1706 /* enable relaxed ordering */ 1707 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1708 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1709 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1710 1711 /* reset head and tail pointers */ 1712 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1713 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1714 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1715 1716 /* reset ntu and ntc to place SW in sync with hardwdare */ 1717 ring->next_to_clean = 0; 1718 ring->next_to_use = 0; 1719 1720 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1721 * to or less than the number of on chip descriptors, which is 1722 * currently 40. 1723 */ 1724 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1725 1726 /* Setting PTHRESH to 32 both improves performance */ 1727 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1728 32; /* PTHRESH = 32 */ 1729 1730 /* reinitialize tx_buffer_info */ 1731 memset(ring->tx_buffer_info, 0, 1732 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1733 1734 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1735 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1736 1737 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1738 1739 /* poll to verify queue is enabled */ 1740 do { 1741 usleep_range(1000, 2000); 1742 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1743 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1744 if (!wait_loop) 1745 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1746 } 1747 1748 /** 1749 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1750 * @adapter: board private structure 1751 * 1752 * Configure the Tx unit of the MAC after a reset. 1753 **/ 1754 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1755 { 1756 u32 i; 1757 1758 /* Setup the HW Tx Head and Tail descriptor pointers */ 1759 for (i = 0; i < adapter->num_tx_queues; i++) 1760 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1761 for (i = 0; i < adapter->num_xdp_queues; i++) 1762 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1763 } 1764 1765 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1766 1767 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1768 struct ixgbevf_ring *ring, int index) 1769 { 1770 struct ixgbe_hw *hw = &adapter->hw; 1771 u32 srrctl; 1772 1773 srrctl = IXGBE_SRRCTL_DROP_EN; 1774 1775 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1776 if (ring_uses_large_buffer(ring)) 1777 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1778 else 1779 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1780 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1781 1782 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1783 } 1784 1785 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1786 { 1787 struct ixgbe_hw *hw = &adapter->hw; 1788 1789 /* PSRTYPE must be initialized in 82599 */ 1790 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1791 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1792 IXGBE_PSRTYPE_L2HDR; 1793 1794 if (adapter->num_rx_queues > 1) 1795 psrtype |= BIT(29); 1796 1797 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1798 } 1799 1800 #define IXGBEVF_MAX_RX_DESC_POLL 10 1801 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1802 struct ixgbevf_ring *ring) 1803 { 1804 struct ixgbe_hw *hw = &adapter->hw; 1805 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1806 u32 rxdctl; 1807 u8 reg_idx = ring->reg_idx; 1808 1809 if (IXGBE_REMOVED(hw->hw_addr)) 1810 return; 1811 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1812 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1813 1814 /* write value back with RXDCTL.ENABLE bit cleared */ 1815 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1816 1817 /* the hardware may take up to 100us to really disable the Rx queue */ 1818 do { 1819 udelay(10); 1820 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1821 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1822 1823 if (!wait_loop) 1824 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1825 reg_idx); 1826 } 1827 1828 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1829 struct ixgbevf_ring *ring) 1830 { 1831 struct ixgbe_hw *hw = &adapter->hw; 1832 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1833 u32 rxdctl; 1834 u8 reg_idx = ring->reg_idx; 1835 1836 if (IXGBE_REMOVED(hw->hw_addr)) 1837 return; 1838 do { 1839 usleep_range(1000, 2000); 1840 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1841 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1842 1843 if (!wait_loop) 1844 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1845 reg_idx); 1846 } 1847 1848 /** 1849 * ixgbevf_init_rss_key - Initialize adapter RSS key 1850 * @adapter: device handle 1851 * 1852 * Allocates and initializes the RSS key if it is not allocated. 1853 **/ 1854 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1855 { 1856 u32 *rss_key; 1857 1858 if (!adapter->rss_key) { 1859 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1860 if (unlikely(!rss_key)) 1861 return -ENOMEM; 1862 1863 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1864 adapter->rss_key = rss_key; 1865 } 1866 1867 return 0; 1868 } 1869 1870 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1871 { 1872 struct ixgbe_hw *hw = &adapter->hw; 1873 u32 vfmrqc = 0, vfreta = 0; 1874 u16 rss_i = adapter->num_rx_queues; 1875 u8 i, j; 1876 1877 /* Fill out hash function seeds */ 1878 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1879 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1880 1881 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1882 if (j == rss_i) 1883 j = 0; 1884 1885 adapter->rss_indir_tbl[i] = j; 1886 1887 vfreta |= j << (i & 0x3) * 8; 1888 if ((i & 3) == 3) { 1889 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1890 vfreta = 0; 1891 } 1892 } 1893 1894 /* Perform hash on these packet types */ 1895 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1896 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1897 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1898 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1899 1900 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1901 1902 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1903 } 1904 1905 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1906 struct ixgbevf_ring *ring) 1907 { 1908 struct ixgbe_hw *hw = &adapter->hw; 1909 union ixgbe_adv_rx_desc *rx_desc; 1910 u64 rdba = ring->dma; 1911 u32 rxdctl; 1912 u8 reg_idx = ring->reg_idx; 1913 1914 /* disable queue to avoid issues while updating state */ 1915 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1916 ixgbevf_disable_rx_queue(adapter, ring); 1917 1918 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1919 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1920 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1921 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1922 1923 #ifndef CONFIG_SPARC 1924 /* enable relaxed ordering */ 1925 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1926 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1927 #else 1928 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1929 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1930 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1931 #endif 1932 1933 /* reset head and tail pointers */ 1934 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1935 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1936 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1937 1938 /* initialize rx_buffer_info */ 1939 memset(ring->rx_buffer_info, 0, 1940 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1941 1942 /* initialize Rx descriptor 0 */ 1943 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1944 rx_desc->wb.upper.length = 0; 1945 1946 /* reset ntu and ntc to place SW in sync with hardwdare */ 1947 ring->next_to_clean = 0; 1948 ring->next_to_use = 0; 1949 ring->next_to_alloc = 0; 1950 1951 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1952 1953 /* RXDCTL.RLPML does not work on 82599 */ 1954 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1955 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1956 IXGBE_RXDCTL_RLPML_EN); 1957 1958 #if (PAGE_SIZE < 8192) 1959 /* Limit the maximum frame size so we don't overrun the skb */ 1960 if (ring_uses_build_skb(ring) && 1961 !ring_uses_large_buffer(ring)) 1962 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1963 IXGBE_RXDCTL_RLPML_EN; 1964 #endif 1965 } 1966 1967 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1968 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1969 1970 ixgbevf_rx_desc_queue_enable(adapter, ring); 1971 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1972 } 1973 1974 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1975 struct ixgbevf_ring *rx_ring) 1976 { 1977 struct net_device *netdev = adapter->netdev; 1978 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1979 1980 /* set build_skb and buffer size flags */ 1981 clear_ring_build_skb_enabled(rx_ring); 1982 clear_ring_uses_large_buffer(rx_ring); 1983 1984 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1985 return; 1986 1987 if (PAGE_SIZE < 8192) 1988 if (max_frame > IXGBEVF_MAX_FRAME_BUILD_SKB) 1989 set_ring_uses_large_buffer(rx_ring); 1990 1991 /* 82599 can't rely on RXDCTL.RLPML to restrict the size of the frame */ 1992 if (adapter->hw.mac.type == ixgbe_mac_82599_vf && !ring_uses_large_buffer(rx_ring)) 1993 return; 1994 1995 set_ring_build_skb_enabled(rx_ring); 1996 } 1997 1998 /** 1999 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 2000 * @adapter: board private structure 2001 * 2002 * Configure the Rx unit of the MAC after a reset. 2003 **/ 2004 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 2005 { 2006 struct ixgbe_hw *hw = &adapter->hw; 2007 struct net_device *netdev = adapter->netdev; 2008 int i, ret; 2009 2010 ixgbevf_setup_psrtype(adapter); 2011 if (hw->mac.type >= ixgbe_mac_X550_vf) 2012 ixgbevf_setup_vfmrqc(adapter); 2013 2014 spin_lock_bh(&adapter->mbx_lock); 2015 /* notify the PF of our intent to use this size of frame */ 2016 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 2017 spin_unlock_bh(&adapter->mbx_lock); 2018 if (ret) 2019 dev_err(&adapter->pdev->dev, 2020 "Failed to set MTU at %d\n", netdev->mtu); 2021 2022 /* Setup the HW Rx Head and Tail Descriptor Pointers and 2023 * the Base and Length of the Rx Descriptor Ring 2024 */ 2025 for (i = 0; i < adapter->num_rx_queues; i++) { 2026 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2027 2028 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2029 ixgbevf_configure_rx_ring(adapter, rx_ring); 2030 } 2031 } 2032 2033 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2034 __be16 proto, u16 vid) 2035 { 2036 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2037 struct ixgbe_hw *hw = &adapter->hw; 2038 int err; 2039 2040 spin_lock_bh(&adapter->mbx_lock); 2041 2042 /* add VID to filter table */ 2043 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2044 2045 spin_unlock_bh(&adapter->mbx_lock); 2046 2047 /* translate error return types so error makes sense */ 2048 if (err == IXGBE_ERR_MBX) 2049 return -EIO; 2050 2051 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2052 return -EACCES; 2053 2054 set_bit(vid, adapter->active_vlans); 2055 2056 return err; 2057 } 2058 2059 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2060 __be16 proto, u16 vid) 2061 { 2062 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2063 struct ixgbe_hw *hw = &adapter->hw; 2064 int err; 2065 2066 spin_lock_bh(&adapter->mbx_lock); 2067 2068 /* remove VID from filter table */ 2069 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2070 2071 spin_unlock_bh(&adapter->mbx_lock); 2072 2073 clear_bit(vid, adapter->active_vlans); 2074 2075 return err; 2076 } 2077 2078 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2079 { 2080 u16 vid; 2081 2082 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2083 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2084 htons(ETH_P_8021Q), vid); 2085 } 2086 2087 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2088 { 2089 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2090 struct ixgbe_hw *hw = &adapter->hw; 2091 int count = 0; 2092 2093 if (!netdev_uc_empty(netdev)) { 2094 struct netdev_hw_addr *ha; 2095 2096 netdev_for_each_uc_addr(ha, netdev) { 2097 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2098 udelay(200); 2099 } 2100 } else { 2101 /* If the list is empty then send message to PF driver to 2102 * clear all MAC VLANs on this VF. 2103 */ 2104 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2105 } 2106 2107 return count; 2108 } 2109 2110 /** 2111 * ixgbevf_set_rx_mode - Multicast and unicast set 2112 * @netdev: network interface device structure 2113 * 2114 * The set_rx_method entry point is called whenever the multicast address 2115 * list, unicast address list or the network interface flags are updated. 