1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /******************************************************************************
5  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
6 ******************************************************************************/
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/types.h>
11 #include <linux/bitops.h>
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/netdevice.h>
15 #include <linux/vmalloc.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/tcp.h>
20 #include <linux/sctp.h>
21 #include <linux/ipv6.h>
22 #include <linux/slab.h>
23 #include <net/checksum.h>
24 #include <net/ip6_checksum.h>
25 #include <linux/ethtool.h>
26 #include <linux/if.h>
27 #include <linux/if_vlan.h>
28 #include <linux/prefetch.h>
29 #include <net/mpls.h>
30 #include <linux/bpf.h>
31 #include <linux/bpf_trace.h>
32 #include <linux/atomic.h>
33 #include <net/xfrm.h>
34 
35 #include "ixgbevf.h"
36 
37 const char ixgbevf_driver_name[] = "ixgbevf";
38 static const char ixgbevf_driver_string[] =
39 	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
40 
41 static char ixgbevf_copyright[] =
42 	"Copyright (c) 2009 - 2018 Intel Corporation.";
43 
44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
45 	[board_82599_vf]	= &ixgbevf_82599_vf_info,
46 	[board_82599_vf_hv]	= &ixgbevf_82599_vf_hv_info,
47 	[board_X540_vf]		= &ixgbevf_X540_vf_info,
48 	[board_X540_vf_hv]	= &ixgbevf_X540_vf_hv_info,
49 	[board_X550_vf]		= &ixgbevf_X550_vf_info,
50 	[board_X550_vf_hv]	= &ixgbevf_X550_vf_hv_info,
51 	[board_X550EM_x_vf]	= &ixgbevf_X550EM_x_vf_info,
52 	[board_X550EM_x_vf_hv]	= &ixgbevf_X550EM_x_vf_hv_info,
53 	[board_x550em_a_vf]	= &ixgbevf_x550em_a_vf_info,
54 };
55 
56 /* ixgbevf_pci_tbl - PCI Device ID Table
57  *
58  * Wildcard entries (PCI_ANY_ID) should come last
59  * Last entry must be all 0s
60  *
61  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
62  *   Class, Class Mask, private data (not used) }
63  */
64 static const struct pci_device_id ixgbevf_pci_tbl[] = {
65 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
66 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
67 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
68 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
69 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
70 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
71 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
72 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
73 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
74 	/* required last entry */
75 	{0, }
76 };
77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
78 
79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
80 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
81 MODULE_LICENSE("GPL v2");
82 
83 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
84 static int debug = -1;
85 module_param(debug, int, 0);
86 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
87 
88 static struct workqueue_struct *ixgbevf_wq;
89 
90 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
91 {
92 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
93 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
94 	    !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
95 		queue_work(ixgbevf_wq, &adapter->service_task);
96 }
97 
98 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
99 {
100 	BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
101 
102 	/* flush memory to make sure state is correct before next watchdog */
103 	smp_mb__before_atomic();
104 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
105 }
106 
107 /* forward decls */
108 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
109 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
110 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
111 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer);
112 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
113 				  struct ixgbevf_rx_buffer *old_buff);
114 
115 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
116 {
117 	struct ixgbevf_adapter *adapter = hw->back;
118 
119 	if (!hw->hw_addr)
120 		return;
121 	hw->hw_addr = NULL;
122 	dev_err(&adapter->pdev->dev, "Adapter removed\n");
123 	if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
124 		ixgbevf_service_event_schedule(adapter);
125 }
126 
127 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
128 {
129 	u32 value;
130 
131 	/* The following check not only optimizes a bit by not
132 	 * performing a read on the status register when the
133 	 * register just read was a status register read that
134 	 * returned IXGBE_FAILED_READ_REG. It also blocks any
135 	 * potential recursion.
136 	 */
137 	if (reg == IXGBE_VFSTATUS) {
138 		ixgbevf_remove_adapter(hw);
139 		return;
140 	}
141 	value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
142 	if (value == IXGBE_FAILED_READ_REG)
143 		ixgbevf_remove_adapter(hw);
144 }
145 
146 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
147 {
148 	u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr);
149 	u32 value;
150 
151 	if (IXGBE_REMOVED(reg_addr))
152 		return IXGBE_FAILED_READ_REG;
153 	value = readl(reg_addr + reg);
154 	if (unlikely(value == IXGBE_FAILED_READ_REG))
155 		ixgbevf_check_remove(hw, reg);
156 	return value;
157 }
158 
159 /**
160  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
161  * @adapter: pointer to adapter struct
162  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
163  * @queue: queue to map the corresponding interrupt to
164  * @msix_vector: the vector to map to the corresponding queue
165  **/
166 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
167 			     u8 queue, u8 msix_vector)
168 {
169 	u32 ivar, index;
170 	struct ixgbe_hw *hw = &adapter->hw;
171 
172 	if (direction == -1) {
173 		/* other causes */
174 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
175 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
176 		ivar &= ~0xFF;
177 		ivar |= msix_vector;
178 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
179 	} else {
180 		/* Tx or Rx causes */
181 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
182 		index = ((16 * (queue & 1)) + (8 * direction));
183 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
184 		ivar &= ~(0xFF << index);
185 		ivar |= (msix_vector << index);
186 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
187 	}
188 }
189 
190 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
191 {
192 	return ring->stats.packets;
193 }
194 
195 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
196 {
197 	struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
198 	struct ixgbe_hw *hw = &adapter->hw;
199 
200 	u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
201 	u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
202 
203 	if (head != tail)
204 		return (head < tail) ?
205 			tail - head : (tail + ring->count - head);
206 
207 	return 0;
208 }
209 
210 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
211 {
212 	u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
213 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
214 	u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
215 
216 	clear_check_for_tx_hang(tx_ring);
217 
218 	/* Check for a hung queue, but be thorough. This verifies
219 	 * that a transmit has been completed since the previous
220 	 * check AND there is at least one packet pending. The
221 	 * ARMED bit is set to indicate a potential hang.
222 	 */
223 	if ((tx_done_old == tx_done) && tx_pending) {
224 		/* make sure it is true for two checks in a row */
225 		return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
226 					&tx_ring->state);
227 	}
228 	/* reset the countdown */
229 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
230 
231 	/* update completed stats and continue */
232 	tx_ring->tx_stats.tx_done_old = tx_done;
233 
234 	return false;
235 }
236 
237 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
238 {
239 	/* Do the reset outside of interrupt context */
240 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
241 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
242 		ixgbevf_service_event_schedule(adapter);
243 	}
244 }
245 
246 /**
247  * ixgbevf_tx_timeout - Respond to a Tx Hang
248  * @netdev: network interface device structure
249  * @txqueue: transmit queue hanging (unused)
250  **/
251 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
252 {
253 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
254 
255 	ixgbevf_tx_timeout_reset(adapter);
256 }
257 
258 /**
259  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
260  * @q_vector: board private structure
261  * @tx_ring: tx ring to clean
262  * @napi_budget: Used to determine if we are in netpoll
263  **/
264 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
265 				 struct ixgbevf_ring *tx_ring, int napi_budget)
266 {
267 	struct ixgbevf_adapter *adapter = q_vector->adapter;
268 	struct ixgbevf_tx_buffer *tx_buffer;
269 	union ixgbe_adv_tx_desc *tx_desc;
270 	unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0;
271 	unsigned int budget = tx_ring->count / 2;
272 	unsigned int i = tx_ring->next_to_clean;
273 
274 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
275 		return true;
276 
277 	tx_buffer = &tx_ring->tx_buffer_info[i];
278 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
279 	i -= tx_ring->count;
280 
281 	do {
282 		union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
283 
284 		/* if next_to_watch is not set then there is no work pending */
285 		if (!eop_desc)
286 			break;
287 
288 		/* prevent any other reads prior to eop_desc */
289 		smp_rmb();
290 
291 		/* if DD is not set pending work has not been completed */
292 		if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
293 			break;
294 
295 		/* clear next_to_watch to prevent false hangs */
296 		tx_buffer->next_to_watch = NULL;
297 
298 		/* update the statistics for this packet */
299 		total_bytes += tx_buffer->bytecount;
300 		total_packets += tx_buffer->gso_segs;
301 		if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC)
302 			total_ipsec++;
303 
304 		/* free the skb */
305 		if (ring_is_xdp(tx_ring))
306 			page_frag_free(tx_buffer->data);
307 		else
308 			napi_consume_skb(tx_buffer->skb, napi_budget);
309 
310 		/* unmap skb header data */
311 		dma_unmap_single(tx_ring->dev,
312 				 dma_unmap_addr(tx_buffer, dma),
313 				 dma_unmap_len(tx_buffer, len),
314 				 DMA_TO_DEVICE);
315 
316 		/* clear tx_buffer data */
317 		dma_unmap_len_set(tx_buffer, len, 0);
318 
319 		/* unmap remaining buffers */
320 		while (tx_desc != eop_desc) {
321 			tx_buffer++;
322 			tx_desc++;
323 			i++;
324 			if (unlikely(!i)) {
325 				i -= tx_ring->count;
326 				tx_buffer = tx_ring->tx_buffer_info;
327 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
328 			}
329 
330 			/* unmap any remaining paged data */
331 			if (dma_unmap_len(tx_buffer, len)) {
332 				dma_unmap_page(tx_ring->dev,
333 					       dma_unmap_addr(tx_buffer, dma),
334 					       dma_unmap_len(tx_buffer, len),
335 					       DMA_TO_DEVICE);
336 				dma_unmap_len_set(tx_buffer, len, 0);
337 			}
338 		}
339 
340 		/* move us one more past the eop_desc for start of next pkt */
341 		tx_buffer++;
342 		tx_desc++;
343 		i++;
344 		if (unlikely(!i)) {
345 			i -= tx_ring->count;
346 			tx_buffer = tx_ring->tx_buffer_info;
347 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
348 		}
349 
350 		/* issue prefetch for next Tx descriptor */
351 		prefetch(tx_desc);
352 
353 		/* update budget accounting */
354 		budget--;
355 	} while (likely(budget));
356 
357 	i += tx_ring->count;
358 	tx_ring->next_to_clean = i;
359 	u64_stats_update_begin(&tx_ring->syncp);
360 	tx_ring->stats.bytes += total_bytes;
361 	tx_ring->stats.packets += total_packets;
362 	u64_stats_update_end(&tx_ring->syncp);
363 	q_vector->tx.total_bytes += total_bytes;
364 	q_vector->tx.total_packets += total_packets;
365 	adapter->tx_ipsec += total_ipsec;
366 
367 	if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
368 		struct ixgbe_hw *hw = &adapter->hw;
369 		union ixgbe_adv_tx_desc *eop_desc;
370 
371 		eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
372 
373 		pr_err("Detected Tx Unit Hang%s\n"
374 		       "  Tx Queue             <%d>\n"
375 		       "  TDH, TDT             <%x>, <%x>\n"
376 		       "  next_to_use          <%x>\n"
377 		       "  next_to_clean        <%x>\n"
378 		       "tx_buffer_info[next_to_clean]\n"
379 		       "  next_to_watch        <%p>\n"
380 		       "  eop_desc->wb.status  <%x>\n"
381 		       "  time_stamp           <%lx>\n"
382 		       "  jiffies              <%lx>\n",
383 		       ring_is_xdp(tx_ring) ? " XDP" : "",
384 		       tx_ring->queue_index,
385 		       IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
386 		       IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
387 		       tx_ring->next_to_use, i,
388 		       eop_desc, (eop_desc ? eop_desc->wb.status : 0),
389 		       tx_ring->tx_buffer_info[i].time_stamp, jiffies);
390 
391 		if (!ring_is_xdp(tx_ring))
392 			netif_stop_subqueue(tx_ring->netdev,
393 					    tx_ring->queue_index);
394 
395 		/* schedule immediate reset if we believe we hung */
396 		ixgbevf_tx_timeout_reset(adapter);
397 
398 		return true;
399 	}
400 
401 	if (ring_is_xdp(tx_ring))
402 		return !!budget;
403 
404 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
405 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
406 		     (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
407 		/* Make sure that anybody stopping the queue after this
408 		 * sees the new next_to_clean.
409 		 */
410 		smp_mb();
411 
412 		if (__netif_subqueue_stopped(tx_ring->netdev,
413 					     tx_ring->queue_index) &&
414 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
415 			netif_wake_subqueue(tx_ring->netdev,
416 					    tx_ring->queue_index);
417 			++tx_ring->tx_stats.restart_queue;
418 		}
419 	}
420 
421 	return !!budget;
422 }
423 
424 /**
425  * ixgbevf_rx_skb - Helper function to determine proper Rx method
426  * @q_vector: structure containing interrupt and ring information
427  * @skb: packet to send up
428  **/
429 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
430 			   struct sk_buff *skb)
431 {
432 	napi_gro_receive(&q_vector->napi, skb);
433 }
434 
435 #define IXGBE_RSS_L4_TYPES_MASK \
436 	((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
437 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
438 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
439 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
440 
441 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
442 				   union ixgbe_adv_rx_desc *rx_desc,
443 				   struct sk_buff *skb)
444 {
445 	u16 rss_type;
446 
447 	if (!(ring->netdev->features & NETIF_F_RXHASH))
448 		return;
449 
450 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
451 		   IXGBE_RXDADV_RSSTYPE_MASK;
452 
453 	if (!rss_type)
454 		return;
455 
456 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
457 		     (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
458 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
459 }
460 
461 /**
462  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
463  * @ring: structure containig ring specific data
464  * @rx_desc: current Rx descriptor being processed
465  * @skb: skb currently being received and modified
466  **/
467 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
468 				       union ixgbe_adv_rx_desc *rx_desc,
469 				       struct sk_buff *skb)
470 {
471 	skb_checksum_none_assert(skb);
472 
473 	/* Rx csum disabled */
474 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
475 		return;
476 
477 	/* if IP and error */
478 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
479 	    ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
480 		ring->rx_stats.csum_err++;
481 		return;
482 	}
483 
484 	if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
485 		return;
486 
487 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
488 		ring->rx_stats.csum_err++;
489 		return;
490 	}
491 
492 	/* It must be a TCP or UDP packet with a valid checksum */
493 	skb->ip_summed = CHECKSUM_UNNECESSARY;
494 }
495 
496 /**
497  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
498  * @rx_ring: rx descriptor ring packet is being transacted on
499  * @rx_desc: pointer to the EOP Rx descriptor
500  * @skb: pointer to current skb being populated
501  *
502  * This function checks the ring, descriptor, and packet information in
503  * order to populate the checksum, VLAN, protocol, and other fields within
504  * the skb.
505  **/
506 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
507 				       union ixgbe_adv_rx_desc *rx_desc,
508 				       struct sk_buff *skb)
509 {
510 	ixgbevf_rx_hash(rx_ring, rx_desc, skb);
511 	ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
512 
513 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
514 		u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
515 		unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
516 
517 		if (test_bit(vid & VLAN_VID_MASK, active_vlans))
518 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
519 	}
520 
521 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP))
522 		ixgbevf_ipsec_rx(rx_ring, rx_desc, skb);
523 
524 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
525 }
526 
527 static
528 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring,
529 						const unsigned int size)
530 {
531 	struct ixgbevf_rx_buffer *rx_buffer;
532 
533 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
534 	prefetchw(rx_buffer->page);
535 
536 	/* we are reusing so sync this buffer for CPU use */
537 	dma_sync_single_range_for_cpu(rx_ring->dev,
538 				      rx_buffer->dma,
539 				      rx_buffer->page_offset,
540 				      size,
541 				      DMA_FROM_DEVICE);
542 
543 	rx_buffer->pagecnt_bias--;
544 
545 	return rx_buffer;
546 }
547 
548 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring,
549 				  struct ixgbevf_rx_buffer *rx_buffer,
550 				  struct sk_buff *skb)
551 {
552 	if (ixgbevf_can_reuse_rx_page(rx_buffer)) {
553 		/* hand second half of page back to the ring */
554 		ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
555 	} else {
556 		if (IS_ERR(skb))
557 			/* We are not reusing the buffer so unmap it and free
558 			 * any references we are holding to it
559 			 */
560 			dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
561 					     ixgbevf_rx_pg_size(rx_ring),
562 					     DMA_FROM_DEVICE,
563 					     IXGBEVF_RX_DMA_ATTR);
564 		__page_frag_cache_drain(rx_buffer->page,
565 					rx_buffer->pagecnt_bias);
566 	}
567 
568 	/* clear contents of rx_buffer */
569 	rx_buffer->page = NULL;
570 }
571 
572 /**
573  * ixgbevf_is_non_eop - process handling of non-EOP buffers
574  * @rx_ring: Rx ring being processed
575  * @rx_desc: Rx descriptor for current buffer
576  *
577  * This function updates next to clean.  If the buffer is an EOP buffer
578  * this function exits returning false, otherwise it will place the
579  * sk_buff in the next buffer to be chained and return true indicating
580  * that this is in fact a non-EOP buffer.
581  **/
582 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
583 			       union ixgbe_adv_rx_desc *rx_desc)
584 {
585 	u32 ntc = rx_ring->next_to_clean + 1;
586 
587 	/* fetch, update, and store next to clean */
588 	ntc = (ntc < rx_ring->count) ? ntc : 0;
589 	rx_ring->next_to_clean = ntc;
590 
591 	prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
592 
593 	if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
594 		return false;
595 
596 	return true;
597 }
598 
599 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring)
600 {
601 	return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0;
602 }
603 
604 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
605 				      struct ixgbevf_rx_buffer *bi)
606 {
607 	struct page *page = bi->page;
608 	dma_addr_t dma;
609 
610 	/* since we are recycling buffers we should seldom need to alloc */
611 	if (likely(page))
612 		return true;
613 
614 	/* alloc new page for storage */
615 	page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring));
616 	if (unlikely(!page)) {
617 		rx_ring->rx_stats.alloc_rx_page_failed++;
618 		return false;
619 	}
620 
621 	/* map page for use */
622 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
623 				 ixgbevf_rx_pg_size(rx_ring),
624 				 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR);
625 
626 	/* if mapping failed free memory back to system since
627 	 * there isn't much point in holding memory we can't use
628 	 */
629 	if (dma_mapping_error(rx_ring->dev, dma)) {
630 		__free_pages(page, ixgbevf_rx_pg_order(rx_ring));
631 
632 		rx_ring->rx_stats.alloc_rx_page_failed++;
633 		return false;
634 	}
635 
636 	bi->dma = dma;
637 	bi->page = page;
638 	bi->page_offset = ixgbevf_rx_offset(rx_ring);
639 	bi->pagecnt_bias = 1;
640 	rx_ring->rx_stats.alloc_rx_page++;
641 
642 	return true;
643 }
644 
645 /**
646  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
647  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
648  * @cleaned_count: number of buffers to replace
649  **/
650 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
651 				     u16 cleaned_count)
652 {
653 	union ixgbe_adv_rx_desc *rx_desc;
654 	struct ixgbevf_rx_buffer *bi;
655 	unsigned int i = rx_ring->next_to_use;
656 
657 	/* nothing to do or no valid netdev defined */
658 	if (!cleaned_count || !rx_ring->netdev)
659 		return;
660 
661 	rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
662 	bi = &rx_ring->rx_buffer_info[i];
663 	i -= rx_ring->count;
664 
665 	do {
666 		if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
667 			break;
668 
669 		/* sync the buffer for use by the device */
670 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
671 						 bi->page_offset,
672 						 ixgbevf_rx_bufsz(rx_ring),
673 						 DMA_FROM_DEVICE);
674 
675 		/* Refresh the desc even if pkt_addr didn't change
676 		 * because each write-back erases this info.
