1 /******************************************************************************* 2 3 Intel 82599 Virtual Function driver 4 Copyright(c) 1999 - 2015 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, see <http://www.gnu.org/licenses/>. 17 18 The full GNU General Public License is included in this distribution in 19 the file called "COPYING". 20 21 Contact Information: 22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 25 *******************************************************************************/ 26 27 /****************************************************************************** 28 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 29 ******************************************************************************/ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/types.h> 34 #include <linux/bitops.h> 35 #include <linux/module.h> 36 #include <linux/pci.h> 37 #include <linux/netdevice.h> 38 #include <linux/vmalloc.h> 39 #include <linux/string.h> 40 #include <linux/in.h> 41 #include <linux/ip.h> 42 #include <linux/tcp.h> 43 #include <linux/sctp.h> 44 #include <linux/ipv6.h> 45 #include <linux/slab.h> 46 #include <net/checksum.h> 47 #include <net/ip6_checksum.h> 48 #include <linux/ethtool.h> 49 #include <linux/if.h> 50 #include <linux/if_vlan.h> 51 #include <linux/prefetch.h> 52 53 #include "ixgbevf.h" 54 55 const char ixgbevf_driver_name[] = "ixgbevf"; 56 static const char ixgbevf_driver_string[] = 57 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 58 59 #define DRV_VERSION "3.2.2-k" 60 const char ixgbevf_driver_version[] = DRV_VERSION; 61 static char ixgbevf_copyright[] = 62 "Copyright (c) 2009 - 2015 Intel Corporation."; 63 64 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 65 [board_82599_vf] = &ixgbevf_82599_vf_info, 66 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 67 [board_X540_vf] = &ixgbevf_X540_vf_info, 68 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 69 [board_X550_vf] = &ixgbevf_X550_vf_info, 70 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 71 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 72 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 73 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 74 }; 75 76 /* ixgbevf_pci_tbl - PCI Device ID Table 77 * 78 * Wildcard entries (PCI_ANY_ID) should come last 79 * Last entry must be all 0s 80 * 81 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 82 * Class, Class Mask, private data (not used) } 83 */ 84 static const struct pci_device_id ixgbevf_pci_tbl[] = { 85 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 86 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 87 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 88 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 89 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 90 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 91 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 92 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 93 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 94 /* required last entry */ 95 {0, } 96 }; 97 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 98 99 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 100 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 101 MODULE_LICENSE("GPL"); 102 MODULE_VERSION(DRV_VERSION); 103 104 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 105 static int debug = -1; 106 module_param(debug, int, 0); 107 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 108 109 static struct workqueue_struct *ixgbevf_wq; 110 111 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 112 { 113 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 114 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 115 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 116 queue_work(ixgbevf_wq, &adapter->service_task); 117 } 118 119 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 120 { 121 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 122 123 /* flush memory to make sure state is correct before next watchdog */ 124 smp_mb__before_atomic(); 125 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 126 } 127 128 /* forward decls */ 129 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 130 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 131 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 132 133 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 134 { 135 struct ixgbevf_adapter *adapter = hw->back; 136 137 if (!hw->hw_addr) 138 return; 139 hw->hw_addr = NULL; 140 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 141 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 142 ixgbevf_service_event_schedule(adapter); 143 } 144 145 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 146 { 147 u32 value; 148 149 /* The following check not only optimizes a bit by not 150 * performing a read on the status register when the 151 * register just read was a status register read that 152 * returned IXGBE_FAILED_READ_REG. It also blocks any 153 * potential recursion. 154 */ 155 if (reg == IXGBE_VFSTATUS) { 156 ixgbevf_remove_adapter(hw); 157 return; 158 } 159 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 160 if (value == IXGBE_FAILED_READ_REG) 161 ixgbevf_remove_adapter(hw); 162 } 163 164 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 165 { 166 u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr); 167 u32 value; 168 169 if (IXGBE_REMOVED(reg_addr)) 170 return IXGBE_FAILED_READ_REG; 171 value = readl(reg_addr + reg); 172 if (unlikely(value == IXGBE_FAILED_READ_REG)) 173 ixgbevf_check_remove(hw, reg); 174 return value; 175 } 176 177 /** 178 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 179 * @adapter: pointer to adapter struct 180 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 181 * @queue: queue to map the corresponding interrupt to 182 * @msix_vector: the vector to map to the corresponding queue 183 **/ 184 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 185 u8 queue, u8 msix_vector) 186 { 187 u32 ivar, index; 188 struct ixgbe_hw *hw = &adapter->hw; 189 190 if (direction == -1) { 191 /* other causes */ 192 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 193 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 194 ivar &= ~0xFF; 195 ivar |= msix_vector; 196 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 197 } else { 198 /* Tx or Rx causes */ 199 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 200 index = ((16 * (queue & 1)) + (8 * direction)); 201 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 202 ivar &= ~(0xFF << index); 203 ivar |= (msix_vector << index); 204 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 205 } 206 } 207 208 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring, 209 struct ixgbevf_tx_buffer *tx_buffer) 210 { 211 if (tx_buffer->skb) { 212 dev_kfree_skb_any(tx_buffer->skb); 213 if (dma_unmap_len(tx_buffer, len)) 214 dma_unmap_single(tx_ring->dev, 215 dma_unmap_addr(tx_buffer, dma), 216 dma_unmap_len(tx_buffer, len), 217 DMA_TO_DEVICE); 218 } else if (dma_unmap_len(tx_buffer, len)) { 219 dma_unmap_page(tx_ring->dev, 220 dma_unmap_addr(tx_buffer, dma), 221 dma_unmap_len(tx_buffer, len), 222 DMA_TO_DEVICE); 223 } 224 tx_buffer->next_to_watch = NULL; 225 tx_buffer->skb = NULL; 226 dma_unmap_len_set(tx_buffer, len, 0); 227 /* tx_buffer must be completely set up in the transmit path */ 228 } 229 230 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 231 { 232 return ring->stats.packets; 233 } 234 235 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 236 { 237 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 238 struct ixgbe_hw *hw = &adapter->hw; 239 240 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 241 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 242 243 if (head != tail) 244 return (head < tail) ? 245 tail - head : (tail + ring->count - head); 246 247 return 0; 248 } 249 250 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 251 { 252 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 253 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 254 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 255 256 clear_check_for_tx_hang(tx_ring); 257 258 /* Check for a hung queue, but be thorough. This verifies 259 * that a transmit has been completed since the previous 260 * check AND there is at least one packet pending. The 261 * ARMED bit is set to indicate a potential hang. 262 */ 263 if ((tx_done_old == tx_done) && tx_pending) { 264 /* make sure it is true for two checks in a row */ 265 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 266 &tx_ring->state); 267 } 268 /* reset the countdown */ 269 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 270 271 /* update completed stats and continue */ 272 tx_ring->tx_stats.tx_done_old = tx_done; 273 274 return false; 275 } 276 277 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 278 { 279 /* Do the reset outside of interrupt context */ 280 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 281 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 282 ixgbevf_service_event_schedule(adapter); 283 } 284 } 285 286 /** 287 * ixgbevf_tx_timeout - Respond to a Tx Hang 288 * @netdev: network interface device structure 289 **/ 290 static void ixgbevf_tx_timeout(struct net_device *netdev) 291 { 292 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 293 294 ixgbevf_tx_timeout_reset(adapter); 295 } 296 297 /** 298 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 299 * @q_vector: board private structure 300 * @tx_ring: tx ring to clean 301 * @napi_budget: Used to determine if we are in netpoll 302 **/ 303 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 304 struct ixgbevf_ring *tx_ring, int napi_budget) 305 { 306 struct ixgbevf_adapter *adapter = q_vector->adapter; 307 struct ixgbevf_tx_buffer *tx_buffer; 308 union ixgbe_adv_tx_desc *tx_desc; 309 unsigned int total_bytes = 0, total_packets = 0; 310 unsigned int budget = tx_ring->count / 2; 311 unsigned int i = tx_ring->next_to_clean; 312 313 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 314 return true; 315 316 tx_buffer = &tx_ring->tx_buffer_info[i]; 317 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 318 i -= tx_ring->count; 319 320 do { 321 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 322 323 /* if next_to_watch is not set then there is no work pending */ 324 if (!eop_desc) 325 break; 326 327 /* prevent any other reads prior to eop_desc */ 328 read_barrier_depends(); 329 330 /* if DD is not set pending work has not been completed */ 331 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 332 break; 333 334 /* clear next_to_watch to prevent false hangs */ 335 tx_buffer->next_to_watch = NULL; 336 337 /* update the statistics for this packet */ 338 total_bytes += tx_buffer->bytecount; 339 total_packets += tx_buffer->gso_segs; 340 341 /* free the skb */ 342 napi_consume_skb(tx_buffer->skb, napi_budget); 343 344 /* unmap skb header data */ 345 dma_unmap_single(tx_ring->dev, 346 dma_unmap_addr(tx_buffer, dma), 347 dma_unmap_len(tx_buffer, len), 348 DMA_TO_DEVICE); 349 350 /* clear tx_buffer data */ 351 tx_buffer->skb = NULL; 352 dma_unmap_len_set(tx_buffer, len, 0); 353 354 /* unmap remaining buffers */ 355 while (tx_desc != eop_desc) { 356 tx_buffer++; 357 tx_desc++; 358 i++; 359 if (unlikely(!i)) { 360 i -= tx_ring->count; 361 tx_buffer = tx_ring->tx_buffer_info; 362 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 363 } 364 365 /* unmap any remaining paged data */ 366 if (dma_unmap_len(tx_buffer, len)) { 367 dma_unmap_page(tx_ring->dev, 368 dma_unmap_addr(tx_buffer, dma), 369 dma_unmap_len(tx_buffer, len), 370 DMA_TO_DEVICE); 371 dma_unmap_len_set(tx_buffer, len, 0); 372 } 373 } 374 375 /* move us one more past the eop_desc for start of next pkt */ 376 tx_buffer++; 377 tx_desc++; 378 i++; 379 if (unlikely(!i)) { 380 i -= tx_ring->count; 381 tx_buffer = tx_ring->tx_buffer_info; 382 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 383 } 384 385 /* issue prefetch for next Tx descriptor */ 386 prefetch(tx_desc); 387 388 /* update budget accounting */ 389 budget--; 390 } while (likely(budget)); 391 392 i += tx_ring->count; 393 tx_ring->next_to_clean = i; 394 u64_stats_update_begin(&tx_ring->syncp); 395 tx_ring->stats.bytes += total_bytes; 396 tx_ring->stats.packets += total_packets; 397 u64_stats_update_end(&tx_ring->syncp); 398 q_vector->tx.total_bytes += total_bytes; 399 q_vector->tx.total_packets += total_packets; 400 401 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 402 struct ixgbe_hw *hw = &adapter->hw; 403 union ixgbe_adv_tx_desc *eop_desc; 404 405 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 406 407 pr_err("Detected Tx Unit Hang\n" 408 " Tx Queue <%d>\n" 409 " TDH, TDT <%x>, <%x>\n" 410 " next_to_use <%x>\n" 411 " next_to_clean <%x>\n" 412 "tx_buffer_info[next_to_clean]\n" 413 " next_to_watch <%p>\n" 414 " eop_desc->wb.status <%x>\n" 415 " time_stamp <%lx>\n" 416 " jiffies <%lx>\n", 417 tx_ring->queue_index, 418 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 419 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 420 tx_ring->next_to_use, i, 421 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 422 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 423 424 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 425 426 /* schedule immediate reset if we believe we hung */ 427 ixgbevf_tx_timeout_reset(adapter); 428 429 return true; 430 } 431 432 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 433 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 434 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 435 /* Make sure that anybody stopping the queue after this 436 * sees the new next_to_clean. 437 */ 438 smp_mb(); 439 440 if (__netif_subqueue_stopped(tx_ring->netdev, 441 tx_ring->queue_index) && 442 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 443 netif_wake_subqueue(tx_ring->netdev, 444 tx_ring->queue_index); 445 ++tx_ring->tx_stats.restart_queue; 446 } 447 } 448 449 return !!budget; 450 } 451 452 /** 453 * ixgbevf_rx_skb - Helper function to determine proper Rx method 454 * @q_vector: structure containing interrupt and ring information 455 * @skb: packet to send up 456 **/ 457 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 458 struct sk_buff *skb) 459 { 460 #ifdef CONFIG_NET_RX_BUSY_POLL 461 skb_mark_napi_id(skb, &q_vector->napi); 462 463 if (ixgbevf_qv_busy_polling(q_vector)) { 464 netif_receive_skb(skb); 465 /* exit early if we busy polled */ 466 return; 467 } 468 #endif /* CONFIG_NET_RX_BUSY_POLL */ 469 470 napi_gro_receive(&q_vector->napi, skb); 471 } 472 473 #define IXGBE_RSS_L4_TYPES_MASK \ 474 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 475 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 476 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 477 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 478 479 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 480 union ixgbe_adv_rx_desc *rx_desc, 481 struct sk_buff *skb) 482 { 483 u16 rss_type; 484 485 if (!