2116 * This routine is responsible for configuring the hardware for proper 2117 * multicast mode and configuring requested unicast filters. 2118 **/ 2119 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2120 { 2121 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2122 struct ixgbe_hw *hw = &adapter->hw; 2123 unsigned int flags = netdev->flags; 2124 int xcast_mode; 2125 2126 /* request the most inclusive mode we need */ 2127 if (flags & IFF_PROMISC) 2128 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2129 else if (flags & IFF_ALLMULTI) 2130 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2131 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2132 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2133 else 2134 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2135 2136 spin_lock_bh(&adapter->mbx_lock); 2137 2138 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2139 2140 /* reprogram multicast list */ 2141 hw->mac.ops.update_mc_addr_list(hw, netdev); 2142 2143 ixgbevf_write_uc_addr_list(netdev); 2144 2145 spin_unlock_bh(&adapter->mbx_lock); 2146 } 2147 2148 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2149 { 2150 int q_idx; 2151 struct ixgbevf_q_vector *q_vector; 2152 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2153 2154 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2155 q_vector = adapter->q_vector[q_idx]; 2156 napi_enable(&q_vector->napi); 2157 } 2158 } 2159 2160 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2161 { 2162 int q_idx; 2163 struct ixgbevf_q_vector *q_vector; 2164 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2165 2166 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2167 q_vector = adapter->q_vector[q_idx]; 2168 napi_disable(&q_vector->napi); 2169 } 2170 } 2171 2172 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2173 { 2174 struct ixgbe_hw *hw = &adapter->hw; 2175 unsigned int def_q = 0; 2176 unsigned int num_tcs = 0; 2177 unsigned int num_rx_queues = adapter->num_rx_queues; 2178 unsigned int num_tx_queues = adapter->num_tx_queues; 2179 int err; 2180 2181 spin_lock_bh(&adapter->mbx_lock); 2182 2183 /* fetch queue configuration from the PF */ 2184 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2185 2186 spin_unlock_bh(&adapter->mbx_lock); 2187 2188 if (err) 2189 return err; 2190 2191 if (num_tcs > 1) { 2192 /* we need only one Tx queue */ 2193 num_tx_queues = 1; 2194 2195 /* update default Tx ring register index */ 2196 adapter->tx_ring[0]->reg_idx = def_q; 2197 2198 /* we need as many queues as traffic classes */ 2199 num_rx_queues = num_tcs; 2200 } 2201 2202 /* if we have a bad config abort request queue reset */ 2203 if ((adapter->num_rx_queues != num_rx_queues) || 2204 (adapter->num_tx_queues != num_tx_queues)) { 2205 /* force mailbox timeout to prevent further messages */ 2206 hw->mbx.timeout = 0; 2207 2208 /* wait for watchdog to come around and bail us out */ 2209 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2210 } 2211 2212 return 0; 2213 } 2214 2215 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2216 { 2217 ixgbevf_configure_dcb(adapter); 2218 2219 ixgbevf_set_rx_mode(adapter->netdev); 2220 2221 ixgbevf_restore_vlan(adapter); 2222 ixgbevf_ipsec_restore(adapter); 2223 2224 ixgbevf_configure_tx(adapter); 2225 ixgbevf_configure_rx(adapter); 2226 } 2227 2228 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2229 { 2230 /* Only save pre-reset stats if there are some */ 2231 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2232 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2233 adapter->stats.base_vfgprc; 2234 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2235 adapter->stats.base_vfgptc; 2236 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2237 adapter->stats.base_vfgorc; 2238 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2239 adapter->stats.base_vfgotc; 2240 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2241 adapter->stats.base_vfmprc; 2242 } 2243 } 2244 2245 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2246 { 2247 struct ixgbe_hw *hw = &adapter->hw; 2248 2249 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2250 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2251 adapter->stats.last_vfgorc |= 2252 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2253 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2254 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2255 adapter->stats.last_vfgotc |= 2256 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2257 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2258 2259 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2260 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2261 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2262 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2263 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2264 } 2265 2266 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2267 { 2268 struct ixgbe_hw *hw = &adapter->hw; 2269 static const int api[] = { 2270 ixgbe_mbox_api_15, 2271 ixgbe_mbox_api_14, 2272 ixgbe_mbox_api_13, 2273 ixgbe_mbox_api_12, 2274 ixgbe_mbox_api_11, 2275 ixgbe_mbox_api_10, 2276 ixgbe_mbox_api_unknown 2277 }; 2278 int err, idx = 0; 2279 2280 spin_lock_bh(&adapter->mbx_lock); 2281 2282 while (api[idx] != ixgbe_mbox_api_unknown) { 2283 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2284 if (!err) 2285 break; 2286 idx++; 2287 } 2288 2289 if (hw->api_version >= ixgbe_mbox_api_15) { 2290 hw->mbx.ops.init_params(hw); 2291 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 2292 sizeof(struct ixgbe_mbx_operations)); 2293 } 2294 2295 spin_unlock_bh(&adapter->mbx_lock); 2296 } 2297 2298 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2299 { 2300 struct net_device *netdev = adapter->netdev; 2301 struct pci_dev *pdev = adapter->pdev; 2302 struct ixgbe_hw *hw = &adapter->hw; 2303 bool state; 2304 2305 ixgbevf_configure_msix(adapter); 2306 2307 spin_lock_bh(&adapter->mbx_lock); 2308 2309 if (is_valid_ether_addr(hw->mac.addr)) 2310 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2311 else 2312 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2313 2314 spin_unlock_bh(&adapter->mbx_lock); 2315 2316 state = adapter->link_state; 2317 hw->mac.ops.get_link_state(hw, &adapter->link_state); 2318 if (state && state != adapter->link_state) 2319 dev_info(&pdev->dev, "VF is administratively disabled\n"); 2320 2321 smp_mb__before_atomic(); 2322 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2323 ixgbevf_napi_enable_all(adapter); 2324 2325 /* clear any pending interrupts, may auto mask */ 2326 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2327 ixgbevf_irq_enable(adapter); 2328 2329 /* enable transmits */ 2330 netif_tx_start_all_queues(netdev); 2331 2332 ixgbevf_save_reset_stats(adapter); 2333 ixgbevf_init_last_counter_stats(adapter); 2334 2335 hw->mac.get_link_status = 1; 2336 mod_timer(&adapter->service_timer, jiffies); 2337 } 2338 2339 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2340 { 2341 ixgbevf_configure(adapter); 2342 2343 ixgbevf_up_complete(adapter); 2344 } 2345 2346 /** 2347 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2348 * @rx_ring: ring to free buffers from 2349 **/ 2350 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2351 { 2352 u16 i = rx_ring->next_to_clean; 2353 2354 /* Free Rx ring sk_buff */ 2355 if (rx_ring->skb) { 2356 dev_kfree_skb(rx_ring->skb); 2357 rx_ring->skb = NULL; 2358 } 2359 2360 /* Free all the Rx ring pages */ 2361 while (i != rx_ring->next_to_alloc) { 2362 struct ixgbevf_rx_buffer *rx_buffer; 2363 2364 rx_buffer = &rx_ring->rx_buffer_info[i]; 2365 2366 /* Invalidate cache lines that may have been written to by 2367 * device so that we avoid corrupting memory. 2368 */ 2369 dma_sync_single_range_for_cpu(rx_ring->dev, 2370 rx_buffer->dma, 2371 rx_buffer->page_offset, 2372 ixgbevf_rx_bufsz(rx_ring), 2373 DMA_FROM_DEVICE); 2374 2375 /* free resources associated with mapping */ 2376 dma_unmap_page_attrs(rx_ring->dev, 2377 rx_buffer->dma, 2378 ixgbevf_rx_pg_size(rx_ring), 2379 DMA_FROM_DEVICE, 2380 IXGBEVF_RX_DMA_ATTR); 2381 2382 __page_frag_cache_drain(rx_buffer->page, 2383 rx_buffer->pagecnt_bias); 2384 2385 i++; 2386 if (i == rx_ring->count) 2387 i = 0; 2388 } 2389 2390 rx_ring->next_to_alloc = 0; 2391 rx_ring->next_to_clean = 0; 2392 rx_ring->next_to_use = 0; 2393 } 2394 2395 /** 2396 * ixgbevf_clean_tx_ring - Free Tx Buffers 2397 * @tx_ring: ring to be cleaned 2398 **/ 2399 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2400 { 2401 u16 i = tx_ring->next_to_clean; 2402 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2403 2404 while (i != tx_ring->next_to_use) { 2405 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2406 2407 /* Free all the Tx ring sk_buffs */ 2408 if (ring_is_xdp(tx_ring)) 2409 page_frag_free(tx_buffer->data); 2410 else 2411 dev_kfree_skb_any(tx_buffer->skb); 2412 2413 /* unmap skb header data */ 2414 dma_unmap_single(tx_ring->dev, 2415 dma_unmap_addr(tx_buffer, dma), 2416 dma_unmap_len(tx_buffer, len), 2417 DMA_TO_DEVICE); 2418 2419 /* check for eop_desc to determine the end of the packet */ 2420 eop_desc = tx_buffer->next_to_watch; 2421 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2422 2423 /* unmap remaining buffers */ 2424 while (tx_desc != eop_desc) { 2425 tx_buffer++; 2426 tx_desc++; 2427 i++; 2428 if (unlikely(i == tx_ring->count)) { 2429 i = 0; 2430 tx_buffer = tx_ring->tx_buffer_info; 2431 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2432 } 2433 2434 /* unmap any remaining paged data */ 2435 if (dma_unmap_len(tx_buffer, len)) 2436 dma_unmap_page(tx_ring->dev, 2437 dma_unmap_addr(tx_buffer, dma), 2438 dma_unmap_len(tx_buffer, len), 2439 DMA_TO_DEVICE); 2440 } 2441 2442 /* move us one more past the eop_desc for start of next pkt */ 2443 tx_buffer++; 2444 i++; 2445 if (unlikely(i == tx_ring->count)) { 2446 i = 0; 2447 tx_buffer = tx_ring->tx_buffer_info; 2448 } 2449 } 2450 2451 /* reset next_to_use and next_to_clean */ 2452 tx_ring->next_to_use = 0; 2453 tx_ring->next_to_clean = 0; 2454 2455 } 2456 2457 /** 2458 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2459 * @adapter: board private structure 2460 **/ 2461 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2462 { 2463 int i; 2464 2465 for (i = 0; i < adapter->num_rx_queues; i++) 2466 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2467 } 2468 2469 /** 2470 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2471 * @adapter: board private structure 2472 **/ 2473 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2474 { 2475 int i; 2476 2477 for (i = 0; i < adapter->num_tx_queues; i++) 2478 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2479 for (i = 0; i < adapter->num_xdp_queues; i++) 2480 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2481 } 2482 2483 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2484 { 2485 struct net_device *netdev = adapter->netdev; 2486 struct ixgbe_hw *hw = &adapter->hw; 2487 int i; 2488 2489 /* signal that we are down to the