677 		 */
678 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
679 
680 		rx_desc++;
681 		bi++;
682 		i++;
683 		if (unlikely(!i)) {
684 			rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
685 			bi = rx_ring->rx_buffer_info;
686 			i -= rx_ring->count;
687 		}
688 
689 		/* clear the length for the next_to_use descriptor */
690 		rx_desc->wb.upper.length = 0;
691 
692 		cleaned_count--;
693 	} while (cleaned_count);
694 
695 	i += rx_ring->count;
696 
697 	if (rx_ring->next_to_use != i) {
698 		/* record the next descriptor to use */
699 		rx_ring->next_to_use = i;
700 
701 		/* update next to alloc since we have filled the ring */
702 		rx_ring->next_to_alloc = i;
703 
704 		/* Force memory writes to complete before letting h/w
705 		 * know there are new descriptors to fetch.  (Only
706 		 * applicable for weak-ordered memory model archs,
707 		 * such as IA-64).
708 		 */
709 		wmb();
710 		ixgbevf_write_tail(rx_ring, i);
711 	}
712 }
713 
714 /**
715  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
716  * @rx_ring: rx descriptor ring packet is being transacted on
717  * @rx_desc: pointer to the EOP Rx descriptor
718  * @skb: pointer to current skb being fixed
719  *
720  * Check for corrupted packet headers caused by senders on the local L2
721  * embedded NIC switch not setting up their Tx Descriptors right.  These
722  * should be very rare.
723  *
724  * Also address the case where we are pulling data in on pages only
725  * and as such no data is present in the skb header.
726  *
727  * In addition if skb is not at least 60 bytes we need to pad it so that
728  * it is large enough to qualify as a valid Ethernet frame.
729  *
730  * Returns true if an error was encountered and skb was freed.
731  **/
732 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
733 				    union ixgbe_adv_rx_desc *rx_desc,
734 				    struct sk_buff *skb)
735 {
736 	/* XDP packets use error pointer so abort at this point */
737 	if (IS_ERR(skb))
738 		return true;
739 
740 	/* verify that the packet does not have any known errors */
741 	if (unlikely(ixgbevf_test_staterr(rx_desc,
742 					  IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
743 		struct net_device *netdev = rx_ring->netdev;
744 
745 		if (!(netdev->features & NETIF_F_RXALL)) {
746 			dev_kfree_skb_any(skb);
747 			return true;
748 		}
749 	}
750 
751 	/* if eth_skb_pad returns an error the skb was freed */
752 	if (eth_skb_pad(skb))
753 		return true;
754 
755 	return false;
756 }
757 
758 /**
759  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
760  * @rx_ring: rx descriptor ring to store buffers on
761  * @old_buff: donor buffer to have page reused
762  *
763  * Synchronizes page for reuse by the adapter
764  **/
765 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
766 				  struct ixgbevf_rx_buffer *old_buff)
767 {
768 	struct ixgbevf_rx_buffer *new_buff;
769 	u16 nta = rx_ring->next_to_alloc;
770 
771 	new_buff = &rx_ring->rx_buffer_info[nta];
772 
773 	/* update, and store next to alloc */
774 	nta++;
775 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
776 
777 	/* transfer page from old buffer to new buffer */
778 	new_buff->page = old_buff->page;
779 	new_buff->dma = old_buff->dma;
780 	new_buff->page_offset = old_buff->page_offset;
781 	new_buff->pagecnt_bias = old_buff->pagecnt_bias;
782 }
783 
784 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer)
785 {
786 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
787 	struct page *page = rx_buffer->page;
788 
789 	/* avoid re-using remote and pfmemalloc pages */
790 	if (!dev_page_is_reusable(page))
791 		return false;
792 
793 #if (PAGE_SIZE < 8192)
794 	/* if we are only owner of page we can reuse it */
795 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
796 		return false;
797 #else
798 #define IXGBEVF_LAST_OFFSET \
799 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048)
800 
801 	if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET)
802 		return false;
803 
804 #endif
805 
806 	/* If we have drained the page fragment pool we need to update
807 	 * the pagecnt_bias and page count so that we fully restock the
808 	 * number of references the driver holds.
809 	 */
810 	if (unlikely(!pagecnt_bias)) {
811 		page_ref_add(page, USHRT_MAX);
812 		rx_buffer->pagecnt_bias = USHRT_MAX;
813 	}
814 
815 	return true;
816 }
817 
818 /**
819  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
820  * @rx_ring: rx descriptor ring to transact packets on
821  * @rx_buffer: buffer containing page to add
822  * @skb: sk_buff to place the data into
823  * @size: size of buffer to be added
824  *
825  * This function will add the data contained in rx_buffer->page to the skb.
826  **/
827 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
828 				struct ixgbevf_rx_buffer *rx_buffer,
829 				struct sk_buff *skb,
830 				unsigned int size)
831 {
832 #if (PAGE_SIZE < 8192)
833 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
834 #else
835 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
836 				SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
837 				SKB_DATA_ALIGN(size);
838 #endif
839 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
840 			rx_buffer->page_offset, size, truesize);
841 #if (PAGE_SIZE < 8192)
842 	rx_buffer->page_offset ^= truesize;
843 #else
844 	rx_buffer->page_offset += truesize;
845 #endif
846 }
847 
848 static
849 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring,
850 				      struct ixgbevf_rx_buffer *rx_buffer,
851 				      struct xdp_buff *xdp,
852 				      union ixgbe_adv_rx_desc *rx_desc)
853 {
854 	unsigned int size = xdp->data_end - xdp->data;
855 #if (PAGE_SIZE < 8192)
856 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
857 #else
858 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
859 					       xdp->data_hard_start);
860 #endif
861 	unsigned int headlen;
862 	struct sk_buff *skb;
863 
864 	/* prefetch first cache line of first page */
865 	net_prefetch(xdp->data);
866 
867 	/* Note, we get here by enabling legacy-rx via:
868 	 *
869 	 *    ethtool --set-priv-flags <dev> legacy-rx on
870 	 *
871 	 * In this mode, we currently get 0 extra XDP headroom as
872 	 * opposed to having legacy-rx off, where we process XDP
873 	 * packets going to stack via ixgbevf_build_skb().
874 	 *
875 	 * For ixgbevf_construct_skb() mode it means that the
876 	 * xdp->data_meta will always point to xdp->data, since
877 	 * the helper cannot expand the head. Should this ever
878 	 * changed in future for legacy-rx mode on, then lets also
879 	 * add xdp->data_meta handling here.
880 	 */
881 
882 	/* allocate a skb to store the frags */
883 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE);
884 	if (unlikely(!skb))
885 		return NULL;
886 
887 	/* Determine available headroom for copy */
888 	headlen = size;
889 	if (headlen > IXGBEVF_RX_HDR_SIZE)
890 		headlen = eth_get_headlen(skb->dev, xdp->data,
891 					  IXGBEVF_RX_HDR_SIZE);
892 
893 	/* align pull length to size of long to optimize memcpy performance */
894 	memcpy(__skb_put(skb, headlen), xdp->data,
895 	       ALIGN(headlen, sizeof(long)));
896 
897 	/* update all of the pointers */
898 	size -= headlen;
899 	if (size) {
900 		skb_add_rx_frag(skb, 0, rx_buffer->page,
901 				(xdp->data + headlen) -
902 					page_address(rx_buffer->page),
903 				size, truesize);
904 #if (PAGE_SIZE < 8192)
905 		rx_buffer->page_offset ^= truesize;
906 #else
907 		rx_buffer->page_offset += truesize;
908 #endif
909 	} else {
910 		rx_buffer->pagecnt_bias++;
911 	}
912 
913 	return skb;
914 }
915 
916 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
917 					     u32 qmask)
918 {
919 	struct ixgbe_hw *hw = &adapter->hw;
920 
921 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
922 }
923 
924 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring,
925 					 struct ixgbevf_rx_buffer *rx_buffer,
926 					 struct xdp_buff *xdp,
927 					 union ixgbe_adv_rx_desc *rx_desc)
928 {
929 	unsigned int metasize = xdp->data - xdp->data_meta;
930 #if (PAGE_SIZE < 8192)
931 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
932 #else
933 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
934 				SKB_DATA_ALIGN(xdp->data_end -
935 					       xdp->data_hard_start);
936 #endif
937 	struct sk_buff *skb;
938 
939 	/* Prefetch first cache line of first page. If xdp->data_meta
940 	 * is unused, this points to xdp->data, otherwise, we likely
941 	 * have a consumer accessing first few bytes of meta data,
942 	 * and then actual data.
943 	 */
944 	net_prefetch(xdp->data_meta);
945 
946 	/* build an skb around the page buffer */
947 	skb = build_skb(xdp->data_hard_start, truesize);
948 	if (unlikely(!skb))
949 		return NULL;
950 
951 	/* update pointers within the skb to store the data */
952 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
953 	__skb_put(skb, xdp->data_end - xdp->data);
954 	if (metasize)
955 		skb_metadata_set(skb, metasize);
956 
957 	/* update buffer offset */
958 #if (PAGE_SIZE < 8192)
959 	rx_buffer->page_offset ^= truesize;
960 #else
961 	rx_buffer->page_offset += truesize;
962 #endif
963 
964 	return skb;
965 }
966 
967 #define IXGBEVF_XDP_PASS 0
968 #define IXGBEVF_XDP_CONSUMED 1
969 #define IXGBEVF_XDP_TX 2
970 
971 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring,
972 				 struct xdp_buff *xdp)
973 {
974 	struct ixgbevf_tx_buffer *tx_buffer;
975 	union ixgbe_adv_tx_desc *tx_desc;
976 	u32 len, cmd_type;
977 	dma_addr_t dma;
978 	u16 i;
979 
980 	len = xdp->data_end - xdp->data;
981 
982 	if (unlikely(!ixgbevf_desc_unused(ring)))
983 		return IXGBEVF_XDP_CONSUMED;
984 
985 	dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE);
986 	if (dma_mapping_error(ring->dev, dma))
987 		return IXGBEVF_XDP_CONSUMED;
988 
989 	/* record the location of the first descriptor for this packet */
990 	i = ring->next_to_use;
991 	tx_buffer = &ring->tx_buffer_info[i];
992 
993 	dma_unmap_len_set(tx_buffer, len, len);
994 	dma_unmap_addr_set(tx_buffer, dma, dma);
995 	tx_buffer->data = xdp->data;
996 	tx_buffer->bytecount = len;
997 	tx_buffer->gso_segs = 1;
998 	tx_buffer->protocol = 0;
999 
1000 	/* Populate minimal context descriptor that will provide for the
1001 	 * fact that we are expected to process Ethernet frames.
1002 	 */
1003 	if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) {
1004 		struct ixgbe_adv_tx_context_desc *context_desc;
1005 
1006 		set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1007 
1008 		context_desc = IXGBEVF_TX_CTXTDESC(ring, 0);
1009 		context_desc->vlan_macip_lens	=
1010 			cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT);
1011 		context_desc->fceof_saidx	= 0;
1012 		context_desc->type_tucmd_mlhl	=
1013 			cpu_to_le32(IXGBE_TXD_CMD_DEXT |
1014 				    IXGBE_ADVTXD_DTYP_CTXT);
1015 		context_desc->mss_l4len_idx	= 0;
1016 
1017 		i = 1;
1018 	}
1019 
1020 	/* put descriptor type bits */
1021 	cmd_type = IXGBE_ADVTXD_DTYP_DATA |
1022 		   IXGBE_ADVTXD_DCMD_DEXT |
1023 		   IXGBE_ADVTXD_DCMD_IFCS;
1024 	cmd_type |= len | IXGBE_TXD_CMD;
1025 
1026 	tx_desc = IXGBEVF_TX_DESC(ring, i);
1027 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
1028 
1029 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1030 	tx_desc->read.olinfo_status =
1031 			cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) |
1032 				    IXGBE_ADVTXD_CC);
1033 
1034 	/* Avoid any potential race with cleanup */
1035 	smp_wmb();
1036 
1037 	/* set next_to_watch value indicating a packet is present */
1038 	i++;
1039 	if (i == ring->count)
1040 		i = 0;
1041 
1042 	tx_buffer->next_to_watch = tx_desc;
1043 	ring->next_to_use = i;
1044 
1045 	return IXGBEVF_XDP_TX;
1046 }
1047 
1048 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter,
1049 				       struct ixgbevf_ring  *rx_ring,
1050 				       struct xdp_buff *xdp)
1051 {
1052 	int result = IXGBEVF_XDP_PASS;
1053 	struct ixgbevf_ring *xdp_ring;
1054 	struct bpf_prog *xdp_prog;
1055 	u32 act;
1056 
1057 	rcu_read_lock();
1058 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1059 
1060 	if (!xdp_prog)
1061 		goto xdp_out;
1062 
1063 	act = bpf_prog_run_xdp(xdp_prog, xdp);
1064 	switch (act) {
1065 	case XDP_PASS:
1066 		break;
1067 	case XDP_TX:
1068 		xdp_ring = adapter->xdp_ring[rx_ring->queue_index];
1069 		result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp);
1070 		break;
1071 	default:
1072 		bpf_warn_invalid_xdp_action(act);
1073 		fallthrough;
1074 	case XDP_ABORTED:
1075 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
1076 		fallthrough; /* handle aborts by dropping packet */
1077 	case XDP_DROP:
1078 		result = IXGBEVF_XDP_CONSUMED;
1079 		break;
1080 	}
1081 xdp_out:
1082 	rcu_read_unlock();
1083 	return ERR_PTR(-result);
1084 }
1085 
1086 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring,
1087 					      unsigned int size)
1088 {
1089 	unsigned int truesize;
1090 
1091 #if (PAGE_SIZE < 8192)
1092 	truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1093 #else
1094 	truesize = ring_uses_build_skb(rx_ring) ?
1095 		SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) +
1096 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1097 		SKB_DATA_ALIGN(size);
1098 #endif
1099 	return truesize;
1100 }
1101 
1102 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring,
1103 				   struct ixgbevf_rx_buffer *rx_buffer,
1104 				   unsigned int size)
1105 {
1106 	unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size);
1107 
1108 #if (PAGE_SIZE < 8192)
1109 	rx_buffer->page_offset ^= truesize;
1110 #else
1111 	rx_buffer->page_offset += truesize;
1112 #endif
1113 }
1114 
1115 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
1116 				struct ixgbevf_ring *rx_ring,
1117 				int budget)
1118 {
1119 	unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
1120 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1121 	u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
1122 	struct sk_buff *skb = rx_ring->skb;
1123 	bool xdp_xmit = false;
1124 	struct xdp_buff xdp;
1125 
1126 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1127 #if (PAGE_SIZE < 8192)
1128 	frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0);
1129 #endif
1130 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
1131 
1132 	while (likely(total_rx_packets < budget)) {
1133 		struct ixgbevf_rx_buffer *rx_buffer;
1134 		union ixgbe_adv_rx_desc *rx_desc;
1135 		unsigned int size;
1136 
1137 		/* return some buffers to hardware, one at a time is too slow */
1138 		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
1139 			ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
1140 			cleaned_count = 0;
1141 		}
1142 
1143 		rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1144 		size = le16_to_cpu(rx_desc->wb.upper.length);
1145 		if (!size)
1146 			break;
1147 
1148 		/* This memory barrier is needed to keep us from reading
1149 		 * any other fields out of the rx_desc until we know the
1150 		 * RXD_STAT_DD bit is set
1151 		 */
1152 		rmb();
1153 
1154 		rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size);
1155 
1156 		/* retrieve a buffer from the ring */
1157 		if (!skb) {
1158 			unsigned int offset = ixgbevf_rx_offset(rx_ring);
1159 			unsigned char *hard_start;
1160 
1161 			hard_start = page_address(rx_buffer->page) +
1162 				     rx_buffer->page_offset - offset;
1163 			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
1164 #if (PAGE_SIZE > 4096)
1165 			/* At larger PAGE_SIZE, frame_sz depend on len size */
1166 			xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size);
1167 #endif
1168 			skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp);
1169 		}
1170 
1171 		if (IS_ERR(skb)) {
1172 			if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) {
1173 				xdp_xmit = true;
1174 				ixgbevf_rx_buffer_flip(rx_ring, rx_buffer,
1175 						       size);
1176 			} else {
1177 				rx_buffer->pagecnt_bias++;
1178 			}
1179 			total_rx_packets++;
1180 			total_rx_bytes += size;
1181 		} else if (skb) {
1182 			ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1183 		} else if (ring_uses_build_skb(rx_ring)) {
1184 			skb = ixgbevf_build_skb(rx_ring, rx_buffer,
1185 						&xdp, rx_desc);
1186 		} else {
1187 			skb = ixgbevf_construct_skb(rx_ring, rx_buffer,
1188 						    &xdp, rx_desc);
1189 		}
1190 
1191 		/* exit if we failed to retrieve a buffer */
1192 		if (!skb) {
1193 			rx_ring->rx_stats.alloc_rx_buff_failed++;
1194 			rx_buffer->pagecnt_bias++;
1195 			break;
1196 		}
1197 
1198 		ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb);
1199 		cleaned_count++;
1200 
1201 		/* fetch next buffer in frame if non-eop */
1202 		if (ixgbevf_is_non_eop(rx_ring, rx_desc))
1203 			continue;
1204 
1205 		/* verify the packet layout is correct */
1206 		if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
1207 			skb = NULL;
1208 			continue;
1209 		}
1210 
1211 		/* probably a little skewed due to removing CRC */
1212 		total_rx_bytes += skb->len;
1213 
1214 		/* Workaround hardware that can't do proper VEPA multicast
1215 		 * source pruning.