(ring->netdev->features & NETIF_F_RXHASH)) 486 return; 487 488 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 489 IXGBE_RXDADV_RSSTYPE_MASK; 490 491 if (!rss_type) 492 return; 493 494 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 495 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 496 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 497 } 498 499 /** 500 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 501 * @ring: structure containig ring specific data 502 * @rx_desc: current Rx descriptor being processed 503 * @skb: skb currently being received and modified 504 **/ 505 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 506 union ixgbe_adv_rx_desc *rx_desc, 507 struct sk_buff *skb) 508 { 509 skb_checksum_none_assert(skb); 510 511 /* Rx csum disabled */ 512 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 513 return; 514 515 /* if IP and error */ 516 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 517 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 518 ring->rx_stats.csum_err++; 519 return; 520 } 521 522 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 523 return; 524 525 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 526 ring->rx_stats.csum_err++; 527 return; 528 } 529 530 /* It must be a TCP or UDP packet with a valid checksum */ 531 skb->ip_summed = CHECKSUM_UNNECESSARY; 532 } 533 534 /** 535 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 536 * @rx_ring: rx descriptor ring packet is being transacted on 537 * @rx_desc: pointer to the EOP Rx descriptor 538 * @skb: pointer to current skb being populated 539 * 540 * This function checks the ring, descriptor, and packet information in 541 * order to populate the checksum, VLAN, protocol, and other fields within 542 * the skb. 543 **/ 544 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 545 union ixgbe_adv_rx_desc *rx_desc, 546 struct sk_buff *skb) 547 { 548 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 549 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 550 551 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 552 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 553 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 554 555 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 556 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 557 } 558 559 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 560 } 561 562 /** 563 * ixgbevf_is_non_eop - process handling of non-EOP buffers 564 * @rx_ring: Rx ring being processed 565 * @rx_desc: Rx descriptor for current buffer 566 * @skb: current socket buffer containing buffer in progress 567 * 568 * This function updates next to clean. If the buffer is an EOP buffer 569 * this function exits returning false, otherwise it will place the 570 * sk_buff in the next buffer to be chained and return true indicating 571 * that this is in fact a non-EOP buffer. 572 **/ 573 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 574 union ixgbe_adv_rx_desc *rx_desc) 575 { 576 u32 ntc = rx_ring->next_to_clean + 1; 577 578 /* fetch, update, and store next to clean */ 579 ntc = (ntc < rx_ring->count) ? ntc : 0; 580 rx_ring->next_to_clean = ntc; 581 582 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 583 584 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 585 return false; 586 587 return true; 588 } 589 590 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 591 struct ixgbevf_rx_buffer *bi) 592 { 593 struct page *page = bi->page; 594 dma_addr_t dma = bi->dma; 595 596 /* since we are recycling buffers we should seldom need to alloc */ 597 if (likely(page)) 598 return true; 599 600 /* alloc new page for storage */ 601 page = dev_alloc_page(); 602 if (unlikely(!page)) { 603 rx_ring->rx_stats.alloc_rx_page_failed++; 604 return false; 605 } 606 607 /* map page for use */ 608 dma = dma_map_page(rx_ring->dev, page, 0, 609 PAGE_SIZE, DMA_FROM_DEVICE); 610 611 /* if mapping failed free memory back to system since 612 * there isn't much point in holding memory we can't use 613 */ 614 if (dma_mapping_error(rx_ring->dev, dma)) { 615 __free_page(page); 616 617 rx_ring->rx_stats.alloc_rx_buff_failed++; 618 return false; 619 } 620 621 bi->dma = dma; 622 bi->page = page; 623 bi->page_offset = 0; 624 625 return true; 626 } 627 628 /** 629 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 630 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 631 * @cleaned_count: number of buffers to replace 632 **/ 633 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 634 u16 cleaned_count) 635 { 636 union ixgbe_adv_rx_desc *rx_desc; 637 struct ixgbevf_rx_buffer *bi; 638 unsigned int i = rx_ring->next_to_use; 639 640 /* nothing to do or no valid netdev defined */ 641 if (!cleaned_count || !rx_ring->netdev) 642 return; 643 644 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 645 bi = &rx_ring->rx_buffer_info[i]; 646 i -= rx_ring->count; 647 648 do { 649 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 650 break; 651 652 /* Refresh the desc even if pkt_addr didn't change 653 * because each write-back erases this info. 654 */ 655 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 656 657 rx_desc++; 658 bi++; 659 i++; 660 if (unlikely(!i)) { 661 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 662 bi = rx_ring->rx_buffer_info; 663 i -= rx_ring->count; 664 } 665 666 /* clear the hdr_addr for the next_to_use descriptor */ 667 rx_desc->read.hdr_addr = 0; 668 669 cleaned_count--; 670 } while (cleaned_count); 671 672 i += rx_ring->count; 673 674 if (rx_ring->next_to_use != i) { 675 /* record the next descriptor to use */ 676 rx_ring->next_to_use = i; 677 678 /* update next to alloc since we have filled the ring */ 679 rx_ring->next_to_alloc = i; 680 681 /* Force memory writes to complete before letting h/w 682 * know there are new descriptors to fetch. (Only 683 * applicable for weak-ordered memory model archs, 684 * such as IA-64). 685 */ 686 wmb(); 687 ixgbevf_write_tail(rx_ring, i); 688 } 689 } 690 691 /** 692 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 693 * @rx_ring: rx descriptor ring packet is being transacted on 694 * @rx_desc: pointer to the EOP Rx descriptor 695 * @skb: pointer to current skb being fixed 696 * 697 * Check for corrupted packet headers caused by senders on the local L2 698 * embedded NIC switch not setting up their Tx Descriptors right. These 699 * should be very rare. 700 * 701 * Also address the case where we are pulling data in on pages only 702 * and as such no data is present in the skb header. 703 * 704 * In addition if skb is not at least 60 bytes we need to pad it so that 705 * it is large enough to qualify as a valid Ethernet frame. 706 * 707 * Returns true if an error was encountered and skb was freed. 708 **/ 709 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 710 union ixgbe_adv_rx_desc *rx_desc, 711 struct sk_buff *skb) 712 { 713 /* verify that the packet does not have any known errors */ 714 if (unlikely(ixgbevf_test_staterr(rx_desc, 715 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 716 struct net_device *netdev = rx_ring->netdev; 717 718 if (!(netdev->features & NETIF_F_RXALL)) { 719 dev_kfree_skb_any(skb); 720 return true; 721 } 722 } 723 724 /* if eth_skb_pad returns an error the skb was freed */ 725 if (eth_skb_pad(skb)) 726 return true; 727 728 return false; 729 } 730 731 /** 732 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 733 * @rx_ring: rx descriptor ring to store buffers on 734 * @old_buff: donor buffer to have page reused 735 * 736 * Synchronizes page for reuse by the adapter 737 **/ 738 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 739 struct ixgbevf_rx_buffer *old_buff) 740 { 741 struct ixgbevf_rx_buffer *new_buff; 742 u16 nta = rx_ring->next_to_alloc; 743 744 new_buff = &rx_ring->rx_buffer_info[nta]; 745 746 /* update, and store next to alloc */ 747 nta++; 748 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 749 750 /* transfer page from old buffer to new buffer */ 751 new_buff->page = old_buff->page; 752 new_buff->dma = old_buff->dma; 753 new_buff->page_offset = old_buff->page_offset; 754 755 /* sync the buffer for use by the device */ 756 dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma, 757 new_buff->page_offset, 758 IXGBEVF_RX_BUFSZ, 759 DMA_FROM_DEVICE); 760 } 761 762 static inline bool ixgbevf_page_is_reserved(struct page *page) 763 { 764 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 765 } 766 767 /** 768 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 769 * @rx_ring: rx descriptor ring to transact packets on 770 * @rx_buffer: buffer containing page to add 771 * @rx_desc: descriptor containing length of buffer written by hardware 772 * @skb: sk_buff to place the data into 773 * 774 * This function will add the data contained in rx_buffer->page to the skb. 775 * This is done either through a direct copy if the data in the buffer is 776 * less than the skb header size, otherwise it will just attach the page as 777 * a frag to the skb. 778 * 779 * The function will then update the page offset if necessary and return 780 * true if the buffer can be reused by the adapter. 781 **/ 782 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 783 struct ixgbevf_rx_buffer *rx_buffer, 784 union ixgbe_adv_rx_desc *rx_desc, 785 struct sk_buff *skb) 786 { 787 struct page *page = rx_buffer->page; 788 unsigned char *va = page_address(page) + rx_buffer->page_offset; 789 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 790 #if (PAGE_SIZE < 8192) 791 unsigned int truesize = IXGBEVF_RX_BUFSZ; 792 #else 793 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 794 #endif 795 unsigned int pull_len; 796 797 if (unlikely(skb_is_nonlinear(skb))) 798 goto add_tail_frag; 799 800 if (likely(size <= IXGBEVF_RX_HDR_SIZE)) { 801 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 802 803 /* page is not reserved, we can reuse buffer as is */ 804 if (likely(!ixgbevf_page_is_reserved(page))) 805 return true; 806 807 /* this page cannot be reused so discard it */ 808 put_page(page); 809 return false; 810 } 811 812 /* we need the header to contain the greater of either ETH_HLEN or 813 * 60 bytes if the skb->len is less than 60 for skb_pad. 814 */ 815 pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE); 816 817 /* align pull length to size of long to optimize memcpy performance */ 818 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 819 820 /* update all of the pointers */ 821 va += pull_len; 822 size -= pull_len; 823 824 add_tail_frag: 825 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 826 (unsigned long)va & ~PAGE_MASK, size, truesize); 827 828 /* avoid re-using remote pages */ 829 if (unlikely(ixgbevf_page_is_reserved(page))) 830 return false; 831 832 #if (PAGE_SIZE < 8192) 833 /* if we are only owner of page we can reuse it */ 834 if (unlikely(page_count(page) != 1)) 835 return false; 836 837 /* flip page offset to other buffer */ 838 rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ; 839 840 #else 841 /* move offset up to the next cache line */ 842 rx_buffer->page_offset += truesize; 843 844 if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ)) 845 return false; 846 847 #endif 848 /* Even if we own the page, we are not allowed to use atomic_set() 849 * This would break get_page_unless_zero() users. 850 */ 851 page_ref_inc(page); 852 853 return true; 854 } 855 856 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring, 857 union ixgbe_adv_rx_desc *rx_desc, 858 struct sk_buff *skb) 859 { 860 struct ixgbevf_rx_buffer *rx_buffer; 861 struct page *page; 862 863 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 864 page = rx_buffer->page; 865 prefetchw(page); 866 867 if (likely(!skb)) { 868 void *page_addr = page_address(page) + 869 rx_buffer->page_offset; 870 871 /* prefetch first cache line of first page */ 872 prefetch(page_addr); 873 #if L1_CACHE_BYTES < 128 874 prefetch(page_addr + L1_CACHE_BYTES); 875 #endif 876 877 /* allocate a skb to store the frags */ 878 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 879 IXGBEVF_RX_HDR_SIZE); 880 if (unlikely(!skb)) { 881 rx_ring->rx_stats.alloc_rx_buff_failed++; 882 return NULL; 883 } 884 885 /* we will be copying header into skb->data in 886 * pskb_may_pull so it is in our interest to prefetch 887 * it now to avoid a possible cache miss 888 */ 889 prefetchw(skb->data); 890 } 891 892 /* we are reusing so sync this buffer for CPU use */ 893 dma_sync_single_range_for_cpu(rx_ring->dev, 894 rx_buffer->dma, 895 rx_buffer->page_offset, 896 IXGBEVF_RX_BUFSZ, 897 DMA_FROM_DEVICE); 898 899 /* pull page into skb */ 900 if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { 901 /* hand second half of page back to the ring */ 902 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 903 } else { 904 /* we are not reusing the buffer so unmap it */ 905 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 906 PAGE_SIZE, DMA_FROM_DEVICE); 907 } 908 909 /* clear contents of buffer_info */ 910 rx_buffer->dma = 0; 911 rx_buffer->page = NULL; 912 913 return skb; 914 } 915 916 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 917 u32 qmask) 918 { 919 struct ixgbe_hw *hw = &adapter->hw; 920 921 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 922 } 923 924 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 925 struct ixgbevf_ring *rx_ring, 926 int budget) 927 { 928 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 929 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 930 struct sk_buff *skb = rx_ring->skb; 931 932 while (likely(total_rx_packets < budget)) { 933 union ixgbe_adv_rx_desc *rx_desc; 934 935 /* return some buffers to hardware, one at a time is too slow */ 936 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 937 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 938 cleaned_count = 0; 939 } 940 941 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 942 943 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD)) 944 break; 945 946 /* This memory barrier is needed to keep us from reading 947 * any other fields out of the rx_desc until we know the 948 * RXD_STAT_DD bit is set 949 */ 950 rmb(); 951 952 /* retrieve a buffer from the ring */ 953 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb); 954 955 /* exit if we failed to retrieve a buffer */ 956 if (!skb) 957 break; 958 959 cleaned_count++; 960 961 /* fetch next buffer in frame if non-eop */ 962 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 963 continue; 964 965 /* verify the packet layout is correct */ 966 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 967 skb = NULL; 968 continue; 969 } 970 971 /* probably a little skewed due to removing CRC */ 972 total_rx_bytes += skb->len; 973 974 /* Workaround hardware that can't do proper VEPA multicast 975 * source pruning. 976 */ 977 if ((skb->pkt_type == PACKET_BROADCAST || 978 skb->pkt_type == PACKET_MULTICAST) && 979 ether_addr_equal(rx_ring->netdev->dev_addr, 980 eth_hdr(skb)->h_source)) { 981 dev_kfree_skb_irq(skb); 982 continue; 983 } 984 985 /* populate checksum, VLAN, and protocol */ 986 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 987 988 ixgbevf_rx_skb(q_vector, skb); 989 990 /* reset skb pointer */ 991 skb = NULL; 992 993 /* update budget accounting */ 994 total_rx_packets++; 995 } 996 997 /* place incomplete frames back on ring for completion */ 998 rx_ring->skb = skb; 999 1000 u64_stats_update_begin(&rx_ring->syncp); 1001 rx_ring->stats.packets += total_rx_packets; 1002 rx_ring->stats.bytes += total_rx_bytes; 1003 u64_stats_update_end(&rx_ring->syncp); 1004 q_vector->rx.total_packets += total_rx_packets; 1005 q_vector->rx.total_bytes += total_rx_bytes; 1006 1007 return total_rx_packets; 1008 } 1009 1010 /** 1011 * ixgbevf_poll - NAPI polling calback 1012 * @napi: napi struct with our devices info in it 1013 * @budget: amount of work driver is allowed to do this pass, in packets 1014 * 1015 * This function will clean more than one or more rings associated with a 1016 * q_vector. 1017 **/ 1018 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1019 { 1020 struct ixgbevf_q_vector *q_vector = 1021 container_of(napi, struct ixgbevf_q_vector, napi); 1022 struct ixgbevf_adapter *adapter = q_vector->adapter; 1023 struct ixgbevf_ring *ring; 1024 int per_ring_budget, work_done = 0; 1025 bool clean_complete = true; 1026 1027 ixgbevf_for_each_ring(ring, q_vector->tx) { 1028 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1029 clean_complete = false; 1030 } 1031 1032 if (budget <= 0) 1033 return budget; 1034 #ifdef CONFIG_NET_RX_BUSY_POLL 1035 if (!ixgbevf_qv_lock_napi(q_vector)) 1036 return budget; 1037 #endif 1038 1039 /* attempt to distribute budget to each queue fairly, but don't allow 1040 * the budget to go below 1 because we'll exit polling 1041 */ 1042 if (q_vector->rx.count > 1) 1043 per_ring_budget = max(budget/q_vector->rx.count, 1); 1044 else 1045 per_ring_budget = budget; 1046 1047 ixgbevf_for_each_ring(ring, q_vector->rx) { 1048 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1049 per_ring_budget); 1050 work_done += cleaned; 1051 if (cleaned >= per_ring_budget) 1052 clean_complete = false; 1053 } 1054 1055 #ifdef CONFIG_NET_RX_BUSY_POLL 1056 ixgbevf_qv_unlock_napi(q_vector); 1057 #endif 1058 1059 /* If all work not completed, return budget and keep polling */ 1060 if (!clean_complete) 1061 return budget; 1062 /* all work done, exit the polling mode */ 1063 napi_complete_done(napi, work_done); 1064 if (adapter->rx_itr_setting == 1) 1065 ixgbevf_set_itr(q_vector); 1066 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1067 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1068 ixgbevf_irq_enable_queues(adapter, 1069 BIT(q_vector->v_idx)); 1070 1071 return 0; 1072 } 1073 1074 /** 1075 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1076 * @q_vector: structure containing interrupt and ring information 1077 **/ 1078 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1079 { 1080 struct ixgbevf_adapter *adapter = q_vector->adapter; 1081 struct ixgbe_hw *hw = &adapter->hw; 1082 int v_idx = q_vector->v_idx; 1083 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1084 1085 /* set the WDIS bit to not clear the timer bits and cause an 1086 * immediate assertion of the interrupt 1087 */ 1088 itr_reg |= IXGBE_EITR_CNT_WDIS; 1089 1090 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1091 } 1092 1093 #ifdef CONFIG_NET_RX_BUSY_POLL 1094 /* must be called with local_bh_disable()d */ 1095 static int ixgbevf_busy_poll_recv(struct napi_struct *napi) 1096 { 1097 struct ixgbevf_q_vector *q_vector = 1098 container_of(napi, struct ixgbevf_q_vector, napi); 1099 struct ixgbevf_adapter *adapter = q_vector->adapter; 1100 struct ixgbevf_ring *ring; 1101 int found = 0; 1102 1103 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 1104 return LL_FLUSH_FAILED; 1105 1106 if (!ixgbevf_qv_lock_poll(q_vector)) 1107 return LL_FLUSH_BUSY; 1108 1109 ixgbevf_for_each_ring(ring, q_vector->rx) { 1110 found = ixgbevf_clean_rx_irq(q_vector, ring, 4); 1111 #ifdef BP_EXTENDED_STATS 1112 if (found) 1113 ring->stats.cleaned += found; 1114 else 1115 ring->stats.misses++; 1116 #endif 1117 if (found) 1118 break; 1119 } 1120 1121 ixgbevf_qv_unlock_poll(q_vector); 1122 1123 return found; 1124 } 1125 #endif /* CONFIG_NET_RX_BUSY_POLL */ 1126 1127 /** 1128 * ixgbevf_configure_msix - Configure MSI-X hardware 1129 * @adapter: board private structure 1130 * 1131 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1132 * interrupts. 