1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 #include <net/xfrm.h> 34 35 #include "ixgbevf.h" 36 37 const char ixgbevf_driver_name[] = "ixgbevf"; 38 static const char ixgbevf_driver_string[] = 39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 40 41 #define DRV_VERSION "4.1.0-k" 42 const char ixgbevf_driver_version[] = DRV_VERSION; 43 static char ixgbevf_copyright[] = 44 "Copyright (c) 2009 - 2018 Intel Corporation."; 45 46 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 47 [board_82599_vf] = &ixgbevf_82599_vf_info, 48 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 49 [board_X540_vf] = &ixgbevf_X540_vf_info, 50 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 51 [board_X550_vf] = &ixgbevf_X550_vf_info, 52 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 53 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 54 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 55 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 56 }; 57 58 /* ixgbevf_pci_tbl - PCI Device ID Table 59 * 60 * Wildcard entries (PCI_ANY_ID) should come last 61 * Last entry must be all 0s 62 * 63 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 64 * Class, Class Mask, private data (not used) } 65 */ 66 static const struct pci_device_id ixgbevf_pci_tbl[] = { 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 74 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 75 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 76 /* required last entry */ 77 {0, } 78 }; 79 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 80 81 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 82 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 83 MODULE_LICENSE("GPL v2"); 84 MODULE_VERSION(DRV_VERSION); 85 86 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 87 static int debug = -1; 88 module_param(debug, int, 0); 89 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 90 91 static struct workqueue_struct *ixgbevf_wq; 92 93 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 94 { 95 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 96 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 97 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 98 queue_work(ixgbevf_wq, &adapter->service_task); 99 } 100 101 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 102 { 103 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 104 105 /* flush memory to make sure state is correct before next watchdog */ 106 smp_mb__before_atomic(); 107 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 108 } 109 110 /* forward decls */ 111 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 112 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 113 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 114 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 115 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 116 struct ixgbevf_rx_buffer *old_buff); 117 118 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 119 { 120 struct ixgbevf_adapter *adapter = hw->back; 121 122 if (!hw->hw_addr) 123 return; 124 hw->hw_addr = NULL; 125 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 126 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 127 ixgbevf_service_event_schedule(adapter); 128 } 129 130 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 131 { 132 u32 value; 133 134 /* The following check not only optimizes a bit by not 135 * performing a read on the status register when the 136 * register just read was a status register read that 137 * returned IXGBE_FAILED_READ_REG. It also blocks any 138 * potential recursion. 139 */ 140 if (reg == IXGBE_VFSTATUS) { 141 ixgbevf_remove_adapter(hw); 142 return; 143 } 144 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 145 if (value == IXGBE_FAILED_READ_REG) 146 ixgbevf_remove_adapter(hw); 147 } 148 149 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 150 { 151 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 152 u32 value; 153 154 if (IXGBE_REMOVED(reg_addr)) 155 return IXGBE_FAILED_READ_REG; 156 value = readl(reg_addr + reg); 157 if (unlikely(value == IXGBE_FAILED_READ_REG)) 158 ixgbevf_check_remove(hw, reg); 159 return value; 160 } 161 162 /** 163 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 164 * @adapter: pointer to adapter struct 165 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 166 * @queue: queue to map the corresponding interrupt to 167 * @msix_vector: the vector to map to the corresponding queue 168 **/ 169 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 170 u8 queue, u8 msix_vector) 171 { 172 u32 ivar, index; 173 struct ixgbe_hw *hw = &adapter->hw; 174 175 if (direction == -1) { 176 /* other causes */ 177 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 178 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 179 ivar &= ~0xFF; 180 ivar |= msix_vector; 181 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 182 } else { 183 /* Tx or Rx causes */ 184 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 185 index = ((16 * (queue & 1)) + (8 * direction)); 186 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 187 ivar &= ~(0xFF << index); 188 ivar |= (msix_vector << index); 189 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 190 } 191 } 192 193 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 194 { 195 return ring->stats.packets; 196 } 197 198 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 199 { 200 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 201 struct ixgbe_hw *hw = &adapter->hw; 202 203 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 204 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 205 206 if (head != tail) 207 return (head < tail) ? 208 tail - head : (tail + ring->count - head); 209 210 return 0; 211 } 212 213 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 214 { 215 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 216 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 217 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 218 219 clear_check_for_tx_hang(tx_ring); 220 221 /* Check for a hung queue, but be thorough. This verifies 222 * that a transmit has been completed since the previous 223 * check AND there is at least one packet pending. The 224 * ARMED bit is set to indicate a potential hang. 225 */ 226 if ((tx_done_old == tx_done) && tx_pending) { 227 /* make sure it is true for two checks in a row */ 228 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 229 &tx_ring->state); 230 } 231 /* reset the countdown */ 232 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 233 234 /* update completed stats and continue */ 235 tx_ring->tx_stats.tx_done_old = tx_done; 236 237 return false; 238 } 239 240 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 241 { 242 /* Do the reset outside of interrupt context */ 243 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 244 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 245 ixgbevf_service_event_schedule(adapter); 246 } 247 } 248 249 /** 250 * ixgbevf_tx_timeout - Respond to a Tx Hang 251 * @netdev: network interface device structure 252 **/ 253 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 254 { 255 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 256 257 ixgbevf_tx_timeout_reset(adapter); 258 } 259 260 /** 261 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 262 * @q_vector: board private structure 263 * @tx_ring: tx ring to clean 264 * @napi_budget: Used to determine if we are in netpoll 265 **/ 266 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 267 struct ixgbevf_ring *tx_ring, int napi_budget) 268 { 269 struct ixgbevf_adapter *adapter = q_vector->adapter; 270 struct ixgbevf_tx_buffer *tx_buffer; 271 union ixgbe_adv_tx_desc *tx_desc; 272 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; 273 unsigned int budget = tx_ring->count / 2; 274 unsigned int i = tx_ring->next_to_clean; 275 276 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 277 return true; 278 279 tx_buffer = &tx_ring->tx_buffer_info[i]; 280 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 281 i -= tx_ring->count; 282 283 do { 284 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 285 286 /* if next_to_watch is not set then there is no work pending */ 287 if (!eop_desc) 288 break; 289 290 /* prevent any other reads prior to eop_desc */ 291 smp_rmb(); 292 293 /* if DD is not set pending work has not been completed */ 294 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 295 break; 296 297 /* clear next_to_watch to prevent false hangs */ 298 tx_buffer->next_to_watch = NULL; 299 300 /* update the statistics for this packet */ 301 total_bytes += tx_buffer->bytecount; 302 total_packets += tx_buffer->gso_segs; 303 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) 304 total_ipsec++; 305 306 /* free the skb */ 307 if (ring_is_xdp(tx_ring)) 308 page_frag_free(tx_buffer->data); 309 else 310 napi_consume_skb(tx_buffer->skb, napi_budget); 311 312 /* unmap skb header data */ 313 dma_unmap_single(tx_ring->dev, 314 dma_unmap_addr(tx_buffer, dma), 315 dma_unmap_len(tx_buffer, len), 316 DMA_TO_DEVICE); 317 318 /* clear tx_buffer data */ 319 dma_unmap_len_set(tx_buffer, len, 0); 320 321 /* unmap remaining buffers */ 322 while (tx_desc != eop_desc) { 323 tx_buffer++; 324 tx_desc++; 325 i++; 326 if (unlikely(!i)) { 327 i -= tx_ring->count; 328 tx_buffer = tx_ring->tx_buffer_info; 329 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 330 } 331 332 /* unmap any remaining paged data */ 333 if (dma_unmap_len(tx_buffer, len)) { 334 dma_unmap_page(tx_ring->dev, 335 dma_unmap_addr(tx_buffer, dma), 336 dma_unmap_len(tx_buffer, len), 337 DMA_TO_DEVICE); 338 dma_unmap_len_set(tx_buffer, len, 0); 339 } 340 } 341 342 /* move us one more past the eop_desc for start of next pkt */ 343 tx_buffer++; 344 tx_desc++; 345 i++; 346 if (unlikely(!i)) { 347 i -= tx_ring->count; 348 tx_buffer = tx_ring->tx_buffer_info; 349 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 350 } 351 352 /* issue prefetch for next Tx descriptor */ 353 prefetch(tx_desc); 354 355 /* update budget accounting */ 356 budget--; 357 } while (likely(budget)); 358 359 i += tx_ring->count; 360 tx_ring->next_to_clean = i; 361 u64_stats_update_begin(&tx_ring->syncp); 362 tx_ring->stats.bytes += total_bytes; 363 tx_ring->stats.packets += total_packets; 364 u64_stats_update_end(&tx_ring->syncp); 365 q_vector->tx.total_bytes += total_bytes; 366 q_vector->tx.total_packets += total_packets; 367 adapter->tx_ipsec += total_ipsec; 368 369 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 370 struct ixgbe_hw *hw = &adapter->hw; 371 union ixgbe_adv_tx_desc *eop_desc; 372 373 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 374 375 pr_err("Detected Tx Unit Hang%s\n" 376 " Tx Queue <%d>\n" 377 " TDH, TDT <%x>, <%x>\n" 378 " next_to_use <%x>\n" 379 " next_to_clean <%x>\n" 380 "tx_buffer_info[next_to_clean]\n" 381 " next_to_watch <%p>\n" 382 " eop_desc->wb.status <%x>\n" 383 " time_stamp <%lx>\n" 384 " jiffies <%lx>\n", 385 ring_is_xdp(tx_ring) ? " XDP" : "", 386 tx_ring->queue_index, 387 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 388 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 389 tx_ring->next_to_use, i, 390 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 391 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 392 393 if (!ring_is_xdp(tx_ring)) 394 netif_stop_subqueue(tx_ring->netdev, 395 tx_ring->queue_index); 396 397 /* schedule immediate reset if we believe we hung */ 398 ixgbevf_tx_timeout_reset(adapter); 399 400 return true; 401 } 402 403 if (ring_is_xdp(tx_ring)) 404 return !!budget; 405 406 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 407 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 408 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 409 /* Make sure that anybody stopping the queue after this 410 * sees the new next_to_clean. 411 */ 412 smp_mb(); 413 414 if (__netif_subqueue_stopped(tx_ring->netdev, 415 tx_ring->queue_index) && 416 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 417 netif_wake_subqueue(tx_ring->netdev, 418 tx_ring->queue_index); 419 ++tx_ring->tx_stats.restart_queue; 420 } 421 } 422 423 return !!budget; 424 } 425 426 /** 427 * ixgbevf_rx_skb - Helper function to determine proper Rx method 428 * @q_vector: structure containing interrupt and ring information 429 * @skb: packet to send up 430 **/ 431 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 432 struct sk_buff *skb) 433 { 434 napi_gro_receive(&q_vector->napi, skb); 435 } 436 437 #define IXGBE_RSS_L4_TYPES_MASK \ 438 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 439 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 440 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 441 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 442 443 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 444 union ixgbe_adv_rx_desc *rx_desc, 445 struct sk_buff *skb) 446 { 447 u16 rss_type; 448 449 if (!(ring->netdev->features & NETIF_F_RXHASH)) 450 return; 451 452 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 453 IXGBE_RXDADV_RSSTYPE_MASK; 454 455 if (!rss_type) 456 return; 457 458 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 459 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 460 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 461 } 462 463 /** 464 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 465 * @ring: structure containig ring specific data 466 * @rx_desc: current Rx descriptor being processed 467 * @skb: skb currently being received and modified 468 **/ 469 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 470 union ixgbe_adv_rx_desc *rx_desc, 471 struct sk_buff *skb) 472 { 473 skb_checksum_none_assert(skb); 474 475 /* Rx csum disabled */ 476 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 477 return; 478 479 /* if IP and error */ 480 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 481 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 482 ring->rx_stats.csum_err++; 483 return; 484 } 485 486 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 487 return; 488 489 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 490 ring->rx_stats.csum_err++; 491 return; 492 } 493 494 /* It must be a TCP or UDP packet with a valid checksum */ 495 skb->ip_summed = CHECKSUM_UNNECESSARY; 496 } 497 498 /** 499 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 500 * @rx_ring: rx descriptor ring packet is being transacted on 501 * @rx_desc: pointer to the EOP Rx descriptor 502 * @skb: pointer to current skb being populated 503 * 504 * This function checks the ring, descriptor, and packet information in 505 * order to populate the checksum, VLAN, protocol, and other fields within 506 * the skb. 507 **/ 508 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 509 union ixgbe_adv_rx_desc *rx_desc, 510 struct sk_buff *skb) 511 { 512 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 513 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 514 515 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 516 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 517 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 518 519 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 520 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 521 } 522 523 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) 524 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); 525 526 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 527 } 528 529 static 530 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 531 const unsigned int size) 532 { 533 struct ixgbevf_rx_buffer *rx_buffer; 534 535 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 536 prefetchw(rx_buffer->page); 537 538 /* we are reusing so sync this buffer for CPU use */ 539 dma_sync_single_range_for_cpu(rx_ring->dev, 540 rx_buffer->dma, 541 rx_buffer->page_offset, 542 size, 543 DMA_FROM_DEVICE); 544 545 rx_buffer->pagecnt_bias--; 546 547 return rx_buffer; 548 } 549 550 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 551 struct ixgbevf_rx_buffer *rx_buffer, 552 struct sk_buff *skb) 553 { 554 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 555 /* hand second half of page back to the ring */ 556 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 557 } else { 558 if (IS_ERR(skb)) 559 /* We are not reusing the buffer so unmap it and free 560 * any references we are holding to it 561 */ 562 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 563 ixgbevf_rx_pg_size(rx_ring), 564 DMA_FROM_DEVICE, 565 IXGBEVF_RX_DMA_ATTR); 566 __page_frag_cache_drain(rx_buffer->page, 567 rx_buffer->pagecnt_bias); 568 } 569 570 /* clear contents of rx_buffer */ 571 rx_buffer->page = NULL; 572 } 573 574 /** 575 * ixgbevf_is_non_eop - process handling of non-EOP buffers 576 * @rx_ring: Rx ring being processed 577 * @rx_desc: Rx descriptor for current buffer 578 * 579 * This function updates next to clean. If the buffer is an EOP buffer 580 * this function exits returning false, otherwise it will place the 581 * sk_buff in the next buffer to be chained and return true indicating 582 * that this is in fact a non-EOP buffer. 