1216 		 */
1217 		if ((skb->pkt_type == PACKET_BROADCAST ||
1218 		     skb->pkt_type == PACKET_MULTICAST) &&
1219 		    ether_addr_equal(rx_ring->netdev->dev_addr,
1220 				     eth_hdr(skb)->h_source)) {
1221 			dev_kfree_skb_irq(skb);
1222 			continue;
1223 		}
1224 
1225 		/* populate checksum, VLAN, and protocol */
1226 		ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
1227 
1228 		ixgbevf_rx_skb(q_vector, skb);
1229 
1230 		/* reset skb pointer */
1231 		skb = NULL;
1232 
1233 		/* update budget accounting */
1234 		total_rx_packets++;
1235 	}
1236 
1237 	/* place incomplete frames back on ring for completion */
1238 	rx_ring->skb = skb;
1239 
1240 	if (xdp_xmit) {
1241 		struct ixgbevf_ring *xdp_ring =
1242 			adapter->xdp_ring[rx_ring->queue_index];
1243 
1244 		/* Force memory writes to complete before letting h/w
1245 		 * know there are new descriptors to fetch.
1246 		 */
1247 		wmb();
1248 		ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use);
1249 	}
1250 
1251 	u64_stats_update_begin(&rx_ring->syncp);
1252 	rx_ring->stats.packets += total_rx_packets;
1253 	rx_ring->stats.bytes += total_rx_bytes;
1254 	u64_stats_update_end(&rx_ring->syncp);
1255 	q_vector->rx.total_packets += total_rx_packets;
1256 	q_vector->rx.total_bytes += total_rx_bytes;
1257 
1258 	return total_rx_packets;
1259 }
1260 
1261 /**
1262  * ixgbevf_poll - NAPI polling calback
1263  * @napi: napi struct with our devices info in it
1264  * @budget: amount of work driver is allowed to do this pass, in packets
1265  *
1266  * This function will clean more than one or more rings associated with a
1267  * q_vector.
1268  **/
1269 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1270 {
1271 	struct ixgbevf_q_vector *q_vector =
1272 		container_of(napi, struct ixgbevf_q_vector, napi);
1273 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1274 	struct ixgbevf_ring *ring;
1275 	int per_ring_budget, work_done = 0;
1276 	bool clean_complete = true;
1277 
1278 	ixgbevf_for_each_ring(ring, q_vector->tx) {
1279 		if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1280 			clean_complete = false;
1281 	}
1282 
1283 	if (budget <= 0)
1284 		return budget;
1285 
1286 	/* attempt to distribute budget to each queue fairly, but don't allow
1287 	 * the budget to go below 1 because we'll exit polling
1288 	 */
1289 	if (q_vector->rx.count > 1)
1290 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1291 	else
1292 		per_ring_budget = budget;
1293 
1294 	ixgbevf_for_each_ring(ring, q_vector->rx) {
1295 		int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1296 						   per_ring_budget);
1297 		work_done += cleaned;
1298 		if (cleaned >= per_ring_budget)
1299 			clean_complete = false;
1300 	}
1301 
1302 	/* If all work not completed, return budget and keep polling */
1303 	if (!clean_complete)
1304 		return budget;
1305 
1306 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1307 	 * poll us due to busy-polling
1308 	 */
1309 	if (likely(napi_complete_done(napi, work_done))) {
1310 		if (adapter->rx_itr_setting == 1)
1311 			ixgbevf_set_itr(q_vector);
1312 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1313 		    !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1314 			ixgbevf_irq_enable_queues(adapter,
1315 						  BIT(q_vector->v_idx));
1316 	}
1317 
1318 	return min(work_done, budget - 1);
1319 }
1320 
1321 /**
1322  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1323  * @q_vector: structure containing interrupt and ring information
1324  **/
1325 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1326 {
1327 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1328 	struct ixgbe_hw *hw = &adapter->hw;
1329 	int v_idx = q_vector->v_idx;
1330 	u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1331 
1332 	/* set the WDIS bit to not clear the timer bits and cause an
1333 	 * immediate assertion of the interrupt
1334 	 */
1335 	itr_reg |= IXGBE_EITR_CNT_WDIS;
1336 
1337 	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1338 }
1339 
1340 /**
1341  * ixgbevf_configure_msix - Configure MSI-X hardware
1342  * @adapter: board private structure
1343  *
1344  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1345  * interrupts.
1346  **/
1347 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1348 {
1349 	struct ixgbevf_q_vector *q_vector;
1350 	int q_vectors, v_idx;
1351 
1352 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1353 	adapter->eims_enable_mask = 0;
1354 
1355 	/* Populate the IVAR table and set the ITR values to the
1356 	 * corresponding register.
1357 	 */
1358 	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1359 		struct ixgbevf_ring *ring;
1360 
1361 		q_vector = adapter->q_vector[v_idx];
1362 
1363 		ixgbevf_for_each_ring(ring, q_vector->rx)
1364 			ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1365 
1366 		ixgbevf_for_each_ring(ring, q_vector->tx)
1367 			ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1368 
1369 		if (q_vector->tx.ring && !q_vector->rx.ring) {
1370 			/* Tx only vector */
1371 			if (adapter->tx_itr_setting == 1)
1372 				q_vector->itr = IXGBE_12K_ITR;
1373 			else
1374 				q_vector->itr = adapter->tx_itr_setting;
1375 		} else {
1376 			/* Rx or Rx/Tx vector */
1377 			if (adapter->rx_itr_setting == 1)
1378 				q_vector->itr = IXGBE_20K_ITR;
1379 			else
1380 				q_vector->itr = adapter->rx_itr_setting;
1381 		}
1382 
1383 		/* add q_vector eims value to global eims_enable_mask */
1384 		adapter->eims_enable_mask |= BIT(v_idx);
1385 
1386 		ixgbevf_write_eitr(q_vector);
1387 	}
1388 
1389 	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1390 	/* setup eims_other and add value to global eims_enable_mask */
1391 	adapter->eims_other = BIT(v_idx);
1392 	adapter->eims_enable_mask |= adapter->eims_other;
1393 }
1394 
1395 enum latency_range {
1396 	lowest_latency = 0,
1397 	low_latency = 1,
1398 	bulk_latency = 2,
1399 	latency_invalid = 255
1400 };
1401 
1402 /**
1403  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1404  * @q_vector: structure containing interrupt and ring information
1405  * @ring_container: structure containing ring performance data
1406  *
1407  * Stores a new ITR value based on packets and byte
1408  * counts during the last interrupt.  The advantage of per interrupt
1409  * computation is faster updates and more accurate ITR for the current
1410  * traffic pattern.  Constants in this function were computed
1411  * based on theoretical maximum wire speed and thresholds were set based
1412  * on testing data as well as attempting to minimize response time
1413  * while increasing bulk throughput.
1414  **/
1415 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1416 			       struct ixgbevf_ring_container *ring_container)
1417 {
1418 	int bytes = ring_container->total_bytes;
1419 	int packets = ring_container->total_packets;
1420 	u32 timepassed_us;
1421 	u64 bytes_perint;
1422 	u8 itr_setting = ring_container->itr;
1423 
1424 	if (packets == 0)
1425 		return;
1426 
1427 	/* simple throttle rate management
1428 	 *    0-20MB/s lowest (100000 ints/s)
1429 	 *   20-100MB/s low   (20000 ints/s)
1430 	 *  100-1249MB/s bulk (12000 ints/s)
1431 	 */
1432 	/* what was last interrupt timeslice? */
1433 	timepassed_us = q_vector->itr >> 2;
1434 	if (timepassed_us == 0)
1435 		return;
1436 
1437 	bytes_perint = bytes / timepassed_us; /* bytes/usec */
1438 
1439 	switch (itr_setting) {
1440 	case lowest_latency:
1441 		if (bytes_perint > 10)
1442 			itr_setting = low_latency;
1443 		break;
1444 	case low_latency:
1445 		if (bytes_perint > 20)
1446 			itr_setting = bulk_latency;
1447 		else if (bytes_perint <= 10)
1448 			itr_setting = lowest_latency;
1449 		break;
1450 	case bulk_latency:
1451 		if (bytes_perint <= 20)
1452 			itr_setting = low_latency;
1453 		break;
1454 	}
1455 
1456 	/* clear work counters since we have the values we need */
1457 	ring_container->total_bytes = 0;
1458 	ring_container->total_packets = 0;
1459 
1460 	/* write updated itr to ring container */
1461 	ring_container->itr = itr_setting;
1462 }
1463 
1464 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1465 {
1466 	u32 new_itr = q_vector->itr;
1467 	u8 current_itr;
1468 
1469 	ixgbevf_update_itr(q_vector, &q_vector->tx);
1470 	ixgbevf_update_itr(q_vector, &q_vector->rx);
1471 
1472 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1473 
1474 	switch (current_itr) {
1475 	/* counts and packets in update_itr are dependent on these numbers */
1476 	case lowest_latency:
1477 		new_itr = IXGBE_100K_ITR;
1478 		break;
1479 	case low_latency:
1480 		new_itr = IXGBE_20K_ITR;
1481 		break;
1482 	case bulk_latency:
1483 		new_itr = IXGBE_12K_ITR;
1484 		break;
1485 	default:
1486 		break;
1487 	}
1488 
1489 	if (new_itr != q_vector->itr) {
1490 		/* do an exponential smoothing */
1491 		new_itr = (10 * new_itr * q_vector->itr) /
1492 			  ((9 * new_itr) + q_vector->itr);
1493 
1494 		/* save the algorithm value here */
1495 		q_vector->itr = new_itr;
1496 
1497 		ixgbevf_write_eitr(q_vector);
1498 	}
1499 }
1500 
1501 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1502 {
1503 	struct ixgbevf_adapter *adapter = data;
1504 	struct ixgbe_hw *hw = &adapter->hw;
1505 
1506 	hw->mac.get_link_status = 1;
1507 
1508 	ixgbevf_service_event_schedule(adapter);
1509 
1510 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1511 
1512 	return IRQ_HANDLED;
1513 }
1514 
1515 /**
1516  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1517  * @irq: unused
1518  * @data: pointer to our q_vector struct for this interrupt vector
1519  **/
1520 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1521 {
1522 	struct ixgbevf_q_vector *q_vector = data;
1523 
1524 	/* EIAM disabled interrupts (on this vector) for us */
1525 	if (q_vector->rx.ring || q_vector->tx.ring)
1526 		napi_schedule_irqoff(&q_vector->napi);
1527 
1528 	return IRQ_HANDLED;
1529 }
1530 
1531 /**
1532  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1533  * @adapter: board private structure
1534  *
1535  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1536  * interrupts from the kernel.
1537  **/
1538 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1539 {
1540 	struct net_device *netdev = adapter->netdev;
1541 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1542 	unsigned int ri = 0, ti = 0;
1543 	int vector, err;
1544 
1545 	for (vector = 0; vector < q_vectors; vector++) {
1546 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1547 		struct msix_entry *entry = &adapter->msix_entries[vector];
1548 
1549 		if (q_vector->tx.ring && q_vector->rx.ring) {
1550 			snprintf(q_vector->name, sizeof(q_vector->name),
1551 				 "%s-TxRx-%u", netdev->name, ri++);
1552 			ti++;
1553 		} else if (q_vector->rx.ring) {
1554 			snprintf(q_vector->name, sizeof(q_vector->name),
1555 				 "%s-rx-%u", netdev->name, ri++);
1556 		} else if (q_vector->tx.ring) {
1557 			snprintf(q_vector->name, sizeof(q_vector->name),
1558 				 "%s-tx-%u", netdev->name, ti++);
1559 		} else {
1560 			/* skip this unused q_vector */
1561 			continue;
1562 		}
1563 		err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1564 				  q_vector->name, q_vector);
1565 		if (err) {
1566 			hw_dbg(&adapter->hw,
1567 			       "request_irq failed for MSIX interrupt Error: %d\n",
1568 			       err);
1569 			goto free_queue_irqs;
1570 		}
1571 	}
1572 
1573 	err = request_irq(adapter->msix_entries[vector].vector,
1574 			  &ixgbevf_msix_other, 0, netdev->name, adapter);
1575 	if (err) {
1576 		hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1577 		       err);
1578 		goto free_queue_irqs;
1579 	}
1580 
1581 	return 0;
1582 
1583 free_queue_irqs:
1584 	while (vector) {
1585 		vector--;
1586 		free_irq(adapter->msix_entries[vector].vector,
1587 			 adapter->q_vector[vector]);
1588 	}
1589 	/* This failure is non-recoverable - it indicates the system is
1590 	 * out of MSIX vector resources and the VF driver cannot run
1591 	 * without them.  Set the number of msix vectors to zero
1592 	 * indicating that not enough can be allocated.  The error
1593 	 * will be returned to the user indicating device open failed.
1594 	 * Any further attempts to force the driver to open will also
1595 	 * fail.  The only way to recover is to unload the driver and
1596 	 * reload it again.  If the system has recovered some MSIX
1597 	 * vectors then it may succeed.
1598 	 */
1599 	adapter->num_msix_vectors = 0;
1600 	return err;
1601 }
1602 
1603 /**
1604  * ixgbevf_request_irq - initialize interrupts
1605  * @adapter: board private structure
1606  *
1607  * Attempts to configure interrupts using the best available
1608  * capabilities of the hardware and kernel.
1609  **/
1610 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1611 {
1612 	int err = ixgbevf_request_msix_irqs(adapter);
1613 
1614 	if (err)
1615 		hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1616 
1617 	return err;
1618 }
1619 
1620 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1621 {
1622 	int i, q_vectors;
1623 
1624 	if (!adapter->msix_entries)
1625 		return;
1626 
1627 	q_vectors = adapter->num_msix_vectors;
1628 	i = q_vectors - 1;
1629 
1630 	free_irq(adapter->msix_entries[i].vector, adapter);
1631 	i--;
1632 
1633 	for (; i >= 0; i--) {
1634 		/* free only the irqs that were actually requested */
1635 		if (!adapter->q_vector[i]->rx.ring &&
1636 		    !adapter->q_vector[i]->tx.ring)
1637 			continue;
1638 
1639 		free_irq(adapter->msix_entries[i].vector,
1640 			 adapter->q_vector[i]);
1641 	}
1642 }
1643 
1644 /**
1645  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1646  * @adapter: board private structure
1647  **/
1648 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1649 {
1650 	struct ixgbe_hw *hw = &adapter->hw;
1651 	int i;
1652 
1653 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1654 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1655 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1656 
1657 	IXGBE_WRITE_FLUSH(hw);
1658 
1659 	for (i = 0; i < adapter->num_msix_vectors; i++)
1660 		synchronize_irq(adapter->msix_entries[i].vector);
1661 }
1662 
1663 /**
1664  * ixgbevf_irq_enable - Enable default interrupt generation settings
1665  * @adapter: board private structure
1666  **/
1667 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1668 {
1669 	struct ixgbe_hw *hw = &adapter->hw;
1670 
1671 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1672 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1673 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1674 }
1675 
1676 /**
1677  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1678  * @adapter: board private structure
1679  * @ring: structure containing ring specific data
1680  *
1681  * Configure the Tx descriptor ring after a reset.
1682  **/
1683 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1684 				      struct ixgbevf_ring *ring)
1685 {
1686 	struct ixgbe_hw *hw = &adapter->hw;
1687 	u64 tdba = ring->dma;
1688 	int wait_loop = 10;
1689 	u32 txdctl = IXGBE_TXDCTL_ENABLE;
1690 	u8 reg_idx = ring->reg_idx;
1691 
1692 	/* disable queue to avoid issues while updating state */
1693 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1694 	IXGBE_WRITE_FLUSH(hw);
1695 
1696 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1697 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1698 	IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1699 			ring->count * sizeof(union ixgbe_adv_tx_desc));
1700 
1701 	/* disable head writeback */
1702 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1703 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1704 
1705 	/* enable relaxed ordering */
1706 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1707 			(IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1708 			 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1709 
1710 	/* reset head and tail pointers */
1711 	IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1712 	IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1713 	ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1714 
1715 	/* reset ntu and ntc to place SW in sync with hardwdare */
1716 	ring->next_to_clean = 0;
1717 	ring->next_to_use = 0;
1718 
1719 	/* In order to avoid issues WTHRESH + PTHRESH should always be equal
1720 	 * to or less than the number of on chip descriptors, which is
1721 	 * currently 40.
1722 	 */
1723 	txdctl |= (8 << 16);    /* WTHRESH = 8 */
1724 
1725 	/* Setting PTHRESH to 32 both improves performance */
1726 	txdctl |= (1u << 8) |    /* HTHRESH = 1 */
1727 		   32;           /* PTHRESH = 32 */
1728 
1729 	/* reinitialize tx_buffer_info */
1730 	memset(ring->tx_buffer_info, 0,
1731 	       sizeof(struct ixgbevf_tx_buffer) * ring->count);
1732 
1733 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1734 	clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1735 
1736 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1737 
1738 	/* poll to verify queue is enabled */
1739 	do {
1740 		usleep_range(1000, 2000);
1741 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1742 	}  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1743 	if (!wait_loop)
1744 		hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1745 }
1746 
1747 /**
1748  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1749  * @adapter: board private structure
1750  *
1751  * Configure the Tx unit of the MAC after a reset.