1133 **/ 1134 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1135 { 1136 struct ixgbevf_q_vector *q_vector; 1137 int q_vectors, v_idx; 1138 1139 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1140 adapter->eims_enable_mask = 0; 1141 1142 /* Populate the IVAR table and set the ITR values to the 1143 * corresponding register. 1144 */ 1145 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1146 struct ixgbevf_ring *ring; 1147 1148 q_vector = adapter->q_vector[v_idx]; 1149 1150 ixgbevf_for_each_ring(ring, q_vector->rx) 1151 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1152 1153 ixgbevf_for_each_ring(ring, q_vector->tx) 1154 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1155 1156 if (q_vector->tx.ring && !q_vector->rx.ring) { 1157 /* Tx only vector */ 1158 if (adapter->tx_itr_setting == 1) 1159 q_vector->itr = IXGBE_12K_ITR; 1160 else 1161 q_vector->itr = adapter->tx_itr_setting; 1162 } else { 1163 /* Rx or Rx/Tx vector */ 1164 if (adapter->rx_itr_setting == 1) 1165 q_vector->itr = IXGBE_20K_ITR; 1166 else 1167 q_vector->itr = adapter->rx_itr_setting; 1168 } 1169 1170 /* add q_vector eims value to global eims_enable_mask */ 1171 adapter->eims_enable_mask |= BIT(v_idx); 1172 1173 ixgbevf_write_eitr(q_vector); 1174 } 1175 1176 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1177 /* setup eims_other and add value to global eims_enable_mask */ 1178 adapter->eims_other = BIT(v_idx); 1179 adapter->eims_enable_mask |= adapter->eims_other; 1180 } 1181 1182 enum latency_range { 1183 lowest_latency = 0, 1184 low_latency = 1, 1185 bulk_latency = 2, 1186 latency_invalid = 255 1187 }; 1188 1189 /** 1190 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1191 * @q_vector: structure containing interrupt and ring information 1192 * @ring_container: structure containing ring performance data 1193 * 1194 * Stores a new ITR value based on packets and byte 1195 * counts during the last interrupt. The advantage of per interrupt 1196 * computation is faster updates and more accurate ITR for the current 1197 * traffic pattern. Constants in this function were computed 1198 * based on theoretical maximum wire speed and thresholds were set based 1199 * on testing data as well as attempting to minimize response time 1200 * while increasing bulk throughput. 1201 **/ 1202 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1203 struct ixgbevf_ring_container *ring_container) 1204 { 1205 int bytes = ring_container->total_bytes; 1206 int packets = ring_container->total_packets; 1207 u32 timepassed_us; 1208 u64 bytes_perint; 1209 u8 itr_setting = ring_container->itr; 1210 1211 if (packets == 0) 1212 return; 1213 1214 /* simple throttle rate management 1215 * 0-20MB/s lowest (100000 ints/s) 1216 * 20-100MB/s low (20000 ints/s) 1217 * 100-1249MB/s bulk (12000 ints/s) 1218 */ 1219 /* what was last interrupt timeslice? */ 1220 timepassed_us = q_vector->itr >> 2; 1221 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1222 1223 switch (itr_setting) { 1224 case lowest_latency: 1225 if (bytes_perint > 10) 1226 itr_setting = low_latency; 1227 break; 1228 case low_latency: 1229 if (bytes_perint > 20) 1230 itr_setting = bulk_latency; 1231 else if (bytes_perint <= 10) 1232 itr_setting = lowest_latency; 1233 break; 1234 case bulk_latency: 1235 if (bytes_perint <= 20) 1236 itr_setting = low_latency; 1237 break; 1238 } 1239 1240 /* clear work counters since we have the values we need */ 1241 ring_container->total_bytes = 0; 1242 ring_container->total_packets = 0; 1243 1244 /* write updated itr to ring container */ 1245 ring_container->itr = itr_setting; 1246 } 1247 1248 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1249 { 1250 u32 new_itr = q_vector->itr; 1251 u8 current_itr; 1252 1253 ixgbevf_update_itr(q_vector, &q_vector->tx); 1254 ixgbevf_update_itr(q_vector, &q_vector->rx); 1255 1256 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1257 1258 switch (current_itr) { 1259 /* counts and packets in update_itr are dependent on these numbers */ 1260 case lowest_latency: 1261 new_itr = IXGBE_100K_ITR; 1262 break; 1263 case low_latency: 1264 new_itr = IXGBE_20K_ITR; 1265 break; 1266 case bulk_latency: 1267 new_itr = IXGBE_12K_ITR; 1268 break; 1269 default: 1270 break; 1271 } 1272 1273 if (new_itr != q_vector->itr) { 1274 /* do an exponential smoothing */ 1275 new_itr = (10 * new_itr * q_vector->itr) / 1276 ((9 * new_itr) + q_vector->itr); 1277 1278 /* save the algorithm value here */ 1279 q_vector->itr = new_itr; 1280 1281 ixgbevf_write_eitr(q_vector); 1282 } 1283 } 1284 1285 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1286 { 1287 struct ixgbevf_adapter *adapter = data; 1288 struct ixgbe_hw *hw = &adapter->hw; 1289 1290 hw->mac.get_link_status = 1; 1291 1292 ixgbevf_service_event_schedule(adapter); 1293 1294 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1295 1296 return IRQ_HANDLED; 1297 } 1298 1299 /** 1300 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1301 * @irq: unused 1302 * @data: pointer to our q_vector struct for this interrupt vector 1303 **/ 1304 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1305 { 1306 struct ixgbevf_q_vector *q_vector = data; 1307 1308 /* EIAM disabled interrupts (on this vector) for us */ 1309 if (q_vector->rx.ring || q_vector->tx.ring) 1310 napi_schedule_irqoff(&q_vector->napi); 1311 1312 return IRQ_HANDLED; 1313 } 1314 1315 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx, 1316 int r_idx) 1317 { 1318 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx]; 1319 1320 a->rx_ring[r_idx]->next = q_vector->rx.ring; 1321 q_vector->rx.ring = a->rx_ring[r_idx]; 1322 q_vector->rx.count++; 1323 } 1324 1325 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx, 1326 int t_idx) 1327 { 1328 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx]; 1329 1330 a->tx_ring[t_idx]->next = q_vector->tx.ring; 1331 q_vector->tx.ring = a->tx_ring[t_idx]; 1332 q_vector->tx.count++; 1333 } 1334 1335 /** 1336 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors 1337 * @adapter: board private structure to initialize 1338 * 1339 * This function maps descriptor rings to the queue-specific vectors 1340 * we were allotted through the MSI-X enabling code. Ideally, we'd have 1341 * one vector per ring/queue, but on a constrained vector budget, we 1342 * group the rings as "efficiently" as possible. You would add new 1343 * mapping configurations in here. 1344 **/ 1345 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter) 1346 { 1347 int q_vectors; 1348 int v_start = 0; 1349 int rxr_idx = 0, txr_idx = 0; 1350 int rxr_remaining = adapter->num_rx_queues; 1351 int txr_remaining = adapter->num_tx_queues; 1352 int i, j; 1353 int rqpv, tqpv; 1354 1355 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1356 1357 /* The ideal configuration... 1358 * We have enough vectors to map one per queue. 1359 */ 1360 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) { 1361 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++) 1362 map_vector_to_rxq(adapter, v_start, rxr_idx); 1363 1364 for (; txr_idx < txr_remaining; v_start++, txr_idx++) 1365 map_vector_to_txq(adapter, v_start, txr_idx); 1366 return 0; 1367 } 1368 1369 /* If we don't have enough vectors for a 1-to-1 1370 * mapping, we'll have to group them so there are 1371 * multiple queues per vector. 1372 */ 1373 /* Re-adjusting *qpv takes care of the remainder. */ 1374 for (i = v_start; i < q_vectors; i++) { 1375 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i); 1376 for (j = 0; j < rqpv; j++) { 1377 map_vector_to_rxq(adapter, i, rxr_idx); 1378 rxr_idx++; 1379 rxr_remaining--; 1380 } 1381 } 1382 for (i = v_start; i < q_vectors; i++) { 1383 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i); 1384 for (j = 0; j < tqpv; j++) { 1385 map_vector_to_txq(adapter, i, txr_idx); 1386 txr_idx++; 1387 txr_remaining--; 1388 } 1389 } 1390 1391 return 0; 1392 } 1393 1394 /** 1395 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1396 * @adapter: board private structure 1397 * 1398 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1399 * interrupts from the kernel. 1400 **/ 1401 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1402 { 1403 struct net_device *netdev = adapter->netdev; 1404 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1405 int vector, err; 1406 int ri = 0, ti = 0; 1407 1408 for (vector = 0; vector < q_vectors; vector++) { 1409 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1410 struct msix_entry *entry = &adapter->msix_entries[vector]; 1411 1412 if (q_vector->tx.ring && q_vector->rx.ring) { 1413 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1414 "%s-%s-%d", netdev->name, "TxRx", ri++); 1415 ti++; 1416 } else if (q_vector->rx.ring) { 1417 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1418 "%s-%s-%d", netdev->name, "rx", ri++); 1419 } else if (q_vector->tx.ring) { 1420 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1421 "%s-%s-%d", netdev->name, "tx", ti++); 1422 } else { 1423 /* skip this unused q_vector */ 1424 continue; 1425 } 1426 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1427 q_vector->name, q_vector); 1428 if (err) { 1429 hw_dbg(&adapter->hw, 1430 "request_irq failed for MSIX interrupt Error: %d\n", 1431 err); 1432 goto free_queue_irqs; 1433 } 1434 } 1435 1436 err = request_irq(adapter->msix_entries[vector].vector, 1437 &ixgbevf_msix_other, 0, netdev->name, adapter); 1438 if (err) { 1439 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1440 err); 1441 goto free_queue_irqs; 1442 } 1443 1444 return 0; 1445 1446 free_queue_irqs: 1447 while (vector) { 1448 vector--; 1449 free_irq(adapter->msix_entries[vector].vector, 1450 adapter->q_vector[vector]); 1451 } 1452 /* This failure is non-recoverable - it indicates the system is 1453 * out of MSIX vector resources and the VF driver cannot run 1454 * without them. Set the number of msix vectors to zero 1455 * indicating that not enough can be allocated. The error 1456 * will be returned to the user indicating device open failed. 1457 * Any further attempts to force the driver to open will also 1458 * fail. The only way to recover is to unload the driver and 1459 * reload it again. If the system has recovered some MSIX 1460 * vectors then it may succeed. 1461 */ 1462 adapter->num_msix_vectors = 0; 1463 return err; 1464 } 1465 1466 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter) 1467 { 1468 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1469 1470 for (i = 0; i < q_vectors; i++) { 1471 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i]; 1472 1473 q_vector->rx.ring = NULL; 1474 q_vector->tx.ring = NULL; 1475 q_vector->rx.count = 0; 1476 q_vector->tx.count = 0; 1477 } 1478 } 1479 1480 /** 1481 * ixgbevf_request_irq - initialize interrupts 1482 * @adapter: board private structure 1483 * 1484 * Attempts to configure interrupts using the best available 1485 * capabilities of the hardware and kernel. 1486 **/ 1487 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1488 { 1489 int err = ixgbevf_request_msix_irqs(adapter); 1490 1491 if (err) 1492 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1493 1494 return err; 1495 } 1496 1497 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1498 { 1499 int i, q_vectors; 1500 1501 q_vectors = adapter->num_msix_vectors; 1502 i = q_vectors - 1; 1503 1504 free_irq(adapter->msix_entries[i].vector, adapter); 1505 i--; 1506 1507 for (; i >= 0; i--) { 1508 /* free only the irqs that were actually requested */ 1509 if (!adapter->q_vector[i]->rx.ring && 1510 !adapter->q_vector[i]->tx.ring) 1511 continue; 1512 1513 free_irq(adapter->msix_entries[i].vector, 1514 adapter->q_vector[i]); 1515 } 1516 1517 ixgbevf_reset_q_vectors(adapter); 1518 } 1519 1520 /** 1521 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1522 * @adapter: board private structure 1523 **/ 1524 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1525 { 1526 struct ixgbe_hw *hw = &adapter->hw; 1527 int i; 1528 1529 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1530 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1531 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1532 1533 IXGBE_WRITE_FLUSH(hw); 1534 1535 for (i = 0; i < adapter->num_msix_vectors; i++) 1536 synchronize_irq(adapter->msix_entries[i].vector); 1537 } 1538 1539 /** 1540 * ixgbevf_irq_enable - Enable default interrupt generation settings 1541 * @adapter: board private structure 1542 **/ 1543 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1544 { 1545 struct ixgbe_hw *hw = &adapter->hw; 1546 1547 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1548 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1549 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1550 } 1551 1552 /** 1553 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1554 * @adapter: board private structure 1555 * @ring: structure containing ring specific data 1556 * 1557 * Configure the Tx descriptor ring after a reset. 1558 **/ 1559 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1560 struct ixgbevf_ring *ring) 1561 { 1562 struct ixgbe_hw *hw = &adapter->hw; 1563 u64 tdba = ring->dma; 1564 int wait_loop = 10; 1565 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1566 u8 reg_idx = ring->reg_idx; 1567 1568 /* disable queue to avoid issues while updating state */ 1569 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1570 IXGBE_WRITE_FLUSH(hw); 1571 1572 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1573 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1574 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1575 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1576 1577 /* disable head writeback */ 1578 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1579 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1580 1581 /* enable relaxed ordering */ 1582 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1583 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1584 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1585 1586 /* reset head and tail pointers */ 1587 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1588 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1589 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1590 1591 /* reset ntu and ntc to place SW in sync with hardwdare */ 1592 ring->next_to_clean = 0; 1593 ring->next_to_use = 0; 1594 1595 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1596 * to or less than the number of on chip descriptors, which is 1597 * currently 40. 