583 **/ 584 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 585 union ixgbe_adv_rx_desc *rx_desc) 586 { 587 u32 ntc = rx_ring->next_to_clean + 1; 588 589 /* fetch, update, and store next to clean */ 590 ntc = (ntc < rx_ring->count) ? ntc : 0; 591 rx_ring->next_to_clean = ntc; 592 593 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 594 595 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 596 return false; 597 598 return true; 599 } 600 601 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 602 { 603 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 604 } 605 606 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 607 struct ixgbevf_rx_buffer *bi) 608 { 609 struct page *page = bi->page; 610 dma_addr_t dma; 611 612 /* since we are recycling buffers we should seldom need to alloc */ 613 if (likely(page)) 614 return true; 615 616 /* alloc new page for storage */ 617 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 618 if (unlikely(!page)) { 619 rx_ring->rx_stats.alloc_rx_page_failed++; 620 return false; 621 } 622 623 /* map page for use */ 624 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 625 ixgbevf_rx_pg_size(rx_ring), 626 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 627 628 /* if mapping failed free memory back to system since 629 * there isn't much point in holding memory we can't use 630 */ 631 if (dma_mapping_error(rx_ring->dev, dma)) { 632 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 633 634 rx_ring->rx_stats.alloc_rx_page_failed++; 635 return false; 636 } 637 638 bi->dma = dma; 639 bi->page = page; 640 bi->page_offset = ixgbevf_rx_offset(rx_ring); 641 bi->pagecnt_bias = 1; 642 rx_ring->rx_stats.alloc_rx_page++; 643 644 return true; 645 } 646 647 /** 648 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 649 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 650 * @cleaned_count: number of buffers to replace 651 **/ 652 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 653 u16 cleaned_count) 654 { 655 union ixgbe_adv_rx_desc *rx_desc; 656 struct ixgbevf_rx_buffer *bi; 657 unsigned int i = rx_ring->next_to_use; 658 659 /* nothing to do or no valid netdev defined */ 660 if (!cleaned_count || !rx_ring->netdev) 661 return; 662 663 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 664 bi = &rx_ring->rx_buffer_info[i]; 665 i -= rx_ring->count; 666 667 do { 668 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 669 break; 670 671 /* sync the buffer for use by the device */ 672 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 673 bi->page_offset, 674 ixgbevf_rx_bufsz(rx_ring), 675 DMA_FROM_DEVICE); 676 677 /* Refresh the desc even if pkt_addr didn't change 678 * because each write-back erases this info. 679 */ 680 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 681 682 rx_desc++; 683 bi++; 684 i++; 685 if (unlikely(!i)) { 686 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 687 bi = rx_ring->rx_buffer_info; 688 i -= rx_ring->count; 689 } 690 691 /* clear the length for the next_to_use descriptor */ 692 rx_desc->wb.upper.length = 0; 693 694 cleaned_count--; 695 } while (cleaned_count); 696 697 i += rx_ring->count; 698 699 if (rx_ring->next_to_use != i) { 700 /* record the next descriptor to use */ 701 rx_ring->next_to_use = i; 702 703 /* update next to alloc since we have filled the ring */ 704 rx_ring->next_to_alloc = i; 705 706 /* Force memory writes to complete before letting h/w 707 * know there are new descriptors to fetch. (Only 708 * applicable for weak-ordered memory model archs, 709 * such as IA-64). 710 */ 711 wmb(); 712 ixgbevf_write_tail(rx_ring, i); 713 } 714 } 715 716 /** 717 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 718 * @rx_ring: rx descriptor ring packet is being transacted on 719 * @rx_desc: pointer to the EOP Rx descriptor 720 * @skb: pointer to current skb being fixed 721 * 722 * Check for corrupted packet headers caused by senders on the local L2 723 * embedded NIC switch not setting up their Tx Descriptors right. These 724 * should be very rare. 725 * 726 * Also address the case where we are pulling data in on pages only 727 * and as such no data is present in the skb header. 728 * 729 * In addition if skb is not at least 60 bytes we need to pad it so that 730 * it is large enough to qualify as a valid Ethernet frame. 731 * 732 * Returns true if an error was encountered and skb was freed. 733 **/ 734 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 735 union ixgbe_adv_rx_desc *rx_desc, 736 struct sk_buff *skb) 737 { 738 /* XDP packets use error pointer so abort at this point */ 739 if (IS_ERR(skb)) 740 return true; 741 742 /* verify that the packet does not have any known errors */ 743 if (unlikely(ixgbevf_test_staterr(rx_desc, 744 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 745 struct net_device *netdev = rx_ring->netdev; 746 747 if (!(netdev->features & NETIF_F_RXALL)) { 748 dev_kfree_skb_any(skb); 749 return true; 750 } 751 } 752 753 /* if eth_skb_pad returns an error the skb was freed */ 754 if (eth_skb_pad(skb)) 755 return true; 756 757 return false; 758 } 759 760 /** 761 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 762 * @rx_ring: rx descriptor ring to store buffers on 763 * @old_buff: donor buffer to have page reused 764 * 765 * Synchronizes page for reuse by the adapter 766 **/ 767 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 768 struct ixgbevf_rx_buffer *old_buff) 769 { 770 struct ixgbevf_rx_buffer *new_buff; 771 u16 nta = rx_ring->next_to_alloc; 772 773 new_buff = &rx_ring->rx_buffer_info[nta]; 774 775 /* update, and store next to alloc */ 776 nta++; 777 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 778 779 /* transfer page from old buffer to new buffer */ 780 new_buff->page = old_buff->page; 781 new_buff->dma = old_buff->dma; 782 new_buff->page_offset = old_buff->page_offset; 783 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 784 } 785 786 static inline bool ixgbevf_page_is_reserved(struct page *page) 787 { 788 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 789 } 790 791 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 792 { 793 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 794 struct page *page = rx_buffer->page; 795 796 /* avoid re-using remote pages */ 797 if (unlikely(ixgbevf_page_is_reserved(page))) 798 return false; 799 800 #if (PAGE_SIZE < 8192) 801 /* if we are only owner of page we can reuse it */ 802 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 803 return false; 804 #else 805 #define IXGBEVF_LAST_OFFSET \ 806 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 807 808 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 809 return false; 810 811 #endif 812 813 /* If we have drained the page fragment pool we need to update 814 * the pagecnt_bias and page count so that we fully restock the 815 * number of references the driver holds. 816 */ 817 if (unlikely(!pagecnt_bias)) { 818 page_ref_add(page, USHRT_MAX); 819 rx_buffer->pagecnt_bias = USHRT_MAX; 820 } 821 822 return true; 823 } 824 825 /** 826 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 827 * @rx_ring: rx descriptor ring to transact packets on 828 * @rx_buffer: buffer containing page to add 829 * @skb: sk_buff to place the data into 830 * @size: size of buffer to be added 831 * 832 * This function will add the data contained in rx_buffer->page to the skb. 833 **/ 834 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 835 struct ixgbevf_rx_buffer *rx_buffer, 836 struct sk_buff *skb, 837 unsigned int size) 838 { 839 #if (PAGE_SIZE < 8192) 840 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 841 #else 842 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 843 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 844 SKB_DATA_ALIGN(size); 845 #endif 846 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 847 rx_buffer->page_offset, size, truesize); 848 #if (PAGE_SIZE < 8192) 849 rx_buffer->page_offset ^= truesize; 850 #else 851 rx_buffer->page_offset += truesize; 852 #endif 853 } 854 855 static 856 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 857 struct ixgbevf_rx_buffer *rx_buffer, 858 struct xdp_buff *xdp, 859 union ixgbe_adv_rx_desc *rx_desc) 860 { 861 unsigned int size = xdp->data_end - xdp->data; 862 #if (PAGE_SIZE < 8192) 863 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 864 #else 865 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 866 xdp->data_hard_start); 867 #endif 868 unsigned int headlen; 869 struct sk_buff *skb; 870 871 /* prefetch first cache line of first page */ 872 prefetch(xdp->data); 873 #if L1_CACHE_BYTES < 128 874 prefetch(xdp->data + L1_CACHE_BYTES); 875 #endif 876 /* Note, we get here by enabling legacy-rx via: 877 * 878 * ethtool --set-priv-flags <dev> legacy-rx on 879 * 880 * In this mode, we currently get 0 extra XDP headroom as 881 * opposed to having legacy-rx off, where we process XDP 882 * packets going to stack via ixgbevf_build_skb(). 883 * 884 * For ixgbevf_construct_skb() mode it means that the 885 * xdp->data_meta will always point to xdp->data, since 886 * the helper cannot expand the head. Should this ever 887 * changed in future for legacy-rx mode on, then lets also 888 * add xdp->data_meta handling here. 889 */ 890 891 /* allocate a skb to store the frags */ 892 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 893 if (unlikely(!skb)) 894 return NULL; 895 896 /* Determine available headroom for copy */ 897 headlen = size; 898 if (headlen > IXGBEVF_RX_HDR_SIZE) 899 headlen = eth_get_headlen(skb->dev, xdp->data, 900 IXGBEVF_RX_HDR_SIZE); 901 902 /* align pull length to size of long to optimize memcpy performance */ 903 memcpy(__skb_put(skb, headlen), xdp->data, 904 ALIGN(headlen, sizeof(long))); 905 906 /* update all of the pointers */ 907 size -= headlen; 908 if (size) { 909 skb_add_rx_frag(skb, 0, rx_buffer->page, 910 (xdp->data + headlen) - 911 page_address(rx_buffer->page), 912 size, truesize); 913 #if (PAGE_SIZE < 8192) 914 rx_buffer->page_offset ^= truesize; 915 #else 916 rx_buffer->page_offset += truesize; 917 #endif 918 } else { 919 rx_buffer->pagecnt_bias++; 920 } 921 922 return skb; 923 } 924 925 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 926 u32 qmask) 927 { 928 struct ixgbe_hw *hw = &adapter->hw; 929 930 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 931 } 932 933 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 934 struct ixgbevf_rx_buffer *rx_buffer, 935 struct xdp_buff *xdp, 936 union ixgbe_adv_rx_desc *rx_desc) 937 { 938 unsigned int metasize = xdp->data - xdp->data_meta; 939 #if (PAGE_SIZE < 8192) 940 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 941 #else 942 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 943 SKB_DATA_ALIGN(xdp->data_end - 944 xdp->data_hard_start); 945 #endif 946 struct sk_buff *skb; 947 948 /* Prefetch first cache line of first page. If xdp->data_meta 949 * is unused, this points to xdp->data, otherwise, we likely 950 * have a consumer accessing first few bytes of meta data, 951 * and then actual data. 952 */ 953 prefetch(xdp->data_meta); 954 #if L1_CACHE_BYTES < 128 955 prefetch(xdp->data_meta + L1_CACHE_BYTES); 956 #endif 957 958 /* build an skb around the page buffer */ 959 skb = build_skb(xdp->data_hard_start, truesize); 960 if (unlikely(!skb)) 961 return NULL; 962 963 /* update pointers within the skb to store the data */ 964 skb_reserve(skb, xdp->data - xdp->data_hard_start); 965 __skb_put(skb, xdp->data_end - xdp->data); 966 if (metasize) 967 skb_metadata_set(skb, metasize); 968 969 /* update buffer offset */ 970 #if (PAGE_SIZE < 8192) 971 rx_buffer->page_offset ^= truesize; 972 #else 973 rx_buffer->page_offset += truesize; 974 #endif 975 976 return skb; 977 } 978 979 #define IXGBEVF_XDP_PASS 0 980 #define IXGBEVF_XDP_CONSUMED 1 981 #define IXGBEVF_XDP_TX 2 982 983 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 984 struct xdp_buff *xdp) 985 { 986 struct ixgbevf_tx_buffer *tx_buffer; 987 union ixgbe_adv_tx_desc *tx_desc; 988 u32 len, cmd_type; 989 dma_addr_t dma; 990 u16 i; 991 992 len = xdp->data_end - xdp->data; 993 994 if (unlikely(!ixgbevf_desc_unused(ring))) 995 return IXGBEVF_XDP_CONSUMED; 996 997 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 998 if (dma_mapping_error(ring->dev, dma)) 999 return IXGBEVF_XDP_CONSUMED; 1000 1001 /* record the location of the first descriptor for this packet */ 1002 i = ring->next_to_use; 1003 tx_buffer = &ring->tx_buffer_info[i]; 1004 1005 dma_unmap_len_set(tx_buffer, len, len); 1006 dma_unmap_addr_set(tx_buffer, dma, dma); 1007 tx_buffer->data = xdp->data; 1008 tx_buffer->bytecount = len; 1009 tx_buffer->gso_segs = 1; 1010 tx_buffer->protocol = 0; 1011 1012 /* Populate minimal context descriptor that will provide for the 1013 * fact that we are expected to process Ethernet frames. 1014 */ 1015 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1016 struct ixgbe_adv_tx_context_desc *context_desc; 1017 1018 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1019 1020 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1021 context_desc->vlan_macip_lens = 1022 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1023 context_desc->fceof_saidx = 0; 1024 context_desc->type_tucmd_mlhl = 1025 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1026 IXGBE_ADVTXD_DTYP_CTXT); 1027 context_desc->mss_l4len_idx = 0; 1028 1029 i = 1; 1030 } 1031 1032 /* put descriptor type bits */ 1033 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1034 IXGBE_ADVTXD_DCMD_DEXT | 1035 IXGBE_ADVTXD_DCMD_IFCS; 1036 cmd_type |= len | IXGBE_TXD_CMD; 1037 1038 tx_desc = IXGBEVF_TX_DESC(ring, i); 1039 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1040 1041 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1042 tx_desc->read.olinfo_status = 1043 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1044 IXGBE_ADVTXD_CC); 1045 1046 /* Avoid any potential race with cleanup */ 1047 smp_wmb(); 1048 1049 /* set next_to_watch value indicating a packet is present */ 1050 i++; 1051 if (i == ring->count) 1052 i = 0; 1053 1054 tx_buffer->next_to_watch = tx_desc; 1055 ring->next_to_use = i; 1056 1057 return IXGBEVF_XDP_TX; 1058 } 1059 1060 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1061 struct ixgbevf_ring *rx_ring, 1062 struct xdp_buff *xdp) 1063 { 1064 int result = IXGBEVF_XDP_PASS; 1065 struct ixgbevf_ring *xdp_ring; 1066 struct bpf_prog *xdp_prog; 1067 u32 act; 1068 1069 rcu_read_lock(); 1070 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1071 1072 if (!xdp_prog) 1073 goto xdp_out; 1074 1075 act = bpf_prog_run_xdp(xdp_prog, xdp); 1076 switch (act) { 1077 case XDP_PASS: 1078 break; 1079 case XDP_TX: 1080 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1081 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1082 break; 1083 default: 1084 bpf_warn_invalid_xdp_action(act); 1085 /* fallthrough */ 1086 case XDP_ABORTED: 1087 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1088 /* fallthrough -- handle aborts by dropping packet */ 1089 case XDP_DROP: 1090 result = IXGBEVF_XDP_CONSUMED; 1091 break; 1092 } 1093 xdp_out: 1094 rcu_read_unlock(); 1095 return ERR_PTR(-result); 1096 } 1097 1098 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1099 struct ixgbevf_rx_buffer *rx_buffer, 1100 unsigned int size) 1101 { 1102 #if (PAGE_SIZE < 8192) 1103 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 1104 1105 rx_buffer->page_offset ^= truesize; 1106 #else 1107 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 1108 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 1109 SKB_DATA_ALIGN(size); 1110 1111 rx_buffer->page_offset += truesize; 1112 #endif 1113 } 1114 1115 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1116 struct ixgbevf_ring *rx_ring, 1117 int budget) 1118 { 1119 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1120 struct ixgbevf_adapter *adapter = q_vector->adapter; 1121 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1122 struct sk_buff *skb = rx_ring->skb; 1123 bool xdp_xmit = false; 1124 struct xdp_buff xdp; 1125 1126 xdp.rxq = &rx_ring->xdp_rxq; 1127 1128 while (likely(total_rx_packets < budget)) { 1129 struct ixgbevf_rx_buffer *rx_buffer; 1130 union ixgbe_adv_rx_desc *rx_desc; 1131 unsigned int size; 1132 1133 /* return some buffers to hardware, one at a time is too slow */ 1134 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1135 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1136 cleaned_count = 0; 1137 } 1138 1139 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1140 size = le16_to_cpu(rx_desc->wb.upper.length); 1141 if (!size) 1142 break; 1143 1144 /* This memory barrier is needed to keep us from reading 1145 * any other fields out of the rx_desc until we know the 1146 * RXD_STAT_DD bit is set 1147 */ 1148 rmb(); 1149 1150 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1151 1152 /* retrieve a buffer from the ring */ 1153 if (!skb) { 1154 xdp.data = page_address(rx_buffer->page) + 1155 rx_buffer->page_offset; 1156 xdp.data_meta = xdp.data; 1157 xdp.data_hard_start = xdp.data - 1158 ixgbevf_rx_offset(rx_ring); 1159 xdp.data_end = xdp.data + size; 1160 1161 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1162 } 1163 1164 if (IS_ERR(skb)) { 1165 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1166 xdp_xmit = true; 1167 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1168 size); 1169 } else { 1170 rx_buffer->pagecnt_bias++; 1171 } 1172 total_rx_packets++; 1173 total_rx_bytes += size; 1174 } else if (skb) { 1175 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1176 } else if (ring_uses_build_skb(rx_ring)) { 1177 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1178 &xdp, rx_desc); 1179 } else { 1180 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1181 &xdp, rx_desc); 1182 } 1183 1184 /* exit if we failed to retrieve a buffer */ 1185 if (!skb) { 1186 rx_ring->rx_stats.alloc_rx_buff_failed++; 1187 rx_buffer->pagecnt_bias++; 1188 break; 1189 } 1190 1191 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1192 cleaned_count++; 1193 1194 /* fetch next buffer in frame if non-eop */ 1195 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1196 continue; 1197 1198 /* verify the packet layout is correct */ 1199 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1200 skb = NULL; 1201 continue; 1202 } 1203 1204 /* probably a little skewed due to removing CRC */ 1205 total_rx_bytes += skb->len; 1206 1207 /* Workaround hardware that can't do proper VEPA multicast 1208 * source pruning. 1209 */ 1210 if ((skb->pkt_type == PACKET_BROADCAST || 1211 skb->pkt_type == PACKET_MULTICAST) && 1212 ether_addr_equal(rx_ring->netdev->dev_addr, 1213 eth_hdr(skb)->h_source)) { 1214 dev_kfree_skb_irq(skb); 1215 continue; 1216 } 1217 1218 /* populate checksum, VLAN, and protocol */ 1219 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1220 1221 ixgbevf_rx_skb(q_vector, skb); 1222 1223 /* reset skb pointer */ 1224 skb = NULL; 1225 1226 /* update budget accounting */ 1227 total_rx_packets++; 1228 } 1229 1230 /* place incomplete frames back on ring for completion */ 1231 rx_ring->skb = skb; 1232 1233 if (xdp_xmit) { 1234 struct ixgbevf_ring *xdp_ring = 1235 adapter->xdp_ring[rx_ring->queue_index]; 1236 1237 /* Force memory writes to complete before letting h/w 1238 * know there are new descriptors to fetch. 1239 */ 1240 wmb(); 1241 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1242 } 1243 1244 u64_stats_update_begin(&rx_ring->syncp); 1245 rx_ring->stats.packets += total_rx_packets; 1246 rx_ring->stats.bytes += total_rx_bytes; 1247 u64_stats_update_end(&rx_ring->syncp); 1248 q_vector->rx.total_packets += total_rx_packets; 1249 q_vector->rx.total_bytes += total_rx_bytes; 1250 1251 return total_rx_packets; 1252 } 1253 1254 /** 1255 * ixgbevf_poll - NAPI polling calback 1256 * @napi: napi struct with our devices info in it 1257 * @budget: amount of work driver is allowed to do this pass, in packets 1258 * 1259 * This function will clean more than one or more rings associated with a 1260 * q_vector. 