1752  **/
1753 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1754 {
1755 	u32 i;
1756 
1757 	/* Setup the HW Tx Head and Tail descriptor pointers */
1758 	for (i = 0; i < adapter->num_tx_queues; i++)
1759 		ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1760 	for (i = 0; i < adapter->num_xdp_queues; i++)
1761 		ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]);
1762 }
1763 
1764 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1765 
1766 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter,
1767 				     struct ixgbevf_ring *ring, int index)
1768 {
1769 	struct ixgbe_hw *hw = &adapter->hw;
1770 	u32 srrctl;
1771 
1772 	srrctl = IXGBE_SRRCTL_DROP_EN;
1773 
1774 	srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1775 	if (ring_uses_large_buffer(ring))
1776 		srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1777 	else
1778 		srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1779 	srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1780 
1781 	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1782 }
1783 
1784 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1785 {
1786 	struct ixgbe_hw *hw = &adapter->hw;
1787 
1788 	/* PSRTYPE must be initialized in 82599 */
1789 	u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1790 		      IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1791 		      IXGBE_PSRTYPE_L2HDR;
1792 
1793 	if (adapter->num_rx_queues > 1)
1794 		psrtype |= BIT(29);
1795 
1796 	IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1797 }
1798 
1799 #define IXGBEVF_MAX_RX_DESC_POLL 10
1800 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1801 				     struct ixgbevf_ring *ring)
1802 {
1803 	struct ixgbe_hw *hw = &adapter->hw;
1804 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1805 	u32 rxdctl;
1806 	u8 reg_idx = ring->reg_idx;
1807 
1808 	if (IXGBE_REMOVED(hw->hw_addr))
1809 		return;
1810 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1811 	rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1812 
1813 	/* write value back with RXDCTL.ENABLE bit cleared */
1814 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1815 
1816 	/* the hardware may take up to 100us to really disable the Rx queue */
1817 	do {
1818 		udelay(10);
1819 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1820 	} while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1821 
1822 	if (!wait_loop)
1823 		pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1824 		       reg_idx);
1825 }
1826 
1827 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1828 					 struct ixgbevf_ring *ring)
1829 {
1830 	struct ixgbe_hw *hw = &adapter->hw;
1831 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1832 	u32 rxdctl;
1833 	u8 reg_idx = ring->reg_idx;
1834 
1835 	if (IXGBE_REMOVED(hw->hw_addr))
1836 		return;
1837 	do {
1838 		usleep_range(1000, 2000);
1839 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1840 	} while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1841 
1842 	if (!wait_loop)
1843 		pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1844 		       reg_idx);
1845 }
1846 
1847 /**
1848  * ixgbevf_init_rss_key - Initialize adapter RSS key
1849  * @adapter: device handle
1850  *
1851  * Allocates and initializes the RSS key if it is not allocated.
1852  **/
1853 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter)
1854 {
1855 	u32 *rss_key;
1856 
1857 	if (!adapter->rss_key) {
1858 		rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL);
1859 		if (unlikely(!rss_key))
1860 			return -ENOMEM;
1861 
1862 		netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE);
1863 		adapter->rss_key = rss_key;
1864 	}
1865 
1866 	return 0;
1867 }
1868 
1869 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1870 {
1871 	struct ixgbe_hw *hw = &adapter->hw;
1872 	u32 vfmrqc = 0, vfreta = 0;
1873 	u16 rss_i = adapter->num_rx_queues;
1874 	u8 i, j;
1875 
1876 	/* Fill out hash function seeds */
1877 	for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1878 		IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i));
1879 
1880 	for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1881 		if (j == rss_i)
1882 			j = 0;
1883 
1884 		adapter->rss_indir_tbl[i] = j;
1885 
1886 		vfreta |= j << (i & 0x3) * 8;
1887 		if ((i & 3) == 3) {
1888 			IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1889 			vfreta = 0;
1890 		}
1891 	}
1892 
1893 	/* Perform hash on these packet types */
1894 	vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1895 		IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1896 		IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1897 		IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1898 
1899 	vfmrqc |= IXGBE_VFMRQC_RSSEN;
1900 
1901 	IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1902 }
1903 
1904 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1905 				      struct ixgbevf_ring *ring)
1906 {
1907 	struct ixgbe_hw *hw = &adapter->hw;
1908 	union ixgbe_adv_rx_desc *rx_desc;
1909 	u64 rdba = ring->dma;
1910 	u32 rxdctl;
1911 	u8 reg_idx = ring->reg_idx;
1912 
1913 	/* disable queue to avoid issues while updating state */
1914 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1915 	ixgbevf_disable_rx_queue(adapter, ring);
1916 
1917 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1918 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1919 	IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1920 			ring->count * sizeof(union ixgbe_adv_rx_desc));
1921 
1922 #ifndef CONFIG_SPARC
1923 	/* enable relaxed ordering */
1924 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1925 			IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1926 #else
1927 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1928 			IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1929 			IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1930 #endif
1931 
1932 	/* reset head and tail pointers */
1933 	IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1934 	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1935 	ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1936 
1937 	/* initialize rx_buffer_info */
1938 	memset(ring->rx_buffer_info, 0,
1939 	       sizeof(struct ixgbevf_rx_buffer) * ring->count);
1940 
1941 	/* initialize Rx descriptor 0 */
1942 	rx_desc = IXGBEVF_RX_DESC(ring, 0);
1943 	rx_desc->wb.upper.length = 0;
1944 
1945 	/* reset ntu and ntc to place SW in sync with hardwdare */
1946 	ring->next_to_clean = 0;
1947 	ring->next_to_use = 0;
1948 	ring->next_to_alloc = 0;
1949 
1950 	ixgbevf_configure_srrctl(adapter, ring, reg_idx);
1951 
1952 	/* RXDCTL.RLPML does not work on 82599 */
1953 	if (adapter->hw.mac.type != ixgbe_mac_82599_vf) {
1954 		rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK |
1955 			    IXGBE_RXDCTL_RLPML_EN);
1956 
1957 #if (PAGE_SIZE < 8192)
1958 		/* Limit the maximum frame size so we don't overrun the skb */
1959 		if (ring_uses_build_skb(ring) &&
1960 		    !ring_uses_large_buffer(ring))
1961 			rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB |
1962 				  IXGBE_RXDCTL_RLPML_EN;
1963 #endif
1964 	}
1965 
1966 	rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1967 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1968 
1969 	ixgbevf_rx_desc_queue_enable(adapter, ring);
1970 	ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1971 }
1972 
1973 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter,
1974 				      struct ixgbevf_ring *rx_ring)
1975 {
1976 	struct net_device *netdev = adapter->netdev;
1977 	unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1978 
1979 	/* set build_skb and buffer size flags */
1980 	clear_ring_build_skb_enabled(rx_ring);
1981 	clear_ring_uses_large_buffer(rx_ring);
1982 
1983 	if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX)
1984 		return;
1985 
1986 	set_ring_build_skb_enabled(rx_ring);
1987 
1988 	if (PAGE_SIZE < 8192) {
1989 		if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB)
1990 			return;
1991 
1992 		set_ring_uses_large_buffer(rx_ring);
1993 	}
1994 }
1995 
1996 /**
1997  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1998  * @adapter: board private structure
1999  *
2000  * Configure the Rx unit of the MAC after a reset.
2001  **/
2002 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
2003 {
2004 	struct ixgbe_hw *hw = &adapter->hw;
2005 	struct net_device *netdev = adapter->netdev;
2006 	int i, ret;
2007 
2008 	ixgbevf_setup_psrtype(adapter);
2009 	if (hw->mac.type >= ixgbe_mac_X550_vf)
2010 		ixgbevf_setup_vfmrqc(adapter);
2011 
2012 	spin_lock_bh(&adapter->mbx_lock);
2013 	/* notify the PF of our intent to use this size of frame */
2014 	ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
2015 	spin_unlock_bh(&adapter->mbx_lock);
2016 	if (ret)
2017 		dev_err(&adapter->pdev->dev,
2018 			"Failed to set MTU at %d\n", netdev->mtu);
2019 
2020 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
2021 	 * the Base and Length of the Rx Descriptor Ring
2022 	 */
2023 	for (i = 0; i < adapter->num_rx_queues; i++) {
2024 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
2025 
2026 		ixgbevf_set_rx_buffer_len(adapter, rx_ring);
2027 		ixgbevf_configure_rx_ring(adapter, rx_ring);
2028 	}
2029 }
2030 
2031 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
2032 				   __be16 proto, u16 vid)
2033 {
2034 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2035 	struct ixgbe_hw *hw = &adapter->hw;
2036 	int err;
2037 
2038 	spin_lock_bh(&adapter->mbx_lock);
2039 
2040 	/* add VID to filter table */
2041 	err = hw->mac.ops.set_vfta(hw, vid, 0, true);
2042 
2043 	spin_unlock_bh(&adapter->mbx_lock);
2044 
2045 	/* translate error return types so error makes sense */
2046 	if (err == IXGBE_ERR_MBX)
2047 		return -EIO;
2048 
2049 	if (err == IXGBE_ERR_INVALID_ARGUMENT)
2050 		return -EACCES;
2051 
2052 	set_bit(vid, adapter->active_vlans);
2053 
2054 	return err;
2055 }
2056 
2057 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
2058 				    __be16 proto, u16 vid)
2059 {
2060 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2061 	struct ixgbe_hw *hw = &adapter->hw;
2062 	int err;
2063 
2064 	spin_lock_bh(&adapter->mbx_lock);
2065 
2066 	/* remove VID from filter table */
2067 	err = hw->mac.ops.set_vfta(hw, vid, 0, false);
2068 
2069 	spin_unlock_bh(&adapter->mbx_lock);
2070 
2071 	clear_bit(vid, adapter->active_vlans);
2072 
2073 	return err;
2074 }
2075 
2076 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
2077 {
2078 	u16 vid;
2079 
2080 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2081 		ixgbevf_vlan_rx_add_vid(adapter->netdev,
2082 					htons(ETH_P_8021Q), vid);
2083 }
2084 
2085 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
2086 {
2087 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2088 	struct ixgbe_hw *hw = &adapter->hw;
2089 	int count = 0;
2090 
2091 	if (!netdev_uc_empty(netdev)) {
2092 		struct netdev_hw_addr *ha;
2093 
2094 		netdev_for_each_uc_addr(ha, netdev) {
2095 			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
2096 			udelay(200);
2097 		}
2098 	} else {
2099 		/* If the list is empty then send message to PF driver to
2100 		 * clear all MAC VLANs on this VF.
2101 		 */
2102 		hw->mac.ops.set_uc_addr(hw, 0, NULL);
2103 	}
2104 
2105 	return count;
2106 }
2107 
2108 /**
2109  * ixgbevf_set_rx_mode - Multicast and unicast set
2110  * @netdev: network interface device structure
2111  *
2112  * The set_rx_method entry point is called whenever the multicast address
2113  * list, unicast address list or the network interface flags are updated.
2114  * This routine is responsible for configuring the hardware for proper
2115  * multicast mode and configuring requested unicast filters.
2116  **/
2117 static void ixgbevf_set_rx_mode(struct net_device *netdev)
2118 {
2119 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2120 	struct ixgbe_hw *hw = &adapter->hw;
2121 	unsigned int flags = netdev->flags;
2122 	int xcast_mode;
2123 
2124 	/* request the most inclusive mode we need */
2125 	if (flags & IFF_PROMISC)
2126 		xcast_mode = IXGBEVF_XCAST_MODE_PROMISC;
2127 	else if (flags & IFF_ALLMULTI)
2128 		xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI;
2129 	else if (flags & (IFF_BROADCAST | IFF_MULTICAST))
2130 		xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
2131 	else
2132 		xcast_mode = IXGBEVF_XCAST_MODE_NONE;
2133 
2134 	spin_lock_bh(&adapter->mbx_lock);
2135 
2136 	hw->mac.ops.update_xcast_mode(hw, xcast_mode);
2137 
2138 	/* reprogram multicast list */
2139 	hw->mac.ops.update_mc_addr_list(hw, netdev);
2140 
2141 	ixgbevf_write_uc_addr_list(netdev);
2142 
2143 	spin_unlock_bh(&adapter->mbx_lock);
2144 }
2145 
2146 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
2147 {
2148 	int q_idx;
2149 	struct ixgbevf_q_vector *q_vector;
2150 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2151 
2152 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2153 		q_vector = adapter->q_vector[q_idx];
2154 		napi_enable(&q_vector->napi);
2155 	}
2156 }
2157 
2158 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
2159 {
2160 	int q_idx;
2161 	struct ixgbevf_q_vector *q_vector;
2162 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2163 
2164 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2165 		q_vector = adapter->q_vector[q_idx];
2166 		napi_disable(&q_vector->napi);
2167 	}
2168 }
2169 
2170 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
2171 {
2172 	struct ixgbe_hw *hw = &adapter->hw;
2173 	unsigned int def_q = 0;
2174 	unsigned int num_tcs = 0;
2175 	unsigned int num_rx_queues = adapter->num_rx_queues;
2176 	unsigned int num_tx_queues = adapter->num_tx_queues;
2177 	int err;
2178 
2179 	spin_lock_bh(&adapter->mbx_lock);
2180 
2181 	/* fetch queue configuration from the PF */
2182 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2183 
2184 	spin_unlock_bh(&adapter->mbx_lock);
2185 
2186 	if (err)
2187 		return err;
2188 
2189 	if (num_tcs > 1) {
2190 		/* we need only one Tx queue */
2191 		num_tx_queues = 1;
2192 
2193 		/* update default Tx ring register index */
2194 		adapter->tx_ring[0]->reg_idx = def_q;
2195 
2196 		/* we need as many queues as traffic classes */
2197 		num_rx_queues = num_tcs;
2198 	}
2199 
2200 	/* if we have a bad config abort request queue reset */
2201 	if ((adapter->num_rx_queues != num_rx_queues) ||
2202 	    (adapter->num_tx_queues != num_tx_queues)) {
2203 		/* force mailbox timeout to prevent further messages */
2204 		hw->mbx.timeout = 0;
2205 
2206 		/* wait for watchdog to come around and bail us out */
2207 		set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
2208 	}
2209 
2210 	return 0;
2211 }
2212 
2213 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2214 {
2215 	ixgbevf_configure_dcb(adapter);
2216 
2217 	ixgbevf_set_rx_mode(adapter->netdev);
2218 
2219 	ixgbevf_restore_vlan(adapter);
2220 	ixgbevf_ipsec_restore(adapter);
2221 
2222 	ixgbevf_configure_tx(adapter);
2223 	ixgbevf_configure_rx(adapter);
2224 }
2225 
2226 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2227 {
2228 	/* Only save pre-reset stats if there are some */
2229 	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2230 		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2231 			adapter->stats.base_vfgprc;
2232 		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2233 			adapter->stats.base_vfgptc;
2234 		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2235 			adapter->stats.base_vfgorc;
2236 		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2237 			adapter->stats.base_vfgotc;
2238 		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2239 			adapter->stats.base_vfmprc;
2240 	}
2241 }
2242 
2243 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2244 {
2245 	struct ixgbe_hw *hw = &adapter->hw;
2246 
2247 	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2248 	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2249 	adapter->stats.last_vfgorc |=
2250 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2251 	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2252 	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2253 	adapter->stats.last_vfgotc |=
2254 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2255 	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2256 
2257 	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2258 	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2259 	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2260 	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2261 	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2262 }
2263 
2264 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2265 {
2266 	struct ixgbe_hw *hw = &adapter->hw;
2267 	static const int api[] = {
2268 		ixgbe_mbox_api_14,
2269 		ixgbe_mbox_api_13,
2270 		ixgbe_mbox_api_12,
2271 		ixgbe_mbox_api_11,
2272 		ixgbe_mbox_api_10,
2273 		ixgbe_mbox_api_unknown
2274 	};
2275 	int err, idx = 0;
2276 
2277 	spin_lock_bh(&adapter->mbx_lock);
2278 
2279 	while (api[idx] != ixgbe_mbox_api_unknown) {
2280 		err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2281 		if (!err)
2282 			break;
2283 		idx++;
2284 	}
2285 
2286 	spin_unlock_bh(&adapter->mbx_lock);
2287 }
2288 
2289 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2290 {
2291 	struct net_device *netdev = adapter->netdev;
2292 	struct ixgbe_hw *hw = &adapter->hw;
2293 
2294 	ixgbevf_configure_msix(adapter);
2295 
2296 	spin_lock_bh(&adapter->mbx_lock);
2297 
2298 	if (is_valid_ether_addr(hw->mac.addr))
2299 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2300 	else
2301 		hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2302 
2303 	spin_unlock_bh(&adapter->mbx_lock);
2304 
2305 	smp_mb__before_atomic();
2306 	clear_bit(__IXGBEVF_DOWN, &adapter->state);
2307 	ixgbevf_napi_enable_all(adapter);
2308 
2309 	/* clear any pending interrupts, may auto mask */
2310 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2311 	ixgbevf_irq_enable(adapter);
2312 
2313 	/* enable transmits */
2314 	netif_tx_start_all_queues(netdev);
2315 
2316 	ixgbevf_save_reset_stats(adapter);
2317 	ixgbevf_init_last_counter_stats(adapter);
2318 
2319 	hw->mac.get_link_status = 1;
2320 	mod_timer(&adapter->service_timer, jiffies);
2321 }
2322 
2323 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2324 {
2325 	ixgbevf_configure(adapter);
2326 
2327 	ixgbevf_up_complete(adapter);
2328 }
2329 
2330 /**
2331  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2332  * @rx_ring: ring to free buffers from
2333  **/
2334 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2335 {
2336 	u16 i = rx_ring->next_to_clean;
2337 
2338 	/* Free Rx ring sk_buff */
2339 	if (rx_ring->skb) {
2340 		dev_kfree_skb(rx_ring->skb);
2341 		rx_ring->skb = NULL;
2342 	}
2343 
2344 	/* Free all the Rx ring pages */
2345 	while (i != rx_ring->next_to_alloc) {
2346 		struct ixgbevf_rx_buffer *rx_buffer;
2347 
2348 		rx_buffer = &rx_ring->rx_buffer_info[i];
2349 
2350 		/* Invalidate cache lines that may have been written to by
2351 		 * device so that we avoid corrupting memory.