1598 */ 1599 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1600 1601 /* Setting PTHRESH to 32 both improves performance */ 1602 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1603 32; /* PTHRESH = 32 */ 1604 1605 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1606 1607 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1608 1609 /* poll to verify queue is enabled */ 1610 do { 1611 usleep_range(1000, 2000); 1612 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1613 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1614 if (!wait_loop) 1615 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1616 } 1617 1618 /** 1619 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1620 * @adapter: board private structure 1621 * 1622 * Configure the Tx unit of the MAC after a reset. 1623 **/ 1624 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1625 { 1626 u32 i; 1627 1628 /* Setup the HW Tx Head and Tail descriptor pointers */ 1629 for (i = 0; i < adapter->num_tx_queues; i++) 1630 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1631 } 1632 1633 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1634 1635 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index) 1636 { 1637 struct ixgbe_hw *hw = &adapter->hw; 1638 u32 srrctl; 1639 1640 srrctl = IXGBE_SRRCTL_DROP_EN; 1641 1642 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1643 srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1644 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1645 1646 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1647 } 1648 1649 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1650 { 1651 struct ixgbe_hw *hw = &adapter->hw; 1652 1653 /* PSRTYPE must be initialized in 82599 */ 1654 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1655 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1656 IXGBE_PSRTYPE_L2HDR; 1657 1658 if (adapter->num_rx_queues > 1) 1659 psrtype |= BIT(29); 1660 1661 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1662 } 1663 1664 #define IXGBEVF_MAX_RX_DESC_POLL 10 1665 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1666 struct ixgbevf_ring *ring) 1667 { 1668 struct ixgbe_hw *hw = &adapter->hw; 1669 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1670 u32 rxdctl; 1671 u8 reg_idx = ring->reg_idx; 1672 1673 if (IXGBE_REMOVED(hw->hw_addr)) 1674 return; 1675 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1676 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1677 1678 /* write value back with RXDCTL.ENABLE bit cleared */ 1679 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1680 1681 /* the hardware may take up to 100us to really disable the Rx queue */ 1682 do { 1683 udelay(10); 1684 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1685 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1686 1687 if (!wait_loop) 1688 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1689 reg_idx); 1690 } 1691 1692 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1693 struct ixgbevf_ring *ring) 1694 { 1695 struct ixgbe_hw *hw = &adapter->hw; 1696 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1697 u32 rxdctl; 1698 u8 reg_idx = ring->reg_idx; 1699 1700 if (IXGBE_REMOVED(hw->hw_addr)) 1701 return; 1702 do { 1703 usleep_range(1000, 2000); 1704 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1705 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1706 1707 if (!wait_loop) 1708 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1709 reg_idx); 1710 } 1711 1712 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1713 { 1714 struct ixgbe_hw *hw = &adapter->hw; 1715 u32 vfmrqc = 0, vfreta = 0; 1716 u16 rss_i = adapter->num_rx_queues; 1717 u8 i, j; 1718 1719 /* Fill out hash function seeds */ 1720 netdev_rss_key_fill(adapter->rss_key, sizeof(adapter->rss_key)); 1721 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1722 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), adapter->rss_key[i]); 1723 1724 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1725 if (j == rss_i) 1726 j = 0; 1727 1728 adapter->rss_indir_tbl[i] = j; 1729 1730 vfreta |= j << (i & 0x3) * 8; 1731 if ((i & 3) == 3) { 1732 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1733 vfreta = 0; 1734 } 1735 } 1736 1737 /* Perform hash on these packet types */ 1738 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1739 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1740 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1741 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1742 1743 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1744 1745 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1746 } 1747 1748 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1749 struct ixgbevf_ring *ring) 1750 { 1751 struct ixgbe_hw *hw = &adapter->hw; 1752 u64 rdba = ring->dma; 1753 u32 rxdctl; 1754 u8 reg_idx = ring->reg_idx; 1755 1756 /* disable queue to avoid issues while updating state */ 1757 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1758 ixgbevf_disable_rx_queue(adapter, ring); 1759 1760 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1761 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1762 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1763 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1764 1765 #ifndef CONFIG_SPARC 1766 /* enable relaxed ordering */ 1767 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1768 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1769 #else 1770 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1771 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1772 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1773 #endif 1774 1775 /* reset head and tail pointers */ 1776 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1777 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1778 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1779 1780 /* reset ntu and ntc to place SW in sync with hardwdare */ 1781 ring->next_to_clean = 0; 1782 ring->next_to_use = 0; 1783 ring->next_to_alloc = 0; 1784 1785 ixgbevf_configure_srrctl(adapter, reg_idx); 1786 1787 /* allow any size packet since we can handle overflow */ 1788 rxdctl &= ~IXGBE_RXDCTL_RLPML_EN; 1789 1790 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1791 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1792 1793 ixgbevf_rx_desc_queue_enable(adapter, ring); 1794 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1795 } 1796 1797 /** 1798 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1799 * @adapter: board private structure 1800 * 1801 * Configure the Rx unit of the MAC after a reset. 1802 **/ 1803 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 1804 { 1805 struct ixgbe_hw *hw = &adapter->hw; 1806 struct net_device *netdev = adapter->netdev; 1807 int i, ret; 1808 1809 ixgbevf_setup_psrtype(adapter); 1810 if (hw->mac.type >= ixgbe_mac_X550_vf) 1811 ixgbevf_setup_vfmrqc(adapter); 1812 1813 spin_lock_bh(&adapter->mbx_lock); 1814 /* notify the PF of our intent to use this size of frame */ 1815 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 1816 spin_unlock_bh(&adapter->mbx_lock); 1817 if (ret) 1818 dev_err(&adapter->pdev->dev, 1819 "Failed to set MTU at %d\n", netdev->mtu); 1820 1821 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1822 * the Base and Length of the Rx Descriptor Ring 1823 */ 1824 for (i = 0; i < adapter->num_rx_queues; i++) 1825 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]); 1826 } 1827 1828 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 1829 __be16 proto, u16 vid) 1830 { 1831 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1832 struct ixgbe_hw *hw = &adapter->hw; 1833 int err; 1834 1835 spin_lock_bh(&adapter->mbx_lock); 1836 1837 /* add VID to filter table */ 1838 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 1839 1840 spin_unlock_bh(&adapter->mbx_lock); 1841 1842 /* translate error return types so error makes sense */ 1843 if (err == IXGBE_ERR_MBX) 1844 return -EIO; 1845 1846 if (err == IXGBE_ERR_INVALID_ARGUMENT) 1847 return -EACCES; 1848 1849 set_bit(vid, adapter->active_vlans); 1850 1851 return err; 1852 } 1853 1854 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 1855 __be16 proto, u16 vid) 1856 { 1857 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1858 struct ixgbe_hw *hw = &adapter->hw; 1859 int err; 1860 1861 spin_lock_bh(&adapter->mbx_lock); 1862 1863 /* remove VID from filter table */ 1864 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 1865 1866 spin_unlock_bh(&adapter->mbx_lock); 1867 1868 clear_bit(vid, adapter->active_vlans); 1869 1870 return err; 1871 } 1872 1873 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 1874 { 1875 u16 vid; 1876 1877 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 1878 ixgbevf_vlan_rx_add_vid(adapter->netdev, 1879 htons(ETH_P_8021Q), vid); 1880 } 1881 1882 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 1883 { 1884 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1885 struct ixgbe_hw *hw = &adapter->hw; 1886 int count = 0; 1887 1888 if ((netdev_uc_count(netdev)) > 10) { 1889 pr_err("Too many unicast filters - No Space\n"); 1890 return -ENOSPC; 1891 } 1892 1893 if (!netdev_uc_empty(netdev)) { 1894 struct netdev_hw_addr *ha; 1895 1896 netdev_for_each_uc_addr(ha, netdev) { 1897 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 1898 udelay(200); 1899 } 1900 } else { 1901 /* If the list is empty then send message to PF driver to 1902 * clear all MAC VLANs on this VF. 1903 */ 1904 hw->mac.ops.set_uc_addr(hw, 0, NULL); 1905 } 1906 1907 return count; 1908 } 1909 1910 /** 1911 * ixgbevf_set_rx_mode - Multicast and unicast set 1912 * @netdev: network interface device structure 1913 * 1914 * The set_rx_method entry point is called whenever the multicast address 1915 * list, unicast address list or the network interface flags are updated. 1916 * This routine is responsible for configuring the hardware for proper 1917 * multicast mode and configuring requested unicast filters. 1918 **/ 1919 static void ixgbevf_set_rx_mode(struct net_device *netdev) 1920 { 1921 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1922 struct ixgbe_hw *hw = &adapter->hw; 1923 unsigned int flags = netdev->flags; 1924 int xcast_mode; 1925 1926 xcast_mode = (flags & IFF_ALLMULTI) ? IXGBEVF_XCAST_MODE_ALLMULTI : 1927 (flags & (IFF_BROADCAST | IFF_MULTICAST)) ? 1928 IXGBEVF_XCAST_MODE_MULTI : IXGBEVF_XCAST_MODE_NONE; 1929 1930 spin_lock_bh(&adapter->mbx_lock); 1931 1932 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 1933 1934 /* reprogram multicast list */ 1935 hw->mac.ops.update_mc_addr_list(hw, netdev); 1936 1937 ixgbevf_write_uc_addr_list(netdev); 1938 1939 spin_unlock_bh(&adapter->mbx_lock); 1940 } 1941 1942 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 1943 { 1944 int q_idx; 1945 struct ixgbevf_q_vector *q_vector; 1946 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1947 1948 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1949 q_vector = adapter->q_vector[q_idx]; 1950 #ifdef CONFIG_NET_RX_BUSY_POLL 1951 ixgbevf_qv_init_lock(adapter->q_vector[q_idx]); 1952 #endif 1953 napi_enable(&q_vector->napi); 1954 } 1955 } 1956 1957 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 1958 { 1959 int q_idx; 1960 struct ixgbevf_q_vector *q_vector; 1961 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1962 1963 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1964 q_vector = adapter->q_vector[q_idx]; 1965 napi_disable(&q_vector->napi); 1966 #ifdef CONFIG_NET_RX_BUSY_POLL 1967 while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) { 1968 pr_info("QV %d locked\n", q_idx); 1969 usleep_range(1000, 20000); 1970 } 1971 #endif /* CONFIG_NET_RX_BUSY_POLL */ 1972 } 1973 } 1974 1975 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 1976 { 1977 struct ixgbe_hw *hw = &adapter->hw; 1978 unsigned int def_q = 0; 1979 unsigned int num_tcs = 0; 1980 unsigned int num_rx_queues = adapter->num_rx_queues; 1981 unsigned int num_tx_queues = adapter->num_tx_queues; 1982 int err; 1983 1984 spin_lock_bh(&adapter->mbx_lock); 1985 1986 /* fetch queue configuration from the PF */ 1987 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 1988 1989 spin_unlock_bh(&adapter->mbx_lock); 1990 1991 if (err) 1992 return err; 1993 1994 if (num_tcs > 1) { 1995 /* we need only one Tx queue */ 1996 num_tx_queues = 1; 1997 1998 /* update default Tx ring register index */ 1999 adapter->tx_ring[0]->reg_idx = def_q; 2000 2001 /* we need as many queues as traffic classes */ 2002 num_rx_queues = num_tcs; 2003 } 2004 2005 /* if we have a bad config abort request queue reset */ 2006 if ((adapter->num_rx_queues != num_rx_queues) || 2007 (adapter->num_tx_queues != num_tx_queues)) { 2008 /* force mailbox timeout to prevent further messages */ 2009 hw->mbx.timeout = 0; 2010 2011 /* wait for watchdog to come around and bail us out */ 2012 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2013 } 2014 2015 return 0; 2016 } 2017 2018 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2019 { 2020 ixgbevf_configure_dcb(adapter); 2021 2022 ixgbevf_set_rx_mode(adapter->netdev); 2023 2024 ixgbevf_restore_vlan(adapter); 2025 2026 ixgbevf_configure_tx(adapter); 2027 ixgbevf_configure_rx(adapter); 2028 } 2029 2030 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2031 { 2032 /* Only save pre-reset stats if there are some */ 2033 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2034 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2035 adapter->stats.base_vfgprc; 2036 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2037 adapter->stats.base_vfgptc; 2038 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2039 adapter->stats.base_vfgorc; 2040 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2041 adapter->stats.base_vfgotc; 2042 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2043 adapter->stats.base_vfmprc; 2044 } 2045 } 2046 2047 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2048 { 2049 struct ixgbe_hw *hw = &adapter->hw; 2050 2051 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2052 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2053 adapter->stats.last_vfgorc |= 2054 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2055 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2056 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2057 adapter->stats.last_vfgotc |= 2058 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2059 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2060 2061 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2062 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2063 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2064 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2065 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2066 } 2067 2068 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2069 { 2070 struct ixgbe_hw *hw = &adapter->hw; 2071 int api[] = { ixgbe_mbox_api_12, 2072 ixgbe_mbox_api_11, 2073 ixgbe_mbox_api_10, 2074 ixgbe_mbox_api_unknown }; 2075 int err, idx = 0; 2076 2077 spin_lock_bh(&adapter->mbx_lock); 2078 2079 while (api[idx] != ixgbe_mbox_api_unknown) { 2080 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2081 if (!err) 2082 break; 2083 idx++; 2084 } 2085 2086 spin_unlock_bh(&adapter->mbx_lock); 2087 } 2088 2089 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2090 { 2091 struct net_device *netdev = adapter->netdev; 2092 struct ixgbe_hw *hw = &adapter->hw; 2093 2094 ixgbevf_configure_msix(adapter); 2095 2096 spin_lock_bh(&adapter->mbx_lock); 2097 2098 if (is_valid_ether_addr(hw->mac.addr)) 2099 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2100 else 2101 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2102 2103 spin_unlock_bh(&adapter->mbx_lock); 2104 2105 smp_mb__before_atomic(); 2106 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2107 ixgbevf_napi_enable_all(adapter); 2108 2109 /* clear any pending interrupts, may auto mask */ 2110 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2111 ixgbevf_irq_enable(adapter); 2112 2113 /* enable transmits */ 2114 netif_tx_start_all_queues(netdev); 2115 2116 ixgbevf_save_reset_stats(adapter); 2117 ixgbevf_init_last_counter_stats(adapter); 2118 2119 hw->mac.get_link_status = 1; 2120 mod_timer(&adapter->service_timer, jiffies); 2121 } 2122 2123 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2124 { 2125 ixgbevf_configure(adapter); 2126 2127 ixgbevf_up_complete(adapter); 2128 } 2129 2130 /** 2131 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2132 * @rx_ring: ring to free buffers from 2133 **/ 2134 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2135 { 2136 struct device *dev = rx_ring->dev; 2137 unsigned long size; 2138 unsigned int i; 2139 2140 /* Free Rx ring sk_buff */ 2141 if (rx_ring->skb) { 2142 dev_kfree_skb(rx_ring->skb); 2143 