interrupt handler */ 2490 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2491 return; /* do nothing if already down */ 2492 2493 /* disable all enabled Rx queues */ 2494 for (i = 0; i < adapter->num_rx_queues; i++) 2495 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2496 2497 usleep_range(10000, 20000); 2498 2499 netif_tx_stop_all_queues(netdev); 2500 2501 /* call carrier off first to avoid false dev_watchdog timeouts */ 2502 netif_carrier_off(netdev); 2503 netif_tx_disable(netdev); 2504 2505 ixgbevf_irq_disable(adapter); 2506 2507 ixgbevf_napi_disable_all(adapter); 2508 2509 del_timer_sync(&adapter->service_timer); 2510 2511 /* disable transmits in the hardware now that interrupts are off */ 2512 for (i = 0; i < adapter->num_tx_queues; i++) { 2513 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2514 2515 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2516 IXGBE_TXDCTL_SWFLSH); 2517 } 2518 2519 for (i = 0; i < adapter->num_xdp_queues; i++) { 2520 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2521 2522 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2523 IXGBE_TXDCTL_SWFLSH); 2524 } 2525 2526 if (!pci_channel_offline(adapter->pdev)) 2527 ixgbevf_reset(adapter); 2528 2529 ixgbevf_clean_all_tx_rings(adapter); 2530 ixgbevf_clean_all_rx_rings(adapter); 2531 } 2532 2533 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2534 { 2535 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2536 msleep(1); 2537 2538 ixgbevf_down(adapter); 2539 pci_set_master(adapter->pdev); 2540 ixgbevf_up(adapter); 2541 2542 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2543 } 2544 2545 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2546 { 2547 struct ixgbe_hw *hw = &adapter->hw; 2548 struct net_device *netdev = adapter->netdev; 2549 2550 if (hw->mac.ops.reset_hw(hw)) { 2551 hw_dbg(hw, "PF still resetting\n"); 2552 } else { 2553 hw->mac.ops.init_hw(hw); 2554 ixgbevf_negotiate_api(adapter); 2555 } 2556 2557 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2558 eth_hw_addr_set(netdev, adapter->hw.mac.addr); 2559 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2560 } 2561 2562 adapter->last_reset = jiffies; 2563 } 2564 2565 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2566 int vectors) 2567 { 2568 int vector_threshold; 2569 2570 /* We'll want at least 2 (vector_threshold): 2571 * 1) TxQ[0] + RxQ[0] handler 2572 * 2) Other (Link Status Change, etc.) 2573 */ 2574 vector_threshold = MIN_MSIX_COUNT; 2575 2576 /* The more we get, the more we will assign to Tx/Rx Cleanup 2577 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2578 * Right now, we simply care about how many we'll get; we'll 2579 * set them up later while requesting irq's. 2580 */ 2581 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2582 vector_threshold, vectors); 2583 2584 if (vectors < 0) { 2585 dev_err(&adapter->pdev->dev, 2586 "Unable to allocate MSI-X interrupts\n"); 2587 kfree(adapter->msix_entries); 2588 adapter->msix_entries = NULL; 2589 return vectors; 2590 } 2591 2592 /* Adjust for only the vectors we'll use, which is minimum 2593 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2594 * vectors we were allocated. 2595 */ 2596 adapter->num_msix_vectors = vectors; 2597 2598 return 0; 2599 } 2600 2601 /** 2602 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2603 * @adapter: board private structure to initialize 2604 * 2605 * This is the top level queue allocation routine. The order here is very 2606 * important, starting with the "most" number of features turned on at once, 2607 * and ending with the smallest set of features. This way large combinations 2608 * can be allocated if they're turned on, and smaller combinations are the 2609 * fall through conditions. 2610 * 2611 **/ 2612 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2613 { 2614 struct ixgbe_hw *hw = &adapter->hw; 2615 unsigned int def_q = 0; 2616 unsigned int num_tcs = 0; 2617 int err; 2618 2619 /* Start with base case */ 2620 adapter->num_rx_queues = 1; 2621 adapter->num_tx_queues = 1; 2622 adapter->num_xdp_queues = 0; 2623 2624 spin_lock_bh(&adapter->mbx_lock); 2625 2626 /* fetch queue configuration from the PF */ 2627 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2628 2629 spin_unlock_bh(&adapter->mbx_lock); 2630 2631 if (err) 2632 return; 2633 2634 /* we need as many queues as traffic classes */ 2635 if (num_tcs > 1) { 2636 adapter->num_rx_queues = num_tcs; 2637 } else { 2638 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2639 2640 switch (hw->api_version) { 2641 case ixgbe_mbox_api_11: 2642 case ixgbe_mbox_api_12: 2643 case ixgbe_mbox_api_13: 2644 case ixgbe_mbox_api_14: 2645 case ixgbe_mbox_api_15: 2646 if (adapter->xdp_prog && 2647 hw->mac.max_tx_queues == rss) 2648 rss = rss > 3 ? 2 : 1; 2649 2650 adapter->num_rx_queues = rss; 2651 adapter->num_tx_queues = rss; 2652 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2653 break; 2654 default: 2655 break; 2656 } 2657 } 2658 } 2659 2660 /** 2661 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2662 * @adapter: board private structure to initialize 2663 * 2664 * Attempt to configure the interrupts using the best available 2665 * capabilities of the hardware and the kernel. 2666 **/ 2667 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2668 { 2669 int vector, v_budget; 2670 2671 /* It's easy to be greedy for MSI-X vectors, but it really 2672 * doesn't do us much good if we have a lot more vectors 2673 * than CPU's. So let's be conservative and only ask for 2674 * (roughly) the same number of vectors as there are CPU's. 2675 * The default is to use pairs of vectors. 2676 */ 2677 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2678 v_budget = min_t(int, v_budget, num_online_cpus()); 2679 v_budget += NON_Q_VECTORS; 2680 2681 adapter->msix_entries = kcalloc(v_budget, 2682 sizeof(struct msix_entry), GFP_KERNEL); 2683 if (!adapter->msix_entries) 2684 return -ENOMEM; 2685 2686 for (vector = 0; vector < v_budget; vector++) 2687 adapter->msix_entries[vector].entry = vector; 2688 2689 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2690 * does not support any other modes, so we will simply fail here. Note 2691 * that we clean up the msix_entries pointer else-where. 2692 */ 2693 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2694 } 2695 2696 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2697 struct ixgbevf_ring_container *head) 2698 { 2699 ring->next = head->ring; 2700 head->ring = ring; 2701 head->count++; 2702 } 2703 2704 /** 2705 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2706 * @adapter: board private structure to initialize 2707 * @v_idx: index of vector in adapter struct 2708 * @txr_count: number of Tx rings for q vector 2709 * @txr_idx: index of first Tx ring to assign 2710 * @xdp_count: total number of XDP rings to allocate 2711 * @xdp_idx: index of first XDP ring to allocate 2712 * @rxr_count: number of Rx rings for q vector 2713 * @rxr_idx: index of first Rx ring to assign 2714 * 2715 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2716 **/ 2717 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2718 int txr_count, int txr_idx, 2719 int xdp_count, int xdp_idx, 2720 int rxr_count, int rxr_idx) 2721 { 2722 struct ixgbevf_q_vector *q_vector; 2723 int reg_idx = txr_idx + xdp_idx; 2724 struct ixgbevf_ring *ring; 2725 int ring_count, size; 2726 2727 ring_count = txr_count + xdp_count + rxr_count; 2728 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2729 2730 /* allocate q_vector and rings */ 2731 q_vector = kzalloc(size, GFP_KERNEL); 2732 if (!q_vector) 2733 return -ENOMEM; 2734 2735 /* initialize NAPI */ 2736 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64); 2737 2738 /* tie q_vector and adapter together */ 2739 adapter->q_vector[v_idx] = q_vector; 2740 q_vector->adapter = adapter; 2741 q_vector->v_idx = v_idx; 2742 2743 /* initialize pointer to rings */ 2744 ring = q_vector->ring; 2745 2746 while (txr_count) { 2747 /* assign generic ring traits */ 2748 ring->dev = &adapter->pdev->dev; 2749 ring->netdev = adapter->netdev; 2750 2751 /* configure backlink on ring */ 2752 ring->q_vector = q_vector; 2753 2754 /* update q_vector Tx values */ 2755 ixgbevf_add_ring(ring, &q_vector->tx); 2756 2757 /* apply Tx specific ring traits */ 2758 ring->count = adapter->tx_ring_count; 2759 ring->queue_index = txr_idx; 2760 ring->reg_idx = reg_idx; 2761 2762 /* assign ring to adapter */ 2763 adapter->tx_ring[txr_idx] = ring; 2764 2765 /* update count and index */ 2766 txr_count--; 2767 txr_idx++; 2768 reg_idx++; 2769 2770 /* push pointer to next ring */ 2771 ring++; 2772 } 2773 2774 while (xdp_count) { 2775 /* assign generic ring traits */ 2776 ring->dev = &adapter->pdev->dev; 2777 ring->netdev = adapter->netdev; 2778 2779 /* configure backlink on ring */ 2780 ring->q_vector = q_vector; 2781 2782 /* update q_vector Tx values */ 2783 ixgbevf_add_ring(ring, &q_vector->tx); 2784 2785 /* apply Tx specific ring traits */ 2786 ring->count = adapter->tx_ring_count; 2787 ring->queue_index = xdp_idx; 2788 ring->reg_idx = reg_idx; 2789 set_ring_xdp(ring); 2790 2791 /* assign ring to adapter */ 2792 adapter->xdp_ring[xdp_idx] = ring; 2793 2794 /* update count and index */ 2795 xdp_count--; 2796 xdp_idx++; 2797 reg_idx++; 2798 2799 /* push pointer to next ring */ 2800 ring++; 2801 } 2802 2803 while (rxr_count) { 2804 /* assign generic ring traits */ 2805 ring->dev = &adapter->pdev->dev; 2806 ring->netdev = adapter->netdev; 2807 2808 /* configure backlink on ring */ 2809 ring->q_vector = q_vector; 2810 2811 /* update q_vector Rx values */ 2812 ixgbevf_add_ring(ring, &q_vector->rx); 2813 2814 /* apply Rx specific ring traits */ 2815 ring->count = adapter->rx_ring_count; 2816 ring->queue_index = rxr_idx; 2817 ring->reg_idx = rxr_idx; 2818 2819 /* assign ring to adapter */ 2820 adapter->rx_ring[rxr_idx] = ring; 2821 2822 /* update count and index */ 2823 rxr_count--; 2824 rxr_idx++; 2825 2826 /* push pointer to next ring */ 2827 ring++; 2828 } 2829 2830 return 0; 2831 } 2832 2833 /** 2834 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2835 * @adapter: board private structure to initialize 2836 * @v_idx: index of vector in adapter struct 2837 * 2838 * This function frees the memory allocated to the q_vector. In addition if 2839 * NAPI is enabled it will delete any references to the NAPI struct prior 2840 * to freeing the q_vector. 2841 **/ 2842 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2843 { 2844 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2845 struct ixgbevf_ring *ring; 2846 2847 ixgbevf_for_each_ring(ring, q_vector->tx) { 2848 if (ring_is_xdp(ring)) 2849 adapter->xdp_ring[ring->queue_index] = NULL; 2850 else 2851 adapter->tx_ring[ring->queue_index] = NULL; 2852 } 2853 2854 ixgbevf_for_each_ring(ring, q_vector->rx) 2855 adapter->rx_ring[ring->queue_index] = NULL; 2856 2857 adapter->q_vector[v_idx] = NULL; 2858 netif_napi_del(&q_vector->napi); 2859 2860 /* ixgbevf_get_stats() might access the rings on this vector, 2861 * we must wait a grace period before freeing it. 2862 */ 2863 kfree_rcu(q_vector, rcu); 2864 } 2865 2866 /** 2867 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2868 * @adapter: board private structure to initialize 2869 * 2870 * We allocate one q_vector per queue interrupt. If allocation fails we 2871 * return -ENOMEM. 