2352 		 */
2353 		dma_sync_single_range_for_cpu(rx_ring->dev,
2354 					      rx_buffer->dma,
2355 					      rx_buffer->page_offset,
2356 					      ixgbevf_rx_bufsz(rx_ring),
2357 					      DMA_FROM_DEVICE);
2358 
2359 		/* free resources associated with mapping */
2360 		dma_unmap_page_attrs(rx_ring->dev,
2361 				     rx_buffer->dma,
2362 				     ixgbevf_rx_pg_size(rx_ring),
2363 				     DMA_FROM_DEVICE,
2364 				     IXGBEVF_RX_DMA_ATTR);
2365 
2366 		__page_frag_cache_drain(rx_buffer->page,
2367 					rx_buffer->pagecnt_bias);
2368 
2369 		i++;
2370 		if (i == rx_ring->count)
2371 			i = 0;
2372 	}
2373 
2374 	rx_ring->next_to_alloc = 0;
2375 	rx_ring->next_to_clean = 0;
2376 	rx_ring->next_to_use = 0;
2377 }
2378 
2379 /**
2380  * ixgbevf_clean_tx_ring - Free Tx Buffers
2381  * @tx_ring: ring to be cleaned
2382  **/
2383 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2384 {
2385 	u16 i = tx_ring->next_to_clean;
2386 	struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
2387 
2388 	while (i != tx_ring->next_to_use) {
2389 		union ixgbe_adv_tx_desc *eop_desc, *tx_desc;
2390 
2391 		/* Free all the Tx ring sk_buffs */
2392 		if (ring_is_xdp(tx_ring))
2393 			page_frag_free(tx_buffer->data);
2394 		else
2395 			dev_kfree_skb_any(tx_buffer->skb);
2396 
2397 		/* unmap skb header data */
2398 		dma_unmap_single(tx_ring->dev,
2399 				 dma_unmap_addr(tx_buffer, dma),
2400 				 dma_unmap_len(tx_buffer, len),
2401 				 DMA_TO_DEVICE);
2402 
2403 		/* check for eop_desc to determine the end of the packet */
2404 		eop_desc = tx_buffer->next_to_watch;
2405 		tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2406 
2407 		/* unmap remaining buffers */
2408 		while (tx_desc != eop_desc) {
2409 			tx_buffer++;
2410 			tx_desc++;
2411 			i++;
2412 			if (unlikely(i == tx_ring->count)) {
2413 				i = 0;
2414 				tx_buffer = tx_ring->tx_buffer_info;
2415 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
2416 			}
2417 
2418 			/* unmap any remaining paged data */
2419 			if (dma_unmap_len(tx_buffer, len))
2420 				dma_unmap_page(tx_ring->dev,
2421 					       dma_unmap_addr(tx_buffer, dma),
2422 					       dma_unmap_len(tx_buffer, len),
2423 					       DMA_TO_DEVICE);
2424 		}
2425 
2426 		/* move us one more past the eop_desc for start of next pkt */
2427 		tx_buffer++;
2428 		i++;
2429 		if (unlikely(i == tx_ring->count)) {
2430 			i = 0;
2431 			tx_buffer = tx_ring->tx_buffer_info;
2432 		}
2433 	}
2434 
2435 	/* reset next_to_use and next_to_clean */
2436 	tx_ring->next_to_use = 0;
2437 	tx_ring->next_to_clean = 0;
2438 
2439 }
2440 
2441 /**
2442  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2443  * @adapter: board private structure
2444  **/
2445 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2446 {
2447 	int i;
2448 
2449 	for (i = 0; i < adapter->num_rx_queues; i++)
2450 		ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2451 }
2452 
2453 /**
2454  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2455  * @adapter: board private structure
2456  **/
2457 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2458 {
2459 	int i;
2460 
2461 	for (i = 0; i < adapter->num_tx_queues; i++)
2462 		ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2463 	for (i = 0; i < adapter->num_xdp_queues; i++)
2464 		ixgbevf_clean_tx_ring(adapter->xdp_ring[i]);
2465 }
2466 
2467 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2468 {
2469 	struct net_device *netdev = adapter->netdev;
2470 	struct ixgbe_hw *hw = &adapter->hw;
2471 	int i;
2472 
2473 	/* signal that we are down to the interrupt handler */
2474 	if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2475 		return; /* do nothing if already down */
2476 
2477 	/* disable all enabled Rx queues */
2478 	for (i = 0; i < adapter->num_rx_queues; i++)
2479 		ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2480 
2481 	usleep_range(10000, 20000);
2482 
2483 	netif_tx_stop_all_queues(netdev);
2484 
2485 	/* call carrier off first to avoid false dev_watchdog timeouts */
2486 	netif_carrier_off(netdev);
2487 	netif_tx_disable(netdev);
2488 
2489 	ixgbevf_irq_disable(adapter);
2490 
2491 	ixgbevf_napi_disable_all(adapter);
2492 
2493 	del_timer_sync(&adapter->service_timer);
2494 
2495 	/* disable transmits in the hardware now that interrupts are off */
2496 	for (i = 0; i < adapter->num_tx_queues; i++) {
2497 		u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2498 
2499 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2500 				IXGBE_TXDCTL_SWFLSH);
2501 	}
2502 
2503 	for (i = 0; i < adapter->num_xdp_queues; i++) {
2504 		u8 reg_idx = adapter->xdp_ring[i]->reg_idx;
2505 
2506 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2507 				IXGBE_TXDCTL_SWFLSH);
2508 	}
2509 
2510 	if (!pci_channel_offline(adapter->pdev))
2511 		ixgbevf_reset(adapter);
2512 
2513 	ixgbevf_clean_all_tx_rings(adapter);
2514 	ixgbevf_clean_all_rx_rings(adapter);
2515 }
2516 
2517 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2518 {
2519 	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2520 		msleep(1);
2521 
2522 	ixgbevf_down(adapter);
2523 	pci_set_master(adapter->pdev);
2524 	ixgbevf_up(adapter);
2525 
2526 	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2527 }
2528 
2529 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2530 {
2531 	struct ixgbe_hw *hw = &adapter->hw;
2532 	struct net_device *netdev = adapter->netdev;
2533 
2534 	if (hw->mac.ops.reset_hw(hw)) {
2535 		hw_dbg(hw, "PF still resetting\n");
2536 	} else {
2537 		hw->mac.ops.init_hw(hw);
2538 		ixgbevf_negotiate_api(adapter);
2539 	}
2540 
2541 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2542 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2543 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2544 	}
2545 
2546 	adapter->last_reset = jiffies;
2547 }
2548 
2549 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2550 					int vectors)
2551 {
2552 	int vector_threshold;
2553 
2554 	/* We'll want at least 2 (vector_threshold):
2555 	 * 1) TxQ[0] + RxQ[0] handler
2556 	 * 2) Other (Link Status Change, etc.)
2557 	 */
2558 	vector_threshold = MIN_MSIX_COUNT;
2559 
2560 	/* The more we get, the more we will assign to Tx/Rx Cleanup
2561 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2562 	 * Right now, we simply care about how many we'll get; we'll
2563 	 * set them up later while requesting irq's.
2564 	 */
2565 	vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2566 					vector_threshold, vectors);
2567 
2568 	if (vectors < 0) {
2569 		dev_err(&adapter->pdev->dev,
2570 			"Unable to allocate MSI-X interrupts\n");
2571 		kfree(adapter->msix_entries);
2572 		adapter->msix_entries = NULL;
2573 		return vectors;
2574 	}
2575 
2576 	/* Adjust for only the vectors we'll use, which is minimum
2577 	 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2578 	 * vectors we were allocated.
2579 	 */
2580 	adapter->num_msix_vectors = vectors;
2581 
2582 	return 0;
2583 }
2584 
2585 /**
2586  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2587  * @adapter: board private structure to initialize
2588  *
2589  * This is the top level queue allocation routine.  The order here is very
2590  * important, starting with the "most" number of features turned on at once,
2591  * and ending with the smallest set of features.  This way large combinations
2592  * can be allocated if they're turned on, and smaller combinations are the
2593  * fall through conditions.
2594  *
2595  **/
2596 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2597 {
2598 	struct ixgbe_hw *hw = &adapter->hw;
2599 	unsigned int def_q = 0;
2600 	unsigned int num_tcs = 0;
2601 	int err;
2602 
2603 	/* Start with base case */
2604 	adapter->num_rx_queues = 1;
2605 	adapter->num_tx_queues = 1;
2606 	adapter->num_xdp_queues = 0;
2607 
2608 	spin_lock_bh(&adapter->mbx_lock);
2609 
2610 	/* fetch queue configuration from the PF */
2611 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2612 
2613 	spin_unlock_bh(&adapter->mbx_lock);
2614 
2615 	if (err)
2616 		return;
2617 
2618 	/* we need as many queues as traffic classes */
2619 	if (num_tcs > 1) {
2620 		adapter->num_rx_queues = num_tcs;
2621 	} else {
2622 		u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2623 
2624 		switch (hw->api_version) {
2625 		case ixgbe_mbox_api_11:
2626 		case ixgbe_mbox_api_12:
2627 		case ixgbe_mbox_api_13:
2628 		case ixgbe_mbox_api_14:
2629 			if (adapter->xdp_prog &&
2630 			    hw->mac.max_tx_queues == rss)
2631 				rss = rss > 3 ? 2 : 1;
2632 
2633 			adapter->num_rx_queues = rss;
2634 			adapter->num_tx_queues = rss;
2635 			adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0;
2636 		default:
2637 			break;
2638 		}
2639 	}
2640 }
2641 
2642 /**
2643  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2644  * @adapter: board private structure to initialize
2645  *
2646  * Attempt to configure the interrupts using the best available
2647  * capabilities of the hardware and the kernel.
2648  **/
2649 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2650 {
2651 	int vector, v_budget;
2652 
2653 	/* It's easy to be greedy for MSI-X vectors, but it really
2654 	 * doesn't do us much good if we have a lot more vectors
2655 	 * than CPU's.  So let's be conservative and only ask for
2656 	 * (roughly) the same number of vectors as there are CPU's.
2657 	 * The default is to use pairs of vectors.
2658 	 */
2659 	v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2660 	v_budget = min_t(int, v_budget, num_online_cpus());
2661 	v_budget += NON_Q_VECTORS;
2662 
2663 	adapter->msix_entries = kcalloc(v_budget,
2664 					sizeof(struct msix_entry), GFP_KERNEL);
2665 	if (!adapter->msix_entries)
2666 		return -ENOMEM;
2667 
2668 	for (vector = 0; vector < v_budget; vector++)
2669 		adapter->msix_entries[vector].entry = vector;
2670 
2671 	/* A failure in MSI-X entry allocation isn't fatal, but the VF driver
2672 	 * does not support any other modes, so we will simply fail here. Note
2673 	 * that we clean up the msix_entries pointer else-where.
2674 	 */
2675 	return ixgbevf_acquire_msix_vectors(adapter, v_budget);
2676 }
2677 
2678 static void ixgbevf_add_ring(struct ixgbevf_ring *ring,
2679 			     struct ixgbevf_ring_container *head)
2680 {
2681 	ring->next = head->ring;
2682 	head->ring = ring;
2683 	head->count++;
2684 }
2685 
2686 /**
2687  * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector
2688  * @adapter: board private structure to initialize
2689  * @v_idx: index of vector in adapter struct
2690  * @txr_count: number of Tx rings for q vector
2691  * @txr_idx: index of first Tx ring to assign
2692  * @xdp_count: total number of XDP rings to allocate
2693  * @xdp_idx: index of first XDP ring to allocate
2694  * @rxr_count: number of Rx rings for q vector
2695  * @rxr_idx: index of first Rx ring to assign
2696  *
2697  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
2698  **/
2699 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx,
2700 				  int txr_count, int txr_idx,
2701 				  int xdp_count, int xdp_idx,
2702 				  int rxr_count, int rxr_idx)
2703 {
2704 	struct ixgbevf_q_vector *q_vector;
2705 	int reg_idx = txr_idx + xdp_idx;
2706 	struct ixgbevf_ring *ring;
2707 	int ring_count, size;
2708 
2709 	ring_count = txr_count + xdp_count + rxr_count;
2710 	size = sizeof(*q_vector) + (sizeof(*ring) * ring_count);
2711 
2712 	/* allocate q_vector and rings */
2713 	q_vector = kzalloc(size, GFP_KERNEL);
2714 	if (!q_vector)
2715 		return -ENOMEM;
2716 
2717 	/* initialize NAPI */
2718 	netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64);
2719 
2720 	/* tie q_vector and adapter together */
2721 	adapter->q_vector[v_idx] = q_vector;
2722 	q_vector->adapter = adapter;
2723 	q_vector->v_idx = v_idx;
2724 
2725 	/* initialize pointer to rings */
2726 	ring = q_vector->ring;
2727 
2728 	while (txr_count) {
2729 		/* assign generic ring traits */
2730 		ring->dev = &adapter->pdev->dev;
2731 		ring->netdev = adapter->netdev;
2732 
2733 		/* configure backlink on ring */
2734 		ring->q_vector = q_vector;
2735 
2736 		/* update q_vector Tx values */
2737 		ixgbevf_add_ring(ring, &q_vector->tx);
2738 
2739 		/* apply Tx specific ring traits */
2740 		ring->count = adapter->tx_ring_count;
2741 		ring->queue_index = txr_idx;
2742 		ring->reg_idx = reg_idx;
2743 
2744 		/* assign ring to adapter */
2745 		 adapter->tx_ring[txr_idx] = ring;
2746 
2747 		/* update count and index */
2748 		txr_count--;
2749 		txr_idx++;
2750 		reg_idx++;
2751 
2752 		/* push pointer to next ring */
2753 		ring++;
2754 	}
2755 
2756 	while (xdp_count) {
2757 		/* assign generic ring traits */
2758 		ring->dev = &adapter->pdev->dev;
2759 		ring->netdev = adapter->netdev;
2760 
2761 		/* configure backlink on ring */
2762 		ring->q_vector = q_vector;
2763 
2764 		/* update q_vector Tx values */
2765 		ixgbevf_add_ring(ring, &q_vector->tx);
2766 
2767 		/* apply Tx specific ring traits */
2768 		ring->count = adapter->tx_ring_count;
2769 		ring->queue_index = xdp_idx;
2770 		ring->reg_idx = reg_idx;
2771 		set_ring_xdp(ring);
2772 
2773 		/* assign ring to adapter */
2774 		adapter->xdp_ring[xdp_idx] = ring;
2775 
2776 		/* update count and index */
2777 		xdp_count--;
2778 		xdp_idx++;
2779 		reg_idx++;
2780 
2781 		/* push pointer to next ring */
2782 		ring++;
2783 	}
2784 
2785 	while (rxr_count) {
2786 		/* assign generic ring traits */
2787 		ring->dev = &adapter->pdev->dev;
2788 		ring->netdev = adapter->netdev;
2789 
2790 		/* configure backlink on ring */
2791 		ring->q_vector = q_vector;
2792 
2793 		/* update q_vector Rx values */
2794 		ixgbevf_add_ring(ring, &q_vector->rx);
2795 
2796 		/* apply Rx specific ring traits */
2797 		ring->count = adapter->rx_ring_count;
2798 		ring->queue_index = rxr_idx;
2799 		ring->reg_idx = rxr_idx;
2800 
2801 		/* assign ring to adapter */
2802 		adapter->rx_ring[rxr_idx] = ring;
2803 
2804 		/* update count and index */
2805 		rxr_count--;
2806 		rxr_idx++;
2807 
2808 		/* push pointer to next ring */
2809 		ring++;
2810 	}
2811 
2812 	return 0;
2813 }
2814 
2815 /**
2816  * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector
2817  * @adapter: board private structure to initialize
2818  * @v_idx: index of vector in adapter struct
2819  *
2820  * This function frees the memory allocated to the q_vector.  In addition if
2821  * NAPI is enabled it will delete any references to the NAPI struct prior
2822  * to freeing the q_vector.
2823  **/
2824 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx)
2825 {
2826 	struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx];
2827 	struct ixgbevf_ring *ring;
2828 
2829 	ixgbevf_for_each_ring(ring, q_vector->tx) {
2830 		if (ring_is_xdp(ring))
2831 			adapter->xdp_ring[ring->queue_index] = NULL;
2832 		else
2833 			adapter->tx_ring[ring->queue_index] = NULL;
2834 	}
2835 
2836 	ixgbevf_for_each_ring(ring, q_vector->rx)
2837 		adapter->rx_ring[ring->queue_index] = NULL;
2838 
2839 	adapter->q_vector[v_idx] = NULL;
2840 	netif_napi_del(&q_vector->napi);
2841 
2842 	/* ixgbevf_get_stats() might access the rings on this vector,
2843 	 * we must wait a grace period before freeing it.
2844 	 */
2845 	kfree_rcu(q_vector, rcu);
2846 }
2847 
2848 /**
2849  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2850  * @adapter: board private structure to initialize
2851  *
2852  * We allocate one q_vector per queue interrupt.  If allocation fails we
2853  * return -ENOMEM.
2854  **/
2855 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2856 {
2857 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2858 	int rxr_remaining = adapter->num_rx_queues;
2859 	int txr_remaining = adapter->num_tx_queues;
2860 	int xdp_remaining = adapter->num_xdp_queues;
2861 	int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0;
2862 	int err;
2863 
2864 	if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) {
2865 		for (; rxr_remaining; v_idx++, q_vectors--) {
2866 			int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2867 
2868 			err = ixgbevf_alloc_q_vector(adapter, v_idx,
2869 						     0, 0, 0, 0, rqpv, rxr_idx);
2870 			if (err)
2871 				goto err_out;
2872 
2873 			/* update counts and index */
2874 			rxr_remaining -= rqpv;
2875 			rxr_idx += rqpv;
2876 		}
2877 	}
2878 
2879 	for (; q_vectors; v_idx++, q_vectors--) {
2880 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2881 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors);
2882 		int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors);
2883 
2884 		err = ixgbevf_alloc_q_vector(adapter, v_idx,
2885 					     tqpv, txr_idx,
2886 					     xqpv, xdp_idx,
2887 					     rqpv, rxr_idx);
2888 
2889 		if (err)
2890 			goto err_out;
2891 
2892 		/* update counts and index */
2893 		rxr_remaining -= rqpv;
2894 		rxr_idx += rqpv;
2895 		txr_remaining -= tqpv;
2896 		txr_idx += tqpv;
2897 		xdp_remaining -= xqpv;
2898 		xdp_idx += xqpv;
2899 	}
2900 
2901 	return 0;
2902 
2903 err_out:
2904 	while (v_idx) {
2905 		v_idx--;
2906 		ixgbevf_free_q_vector(adapter, v_idx);
2907 	}
2908 
2909 	return -ENOMEM;
2910 }
2911 
2912 /**
2913  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2914  * @adapter: board private structure to initialize
2915  *
2916  * This function frees the memory allocated to the q_vectors.  In addition if
2917  * NAPI is enabled it will delete any references to the NAPI struct prior
2918  * to freeing the q_vector.