1261 **/ 1262 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1263 { 1264 struct ixgbevf_q_vector *q_vector = 1265 container_of(napi, struct ixgbevf_q_vector, napi); 1266 struct ixgbevf_adapter *adapter = q_vector->adapter; 1267 struct ixgbevf_ring *ring; 1268 int per_ring_budget, work_done = 0; 1269 bool clean_complete = true; 1270 1271 ixgbevf_for_each_ring(ring, q_vector->tx) { 1272 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1273 clean_complete = false; 1274 } 1275 1276 if (budget <= 0) 1277 return budget; 1278 1279 /* attempt to distribute budget to each queue fairly, but don't allow 1280 * the budget to go below 1 because we'll exit polling 1281 */ 1282 if (q_vector->rx.count > 1) 1283 per_ring_budget = max(budget/q_vector->rx.count, 1); 1284 else 1285 per_ring_budget = budget; 1286 1287 ixgbevf_for_each_ring(ring, q_vector->rx) { 1288 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1289 per_ring_budget); 1290 work_done += cleaned; 1291 if (cleaned >= per_ring_budget) 1292 clean_complete = false; 1293 } 1294 1295 /* If all work not completed, return budget and keep polling */ 1296 if (!clean_complete) 1297 return budget; 1298 1299 /* Exit the polling mode, but don't re-enable interrupts if stack might 1300 * poll us due to busy-polling 1301 */ 1302 if (likely(napi_complete_done(napi, work_done))) { 1303 if (adapter->rx_itr_setting == 1) 1304 ixgbevf_set_itr(q_vector); 1305 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1306 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1307 ixgbevf_irq_enable_queues(adapter, 1308 BIT(q_vector->v_idx)); 1309 } 1310 1311 return min(work_done, budget - 1); 1312 } 1313 1314 /** 1315 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1316 * @q_vector: structure containing interrupt and ring information 1317 **/ 1318 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1319 { 1320 struct ixgbevf_adapter *adapter = q_vector->adapter; 1321 struct ixgbe_hw *hw = &adapter->hw; 1322 int v_idx = q_vector->v_idx; 1323 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1324 1325 /* set the WDIS bit to not clear the timer bits and cause an 1326 * immediate assertion of the interrupt 1327 */ 1328 itr_reg |= IXGBE_EITR_CNT_WDIS; 1329 1330 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1331 } 1332 1333 /** 1334 * ixgbevf_configure_msix - Configure MSI-X hardware 1335 * @adapter: board private structure 1336 * 1337 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1338 * interrupts. 1339 **/ 1340 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1341 { 1342 struct ixgbevf_q_vector *q_vector; 1343 int q_vectors, v_idx; 1344 1345 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1346 adapter->eims_enable_mask = 0; 1347 1348 /* Populate the IVAR table and set the ITR values to the 1349 * corresponding register. 1350 */ 1351 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1352 struct ixgbevf_ring *ring; 1353 1354 q_vector = adapter->q_vector[v_idx]; 1355 1356 ixgbevf_for_each_ring(ring, q_vector->rx) 1357 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1358 1359 ixgbevf_for_each_ring(ring, q_vector->tx) 1360 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1361 1362 if (q_vector->tx.ring && !q_vector->rx.ring) { 1363 /* Tx only vector */ 1364 if (adapter->tx_itr_setting == 1) 1365 q_vector->itr = IXGBE_12K_ITR; 1366 else 1367 q_vector->itr = adapter->tx_itr_setting; 1368 } else { 1369 /* Rx or Rx/Tx vector */ 1370 if (adapter->rx_itr_setting == 1) 1371 q_vector->itr = IXGBE_20K_ITR; 1372 else 1373 q_vector->itr = adapter->rx_itr_setting; 1374 } 1375 1376 /* add q_vector eims value to global eims_enable_mask */ 1377 adapter->eims_enable_mask |= BIT(v_idx); 1378 1379 ixgbevf_write_eitr(q_vector); 1380 } 1381 1382 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1383 /* setup eims_other and add value to global eims_enable_mask */ 1384 adapter->eims_other = BIT(v_idx); 1385 adapter->eims_enable_mask |= adapter->eims_other; 1386 } 1387 1388 enum latency_range { 1389 lowest_latency = 0, 1390 low_latency = 1, 1391 bulk_latency = 2, 1392 latency_invalid = 255 1393 }; 1394 1395 /** 1396 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1397 * @q_vector: structure containing interrupt and ring information 1398 * @ring_container: structure containing ring performance data 1399 * 1400 * Stores a new ITR value based on packets and byte 1401 * counts during the last interrupt. The advantage of per interrupt 1402 * computation is faster updates and more accurate ITR for the current 1403 * traffic pattern. Constants in this function were computed 1404 * based on theoretical maximum wire speed and thresholds were set based 1405 * on testing data as well as attempting to minimize response time 1406 * while increasing bulk throughput. 1407 **/ 1408 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1409 struct ixgbevf_ring_container *ring_container) 1410 { 1411 int bytes = ring_container->total_bytes; 1412 int packets = ring_container->total_packets; 1413 u32 timepassed_us; 1414 u64 bytes_perint; 1415 u8 itr_setting = ring_container->itr; 1416 1417 if (packets == 0) 1418 return; 1419 1420 /* simple throttle rate management 1421 * 0-20MB/s lowest (100000 ints/s) 1422 * 20-100MB/s low (20000 ints/s) 1423 * 100-1249MB/s bulk (12000 ints/s) 1424 */ 1425 /* what was last interrupt timeslice? */ 1426 timepassed_us = q_vector->itr >> 2; 1427 if (timepassed_us == 0) 1428 return; 1429 1430 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1431 1432 switch (itr_setting) { 1433 case lowest_latency: 1434 if (bytes_perint > 10) 1435 itr_setting = low_latency; 1436 break; 1437 case low_latency: 1438 if (bytes_perint > 20) 1439 itr_setting = bulk_latency; 1440 else if (bytes_perint <= 10) 1441 itr_setting = lowest_latency; 1442 break; 1443 case bulk_latency: 1444 if (bytes_perint <= 20) 1445 itr_setting = low_latency; 1446 break; 1447 } 1448 1449 /* clear work counters since we have the values we need */ 1450 ring_container->total_bytes = 0; 1451 ring_container->total_packets = 0; 1452 1453 /* write updated itr to ring container */ 1454 ring_container->itr = itr_setting; 1455 } 1456 1457 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1458 { 1459 u32 new_itr = q_vector->itr; 1460 u8 current_itr; 1461 1462 ixgbevf_update_itr(q_vector, &q_vector->tx); 1463 ixgbevf_update_itr(q_vector, &q_vector->rx); 1464 1465 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1466 1467 switch (current_itr) { 1468 /* counts and packets in update_itr are dependent on these numbers */ 1469 case lowest_latency: 1470 new_itr = IXGBE_100K_ITR; 1471 break; 1472 case low_latency: 1473 new_itr = IXGBE_20K_ITR; 1474 break; 1475 case bulk_latency: 1476 new_itr = IXGBE_12K_ITR; 1477 break; 1478 default: 1479 break; 1480 } 1481 1482 if (new_itr != q_vector->itr) { 1483 /* do an exponential smoothing */ 1484 new_itr = (10 * new_itr * q_vector->itr) / 1485 ((9 * new_itr) + q_vector->itr); 1486 1487 /* save the algorithm value here */ 1488 q_vector->itr = new_itr; 1489 1490 ixgbevf_write_eitr(q_vector); 1491 } 1492 } 1493 1494 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1495 { 1496 struct ixgbevf_adapter *adapter = data; 1497 struct ixgbe_hw *hw = &adapter->hw; 1498 1499 hw->mac.get_link_status = 1; 1500 1501 ixgbevf_service_event_schedule(adapter); 1502 1503 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1504 1505 return IRQ_HANDLED; 1506 } 1507 1508 /** 1509 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1510 * @irq: unused 1511 * @data: pointer to our q_vector struct for this interrupt vector 1512 **/ 1513 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1514 { 1515 struct ixgbevf_q_vector *q_vector = data; 1516 1517 /* EIAM disabled interrupts (on this vector) for us */ 1518 if (q_vector->rx.ring || q_vector->tx.ring) 1519 napi_schedule_irqoff(&q_vector->napi); 1520 1521 return IRQ_HANDLED; 1522 } 1523 1524 /** 1525 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1526 * @adapter: board private structure 1527 * 1528 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1529 * interrupts from the kernel. 1530 **/ 1531 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1532 { 1533 struct net_device *netdev = adapter->netdev; 1534 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1535 unsigned int ri = 0, ti = 0; 1536 int vector, err; 1537 1538 for (vector = 0; vector < q_vectors; vector++) { 1539 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1540 struct msix_entry *entry = &adapter->msix_entries[vector]; 1541 1542 if (q_vector->tx.ring && q_vector->rx.ring) { 1543 snprintf(q_vector->name, sizeof(q_vector->name), 1544 "%s-TxRx-%u", netdev->name, ri++); 1545 ti++; 1546 } else if (q_vector->rx.ring) { 1547 snprintf(q_vector->name, sizeof(q_vector->name), 1548 "%s-rx-%u", netdev->name, ri++); 1549 } else if (q_vector->tx.ring) { 1550 snprintf(q_vector->name, sizeof(q_vector->name), 1551 "%s-tx-%u", netdev->name, ti++); 1552 } else { 1553 /* skip this unused q_vector */ 1554 continue; 1555 } 1556 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1557 q_vector->name, q_vector); 1558 if (err) { 1559 hw_dbg(&adapter->hw, 1560 "request_irq failed for MSIX interrupt Error: %d\n", 1561 err); 1562 goto free_queue_irqs; 1563 } 1564 } 1565 1566 err = request_irq(adapter->msix_entries[vector].vector, 1567 &ixgbevf_msix_other, 0, netdev->name, adapter); 1568 if (err) { 1569 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1570 err); 1571 goto free_queue_irqs; 1572 } 1573 1574 return 0; 1575 1576 free_queue_irqs: 1577 while (vector) { 1578 vector--; 1579 free_irq(adapter->msix_entries[vector].vector, 1580 adapter->q_vector[vector]); 1581 } 1582 /* This failure is non-recoverable - it indicates the system is 1583 * out of MSIX vector resources and the VF driver cannot run 1584 * without them. Set the number of msix vectors to zero 1585 * indicating that not enough can be allocated. The error 1586 * will be returned to the user indicating device open failed. 1587 * Any further attempts to force the driver to open will also 1588 * fail. The only way to recover is to unload the driver and 1589 * reload it again. If the system has recovered some MSIX 1590 * vectors then it may succeed. 1591 */ 1592 adapter->num_msix_vectors = 0; 1593 return err; 1594 } 1595 1596 /** 1597 * ixgbevf_request_irq - initialize interrupts 1598 * @adapter: board private structure 1599 * 1600 * Attempts to configure interrupts using the best available 1601 * capabilities of the hardware and kernel. 1602 **/ 1603 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1604 { 1605 int err = ixgbevf_request_msix_irqs(adapter); 1606 1607 if (err) 1608 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1609 1610 return err; 1611 } 1612 1613 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1614 { 1615 int i, q_vectors; 1616 1617 if (!adapter->msix_entries) 1618 return; 1619 1620 q_vectors = adapter->num_msix_vectors; 1621 i = q_vectors - 1; 1622 1623 free_irq(adapter->msix_entries[i].vector, adapter); 1624 i--; 1625 1626 for (; i >= 0; i--) { 1627 /* free only the irqs that were actually requested */ 1628 if (!adapter->q_vector[i]->rx.ring && 1629 !adapter->q_vector[i]->tx.ring) 1630 continue; 1631 1632 free_irq(adapter->msix_entries[i].vector, 1633 adapter->q_vector[i]); 1634 } 1635 } 1636 1637 /** 1638 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1639 * @adapter: board private structure 1640 **/ 1641 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1642 { 1643 struct ixgbe_hw *hw = &adapter->hw; 1644 int i; 1645 1646 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1647 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1648 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1649 1650 IXGBE_WRITE_FLUSH(hw); 1651 1652 for (i = 0; i < adapter->num_msix_vectors; i++) 1653 synchronize_irq(adapter->msix_entries[i].vector); 1654 } 1655 1656 /** 1657 * ixgbevf_irq_enable - Enable default interrupt generation settings 1658 * @adapter: board private structure 1659 **/ 1660 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1661 { 1662 struct ixgbe_hw *hw = &adapter->hw; 1663 1664 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1665 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1666 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1667 } 1668 1669 /** 1670 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1671 * @adapter: board private structure 1672 * @ring: structure containing ring specific data 1673 * 1674 * Configure the Tx descriptor ring after a reset. 1675 **/ 1676 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1677 struct ixgbevf_ring *ring) 1678 { 1679 struct ixgbe_hw *hw = &adapter->hw; 1680 u64 tdba = ring->dma; 1681 int wait_loop = 10; 1682 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1683 u8 reg_idx = ring->reg_idx; 1684 1685 /* disable queue to avoid issues while updating state */ 1686 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1687 IXGBE_WRITE_FLUSH(hw); 1688 1689 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1690 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1691 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1692 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1693 1694 /* disable head writeback */ 1695 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1696 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1697 1698 /* enable relaxed ordering */ 1699 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1700 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1701 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1702 1703 /* reset head and tail pointers */ 1704 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1705 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1706 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1707 1708 /* reset ntu and ntc to place SW in sync with hardwdare */ 1709 ring->next_to_clean = 0; 1710 ring->next_to_use = 0; 1711 1712 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1713 * to or less than the number of on chip descriptors, which is 1714 * currently 40. 1715 */ 1716 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1717 1718 /* Setting PTHRESH to 32 both improves performance */ 1719 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1720 32; /* PTHRESH = 32 */ 1721 1722 /* reinitialize tx_buffer_info */ 1723 memset(ring->tx_buffer_info, 0, 1724 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1725 1726 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1727 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1728 1729 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1730 1731 /* poll to verify queue is enabled */ 1732 do { 1733 usleep_range(1000, 2000); 1734 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1735 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1736 if (!wait_loop) 1737 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1738 } 1739 1740 /** 1741 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1742 * @adapter: board private structure 1743 * 1744 * Configure the Tx unit of the MAC after a reset. 1745 **/ 1746 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1747 { 1748 u32 i; 1749 1750 /* Setup the HW Tx Head and Tail descriptor pointers */ 1751 for (i = 0; i < adapter->num_tx_queues; i++) 1752 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1753 for (i = 0; i < adapter->num_xdp_queues; i++) 1754 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1755 } 1756 1757 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1758 1759 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1760 struct ixgbevf_ring *ring, int index) 1761 { 1762 struct ixgbe_hw *hw = &adapter->hw; 1763 u32 srrctl; 1764 1765 srrctl = IXGBE_SRRCTL_DROP_EN; 1766 1767 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1768 if (ring_uses_large_buffer(ring)) 1769 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1770 else 1771 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1772 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1773 1774 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1775 } 1776 1777 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1778 { 1779 struct ixgbe_hw *hw = &adapter->hw; 1780 1781 /* PSRTYPE must be initialized in 82599 */ 1782 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1783 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1784 IXGBE_PSRTYPE_L2HDR; 1785 1786 if (adapter->num_rx_queues > 1) 1787 psrtype |= BIT(29); 1788 1789 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1790 } 1791 1792 #define IXGBEVF_MAX_RX_DESC_POLL 10 1793 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1794 struct ixgbevf_ring *ring) 1795 { 1796 struct ixgbe_hw *hw = &adapter->hw; 1797 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1798 u32 rxdctl; 1799 u8 reg_idx = ring->reg_idx; 1800 1801 if (IXGBE_REMOVED(hw->hw_addr)) 1802 return; 1803 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1804 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1805 1806 /* write value back with RXDCTL.ENABLE bit cleared */ 1807 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1808 1809 /* the hardware may take up to 100us to really disable the Rx queue */ 1810 do { 1811 udelay(10); 1812 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1813 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1814 1815 if (!wait_loop) 1816 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1817 reg_idx); 1818 } 1819 1820 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1821 struct ixgbevf_ring *ring) 1822 { 1823 struct ixgbe_hw *hw = &adapter->hw; 1824 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1825 u32 rxdctl; 1826 u8 reg_idx = ring->reg_idx; 1827 1828 if (IXGBE_REMOVED(hw->hw_addr)) 1829 return; 1830 do { 1831 usleep_range(1000, 2000); 1832 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1833 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1834 1835 if (!wait_loop) 1836 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1837 reg_idx); 1838 } 1839 1840 /** 1841 * ixgbevf_init_rss_key - Initialize adapter RSS key 1842 * @adapter: device handle 1843 * 1844 * Allocates and initializes the RSS key if it is not allocated. 