rx_ring->skb = NULL; 2144 } 2145 2146 /* ring already cleared, nothing to do */ 2147 if (!rx_ring->rx_buffer_info) 2148 return; 2149 2150 /* Free all the Rx ring pages */ 2151 for (i = 0; i < rx_ring->count; i++) { 2152 struct ixgbevf_rx_buffer *rx_buffer; 2153 2154 rx_buffer = &rx_ring->rx_buffer_info[i]; 2155 if (rx_buffer->dma) 2156 dma_unmap_page(dev, rx_buffer->dma, 2157 PAGE_SIZE, DMA_FROM_DEVICE); 2158 rx_buffer->dma = 0; 2159 if (rx_buffer->page) 2160 __free_page(rx_buffer->page); 2161 rx_buffer->page = NULL; 2162 } 2163 2164 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 2165 memset(rx_ring->rx_buffer_info, 0, size); 2166 2167 /* Zero out the descriptor ring */ 2168 memset(rx_ring->desc, 0, rx_ring->size); 2169 } 2170 2171 /** 2172 * ixgbevf_clean_tx_ring - Free Tx Buffers 2173 * @tx_ring: ring to be cleaned 2174 **/ 2175 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2176 { 2177 struct ixgbevf_tx_buffer *tx_buffer_info; 2178 unsigned long size; 2179 unsigned int i; 2180 2181 if (!tx_ring->tx_buffer_info) 2182 return; 2183 2184 /* Free all the Tx ring sk_buffs */ 2185 for (i = 0; i < tx_ring->count; i++) { 2186 tx_buffer_info = &tx_ring->tx_buffer_info[i]; 2187 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); 2188 } 2189 2190 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 2191 memset(tx_ring->tx_buffer_info, 0, size); 2192 2193 memset(tx_ring->desc, 0, tx_ring->size); 2194 } 2195 2196 /** 2197 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2198 * @adapter: board private structure 2199 **/ 2200 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2201 { 2202 int i; 2203 2204 for (i = 0; i < adapter->num_rx_queues; i++) 2205 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2206 } 2207 2208 /** 2209 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2210 * @adapter: board private structure 2211 **/ 2212 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2213 { 2214 int i; 2215 2216 for (i = 0; i < adapter->num_tx_queues; i++) 2217 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2218 } 2219 2220 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2221 { 2222 struct net_device *netdev = adapter->netdev; 2223 struct ixgbe_hw *hw = &adapter->hw; 2224 int i; 2225 2226 /* signal that we are down to the interrupt handler */ 2227 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2228 return; /* do nothing if already down */ 2229 2230 /* disable all enabled Rx queues */ 2231 for (i = 0; i < adapter->num_rx_queues; i++) 2232 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2233 2234 usleep_range(10000, 20000); 2235 2236 netif_tx_stop_all_queues(netdev); 2237 2238 /* call carrier off first to avoid false dev_watchdog timeouts */ 2239 netif_carrier_off(netdev); 2240 netif_tx_disable(netdev); 2241 2242 ixgbevf_irq_disable(adapter); 2243 2244 ixgbevf_napi_disable_all(adapter); 2245 2246 del_timer_sync(&adapter->service_timer); 2247 2248 /* disable transmits in the hardware now that interrupts are off */ 2249 for (i = 0; i < adapter->num_tx_queues; i++) { 2250 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2251 2252 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2253 IXGBE_TXDCTL_SWFLSH); 2254 } 2255 2256 if (!pci_channel_offline(adapter->pdev)) 2257 ixgbevf_reset(adapter); 2258 2259 ixgbevf_clean_all_tx_rings(adapter); 2260 ixgbevf_clean_all_rx_rings(adapter); 2261 } 2262 2263 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2264 { 2265 WARN_ON(in_interrupt()); 2266 2267 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2268 msleep(1); 2269 2270 ixgbevf_down(adapter); 2271 ixgbevf_up(adapter); 2272 2273 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2274 } 2275 2276 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2277 { 2278 struct ixgbe_hw *hw = &adapter->hw; 2279 struct net_device *netdev = adapter->netdev; 2280 2281 if (hw->mac.ops.reset_hw(hw)) { 2282 hw_dbg(hw, "PF still resetting\n"); 2283 } else { 2284 hw->mac.ops.init_hw(hw); 2285 ixgbevf_negotiate_api(adapter); 2286 } 2287 2288 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2289 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2290 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2291 } 2292 2293 adapter->last_reset = jiffies; 2294 } 2295 2296 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2297 int vectors) 2298 { 2299 int vector_threshold; 2300 2301 /* We'll want at least 2 (vector_threshold): 2302 * 1) TxQ[0] + RxQ[0] handler 2303 * 2) Other (Link Status Change, etc.) 2304 */ 2305 vector_threshold = MIN_MSIX_COUNT; 2306 2307 /* The more we get, the more we will assign to Tx/Rx Cleanup 2308 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2309 * Right now, we simply care about how many we'll get; we'll 2310 * set them up later while requesting irq's. 2311 */ 2312 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2313 vector_threshold, vectors); 2314 2315 if (vectors < 0) { 2316 dev_err(&adapter->pdev->dev, 2317 "Unable to allocate MSI-X interrupts\n"); 2318 kfree(adapter->msix_entries); 2319 adapter->msix_entries = NULL; 2320 return vectors; 2321 } 2322 2323 /* Adjust for only the vectors we'll use, which is minimum 2324 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2325 * vectors we were allocated. 2326 */ 2327 adapter->num_msix_vectors = vectors; 2328 2329 return 0; 2330 } 2331 2332 /** 2333 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2334 * @adapter: board private structure to initialize 2335 * 2336 * This is the top level queue allocation routine. The order here is very 2337 * important, starting with the "most" number of features turned on at once, 2338 * and ending with the smallest set of features. This way large combinations 2339 * can be allocated if they're turned on, and smaller combinations are the 2340 * fallthrough conditions. 2341 * 2342 **/ 2343 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2344 { 2345 struct ixgbe_hw *hw = &adapter->hw; 2346 unsigned int def_q = 0; 2347 unsigned int num_tcs = 0; 2348 int err; 2349 2350 /* Start with base case */ 2351 adapter->num_rx_queues = 1; 2352 adapter->num_tx_queues = 1; 2353 2354 spin_lock_bh(&adapter->mbx_lock); 2355 2356 /* fetch queue configuration from the PF */ 2357 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2358 2359 spin_unlock_bh(&adapter->mbx_lock); 2360 2361 if (err) 2362 return; 2363 2364 /* we need as many queues as traffic classes */ 2365 if (num_tcs > 1) { 2366 adapter->num_rx_queues = num_tcs; 2367 } else { 2368 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2369 2370 switch (hw->api_version) { 2371 case ixgbe_mbox_api_11: 2372 case ixgbe_mbox_api_12: 2373 adapter->num_rx_queues = rss; 2374 adapter->num_tx_queues = rss; 2375 default: 2376 break; 2377 } 2378 } 2379 } 2380 2381 /** 2382 * ixgbevf_alloc_queues - Allocate memory for all rings 2383 * @adapter: board private structure to initialize 2384 * 2385 * We allocate one ring per queue at run-time since we don't know the 2386 * number of queues at compile-time. The polling_netdev array is 2387 * intended for Multiqueue, but should work fine with a single queue. 2388 **/ 2389 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter) 2390 { 2391 struct ixgbevf_ring *ring; 2392 int rx = 0, tx = 0; 2393 2394 for (; tx < adapter->num_tx_queues; tx++) { 2395 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 2396 if (!ring) 2397 goto err_allocation; 2398 2399 ring->dev = &adapter->pdev->dev; 2400 ring->netdev = adapter->netdev; 2401 ring->count = adapter->tx_ring_count; 2402 ring->queue_index = tx; 2403 ring->reg_idx = tx; 2404 2405 adapter->tx_ring[tx] = ring; 2406 } 2407 2408 for (; rx < adapter->num_rx_queues; rx++) { 2409 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 2410 if (!ring) 2411 goto err_allocation; 2412 2413 ring->dev = &adapter->pdev->dev; 2414 ring->netdev = adapter->netdev; 2415 2416 ring->count = adapter->rx_ring_count; 2417 ring->queue_index = rx; 2418 ring->reg_idx = rx; 2419 2420 adapter->rx_ring[rx] = ring; 2421 } 2422 2423 return 0; 2424 2425 err_allocation: 2426 while (tx) { 2427 kfree(adapter->tx_ring[--tx]); 2428 adapter->tx_ring[tx] = NULL; 2429 } 2430 2431 while (rx) { 2432 kfree(adapter->rx_ring[--rx]); 2433 adapter->rx_ring[rx] = NULL; 2434 } 2435 return -ENOMEM; 2436 } 2437 2438 /** 2439 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2440 * @adapter: board private structure to initialize 2441 * 2442 * Attempt to configure the interrupts using the best available 2443 * capabilities of the hardware and the kernel. 2444 **/ 2445 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2446 { 2447 struct net_device *netdev = adapter->netdev; 2448 int err; 2449 int vector, v_budget; 2450 2451 /* It's easy to be greedy for MSI-X vectors, but it really 2452 * doesn't do us much good if we have a lot more vectors 2453 * than CPU's. So let's be conservative and only ask for 2454 * (roughly) the same number of vectors as there are CPU's. 2455 * The default is to use pairs of vectors. 2456 */ 2457 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2458 v_budget = min_t(int, v_budget, num_online_cpus()); 2459 v_budget += NON_Q_VECTORS; 2460 2461 /* A failure in MSI-X entry allocation isn't fatal, but it does 2462 * mean we disable MSI-X capabilities of the adapter. 2463 */ 2464 adapter->msix_entries = kcalloc(v_budget, 2465 sizeof(struct msix_entry), GFP_KERNEL); 2466 if (!adapter->msix_entries) 2467 return -ENOMEM; 2468 2469 for (vector = 0; vector < v_budget; vector++) 2470 adapter->msix_entries[vector].entry = vector; 2471 2472 err = ixgbevf_acquire_msix_vectors(adapter, v_budget); 2473 if (err) 2474 return err; 2475 2476 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 2477 if (err) 2478 return err; 2479 2480 return netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 2481 } 2482 2483 /** 2484 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2485 * @adapter: board private structure to initialize 2486 * 2487 * We allocate one q_vector per queue interrupt. If allocation fails we 2488 * return -ENOMEM. 2489 **/ 2490 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2491 { 2492 int q_idx, num_q_vectors; 2493 struct ixgbevf_q_vector *q_vector; 2494 2495 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2496 2497 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 2498 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL); 2499 if (!q_vector) 2500 goto err_out; 2501 q_vector->adapter = adapter; 2502 q_vector->v_idx = q_idx; 2503 netif_napi_add(adapter->netdev, &q_vector->napi, 2504 ixgbevf_poll, 64); 2505 adapter->q_vector[q_idx] = q_vector; 2506 } 2507 2508 return 0; 2509 2510 err_out: 2511 while (q_idx) { 2512 q_idx--; 2513 q_vector = adapter->q_vector[q_idx]; 2514 #ifdef CONFIG_NET_RX_BUSY_POLL 2515 napi_hash_del(&q_vector->napi); 2516 #endif 2517 netif_napi_del(&q_vector->napi); 2518 kfree(q_vector); 2519 adapter->q_vector[q_idx] = NULL; 2520 } 2521 return -ENOMEM; 2522 } 2523 2524 /** 2525 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2526 * @adapter: board private structure to initialize 2527 * 2528 * This function frees the memory allocated to the q_vectors. In addition if 2529 * NAPI is enabled it will delete any references to the NAPI struct prior 2530 * to freeing the q_vector. 2531 **/ 2532 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2533 { 2534 int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2535 2536 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 2537 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx]; 2538 2539 adapter->q_vector[q_idx] = NULL; 2540 #ifdef CONFIG_NET_RX_BUSY_POLL 2541 napi_hash_del(&q_vector->napi); 2542 #endif 2543 netif_napi_del(&q_vector->napi); 2544 kfree(q_vector); 2545 } 2546 } 2547 2548 /** 2549 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2550 * @adapter: board private structure 2551 * 2552 **/ 2553 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2554 { 2555 pci_disable_msix(adapter->pdev); 2556 kfree(adapter->msix_entries); 2557 adapter->msix_entries = NULL; 2558 } 2559 2560 /** 2561 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2562 * @adapter: board private structure to initialize 2563 * 2564 **/ 2565 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2566 { 2567 int err; 2568 2569 /* Number of supported queues */ 2570 ixgbevf_set_num_queues(adapter); 2571 2572 err = ixgbevf_set_interrupt_capability(adapter); 2573 if (err) { 2574 hw_dbg(&adapter->hw, 2575 "Unable to setup interrupt capabilities\n"); 2576 goto err_set_interrupt; 2577 } 2578 2579 err = ixgbevf_alloc_q_vectors(adapter); 2580 if (err) { 2581 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2582 goto err_alloc_q_vectors; 2583 } 2584 2585 err = ixgbevf_alloc_queues(adapter); 2586 if (err) { 2587 pr_err("Unable to allocate memory for queues\n"); 2588 goto err_alloc_queues; 2589 } 2590 2591 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n", 2592 (adapter->num_rx_queues > 1) ? "Enabled" : 2593 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues); 2594 2595 set_bit(__IXGBEVF_DOWN, &adapter->state); 2596 2597 return 0; 2598 err_alloc_queues: 2599 ixgbevf_free_q_vectors(adapter); 2600 err_alloc_q_vectors: 2601 ixgbevf_reset_interrupt_capability(adapter); 2602 err_set_interrupt: 2603 return err; 2604 } 2605 2606 /** 2607 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2608 * @adapter: board private structure to clear interrupt scheme on 2609 * 2610 * We go through and clear interrupt specific resources and reset the structure 2611 * to pre-load conditions 2612 **/ 2613 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2614 { 2615 int i; 2616 2617 for (i = 0; i < adapter->num_tx_queues; i++) { 2618 kfree(adapter->tx_ring[i]); 2619 adapter->tx_ring[i] = NULL; 2620 } 2621 for (i = 0; i < adapter->num_rx_queues; i++) { 2622 kfree(adapter->rx_ring[i]); 2623 adapter->rx_ring[i] = NULL; 2624 } 2625 2626 adapter->num_tx_queues = 0; 2627 adapter->num_rx_queues = 0; 2628 2629 ixgbevf_free_q_vectors(adapter); 2630 ixgbevf_reset_interrupt_capability(adapter); 2631 } 2632 2633 /** 2634 * ixgbevf_sw_init - Initialize general software structures 2635 * @adapter: board private structure to initialize 2636 * 2637 * ixgbevf_sw_init initializes the Adapter private data structure. 2638 * Fields are initialized based on PCI device information and 2639 * OS network device settings (MTU size). 2640 **/ 2641 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 2642 { 2643 struct ixgbe_hw *hw = &adapter->hw; 2644 struct pci_dev *pdev = adapter->pdev; 2645 struct net_device *netdev = adapter->netdev; 2646 int err; 2647 2648 /* PCI config space info */ 2649 hw->vendor_id = pdev->vendor; 2650 hw->device_id = pdev->device; 2651 hw->revision_id = pdev->revision; 2652 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2653 hw->subsystem_device_id = pdev->subsystem_device; 2654 2655 hw->mbx.ops.init_params(hw); 2656 2657 /* assume legacy case in which PF would only give VF 2 queues */ 2658 hw->mac.max_tx_queues = 2; 2659 hw->mac.max_rx_queues = 2; 2660 2661 /* lock to protect mailbox accesses */ 2662 spin_lock_init(&adapter->mbx_lock); 2663 2664 err = hw->mac.ops.reset_hw(hw); 2665 if (err) { 2666 dev_info(&pdev->dev, 2667 "PF still in reset state. Is the PF interface up?\n"); 2668 } else { 2669 err = hw->mac.ops.init_hw(hw); 2670 if (err) { 2671 pr_err("init_shared_code failed: %d\n", err); 2672 goto out; 2673 } 2674 ixgbevf_negotiate_api(adapter); 2675 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 2676 if (err) 2677 dev_info(&pdev->dev, "Error reading MAC address\n"); 2678 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 2679 dev_info(&pdev->dev, 2680 "MAC address not assigned by administrator.