2919  **/
2920 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2921 {
2922 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2923 
2924 	while (q_vectors) {
2925 		q_vectors--;
2926 		ixgbevf_free_q_vector(adapter, q_vectors);
2927 	}
2928 }
2929 
2930 /**
2931  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2932  * @adapter: board private structure
2933  *
2934  **/
2935 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2936 {
2937 	if (!adapter->msix_entries)
2938 		return;
2939 
2940 	pci_disable_msix(adapter->pdev);
2941 	kfree(adapter->msix_entries);
2942 	adapter->msix_entries = NULL;
2943 }
2944 
2945 /**
2946  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2947  * @adapter: board private structure to initialize
2948  *
2949  **/
2950 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2951 {
2952 	int err;
2953 
2954 	/* Number of supported queues */
2955 	ixgbevf_set_num_queues(adapter);
2956 
2957 	err = ixgbevf_set_interrupt_capability(adapter);
2958 	if (err) {
2959 		hw_dbg(&adapter->hw,
2960 		       "Unable to setup interrupt capabilities\n");
2961 		goto err_set_interrupt;
2962 	}
2963 
2964 	err = ixgbevf_alloc_q_vectors(adapter);
2965 	if (err) {
2966 		hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2967 		goto err_alloc_q_vectors;
2968 	}
2969 
2970 	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n",
2971 	       (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled",
2972 	       adapter->num_rx_queues, adapter->num_tx_queues,
2973 	       adapter->num_xdp_queues);
2974 
2975 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2976 
2977 	return 0;
2978 err_alloc_q_vectors:
2979 	ixgbevf_reset_interrupt_capability(adapter);
2980 err_set_interrupt:
2981 	return err;
2982 }
2983 
2984 /**
2985  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2986  * @adapter: board private structure to clear interrupt scheme on
2987  *
2988  * We go through and clear interrupt specific resources and reset the structure
2989  * to pre-load conditions
2990  **/
2991 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2992 {
2993 	adapter->num_tx_queues = 0;
2994 	adapter->num_xdp_queues = 0;
2995 	adapter->num_rx_queues = 0;
2996 
2997 	ixgbevf_free_q_vectors(adapter);
2998 	ixgbevf_reset_interrupt_capability(adapter);
2999 }
3000 
3001 /**
3002  * ixgbevf_sw_init - Initialize general software structures
3003  * @adapter: board private structure to initialize
3004  *
3005  * ixgbevf_sw_init initializes the Adapter private data structure.
3006  * Fields are initialized based on PCI device information and
3007  * OS network device settings (MTU size).
3008  **/
3009 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
3010 {
3011 	struct ixgbe_hw *hw = &adapter->hw;
3012 	struct pci_dev *pdev = adapter->pdev;
3013 	struct net_device *netdev = adapter->netdev;
3014 	int err;
3015 
3016 	/* PCI config space info */
3017 	hw->vendor_id = pdev->vendor;
3018 	hw->device_id = pdev->device;
3019 	hw->revision_id = pdev->revision;
3020 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3021 	hw->subsystem_device_id = pdev->subsystem_device;
3022 
3023 	hw->mbx.ops.init_params(hw);
3024 
3025 	if (hw->mac.type >= ixgbe_mac_X550_vf) {
3026 		err = ixgbevf_init_rss_key(adapter);
3027 		if (err)
3028 			goto out;
3029 	}
3030 
3031 	/* assume legacy case in which PF would only give VF 2 queues */
3032 	hw->mac.max_tx_queues = 2;
3033 	hw->mac.max_rx_queues = 2;
3034 
3035 	/* lock to protect mailbox accesses */
3036 	spin_lock_init(&adapter->mbx_lock);
3037 
3038 	err = hw->mac.ops.reset_hw(hw);
3039 	if (err) {
3040 		dev_info(&pdev->dev,
3041 			 "PF still in reset state.  Is the PF interface up?\n");
3042 	} else {
3043 		err = hw->mac.ops.init_hw(hw);
3044 		if (err) {
3045 			pr_err("init_shared_code failed: %d\n", err);
3046 			goto out;
3047 		}
3048 		ixgbevf_negotiate_api(adapter);
3049 		err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
3050 		if (err)
3051 			dev_info(&pdev->dev, "Error reading MAC address\n");
3052 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
3053 			dev_info(&pdev->dev,
3054 				 "MAC address not assigned by administrator.\n");
3055 		ether_addr_copy(netdev->dev_addr, hw->mac.addr);
3056 	}
3057 
3058 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3059 		dev_info(&pdev->dev, "Assigning random MAC address\n");
3060 		eth_hw_addr_random(netdev);
3061 		ether_addr_copy(hw->mac.addr, netdev->dev_addr);
3062 		ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
3063 	}
3064 
3065 	/* Enable dynamic interrupt throttling rates */
3066 	adapter->rx_itr_setting = 1;
3067 	adapter->tx_itr_setting = 1;
3068 
3069 	/* set default ring sizes */
3070 	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
3071 	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
3072 
3073 	set_bit(__IXGBEVF_DOWN, &adapter->state);
3074 	return 0;
3075 
3076 out:
3077 	return err;
3078 }
3079 
3080 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
3081 	{							\
3082 		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
3083 		if (current_counter < last_counter)		\
3084 			counter += 0x100000000LL;		\
3085 		last_counter = current_counter;			\
3086 		counter &= 0xFFFFFFFF00000000LL;		\
3087 		counter |= current_counter;			\
3088 	}
3089 
3090 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
3091 	{								 \
3092 		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
3093 		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
3094 		u64 current_counter = (current_counter_msb << 32) |	 \
3095 			current_counter_lsb;				 \
3096 		if (current_counter < last_counter)			 \
3097 			counter += 0x1000000000LL;			 \
3098 		last_counter = current_counter;				 \
3099 		counter &= 0xFFFFFFF000000000LL;			 \
3100 		counter |= current_counter;				 \
3101 	}
3102 /**
3103  * ixgbevf_update_stats - Update the board statistics counters.
3104  * @adapter: board private structure
3105  **/
3106 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
3107 {
3108 	struct ixgbe_hw *hw = &adapter->hw;
3109 	u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0;
3110 	u64 alloc_rx_page = 0, hw_csum_rx_error = 0;
3111 	int i;
3112 
3113 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3114 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3115 		return;
3116 
3117 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
3118 				adapter->stats.vfgprc);
3119 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
3120 				adapter->stats.vfgptc);
3121 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
3122 				adapter->stats.last_vfgorc,
3123 				adapter->stats.vfgorc);
3124 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
3125 				adapter->stats.last_vfgotc,
3126 				adapter->stats.vfgotc);
3127 	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
3128 				adapter->stats.vfmprc);
3129 
3130 	for (i = 0;  i  < adapter->num_rx_queues;  i++) {
3131 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
3132 
3133 		hw_csum_rx_error += rx_ring->rx_stats.csum_err;
3134 		alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed;
3135 		alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
3136 		alloc_rx_page += rx_ring->rx_stats.alloc_rx_page;
3137 	}
3138 
3139 	adapter->hw_csum_rx_error = hw_csum_rx_error;
3140 	adapter->alloc_rx_page_failed = alloc_rx_page_failed;
3141 	adapter->alloc_rx_buff_failed = alloc_rx_buff_failed;
3142 	adapter->alloc_rx_page = alloc_rx_page;
3143 }
3144 
3145 /**
3146  * ixgbevf_service_timer - Timer Call-back
3147  * @t: pointer to timer_list struct
3148  **/
3149 static void ixgbevf_service_timer(struct timer_list *t)
3150 {
3151 	struct ixgbevf_adapter *adapter = from_timer(adapter, t,
3152 						     service_timer);
3153 
3154 	/* Reset the timer */
3155 	mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
3156 
3157 	ixgbevf_service_event_schedule(adapter);
3158 }
3159 
3160 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
3161 {
3162 	if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
3163 		return;
3164 
3165 	rtnl_lock();
3166 	/* If we're already down or resetting, just bail */
3167 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3168 	    test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
3169 	    test_bit(__IXGBEVF_RESETTING, &adapter->state)) {
3170 		rtnl_unlock();
3171 		return;
3172 	}
3173 
3174 	adapter->tx_timeout_count++;
3175 
3176 	ixgbevf_reinit_locked(adapter);
3177 	rtnl_unlock();
3178 }
3179 
3180 /**
3181  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
3182  * @adapter: pointer to the device adapter structure
3183  *
3184  * This function serves two purposes.  First it strobes the interrupt lines
3185  * in order to make certain interrupts are occurring.  Secondly it sets the
3186  * bits needed to check for TX hangs.  As a result we should immediately
3187  * determine if a hang has occurred.
3188  **/
3189 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
3190 {
3191 	struct ixgbe_hw *hw = &adapter->hw;
3192 	u32 eics = 0;
3193 	int i;
3194 
3195 	/* If we're down or resetting, just bail */
3196 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3197 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3198 		return;
3199 
3200 	/* Force detection of hung controller */
3201 	if (netif_carrier_ok(adapter->netdev)) {
3202 		for (i = 0; i < adapter->num_tx_queues; i++)
3203 			set_check_for_tx_hang(adapter->tx_ring[i]);
3204 		for (i = 0; i < adapter->num_xdp_queues; i++)
3205 			set_check_for_tx_hang(adapter->xdp_ring[i]);
3206 	}
3207 
3208 	/* get one bit for every active Tx/Rx interrupt vector */
3209 	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
3210 		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
3211 
3212 		if (qv->rx.ring || qv->tx.ring)
3213 			eics |= BIT(i);
3214 	}
3215 
3216 	/* Cause software interrupt to ensure rings are cleaned */
3217 	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
3218 }
3219 
3220 /**
3221  * ixgbevf_watchdog_update_link - update the link status
3222  * @adapter: pointer to the device adapter structure
3223  **/
3224 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
3225 {
3226 	struct ixgbe_hw *hw = &adapter->hw;
3227 	u32 link_speed = adapter->link_speed;
3228 	bool link_up = adapter->link_up;
3229 	s32 err;
3230 
3231 	spin_lock_bh(&adapter->mbx_lock);
3232 
3233 	err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
3234 
3235 	spin_unlock_bh(&adapter->mbx_lock);
3236 
3237 	/* if check for link returns error we will need to reset */
3238 	if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
3239 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
3240 		link_up = false;
3241 	}
3242 
3243 	adapter->link_up = link_up;
3244 	adapter->link_speed = link_speed;
3245 }
3246 
3247 /**
3248  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
3249  *				 print link up message
3250  * @adapter: pointer to the device adapter structure
3251  **/
3252 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
3253 {
3254 	struct net_device *netdev = adapter->netdev;
3255 
3256 	/* only continue if link was previously down */
3257 	if (netif_carrier_ok(netdev))
3258 		return;
3259 
3260 	dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
3261 		 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
3262 		 "10 Gbps" :
3263 		 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
3264 		 "1 Gbps" :
3265 		 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
3266 		 "100 Mbps" :
3267 		 "unknown speed");
3268 
3269 	netif_carrier_on(netdev);
3270 }
3271 
3272 /**
3273  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
3274  *				   print link down message
3275  * @adapter: pointer to the adapter structure
3276  **/
3277 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
3278 {
3279 	struct net_device *netdev = adapter->netdev;
3280 
3281 	adapter->link_speed = 0;
3282 
3283 	/* only continue if link was up previously */
3284 	if (!netif_carrier_ok(netdev))
3285 		return;
3286 
3287 	dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
3288 
3289 	netif_carrier_off(netdev);
3290 }
3291 
3292 /**
3293  * ixgbevf_watchdog_subtask - worker thread to bring link up
3294  * @adapter: board private structure
3295  **/
3296 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
3297 {
3298 	/* if interface is down do nothing */
3299 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3300 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3301 		return;
3302 
3303 	ixgbevf_watchdog_update_link(adapter);
3304 
3305 	if (adapter->link_up)
3306 		ixgbevf_watchdog_link_is_up(adapter);
3307 	else
3308 		ixgbevf_watchdog_link_is_down(adapter);
3309 
3310 	ixgbevf_update_stats(adapter);
3311 }
3312 
3313 /**
3314  * ixgbevf_service_task - manages and runs subtasks
3315  * @work: pointer to work_struct containing our data
3316  **/
3317 static void ixgbevf_service_task(struct work_struct *work)
3318 {
3319 	struct ixgbevf_adapter *adapter = container_of(work,
3320 						       struct ixgbevf_adapter,
3321 						       service_task);
3322 	struct ixgbe_hw *hw = &adapter->hw;
3323 
3324 	if (IXGBE_REMOVED(hw->hw_addr)) {
3325 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
3326 			rtnl_lock();
3327 			ixgbevf_down(adapter);
3328 			rtnl_unlock();
3329 		}
3330 		return;
3331 	}
3332 
3333 	ixgbevf_queue_reset_subtask(adapter);
3334 	ixgbevf_reset_subtask(adapter);
3335 	ixgbevf_watchdog_subtask(adapter);
3336 	ixgbevf_check_hang_subtask(adapter);
3337 
3338 	ixgbevf_service_event_complete(adapter);
3339 }
3340 
3341 /**
3342  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
3343  * @tx_ring: Tx descriptor ring for a specific queue
3344  *
3345  * Free all transmit software resources
3346  **/
3347 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
3348 {
3349 	ixgbevf_clean_tx_ring(tx_ring);
3350 
3351 	vfree(tx_ring->tx_buffer_info);
3352 	tx_ring->tx_buffer_info = NULL;
3353 
3354 	/* if not set, then don't free */
3355 	if (!tx_ring->desc)
3356 		return;
3357 
3358 	dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
3359 			  tx_ring->dma);
3360 
3361 	tx_ring->desc = NULL;
3362 }
3363 
3364 /**
3365  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
3366  * @adapter: board private structure
3367  *
3368  * Free all transmit software resources
3369  **/
3370 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
3371 {
3372 	int i;
3373 
3374 	for (i = 0; i < adapter->num_tx_queues; i++)
3375 		if (adapter->tx_ring[i]->desc)
3376 			ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3377 	for (i = 0; i < adapter->num_xdp_queues; i++)
3378 		if (adapter->xdp_ring[i]->desc)
3379 			ixgbevf_free_tx_resources(adapter->xdp_ring[i]);
3380 }
3381 
3382 /**
3383  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
3384  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
3385  *
3386  * Return 0 on success, negative on failure
3387  **/
3388 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
3389 {
3390 	struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
3391 	int size;
3392 
3393 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
3394 	tx_ring->tx_buffer_info = vmalloc(size);
3395 	if (!tx_ring->tx_buffer_info)
3396 		goto err;
3397 
3398 	u64_stats_init(&tx_ring->syncp);
3399 
3400 	/* round up to nearest 4K */
3401 	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
3402 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3403 
3404 	tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3405 					   &tx_ring->dma, GFP_KERNEL);
3406 	if (!tx_ring->desc)
3407 		goto err;
3408 
3409 	return 0;
3410 
3411 err:
3412 	vfree(tx_ring->tx_buffer_info);
3413 	tx_ring->tx_buffer_info = NULL;
3414 	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3415 	return -ENOMEM;
3416 }
3417 
3418 /**
3419  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3420  * @adapter: board private structure
3421  *
3422  * If this function returns with an error, then it's possible one or
3423  * more of the rings is populated (while the rest are not).  It is the
3424  * callers duty to clean those orphaned rings.
3425  *
3426  * Return 0 on success, negative on failure
3427  **/
3428 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3429 {
3430 	int i, j = 0, err = 0;
3431 
3432 	for (i = 0; i < adapter->num_tx_queues; i++) {
3433 		err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3434 		if (!err)
3435 			continue;
3436 		hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3437 		goto err_setup_tx;
3438 	}
3439 
3440 	for (j = 0; j < adapter->num_xdp_queues; j++) {
3441 		err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]);
3442 		if (!err)
3443 			continue;
3444 		hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j);
3445 		goto err_setup_tx;
3446 	}
3447 
3448 	return 0;
3449 err_setup_tx:
3450 	/* rewind the index freeing the rings as we go */
3451 	while (j--)
3452 		ixgbevf_free_tx_resources(adapter->xdp_ring[j]);
3453 	while (i--)
3454 		ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3455 
3456 	return err;
3457 }
3458 
3459 /**
3460  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3461  * @adapter: board private structure
3462  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3463  *
3464  * Returns 0 on success, negative on failure
3465  **/
3466 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
3467 			       struct ixgbevf_ring *rx_ring)
3468 {
3469 	int size;
3470 
3471 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3472 	rx_ring->rx_buffer_info = vmalloc(size);
3473 	if (!rx_ring->rx_buffer_info)
3474 		goto err;
3475 
3476 	u64_stats_init(&rx_ring->syncp);
3477 
3478 	/* Round up to nearest 4K */
3479 	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3480 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3481 
3482 	rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3483 					   &rx_ring->dma, GFP_KERNEL);
3484 
3485 	if (!rx_ring->desc)
3486 		goto err;
3487 
3488 	/* XDP RX-queue info */
3489 	if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev,
3490 			     rx_ring->queue_index, 0) < 0)
3491 		goto err;
3492 
3493 	rx_ring->xdp_prog = adapter->xdp_prog;
3494 
3495 	return 0;
3496 err:
3497 	vfree(rx_ring->rx_buffer_info);
3498 	rx_ring->rx_buffer_info = NULL;
3499 	dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3500 	return -ENOMEM;
3501 }
3502 
3503 /**
3504  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3505  * @adapter: board private structure
3506  *
3507  * If this function returns with an error, then it's possible one or
3508  * more of the rings is populated (while the rest are not).  It is the
3509  * callers duty to clean those orphaned rings.
3510  *
3511  * Return 0 on success, negative on failure
3512  **/
3513 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3514 {
3515 	int i, err = 0;
3516 
3517 	for (i = 0; i < adapter->num_rx_queues; i++) {
3518 		err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]);
3519 		if (!err)
3520 			continue;
3521 		hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3522 		goto err_setup_rx;
3523 	}
3524 
3525 	return 0;
3526 err_setup_rx:
3527 	/* rewind the index freeing the rings as we go */
3528 	while (i--)
3529 		ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3530 	return err;
3531 }
3532 
3533 /**
3534  * ixgbevf_free_rx_resources - Free Rx Resources
3535  * @rx_ring: ring to clean the resources from
3536  *
3537  * Free all receive software resources
3538  **/
3539 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3540 {
3541 	ixgbevf_clean_rx_ring(rx_ring);
3542 
3543 	rx_ring->xdp_prog = NULL;
3544 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
3545 	vfree(rx_ring->rx_buffer_info);
3546 	rx_ring->rx_buffer_info = NULL;
3547 
3548 	dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3549 			  rx_ring->dma);
3550 
3551 	rx_ring->desc = NULL;
3552 }
3553 
3554 /**
3555  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3556  * @adapter: board private structure
3557  *
3558  * Free all receive software resources
3559  **/
3560 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3561 {
3562 	int i;
3563 
3564 	for (i = 0; i < adapter->num_rx_queues; i++)
3565 		if (adapter->rx_ring[i]->desc)
3566 			ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3567 }
3568 
3569 /**
3570  * ixgbevf_open - Called when a network interface is made active
3571  * @netdev: network interface device structure
3572  *
3573  * Returns 0 on success, negative value on failure
3574  *
3575  * The open entry point is called when a network interface is made
3576  * active by the system (IFF_UP).  At this point all resources needed
3577  * for transmit and receive operations are allocated, the interrupt
3578  * handler is registered with the OS, the watchdog timer is started,
3579  * and the stack is notified that the interface is ready.