1845 **/ 1846 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1847 { 1848 u32 *rss_key; 1849 1850 if (!adapter->rss_key) { 1851 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1852 if (unlikely(!rss_key)) 1853 return -ENOMEM; 1854 1855 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1856 adapter->rss_key = rss_key; 1857 } 1858 1859 return 0; 1860 } 1861 1862 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1863 { 1864 struct ixgbe_hw *hw = &adapter->hw; 1865 u32 vfmrqc = 0, vfreta = 0; 1866 u16 rss_i = adapter->num_rx_queues; 1867 u8 i, j; 1868 1869 /* Fill out hash function seeds */ 1870 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1871 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1872 1873 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1874 if (j == rss_i) 1875 j = 0; 1876 1877 adapter->rss_indir_tbl[i] = j; 1878 1879 vfreta |= j << (i & 0x3) * 8; 1880 if ((i & 3) == 3) { 1881 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1882 vfreta = 0; 1883 } 1884 } 1885 1886 /* Perform hash on these packet types */ 1887 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1888 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1889 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1890 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1891 1892 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1893 1894 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1895 } 1896 1897 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1898 struct ixgbevf_ring *ring) 1899 { 1900 struct ixgbe_hw *hw = &adapter->hw; 1901 union ixgbe_adv_rx_desc *rx_desc; 1902 u64 rdba = ring->dma; 1903 u32 rxdctl; 1904 u8 reg_idx = ring->reg_idx; 1905 1906 /* disable queue to avoid issues while updating state */ 1907 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1908 ixgbevf_disable_rx_queue(adapter, ring); 1909 1910 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1911 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1912 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1913 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1914 1915 #ifndef CONFIG_SPARC 1916 /* enable relaxed ordering */ 1917 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1918 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1919 #else 1920 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1921 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1922 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1923 #endif 1924 1925 /* reset head and tail pointers */ 1926 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1927 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1928 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1929 1930 /* initialize rx_buffer_info */ 1931 memset(ring->rx_buffer_info, 0, 1932 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1933 1934 /* initialize Rx descriptor 0 */ 1935 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1936 rx_desc->wb.upper.length = 0; 1937 1938 /* reset ntu and ntc to place SW in sync with hardwdare */ 1939 ring->next_to_clean = 0; 1940 ring->next_to_use = 0; 1941 ring->next_to_alloc = 0; 1942 1943 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1944 1945 /* RXDCTL.RLPML does not work on 82599 */ 1946 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1947 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1948 IXGBE_RXDCTL_RLPML_EN); 1949 1950 #if (PAGE_SIZE < 8192) 1951 /* Limit the maximum frame size so we don't overrun the skb */ 1952 if (ring_uses_build_skb(ring) && 1953 !ring_uses_large_buffer(ring)) 1954 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1955 IXGBE_RXDCTL_RLPML_EN; 1956 #endif 1957 } 1958 1959 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1960 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1961 1962 ixgbevf_rx_desc_queue_enable(adapter, ring); 1963 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1964 } 1965 1966 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1967 struct ixgbevf_ring *rx_ring) 1968 { 1969 struct net_device *netdev = adapter->netdev; 1970 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1971 1972 /* set build_skb and buffer size flags */ 1973 clear_ring_build_skb_enabled(rx_ring); 1974 clear_ring_uses_large_buffer(rx_ring); 1975 1976 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1977 return; 1978 1979 set_ring_build_skb_enabled(rx_ring); 1980 1981 if (PAGE_SIZE < 8192) { 1982 if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB) 1983 return; 1984 1985 set_ring_uses_large_buffer(rx_ring); 1986 } 1987 } 1988 1989 /** 1990 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1991 * @adapter: board private structure 1992 * 1993 * Configure the Rx unit of the MAC after a reset. 1994 **/ 1995 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 1996 { 1997 struct ixgbe_hw *hw = &adapter->hw; 1998 struct net_device *netdev = adapter->netdev; 1999 int i, ret; 2000 2001 ixgbevf_setup_psrtype(adapter); 2002 if (hw->mac.type >= ixgbe_mac_X550_vf) 2003 ixgbevf_setup_vfmrqc(adapter); 2004 2005 spin_lock_bh(&adapter->mbx_lock); 2006 /* notify the PF of our intent to use this size of frame */ 2007 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 2008 spin_unlock_bh(&adapter->mbx_lock); 2009 if (ret) 2010 dev_err(&adapter->pdev->dev, 2011 "Failed to set MTU at %d\n", netdev->mtu); 2012 2013 /* Setup the HW Rx Head and Tail Descriptor Pointers and 2014 * the Base and Length of the Rx Descriptor Ring 2015 */ 2016 for (i = 0; i < adapter->num_rx_queues; i++) { 2017 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2018 2019 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2020 ixgbevf_configure_rx_ring(adapter, rx_ring); 2021 } 2022 } 2023 2024 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2025 __be16 proto, u16 vid) 2026 { 2027 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2028 struct ixgbe_hw *hw = &adapter->hw; 2029 int err; 2030 2031 spin_lock_bh(&adapter->mbx_lock); 2032 2033 /* add VID to filter table */ 2034 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2035 2036 spin_unlock_bh(&adapter->mbx_lock); 2037 2038 /* translate error return types so error makes sense */ 2039 if (err == IXGBE_ERR_MBX) 2040 return -EIO; 2041 2042 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2043 return -EACCES; 2044 2045 set_bit(vid, adapter->active_vlans); 2046 2047 return err; 2048 } 2049 2050 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2051 __be16 proto, u16 vid) 2052 { 2053 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2054 struct ixgbe_hw *hw = &adapter->hw; 2055 int err; 2056 2057 spin_lock_bh(&adapter->mbx_lock); 2058 2059 /* remove VID from filter table */ 2060 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2061 2062 spin_unlock_bh(&adapter->mbx_lock); 2063 2064 clear_bit(vid, adapter->active_vlans); 2065 2066 return err; 2067 } 2068 2069 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2070 { 2071 u16 vid; 2072 2073 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2074 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2075 htons(ETH_P_8021Q), vid); 2076 } 2077 2078 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2079 { 2080 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2081 struct ixgbe_hw *hw = &adapter->hw; 2082 int count = 0; 2083 2084 if (!netdev_uc_empty(netdev)) { 2085 struct netdev_hw_addr *ha; 2086 2087 netdev_for_each_uc_addr(ha, netdev) { 2088 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2089 udelay(200); 2090 } 2091 } else { 2092 /* If the list is empty then send message to PF driver to 2093 * clear all MAC VLANs on this VF. 2094 */ 2095 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2096 } 2097 2098 return count; 2099 } 2100 2101 /** 2102 * ixgbevf_set_rx_mode - Multicast and unicast set 2103 * @netdev: network interface device structure 2104 * 2105 * The set_rx_method entry point is called whenever the multicast address 2106 * list, unicast address list or the network interface flags are updated. 2107 * This routine is responsible for configuring the hardware for proper 2108 * multicast mode and configuring requested unicast filters. 2109 **/ 2110 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2111 { 2112 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2113 struct ixgbe_hw *hw = &adapter->hw; 2114 unsigned int flags = netdev->flags; 2115 int xcast_mode; 2116 2117 /* request the most inclusive mode we need */ 2118 if (flags & IFF_PROMISC) 2119 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2120 else if (flags & IFF_ALLMULTI) 2121 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2122 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2123 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2124 else 2125 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2126 2127 spin_lock_bh(&adapter->mbx_lock); 2128 2129 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2130 2131 /* reprogram multicast list */ 2132 hw->mac.ops.update_mc_addr_list(hw, netdev); 2133 2134 ixgbevf_write_uc_addr_list(netdev); 2135 2136 spin_unlock_bh(&adapter->mbx_lock); 2137 } 2138 2139 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2140 { 2141 int q_idx; 2142 struct ixgbevf_q_vector *q_vector; 2143 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2144 2145 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2146 q_vector = adapter->q_vector[q_idx]; 2147 napi_enable(&q_vector->napi); 2148 } 2149 } 2150 2151 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2152 { 2153 int q_idx; 2154 struct ixgbevf_q_vector *q_vector; 2155 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2156 2157 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2158 q_vector = adapter->q_vector[q_idx]; 2159 napi_disable(&q_vector->napi); 2160 } 2161 } 2162 2163 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2164 { 2165 struct ixgbe_hw *hw = &adapter->hw; 2166 unsigned int def_q = 0; 2167 unsigned int num_tcs = 0; 2168 unsigned int num_rx_queues = adapter->num_rx_queues; 2169 unsigned int num_tx_queues = adapter->num_tx_queues; 2170 int err; 2171 2172 spin_lock_bh(&adapter->mbx_lock); 2173 2174 /* fetch queue configuration from the PF */ 2175 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2176 2177 spin_unlock_bh(&adapter->mbx_lock); 2178 2179 if (err) 2180 return err; 2181 2182 if (num_tcs > 1) { 2183 /* we need only one Tx queue */ 2184 num_tx_queues = 1; 2185 2186 /* update default Tx ring register index */ 2187 adapter->tx_ring[0]->reg_idx = def_q; 2188 2189 /* we need as many queues as traffic classes */ 2190 num_rx_queues = num_tcs; 2191 } 2192 2193 /* if we have a bad config abort request queue reset */ 2194 if ((adapter->num_rx_queues != num_rx_queues) || 2195 (adapter->num_tx_queues != num_tx_queues)) { 2196 /* force mailbox timeout to prevent further messages */ 2197 hw->mbx.timeout = 0; 2198 2199 /* wait for watchdog to come around and bail us out */ 2200 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2201 } 2202 2203 return 0; 2204 } 2205 2206 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2207 { 2208 ixgbevf_configure_dcb(adapter); 2209 2210 ixgbevf_set_rx_mode(adapter->netdev); 2211 2212 ixgbevf_restore_vlan(adapter); 2213 ixgbevf_ipsec_restore(adapter); 2214 2215 ixgbevf_configure_tx(adapter); 2216 ixgbevf_configure_rx(adapter); 2217 } 2218 2219 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2220 { 2221 /* Only save pre-reset stats if there are some */ 2222 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2223 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2224 adapter->stats.base_vfgprc; 2225 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2226 adapter->stats.base_vfgptc; 2227 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2228 adapter->stats.base_vfgorc; 2229 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2230 adapter->stats.base_vfgotc; 2231 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2232 adapter->stats.base_vfmprc; 2233 } 2234 } 2235 2236 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2237 { 2238 struct ixgbe_hw *hw = &adapter->hw; 2239 2240 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2241 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2242 adapter->stats.last_vfgorc |= 2243 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2244 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2245 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2246 adapter->stats.last_vfgotc |= 2247 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2248 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2249 2250 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2251 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2252 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2253 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2254 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2255 } 2256 2257 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2258 { 2259 struct ixgbe_hw *hw = &adapter->hw; 2260 static const int api[] = { 2261 ixgbe_mbox_api_14, 2262 ixgbe_mbox_api_13, 2263 ixgbe_mbox_api_12, 2264 ixgbe_mbox_api_11, 2265 ixgbe_mbox_api_10, 2266 ixgbe_mbox_api_unknown 2267 }; 2268 int err, idx = 0; 2269 2270 spin_lock_bh(&adapter->mbx_lock); 2271 2272 while (api[idx] != ixgbe_mbox_api_unknown) { 2273 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2274 if (!err) 2275 break; 2276 idx++; 2277 } 2278 2279 spin_unlock_bh(&adapter->mbx_lock); 2280 } 2281 2282 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2283 { 2284 struct net_device *netdev = adapter->netdev; 2285 struct ixgbe_hw *hw = &adapter->hw; 2286 2287 ixgbevf_configure_msix(adapter); 2288 2289 spin_lock_bh(&adapter->mbx_lock); 2290 2291 if (is_valid_ether_addr(hw->mac.addr)) 2292 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2293 else 2294 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2295 2296 spin_unlock_bh(&adapter->mbx_lock); 2297 2298 smp_mb__before_atomic(); 2299 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2300 ixgbevf_napi_enable_all(adapter); 2301 2302 /* clear any pending interrupts, may auto mask */ 2303 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2304 ixgbevf_irq_enable(adapter); 2305 2306 /* enable transmits */ 2307 netif_tx_start_all_queues(netdev); 2308 2309 ixgbevf_save_reset_stats(adapter); 2310 ixgbevf_init_last_counter_stats(adapter); 2311 2312 hw->mac.get_link_status = 1; 2313 mod_timer(&adapter->service_timer, jiffies); 2314 } 2315 2316 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2317 { 2318 ixgbevf_configure(adapter); 2319 2320 ixgbevf_up_complete(adapter); 2321 } 2322 2323 /** 2324 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2325 * @rx_ring: ring to free buffers from 2326 **/ 2327 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2328 { 2329 u16 i = rx_ring->next_to_clean; 2330 2331 /* Free Rx ring sk_buff */ 2332 if (rx_ring->skb) { 2333 dev_kfree_skb(rx_ring->skb); 2334 rx_ring->skb = NULL; 2335 } 2336 2337 /* Free all the Rx ring pages */ 2338 while (i != rx_ring->next_to_alloc) { 2339 struct ixgbevf_rx_buffer *rx_buffer; 2340 2341 rx_buffer = &rx_ring->rx_buffer_info[i]; 2342 2343 /* Invalidate cache lines that may have been written to by 2344 * device so that we avoid corrupting memory. 2345 */ 2346 dma_sync_single_range_for_cpu(rx_ring->dev, 2347 rx_buffer->dma, 2348 rx_buffer->page_offset, 2349 ixgbevf_rx_bufsz(rx_ring), 2350 DMA_FROM_DEVICE); 2351 2352 /* free resources associated with mapping */ 2353 dma_unmap_page_attrs(rx_ring->dev, 2354 rx_buffer->dma, 2355 ixgbevf_rx_pg_size(rx_ring), 2356 DMA_FROM_DEVICE, 2357 IXGBEVF_RX_DMA_ATTR); 2358 2359 __page_frag_cache_drain(rx_buffer->page, 2360 rx_buffer->pagecnt_bias); 2361 2362 i++; 2363 if (i == rx_ring->count) 2364 i = 0; 2365 } 2366 2367 rx_ring->next_to_alloc = 0; 2368 rx_ring->next_to_clean = 0; 2369 rx_ring->next_to_use = 0; 2370 } 2371 2372 /** 2373 * ixgbevf_clean_tx_ring - Free Tx Buffers 2374 * @tx_ring: ring to be cleaned 2375 **/ 2376 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2377 { 2378 u16 i = tx_ring->next_to_clean; 2379 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2380 2381 while (i != tx_ring->next_to_use) { 2382 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2383 2384 /* Free all the Tx ring sk_buffs */ 2385 if (ring_is_xdp(tx_ring)) 2386 page_frag_free(tx_buffer->data); 2387 else 2388 dev_kfree_skb_any(tx_buffer->skb); 2389 2390 /* unmap skb header data */ 2391 dma_unmap_single(tx_ring->dev, 2392 dma_unmap_addr(tx_buffer, dma), 2393 dma_unmap_len(tx_buffer, len), 2394 DMA_TO_DEVICE); 2395 2396 /* check for eop_desc to determine the end of the packet */ 2397 eop_desc = tx_buffer->next_to_watch; 2398 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2399 2400 /* unmap remaining buffers */ 2401 while (tx_desc != eop_desc) { 2402 tx_buffer++; 2403 tx_desc++; 2404 i++; 2405 if (unlikely(i == tx_ring->count)) { 2406 i = 0; 2407 tx_buffer = tx_ring->tx_buffer_info; 2408 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2409 } 2410 2411 /* unmap any remaining paged data */ 2412 if (dma_unmap_len(tx_buffer, len)) 2413 dma_unmap_page(tx_ring->dev, 2414 dma_unmap_addr(tx_buffer, dma), 2415 dma_unmap_len(tx_buffer, len), 2416 DMA_TO_DEVICE); 2417 } 2418 2419 /* move us one more past the eop_desc for start of next pkt */ 2420 tx_buffer++; 2421 i++; 2422 if (unlikely(i == tx_ring->count)) { 2423 i = 0; 2424 tx_buffer = tx_ring->tx_buffer_info; 2425 } 2426 } 2427 2428 /* reset next_to_use and next_to_clean */ 2429 tx_ring->next_to_use = 0; 2430 tx_ring->next_to_clean = 0; 2431 2432 } 2433 2434 /** 2435 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2436 * @adapter: board private structure 2437 **/ 2438 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2439 { 2440 int i; 2441 2442 for (i = 0; i < adapter->num_rx_queues; i++) 2443 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2444 } 2445 2446 /** 2447 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2448 * @adapter: board private structure 2449 **/ 2450 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2451 { 2452 int i; 2453 2454 for (i = 0; i < adapter->num_tx_queues; i++) 2455 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2456 for (i = 0; i < adapter->num_xdp_queues; i++) 2457 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2458 } 2459 2460 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2461 { 2462 struct net_device *netdev = adapter->netdev; 2463 struct ixgbe_hw *hw = &adapter->hw; 2464 int i; 2465 2466 /* signal that we are down to the interrupt handler */ 2467 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2468 return; /* do nothing if already down */ 2469 2470 /* disable all enabled Rx queues */ 2471 for (i = 0; i < adapter->num_rx_queues; i++) 2472 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2473 2474 usleep_range(10000, 20000); 2475 2476 netif_tx_stop_all_queues(netdev); 2477 2478 /* call carrier off first to avoid false dev_watchdog timeouts */ 2479 netif_carrier_off(netdev); 2480 netif_tx_disable(netdev); 2481 2482 ixgbevf_irq_disable(adapter); 2483 2484 ixgbevf_napi_disable_all(adapter); 2485 2486 del_timer_sync(&adapter->service_timer); 2487 2488 /* disable transmits in the hardware now that interrupts are off */ 2489 for (i = 0; i < adapter->num_tx_queues; i++) { 2490 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2491 2492 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2493 IXGBE_TXDCTL_SWFLSH); 2494 } 2495 2496 for (i = 0; i < adapter->num_xdp_queues; i++) { 2497 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2498 2499 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2500 IXGBE_TXDCTL_SWFLSH); 2501 } 2502 2503 if (!pci_channel_offline(adapter->pdev)) 2504 ixgbevf_reset(adapter); 2505 2506 ixgbevf_clean_all_tx_rings(adapter); 2507 ixgbevf_clean_all_rx_rings(adapter); 2508 } 2509 2510 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2511 { 2512 WARN_ON(in_interrupt()); 2513 2514 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2515 msleep(1); 2516 2517 ixgbevf_down(adapter); 2518 pci_set_master(adapter->pdev); 2519 ixgbevf_up(adapter); 2520 2521 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2522 } 2523 2524 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2525 { 2526 struct ixgbe_hw *hw = &adapter->hw; 2527 struct net_device *netdev = adapter->netdev; 2528 2529 if (hw->mac.ops.reset_hw(hw)) { 2530 hw_dbg(hw, "PF still resetting\n"); 2531 } else { 2532 hw->mac.ops.init_hw(hw); 2533 ixgbevf_negotiate_api(adapter); 2534 } 2535 2536 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2537 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2538 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2539 } 2540 2541 adapter->last_reset = jiffies; 2542 } 2543 2544 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2545 int vectors) 2546 { 2547 int vector_threshold; 2548 2549 /* We'll want at least 2 (vector_threshold): 2550 * 1) TxQ[0] + RxQ[0] handler 2551 * 2) Other (Link Status Change, etc.) 2552 */ 2553 vector_threshold = MIN_MSIX_COUNT; 2554 2555 /* The more we get, the more we will assign to Tx/Rx Cleanup 2556 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2557 * Right now, we simply care about how many we'll get; we'll 2558 * set them up later while requesting irq's. 2559 */ 2560 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2561 vector_threshold, vectors); 2562 2563 if (vectors < 0) { 2564 dev_err(&adapter->pdev->dev, 2565 "Unable to allocate MSI-X interrupts\n"); 2566 kfree(adapter->msix_entries); 2567 adapter->msix_entries = NULL; 2568 return vectors; 2569 } 2570 2571 /* Adjust for only the vectors we'll use, which is minimum 2572 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2573 * vectors we were allocated. 2574 */ 2575 adapter->num_msix_vectors = vectors; 2576 2577 return 0; 2578 } 2579 2580 /** 2581 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2582 * @adapter: board private structure to initialize 2583 * 2584 * This is the top level queue allocation routine. The order here is very 2585 * important, starting with the "most" number of features turned on at once, 2586 * and ending with the smallest set of features. This way large combinations 2587 * can be allocated if they're turned on, and smaller combinations are the 2588 * fallthrough conditions. 2589 * 2590 **/ 2591 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2592 { 2593 struct ixgbe_hw *hw = &adapter->hw; 2594 unsigned int def_q = 0; 2595 unsigned int num_tcs = 0; 2596 int err; 2597 2598 /* Start with base case */ 2599 adapter->num_rx_queues = 1; 2600 adapter->num_tx_queues = 1; 2601 adapter->num_xdp_queues = 0; 2602 2603 spin_lock_bh(&adapter->mbx_lock); 2604 2605 /* fetch queue configuration from the PF */ 2606 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2607 2608 spin_unlock_bh(&adapter->mbx_lock); 2609 2610 if (err) 2611 return; 2612 2613 /* we need as many queues as traffic classes */ 2614 if (num_tcs > 1) { 2615 adapter->num_rx_queues = num_tcs; 2616 } else { 2617 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2618 2619 switch (hw->api_version) { 2620 case ixgbe_mbox_api_11: 2621 case ixgbe_mbox_api_12: 2622 case ixgbe_mbox_api_13: 2623 case ixgbe_mbox_api_14: 2624 if (adapter->xdp_prog && 2625 hw->mac.max_tx_queues == rss) 2626 rss = rss > 3 ? 2 : 1; 2627 2628 adapter->num_rx_queues = rss; 2629 adapter->num_tx_queues = rss; 2630 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2631 default: 2632 break; 2633 } 2634 } 2635 } 2636 2637 /** 2638 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2639 * @adapter: board private structure to initialize 2640 * 2641 * Attempt to configure the interrupts using the best available 2642 * capabilities of the hardware and the kernel. 2643 **/ 2644 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2645 { 2646 int vector, v_budget; 2647 2648 /* It's easy to be greedy for MSI-X vectors, but it really 2649 * doesn't do us much good if we have a lot more vectors 2650 * than CPU's. So let's be conservative and only ask for 2651 * (roughly) the same number of vectors as there are CPU's. 2652 * The default is to use pairs of vectors. 2653 */ 2654 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2655 v_budget = min_t(int, v_budget, num_online_cpus()); 2656 v_budget += NON_Q_VECTORS; 2657 2658 adapter->msix_entries = kcalloc(v_budget, 2659 sizeof(struct msix_entry), GFP_KERNEL); 2660 if (!adapter->msix_entries) 2661 return -ENOMEM; 2662 2663 for (vector = 0; vector < v_budget; vector++) 2664 adapter->msix_entries[vector].entry = vector; 2665 2666 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2667 * does not support any other modes, so we will simply fail here. Note 2668 * that we clean up the msix_entries pointer else-where. 2669 */ 2670 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2671 } 2672 2673 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2674 struct ixgbevf_ring_container *head) 2675 { 2676 ring->next = head->ring; 2677 head->ring = ring; 2678 head->count++; 2679 } 2680 2681 /** 2682 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2683 * @adapter: board private structure to initialize 2684 * @v_idx: index of vector in adapter struct 2685 * @txr_count: number of Tx rings for q vector 2686 * @txr_idx: index of first Tx ring to assign 2687 * @xdp_count: total number of XDP rings to allocate 2688 * @xdp_idx: index of first XDP ring to allocate 2689 * @rxr_count: number of Rx rings for q vector 2690 * @rxr_idx: index of first Rx ring to assign 2691 * 2692 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2693 **/ 2694 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2695 int txr_count, int txr_idx, 2696 int xdp_count, int xdp_idx, 2697 int rxr_count, int rxr_idx) 2698 { 2699 struct ixgbevf_q_vector *q_vector; 2700 int reg_idx = txr_idx + xdp_idx; 2701 struct ixgbevf_ring *ring; 2702 int ring_count, size; 2703 2704 ring_count = txr_count + xdp_count + rxr_count; 2705 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2706 2707 /* allocate q_vector and rings */ 2708 q_vector = kzalloc(size, GFP_KERNEL); 2709 if (!q_vector) 2710 return -ENOMEM; 2711 2712 /* initialize NAPI */ 2713 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64); 2714 2715 /* tie q_vector and adapter together */ 2716 adapter->q_vector[v_idx] = q_vector; 2717 q_vector->adapter = adapter; 2718 q_vector->v_idx = v_idx; 2719 2720 /* initialize pointer to rings */ 2721 ring = q_vector->ring; 2722 2723 while (txr_count) { 2724 /* assign generic ring traits */ 2725 ring->dev = &adapter->pdev->dev; 2726 ring->netdev = adapter->netdev; 2727 2728 /* configure backlink on ring */ 2729 ring->q_vector = q_vector; 2730 2731 /* update q_vector Tx values */ 2732 ixgbevf_add_ring(ring, &q_vector->tx); 2733 2734 /* apply Tx specific ring traits */ 2735 ring->count = adapter->tx_ring_count; 2736 ring->queue_index = txr_idx; 2737 ring->reg_idx = reg_idx; 2738 2739 /* assign ring to adapter */ 2740 adapter->tx_ring[txr_idx] = ring; 2741 2742 /* update count and index */ 2743 txr_count--; 2744 txr_idx++; 2745 reg_idx++; 2746 2747 /* push pointer to next ring */ 2748 ring++; 2749 } 2750 2751 while (xdp_count) { 2752 /* assign generic ring traits */ 2753 ring->dev = &adapter->pdev->dev; 2754 ring->netdev = adapter->netdev; 2755 2756 /* configure backlink on ring */ 2757 ring->q_vector = q_vector; 2758 2759 /* update q_vector Tx values */ 2760 ixgbevf_add_ring(ring, &q_vector->tx); 2761 2762 /* apply Tx specific ring traits */ 2763 ring->count = adapter->tx_ring_count; 2764 ring->queue_index = xdp_idx; 2765 ring->reg_idx = reg_idx; 2766 set_ring_xdp(ring); 2767 2768 /* assign ring to adapter */ 2769 adapter->xdp_ring[xdp_idx] = ring; 2770 2771 /* update count and index */ 2772 xdp_count--; 2773 xdp_idx++; 2774 reg_idx++; 2775 2776 /* push pointer to next ring */ 2777 ring++; 2778 } 2779 2780 while (rxr_count) { 2781 /* assign generic ring traits */ 2782 ring->dev = &adapter->pdev->dev; 2783 ring->netdev = adapter->netdev; 2784 2785 /* configure backlink on ring */ 2786 ring->q_vector = q_vector; 2787 2788 /* update q_vector Rx values */ 2789 ixgbevf_add_ring(ring, &q_vector->rx); 2790 2791 /* apply Rx specific ring traits */ 2792 ring->count = adapter->rx_ring_count; 2793 ring->queue_index = rxr_idx; 2794 ring->reg_idx = rxr_idx; 2795 2796 /* assign ring to adapter */ 2797 adapter->rx_ring[rxr_idx] = ring; 2798 2799 /* update count and index */ 2800 rxr_count--; 2801 rxr_idx++; 2802 2803 /* push pointer to next ring */ 2804 ring++; 2805 } 2806 2807 return 0; 2808 } 2809 2810 /** 2811 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2812 * @adapter: board private structure to initialize 2813 * @v_idx: index of vector in adapter struct 2814 * 2815 * This function frees the memory allocated to the q_vector. In addition if 2816 * NAPI is enabled it will delete any references to the NAPI struct prior 2817 * to freeing the q_vector. 2818 **/ 2819 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2820 { 2821 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2822 struct ixgbevf_ring *ring; 2823 2824 ixgbevf_for_each_ring(ring, q_vector->tx) { 2825 if (ring_is_xdp(ring)) 2826 adapter->xdp_ring[ring->queue_index] = NULL; 2827 else 2828 adapter->tx_ring[ring->queue_index] = NULL; 2829 } 2830 2831 ixgbevf_for_each_ring(ring, q_vector->rx) 2832 adapter->rx_ring[ring->queue_index] = NULL; 2833 2834 adapter->q_vector[v_idx] = NULL; 2835 netif_napi_del(&q_vector->napi); 2836 2837 /* ixgbevf_get_stats() might access the rings on this vector, 2838 * we must wait a grace period before freeing it. 2839 */ 2840 kfree_rcu(q_vector, rcu); 2841 } 2842 2843 /** 2844 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2845 * @adapter: board private structure to initialize 2846 * 2847 * We allocate one q_vector per queue interrupt. If allocation fails we 2848 * return -ENOMEM. 2849 **/ 2850 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2851 { 2852 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2853 int rxr_remaining = adapter->num_rx_queues; 2854 int txr_remaining = adapter->num_tx_queues; 2855 int xdp_remaining = adapter->num_xdp_queues; 2856 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2857 int err; 2858 2859 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2860 for (; rxr_remaining; v_idx++, q_vectors--) { 2861 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2862 2863 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2864 0, 0, 0, 0, rqpv, rxr_idx); 2865 if (err) 2866 goto err_out; 2867 2868 /* update counts and index */ 2869 rxr_remaining -= rqpv; 2870 rxr_idx += rqpv; 2871 } 2872 } 2873 2874 for (; q_vectors; v_idx++, q_vectors--) { 2875 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2876 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2877 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2878 2879 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2880 tqpv, txr_idx, 2881 xqpv, xdp_idx, 2882 rqpv, rxr_idx); 2883 2884 if (err) 2885 goto err_out; 2886 2887 /* update counts and index */ 2888 rxr_remaining -= rqpv; 2889 rxr_idx += rqpv; 2890 txr_remaining -= tqpv; 2891 txr_idx += tqpv; 2892 xdp_remaining -= xqpv; 2893 xdp_idx += xqpv; 2894 } 2895 2896 return 0; 2897 2898 err_out: 2899 while (v_idx) { 2900 v_idx--; 2901 ixgbevf_free_q_vector(adapter, v_idx); 2902 } 2903 2904 return -ENOMEM; 2905 } 2906 2907 /** 2908 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2909 * @adapter: board private structure to initialize 2910 * 2911 * This function frees the memory allocated to the q_vectors. In addition if 2912 * NAPI is enabled it will delete any references to the NAPI struct prior 2913 * to freeing the q_vector. 2914 **/ 2915 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2916 { 2917 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2918 2919 while (q_vectors) { 2920 q_vectors--; 2921 ixgbevf_free_q_vector(adapter, q_vectors); 2922 } 2923 } 2924 2925 /** 2926 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2927 * @adapter: board private structure 2928 * 2929 **/ 2930 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2931 { 2932 if (!adapter->msix_entries) 2933 return; 2934 2935 pci_disable_msix(adapter->pdev); 2936 kfree(adapter->msix_entries); 2937 adapter->msix_entries = NULL; 2938 } 2939 2940 /** 2941 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2942 * @adapter: board private structure to initialize 2943 * 2944 **/ 2945 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2946 { 2947 int err; 2948 2949 /* Number of supported queues */ 2950 ixgbevf_set_num_queues(adapter); 2951 2952 err = ixgbevf_set_interrupt_capability(adapter); 2953 if (err) { 2954 hw_dbg(&adapter->hw, 2955 "Unable to setup interrupt capabilities\n"); 2956 goto err_set_interrupt; 2957 } 2958 2959 err = ixgbevf_alloc_q_vectors(adapter); 2960 if (err) { 2961 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2962 goto err_alloc_q_vectors; 2963 } 2964 2965 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2966 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2967 adapter->num_rx_queues, adapter->num_tx_queues, 2968 adapter->num_xdp_queues); 2969 2970 set_bit(__IXGBEVF_DOWN, &adapter->state); 2971 2972 return 0; 2973 err_alloc_q_vectors: 2974 ixgbevf_reset_interrupt_capability(adapter); 2975 err_set_interrupt: 2976 return err; 2977 } 2978 2979 /** 2980 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2981 * @adapter: board private structure to clear interrupt scheme on 2982 * 2983 * We go through and clear interrupt specific resources and reset the structure 2984 * to pre-load conditions 2985 **/ 2986 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2987 { 2988 adapter->num_tx_queues = 0; 2989 adapter->num_xdp_queues = 0; 2990 adapter->num_rx_queues = 0; 2991 2992 ixgbevf_free_q_vectors(adapter); 2993 ixgbevf_reset_interrupt_capability(adapter); 2994 } 2995 2996 /** 2997 * ixgbevf_sw_init - Initialize general software structures 2998 * @adapter: board private structure to initialize 2999 * 3000 * ixgbevf_sw_init initializes the Adapter private data structure. 3001 * Fields are initialized based on PCI device information and 3002 * OS network device settings (MTU size). 3003 **/ 3004 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 3005 { 3006 struct ixgbe_hw *hw = &adapter->hw; 3007 struct pci_dev *pdev = adapter->pdev; 3008 struct net_device *netdev = adapter->netdev; 3009 int err; 3010 3011 /* PCI config space info */ 3012 hw->vendor_id = pdev->vendor; 3013 hw->device_id = pdev->device; 3014 hw->revision_id = pdev->revision; 3015 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3016 hw->subsystem_device_id = pdev->subsystem_device; 3017 3018 hw->mbx.ops.init_params(hw); 3019 3020 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3021 err = ixgbevf_init_rss_key(adapter); 3022 if (err) 3023 goto out; 3024 } 3025 3026 /* assume legacy case in which PF would only give VF 2 queues */ 3027 hw->mac.max_tx_queues = 2; 3028 hw->mac.max_rx_queues = 2; 3029 3030 /* lock to protect mailbox accesses */ 3031 spin_lock_init(&adapter->mbx_lock); 3032 3033 err = hw->mac.ops.reset_hw(hw); 3034 if (err) { 3035 dev_info(&pdev->dev, 3036 "PF still in reset state. Is the PF interface up?\n"); 3037 } else { 3038 err = hw->mac.ops.init_hw(hw); 3039 if (err) { 3040 pr_err("init_shared_code failed: %d\n", err); 3041 goto out; 3042 } 3043 ixgbevf_negotiate_api(adapter); 3044 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3045 if (err) 3046 dev_info(&pdev->dev, "Error reading MAC address\n"); 3047 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3048 dev_info(&pdev->dev, 3049 "MAC address not assigned by administrator.\n"); 3050 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 3051 } 3052 3053 if (!is_valid_ether_addr(netdev->dev_addr)) { 3054 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3055 eth_hw_addr_random(netdev); 3056 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3057 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3058 } 3059 3060 /* Enable dynamic interrupt throttling rates */ 3061 adapter->rx_itr_setting = 1; 3062 adapter->tx_itr_setting = 1; 3063 3064 /* set default ring sizes */ 3065 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3066 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3067 3068 set_bit(__IXGBEVF_DOWN, &adapter->state); 3069 return 0; 3070 3071 out: 3072 return err; 3073 } 3074 3075 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3076 { \ 3077 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3078 if (current_counter < last_counter) \ 3079 counter += 0x100000000LL; \ 3080 last_counter = current_counter; \ 3081 counter &= 0xFFFFFFFF00000000LL; \ 3082 counter |= current_counter; \ 3083 } 3084 3085 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3086 { \ 3087 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3088 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3089 u64 current_counter = (current_counter_msb << 32) | \ 3090 current_counter_lsb; \ 3091 if (current_counter < last_counter) \ 3092 counter += 0x1000000000LL; \ 3093 last_counter = current_counter; \ 3094 counter &= 0xFFFFFFF000000000LL; \ 3095 counter |= current_counter; \ 3096 } 3097 /** 3098 * ixgbevf_update_stats - Update the board statistics counters. 