\n"); 2681 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 2682 } 2683 2684 if (!is_valid_ether_addr(netdev->dev_addr)) { 2685 dev_info(&pdev->dev, "Assigning random MAC address\n"); 2686 eth_hw_addr_random(netdev); 2687 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 2688 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 2689 } 2690 2691 /* Enable dynamic interrupt throttling rates */ 2692 adapter->rx_itr_setting = 1; 2693 adapter->tx_itr_setting = 1; 2694 2695 /* set default ring sizes */ 2696 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 2697 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 2698 2699 set_bit(__IXGBEVF_DOWN, &adapter->state); 2700 return 0; 2701 2702 out: 2703 return err; 2704 } 2705 2706 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 2707 { \ 2708 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 2709 if (current_counter < last_counter) \ 2710 counter += 0x100000000LL; \ 2711 last_counter = current_counter; \ 2712 counter &= 0xFFFFFFFF00000000LL; \ 2713 counter |= current_counter; \ 2714 } 2715 2716 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 2717 { \ 2718 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 2719 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 2720 u64 current_counter = (current_counter_msb << 32) | \ 2721 current_counter_lsb; \ 2722 if (current_counter < last_counter) \ 2723 counter += 0x1000000000LL; \ 2724 last_counter = current_counter; \ 2725 counter &= 0xFFFFFFF000000000LL; \ 2726 counter |= current_counter; \ 2727 } 2728 /** 2729 * ixgbevf_update_stats - Update the board statistics counters. 2730 * @adapter: board private structure 2731 **/ 2732 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 2733 { 2734 struct ixgbe_hw *hw = &adapter->hw; 2735 int i; 2736 2737 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2738 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2739 return; 2740 2741 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 2742 adapter->stats.vfgprc); 2743 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 2744 adapter->stats.vfgptc); 2745 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 2746 adapter->stats.last_vfgorc, 2747 adapter->stats.vfgorc); 2748 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 2749 adapter->stats.last_vfgotc, 2750 adapter->stats.vfgotc); 2751 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 2752 adapter->stats.vfmprc); 2753 2754 for (i = 0; i < adapter->num_rx_queues; i++) { 2755 adapter->hw_csum_rx_error += 2756 adapter->rx_ring[i]->hw_csum_rx_error; 2757 adapter->rx_ring[i]->hw_csum_rx_error = 0; 2758 } 2759 } 2760 2761 /** 2762 * ixgbevf_service_timer - Timer Call-back 2763 * @data: pointer to adapter cast into an unsigned long 2764 **/ 2765 static void ixgbevf_service_timer(unsigned long data) 2766 { 2767 struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data; 2768 2769 /* Reset the timer */ 2770 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 2771 2772 ixgbevf_service_event_schedule(adapter); 2773 } 2774 2775 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 2776 { 2777 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 2778 return; 2779 2780 /* If we're already down or resetting, just bail */ 2781 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2782 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 2783 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2784 return; 2785 2786 adapter->tx_timeout_count++; 2787 2788 rtnl_lock(); 2789 ixgbevf_reinit_locked(adapter); 2790 rtnl_unlock(); 2791 } 2792 2793 /** 2794 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 2795 * @adapter: pointer to the device adapter structure 2796 * 2797 * This function serves two purposes. First it strobes the interrupt lines 2798 * in order to make certain interrupts are occurring. Secondly it sets the 2799 * bits needed to check for TX hangs. As a result we should immediately 2800 * determine if a hang has occurred. 2801 **/ 2802 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 2803 { 2804 struct ixgbe_hw *hw = &adapter->hw; 2805 u32 eics = 0; 2806 int i; 2807 2808 /* If we're down or resetting, just bail */ 2809 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2810 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2811 return; 2812 2813 /* Force detection of hung controller */ 2814 if (netif_carrier_ok(adapter->netdev)) { 2815 for (i = 0; i < adapter->num_tx_queues; i++) 2816 set_check_for_tx_hang(adapter->tx_ring[i]); 2817 } 2818 2819 /* get one bit for every active Tx/Rx interrupt vector */ 2820 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 2821 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 2822 2823 if (qv->rx.ring || qv->tx.ring) 2824 eics |= BIT(i); 2825 } 2826 2827 /* Cause software interrupt to ensure rings are cleaned */ 2828 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 2829 } 2830 2831 /** 2832 * ixgbevf_watchdog_update_link - update the link status 2833 * @adapter: pointer to the device adapter structure 2834 **/ 2835 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 2836 { 2837 struct ixgbe_hw *hw = &adapter->hw; 2838 u32 link_speed = adapter->link_speed; 2839 bool link_up = adapter->link_up; 2840 s32 err; 2841 2842 spin_lock_bh(&adapter->mbx_lock); 2843 2844 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 2845 2846 spin_unlock_bh(&adapter->mbx_lock); 2847 2848 /* if check for link returns error we will need to reset */ 2849 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 2850 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 2851 link_up = false; 2852 } 2853 2854 adapter->link_up = link_up; 2855 adapter->link_speed = link_speed; 2856 } 2857 2858 /** 2859 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 2860 * print link up message 2861 * @adapter: pointer to the device adapter structure 2862 **/ 2863 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 2864 { 2865 struct net_device *netdev = adapter->netdev; 2866 2867 /* only continue if link was previously down */ 2868 if (netif_carrier_ok(netdev)) 2869 return; 2870 2871 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 2872 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 2873 "10 Gbps" : 2874 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 2875 "1 Gbps" : 2876 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 2877 "100 Mbps" : 2878 "unknown speed"); 2879 2880 netif_carrier_on(netdev); 2881 } 2882 2883 /** 2884 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 2885 * print link down message 2886 * @adapter: pointer to the adapter structure 2887 **/ 2888 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 2889 { 2890 struct net_device *netdev = adapter->netdev; 2891 2892 adapter->link_speed = 0; 2893 2894 /* only continue if link was up previously */ 2895 if (!netif_carrier_ok(netdev)) 2896 return; 2897 2898 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 2899 2900 netif_carrier_off(netdev); 2901 } 2902 2903 /** 2904 * ixgbevf_watchdog_subtask - worker thread to bring link up 2905 * @work: pointer to work_struct containing our data 2906 **/ 2907 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 2908 { 2909 /* if interface is down do nothing */ 2910 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2911 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2912 return; 2913 2914 ixgbevf_watchdog_update_link(adapter); 2915 2916 if (adapter->link_up) 2917 ixgbevf_watchdog_link_is_up(adapter); 2918 else 2919 ixgbevf_watchdog_link_is_down(adapter); 2920 2921 ixgbevf_update_stats(adapter); 2922 } 2923 2924 /** 2925 * ixgbevf_service_task - manages and runs subtasks 2926 * @work: pointer to work_struct containing our data 2927 **/ 2928 static void ixgbevf_service_task(struct work_struct *work) 2929 { 2930 struct ixgbevf_adapter *adapter = container_of(work, 2931 struct ixgbevf_adapter, 2932 service_task); 2933 struct ixgbe_hw *hw = &adapter->hw; 2934 2935 if (IXGBE_REMOVED(hw->hw_addr)) { 2936 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 2937 rtnl_lock(); 2938 ixgbevf_down(adapter); 2939 rtnl_unlock(); 2940 } 2941 return; 2942 } 2943 2944 ixgbevf_queue_reset_subtask(adapter); 2945 ixgbevf_reset_subtask(adapter); 2946 ixgbevf_watchdog_subtask(adapter); 2947 ixgbevf_check_hang_subtask(adapter); 2948 2949 ixgbevf_service_event_complete(adapter); 2950 } 2951 2952 /** 2953 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 2954 * @tx_ring: Tx descriptor ring for a specific queue 2955 * 2956 * Free all transmit software resources 2957 **/ 2958 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 2959 { 2960 ixgbevf_clean_tx_ring(tx_ring); 2961 2962 vfree(tx_ring->tx_buffer_info); 2963 tx_ring->tx_buffer_info = NULL; 2964 2965 /* if not set, then don't free */ 2966 if (!tx_ring->desc) 2967 return; 2968 2969 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 2970 tx_ring->dma); 2971 2972 tx_ring->desc = NULL; 2973 } 2974 2975 /** 2976 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 2977 * @adapter: board private structure 2978 * 2979 * Free all transmit software resources 2980 **/ 2981 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 2982 { 2983 int i; 2984 2985 for (i = 0; i < adapter->num_tx_queues; i++) 2986 if (adapter->tx_ring[i]->desc) 2987 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 2988 } 2989 2990 /** 2991 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 2992 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 2993 * 2994 * Return 0 on success, negative on failure 2995 **/ 2996 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 2997 { 2998 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 2999 int size; 3000 3001 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3002 tx_ring->tx_buffer_info = vzalloc(size); 3003 if (!tx_ring->tx_buffer_info) 3004 goto err; 3005 3006 /* round up to nearest 4K */ 3007 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3008 tx_ring->size = ALIGN(tx_ring->size, 4096); 3009 3010 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3011 &tx_ring->dma, GFP_KERNEL); 3012 if (!tx_ring->desc) 3013 goto err; 3014 3015 return 0; 3016 3017 err: 3018 vfree(tx_ring->tx_buffer_info); 3019 tx_ring->tx_buffer_info = NULL; 3020 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3021 return -ENOMEM; 3022 } 3023 3024 /** 3025 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3026 * @adapter: board private structure 3027 * 3028 * If this function returns with an error, then it's possible one or 3029 * more of the rings is populated (while the rest are not). It is the 3030 * callers duty to clean those orphaned rings. 3031 * 3032 * Return 0 on success, negative on failure 3033 **/ 3034 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3035 { 3036 int i, err = 0; 3037 3038 for (i = 0; i < adapter->num_tx_queues; i++) { 3039 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3040 if (!err) 3041 continue; 3042 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3043 break; 3044 } 3045 3046 return err; 3047 } 3048 3049 /** 3050 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3051 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3052 * 3053 * Returns 0 on success, negative on failure 3054 **/ 3055 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring) 3056 { 3057 int size; 3058 3059 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3060 rx_ring->rx_buffer_info = vzalloc(size); 3061 if (!rx_ring->rx_buffer_info) 3062 goto err; 3063 3064 /* Round up to nearest 4K */ 3065 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3066 rx_ring->size = ALIGN(rx_ring->size, 4096); 3067 3068 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3069 &rx_ring->dma, GFP_KERNEL); 3070 3071 if (!rx_ring->desc) 3072 goto err; 3073 3074 return 0; 3075 err: 3076 vfree(rx_ring->rx_buffer_info); 3077 rx_ring->rx_buffer_info = NULL; 3078 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3079 return -ENOMEM; 3080 } 3081 3082 /** 3083 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3084 * @adapter: board private structure 3085 * 3086 * If this function returns with an error, then it's possible one or 3087 * more of the rings is populated (while the rest are not). It is the 3088 * callers duty to clean those orphaned rings. 3089 * 3090 * Return 0 on success, negative on failure 3091 **/ 3092 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3093 { 3094 int i, err = 0; 3095 3096 for (i = 0; i < adapter->num_rx_queues; i++) { 3097 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]); 3098 if (!err) 3099 continue; 3100 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3101 break; 3102 } 3103 return err; 3104 } 3105 3106 /** 3107 * ixgbevf_free_rx_resources - Free Rx Resources 3108 * @rx_ring: ring to clean the resources from 3109 * 3110 * Free all receive software resources 3111 **/ 3112 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3113 { 3114 ixgbevf_clean_rx_ring(rx_ring); 3115 3116 vfree(rx_ring->rx_buffer_info); 3117 rx_ring->rx_buffer_info = NULL; 3118 3119 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3120 rx_ring->dma); 3121 3122 rx_ring->desc = NULL; 3123 } 3124 3125 /** 3126 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3127 * @adapter: board private structure 3128 * 3129 * Free all receive software resources 3130 **/ 3131 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3132 { 3133 int i; 3134 3135 for (i = 0; i < adapter->num_rx_queues; i++) 3136 if (adapter->rx_ring[i]->desc) 3137 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3138 } 3139 3140 /** 3141 * ixgbevf_open - Called when a network interface is made active 3142 * @netdev: network interface device structure 3143 * 3144 * Returns 0 on success, negative value on failure 3145 * 3146 * The open entry point is called when a network interface is made 3147 * active by the system (IFF_UP). At this point all resources needed 3148 * for transmit and receive operations are allocated, the interrupt 3149 * handler is registered with the OS, the watchdog timer is started, 3150 * and the stack is notified that the interface is ready. 3151 **/ 3152 int ixgbevf_open(struct net_device *netdev) 3153 { 3154 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3155 struct ixgbe_hw *hw = &adapter->hw; 3156 int err; 3157 3158 /* A previous failure to open the device because of a lack of 3159 * available MSIX vector resources may have reset the number 3160 * of msix vectors variable to zero. The only way to recover 3161 * is to unload/reload the driver and hope that the system has 3162 * been able to recover some MSIX vector resources. 3163 */ 3164 if (!adapter->num_msix_vectors) 3165 return -ENOMEM; 3166 3167 if (hw->adapter_stopped) { 3168 ixgbevf_reset(adapter); 3169 /* if adapter is still stopped then PF isn't up and 3170 * the VF can't start. 3171 */ 3172 if (hw->adapter_stopped) { 3173 err = IXGBE_ERR_MBX; 3174 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3175 goto err_setup_reset; 3176 } 3177 } 3178 3179 /* disallow open during test */ 3180 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3181 return -EBUSY; 3182 3183 netif_carrier_off(netdev); 3184 3185 /* allocate transmit descriptors */ 3186 err = ixgbevf_setup_all_tx_resources(adapter); 3187 if (err) 3188 goto err_setup_tx; 3189 3190 /* allocate receive descriptors */ 3191 err = ixgbevf_setup_all_rx_resources(adapter); 3192 if (err) 3193 goto err_setup_rx; 3194 3195 ixgbevf_configure(adapter); 3196 3197 /* Map the Tx/Rx rings to the vectors we were allotted. 3198 * if request_irq will be called in this function map_rings 3199 * must be called *before* up_complete 3200 */ 3201 ixgbevf_map_rings_to_vectors(adapter); 3202 3203 err = ixgbevf_request_irq(adapter); 3204 if (err) 3205 goto err_req_irq; 3206 3207 ixgbevf_up_complete(adapter); 3208 3209 return 0; 3210 3211 err_req_irq: 3212 ixgbevf_down(adapter); 3213 err_setup_rx: 3214 ixgbevf_free_all_rx_resources(adapter); 3215 err_setup_tx: 3216 ixgbevf_free_all_tx_resources(adapter); 3217 ixgbevf_reset(adapter); 3218 3219 err_setup_reset: 3220 3221 return err; 3222 } 3223 3224 /** 3225 * ixgbevf_close - Disables a network interface 3226 * @netdev: network interface device structure 3227 * 3228 * Returns 0, this is not allowed to fail 3229 * 3230 * The close entry point is called when an interface is de-activated 3231 * by the OS. The hardware is still under the drivers control, but 3232 * needs to be disabled. A global MAC reset is issued to stop the 3233 * hardware, and all transmit and receive resources are freed. 3234 **/ 3235 int ixgbevf_close(struct net_device *netdev) 3236 { 3237 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3238 3239 ixgbevf_down(adapter); 3240 ixgbevf_free_irq(adapter); 3241 3242 ixgbevf_free_all_tx_resources(adapter); 3243 ixgbevf_free_all_rx_resources(adapter); 3244 3245 return 0; 3246 } 3247 3248 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3249 { 3250 struct net_device *dev = adapter->netdev; 3251 3252 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3253 &adapter->state)) 3254 return; 3255 3256 /* if interface is down do nothing */ 3257 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3258 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3259 return; 3260 3261 /* Hardware has to reinitialize queues and interrupts to 3262 * match packet buffer alignment. Unfortunately, the 3263 * hardware is not flexible enough to do this dynamically. 