3580  **/
3581 int ixgbevf_open(struct net_device *netdev)
3582 {
3583 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3584 	struct ixgbe_hw *hw = &adapter->hw;
3585 	int err;
3586 
3587 	/* A previous failure to open the device because of a lack of
3588 	 * available MSIX vector resources may have reset the number
3589 	 * of msix vectors variable to zero.  The only way to recover
3590 	 * is to unload/reload the driver and hope that the system has
3591 	 * been able to recover some MSIX vector resources.
3592 	 */
3593 	if (!adapter->num_msix_vectors)
3594 		return -ENOMEM;
3595 
3596 	if (hw->adapter_stopped) {
3597 		ixgbevf_reset(adapter);
3598 		/* if adapter is still stopped then PF isn't up and
3599 		 * the VF can't start.
3600 		 */
3601 		if (hw->adapter_stopped) {
3602 			err = IXGBE_ERR_MBX;
3603 			pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3604 			goto err_setup_reset;
3605 		}
3606 	}
3607 
3608 	/* disallow open during test */
3609 	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3610 		return -EBUSY;
3611 
3612 	netif_carrier_off(netdev);
3613 
3614 	/* allocate transmit descriptors */
3615 	err = ixgbevf_setup_all_tx_resources(adapter);
3616 	if (err)
3617 		goto err_setup_tx;
3618 
3619 	/* allocate receive descriptors */
3620 	err = ixgbevf_setup_all_rx_resources(adapter);
3621 	if (err)
3622 		goto err_setup_rx;
3623 
3624 	ixgbevf_configure(adapter);
3625 
3626 	err = ixgbevf_request_irq(adapter);
3627 	if (err)
3628 		goto err_req_irq;
3629 
3630 	/* Notify the stack of the actual queue counts. */
3631 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3632 	if (err)
3633 		goto err_set_queues;
3634 
3635 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3636 	if (err)
3637 		goto err_set_queues;
3638 
3639 	ixgbevf_up_complete(adapter);
3640 
3641 	return 0;
3642 
3643 err_set_queues:
3644 	ixgbevf_free_irq(adapter);
3645 err_req_irq:
3646 	ixgbevf_free_all_rx_resources(adapter);
3647 err_setup_rx:
3648 	ixgbevf_free_all_tx_resources(adapter);
3649 err_setup_tx:
3650 	ixgbevf_reset(adapter);
3651 err_setup_reset:
3652 
3653 	return err;
3654 }
3655 
3656 /**
3657  * ixgbevf_close_suspend - actions necessary to both suspend and close flows
3658  * @adapter: the private adapter struct
3659  *
3660  * This function should contain the necessary work common to both suspending
3661  * and closing of the device.
3662  */
3663 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter)
3664 {
3665 	ixgbevf_down(adapter);
3666 	ixgbevf_free_irq(adapter);
3667 	ixgbevf_free_all_tx_resources(adapter);
3668 	ixgbevf_free_all_rx_resources(adapter);
3669 }
3670 
3671 /**
3672  * ixgbevf_close - Disables a network interface
3673  * @netdev: network interface device structure
3674  *
3675  * Returns 0, this is not allowed to fail
3676  *
3677  * The close entry point is called when an interface is de-activated
3678  * by the OS.  The hardware is still under the drivers control, but
3679  * needs to be disabled.  A global MAC reset is issued to stop the
3680  * hardware, and all transmit and receive resources are freed.
3681  **/
3682 int ixgbevf_close(struct net_device *netdev)
3683 {
3684 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3685 
3686 	if (netif_device_present(netdev))
3687 		ixgbevf_close_suspend(adapter);
3688 
3689 	return 0;
3690 }
3691 
3692 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3693 {
3694 	struct net_device *dev = adapter->netdev;
3695 
3696 	if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3697 				&adapter->state))
3698 		return;
3699 
3700 	/* if interface is down do nothing */
3701 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3702 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3703 		return;
3704 
3705 	/* Hardware has to reinitialize queues and interrupts to
3706 	 * match packet buffer alignment. Unfortunately, the
3707 	 * hardware is not flexible enough to do this dynamically.
3708 	 */
3709 	rtnl_lock();
3710 
3711 	if (netif_running(dev))
3712 		ixgbevf_close(dev);
3713 
3714 	ixgbevf_clear_interrupt_scheme(adapter);
3715 	ixgbevf_init_interrupt_scheme(adapter);
3716 
3717 	if (netif_running(dev))
3718 		ixgbevf_open(dev);
3719 
3720 	rtnl_unlock();
3721 }
3722 
3723 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3724 				u32 vlan_macip_lens, u32 fceof_saidx,
3725 				u32 type_tucmd, u32 mss_l4len_idx)
3726 {
3727 	struct ixgbe_adv_tx_context_desc *context_desc;
3728 	u16 i = tx_ring->next_to_use;
3729 
3730 	context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3731 
3732 	i++;
3733 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3734 
3735 	/* set bits to identify this as an advanced context descriptor */
3736 	type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3737 
3738 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
3739 	context_desc->fceof_saidx	= cpu_to_le32(fceof_saidx);
3740 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
3741 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
3742 }
3743 
3744 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3745 		       struct ixgbevf_tx_buffer *first,
3746 		       u8 *hdr_len,
3747 		       struct ixgbevf_ipsec_tx_data *itd)
3748 {
3749 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3750 	struct sk_buff *skb = first->skb;
3751 	union {
3752 		struct iphdr *v4;
3753 		struct ipv6hdr *v6;
3754 		unsigned char *hdr;
3755 	} ip;
3756 	union {
3757 		struct tcphdr *tcp;
3758 		unsigned char *hdr;
3759 	} l4;
3760 	u32 paylen, l4_offset;
3761 	u32 fceof_saidx = 0;
3762 	int err;
3763 
3764 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3765 		return 0;
3766 
3767 	if (!skb_is_gso(skb))
3768 		return 0;
3769 
3770 	err = skb_cow_head(skb, 0);
3771 	if (err < 0)
3772 		return err;
3773 
3774 	if (eth_p_mpls(first->protocol))
3775 		ip.hdr = skb_inner_network_header(skb);
3776 	else
3777 		ip.hdr = skb_network_header(skb);
3778 	l4.hdr = skb_checksum_start(skb);
3779 
3780 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3781 	type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3782 
3783 	/* initialize outer IP header fields */
3784 	if (ip.v4->version == 4) {
3785 		unsigned char *csum_start = skb_checksum_start(skb);
3786 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3787 		int len = csum_start - trans_start;
3788 
3789 		/* IP header will have to cancel out any data that
3790 		 * is not a part of the outer IP header, so set to
3791 		 * a reverse csum if needed, else init check to 0.
3792 		 */
3793 		ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ?
3794 					   csum_fold(csum_partial(trans_start,
3795 								  len, 0)) : 0;
3796 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3797 
3798 		ip.v4->tot_len = 0;
3799 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3800 				   IXGBE_TX_FLAGS_CSUM |
3801 				   IXGBE_TX_FLAGS_IPV4;
3802 	} else {
3803 		ip.v6->payload_len = 0;
3804 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3805 				   IXGBE_TX_FLAGS_CSUM;
3806 	}
3807 
3808 	/* determine offset of inner transport header */
3809 	l4_offset = l4.hdr - skb->data;
3810 
3811 	/* compute length of segmentation header */
3812 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3813 
3814 	/* remove payload length from inner checksum */
3815 	paylen = skb->len - l4_offset;
3816 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
3817 
3818 	/* update gso size and bytecount with header size */
3819 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3820 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3821 
3822 	/* mss_l4len_id: use 1 as index for TSO */
3823 	mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3824 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3825 	mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3826 
3827 	fceof_saidx |= itd->pfsa;
3828 	type_tucmd |= itd->flags | itd->trailer_len;
3829 
3830 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3831 	vlan_macip_lens = l4.hdr - ip.hdr;
3832 	vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3833 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3834 
3835 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd,
3836 			    mss_l4len_idx);
3837 
3838 	return 1;
3839 }
3840 
3841 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3842 			    struct ixgbevf_tx_buffer *first,
3843 			    struct ixgbevf_ipsec_tx_data *itd)
3844 {
3845 	struct sk_buff *skb = first->skb;
3846 	u32 vlan_macip_lens = 0;
3847 	u32 fceof_saidx = 0;
3848 	u32 type_tucmd = 0;
3849 
3850 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3851 		goto no_csum;
3852 
3853 	switch (skb->csum_offset) {
3854 	case offsetof(struct tcphdr, check):
3855 		type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3856 		fallthrough;
3857 	case offsetof(struct udphdr, check):
3858 		break;
3859 	case offsetof(struct sctphdr, checksum):
3860 		/* validate that this is actually an SCTP request */
3861 		if (skb_csum_is_sctp(skb)) {
3862 			type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3863 			break;
3864 		}
3865 		fallthrough;
3866 	default:
3867 		skb_checksum_help(skb);
3868 		goto no_csum;
3869 	}
3870 
3871 	if (first->protocol == htons(ETH_P_IP))
3872 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3873 
3874 	/* update TX checksum flag */
3875 	first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3876 	vlan_macip_lens = skb_checksum_start_offset(skb) -
3877 			  skb_network_offset(skb);
3878 no_csum:
3879 	/* vlan_macip_lens: MACLEN, VLAN tag */
3880 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3881 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3882 
3883 	fceof_saidx |= itd->pfsa;
3884 	type_tucmd |= itd->flags | itd->trailer_len;
3885 
3886 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3887 			    fceof_saidx, type_tucmd, 0);
3888 }
3889 
3890 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3891 {
3892 	/* set type for advanced descriptor with frame checksum insertion */
3893 	__le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3894 				      IXGBE_ADVTXD_DCMD_IFCS |
3895 				      IXGBE_ADVTXD_DCMD_DEXT);
3896 
3897 	/* set HW VLAN bit if VLAN is present */
3898 	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3899 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3900 
3901 	/* set segmentation enable bits for TSO/FSO */
3902 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3903 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3904 
3905 	return cmd_type;
3906 }
3907 
3908 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3909 				     u32 tx_flags, unsigned int paylen)
3910 {
3911 	__le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3912 
3913 	/* enable L4 checksum for TSO and TX checksum offload */
3914 	if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3915 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3916 
3917 	/* enble IPv4 checksum for TSO */
3918 	if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3919 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3920 
3921 	/* enable IPsec */
3922 	if (tx_flags & IXGBE_TX_FLAGS_IPSEC)
3923 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC);
3924 
3925 	/* use index 1 context for TSO/FSO/FCOE/IPSEC */
3926 	if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC))
3927 		olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3928 
3929 	/* Check Context must be set if Tx switch is enabled, which it
3930 	 * always is for case where virtual functions are running
3931 	 */
3932 	olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3933 
3934 	tx_desc->read.olinfo_status = olinfo_status;
3935 }
3936 
3937 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3938 			   struct ixgbevf_tx_buffer *first,
3939 			   const u8 hdr_len)
3940 {
3941 	struct sk_buff *skb = first->skb;
3942 	struct ixgbevf_tx_buffer *tx_buffer;
3943 	union ixgbe_adv_tx_desc *tx_desc;
3944 	skb_frag_t *frag;
3945 	dma_addr_t dma;
3946 	unsigned int data_len, size;
3947 	u32 tx_flags = first->tx_flags;
3948 	__le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3949 	u16 i = tx_ring->next_to_use;
3950 
3951 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3952 
3953 	ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
3954 
3955 	size = skb_headlen(skb);
3956 	data_len = skb->data_len;
3957 
3958 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3959 
3960 	tx_buffer = first;
3961 
3962 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3963 		if (dma_mapping_error(tx_ring->dev, dma))
3964 			goto dma_error;
3965 
3966 		/* record length, and DMA address */
3967 		dma_unmap_len_set(tx_buffer, len, size);
3968 		dma_unmap_addr_set(tx_buffer, dma, dma);
3969 
3970 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3971 
3972 		while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3973 			tx_desc->read.cmd_type_len =
3974 				cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3975 
3976 			i++;
3977 			tx_desc++;
3978 			if (i == tx_ring->count) {
3979 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3980 				i = 0;
3981 			}
3982 			tx_desc->read.olinfo_status = 0;
3983 
3984 			dma += IXGBE_MAX_DATA_PER_TXD;
3985 			size -= IXGBE_MAX_DATA_PER_TXD;
3986 
3987 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
3988 		}
3989 
3990 		if (likely(!data_len))
3991 			break;
3992 
3993 		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3994 
3995 		i++;
3996 		tx_desc++;
3997 		if (i == tx_ring->count) {
3998 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3999 			i = 0;
4000 		}
4001 		tx_desc->read.olinfo_status = 0;
4002 
4003 		size = skb_frag_size(frag);
4004 		data_len -= size;
4005 
4006 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
4007 				       DMA_TO_DEVICE);
4008 
4009 		tx_buffer = &tx_ring->tx_buffer_info[i];
4010 	}
4011 
4012 	/* write last descriptor with RS and EOP bits */
4013 	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
4014 	tx_desc->read.cmd_type_len = cmd_type;
4015 
4016 	/* set the timestamp */
4017 	first->time_stamp = jiffies;
4018 
4019 	skb_tx_timestamp(skb);
4020 
4021 	/* Force memory writes to complete before letting h/w know there
4022 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4023 	 * memory model archs, such as IA-64).
4024 	 *
4025 	 * We also need this memory barrier (wmb) to make certain all of the
4026 	 * status bits have been updated before next_to_watch is written.
4027 	 */
4028 	wmb();
4029 
4030 	/* set next_to_watch value indicating a packet is present */
4031 	first->next_to_watch = tx_desc;
4032 
4033 	i++;
4034 	if (i == tx_ring->count)
4035 		i = 0;
4036 
4037 	tx_ring->next_to_use = i;
4038 
4039 	/* notify HW of packet */
4040 	ixgbevf_write_tail(tx_ring, i);
4041 
4042 	return;
4043 dma_error:
4044 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4045 	tx_buffer = &tx_ring->tx_buffer_info[i];
4046 
4047 	/* clear dma mappings for failed tx_buffer_info map */
4048 	while (tx_buffer != first) {
4049 		if (dma_unmap_len(tx_buffer, len))
4050 			dma_unmap_page(tx_ring->dev,
4051 				       dma_unmap_addr(tx_buffer, dma),
4052 				       dma_unmap_len(tx_buffer, len),
4053 				       DMA_TO_DEVICE);
4054 		dma_unmap_len_set(tx_buffer, len, 0);
4055 
4056 		if (i-- == 0)
4057 			i += tx_ring->count;
4058 		tx_buffer = &tx_ring->tx_buffer_info[i];
4059 	}
4060 
4061 	if (dma_unmap_len(tx_buffer, len))
4062 		dma_unmap_single(tx_ring->dev,
4063 				 dma_unmap_addr(tx_buffer, dma),
4064 				 dma_unmap_len(tx_buffer, len),
4065 				 DMA_TO_DEVICE);
4066 	dma_unmap_len_set(tx_buffer, len, 0);
4067 
4068 	dev_kfree_skb_any(tx_buffer->skb);
4069 	tx_buffer->skb = NULL;
4070 
4071 	tx_ring->next_to_use = i;
4072 }
4073 
4074 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4075 {
4076 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
4077 	/* Herbert's original patch had:
4078 	 *  smp_mb__after_netif_stop_queue();
4079 	 * but since that doesn't exist yet, just open code it.
4080 	 */
4081 	smp_mb();
4082 
4083 	/* We need to check again in a case another CPU has just
4084 	 * made room available.
4085 	 */
4086 	if (likely(ixgbevf_desc_unused(tx_ring) < size))
4087 		return -EBUSY;
4088 
4089 	/* A reprieve! - use start_queue because it doesn't call schedule */
4090 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
4091 	++tx_ring->tx_stats.restart_queue;
4092 
4093 	return 0;
4094 }
4095 
4096 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4097 {
4098 	if (likely(ixgbevf_desc_unused(tx_ring) >= size))
4099 		return 0;
4100 	return __ixgbevf_maybe_stop_tx(tx_ring, size);
4101 }
4102 
4103 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb,
4104 				   struct ixgbevf_ring *tx_ring)
4105 {
4106 	struct ixgbevf_tx_buffer *first;
4107 	int tso;
4108 	u32 tx_flags = 0;
4109 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4110 	struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 };
4111 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4112 	unsigned short f;
4113 #endif
4114 	u8 hdr_len = 0;
4115 	u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
4116 
4117 	if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
4118 		dev_kfree_skb_any(skb);
4119 		return NETDEV_TX_OK;
4120 	}
4121 
4122 	/* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
4123 	 *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
4124 	 *       + 2 desc gap to keep tail from touching head,
4125 	 *       + 1 desc for context descriptor,
4126 	 * otherwise try next time
4127 	 */
4128 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4129 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
4130 		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
4131 
4132 		count += TXD_USE_COUNT(skb_frag_size(frag));
4133 	}
4134 #else
4135 	count += skb_shinfo(skb)->nr_frags;
4136 #endif
4137 	if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
4138 		tx_ring->tx_stats.tx_busy++;
4139 		return NETDEV_TX_BUSY;
4140 	}
4141 
4142 	/* record the location of the first descriptor for this packet */
4143 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4144 	first->skb = skb;
4145 	first->bytecount = skb->len;
4146 	first->gso_segs = 1;
4147 
4148 	if (skb_vlan_tag_present(skb)) {
4149 		tx_flags |= skb_vlan_tag_get(skb);
4150 		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
4151 		tx_flags |= IXGBE_TX_FLAGS_VLAN;
4152 	}
4153 
4154 	/* record initial flags and protocol */
4155 	first->tx_flags = tx_flags;
4156 	first->protocol = vlan_get_protocol(skb);
4157 
4158 #ifdef CONFIG_IXGBEVF_IPSEC
4159 	if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx))
4160 		goto out_drop;
4161 #endif
4162 	tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx);
4163 	if (tso < 0)
4164 		goto out_drop;
4165 	else if (!tso)
4166 		ixgbevf_tx_csum(tx_ring, first, &ipsec_tx);
4167 
4168 	ixgbevf_tx_map(tx_ring, first, hdr_len);
4169 
4170 	ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
4171 
4172 	return NETDEV_TX_OK;
4173 
4174 out_drop:
4175 	dev_kfree_skb_any(first->skb);
4176 	first->skb = NULL;
4177 
4178 	return NETDEV_TX_OK;
4179 }
4180 
4181 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4182 {
4183 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4184 	struct ixgbevf_ring *tx_ring;
4185 
4186 	if (skb->len <= 0) {
4187 		dev_kfree_skb_any(skb);
4188 		return NETDEV_TX_OK;
4189 	}
4190 
4191 	/* The minimum packet size for olinfo paylen is 17 so pad the skb
4192 	 * in order to meet this minimum size requirement.