3099 * @adapter: board private structure 3100 **/ 3101 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3102 { 3103 struct ixgbe_hw *hw = &adapter->hw; 3104 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3105 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3106 int i; 3107 3108 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3109 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3110 return; 3111 3112 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3113 adapter->stats.vfgprc); 3114 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3115 adapter->stats.vfgptc); 3116 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3117 adapter->stats.last_vfgorc, 3118 adapter->stats.vfgorc); 3119 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3120 adapter->stats.last_vfgotc, 3121 adapter->stats.vfgotc); 3122 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3123 adapter->stats.vfmprc); 3124 3125 for (i = 0; i < adapter->num_rx_queues; i++) { 3126 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3127 3128 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3129 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3130 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3131 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3132 } 3133 3134 adapter->hw_csum_rx_error = hw_csum_rx_error; 3135 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3136 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3137 adapter->alloc_rx_page = alloc_rx_page; 3138 } 3139 3140 /** 3141 * ixgbevf_service_timer - Timer Call-back 3142 * @t: pointer to timer_list struct 3143 **/ 3144 static void ixgbevf_service_timer(struct timer_list *t) 3145 { 3146 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3147 service_timer); 3148 3149 /* Reset the timer */ 3150 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3151 3152 ixgbevf_service_event_schedule(adapter); 3153 } 3154 3155 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3156 { 3157 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3158 return; 3159 3160 rtnl_lock(); 3161 /* If we're already down or resetting, just bail */ 3162 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3163 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3164 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3165 rtnl_unlock(); 3166 return; 3167 } 3168 3169 adapter->tx_timeout_count++; 3170 3171 ixgbevf_reinit_locked(adapter); 3172 rtnl_unlock(); 3173 } 3174 3175 /** 3176 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3177 * @adapter: pointer to the device adapter structure 3178 * 3179 * This function serves two purposes. First it strobes the interrupt lines 3180 * in order to make certain interrupts are occurring. Secondly it sets the 3181 * bits needed to check for TX hangs. As a result we should immediately 3182 * determine if a hang has occurred. 3183 **/ 3184 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3185 { 3186 struct ixgbe_hw *hw = &adapter->hw; 3187 u32 eics = 0; 3188 int i; 3189 3190 /* If we're down or resetting, just bail */ 3191 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3192 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3193 return; 3194 3195 /* Force detection of hung controller */ 3196 if (netif_carrier_ok(adapter->netdev)) { 3197 for (i = 0; i < adapter->num_tx_queues; i++) 3198 set_check_for_tx_hang(adapter->tx_ring[i]); 3199 for (i = 0; i < adapter->num_xdp_queues; i++) 3200 set_check_for_tx_hang(adapter->xdp_ring[i]); 3201 } 3202 3203 /* get one bit for every active Tx/Rx interrupt vector */ 3204 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3205 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3206 3207 if (qv->rx.ring || qv->tx.ring) 3208 eics |= BIT(i); 3209 } 3210 3211 /* Cause software interrupt to ensure rings are cleaned */ 3212 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3213 } 3214 3215 /** 3216 * ixgbevf_watchdog_update_link - update the link status 3217 * @adapter: pointer to the device adapter structure 3218 **/ 3219 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3220 { 3221 struct ixgbe_hw *hw = &adapter->hw; 3222 u32 link_speed = adapter->link_speed; 3223 bool link_up = adapter->link_up; 3224 s32 err; 3225 3226 spin_lock_bh(&adapter->mbx_lock); 3227 3228 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3229 3230 spin_unlock_bh(&adapter->mbx_lock); 3231 3232 /* if check for link returns error we will need to reset */ 3233 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3234 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3235 link_up = false; 3236 } 3237 3238 adapter->link_up = link_up; 3239 adapter->link_speed = link_speed; 3240 } 3241 3242 /** 3243 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3244 * print link up message 3245 * @adapter: pointer to the device adapter structure 3246 **/ 3247 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3248 { 3249 struct net_device *netdev = adapter->netdev; 3250 3251 /* only continue if link was previously down */ 3252 if (netif_carrier_ok(netdev)) 3253 return; 3254 3255 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3256 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3257 "10 Gbps" : 3258 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3259 "1 Gbps" : 3260 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3261 "100 Mbps" : 3262 "unknown speed"); 3263 3264 netif_carrier_on(netdev); 3265 } 3266 3267 /** 3268 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3269 * print link down message 3270 * @adapter: pointer to the adapter structure 3271 **/ 3272 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3273 { 3274 struct net_device *netdev = adapter->netdev; 3275 3276 adapter->link_speed = 0; 3277 3278 /* only continue if link was up previously */ 3279 if (!netif_carrier_ok(netdev)) 3280 return; 3281 3282 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3283 3284 netif_carrier_off(netdev); 3285 } 3286 3287 /** 3288 * ixgbevf_watchdog_subtask - worker thread to bring link up 3289 * @adapter: board private structure 3290 **/ 3291 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3292 { 3293 /* if interface is down do nothing */ 3294 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3295 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3296 return; 3297 3298 ixgbevf_watchdog_update_link(adapter); 3299 3300 if (adapter->link_up) 3301 ixgbevf_watchdog_link_is_up(adapter); 3302 else 3303 ixgbevf_watchdog_link_is_down(adapter); 3304 3305 ixgbevf_update_stats(adapter); 3306 } 3307 3308 /** 3309 * ixgbevf_service_task - manages and runs subtasks 3310 * @work: pointer to work_struct containing our data 3311 **/ 3312 static void ixgbevf_service_task(struct work_struct *work) 3313 { 3314 struct ixgbevf_adapter *adapter = container_of(work, 3315 struct ixgbevf_adapter, 3316 service_task); 3317 struct ixgbe_hw *hw = &adapter->hw; 3318 3319 if (IXGBE_REMOVED(hw->hw_addr)) { 3320 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3321 rtnl_lock(); 3322 ixgbevf_down(adapter); 3323 rtnl_unlock(); 3324 } 3325 return; 3326 } 3327 3328 ixgbevf_queue_reset_subtask(adapter); 3329 ixgbevf_reset_subtask(adapter); 3330 ixgbevf_watchdog_subtask(adapter); 3331 ixgbevf_check_hang_subtask(adapter); 3332 3333 ixgbevf_service_event_complete(adapter); 3334 } 3335 3336 /** 3337 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3338 * @tx_ring: Tx descriptor ring for a specific queue 3339 * 3340 * Free all transmit software resources 3341 **/ 3342 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3343 { 3344 ixgbevf_clean_tx_ring(tx_ring); 3345 3346 vfree(tx_ring->tx_buffer_info); 3347 tx_ring->tx_buffer_info = NULL; 3348 3349 /* if not set, then don't free */ 3350 if (!tx_ring->desc) 3351 return; 3352 3353 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3354 tx_ring->dma); 3355 3356 tx_ring->desc = NULL; 3357 } 3358 3359 /** 3360 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3361 * @adapter: board private structure 3362 * 3363 * Free all transmit software resources 3364 **/ 3365 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3366 { 3367 int i; 3368 3369 for (i = 0; i < adapter->num_tx_queues; i++) 3370 if (adapter->tx_ring[i]->desc) 3371 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3372 for (i = 0; i < adapter->num_xdp_queues; i++) 3373 if (adapter->xdp_ring[i]->desc) 3374 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3375 } 3376 3377 /** 3378 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3379 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3380 * 3381 * Return 0 on success, negative on failure 3382 **/ 3383 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3384 { 3385 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3386 int size; 3387 3388 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3389 tx_ring->tx_buffer_info = vmalloc(size); 3390 if (!tx_ring->tx_buffer_info) 3391 goto err; 3392 3393 u64_stats_init(&tx_ring->syncp); 3394 3395 /* round up to nearest 4K */ 3396 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3397 tx_ring->size = ALIGN(tx_ring->size, 4096); 3398 3399 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3400 &tx_ring->dma, GFP_KERNEL); 3401 if (!tx_ring->desc) 3402 goto err; 3403 3404 return 0; 3405 3406 err: 3407 vfree(tx_ring->tx_buffer_info); 3408 tx_ring->tx_buffer_info = NULL; 3409 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3410 return -ENOMEM; 3411 } 3412 3413 /** 3414 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3415 * @adapter: board private structure 3416 * 3417 * If this function returns with an error, then it's possible one or 3418 * more of the rings is populated (while the rest are not). It is the 3419 * callers duty to clean those orphaned rings. 3420 * 3421 * Return 0 on success, negative on failure 3422 **/ 3423 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3424 { 3425 int i, j = 0, err = 0; 3426 3427 for (i = 0; i < adapter->num_tx_queues; i++) { 3428 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3429 if (!err) 3430 continue; 3431 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3432 goto err_setup_tx; 3433 } 3434 3435 for (j = 0; j < adapter->num_xdp_queues; j++) { 3436 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3437 if (!err) 3438 continue; 3439 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3440 goto err_setup_tx; 3441 } 3442 3443 return 0; 3444 err_setup_tx: 3445 /* rewind the index freeing the rings as we go */ 3446 while (j--) 3447 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3448 while (i--) 3449 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3450 3451 return err; 3452 } 3453 3454 /** 3455 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3456 * @adapter: board private structure 3457 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3458 * 3459 * Returns 0 on success, negative on failure 3460 **/ 3461 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3462 struct ixgbevf_ring *rx_ring) 3463 { 3464 int size; 3465 3466 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3467 rx_ring->rx_buffer_info = vmalloc(size); 3468 if (!rx_ring->rx_buffer_info) 3469 goto err; 3470 3471 u64_stats_init(&rx_ring->syncp); 3472 3473 /* Round up to nearest 4K */ 3474 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3475 rx_ring->size = ALIGN(rx_ring->size, 4096); 3476 3477 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3478 &rx_ring->dma, GFP_KERNEL); 3479 3480 if (!rx_ring->desc) 3481 goto err; 3482 3483 /* XDP RX-queue info */ 3484 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3485 rx_ring->queue_index) < 0) 3486 goto err; 3487 3488 rx_ring->xdp_prog = adapter->xdp_prog; 3489 3490 return 0; 3491 err: 3492 vfree(rx_ring->rx_buffer_info); 3493 rx_ring->rx_buffer_info = NULL; 3494 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3495 return -ENOMEM; 3496 } 3497 3498 /** 3499 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3500 * @adapter: board private structure 3501 * 3502 * If this function returns with an error, then it's possible one or 3503 * more of the rings is populated (while the rest are not). It is the 3504 * callers duty to clean those orphaned rings. 3505 * 3506 * Return 0 on success, negative on failure 3507 **/ 3508 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3509 { 3510 int i, err = 0; 3511 3512 for (i = 0; i < adapter->num_rx_queues; i++) { 3513 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3514 if (!err) 3515 continue; 3516 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3517 goto err_setup_rx; 3518 } 3519 3520 return 0; 3521 err_setup_rx: 3522 /* rewind the index freeing the rings as we go */ 3523 while (i--) 3524 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3525 return err; 3526 } 3527 3528 /** 3529 * ixgbevf_free_rx_resources - Free Rx Resources 3530 * @rx_ring: ring to clean the resources from 3531 * 3532 * Free all receive software resources 3533 **/ 3534 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3535 { 3536 ixgbevf_clean_rx_ring(rx_ring); 3537 3538 rx_ring->xdp_prog = NULL; 3539 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3540 vfree(rx_ring->rx_buffer_info); 3541 rx_ring->rx_buffer_info = NULL; 3542 3543 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3544 rx_ring->dma); 3545 3546 rx_ring->desc = NULL; 3547 } 3548 3549 /** 3550 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3551 * @adapter: board private structure 3552 * 3553 * Free all receive software resources 3554 **/ 3555 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3556 { 3557 int i; 3558 3559 for (i = 0; i < adapter->num_rx_queues; i++) 3560 if (adapter->rx_ring[i]->desc) 3561 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3562 } 3563 3564 /** 3565 * ixgbevf_open - Called when a network interface is made active 3566 * @netdev: network interface device structure 3567 * 3568 * Returns 0 on success, negative value on failure 3569 * 3570 * The open entry point is called when a network interface is made 3571 * active by the system (IFF_UP). At this point all resources needed 3572 * for transmit and receive operations are allocated, the interrupt 3573 * handler is registered with the OS, the watchdog timer is started, 3574 * and the stack is notified that the interface is ready. 3575 **/ 3576 int ixgbevf_open(struct net_device *netdev) 3577 { 3578 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3579 struct ixgbe_hw *hw = &adapter->hw; 3580 int err; 3581 3582 /* A previous failure to open the device because of a lack of 3583 * available MSIX vector resources may have reset the number 3584 * of msix vectors variable to zero. The only way to recover 3585 * is to unload/reload the driver and hope that the system has 3586 * been able to recover some MSIX vector resources. 3587 */ 3588 if (!adapter->num_msix_vectors) 3589 return -ENOMEM; 3590 3591 if (hw->adapter_stopped) { 3592 ixgbevf_reset(adapter); 3593 /* if adapter is still stopped then PF isn't up and 3594 * the VF can't start. 3595 */ 3596 if (hw->adapter_stopped) { 3597 err = IXGBE_ERR_MBX; 3598 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3599 goto err_setup_reset; 3600 } 3601 } 3602 3603 /* disallow open during test */ 3604 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3605 return -EBUSY; 3606 3607 netif_carrier_off(netdev); 3608 3609 /* allocate transmit descriptors */ 3610 err = ixgbevf_setup_all_tx_resources(adapter); 3611 if (err) 3612 goto err_setup_tx; 3613 3614 /* allocate receive descriptors */ 3615 err = ixgbevf_setup_all_rx_resources(adapter); 3616 if (err) 3617 goto err_setup_rx; 3618 3619 ixgbevf_configure(adapter); 3620 3621 err = ixgbevf_request_irq(adapter); 3622 if (err) 3623 goto err_req_irq; 3624 3625 /* Notify the stack of the actual queue counts. */ 3626 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3627 if (err) 3628 goto err_set_queues; 3629 3630 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3631 if (err) 3632 goto err_set_queues; 3633 3634 ixgbevf_up_complete(adapter); 3635 3636 return 0; 3637 3638 err_set_queues: 3639 ixgbevf_free_irq(adapter); 3640 err_req_irq: 3641 ixgbevf_free_all_rx_resources(adapter); 3642 err_setup_rx: 3643 ixgbevf_free_all_tx_resources(adapter); 3644 err_setup_tx: 3645 ixgbevf_reset(adapter); 3646 err_setup_reset: 3647 3648 return err; 3649 } 3650 3651 /** 3652 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3653 * @adapter: the private adapter struct 3654 * 3655 * This function should contain the necessary work common to both suspending 3656 * and closing of the device. 3657 */ 3658 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3659 { 3660 ixgbevf_down(adapter); 3661 ixgbevf_free_irq(adapter); 3662 ixgbevf_free_all_tx_resources(adapter); 3663 ixgbevf_free_all_rx_resources(adapter); 3664 } 3665 3666 /** 3667 * ixgbevf_close - Disables a network interface 3668 * @netdev: network interface device structure 3669 * 3670 * Returns 0, this is not allowed to fail 3671 * 3672 * The close entry point is called when an interface is de-activated 3673 * by the OS. The hardware is still under the drivers control, but 3674 * needs to be disabled. A global MAC reset is issued to stop the 3675 * hardware, and all transmit and receive resources are freed. 3676 **/ 3677 int ixgbevf_close(struct net_device *netdev) 3678 { 3679 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3680 3681 if (netif_device_present(netdev)) 3682 ixgbevf_close_suspend(adapter); 3683 3684 return 0; 3685 } 3686 3687 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3688 { 3689 struct net_device *dev = adapter->netdev; 3690 3691 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3692 &adapter->state)) 3693 return; 3694 3695 /* if interface is down do nothing */ 3696 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3697 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3698 return; 3699 3700 /* Hardware has to reinitialize queues and interrupts to 3701 * match packet buffer alignment. Unfortunately, the 3702 * hardware is not flexible enough to do this dynamically. 