3264 */ 3265 if (netif_running(dev)) 3266 ixgbevf_close(dev); 3267 3268 ixgbevf_clear_interrupt_scheme(adapter); 3269 ixgbevf_init_interrupt_scheme(adapter); 3270 3271 if (netif_running(dev)) 3272 ixgbevf_open(dev); 3273 } 3274 3275 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3276 u32 vlan_macip_lens, u32 type_tucmd, 3277 u32 mss_l4len_idx) 3278 { 3279 struct ixgbe_adv_tx_context_desc *context_desc; 3280 u16 i = tx_ring->next_to_use; 3281 3282 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3283 3284 i++; 3285 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3286 3287 /* set bits to identify this as an advanced context descriptor */ 3288 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3289 3290 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3291 context_desc->seqnum_seed = 0; 3292 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3293 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3294 } 3295 3296 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3297 struct ixgbevf_tx_buffer *first, 3298 u8 *hdr_len) 3299 { 3300 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3301 struct sk_buff *skb = first->skb; 3302 union { 3303 struct iphdr *v4; 3304 struct ipv6hdr *v6; 3305 unsigned char *hdr; 3306 } ip; 3307 union { 3308 struct tcphdr *tcp; 3309 unsigned char *hdr; 3310 } l4; 3311 u32 paylen, l4_offset; 3312 int err; 3313 3314 if (skb->ip_summed != CHECKSUM_PARTIAL) 3315 return 0; 3316 3317 if (!skb_is_gso(skb)) 3318 return 0; 3319 3320 err = skb_cow_head(skb, 0); 3321 if (err < 0) 3322 return err; 3323 3324 ip.hdr = skb_network_header(skb); 3325 l4.hdr = skb_checksum_start(skb); 3326 3327 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3328 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3329 3330 /* initialize outer IP header fields */ 3331 if (ip.v4->version == 4) { 3332 /* IP header will have to cancel out any data that 3333 * is not a part of the outer IP header 3334 */ 3335 ip.v4->check = csum_fold(csum_add(lco_csum(skb), 3336 csum_unfold(l4.tcp->check))); 3337 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3338 3339 ip.v4->tot_len = 0; 3340 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3341 IXGBE_TX_FLAGS_CSUM | 3342 IXGBE_TX_FLAGS_IPV4; 3343 } else { 3344 ip.v6->payload_len = 0; 3345 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3346 IXGBE_TX_FLAGS_CSUM; 3347 } 3348 3349 /* determine offset of inner transport header */ 3350 l4_offset = l4.hdr - skb->data; 3351 3352 /* compute length of segmentation header */ 3353 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3354 3355 /* remove payload length from inner checksum */ 3356 paylen = skb->len - l4_offset; 3357 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3358 3359 /* update gso size and bytecount with header size */ 3360 first->gso_segs = skb_shinfo(skb)->gso_segs; 3361 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3362 3363 /* mss_l4len_id: use 1 as index for TSO */ 3364 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3365 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3366 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3367 3368 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3369 vlan_macip_lens = l4.hdr - ip.hdr; 3370 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3371 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3372 3373 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3374 type_tucmd, mss_l4len_idx); 3375 3376 return 1; 3377 } 3378 3379 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) 3380 { 3381 unsigned int offset = 0; 3382 3383 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 3384 3385 return offset == skb_checksum_start_offset(skb); 3386 } 3387 3388 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3389 struct ixgbevf_tx_buffer *first) 3390 { 3391 struct sk_buff *skb = first->skb; 3392 u32 vlan_macip_lens = 0; 3393 u32 type_tucmd = 0; 3394 3395 if (skb->ip_summed != CHECKSUM_PARTIAL) 3396 goto no_csum; 3397 3398 switch (skb->csum_offset) { 3399 case offsetof(struct tcphdr, check): 3400 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3401 /* fall through */ 3402 case offsetof(struct udphdr, check): 3403 break; 3404 case offsetof(struct sctphdr, checksum): 3405 /* validate that this is actually an SCTP request */ 3406 if (((first->protocol == htons(ETH_P_IP)) && 3407 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 3408 ((first->protocol == htons(ETH_P_IPV6)) && 3409 ixgbevf_ipv6_csum_is_sctp(skb))) { 3410 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3411 break; 3412 } 3413 /* fall through */ 3414 default: 3415 skb_checksum_help(skb); 3416 goto no_csum; 3417 } 3418 /* update TX checksum flag */ 3419 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3420 vlan_macip_lens = skb_checksum_start_offset(skb) - 3421 skb_network_offset(skb); 3422 no_csum: 3423 /* vlan_macip_lens: MACLEN, VLAN tag */ 3424 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3425 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3426 3427 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0); 3428 } 3429 3430 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3431 { 3432 /* set type for advanced descriptor with frame checksum insertion */ 3433 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3434 IXGBE_ADVTXD_DCMD_IFCS | 3435 IXGBE_ADVTXD_DCMD_DEXT); 3436 3437 /* set HW VLAN bit if VLAN is present */ 3438 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3439 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3440 3441 /* set segmentation enable bits for TSO/FSO */ 3442 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3443 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3444 3445 return cmd_type; 3446 } 3447 3448 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3449 u32 tx_flags, unsigned int paylen) 3450 { 3451 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3452 3453 /* enable L4 checksum for TSO and TX checksum offload */ 3454 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3455 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3456 3457 /* enble IPv4 checksum for TSO */ 3458 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3459 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3460 3461 /* use index 1 context for TSO/FSO/FCOE */ 3462 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3463 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3464 3465 /* Check Context must be set if Tx switch is enabled, which it 3466 * always is for case where virtual functions are running 3467 */ 3468 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3469 3470 tx_desc->read.olinfo_status = olinfo_status; 3471 } 3472 3473 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3474 struct ixgbevf_tx_buffer *first, 3475 const u8 hdr_len) 3476 { 3477 dma_addr_t dma; 3478 struct sk_buff *skb = first->skb; 3479 struct ixgbevf_tx_buffer *tx_buffer; 3480 union ixgbe_adv_tx_desc *tx_desc; 3481 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 3482 unsigned int data_len = skb->data_len; 3483 unsigned int size = skb_headlen(skb); 3484 unsigned int paylen = skb->len - hdr_len; 3485 u32 tx_flags = first->tx_flags; 3486 __le32 cmd_type; 3487 u16 i = tx_ring->next_to_use; 3488 3489 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3490 3491 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen); 3492 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3493 3494 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3495 if (dma_mapping_error(tx_ring->dev, dma)) 3496 goto dma_error; 3497 3498 /* record length, and DMA address */ 3499 dma_unmap_len_set(first, len, size); 3500 dma_unmap_addr_set(first, dma, dma); 3501 3502 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3503 3504 for (;;) { 3505 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3506 tx_desc->read.cmd_type_len = 3507 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3508 3509 i++; 3510 tx_desc++; 3511 if (i == tx_ring->count) { 3512 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3513 i = 0; 3514 } 3515 3516 dma += IXGBE_MAX_DATA_PER_TXD; 3517 size -= IXGBE_MAX_DATA_PER_TXD; 3518 3519 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3520 tx_desc->read.olinfo_status = 0; 3521 } 3522 3523 if (likely(!data_len)) 3524 break; 3525 3526 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 3527 3528 i++; 3529 tx_desc++; 3530 if (i == tx_ring->count) { 3531 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3532 i = 0; 3533 } 3534 3535 size = skb_frag_size(frag); 3536 data_len -= size; 3537 3538 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3539 DMA_TO_DEVICE); 3540 if (dma_mapping_error(tx_ring->dev, dma)) 3541 goto dma_error; 3542 3543 tx_buffer = &tx_ring->tx_buffer_info[i]; 3544 dma_unmap_len_set(tx_buffer, len, size); 3545 dma_unmap_addr_set(tx_buffer, dma, dma); 3546 3547 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3548 tx_desc->read.olinfo_status = 0; 3549 3550 frag++; 3551 } 3552 3553 /* write last descriptor with RS and EOP bits */ 3554 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 3555 tx_desc->read.cmd_type_len = cmd_type; 3556 3557 /* set the timestamp */ 3558 first->time_stamp = jiffies; 3559 3560 /* Force memory writes to complete before letting h/w know there 3561 * are new descriptors to fetch. (Only applicable for weak-ordered 3562 * memory model archs, such as IA-64). 3563 * 3564 * We also need this memory barrier (wmb) to make certain all of the 3565 * status bits have been updated before next_to_watch is written. 3566 */ 3567 wmb(); 3568 3569 /* set next_to_watch value indicating a packet is present */ 3570 first->next_to_watch = tx_desc; 3571 3572 i++; 3573 if (i == tx_ring->count) 3574 i = 0; 3575 3576 tx_ring->next_to_use = i; 3577 3578 /* notify HW of packet */ 3579 ixgbevf_write_tail(tx_ring, i); 3580 3581 return; 3582 dma_error: 3583 dev_err(tx_ring->dev, "TX DMA map failed\n"); 3584 3585 /* clear dma mappings for failed tx_buffer_info map */ 3586 for (;;) { 3587 tx_buffer = &tx_ring->tx_buffer_info[i]; 3588 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer); 3589 if (tx_buffer == first) 3590 break; 3591 if (i == 0) 3592 i = tx_ring->count; 3593 i--; 3594 } 3595 3596 tx_ring->next_to_use = i; 3597 } 3598 3599 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 3600 { 3601 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3602 /* Herbert's original patch had: 3603 * smp_mb__after_netif_stop_queue(); 3604 * but since that doesn't exist yet, just open code it. 3605 */ 3606 smp_mb(); 3607 3608 /* We need to check again in a case another CPU has just 3609 * made room available. 3610 */ 3611 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 3612 return -EBUSY; 3613 3614 /* A reprieve! - use start_queue because it doesn't call schedule */ 3615 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3616 ++tx_ring->tx_stats.restart_queue; 3617 3618 return 0; 3619 } 3620 3621 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 3622 { 3623 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 3624 return 0; 3625 return __ixgbevf_maybe_stop_tx(tx_ring, size); 3626 } 3627 3628 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3629 { 3630 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3631 struct ixgbevf_tx_buffer *first; 3632 struct ixgbevf_ring *tx_ring; 3633 int tso; 3634 u32 tx_flags = 0; 3635 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 3636 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 3637 unsigned short f; 3638 #endif 3639 u8 hdr_len = 0; 3640 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 3641 3642 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 3643 dev_kfree_skb_any(skb); 3644 return NETDEV_TX_OK; 3645 } 3646 3647 tx_ring = adapter->tx_ring[skb->queue_mapping]; 3648 3649 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 3650 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 3651 * + 2 desc gap to keep tail from touching head, 3652 * + 1 desc for context descriptor, 3653 * otherwise try next time 3654 */ 3655 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 3656 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 3657 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 3658 #else 3659 count += skb_shinfo(skb)->nr_frags; 3660 #endif 3661 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 3662 tx_ring->tx_stats.tx_busy++; 3663 return NETDEV_TX_BUSY; 3664 } 3665 3666 /* record the location of the first descriptor for this packet */ 3667 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 3668 first->skb = skb; 3669 first->bytecount = skb->len; 3670 first->gso_segs = 1; 3671 3672 if (skb_vlan_tag_present(skb)) { 3673 tx_flags |= skb_vlan_tag_get(skb); 3674 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 3675 tx_flags |= IXGBE_TX_FLAGS_VLAN; 3676 } 3677 3678 /* record initial flags and protocol */ 3679 first->tx_flags = tx_flags; 3680 first->protocol = vlan_get_protocol(skb); 3681 3682 tso = ixgbevf_tso(tx_ring, first, &hdr_len); 3683 if (tso < 0) 3684 goto out_drop; 3685 else if (!tso) 3686 ixgbevf_tx_csum(tx_ring, first); 3687 3688 ixgbevf_tx_map(tx_ring, first, hdr_len); 3689 3690 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 3691 3692 return NETDEV_TX_OK; 3693 3694 out_drop: 3695 dev_kfree_skb_any(first->skb); 3696 first->skb = NULL; 3697 3698 return NETDEV_TX_OK; 3699 } 3700 3701 /** 3702 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 3703 * @netdev: network interface device structure 3704 * @p: pointer to an address structure 3705 * 3706 * Returns 0 on success, negative on failure 3707 **/ 3708 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 3709 { 3710 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3711 struct ixgbe_hw *hw = &adapter->hw; 3712 struct sockaddr *addr = p; 3713 int err; 3714 3715 if (!is_valid_ether_addr(addr->sa_data)) 3716 return -EADDRNOTAVAIL; 3717 3718 spin_lock_bh(&adapter->mbx_lock); 3719 3720 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 3721 3722 spin_unlock_bh(&adapter->mbx_lock); 3723 3724 if (err) 3725 return -EPERM; 3726 3727 ether_addr_copy(hw->mac.addr, addr->sa_data); 3728 ether_addr_copy(netdev->dev_addr, addr->sa_data); 3729 3730 return 0; 3731 } 3732 3733 /** 3734 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 3735 * @netdev: network interface device structure 3736 * @new_mtu: new value for maximum frame size 3737 * 3738 * Returns 0 on success, negative on failure 3739 **/ 3740 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 3741 { 3742 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3743 struct ixgbe_hw *hw = &adapter->hw; 3744 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3745 int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE; 3746 int ret; 3747 3748 switch (adapter->hw.api_version) { 3749 case ixgbe_mbox_api_11: 3750 case ixgbe_mbox_api_12: 3751 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE; 3752 break; 3753 default: 3754 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 3755 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE; 3756 break; 3757 } 3758 3759 /* MTU < 68 is an error and causes problems on some kernels */ 3760 if ((new_mtu < 68) || (max_frame > max_possible_frame)) 3761 return -EINVAL; 3762 3763 spin_lock_bh(&adapter->mbx_lock); 3764 /* notify the PF of our intent to use this size of frame */ 3765 ret = hw->mac.ops.set_rlpml(hw, max_frame); 3766 spin_unlock_bh(&adapter->mbx_lock); 3767 if (ret) 3768 return -EINVAL; 3769 3770 hw_dbg(hw, "changing MTU from %d to %d\n", 3771 netdev->mtu, new_mtu); 3772 3773 /* must set new MTU before calling down or up */ 3774 netdev->mtu = new_mtu; 3775 3776 return 0; 3777 } 3778 3779 #ifdef CONFIG_NET_POLL_CONTROLLER 3780 /* Polling 'interrupt' - used by things like netconsole to send skbs 3781 * without having to re-enable interrupts. It's not called while 3782 * the interrupt routine is executing. 