2872 **/ 2873 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2874 { 2875 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2876 int rxr_remaining = adapter->num_rx_queues; 2877 int txr_remaining = adapter->num_tx_queues; 2878 int xdp_remaining = adapter->num_xdp_queues; 2879 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2880 int err; 2881 2882 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2883 for (; rxr_remaining; v_idx++, q_vectors--) { 2884 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2885 2886 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2887 0, 0, 0, 0, rqpv, rxr_idx); 2888 if (err) 2889 goto err_out; 2890 2891 /* update counts and index */ 2892 rxr_remaining -= rqpv; 2893 rxr_idx += rqpv; 2894 } 2895 } 2896 2897 for (; q_vectors; v_idx++, q_vectors--) { 2898 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2899 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2900 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2901 2902 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2903 tqpv, txr_idx, 2904 xqpv, xdp_idx, 2905 rqpv, rxr_idx); 2906 2907 if (err) 2908 goto err_out; 2909 2910 /* update counts and index */ 2911 rxr_remaining -= rqpv; 2912 rxr_idx += rqpv; 2913 txr_remaining -= tqpv; 2914 txr_idx += tqpv; 2915 xdp_remaining -= xqpv; 2916 xdp_idx += xqpv; 2917 } 2918 2919 return 0; 2920 2921 err_out: 2922 while (v_idx) { 2923 v_idx--; 2924 ixgbevf_free_q_vector(adapter, v_idx); 2925 } 2926 2927 return -ENOMEM; 2928 } 2929 2930 /** 2931 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2932 * @adapter: board private structure to initialize 2933 * 2934 * This function frees the memory allocated to the q_vectors. In addition if 2935 * NAPI is enabled it will delete any references to the NAPI struct prior 2936 * to freeing the q_vector. 2937 **/ 2938 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2939 { 2940 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2941 2942 while (q_vectors) { 2943 q_vectors--; 2944 ixgbevf_free_q_vector(adapter, q_vectors); 2945 } 2946 } 2947 2948 /** 2949 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2950 * @adapter: board private structure 2951 * 2952 **/ 2953 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2954 { 2955 if (!adapter->msix_entries) 2956 return; 2957 2958 pci_disable_msix(adapter->pdev); 2959 kfree(adapter->msix_entries); 2960 adapter->msix_entries = NULL; 2961 } 2962 2963 /** 2964 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2965 * @adapter: board private structure to initialize 2966 * 2967 **/ 2968 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2969 { 2970 int err; 2971 2972 /* Number of supported queues */ 2973 ixgbevf_set_num_queues(adapter); 2974 2975 err = ixgbevf_set_interrupt_capability(adapter); 2976 if (err) { 2977 hw_dbg(&adapter->hw, 2978 "Unable to setup interrupt capabilities\n"); 2979 goto err_set_interrupt; 2980 } 2981 2982 err = ixgbevf_alloc_q_vectors(adapter); 2983 if (err) { 2984 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2985 goto err_alloc_q_vectors; 2986 } 2987 2988 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2989 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2990 adapter->num_rx_queues, adapter->num_tx_queues, 2991 adapter->num_xdp_queues); 2992 2993 set_bit(__IXGBEVF_DOWN, &adapter->state); 2994 2995 return 0; 2996 err_alloc_q_vectors: 2997 ixgbevf_reset_interrupt_capability(adapter); 2998 err_set_interrupt: 2999 return err; 3000 } 3001 3002 /** 3003 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 3004 * @adapter: board private structure to clear interrupt scheme on 3005 * 3006 * We go through and clear interrupt specific resources and reset the structure 3007 * to pre-load conditions 3008 **/ 3009 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 3010 { 3011 adapter->num_tx_queues = 0; 3012 adapter->num_xdp_queues = 0; 3013 adapter->num_rx_queues = 0; 3014 3015 ixgbevf_free_q_vectors(adapter); 3016 ixgbevf_reset_interrupt_capability(adapter); 3017 } 3018 3019 /** 3020 * ixgbevf_sw_init - Initialize general software structures 3021 * @adapter: board private structure to initialize 3022 * 3023 * ixgbevf_sw_init initializes the Adapter private data structure. 3024 * Fields are initialized based on PCI device information and 3025 * OS network device settings (MTU size). 3026 **/ 3027 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 3028 { 3029 struct ixgbe_hw *hw = &adapter->hw; 3030 struct pci_dev *pdev = adapter->pdev; 3031 struct net_device *netdev = adapter->netdev; 3032 int err; 3033 3034 /* PCI config space info */ 3035 hw->vendor_id = pdev->vendor; 3036 hw->device_id = pdev->device; 3037 hw->revision_id = pdev->revision; 3038 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3039 hw->subsystem_device_id = pdev->subsystem_device; 3040 3041 hw->mbx.ops.init_params(hw); 3042 3043 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3044 err = ixgbevf_init_rss_key(adapter); 3045 if (err) 3046 goto out; 3047 } 3048 3049 /* assume legacy case in which PF would only give VF 2 queues */ 3050 hw->mac.max_tx_queues = 2; 3051 hw->mac.max_rx_queues = 2; 3052 3053 /* lock to protect mailbox accesses */ 3054 spin_lock_init(&adapter->mbx_lock); 3055 3056 err = hw->mac.ops.reset_hw(hw); 3057 if (err) { 3058 dev_info(&pdev->dev, 3059 "PF still in reset state. Is the PF interface up?\n"); 3060 } else { 3061 err = hw->mac.ops.init_hw(hw); 3062 if (err) { 3063 pr_err("init_shared_code failed: %d\n", err); 3064 goto out; 3065 } 3066 ixgbevf_negotiate_api(adapter); 3067 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3068 if (err) 3069 dev_info(&pdev->dev, "Error reading MAC address\n"); 3070 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3071 dev_info(&pdev->dev, 3072 "MAC address not assigned by administrator.\n"); 3073 eth_hw_addr_set(netdev, hw->mac.addr); 3074 } 3075 3076 if (!is_valid_ether_addr(netdev->dev_addr)) { 3077 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3078 eth_hw_addr_random(netdev); 3079 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3080 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3081 } 3082 3083 /* Enable dynamic interrupt throttling rates */ 3084 adapter->rx_itr_setting = 1; 3085 adapter->tx_itr_setting = 1; 3086 3087 /* set default ring sizes */ 3088 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3089 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3090 3091 adapter->link_state = true; 3092 3093 set_bit(__IXGBEVF_DOWN, &adapter->state); 3094 return 0; 3095 3096 out: 3097 return err; 3098 } 3099 3100 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3101 { \ 3102 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3103 if (current_counter < last_counter) \ 3104 counter += 0x100000000LL; \ 3105 last_counter = current_counter; \ 3106 counter &= 0xFFFFFFFF00000000LL; \ 3107 counter |= current_counter; \ 3108 } 3109 3110 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3111 { \ 3112 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3113 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3114 u64 current_counter = (current_counter_msb << 32) | \ 3115 current_counter_lsb; \ 3116 if (current_counter < last_counter) \ 3117 counter += 0x1000000000LL; \ 3118 last_counter = current_counter; \ 3119 counter &= 0xFFFFFFF000000000LL; \ 3120 counter |= current_counter; \ 3121 } 3122 /** 3123 * ixgbevf_update_stats - Update the board statistics counters. 3124 * @adapter: board private structure 3125 **/ 3126 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3127 { 3128 struct ixgbe_hw *hw = &adapter->hw; 3129 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3130 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3131 int i; 3132 3133 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3134 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3135 return; 3136 3137 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3138 adapter->stats.vfgprc); 3139 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3140 adapter->stats.vfgptc); 3141 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3142 adapter->stats.last_vfgorc, 3143 adapter->stats.vfgorc); 3144 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3145 adapter->stats.last_vfgotc, 3146 adapter->stats.vfgotc); 3147 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3148 adapter->stats.vfmprc); 3149 3150 for (i = 0; i < adapter->num_rx_queues; i++) { 3151 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3152 3153 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3154 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3155 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3156 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3157 } 3158 3159 adapter->hw_csum_rx_error = hw_csum_rx_error; 3160 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3161 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3162 adapter->alloc_rx_page = alloc_rx_page; 3163 } 3164 3165 /** 3166 * ixgbevf_service_timer - Timer Call-back 3167 * @t: pointer to timer_list struct 3168 **/ 3169 static void ixgbevf_service_timer(struct timer_list *t) 3170 { 3171 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3172 service_timer); 3173 3174 /* Reset the timer */ 3175 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3176 3177 ixgbevf_service_event_schedule(adapter); 3178 } 3179 3180 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3181 { 3182 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3183 return; 3184 3185 rtnl_lock(); 3186 /* If we're already down or resetting, just bail */ 3187 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3188 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3189 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3190 rtnl_unlock(); 3191 return; 3192 } 3193 3194 adapter->tx_timeout_count++; 3195 3196 ixgbevf_reinit_locked(adapter); 3197 rtnl_unlock(); 3198 } 3199 3200 /** 3201 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3202 * @adapter: pointer to the device adapter structure 3203 * 3204 * This function serves two purposes. First it strobes the interrupt lines 3205 * in order to make certain interrupts are occurring. Secondly it sets the 3206 * bits needed to check for TX hangs. As a result we should immediately 3207 * determine if a hang has occurred. 3208 **/ 3209 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3210 { 3211 struct ixgbe_hw *hw = &adapter->hw; 3212 u32 eics = 0; 3213 int i; 3214 3215 /* If we're down or resetting, just bail */ 3216 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3217 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3218 return; 3219 3220 /* Force detection of hung controller */ 3221 if (netif_carrier_ok(adapter->netdev)) { 3222 for (i = 0; i < adapter->num_tx_queues; i++) 3223 set_check_for_tx_hang(adapter->tx_ring[i]); 3224 for (i = 0; i < adapter->num_xdp_queues; i++) 3225 set_check_for_tx_hang(adapter->xdp_ring[i]); 3226 } 3227 3228 /* get one bit for every active Tx/Rx interrupt vector */ 3229 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3230 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3231 3232 if (qv->rx.ring || qv->tx.ring) 3233 eics |= BIT(i); 3234 } 3235 3236 /* Cause software interrupt to ensure rings are cleaned */ 3237 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3238 } 3239 3240 /** 3241 * ixgbevf_watchdog_update_link - update the link status 3242 * @adapter: pointer to the device adapter structure 3243 **/ 3244 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3245 { 3246 struct ixgbe_hw *hw = &adapter->hw; 3247 u32 link_speed = adapter->link_speed; 3248 bool link_up = adapter->link_up; 3249 s32 err; 3250 3251 spin_lock_bh(&adapter->mbx_lock); 3252 3253 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3254 3255 spin_unlock_bh(&adapter->mbx_lock); 3256 3257 /* if check for link returns error we will need to reset */ 3258 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3259 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3260 link_up = false; 3261 } 3262 3263 adapter->link_up = link_up; 3264 adapter->link_speed = link_speed; 3265 } 3266 3267 /** 3268 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3269 * print link up message 3270 * @adapter: pointer to the device adapter structure 3271 **/ 3272 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3273 { 3274 struct net_device *netdev = adapter->netdev; 3275 3276 /* only continue if link was previously down */ 3277 if (netif_carrier_ok(netdev)) 3278 return; 3279 3280 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3281 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3282 "10 Gbps" : 3283 