3703 */ 3704 rtnl_lock(); 3705 3706 if (netif_running(dev)) 3707 ixgbevf_close(dev); 3708 3709 ixgbevf_clear_interrupt_scheme(adapter); 3710 ixgbevf_init_interrupt_scheme(adapter); 3711 3712 if (netif_running(dev)) 3713 ixgbevf_open(dev); 3714 3715 rtnl_unlock(); 3716 } 3717 3718 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3719 u32 vlan_macip_lens, u32 fceof_saidx, 3720 u32 type_tucmd, u32 mss_l4len_idx) 3721 { 3722 struct ixgbe_adv_tx_context_desc *context_desc; 3723 u16 i = tx_ring->next_to_use; 3724 3725 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3726 3727 i++; 3728 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3729 3730 /* set bits to identify this as an advanced context descriptor */ 3731 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3732 3733 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3734 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); 3735 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3736 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3737 } 3738 3739 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3740 struct ixgbevf_tx_buffer *first, 3741 u8 *hdr_len, 3742 struct ixgbevf_ipsec_tx_data *itd) 3743 { 3744 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3745 struct sk_buff *skb = first->skb; 3746 union { 3747 struct iphdr *v4; 3748 struct ipv6hdr *v6; 3749 unsigned char *hdr; 3750 } ip; 3751 union { 3752 struct tcphdr *tcp; 3753 unsigned char *hdr; 3754 } l4; 3755 u32 paylen, l4_offset; 3756 u32 fceof_saidx = 0; 3757 int err; 3758 3759 if (skb->ip_summed != CHECKSUM_PARTIAL) 3760 return 0; 3761 3762 if (!skb_is_gso(skb)) 3763 return 0; 3764 3765 err = skb_cow_head(skb, 0); 3766 if (err < 0) 3767 return err; 3768 3769 if (eth_p_mpls(first->protocol)) 3770 ip.hdr = skb_inner_network_header(skb); 3771 else 3772 ip.hdr = skb_network_header(skb); 3773 l4.hdr = skb_checksum_start(skb); 3774 3775 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3776 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3777 3778 /* initialize outer IP header fields */ 3779 if (ip.v4->version == 4) { 3780 unsigned char *csum_start = skb_checksum_start(skb); 3781 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3782 int len = csum_start - trans_start; 3783 3784 /* IP header will have to cancel out any data that 3785 * is not a part of the outer IP header, so set to 3786 * a reverse csum if needed, else init check to 0. 3787 */ 3788 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? 3789 csum_fold(csum_partial(trans_start, 3790 len, 0)) : 0; 3791 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3792 3793 ip.v4->tot_len = 0; 3794 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3795 IXGBE_TX_FLAGS_CSUM | 3796 IXGBE_TX_FLAGS_IPV4; 3797 } else { 3798 ip.v6->payload_len = 0; 3799 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3800 IXGBE_TX_FLAGS_CSUM; 3801 } 3802 3803 /* determine offset of inner transport header */ 3804 l4_offset = l4.hdr - skb->data; 3805 3806 /* compute length of segmentation header */ 3807 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3808 3809 /* remove payload length from inner checksum */ 3810 paylen = skb->len - l4_offset; 3811 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3812 3813 /* update gso size and bytecount with header size */ 3814 first->gso_segs = skb_shinfo(skb)->gso_segs; 3815 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3816 3817 /* mss_l4len_id: use 1 as index for TSO */ 3818 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3819 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3820 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3821 3822 fceof_saidx |= itd->pfsa; 3823 type_tucmd |= itd->flags | itd->trailer_len; 3824 3825 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3826 vlan_macip_lens = l4.hdr - ip.hdr; 3827 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3828 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3829 3830 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 3831 mss_l4len_idx); 3832 3833 return 1; 3834 } 3835 3836 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) 3837 { 3838 unsigned int offset = 0; 3839 3840 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 3841 3842 return offset == skb_checksum_start_offset(skb); 3843 } 3844 3845 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3846 struct ixgbevf_tx_buffer *first, 3847 struct ixgbevf_ipsec_tx_data *itd) 3848 { 3849 struct sk_buff *skb = first->skb; 3850 u32 vlan_macip_lens = 0; 3851 u32 fceof_saidx = 0; 3852 u32 type_tucmd = 0; 3853 3854 if (skb->ip_summed != CHECKSUM_PARTIAL) 3855 goto no_csum; 3856 3857 switch (skb->csum_offset) { 3858 case offsetof(struct tcphdr, check): 3859 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3860 /* fall through */ 3861 case offsetof(struct udphdr, check): 3862 break; 3863 case offsetof(struct sctphdr, checksum): 3864 /* validate that this is actually an SCTP request */ 3865 if (((first->protocol == htons(ETH_P_IP)) && 3866 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 3867 ((first->protocol == htons(ETH_P_IPV6)) && 3868 ixgbevf_ipv6_csum_is_sctp(skb))) { 3869 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3870 break; 3871 } 3872 /* fall through */ 3873 default: 3874 skb_checksum_help(skb); 3875 goto no_csum; 3876 } 3877 3878 if (first->protocol == htons(ETH_P_IP)) 3879 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3880 3881 /* update TX checksum flag */ 3882 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3883 vlan_macip_lens = skb_checksum_start_offset(skb) - 3884 skb_network_offset(skb); 3885 no_csum: 3886 /* vlan_macip_lens: MACLEN, VLAN tag */ 3887 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3888 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3889 3890 fceof_saidx |= itd->pfsa; 3891 type_tucmd |= itd->flags | itd->trailer_len; 3892 3893 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3894 fceof_saidx, type_tucmd, 0); 3895 } 3896 3897 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3898 { 3899 /* set type for advanced descriptor with frame checksum insertion */ 3900 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3901 IXGBE_ADVTXD_DCMD_IFCS | 3902 IXGBE_ADVTXD_DCMD_DEXT); 3903 3904 /* set HW VLAN bit if VLAN is present */ 3905 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3906 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3907 3908 /* set segmentation enable bits for TSO/FSO */ 3909 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3910 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3911 3912 return cmd_type; 3913 } 3914 3915 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3916 u32 tx_flags, unsigned int paylen) 3917 { 3918 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3919 3920 /* enable L4 checksum for TSO and TX checksum offload */ 3921 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3922 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3923 3924 /* enble IPv4 checksum for TSO */ 3925 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3926 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3927 3928 /* enable IPsec */ 3929 if (tx_flags & IXGBE_TX_FLAGS_IPSEC) 3930 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); 3931 3932 /* use index 1 context for TSO/FSO/FCOE/IPSEC */ 3933 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) 3934 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3935 3936 /* Check Context must be set if Tx switch is enabled, which it 3937 * always is for case where virtual functions are running 3938 */ 3939 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3940 3941 tx_desc->read.olinfo_status = olinfo_status; 3942 } 3943 3944 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3945 struct ixgbevf_tx_buffer *first, 3946 const u8 hdr_len) 3947 { 3948 struct sk_buff *skb = first->skb; 3949 struct ixgbevf_tx_buffer *tx_buffer; 3950 union ixgbe_adv_tx_desc *tx_desc; 3951 skb_frag_t *frag; 3952 dma_addr_t dma; 3953 unsigned int data_len, size; 3954 u32 tx_flags = first->tx_flags; 3955 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3956 u16 i = tx_ring->next_to_use; 3957 3958 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3959 3960 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3961 3962 size = skb_headlen(skb); 3963 data_len = skb->data_len; 3964 3965 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3966 3967 tx_buffer = first; 3968 3969 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3970 if (dma_mapping_error(tx_ring->dev, dma)) 3971 goto dma_error; 3972 3973 /* record length, and DMA address */ 3974 dma_unmap_len_set(tx_buffer, len, size); 3975 dma_unmap_addr_set(tx_buffer, dma, dma); 3976 3977 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3978 3979 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3980 tx_desc->read.cmd_type_len = 3981 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3982 3983 i++; 3984 tx_desc++; 3985 if (i == tx_ring->count) { 3986 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3987 i = 0; 3988 } 3989 tx_desc->read.olinfo_status = 0; 3990 3991 dma += IXGBE_MAX_DATA_PER_TXD; 3992 size -= IXGBE_MAX_DATA_PER_TXD; 3993 3994 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3995 } 3996 3997 if (likely(!data_len)) 3998 break; 3999 4000 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 4001 4002 i++; 4003 tx_desc++; 4004 if (i == tx_ring->count) { 4005 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4006 i = 0; 4007 } 4008 tx_desc->read.olinfo_status = 0; 4009 4010 size = skb_frag_size(frag); 4011 data_len -= size; 4012 4013 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 4014 DMA_TO_DEVICE); 4015 4016 tx_buffer = &tx_ring->tx_buffer_info[i]; 4017 } 4018 4019 /* write last descriptor with RS and EOP bits */ 4020 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 4021 tx_desc->read.cmd_type_len = cmd_type; 4022 4023 /* set the timestamp */ 4024 first->time_stamp = jiffies; 4025 4026 skb_tx_timestamp(skb); 4027 4028 /* Force memory writes to complete before letting h/w know there 4029 * are new descriptors to fetch. (Only applicable for weak-ordered 4030 * memory model archs, such as IA-64). 4031 * 4032 * We also need this memory barrier (wmb) to make certain all of the 4033 * status bits have been updated before next_to_watch is written. 4034 */ 4035 wmb(); 4036 4037 /* set next_to_watch value indicating a packet is present */ 4038 first->next_to_watch = tx_desc; 4039 4040 i++; 4041 if (i == tx_ring->count) 4042 i = 0; 4043 4044 tx_ring->next_to_use = i; 4045 4046 /* notify HW of packet */ 4047 ixgbevf_write_tail(tx_ring, i); 4048 4049 return; 4050 dma_error: 4051 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4052 tx_buffer = &tx_ring->tx_buffer_info[i]; 4053 4054 /* clear dma mappings for failed tx_buffer_info map */ 4055 while (tx_buffer != first) { 4056 if (dma_unmap_len(tx_buffer, len)) 4057 dma_unmap_page(tx_ring->dev, 4058 dma_unmap_addr(tx_buffer, dma), 4059 dma_unmap_len(tx_buffer, len), 4060 DMA_TO_DEVICE); 4061 dma_unmap_len_set(tx_buffer, len, 0); 4062 4063 if (i-- == 0) 4064 i += tx_ring->count; 4065 tx_buffer = &tx_ring->tx_buffer_info[i]; 4066 } 4067 4068 if (dma_unmap_len(tx_buffer, len)) 4069 dma_unmap_single(tx_ring->dev, 4070 dma_unmap_addr(tx_buffer, dma), 4071 dma_unmap_len(tx_buffer, len), 4072 DMA_TO_DEVICE); 4073 dma_unmap_len_set(tx_buffer, len, 0); 4074 4075 dev_kfree_skb_any(tx_buffer->skb); 4076 tx_buffer->skb = NULL; 4077 4078 tx_ring->next_to_use = i; 4079 } 4080 4081 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4082 { 4083 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4084 /* Herbert's original patch had: 4085 * smp_mb__after_netif_stop_queue(); 4086 * but since that doesn't exist yet, just open code it. 4087 */ 4088 smp_mb(); 4089 4090 /* We need to check again in a case another CPU has just 4091 * made room available. 4092 */ 4093 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4094 return -EBUSY; 4095 4096 /* A reprieve! - use start_queue because it doesn't call schedule */ 4097 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4098 ++tx_ring->tx_stats.restart_queue; 4099 4100 return 0; 4101 } 4102 4103 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4104 { 4105 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4106 return 0; 4107 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4108 } 4109 4110 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4111 struct ixgbevf_ring *tx_ring) 4112 { 4113 struct ixgbevf_tx_buffer *first; 4114 int tso; 4115 u32 tx_flags = 0; 4116 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4117 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; 4118 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4119 unsigned short f; 4120 #endif 4121 u8 hdr_len = 0; 4122 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4123 4124 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4125 dev_kfree_skb_any(skb); 4126 return NETDEV_TX_OK; 4127 } 4128 4129 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4130 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4131 * + 2 desc gap to keep tail from touching head, 4132 * + 1 desc for context descriptor, 4133 * otherwise try next time 4134 */ 4135 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4136 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 4137 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 4138 4139 count += TXD_USE_COUNT(skb_frag_size(frag)); 4140 } 4141 #else 4142 count += skb_shinfo(skb)->nr_frags; 4143 #endif 4144 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4145 tx_ring->tx_stats.tx_busy++; 4146 return NETDEV_TX_BUSY; 4147 } 4148 4149 /* record the location of the first descriptor for this packet */ 4150 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4151 first->skb = skb; 4152 first->bytecount = skb->len; 4153 first->gso_segs = 1; 4154 4155 if (skb_vlan_tag_present(skb)) { 4156 tx_flags |= skb_vlan_tag_get(skb); 4157 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4158 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4159 } 4160 4161 /* record initial flags and protocol */ 4162 first->tx_flags = tx_flags; 4163 first->protocol = vlan_get_protocol(skb); 4164 4165 #ifdef CONFIG_IXGBEVF_IPSEC 4166 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) 4167 goto out_drop; 4168 #endif 4169 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); 4170 if (tso < 0) 4171 goto out_drop; 4172 else if (!tso) 4173 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); 4174 4175 ixgbevf_tx_map(tx_ring, first, hdr_len); 4176 4177 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4178 4179 return NETDEV_TX_OK; 4180 4181 out_drop: 4182 dev_kfree_skb_any(first->skb); 4183 first->skb = NULL; 4184 4185 return NETDEV_TX_OK; 4186 } 4187 4188 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4189 { 4190 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4191 struct ixgbevf_ring *tx_ring; 4192 4193 if (skb->len <= 0) { 4194 dev_kfree_skb_any(skb); 4195 return NETDEV_TX_OK; 4196 } 4197 4198 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4199 * in order to meet this minimum size requirement. 4200 */ 4201 if (skb->len < 17) { 4202 if (skb_padto(skb, 17)) 4203 return NETDEV_TX_OK; 4204 skb->len = 17; 4205 } 4206 4207 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4208 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4209 } 4210 4211 /** 4212 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4213 * @netdev: network interface device structure 4214 * @p: pointer to an address structure 4215 * 4216 * Returns 0 on success, negative on failure 4217 **/ 4218 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4219 { 4220 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4221 struct ixgbe_hw *hw = &adapter->hw; 4222 struct sockaddr *addr = p; 4223 int err; 4224 4225 if (!is_valid_ether_addr(addr->sa_data)) 4226 return -EADDRNOTAVAIL; 4227 4228 spin_lock_bh(&adapter->mbx_lock); 4229 4230 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4231 4232 spin_unlock_bh(&adapter->mbx_lock); 4233 4234 if (err) 4235 return -EPERM; 4236 4237 ether_addr_copy(hw->mac.addr, addr->sa_data); 4238 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4239 ether_addr_copy(netdev->dev_addr, addr->sa_data); 4240 4241 return 0; 4242 } 4243 4244 /** 4245 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4246 * @netdev: network interface device structure 4247 * @new_mtu: new value for maximum frame size 4248 * 4249 * Returns 0 on success, negative on failure 4250 **/ 4251 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4252 { 4253 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4254 struct ixgbe_hw *hw = &adapter->hw; 4255 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4256 int ret; 4257 4258 /* prevent MTU being changed to a size unsupported by XDP */ 4259 if (adapter->xdp_prog) { 4260 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4261 return -EPERM; 4262 } 4263 4264 spin_lock_bh(&adapter->mbx_lock); 4265 /* notify the PF of our intent to use this size of frame */ 4266 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4267 spin_unlock_bh(&adapter->mbx_lock); 4268 if (ret) 4269 return -EINVAL; 4270 4271 hw_dbg(hw, "changing MTU from %d to %d\n", 4272 netdev->mtu, new_mtu); 4273 4274 /* must set new MTU before calling down or up */ 4275 netdev->mtu = new_mtu; 4276 4277 if (netif_running(netdev)) 4278 ixgbevf_reinit_locked(adapter); 4279 4280 return 0; 4281 } 4282 4283 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state) 4284 { 4285 struct net_device *netdev = pci_get_drvdata(pdev); 4286 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4287 #ifdef CONFIG_PM 4288 int retval = 0; 4289 #endif 4290 4291 rtnl_lock(); 4292 netif_device_detach(netdev); 4293 4294 if (netif_running(netdev)) 4295 ixgbevf_close_suspend(adapter); 4296 4297 ixgbevf_clear_interrupt_scheme(adapter); 4298 rtnl_unlock(); 4299 4300 #ifdef CONFIG_PM 4301 retval = pci_save_state(pdev); 4302 if (retval) 4303 return retval; 4304 4305 #endif 