3783 */ 3784 static void ixgbevf_netpoll(struct net_device *netdev) 3785 { 3786 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3787 int i; 3788 3789 /* if interface is down do nothing */ 3790 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 3791 return; 3792 for (i = 0; i < adapter->num_rx_queues; i++) 3793 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]); 3794 } 3795 #endif /* CONFIG_NET_POLL_CONTROLLER */ 3796 3797 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state) 3798 { 3799 struct net_device *netdev = pci_get_drvdata(pdev); 3800 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3801 #ifdef CONFIG_PM 3802 int retval = 0; 3803 #endif 3804 3805 netif_device_detach(netdev); 3806 3807 if (netif_running(netdev)) { 3808 rtnl_lock(); 3809 ixgbevf_down(adapter); 3810 ixgbevf_free_irq(adapter); 3811 ixgbevf_free_all_tx_resources(adapter); 3812 ixgbevf_free_all_rx_resources(adapter); 3813 rtnl_unlock(); 3814 } 3815 3816 ixgbevf_clear_interrupt_scheme(adapter); 3817 3818 #ifdef CONFIG_PM 3819 retval = pci_save_state(pdev); 3820 if (retval) 3821 return retval; 3822 3823 #endif 3824 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 3825 pci_disable_device(pdev); 3826 3827 return 0; 3828 } 3829 3830 #ifdef CONFIG_PM 3831 static int ixgbevf_resume(struct pci_dev *pdev) 3832 { 3833 struct net_device *netdev = pci_get_drvdata(pdev); 3834 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3835 u32 err; 3836 3837 pci_restore_state(pdev); 3838 /* pci_restore_state clears dev->state_saved so call 3839 * pci_save_state to restore it. 3840 */ 3841 pci_save_state(pdev); 3842 3843 err = pci_enable_device_mem(pdev); 3844 if (err) { 3845 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 3846 return err; 3847 } 3848 smp_mb__before_atomic(); 3849 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 3850 pci_set_master(pdev); 3851 3852 ixgbevf_reset(adapter); 3853 3854 rtnl_lock(); 3855 err = ixgbevf_init_interrupt_scheme(adapter); 3856 rtnl_unlock(); 3857 if (err) { 3858 dev_err(&pdev->dev, "Cannot initialize interrupts\n"); 3859 return err; 3860 } 3861 3862 if (netif_running(netdev)) { 3863 err = ixgbevf_open(netdev); 3864 if (err) 3865 return err; 3866 } 3867 3868 netif_device_attach(netdev); 3869 3870 return err; 3871 } 3872 3873 #endif /* CONFIG_PM */ 3874 static void ixgbevf_shutdown(struct pci_dev *pdev) 3875 { 3876 ixgbevf_suspend(pdev, PMSG_SUSPEND); 3877 } 3878 3879 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev, 3880 struct rtnl_link_stats64 *stats) 3881 { 3882 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3883 unsigned int start; 3884 u64 bytes, packets; 3885 const struct ixgbevf_ring *ring; 3886 int i; 3887 3888 ixgbevf_update_stats(adapter); 3889 3890 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 3891 3892 for (i = 0; i < adapter->num_rx_queues; i++) { 3893 ring = adapter->rx_ring[i]; 3894 do { 3895 start = u64_stats_fetch_begin_irq(&ring->syncp); 3896 bytes = ring->stats.bytes; 3897 packets = ring->stats.packets; 3898 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3899 stats->rx_bytes += bytes; 3900 stats->rx_packets += packets; 3901 } 3902 3903 for (i = 0; i < adapter->num_tx_queues; i++) { 3904 ring = adapter->tx_ring[i]; 3905 do { 3906 start = u64_stats_fetch_begin_irq(&ring->syncp); 3907 bytes = ring->stats.bytes; 3908 packets = ring->stats.packets; 3909 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3910 stats->tx_bytes += bytes; 3911 stats->tx_packets += packets; 3912 } 3913 3914 return stats; 3915 } 3916 3917 #define IXGBEVF_MAX_MAC_HDR_LEN 127 3918 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 3919 3920 static netdev_features_t 3921 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 3922 netdev_features_t features) 3923 { 3924 unsigned int network_hdr_len, mac_hdr_len; 3925 3926 /* Make certain the headers can be described by a context descriptor */ 3927 mac_hdr_len = skb_network_header(skb) - skb->data; 3928 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 3929 return features & ~(NETIF_F_HW_CSUM | 3930 NETIF_F_SCTP_CRC | 3931 NETIF_F_HW_VLAN_CTAG_TX | 3932 NETIF_F_TSO | 3933 NETIF_F_TSO6); 3934 3935 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 3936 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 3937 return features & ~(NETIF_F_HW_CSUM | 3938 NETIF_F_SCTP_CRC | 3939 NETIF_F_TSO | 3940 NETIF_F_TSO6); 3941 3942 /* We can only support IPV4 TSO in tunnels if we can mangle the 3943 * inner IP ID field, so strip TSO if MANGLEID is not supported. 3944 */ 3945 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 3946 features &= ~NETIF_F_TSO; 3947 3948 return features; 3949 } 3950 3951 static const struct net_device_ops ixgbevf_netdev_ops = { 3952 .ndo_open = ixgbevf_open, 3953 .ndo_stop = ixgbevf_close, 3954 .ndo_start_xmit = ixgbevf_xmit_frame, 3955 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 3956 .ndo_get_stats64 = ixgbevf_get_stats, 3957 .ndo_validate_addr = eth_validate_addr, 3958 .ndo_set_mac_address = ixgbevf_set_mac, 3959 .ndo_change_mtu = ixgbevf_change_mtu, 3960 .ndo_tx_timeout = ixgbevf_tx_timeout, 3961 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 3962 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 3963 #ifdef CONFIG_NET_RX_BUSY_POLL 3964 .ndo_busy_poll = ixgbevf_busy_poll_recv, 3965 #endif 3966 #ifdef CONFIG_NET_POLL_CONTROLLER 3967 .ndo_poll_controller = ixgbevf_netpoll, 3968 #endif 3969 .ndo_features_check = ixgbevf_features_check, 3970 }; 3971 3972 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 3973 { 3974 dev->netdev_ops = &ixgbevf_netdev_ops; 3975 ixgbevf_set_ethtool_ops(dev); 3976 dev->watchdog_timeo = 5 * HZ; 3977 } 3978 3979 /** 3980 * ixgbevf_probe - Device Initialization Routine 3981 * @pdev: PCI device information struct 3982 * @ent: entry in ixgbevf_pci_tbl 3983 * 3984 * Returns 0 on success, negative on failure 3985 * 3986 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 3987 * The OS initialization, configuring of the adapter private structure, 3988 * and a hardware reset occur. 3989 **/ 3990 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3991 { 3992 struct net_device *netdev; 3993 struct ixgbevf_adapter *adapter = NULL; 3994 struct ixgbe_hw *hw = NULL; 3995 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 3996 int err, pci_using_dac; 3997 bool disable_dev = false; 3998 3999 err = pci_enable_device(pdev); 4000 if (err) 4001 return err; 4002 4003 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 4004 pci_using_dac = 1; 4005 } else { 4006 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4007 if (err) { 4008 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4009 goto err_dma; 4010 } 4011 pci_using_dac = 0; 4012 } 4013 4014 err = pci_request_regions(pdev, ixgbevf_driver_name); 4015 if (err) { 4016 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4017 goto err_pci_reg; 4018 } 4019 4020 pci_set_master(pdev); 4021 4022 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4023 MAX_TX_QUEUES); 4024 if (!netdev) { 4025 err = -ENOMEM; 4026 goto err_alloc_etherdev; 4027 } 4028 4029 SET_NETDEV_DEV(netdev, &pdev->dev); 4030 4031 adapter = netdev_priv(netdev); 4032 4033 adapter->netdev = netdev; 4034 adapter->pdev = pdev; 4035 hw = &adapter->hw; 4036 hw->back = adapter; 4037 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4038 4039 /* call save state here in standalone driver because it relies on 4040 * adapter struct to exist, and needs to call netdev_priv 4041 */ 4042 pci_save_state(pdev); 4043 4044 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4045 pci_resource_len(pdev, 0)); 4046 adapter->io_addr = hw->hw_addr; 4047 if (!hw->hw_addr) { 4048 err = -EIO; 4049 goto err_ioremap; 4050 } 4051 4052 ixgbevf_assign_netdev_ops(netdev); 4053 4054 /* Setup HW API */ 4055 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4056 hw->mac.type = ii->mac; 4057 4058 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4059 sizeof(struct ixgbe_mbx_operations)); 4060 4061 /* setup the private structure */ 4062 err = ixgbevf_sw_init(adapter); 4063 if (err) 4064 goto err_sw_init; 4065 4066 /* The HW MAC address was set and/or determined in sw_init */ 4067 if (!is_valid_ether_addr(netdev->dev_addr)) { 4068 pr_err("invalid MAC address\n"); 4069 err = -EIO; 4070 goto err_sw_init; 4071 } 4072 4073 netdev->hw_features = NETIF_F_SG | 4074 NETIF_F_TSO | 4075 NETIF_F_TSO6 | 4076 NETIF_F_RXCSUM | 4077 NETIF_F_HW_CSUM | 4078 NETIF_F_SCTP_CRC; 4079 4080 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4081 NETIF_F_GSO_GRE_CSUM | \ 4082 NETIF_F_GSO_IPXIP4 | \ 4083 NETIF_F_GSO_IPXIP6 | \ 4084 NETIF_F_GSO_UDP_TUNNEL | \ 4085 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4086 4087 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4088 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4089 IXGBEVF_GSO_PARTIAL_FEATURES; 4090 4091 netdev->features = netdev->hw_features; 4092 4093 if (pci_using_dac) 4094 netdev->features |= NETIF_F_HIGHDMA; 4095 4096 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4097 netdev->mpls_features |= NETIF_F_HW_CSUM; 4098 netdev->hw_enc_features |= netdev->vlan_features; 4099 4100 /* set this bit last since it cannot be part of vlan_features */ 4101 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4102 NETIF_F_HW_VLAN_CTAG_RX | 4103 NETIF_F_HW_VLAN_CTAG_TX; 4104 4105 netdev->priv_flags |= IFF_UNICAST_FLT; 4106 4107 if (IXGBE_REMOVED(hw->hw_addr)) { 4108 err = -EIO; 4109 goto err_sw_init; 4110 } 4111 4112 setup_timer(&adapter->service_timer, &ixgbevf_service_timer, 4113 (unsigned long)adapter); 4114 4115 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4116 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4117 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4118 4119 err = ixgbevf_init_interrupt_scheme(adapter); 4120 if (err) 4121 goto err_sw_init; 4122 4123 strcpy(netdev->name, "eth%d"); 4124 4125 err = register_netdev(netdev); 4126 if (err) 4127 goto err_register; 4128 4129 pci_set_drvdata(pdev, netdev); 4130 netif_carrier_off(netdev); 4131 4132 ixgbevf_init_last_counter_stats(adapter); 4133 4134 /* print the VF info */ 4135 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4136 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4137 4138 switch (hw->mac.type) { 4139 case ixgbe_mac_X550_vf: 4140 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4141 break; 4142 case ixgbe_mac_X540_vf: 4143 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4144 break; 4145 case ixgbe_mac_82599_vf: 4146 default: 4147 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4148 break; 4149 } 4150 4151 return 0; 4152 4153 err_register: 4154 ixgbevf_clear_interrupt_scheme(adapter); 4155 err_sw_init: 4156 ixgbevf_reset_interrupt_capability(adapter); 4157 iounmap(adapter->io_addr); 4158 err_ioremap: 4159 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4160 free_netdev(netdev); 4161 err_alloc_etherdev: 4162 pci_release_regions(pdev); 4163 err_pci_reg: 4164 err_dma: 4165 if (!adapter || disable_dev) 4166 pci_disable_device(pdev); 4167 return err; 4168 } 4169 4170 /** 4171 * ixgbevf_remove - Device Removal Routine 4172 * @pdev: PCI device information struct 4173 * 4174 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4175 * that it should release a PCI device. The could be caused by a 4176 * Hot-Plug event, or because the driver is going to be removed from 4177 * memory. 4178 **/ 4179 static void ixgbevf_remove(struct pci_dev *pdev) 4180 { 4181 struct net_device *netdev = pci_get_drvdata(pdev); 4182 struct ixgbevf_adapter *adapter; 4183 bool disable_dev; 4184 4185 if (!netdev) 4186 return; 4187 4188 adapter = netdev_priv(netdev); 4189 4190 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4191 cancel_work_sync(&adapter->service_task); 4192 4193 if (netdev->reg_state == NETREG_REGISTERED) 4194 unregister_netdev(netdev); 4195 4196 ixgbevf_clear_interrupt_scheme(adapter); 4197 ixgbevf_reset_interrupt_capability(adapter); 4198 4199 iounmap(adapter->io_addr); 4200 pci_release_regions(pdev); 4201 4202 hw_dbg(&adapter->hw, "Remove complete\n"); 4203 4204 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4205 free_netdev(netdev); 4206 4207 if (disable_dev) 4208 pci_disable_device(pdev); 4209 } 4210 4211 /** 4212 * ixgbevf_io_error_detected - called when PCI error is detected 4213 * @pdev: Pointer to PCI device 4214 * @state: The current pci connection state 4215 * 4216 * This function is called after a PCI bus error affecting 4217 * this device has been detected. 4218 **/ 4219 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4220 pci_channel_state_t state) 4221 { 4222 struct net_device *netdev = pci_get_drvdata(pdev); 4223 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4224 4225 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4226 return PCI_ERS_RESULT_DISCONNECT; 4227 4228 rtnl_lock(); 4229 netif_device_detach(netdev); 4230 4231 if (state == pci_channel_io_perm_failure) { 4232 rtnl_unlock(); 4233 return PCI_ERS_RESULT_DISCONNECT; 4234 } 4235 4236 if (netif_running(netdev)) 4237 ixgbevf_down(adapter); 4238 4239 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4240 pci_disable_device(pdev); 4241 rtnl_unlock(); 4242 4243 /* Request a slot slot reset. */ 4244 return PCI_ERS_RESULT_NEED_RESET; 4245 } 4246 4247 /** 4248 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4249 * @pdev: Pointer to PCI device 4250 * 4251 * Restart the card from scratch, as if from a cold-boot. Implementation 4252 * resembles the first-half of the ixgbevf_resume routine. 4253 **/ 4254 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4255 { 4256 struct net_device *netdev = pci_get_drvdata(pdev); 4257 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4258 4259 if (pci_enable_device_mem(pdev)) { 4260 dev_err(&pdev->dev, 4261 "Cannot re-enable PCI device after reset.\n"); 4262 return PCI_ERS_RESULT_DISCONNECT; 4263 } 4264 4265 smp_mb__before_atomic(); 4266 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4267 pci_set_master(pdev); 4268 4269 ixgbevf_reset(adapter); 4270 4271 return PCI_ERS_RESULT_RECOVERED; 4272 } 4273 4274 /** 4275 * ixgbevf_io_resume - called when traffic can start flowing again. 4276 * @pdev: Pointer to PCI device 4277 * 4278 * This callback is called when the error recovery driver tells us that 4279 * its OK to resume normal operation. Implementation resembles the 4280 * second-half of the ixgbevf_resume routine. 4281 **/ 4282 static void ixgbevf_io_resume(struct pci_dev *pdev) 4283 { 4284 struct net_device *netdev = pci_get_drvdata(pdev); 4285 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4286 4287 if (netif_running(netdev)) 4288 ixgbevf_up(adapter); 4289 4290 netif_device_attach(netdev); 4291 } 4292 4293 /* PCI Error Recovery (ERS) */ 4294 static const struct pci_error_handlers ixgbevf_err_handler = { 4295 .error_detected = ixgbevf_io_error_detected, 4296 .slot_reset = ixgbevf_io_slot_reset, 4297 .resume = ixgbevf_io_resume, 4298 }; 4299 4300 static struct pci_driver ixgbevf_driver = { 4301 .name = ixgbevf_driver_name, 4302 .id_table = ixgbevf_pci_tbl, 4303 .probe = ixgbevf_probe, 4304 .remove = ixgbevf_remove, 4305 #ifdef CONFIG_PM 4306 /* Power Management Hooks */ 4307 .suspend = ixgbevf_suspend, 4308 .resume = ixgbevf_resume, 4309 #endif 4310 .shutdown = ixgbevf_shutdown, 4311 .err_handler = &ixgbevf_err_handler 4312 }; 4313 4314 /** 4315 * ixgbevf_init_module - Driver Registration Routine 4316 * 4317 * ixgbevf_init_module is the first routine called when the driver is 4318 * loaded. All it does is register with the PCI subsystem. 4319 **/ 4320 static int __init ixgbevf_init_module(void) 4321 { 4322 pr_info("%s - version %s\n", ixgbevf_driver_string, 4323 ixgbevf_driver_version); 4324 4325 pr_info("%s\n", ixgbevf_copyright); 4326 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4327 if (!ixgbevf_wq) { 4328 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4329 return -ENOMEM; 4330 } 4331 4332 return pci_register_driver(&ixgbevf_driver); 4333 } 4334 4335 module_init(ixgbevf_init_module); 4336 4337 /** 4338 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4339 * 4340 * ixgbevf_exit_module is called just before the driver is removed 4341 * from memory. 4342 **/ 4343 static void __exit ixgbevf_exit_module(void) 4344 { 4345 pci_unregister_driver(&ixgbevf_driver); 4346 if (ixgbevf_wq) { 4347 destroy_workqueue(ixgbevf_wq); 4348 ixgbevf_wq = NULL; 4349 } 4350 } 4351 4352 #ifdef DEBUG 4353 /** 4354 * ixgbevf_get_hw_dev_name - return device name string 4355 * used by hardware layer to print debugging information 4356 **/ 4357 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4358 { 4359 struct ixgbevf_adapter *adapter = hw->back; 4360 4361 return adapter->netdev->name; 4362 } 4363 4364 #endif 4365 module_exit(ixgbevf_exit_module); 4366 4367 /* ixgbevf_main.c */ 4368