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3284 "1 Gbps" : 3285 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3286 "100 Mbps" : 3287 "unknown speed"); 3288 3289 netif_carrier_on(netdev); 3290 } 3291 3292 /** 3293 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3294 * print link down message 3295 * @adapter: pointer to the adapter structure 3296 **/ 3297 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3298 { 3299 struct net_device *netdev = adapter->netdev; 3300 3301 adapter->link_speed = 0; 3302 3303 /* only continue if link was up previously */ 3304 if (!netif_carrier_ok(netdev)) 3305 return; 3306 3307 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3308 3309 netif_carrier_off(netdev); 3310 } 3311 3312 /** 3313 * ixgbevf_watchdog_subtask - worker thread to bring link up 3314 * @adapter: board private structure 3315 **/ 3316 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3317 { 3318 /* if interface is down do nothing */ 3319 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3320 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3321 return; 3322 3323 ixgbevf_watchdog_update_link(adapter); 3324 3325 if (adapter->link_up && adapter->link_state) 3326 ixgbevf_watchdog_link_is_up(adapter); 3327 else 3328 ixgbevf_watchdog_link_is_down(adapter); 3329 3330 ixgbevf_update_stats(adapter); 3331 } 3332 3333 /** 3334 * ixgbevf_service_task - manages and runs subtasks 3335 * @work: pointer to work_struct containing our data 3336 **/ 3337 static void ixgbevf_service_task(struct work_struct *work) 3338 { 3339 struct ixgbevf_adapter *adapter = container_of(work, 3340 struct ixgbevf_adapter, 3341 service_task); 3342 struct ixgbe_hw *hw = &adapter->hw; 3343 3344 if (IXGBE_REMOVED(hw->hw_addr)) { 3345 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3346 rtnl_lock(); 3347 ixgbevf_down(adapter); 3348 rtnl_unlock(); 3349 } 3350 return; 3351 } 3352 3353 ixgbevf_queue_reset_subtask(adapter); 3354 ixgbevf_reset_subtask(adapter); 3355 ixgbevf_watchdog_subtask(adapter); 3356 ixgbevf_check_hang_subtask(adapter); 3357 3358 ixgbevf_service_event_complete(adapter); 3359 } 3360 3361 /** 3362 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3363 * @tx_ring: Tx descriptor ring for a specific queue 3364 * 3365 * Free all transmit software resources 3366 **/ 3367 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3368 { 3369 ixgbevf_clean_tx_ring(tx_ring); 3370 3371 vfree(tx_ring->tx_buffer_info); 3372 tx_ring->tx_buffer_info = NULL; 3373 3374 /* if not set, then don't free */ 3375 if (!tx_ring->desc) 3376 return; 3377 3378 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3379 tx_ring->dma); 3380 3381 tx_ring->desc = NULL; 3382 } 3383 3384 /** 3385 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3386 * @adapter: board private structure 3387 * 3388 * Free all transmit software resources 3389 **/ 3390 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3391 { 3392 int i; 3393 3394 for (i = 0; i < adapter->num_tx_queues; i++) 3395 if (adapter->tx_ring[i]->desc) 3396 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3397 for (i = 0; i < adapter->num_xdp_queues; i++) 3398 if (adapter->xdp_ring[i]->desc) 3399 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3400 } 3401 3402 /** 3403 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3404 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3405 * 3406 * Return 0 on success, negative on failure 3407 **/ 3408 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3409 { 3410 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3411 int size; 3412 3413 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3414 tx_ring->tx_buffer_info = vmalloc(size); 3415 if (!tx_ring->tx_buffer_info) 3416 goto err; 3417 3418 u64_stats_init(&tx_ring->syncp); 3419 3420 /* round up to nearest 4K */ 3421 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3422 tx_ring->size = ALIGN(tx_ring->size, 4096); 3423 3424 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3425 &tx_ring->dma, GFP_KERNEL); 3426 if (!tx_ring->desc) 3427 goto err; 3428 3429 return 0; 3430 3431 err: 3432 vfree(tx_ring->tx_buffer_info); 3433 tx_ring->tx_buffer_info = NULL; 3434 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3435 return -ENOMEM; 3436 } 3437 3438 /** 3439 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3440 * @adapter: board private structure 3441 * 3442 * If this function returns with an error, then it's possible one or 3443 * more of the rings is populated (while the rest are not). It is the 3444 * callers duty to clean those orphaned rings. 3445 * 3446 * Return 0 on success, negative on failure 3447 **/ 3448 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3449 { 3450 int i, j = 0, err = 0; 3451 3452 for (i = 0; i < adapter->num_tx_queues; i++) { 3453 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3454 if (!err) 3455 continue; 3456 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3457 goto err_setup_tx; 3458 } 3459 3460 for (j = 0; j < adapter->num_xdp_queues; j++) { 3461 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3462 if (!err) 3463 continue; 3464 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3465 goto err_setup_tx; 3466 } 3467 3468 return 0; 3469 err_setup_tx: 3470 /* rewind the index freeing the rings as we go */ 3471 while (j--) 3472 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3473 while (i--) 3474 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3475 3476 return err; 3477 } 3478 3479 /** 3480 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3481 * @adapter: board private structure 3482 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3483 * 3484 * Returns 0 on success, negative on failure 3485 **/ 3486 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3487 struct ixgbevf_ring *rx_ring) 3488 { 3489 int size; 3490 3491 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3492 rx_ring->rx_buffer_info = vmalloc(size); 3493 if (!rx_ring->rx_buffer_info) 3494 goto err; 3495 3496 u64_stats_init(&rx_ring->syncp); 3497 3498 /* Round up to nearest 4K */ 3499 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3500 rx_ring->size = ALIGN(rx_ring->size, 4096); 3501 3502 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3503 &rx_ring->dma, GFP_KERNEL); 3504 3505 if (!rx_ring->desc) 3506 goto err; 3507 3508 /* XDP RX-queue info */ 3509 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3510 rx_ring->queue_index, 0) < 0) 3511 goto err; 3512 3513 rx_ring->xdp_prog = adapter->xdp_prog; 3514 3515 return 0; 3516 err: 3517 vfree(rx_ring->rx_buffer_info); 3518 rx_ring->rx_buffer_info = NULL; 3519 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3520 return -ENOMEM; 3521 } 3522 3523 /** 3524 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3525 * @adapter: board private structure 3526 * 3527 * If this function returns with an error, then it's possible one or 3528 * more of the rings is populated (while the rest are not). It is the 3529 * callers duty to clean those orphaned rings. 3530 * 3531 * Return 0 on success, negative on failure 3532 **/ 3533 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3534 { 3535 int i, err = 0; 3536 3537 for (i = 0; i < adapter->num_rx_queues; i++) { 3538 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3539 if (!err) 3540 continue; 3541 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3542 goto err_setup_rx; 3543 } 3544 3545 return 0; 3546 err_setup_rx: 3547 /* rewind the index freeing the rings as we go */ 3548 while (i--) 3549 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3550 return err; 3551 } 3552 3553 /** 3554 * ixgbevf_free_rx_resources - Free Rx Resources 3555 * @rx_ring: ring to clean the resources from 3556 * 3557 * Free all receive software resources 3558 **/ 3559 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3560 { 3561 ixgbevf_clean_rx_ring(rx_ring); 3562 3563 rx_ring->xdp_prog = NULL; 3564 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3565 vfree(rx_ring->rx_buffer_info); 3566 rx_ring->rx_buffer_info = NULL; 3567 3568 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3569 rx_ring->dma); 3570 3571 rx_ring->desc = NULL; 3572 } 3573 3574 /** 3575 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3576 * @adapter: board private structure 3577 * 3578 * Free all receive software resources 3579 **/ 3580 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3581 { 3582 int i; 3583 3584 for (i = 0; i < adapter->num_rx_queues; i++) 3585 if (adapter->rx_ring[i]->desc) 3586 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3587 } 3588 3589 /** 3590 * ixgbevf_open - Called when a network interface is made active 3591 * @netdev: network interface device structure 3592 * 3593 * Returns 0 on success, negative value on failure 3594 * 3595 * The open entry point is called when a network interface is made 3596 * active by the system (IFF_UP). At this point all resources needed 3597 * for transmit and receive operations are allocated, the interrupt 3598 * handler is registered with the OS, the watchdog timer is started, 3599 * and the stack is notified that the interface is ready. 3600 **/ 3601 int ixgbevf_open(struct net_device *netdev) 3602 { 3603 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3604 struct ixgbe_hw *hw = &adapter->hw; 3605 int err; 3606 3607 /* A previous failure to open the device because of a lack of 3608 * available MSIX vector resources may have reset the number 3609 * of msix vectors variable to zero. The only way to recover 3610 * is to unload/reload the driver and hope that the system has 3611 * been able to recover some MSIX vector resources. 3612 */ 3613 if (!adapter->num_msix_vectors) 3614 return -ENOMEM; 3615 3616 if (hw->adapter_stopped) { 3617 ixgbevf_reset(adapter); 3618 /* if adapter is still stopped then PF isn't up and 3619 * the VF can't start. 3620 */ 3621 if (hw->adapter_stopped) { 3622 err = IXGBE_ERR_MBX; 3623 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3624 goto err_setup_reset; 3625 } 3626 } 3627 3628 /* disallow open during test */ 3629 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3630 return -EBUSY; 3631 3632 netif_carrier_off(netdev); 3633 3634 /* allocate transmit descriptors */ 3635 err = ixgbevf_setup_all_tx_resources(adapter); 3636 if (err) 3637 goto err_setup_tx; 3638 3639 /* allocate receive descriptors */ 3640 err = ixgbevf_setup_all_rx_resources(adapter); 3641 if (err) 3642 goto err_setup_rx; 3643 3644 ixgbevf_configure(adapter); 3645 3646 err = ixgbevf_request_irq(adapter); 3647 if (err) 3648 goto err_req_irq; 3649 3650 /* Notify the stack of the actual queue counts. */ 3651 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3652 if (err) 3653 goto err_set_queues; 3654 3655 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3656 if (err) 3657 goto err_set_queues; 3658 3659 ixgbevf_up_complete(adapter); 3660 3661 return 0; 3662 3663 err_set_queues: 3664 ixgbevf_free_irq(adapter); 3665 err_req_irq: 3666 ixgbevf_free_all_rx_resources(adapter); 3667 err_setup_rx: 3668 ixgbevf_free_all_tx_resources(adapter); 3669 err_setup_tx: 3670 ixgbevf_reset(adapter); 3671 err_setup_reset: 3672 3673 return err; 3674 } 3675 3676 /** 3677 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3678 * @adapter: the private adapter struct 3679 * 3680 * This function should contain the necessary work common to both suspending 3681 * and closing of the device. 3682 */ 3683 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3684 { 3685 ixgbevf_down(adapter); 3686 ixgbevf_free_irq(adapter); 3687 ixgbevf_free_all_tx_resources(adapter); 3688 ixgbevf_free_all_rx_resources(adapter); 3689 } 3690 3691 /** 3692 * ixgbevf_close - Disables a network interface 3693 * @netdev: network interface device structure 3694 * 3695 * Returns 0, this is not allowed to fail 3696 * 3697 * The close entry point is called when an interface is de-activated 3698 * by the OS. The hardware is still under the drivers control, but 3699 * needs to be disabled. A global MAC reset is issued to stop the 3700 * hardware, and all transmit and receive resources are freed. 