4306 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4307 pci_disable_device(pdev); 4308 4309 return 0; 4310 } 4311 4312 #ifdef CONFIG_PM 4313 static int ixgbevf_resume(struct pci_dev *pdev) 4314 { 4315 struct net_device *netdev = pci_get_drvdata(pdev); 4316 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4317 u32 err; 4318 4319 pci_restore_state(pdev); 4320 /* pci_restore_state clears dev->state_saved so call 4321 * pci_save_state to restore it. 4322 */ 4323 pci_save_state(pdev); 4324 4325 err = pci_enable_device_mem(pdev); 4326 if (err) { 4327 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 4328 return err; 4329 } 4330 4331 adapter->hw.hw_addr = adapter->io_addr; 4332 smp_mb__before_atomic(); 4333 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4334 pci_set_master(pdev); 4335 4336 ixgbevf_reset(adapter); 4337 4338 rtnl_lock(); 4339 err = ixgbevf_init_interrupt_scheme(adapter); 4340 if (!err && netif_running(netdev)) 4341 err = ixgbevf_open(netdev); 4342 rtnl_unlock(); 4343 if (err) 4344 return err; 4345 4346 netif_device_attach(netdev); 4347 4348 return err; 4349 } 4350 4351 #endif /* CONFIG_PM */ 4352 static void ixgbevf_shutdown(struct pci_dev *pdev) 4353 { 4354 ixgbevf_suspend(pdev, PMSG_SUSPEND); 4355 } 4356 4357 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4358 const struct ixgbevf_ring *ring) 4359 { 4360 u64 bytes, packets; 4361 unsigned int start; 4362 4363 if (ring) { 4364 do { 4365 start = u64_stats_fetch_begin_irq(&ring->syncp); 4366 bytes = ring->stats.bytes; 4367 packets = ring->stats.packets; 4368 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4369 stats->tx_bytes += bytes; 4370 stats->tx_packets += packets; 4371 } 4372 } 4373 4374 static void ixgbevf_get_stats(struct net_device *netdev, 4375 struct rtnl_link_stats64 *stats) 4376 { 4377 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4378 unsigned int start; 4379 u64 bytes, packets; 4380 const struct ixgbevf_ring *ring; 4381 int i; 4382 4383 ixgbevf_update_stats(adapter); 4384 4385 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4386 4387 rcu_read_lock(); 4388 for (i = 0; i < adapter->num_rx_queues; i++) { 4389 ring = adapter->rx_ring[i]; 4390 do { 4391 start = u64_stats_fetch_begin_irq(&ring->syncp); 4392 bytes = ring->stats.bytes; 4393 packets = ring->stats.packets; 4394 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4395 stats->rx_bytes += bytes; 4396 stats->rx_packets += packets; 4397 } 4398 4399 for (i = 0; i < adapter->num_tx_queues; i++) { 4400 ring = adapter->tx_ring[i]; 4401 ixgbevf_get_tx_ring_stats(stats, ring); 4402 } 4403 4404 for (i = 0; i < adapter->num_xdp_queues; i++) { 4405 ring = adapter->xdp_ring[i]; 4406 ixgbevf_get_tx_ring_stats(stats, ring); 4407 } 4408 rcu_read_unlock(); 4409 } 4410 4411 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4412 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4413 4414 static netdev_features_t 4415 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4416 netdev_features_t features) 4417 { 4418 unsigned int network_hdr_len, mac_hdr_len; 4419 4420 /* Make certain the headers can be described by a context descriptor */ 4421 mac_hdr_len = skb_network_header(skb) - skb->data; 4422 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4423 return features & ~(NETIF_F_HW_CSUM | 4424 NETIF_F_SCTP_CRC | 4425 NETIF_F_HW_VLAN_CTAG_TX | 4426 NETIF_F_TSO | 4427 NETIF_F_TSO6); 4428 4429 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4430 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4431 return features & ~(NETIF_F_HW_CSUM | 4432 NETIF_F_SCTP_CRC | 4433 NETIF_F_TSO | 4434 NETIF_F_TSO6); 4435 4436 /* We can only support IPV4 TSO in tunnels if we can mangle the 4437 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4438 */ 4439 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4440 features &= ~NETIF_F_TSO; 4441 4442 return features; 4443 } 4444 4445 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4446 { 4447 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4448 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4449 struct bpf_prog *old_prog; 4450 4451 /* verify ixgbevf ring attributes are sufficient for XDP */ 4452 for (i = 0; i < adapter->num_rx_queues; i++) { 4453 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4454 4455 if (frame_size > ixgbevf_rx_bufsz(ring)) 4456 return -EINVAL; 4457 } 4458 4459 old_prog = xchg(&adapter->xdp_prog, prog); 4460 4461 /* If transitioning XDP modes reconfigure rings */ 4462 if (!!prog != !!old_prog) { 4463 /* Hardware has to reinitialize queues and interrupts to 4464 * match packet buffer alignment. Unfortunately, the 4465 * hardware is not flexible enough to do this dynamically. 4466 */ 4467 if (netif_running(dev)) 4468 ixgbevf_close(dev); 4469 4470 ixgbevf_clear_interrupt_scheme(adapter); 4471 ixgbevf_init_interrupt_scheme(adapter); 4472 4473 if (netif_running(dev)) 4474 ixgbevf_open(dev); 4475 } else { 4476 for (i = 0; i < adapter->num_rx_queues; i++) 4477 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4478 } 4479 4480 if (old_prog) 4481 bpf_prog_put(old_prog); 4482 4483 return 0; 4484 } 4485 4486 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4487 { 4488 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4489 4490 switch (xdp->command) { 4491 case XDP_SETUP_PROG: 4492 return ixgbevf_xdp_setup(dev, xdp->prog); 4493 case XDP_QUERY_PROG: 4494 xdp->prog_id = adapter->xdp_prog ? 4495 adapter->xdp_prog->aux->id : 0; 4496 return 0; 4497 default: 4498 return -EINVAL; 4499 } 4500 } 4501 4502 static const struct net_device_ops ixgbevf_netdev_ops = { 4503 .ndo_open = ixgbevf_open, 4504 .ndo_stop = ixgbevf_close, 4505 .ndo_start_xmit = ixgbevf_xmit_frame, 4506 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4507 .ndo_get_stats64 = ixgbevf_get_stats, 4508 .ndo_validate_addr = eth_validate_addr, 4509 .ndo_set_mac_address = ixgbevf_set_mac, 4510 .ndo_change_mtu = ixgbevf_change_mtu, 4511 .ndo_tx_timeout = ixgbevf_tx_timeout, 4512 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4513 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4514 .ndo_features_check = ixgbevf_features_check, 4515 .ndo_bpf = ixgbevf_xdp, 4516 }; 4517 4518 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4519 { 4520 dev->netdev_ops = &ixgbevf_netdev_ops; 4521 ixgbevf_set_ethtool_ops(dev); 4522 dev->watchdog_timeo = 5 * HZ; 4523 } 4524 4525 /** 4526 * ixgbevf_probe - Device Initialization Routine 4527 * @pdev: PCI device information struct 4528 * @ent: entry in ixgbevf_pci_tbl 4529 * 4530 * Returns 0 on success, negative on failure 4531 * 4532 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4533 * The OS initialization, configuring of the adapter private structure, 4534 * and a hardware reset occur. 4535 **/ 4536 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4537 { 4538 struct net_device *netdev; 4539 struct ixgbevf_adapter *adapter = NULL; 4540 struct ixgbe_hw *hw = NULL; 4541 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4542 int err, pci_using_dac; 4543 bool disable_dev = false; 4544 4545 err = pci_enable_device(pdev); 4546 if (err) 4547 return err; 4548 4549 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 4550 pci_using_dac = 1; 4551 } else { 4552 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4553 if (err) { 4554 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4555 goto err_dma; 4556 } 4557 pci_using_dac = 0; 4558 } 4559 4560 err = pci_request_regions(pdev, ixgbevf_driver_name); 4561 if (err) { 4562 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4563 goto err_pci_reg; 4564 } 4565 4566 pci_set_master(pdev); 4567 4568 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4569 MAX_TX_QUEUES); 4570 if (!netdev) { 4571 err = -ENOMEM; 4572 goto err_alloc_etherdev; 4573 } 4574 4575 SET_NETDEV_DEV(netdev, &pdev->dev); 4576 4577 adapter = netdev_priv(netdev); 4578 4579 adapter->netdev = netdev; 4580 adapter->pdev = pdev; 4581 hw = &adapter->hw; 4582 hw->back = adapter; 4583 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4584 4585 /* call save state here in standalone driver because it relies on 4586 * adapter struct to exist, and needs to call netdev_priv 4587 */ 4588 pci_save_state(pdev); 4589 4590 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4591 pci_resource_len(pdev, 0)); 4592 adapter->io_addr = hw->hw_addr; 4593 if (!hw->hw_addr) { 4594 err = -EIO; 4595 goto err_ioremap; 4596 } 4597 4598 ixgbevf_assign_netdev_ops(netdev); 4599 4600 /* Setup HW API */ 4601 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4602 hw->mac.type = ii->mac; 4603 4604 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4605 sizeof(struct ixgbe_mbx_operations)); 4606 4607 /* setup the private structure */ 4608 err = ixgbevf_sw_init(adapter); 4609 if (err) 4610 goto err_sw_init; 4611 4612 /* The HW MAC address was set and/or determined in sw_init */ 4613 if (!is_valid_ether_addr(netdev->dev_addr)) { 4614 pr_err("invalid MAC address\n"); 4615 err = -EIO; 4616 goto err_sw_init; 4617 } 4618 4619 netdev->hw_features = NETIF_F_SG | 4620 NETIF_F_TSO | 4621 NETIF_F_TSO6 | 4622 NETIF_F_RXCSUM | 4623 NETIF_F_HW_CSUM | 4624 NETIF_F_SCTP_CRC; 4625 4626 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4627 NETIF_F_GSO_GRE_CSUM | \ 4628 NETIF_F_GSO_IPXIP4 | \ 4629 NETIF_F_GSO_IPXIP6 | \ 4630 NETIF_F_GSO_UDP_TUNNEL | \ 4631 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4632 4633 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4634 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4635 IXGBEVF_GSO_PARTIAL_FEATURES; 4636 4637 netdev->features = netdev->hw_features; 4638 4639 if (pci_using_dac) 4640 netdev->features |= NETIF_F_HIGHDMA; 4641 4642 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4643 netdev->mpls_features |= NETIF_F_SG | 4644 NETIF_F_TSO | 4645 NETIF_F_TSO6 | 4646 NETIF_F_HW_CSUM; 4647 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4648 netdev->hw_enc_features |= netdev->vlan_features; 4649 4650 /* set this bit last since it cannot be part of vlan_features */ 4651 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4652 NETIF_F_HW_VLAN_CTAG_RX | 4653 NETIF_F_HW_VLAN_CTAG_TX; 4654 4655 netdev->priv_flags |= IFF_UNICAST_FLT; 4656 4657 /* MTU range: 68 - 1504 or 9710 */ 4658 netdev->min_mtu = ETH_MIN_MTU; 4659 switch (adapter->hw.api_version) { 4660 case ixgbe_mbox_api_11: 4661 case ixgbe_mbox_api_12: 4662 case ixgbe_mbox_api_13: 4663 case ixgbe_mbox_api_14: 4664 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4665 (ETH_HLEN + ETH_FCS_LEN); 4666 break; 4667 default: 4668 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4669 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4670 (ETH_HLEN + ETH_FCS_LEN); 4671 else 4672 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4673 break; 4674 } 4675 4676 if (IXGBE_REMOVED(hw->hw_addr)) { 4677 err = -EIO; 4678 goto err_sw_init; 4679 } 4680 4681 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4682 4683 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4684 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4685 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4686 4687 err = ixgbevf_init_interrupt_scheme(adapter); 4688 if (err) 4689 goto err_sw_init; 4690 4691 strcpy(netdev->name, "eth%d"); 4692 4693 err = register_netdev(netdev); 4694 if (err) 4695 goto err_register; 4696 4697 pci_set_drvdata(pdev, netdev); 4698 netif_carrier_off(netdev); 4699 ixgbevf_init_ipsec_offload(adapter); 4700 4701 ixgbevf_init_last_counter_stats(adapter); 4702 4703 /* print the VF info */ 4704 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4705 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4706 4707 switch (hw->mac.type) { 4708 case ixgbe_mac_X550_vf: 4709 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4710 break; 4711 case ixgbe_mac_X540_vf: 4712 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4713 break; 4714 case ixgbe_mac_82599_vf: 4715 default: 4716 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4717 break; 4718 } 4719 4720 return 0; 4721 4722 err_register: 4723 ixgbevf_clear_interrupt_scheme(adapter); 4724 err_sw_init: 4725 ixgbevf_reset_interrupt_capability(adapter); 4726 iounmap(adapter->io_addr); 4727 kfree(adapter->rss_key); 4728 err_ioremap: 4729 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4730 free_netdev(netdev); 4731 err_alloc_etherdev: 4732 pci_release_regions(pdev); 4733 err_pci_reg: 4734 err_dma: 4735 if (!adapter || disable_dev) 4736 pci_disable_device(pdev); 4737 return err; 4738 } 4739 4740 /** 4741 * ixgbevf_remove - Device Removal Routine 4742 * @pdev: PCI device information struct 4743 * 4744 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4745 * that it should release a PCI device. The could be caused by a 4746 * Hot-Plug event, or because the driver is going to be removed from 4747 * memory. 4748 **/ 4749 static void ixgbevf_remove(struct pci_dev *pdev) 4750 { 4751 struct net_device *netdev = pci_get_drvdata(pdev); 4752 struct ixgbevf_adapter *adapter; 4753 bool disable_dev; 4754 4755 if (!netdev) 4756 return; 4757 4758 adapter = netdev_priv(netdev); 4759 4760 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4761 cancel_work_sync(&adapter->service_task); 4762 4763 if (netdev->reg_state == NETREG_REGISTERED) 4764 unregister_netdev(netdev); 4765 4766 ixgbevf_stop_ipsec_offload(adapter); 4767 ixgbevf_clear_interrupt_scheme(adapter); 4768 ixgbevf_reset_interrupt_capability(adapter); 4769 4770 iounmap(adapter->io_addr); 4771 pci_release_regions(pdev); 4772 4773 hw_dbg(&adapter->hw, "Remove complete\n"); 4774 4775 kfree(adapter->rss_key); 4776 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4777 free_netdev(netdev); 4778 4779 if (disable_dev) 4780 pci_disable_device(pdev); 4781 } 4782 4783 /** 4784 * ixgbevf_io_error_detected - called when PCI error is detected 4785 * @pdev: Pointer to PCI device 4786 * @state: The current pci connection state 4787 * 4788 * This function is called after a PCI bus error affecting 4789 * this device has been detected. 4790 **/ 4791 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4792 pci_channel_state_t state) 4793 { 4794 struct net_device *netdev = pci_get_drvdata(pdev); 4795 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4796 4797 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4798 return PCI_ERS_RESULT_DISCONNECT; 4799 4800 rtnl_lock(); 4801 netif_device_detach(netdev); 4802 4803 if (netif_running(netdev)) 4804 ixgbevf_close_suspend(adapter); 4805 4806 if (state == pci_channel_io_perm_failure) { 4807 rtnl_unlock(); 4808 return PCI_ERS_RESULT_DISCONNECT; 4809 } 4810 4811 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4812 pci_disable_device(pdev); 4813 rtnl_unlock(); 4814 4815 /* Request a slot slot reset. */ 4816 return PCI_ERS_RESULT_NEED_RESET; 4817 } 4818 4819 /** 4820 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4821 * @pdev: Pointer to PCI device 4822 * 4823 * Restart the card from scratch, as if from a cold-boot. Implementation 4824 * resembles the first-half of the ixgbevf_resume routine. 4825 **/ 4826 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4827 { 4828 struct net_device *netdev = pci_get_drvdata(pdev); 4829 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4830 4831 if (pci_enable_device_mem(pdev)) { 4832 dev_err(&pdev->dev, 4833 "Cannot re-enable PCI device after reset.\n"); 4834 return PCI_ERS_RESULT_DISCONNECT; 4835 } 4836 4837 adapter->hw.hw_addr = adapter->io_addr; 4838 smp_mb__before_atomic(); 4839 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4840 pci_set_master(pdev); 4841 4842 ixgbevf_reset(adapter); 4843 4844 return PCI_ERS_RESULT_RECOVERED; 4845 } 4846 4847 /** 4848 * ixgbevf_io_resume - called when traffic can start flowing again. 4849 * @pdev: Pointer to PCI device 4850 * 4851 * This callback is called when the error recovery driver tells us that 4852 * its OK to resume normal operation. Implementation resembles the 4853 * second-half of the ixgbevf_resume routine. 4854 **/ 4855 static void ixgbevf_io_resume(struct pci_dev *pdev) 4856 { 4857 struct net_device *netdev = pci_get_drvdata(pdev); 4858 4859 rtnl_lock(); 4860 if (netif_running(netdev)) 4861 ixgbevf_open(netdev); 4862 4863 netif_device_attach(netdev); 4864 rtnl_unlock(); 4865 } 4866 4867 /* PCI Error Recovery (ERS) */ 4868 static const struct pci_error_handlers ixgbevf_err_handler = { 4869 .error_detected = ixgbevf_io_error_detected, 4870 .slot_reset = ixgbevf_io_slot_reset, 4871 .resume = ixgbevf_io_resume, 4872 }; 4873 4874 static struct pci_driver ixgbevf_driver = { 4875 .name = ixgbevf_driver_name, 4876 .id_table = ixgbevf_pci_tbl, 4877 .probe = ixgbevf_probe, 4878 .remove = ixgbevf_remove, 4879 #ifdef CONFIG_PM 4880 /* Power Management Hooks */ 4881 .suspend = ixgbevf_suspend, 4882 .resume = ixgbevf_resume, 4883 #endif 4884 .shutdown = ixgbevf_shutdown, 4885 .err_handler = &ixgbevf_err_handler 4886 }; 4887 4888 /** 4889 * ixgbevf_init_module - Driver Registration Routine 4890 * 4891 * ixgbevf_init_module is the first routine called when the driver is 4892 * loaded. All it does is register with the PCI subsystem. 4893 **/ 4894 static int __init ixgbevf_init_module(void) 4895 { 4896 pr_info("%s - version %s\n", ixgbevf_driver_string, 4897 ixgbevf_driver_version); 4898 4899 pr_info("%s\n", ixgbevf_copyright); 4900 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4901 if (!ixgbevf_wq) { 4902 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4903 return -ENOMEM; 4904 } 4905 4906 return pci_register_driver(&ixgbevf_driver); 4907 } 4908 4909 module_init(ixgbevf_init_module); 4910 4911 /** 4912 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4913 * 4914 * ixgbevf_exit_module is called just before the driver is removed 4915 * from memory. 4916 **/ 4917 static void __exit ixgbevf_exit_module(void) 4918 { 4919 pci_unregister_driver(&ixgbevf_driver); 4920 if (ixgbevf_wq) { 4921 destroy_workqueue(ixgbevf_wq); 4922 ixgbevf_wq = NULL; 4923 } 4924 } 4925 4926 #ifdef DEBUG 4927 /** 4928 * ixgbevf_get_hw_dev_name - return device name string 4929 * used by hardware layer to print debugging information 4930 * @hw: pointer to private hardware struct 4931 **/ 4932 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4933 { 4934 struct ixgbevf_adapter *adapter = hw->back; 4935 4936 return adapter->netdev->name; 4937 } 4938 4939 #endif 4940 module_exit(ixgbevf_exit_module); 4941 4942 /* ixgbevf_main.c */ 4943