3701 **/ 3702 int ixgbevf_close(struct net_device *netdev) 3703 { 3704 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3705 3706 if (netif_device_present(netdev)) 3707 ixgbevf_close_suspend(adapter); 3708 3709 return 0; 3710 } 3711 3712 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3713 { 3714 struct net_device *dev = adapter->netdev; 3715 3716 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3717 &adapter->state)) 3718 return; 3719 3720 /* if interface is down do nothing */ 3721 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3722 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3723 return; 3724 3725 /* Hardware has to reinitialize queues and interrupts to 3726 * match packet buffer alignment. Unfortunately, the 3727 * hardware is not flexible enough to do this dynamically. 3728 */ 3729 rtnl_lock(); 3730 3731 if (netif_running(dev)) 3732 ixgbevf_close(dev); 3733 3734 ixgbevf_clear_interrupt_scheme(adapter); 3735 ixgbevf_init_interrupt_scheme(adapter); 3736 3737 if (netif_running(dev)) 3738 ixgbevf_open(dev); 3739 3740 rtnl_unlock(); 3741 } 3742 3743 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3744 u32 vlan_macip_lens, u32 fceof_saidx, 3745 u32 type_tucmd, u32 mss_l4len_idx) 3746 { 3747 struct ixgbe_adv_tx_context_desc *context_desc; 3748 u16 i = tx_ring->next_to_use; 3749 3750 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3751 3752 i++; 3753 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3754 3755 /* set bits to identify this as an advanced context descriptor */ 3756 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3757 3758 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3759 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); 3760 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3761 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3762 } 3763 3764 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3765 struct ixgbevf_tx_buffer *first, 3766 u8 *hdr_len, 3767 struct ixgbevf_ipsec_tx_data *itd) 3768 { 3769 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3770 struct sk_buff *skb = first->skb; 3771 union { 3772 struct iphdr *v4; 3773 struct ipv6hdr *v6; 3774 unsigned char *hdr; 3775 } ip; 3776 union { 3777 struct tcphdr *tcp; 3778 unsigned char *hdr; 3779 } l4; 3780 u32 paylen, l4_offset; 3781 u32 fceof_saidx = 0; 3782 int err; 3783 3784 if (skb->ip_summed != CHECKSUM_PARTIAL) 3785 return 0; 3786 3787 if (!skb_is_gso(skb)) 3788 return 0; 3789 3790 err = skb_cow_head(skb, 0); 3791 if (err < 0) 3792 return err; 3793 3794 if (eth_p_mpls(first->protocol)) 3795 ip.hdr = skb_inner_network_header(skb); 3796 else 3797 ip.hdr = skb_network_header(skb); 3798 l4.hdr = skb_checksum_start(skb); 3799 3800 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3801 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3802 3803 /* initialize outer IP header fields */ 3804 if (ip.v4->version == 4) { 3805 unsigned char *csum_start = skb_checksum_start(skb); 3806 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3807 int len = csum_start - trans_start; 3808 3809 /* IP header will have to cancel out any data that 3810 * is not a part of the outer IP header, so set to 3811 * a reverse csum if needed, else init check to 0. 3812 */ 3813 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? 3814 csum_fold(csum_partial(trans_start, 3815 len, 0)) : 0; 3816 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3817 3818 ip.v4->tot_len = 0; 3819 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3820 IXGBE_TX_FLAGS_CSUM | 3821 IXGBE_TX_FLAGS_IPV4; 3822 } else { 3823 ip.v6->payload_len = 0; 3824 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3825 IXGBE_TX_FLAGS_CSUM; 3826 } 3827 3828 /* determine offset of inner transport header */ 3829 l4_offset = l4.hdr - skb->data; 3830 3831 /* compute length of segmentation header */ 3832 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3833 3834 /* remove payload length from inner checksum */ 3835 paylen = skb->len - l4_offset; 3836 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen)); 3837 3838 /* update gso size and bytecount with header size */ 3839 first->gso_segs = skb_shinfo(skb)->gso_segs; 3840 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3841 3842 /* mss_l4len_id: use 1 as index for TSO */ 3843 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3844 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3845 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3846 3847 fceof_saidx |= itd->pfsa; 3848 type_tucmd |= itd->flags | itd->trailer_len; 3849 3850 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3851 vlan_macip_lens = l4.hdr - ip.hdr; 3852 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3853 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3854 3855 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 3856 mss_l4len_idx); 3857 3858 return 1; 3859 } 3860 3861 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3862 struct ixgbevf_tx_buffer *first, 3863 struct ixgbevf_ipsec_tx_data *itd) 3864 { 3865 struct sk_buff *skb = first->skb; 3866 u32 vlan_macip_lens = 0; 3867 u32 fceof_saidx = 0; 3868 u32 type_tucmd = 0; 3869 3870 if (skb->ip_summed != CHECKSUM_PARTIAL) 3871 goto no_csum; 3872 3873 switch (skb->csum_offset) { 3874 case offsetof(struct tcphdr, check): 3875 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3876 fallthrough; 3877 case offsetof(struct udphdr, check): 3878 break; 3879 case offsetof(struct sctphdr, checksum): 3880 /* validate that this is actually an SCTP request */ 3881 if (skb_csum_is_sctp(skb)) { 3882 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3883 break; 3884 } 3885 fallthrough; 3886 default: 3887 skb_checksum_help(skb); 3888 goto no_csum; 3889 } 3890 3891 if (first->protocol == htons(ETH_P_IP)) 3892 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3893 3894 /* update TX checksum flag */ 3895 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3896 vlan_macip_lens = skb_checksum_start_offset(skb) - 3897 skb_network_offset(skb); 3898 no_csum: 3899 /* vlan_macip_lens: MACLEN, VLAN tag */ 3900 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3901 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3902 3903 fceof_saidx |= itd->pfsa; 3904 type_tucmd |= itd->flags | itd->trailer_len; 3905 3906 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3907 fceof_saidx, type_tucmd, 0); 3908 } 3909 3910 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3911 { 3912 /* set type for advanced descriptor with frame checksum insertion */ 3913 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3914 IXGBE_ADVTXD_DCMD_IFCS | 3915 IXGBE_ADVTXD_DCMD_DEXT); 3916 3917 /* set HW VLAN bit if VLAN is present */ 3918 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3919 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3920 3921 /* set segmentation enable bits for TSO/FSO */ 3922 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3923 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3924 3925 return cmd_type; 3926 } 3927 3928 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3929 u32 tx_flags, unsigned int paylen) 3930 { 3931 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3932 3933 /* enable L4 checksum for TSO and TX checksum offload */ 3934 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3935 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3936 3937 /* enble IPv4 checksum for TSO */ 3938 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3939 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3940 3941 /* enable IPsec */ 3942 if (tx_flags & IXGBE_TX_FLAGS_IPSEC) 3943 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); 3944 3945 /* use index 1 context for TSO/FSO/FCOE/IPSEC */ 3946 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) 3947 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3948 3949 /* Check Context must be set if Tx switch is enabled, which it 3950 * always is for case where virtual functions are running 3951 */ 3952 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3953 3954 tx_desc->read.olinfo_status = olinfo_status; 3955 } 3956 3957 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3958 struct ixgbevf_tx_buffer *first, 3959 const u8 hdr_len) 3960 { 3961 struct sk_buff *skb = first->skb; 3962 struct ixgbevf_tx_buffer *tx_buffer; 3963 union ixgbe_adv_tx_desc *tx_desc; 3964 skb_frag_t *frag; 3965 dma_addr_t dma; 3966 unsigned int data_len, size; 3967 u32 tx_flags = first->tx_flags; 3968 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3969 u16 i = tx_ring->next_to_use; 3970 3971 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3972 3973 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3974 3975 size = skb_headlen(skb); 3976 data_len = skb->data_len; 3977 3978 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3979 3980 tx_buffer = first; 3981 3982 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3983 if (dma_mapping_error(tx_ring->dev, dma)) 3984 goto dma_error; 3985 3986 /* record length, and DMA address */ 3987 dma_unmap_len_set(tx_buffer, len, size); 3988 dma_unmap_addr_set(tx_buffer, dma, dma); 3989 3990 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3991 3992 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3993 tx_desc->read.cmd_type_len = 3994 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3995 3996 i++; 3997 tx_desc++; 3998 if (i == tx_ring->count) { 3999 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4000 i = 0; 4001 } 4002 tx_desc->read.olinfo_status = 0; 4003 4004 dma += IXGBE_MAX_DATA_PER_TXD; 4005 size -= IXGBE_MAX_DATA_PER_TXD; 4006 4007 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4008 } 4009 4010 if (likely(!data_len)) 4011 break; 4012 4013 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 4014 4015 i++; 4016 tx_desc++; 4017 if (i == tx_ring->count) { 4018 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4019 i = 0; 4020 } 4021 tx_desc->read.olinfo_status = 0; 4022 4023 size = skb_frag_size(frag); 4024 data_len -= size; 4025 4026 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 4027 DMA_TO_DEVICE); 4028 4029 tx_buffer = &tx_ring->tx_buffer_info[i]; 4030 } 4031 4032 /* write last descriptor with RS and EOP bits */ 4033 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 4034 tx_desc->read.cmd_type_len = cmd_type; 4035 4036 /* set the timestamp */ 4037 first->time_stamp = jiffies; 4038 4039 skb_tx_timestamp(skb); 4040 4041 /* Force memory writes to complete before letting h/w know there 4042 * are new descriptors to fetch. (Only applicable for weak-ordered 4043 * memory model archs, such as IA-64). 4044 * 4045 * We also need this memory barrier (wmb) to make certain all of the 4046 * status bits have been updated before next_to_watch is written. 4047 */ 4048 wmb(); 4049 4050 /* set next_to_watch value indicating a packet is present */ 4051 first->next_to_watch = tx_desc; 4052 4053 i++; 4054 if (i == tx_ring->count) 4055 i = 0; 4056 4057 tx_ring->next_to_use = i; 4058 4059 /* notify HW of packet */ 4060 ixgbevf_write_tail(tx_ring, i); 4061 4062 return; 4063 dma_error: 4064 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4065 tx_buffer = &tx_ring->tx_buffer_info[i]; 4066 4067 /* clear dma mappings for failed tx_buffer_info map */ 4068 while (tx_buffer != first) { 4069 if (dma_unmap_len(tx_buffer, len)) 4070 dma_unmap_page(tx_ring->dev, 4071 dma_unmap_addr(tx_buffer, dma), 4072 dma_unmap_len(tx_buffer, len), 4073 DMA_TO_DEVICE); 4074 dma_unmap_len_set(tx_buffer, len, 0); 4075 4076 if (i-- == 0) 4077 i += tx_ring->count; 4078 tx_buffer = &tx_ring->tx_buffer_info[i]; 4079 } 4080 4081 if (dma_unmap_len(tx_buffer, len)) 4082 dma_unmap_single(tx_ring->dev, 4083 dma_unmap_addr(tx_buffer, dma), 4084 dma_unmap_len(tx_buffer, len), 4085 DMA_TO_DEVICE); 4086 dma_unmap_len_set(tx_buffer, len, 0); 4087 4088 dev_kfree_skb_any(tx_buffer->skb); 4089 tx_buffer->skb = NULL; 4090 4091 tx_ring->next_to_use = i; 4092 } 4093 4094 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4095 { 4096 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4097 /* Herbert's original patch had: 4098 * smp_mb__after_netif_stop_queue(); 4099 * but since that doesn't exist yet, just open code it. 4100 */ 4101 smp_mb(); 4102 4103 /* We need to check again in a case another CPU has just 4104 * made room available. 4105 */ 4106 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4107 return -EBUSY; 4108 4109 /* A reprieve! - use start_queue because it doesn't call schedule */ 4110 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4111 ++tx_ring->tx_stats.restart_queue; 4112 4113 return 0; 4114 } 4115 4116 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4117 { 4118 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4119 return 0; 4120 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4121 } 4122 4123 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4124 struct ixgbevf_ring *tx_ring) 4125 { 4126 struct ixgbevf_tx_buffer *first; 4127 int tso; 4128 u32 tx_flags = 0; 4129 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4130 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; 4131 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4132 unsigned short f; 4133 #endif 4134 u8 hdr_len = 0; 4135 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4136 4137 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4138 dev_kfree_skb_any(skb); 4139 return NETDEV_TX_OK; 4140 } 4141 4142 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4143 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4144 * + 2 desc gap to keep tail from touching head, 4145 * + 1 desc for context descriptor, 4146 * otherwise try next time 4147 */ 4148 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4149 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 4150 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 4151 4152 count += TXD_USE_COUNT(skb_frag_size(frag)); 4153 } 4154 #else 4155 count += skb_shinfo(skb)->nr_frags; 4156 #endif 4157 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4158 tx_ring->tx_stats.tx_busy++; 4159 return NETDEV_TX_BUSY; 4160 } 4161 4162 /* record the location of the first descriptor for this packet */ 4163 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4164 first->skb = skb; 4165 first->bytecount = skb->len; 4166 first->gso_segs = 1; 4167 4168 if (skb_vlan_tag_present(skb)) { 4169 tx_flags |= skb_vlan_tag_get(skb); 4170 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4171 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4172 } 4173 4174 /* record initial flags and protocol */ 4175 first->tx_flags = tx_flags; 4176 first->protocol = vlan_get_protocol(skb); 4177 4178 #ifdef CONFIG_IXGBEVF_IPSEC 4179 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) 4180 goto out_drop; 4181 #endif 4182 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); 4183 if (tso < 0) 4184 goto out_drop; 4185 else if (!tso) 4186 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); 4187 4188 ixgbevf_tx_map(tx_ring, first, hdr_len); 4189 4190 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4191 4192 return NETDEV_TX_OK; 4193 4194 out_drop: 4195 dev_kfree_skb_any(first->skb); 4196 first->skb = NULL; 4197 4198 return NETDEV_TX_OK; 4199 } 4200 4201 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4202 { 4203 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4204 struct ixgbevf_ring *tx_ring; 4205 4206 if (skb->len <= 0) { 4207 dev_kfree_skb_any(skb); 4208 return NETDEV_TX_OK; 4209 } 4210 4211 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4212 * in order to meet this minimum size requirement. 4213 */ 4214 if (skb->len < 17) { 4215 if (skb_padto(skb, 17)) 4216 return NETDEV_TX_OK; 4217 skb->len = 17; 4218 } 4219 4220 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4221 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4222 } 4223 4224 /** 4225 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4226 * @netdev: network interface device structure 4227 * @p: pointer to an address structure 4228 * 4229 * Returns 0 on success, negative on failure 4230 **/ 4231 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4232 { 4233 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4234 struct ixgbe_hw *hw = &adapter->hw; 4235 struct sockaddr *addr = p; 4236 int err; 4237 4238 if (!is_valid_ether_addr(addr->sa_data)) 4239 return -EADDRNOTAVAIL; 4240 4241 spin_lock_bh(&adapter->mbx_lock); 4242 4243 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4244 4245 spin_unlock_bh(&adapter->mbx_lock); 4246 4247 if (err) 4248 return -EPERM; 4249 4250 ether_addr_copy(hw->mac.addr, addr->sa_data); 4251 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4252 eth_hw_addr_set(netdev, addr->sa_data); 4253 4254 return 0; 4255 } 4256 4257 /** 4258 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4259 * @netdev: network interface device structure 4260 * @new_mtu: new value for maximum frame size 4261 * 4262 * Returns 0 on success, negative on failure 4263 **/ 4264 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4265 { 4266 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4267 struct ixgbe_hw *hw = &adapter->hw; 4268 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4269 int ret; 4270 4271 /* prevent MTU being changed to a size unsupported by XDP */ 4272 if (adapter->xdp_prog) { 4273 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4274 return -EPERM; 4275 } 4276 4277 spin_lock_bh(&adapter->mbx_lock); 4278 /* notify the PF of our intent to use this size of frame */ 4279 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4280 spin_unlock_bh(&adapter->mbx_lock); 4281 if (ret) 4282 return -EINVAL; 4283 4284 hw_dbg(hw, "changing MTU from %d to %d\n", 4285 netdev->mtu, new_mtu); 4286 4287 /* must set new MTU before calling down or up */ 4288 netdev->mtu = new_mtu; 4289 4290 if (netif_running(netdev)) 4291 ixgbevf_reinit_locked(adapter); 4292 4293 return 0; 4294 } 4295 4296 static int __maybe_unused ixgbevf_suspend(struct device *dev_d) 4297 { 4298 struct net_device *netdev = dev_get_drvdata(dev_d); 4299 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4300 4301 rtnl_lock(); 4302 netif_device_detach(netdev); 4303 4304 if (netif_running(netdev)) 4305 ixgbevf_close_suspend(adapter); 4306 4307 ixgbevf_clear_interrupt_scheme(adapter); 4308 rtnl_unlock(); 4309 4310 return 0; 4311 } 4312 4313 static int __maybe_unused ixgbevf_resume(struct device *dev_d) 4314 { 4315 struct pci_dev *pdev = to_pci_dev(dev_d); 4316 struct net_device *netdev = pci_get_drvdata(pdev); 4317 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4318 u32 err; 4319 4320 adapter->hw.hw_addr = adapter->io_addr; 4321 smp_mb__before_atomic(); 4322 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4323 pci_set_master(pdev); 4324 4325 ixgbevf_reset(adapter); 4326 4327 rtnl_lock(); 4328 err = ixgbevf_init_interrupt_scheme(adapter); 4329 if (!err && netif_running(netdev)) 4330 err = ixgbevf_open(netdev); 4331 rtnl_unlock(); 4332 if (err) 4333 return err; 4334 4335 netif_device_attach(netdev); 4336 4337 return err; 4338 } 4339 4340 static void ixgbevf_shutdown(struct pci_dev *pdev) 4341 { 4342 ixgbevf_suspend(&pdev->dev); 4343 } 4344 4345 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4346 const struct ixgbevf_ring *ring) 4347 { 4348 u64 bytes, packets; 4349 unsigned int start; 4350 4351 if (ring) { 4352 do { 4353 start = u64_stats_fetch_begin_irq(&ring->syncp); 4354 bytes = ring->stats.bytes; 4355 packets = ring->stats.packets; 4356 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4357 stats->tx_bytes += bytes; 4358 stats->tx_packets += packets; 4359 } 4360 } 4361 4362 static void ixgbevf_get_stats(struct net_device *netdev, 4363 struct rtnl_link_stats64 *stats) 4364 { 4365 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4366 unsigned int start; 4367 u64 bytes, packets; 4368 const struct ixgbevf_ring *ring; 4369 int i; 4370 4371 ixgbevf_update_stats(adapter); 4372 4373 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4374 4375 rcu_read_lock(); 4376 for (i = 0; i < adapter->num_rx_queues; i++) { 4377 ring = adapter->rx_ring[i]; 4378 do { 4379 start = u64_stats_fetch_begin_irq(&ring->syncp); 4380 bytes = ring->stats.bytes; 4381 packets = ring->stats.packets; 4382 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4383 stats->rx_bytes += bytes; 4384 stats->rx_packets += packets; 4385 } 4386 4387 for (i = 0; i < adapter->num_tx_queues; i++) { 4388 ring = adapter->tx_ring[i]; 4389 ixgbevf_get_tx_ring_stats(stats, ring); 4390 } 4391 4392 for (i = 0; i < adapter->num_xdp_queues; i++) { 4393 ring = adapter->xdp_ring[i]; 4394 ixgbevf_get_tx_ring_stats(stats, ring); 4395 } 4396 rcu_read_unlock(); 4397 } 4398 4399 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4400 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4401 4402 static netdev_features_t 4403 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4404 netdev_features_t features) 4405 { 4406 unsigned int network_hdr_len, mac_hdr_len; 4407 4408 /* Make certain the headers can be described by a context descriptor */ 4409 mac_hdr_len = skb_network_header(skb) - skb->data; 4410 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4411 return features & ~(NETIF_F_HW_CSUM | 4412 NETIF_F_SCTP_CRC | 4413 NETIF_F_HW_VLAN_CTAG_TX | 4414 NETIF_F_TSO | 4415 NETIF_F_TSO6); 4416 4417 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4418 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4419 return features & ~(NETIF_F_HW_CSUM | 4420 NETIF_F_SCTP_CRC | 4421 NETIF_F_TSO | 4422 NETIF_F_TSO6); 4423 4424 /* We can only support IPV4 TSO in tunnels if we can mangle the 4425 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4426 */ 4427 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4428 features &= ~NETIF_F_TSO; 4429 4430 return features; 4431 } 4432 4433 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4434 { 4435 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4436 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4437 struct bpf_prog *old_prog; 4438 4439 /* verify ixgbevf ring attributes are sufficient for XDP */ 4440 for (i = 0; i < adapter->num_rx_queues; i++) { 4441 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4442 4443 if (frame_size > ixgbevf_rx_bufsz(ring)) 4444 return -EINVAL; 4445 } 4446 4447 old_prog = xchg(&adapter->xdp_prog, prog); 4448 4449 /* If transitioning XDP modes reconfigure rings */ 4450 if (!!prog != !!old_prog) { 4451 /* Hardware has to reinitialize queues and interrupts to 4452 * match packet buffer alignment. Unfortunately, the 4453 * hardware is not flexible enough to do this dynamically. 4454 */ 4455 if (netif_running(dev)) 4456 ixgbevf_close(dev); 4457 4458 ixgbevf_clear_interrupt_scheme(adapter); 4459 ixgbevf_init_interrupt_scheme(adapter); 4460 4461 if (netif_running(dev)) 4462 ixgbevf_open(dev); 4463 } else { 4464 for (i = 0; i < adapter->num_rx_queues; i++) 4465 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4466 } 4467 4468 if (old_prog) 4469 bpf_prog_put(old_prog); 4470 4471 return 0; 4472 } 4473 4474 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4475 { 4476 switch (xdp->command) { 4477 case XDP_SETUP_PROG: 4478 return ixgbevf_xdp_setup(dev, xdp->prog); 4479 default: 4480 return -EINVAL; 4481 } 4482 } 4483 4484 static const struct net_device_ops ixgbevf_netdev_ops = { 4485 .ndo_open = ixgbevf_open, 4486 .ndo_stop = ixgbevf_close, 4487 .ndo_start_xmit = ixgbevf_xmit_frame, 4488 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4489 .ndo_get_stats64 = ixgbevf_get_stats, 4490 .ndo_validate_addr = eth_validate_addr, 4491 .ndo_set_mac_address = ixgbevf_set_mac, 4492 .ndo_change_mtu = ixgbevf_change_mtu, 4493 .ndo_tx_timeout = ixgbevf_tx_timeout, 4494 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4495 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4496 .ndo_features_check = ixgbevf_features_check, 4497 .ndo_bpf = ixgbevf_xdp, 4498 }; 4499 4500 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4501 { 4502 dev->netdev_ops = &ixgbevf_netdev_ops; 4503 ixgbevf_set_ethtool_ops(dev); 4504 dev->watchdog_timeo = 5 * HZ; 4505 } 4506 4507 /** 4508 * ixgbevf_probe - Device Initialization Routine 4509 * @pdev: PCI device information struct 4510 * @ent: entry in ixgbevf_pci_tbl 4511 * 4512 * Returns 0 on success, negative on failure 4513 * 4514 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4515 * The OS initialization, configuring of the adapter private structure, 4516 * and a hardware reset occur. 4517 **/ 4518 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4519 { 4520 struct net_device *netdev; 4521 struct ixgbevf_adapter *adapter = NULL; 4522 struct ixgbe_hw *hw = NULL; 4523 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4524 bool disable_dev = false; 4525 int err; 4526 4527 err = pci_enable_device(pdev); 4528 if (err) 4529 return err; 4530 4531 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 4532 if (err) { 4533 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4534 goto err_dma; 4535 } 4536 4537 err = pci_request_regions(pdev, ixgbevf_driver_name); 4538 if (err) { 4539 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4540 goto err_pci_reg; 4541 } 4542 4543 pci_set_master(pdev); 4544 4545 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4546 MAX_TX_QUEUES); 4547 if (!netdev) { 4548 err = -ENOMEM; 4549 goto err_alloc_etherdev; 4550 } 4551 4552 SET_NETDEV_DEV(netdev, &pdev->dev); 4553 4554 adapter = netdev_priv(netdev); 4555 4556 adapter->netdev = netdev; 4557 adapter->pdev = pdev; 4558 hw = &adapter->hw; 4559 hw->back = adapter; 4560 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4561 4562 /* call save state here in standalone driver because it relies on 4563 * adapter struct to exist, and needs to call netdev_priv 4564 */ 4565 pci_save_state(pdev); 4566 4567 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4568 pci_resource_len(pdev, 0)); 4569 adapter->io_addr = hw->hw_addr; 4570 if (!hw->hw_addr) { 4571 err = -EIO; 4572 goto err_ioremap; 4573 } 4574 4575 ixgbevf_assign_netdev_ops(netdev); 4576 4577 /* Setup HW API */ 4578 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4579 hw->mac.type = ii->mac; 4580 4581 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops_legacy, 4582 sizeof(struct ixgbe_mbx_operations)); 4583 4584 /* setup the private structure */ 4585 err = ixgbevf_sw_init(adapter); 4586 if (err) 4587 goto err_sw_init; 4588 4589 /* The HW MAC address was set and/or determined in sw_init */ 4590 if (!is_valid_ether_addr(netdev->dev_addr)) { 4591 pr_err("invalid MAC address\n"); 4592 err = -EIO; 4593 goto err_sw_init; 4594 } 4595 4596 netdev->hw_features = NETIF_F_SG | 4597 NETIF_F_TSO | 4598 NETIF_F_TSO6 | 4599 NETIF_F_RXCSUM | 4600 NETIF_F_HW_CSUM | 4601 NETIF_F_SCTP_CRC; 4602 4603 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4604 NETIF_F_GSO_GRE_CSUM | \ 4605 NETIF_F_GSO_IPXIP4 | \ 4606 NETIF_F_GSO_IPXIP6 | \ 4607 NETIF_F_GSO_UDP_TUNNEL | \ 4608 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4609 4610 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4611 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4612 IXGBEVF_GSO_PARTIAL_FEATURES; 4613 4614 netdev->features = netdev->hw_features | NETIF_F_HIGHDMA; 4615 4616 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4617 netdev->mpls_features |= NETIF_F_SG | 4618 NETIF_F_TSO | 4619 NETIF_F_TSO6 | 4620 NETIF_F_HW_CSUM; 4621 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4622 netdev->hw_enc_features |= netdev->vlan_features; 4623 4624 /* set this bit last since it cannot be part of vlan_features */ 4625 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4626 NETIF_F_HW_VLAN_CTAG_RX | 4627 NETIF_F_HW_VLAN_CTAG_TX; 4628 4629 netdev->priv_flags |= IFF_UNICAST_FLT; 4630 4631 /* MTU range: 68 - 1504 or 9710 */ 4632 netdev->min_mtu = ETH_MIN_MTU; 4633 switch (adapter->hw.api_version) { 4634 case ixgbe_mbox_api_11: 4635 case ixgbe_mbox_api_12: 4636 case ixgbe_mbox_api_13: 4637 case ixgbe_mbox_api_14: 4638 case ixgbe_mbox_api_15: 4639 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4640 (ETH_HLEN + ETH_FCS_LEN); 4641 break; 4642 default: 4643 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4644 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4645 (ETH_HLEN + ETH_FCS_LEN); 4646 else 4647 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4648 break; 4649 } 4650 4651 if (IXGBE_REMOVED(hw->hw_addr)) { 4652 err = -EIO; 4653 goto err_sw_init; 4654 } 4655 4656 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4657 4658 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4659 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4660 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4661 4662 err = ixgbevf_init_interrupt_scheme(adapter); 4663 if (err) 4664 goto err_sw_init; 4665 4666 strcpy(netdev->name, "eth%d"); 4667 4668 err = register_netdev(netdev); 4669 if (err) 4670 goto err_register; 4671 4672 pci_set_drvdata(pdev, netdev); 4673 netif_carrier_off(netdev); 4674 ixgbevf_init_ipsec_offload(adapter); 4675 4676 ixgbevf_init_last_counter_stats(adapter); 4677 4678 /* print the VF info */ 4679 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4680 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4681 4682 switch (hw->mac.type) { 4683 case ixgbe_mac_X550_vf: 4684 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4685 break; 4686 case ixgbe_mac_X540_vf: 4687 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4688 break; 4689 case ixgbe_mac_82599_vf: 4690 default: 4691 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4692 break; 4693 } 4694 4695 return 0; 4696 4697 err_register: 4698 ixgbevf_clear_interrupt_scheme(adapter); 4699 err_sw_init: 4700 ixgbevf_reset_interrupt_capability(adapter); 4701 iounmap(adapter->io_addr); 4702 kfree(adapter->rss_key); 4703 err_ioremap: 4704 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4705 free_netdev(netdev); 4706 err_alloc_etherdev: 4707 pci_release_regions(pdev); 4708 err_pci_reg: 4709 err_dma: 4710 if (!adapter || disable_dev) 4711 pci_disable_device(pdev); 4712 return err; 4713 } 4714 4715 /** 4716 * ixgbevf_remove - Device Removal Routine 4717 * @pdev: PCI device information struct 4718 * 4719 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4720 * that it should release a PCI device. The could be caused by a 4721 * Hot-Plug event, or because the driver is going to be removed from 4722 * memory. 4723 **/ 4724 static void ixgbevf_remove(struct pci_dev *pdev) 4725 { 4726 struct net_device *netdev = pci_get_drvdata(pdev); 4727 struct ixgbevf_adapter *adapter; 4728 bool disable_dev; 4729 4730 if (!netdev) 4731 return; 4732 4733 adapter = netdev_priv(netdev); 4734 4735 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4736 cancel_work_sync(&adapter->service_task); 4737 4738 if (netdev->reg_state == NETREG_REGISTERED) 4739 unregister_netdev(netdev); 4740 4741 ixgbevf_stop_ipsec_offload(adapter); 4742 ixgbevf_clear_interrupt_scheme(adapter); 4743 ixgbevf_reset_interrupt_capability(adapter); 4744 4745 iounmap(adapter->io_addr); 4746 pci_release_regions(pdev); 4747 4748 hw_dbg(&adapter->hw, "Remove complete\n"); 4749 4750 kfree(adapter->rss_key); 4751 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4752 free_netdev(netdev); 4753 4754 if (disable_dev) 4755 pci_disable_device(pdev); 4756 } 4757 4758 /** 4759 * ixgbevf_io_error_detected - called when PCI error is detected 4760 * @pdev: Pointer to PCI device 4761 * @state: The current pci connection state 4762 * 4763 * This function is called after a PCI bus error affecting 4764 * this device has been detected. 4765 **/ 4766 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4767 pci_channel_state_t state) 4768 { 4769 struct net_device *netdev = pci_get_drvdata(pdev); 4770 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4771 4772 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4773 return PCI_ERS_RESULT_DISCONNECT; 4774 4775 rtnl_lock(); 4776 netif_device_detach(netdev); 4777 4778 if (netif_running(netdev)) 4779 ixgbevf_close_suspend(adapter); 4780 4781 if (state == pci_channel_io_perm_failure) { 4782 rtnl_unlock(); 4783 return PCI_ERS_RESULT_DISCONNECT; 4784 } 4785 4786 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4787 pci_disable_device(pdev); 4788 rtnl_unlock(); 4789 4790 /* Request a slot reset. */ 4791 return PCI_ERS_RESULT_NEED_RESET; 4792 } 4793 4794 /** 4795 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4796 * @pdev: Pointer to PCI device 4797 * 4798 * Restart the card from scratch, as if from a cold-boot. Implementation 4799 * resembles the first-half of the ixgbevf_resume routine. 4800 **/ 4801 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4802 { 4803 struct net_device *netdev = pci_get_drvdata(pdev); 4804 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4805 4806 if (pci_enable_device_mem(pdev)) { 4807 dev_err(&pdev->dev, 4808 "Cannot re-enable PCI device after reset.\n"); 4809 return PCI_ERS_RESULT_DISCONNECT; 4810 } 4811 4812 adapter->hw.hw_addr = adapter->io_addr; 4813 smp_mb__before_atomic(); 4814 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4815 pci_set_master(pdev); 4816 4817 ixgbevf_reset(adapter); 4818 4819 return PCI_ERS_RESULT_RECOVERED; 4820 } 4821 4822 /** 4823 * ixgbevf_io_resume - called when traffic can start flowing again. 4824 * @pdev: Pointer to PCI device 4825 * 4826 * This callback is called when the error recovery driver tells us that 4827 * its OK to resume normal operation. Implementation resembles the 4828 * second-half of the ixgbevf_resume routine. 4829 **/ 4830 static void ixgbevf_io_resume(struct pci_dev *pdev) 4831 { 4832 struct net_device *netdev = pci_get_drvdata(pdev); 4833 4834 rtnl_lock(); 4835 if (netif_running(netdev)) 4836 ixgbevf_open(netdev); 4837 4838 netif_device_attach(netdev); 4839 rtnl_unlock(); 4840 } 4841 4842 /* PCI Error Recovery (ERS) */ 4843 static const struct pci_error_handlers ixgbevf_err_handler = { 4844 .error_detected = ixgbevf_io_error_detected, 4845 .slot_reset = ixgbevf_io_slot_reset, 4846 .resume = ixgbevf_io_resume, 4847 }; 4848 4849 static SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume); 4850 4851 static struct pci_driver ixgbevf_driver = { 4852 .name = ixgbevf_driver_name, 4853 .id_table = ixgbevf_pci_tbl, 4854 .probe = ixgbevf_probe, 4855 .remove = ixgbevf_remove, 4856 4857 /* Power Management Hooks */ 4858 .driver.pm = &ixgbevf_pm_ops, 4859 4860 .shutdown = ixgbevf_shutdown, 4861 .err_handler = &ixgbevf_err_handler 4862 }; 4863 4864 /** 4865 * ixgbevf_init_module - Driver Registration Routine 4866 * 4867 * ixgbevf_init_module is the first routine called when the driver is 4868 * loaded. All it does is register with the PCI subsystem. 4869 **/ 4870 static int __init ixgbevf_init_module(void) 4871 { 4872 pr_info("%s\n", ixgbevf_driver_string); 4873 pr_info("%s\n", ixgbevf_copyright); 4874 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4875 if (!ixgbevf_wq) { 4876 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4877 return -ENOMEM; 4878 } 4879 4880 return pci_register_driver(&ixgbevf_driver); 4881 } 4882 4883 module_init(ixgbevf_init_module); 4884 4885 /** 4886 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4887 * 4888 * ixgbevf_exit_module is called just before the driver is removed 4889 * from memory. 4890 **/ 4891 static void __exit ixgbevf_exit_module(void) 4892 { 4893 pci_unregister_driver(&ixgbevf_driver); 4894 if (ixgbevf_wq) { 4895 destroy_workqueue(ixgbevf_wq); 4896 ixgbevf_wq = NULL; 4897 } 4898 } 4899 4900 #ifdef DEBUG 4901 /** 4902 * ixgbevf_get_hw_dev_name - return device name string 4903 * used by hardware layer to print debugging information 4904 * @hw: pointer to private hardware struct 4905 **/ 4906 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4907 { 4908 struct ixgbevf_adapter *adapter = hw->back; 4909 4910 return adapter->netdev->name; 4911 } 4912 4913 #endif 4914 module_exit(ixgbevf_exit_module); 4915 4916 /* ixgbevf_main.c */ 4917