4193 	 */
4194 	if (skb->len < 17) {
4195 		if (skb_padto(skb, 17))
4196 			return NETDEV_TX_OK;
4197 		skb->len = 17;
4198 	}
4199 
4200 	tx_ring = adapter->tx_ring[skb->queue_mapping];
4201 	return ixgbevf_xmit_frame_ring(skb, tx_ring);
4202 }
4203 
4204 /**
4205  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
4206  * @netdev: network interface device structure
4207  * @p: pointer to an address structure
4208  *
4209  * Returns 0 on success, negative on failure
4210  **/
4211 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
4212 {
4213 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4214 	struct ixgbe_hw *hw = &adapter->hw;
4215 	struct sockaddr *addr = p;
4216 	int err;
4217 
4218 	if (!is_valid_ether_addr(addr->sa_data))
4219 		return -EADDRNOTAVAIL;
4220 
4221 	spin_lock_bh(&adapter->mbx_lock);
4222 
4223 	err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
4224 
4225 	spin_unlock_bh(&adapter->mbx_lock);
4226 
4227 	if (err)
4228 		return -EPERM;
4229 
4230 	ether_addr_copy(hw->mac.addr, addr->sa_data);
4231 	ether_addr_copy(hw->mac.perm_addr, addr->sa_data);
4232 	ether_addr_copy(netdev->dev_addr, addr->sa_data);
4233 
4234 	return 0;
4235 }
4236 
4237 /**
4238  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
4239  * @netdev: network interface device structure
4240  * @new_mtu: new value for maximum frame size
4241  *
4242  * Returns 0 on success, negative on failure
4243  **/
4244 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
4245 {
4246 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4247 	struct ixgbe_hw *hw = &adapter->hw;
4248 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4249 	int ret;
4250 
4251 	/* prevent MTU being changed to a size unsupported by XDP */
4252 	if (adapter->xdp_prog) {
4253 		dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n");
4254 		return -EPERM;
4255 	}
4256 
4257 	spin_lock_bh(&adapter->mbx_lock);
4258 	/* notify the PF of our intent to use this size of frame */
4259 	ret = hw->mac.ops.set_rlpml(hw, max_frame);
4260 	spin_unlock_bh(&adapter->mbx_lock);
4261 	if (ret)
4262 		return -EINVAL;
4263 
4264 	hw_dbg(hw, "changing MTU from %d to %d\n",
4265 	       netdev->mtu, new_mtu);
4266 
4267 	/* must set new MTU before calling down or up */
4268 	netdev->mtu = new_mtu;
4269 
4270 	if (netif_running(netdev))
4271 		ixgbevf_reinit_locked(adapter);
4272 
4273 	return 0;
4274 }
4275 
4276 static int __maybe_unused ixgbevf_suspend(struct device *dev_d)
4277 {
4278 	struct net_device *netdev = dev_get_drvdata(dev_d);
4279 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4280 
4281 	rtnl_lock();
4282 	netif_device_detach(netdev);
4283 
4284 	if (netif_running(netdev))
4285 		ixgbevf_close_suspend(adapter);
4286 
4287 	ixgbevf_clear_interrupt_scheme(adapter);
4288 	rtnl_unlock();
4289 
4290 	return 0;
4291 }
4292 
4293 static int __maybe_unused ixgbevf_resume(struct device *dev_d)
4294 {
4295 	struct pci_dev *pdev = to_pci_dev(dev_d);
4296 	struct net_device *netdev = pci_get_drvdata(pdev);
4297 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4298 	u32 err;
4299 
4300 	adapter->hw.hw_addr = adapter->io_addr;
4301 	smp_mb__before_atomic();
4302 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4303 	pci_set_master(pdev);
4304 
4305 	ixgbevf_reset(adapter);
4306 
4307 	rtnl_lock();
4308 	err = ixgbevf_init_interrupt_scheme(adapter);
4309 	if (!err && netif_running(netdev))
4310 		err = ixgbevf_open(netdev);
4311 	rtnl_unlock();
4312 	if (err)
4313 		return err;
4314 
4315 	netif_device_attach(netdev);
4316 
4317 	return err;
4318 }
4319 
4320 static void ixgbevf_shutdown(struct pci_dev *pdev)
4321 {
4322 	ixgbevf_suspend(&pdev->dev);
4323 }
4324 
4325 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats,
4326 				      const struct ixgbevf_ring *ring)
4327 {
4328 	u64 bytes, packets;
4329 	unsigned int start;
4330 
4331 	if (ring) {
4332 		do {
4333 			start = u64_stats_fetch_begin_irq(&ring->syncp);
4334 			bytes = ring->stats.bytes;
4335 			packets = ring->stats.packets;
4336 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4337 		stats->tx_bytes += bytes;
4338 		stats->tx_packets += packets;
4339 	}
4340 }
4341 
4342 static void ixgbevf_get_stats(struct net_device *netdev,
4343 			      struct rtnl_link_stats64 *stats)
4344 {
4345 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4346 	unsigned int start;
4347 	u64 bytes, packets;
4348 	const struct ixgbevf_ring *ring;
4349 	int i;
4350 
4351 	ixgbevf_update_stats(adapter);
4352 
4353 	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
4354 
4355 	rcu_read_lock();
4356 	for (i = 0; i < adapter->num_rx_queues; i++) {
4357 		ring = adapter->rx_ring[i];
4358 		do {
4359 			start = u64_stats_fetch_begin_irq(&ring->syncp);
4360 			bytes = ring->stats.bytes;
4361 			packets = ring->stats.packets;
4362 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4363 		stats->rx_bytes += bytes;
4364 		stats->rx_packets += packets;
4365 	}
4366 
4367 	for (i = 0; i < adapter->num_tx_queues; i++) {
4368 		ring = adapter->tx_ring[i];
4369 		ixgbevf_get_tx_ring_stats(stats, ring);
4370 	}
4371 
4372 	for (i = 0; i < adapter->num_xdp_queues; i++) {
4373 		ring = adapter->xdp_ring[i];
4374 		ixgbevf_get_tx_ring_stats(stats, ring);
4375 	}
4376 	rcu_read_unlock();
4377 }
4378 
4379 #define IXGBEVF_MAX_MAC_HDR_LEN		127
4380 #define IXGBEVF_MAX_NETWORK_HDR_LEN	511
4381 
4382 static netdev_features_t
4383 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
4384 		       netdev_features_t features)
4385 {
4386 	unsigned int network_hdr_len, mac_hdr_len;
4387 
4388 	/* Make certain the headers can be described by a context descriptor */
4389 	mac_hdr_len = skb_network_header(skb) - skb->data;
4390 	if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
4391 		return features & ~(NETIF_F_HW_CSUM |
4392 				    NETIF_F_SCTP_CRC |
4393 				    NETIF_F_HW_VLAN_CTAG_TX |
4394 				    NETIF_F_TSO |
4395 				    NETIF_F_TSO6);
4396 
4397 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4398 	if (unlikely(network_hdr_len >  IXGBEVF_MAX_NETWORK_HDR_LEN))
4399 		return features & ~(NETIF_F_HW_CSUM |
4400 				    NETIF_F_SCTP_CRC |
4401 				    NETIF_F_TSO |
4402 				    NETIF_F_TSO6);
4403 
4404 	/* We can only support IPV4 TSO in tunnels if we can mangle the
4405 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4406 	 */
4407 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4408 		features &= ~NETIF_F_TSO;
4409 
4410 	return features;
4411 }
4412 
4413 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog)
4414 {
4415 	int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4416 	struct ixgbevf_adapter *adapter = netdev_priv(dev);
4417 	struct bpf_prog *old_prog;
4418 
4419 	/* verify ixgbevf ring attributes are sufficient for XDP */
4420 	for (i = 0; i < adapter->num_rx_queues; i++) {
4421 		struct ixgbevf_ring *ring = adapter->rx_ring[i];
4422 
4423 		if (frame_size > ixgbevf_rx_bufsz(ring))
4424 			return -EINVAL;
4425 	}
4426 
4427 	old_prog = xchg(&adapter->xdp_prog, prog);
4428 
4429 	/* If transitioning XDP modes reconfigure rings */
4430 	if (!!prog != !!old_prog) {
4431 		/* Hardware has to reinitialize queues and interrupts to
4432 		 * match packet buffer alignment. Unfortunately, the
4433 		 * hardware is not flexible enough to do this dynamically.
4434 		 */
4435 		if (netif_running(dev))
4436 			ixgbevf_close(dev);
4437 
4438 		ixgbevf_clear_interrupt_scheme(adapter);
4439 		ixgbevf_init_interrupt_scheme(adapter);
4440 
4441 		if (netif_running(dev))
4442 			ixgbevf_open(dev);
4443 	} else {
4444 		for (i = 0; i < adapter->num_rx_queues; i++)
4445 			xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog);
4446 	}
4447 
4448 	if (old_prog)
4449 		bpf_prog_put(old_prog);
4450 
4451 	return 0;
4452 }
4453 
4454 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4455 {
4456 	switch (xdp->command) {
4457 	case XDP_SETUP_PROG:
4458 		return ixgbevf_xdp_setup(dev, xdp->prog);
4459 	default:
4460 		return -EINVAL;
4461 	}
4462 }
4463 
4464 static const struct net_device_ops ixgbevf_netdev_ops = {
4465 	.ndo_open		= ixgbevf_open,
4466 	.ndo_stop		= ixgbevf_close,
4467 	.ndo_start_xmit		= ixgbevf_xmit_frame,
4468 	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
4469 	.ndo_get_stats64	= ixgbevf_get_stats,
4470 	.ndo_validate_addr	= eth_validate_addr,
4471 	.ndo_set_mac_address	= ixgbevf_set_mac,
4472 	.ndo_change_mtu		= ixgbevf_change_mtu,
4473 	.ndo_tx_timeout		= ixgbevf_tx_timeout,
4474 	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
4475 	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
4476 	.ndo_features_check	= ixgbevf_features_check,
4477 	.ndo_bpf		= ixgbevf_xdp,
4478 };
4479 
4480 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
4481 {
4482 	dev->netdev_ops = &ixgbevf_netdev_ops;
4483 	ixgbevf_set_ethtool_ops(dev);
4484 	dev->watchdog_timeo = 5 * HZ;
4485 }
4486 
4487 /**
4488  * ixgbevf_probe - Device Initialization Routine
4489  * @pdev: PCI device information struct
4490  * @ent: entry in ixgbevf_pci_tbl
4491  *
4492  * Returns 0 on success, negative on failure
4493  *
4494  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
4495  * The OS initialization, configuring of the adapter private structure,
4496  * and a hardware reset occur.
4497  **/
4498 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4499 {
4500 	struct net_device *netdev;
4501 	struct ixgbevf_adapter *adapter = NULL;
4502 	struct ixgbe_hw *hw = NULL;
4503 	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
4504 	int err, pci_using_dac;
4505 	bool disable_dev = false;
4506 
4507 	err = pci_enable_device(pdev);
4508 	if (err)
4509 		return err;
4510 
4511 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
4512 		pci_using_dac = 1;
4513 	} else {
4514 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4515 		if (err) {
4516 			dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4517 			goto err_dma;
4518 		}
4519 		pci_using_dac = 0;
4520 	}
4521 
4522 	err = pci_request_regions(pdev, ixgbevf_driver_name);
4523 	if (err) {
4524 		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4525 		goto err_pci_reg;
4526 	}
4527 
4528 	pci_set_master(pdev);
4529 
4530 	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4531 				   MAX_TX_QUEUES);
4532 	if (!netdev) {
4533 		err = -ENOMEM;
4534 		goto err_alloc_etherdev;
4535 	}
4536 
4537 	SET_NETDEV_DEV(netdev, &pdev->dev);
4538 
4539 	adapter = netdev_priv(netdev);
4540 
4541 	adapter->netdev = netdev;
4542 	adapter->pdev = pdev;
4543 	hw = &adapter->hw;
4544 	hw->back = adapter;
4545 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4546 
4547 	/* call save state here in standalone driver because it relies on
4548 	 * adapter struct to exist, and needs to call netdev_priv
4549 	 */
4550 	pci_save_state(pdev);
4551 
4552 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4553 			      pci_resource_len(pdev, 0));
4554 	adapter->io_addr = hw->hw_addr;
4555 	if (!hw->hw_addr) {
4556 		err = -EIO;
4557 		goto err_ioremap;
4558 	}
4559 
4560 	ixgbevf_assign_netdev_ops(netdev);
4561 
4562 	/* Setup HW API */
4563 	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4564 	hw->mac.type  = ii->mac;
4565 
4566 	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
4567 	       sizeof(struct ixgbe_mbx_operations));
4568 
4569 	/* setup the private structure */
4570 	err = ixgbevf_sw_init(adapter);
4571 	if (err)
4572 		goto err_sw_init;
4573 
4574 	/* The HW MAC address was set and/or determined in sw_init */
4575 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4576 		pr_err("invalid MAC address\n");
4577 		err = -EIO;
4578 		goto err_sw_init;
4579 	}
4580 
4581 	netdev->hw_features = NETIF_F_SG |
4582 			      NETIF_F_TSO |
4583 			      NETIF_F_TSO6 |
4584 			      NETIF_F_RXCSUM |
4585 			      NETIF_F_HW_CSUM |
4586 			      NETIF_F_SCTP_CRC;
4587 
4588 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4589 				      NETIF_F_GSO_GRE_CSUM | \
4590 				      NETIF_F_GSO_IPXIP4 | \
4591 				      NETIF_F_GSO_IPXIP6 | \
4592 				      NETIF_F_GSO_UDP_TUNNEL | \
4593 				      NETIF_F_GSO_UDP_TUNNEL_CSUM)
4594 
4595 	netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4596 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4597 			       IXGBEVF_GSO_PARTIAL_FEATURES;
4598 
4599 	netdev->features = netdev->hw_features;
4600 
4601 	if (pci_using_dac)
4602 		netdev->features |= NETIF_F_HIGHDMA;
4603 
4604 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4605 	netdev->mpls_features |= NETIF_F_SG |
4606 				 NETIF_F_TSO |
4607 				 NETIF_F_TSO6 |
4608 				 NETIF_F_HW_CSUM;
4609 	netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES;
4610 	netdev->hw_enc_features |= netdev->vlan_features;
4611 
4612 	/* set this bit last since it cannot be part of vlan_features */
4613 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4614 			    NETIF_F_HW_VLAN_CTAG_RX |
4615 			    NETIF_F_HW_VLAN_CTAG_TX;
4616 
4617 	netdev->priv_flags |= IFF_UNICAST_FLT;
4618 
4619 	/* MTU range: 68 - 1504 or 9710 */
4620 	netdev->min_mtu = ETH_MIN_MTU;
4621 	switch (adapter->hw.api_version) {
4622 	case ixgbe_mbox_api_11:
4623 	case ixgbe_mbox_api_12:
4624 	case ixgbe_mbox_api_13:
4625 	case ixgbe_mbox_api_14:
4626 		netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4627 				  (ETH_HLEN + ETH_FCS_LEN);
4628 		break;
4629 	default:
4630 		if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
4631 			netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4632 					  (ETH_HLEN + ETH_FCS_LEN);
4633 		else
4634 			netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
4635 		break;
4636 	}
4637 
4638 	if (IXGBE_REMOVED(hw->hw_addr)) {
4639 		err = -EIO;
4640 		goto err_sw_init;
4641 	}
4642 
4643 	timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0);
4644 
4645 	INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4646 	set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4647 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4648 
4649 	err = ixgbevf_init_interrupt_scheme(adapter);
4650 	if (err)
4651 		goto err_sw_init;
4652 
4653 	strcpy(netdev->name, "eth%d");
4654 
4655 	err = register_netdev(netdev);
4656 	if (err)
4657 		goto err_register;
4658 
4659 	pci_set_drvdata(pdev, netdev);
4660 	netif_carrier_off(netdev);
4661 	ixgbevf_init_ipsec_offload(adapter);
4662 
4663 	ixgbevf_init_last_counter_stats(adapter);
4664 
4665 	/* print the VF info */
4666 	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4667 	dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4668 
4669 	switch (hw->mac.type) {
4670 	case ixgbe_mac_X550_vf:
4671 		dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4672 		break;
4673 	case ixgbe_mac_X540_vf:
4674 		dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4675 		break;
4676 	case ixgbe_mac_82599_vf:
4677 	default:
4678 		dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4679 		break;
4680 	}
4681 
4682 	return 0;
4683 
4684 err_register:
4685 	ixgbevf_clear_interrupt_scheme(adapter);
4686 err_sw_init:
4687 	ixgbevf_reset_interrupt_capability(adapter);
4688 	iounmap(adapter->io_addr);
4689 	kfree(adapter->rss_key);
4690 err_ioremap:
4691 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4692 	free_netdev(netdev);
4693 err_alloc_etherdev:
4694 	pci_release_regions(pdev);
4695 err_pci_reg:
4696 err_dma:
4697 	if (!adapter || disable_dev)
4698 		pci_disable_device(pdev);
4699 	return err;
4700 }
4701 
4702 /**
4703  * ixgbevf_remove - Device Removal Routine
4704  * @pdev: PCI device information struct
4705  *
4706  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4707  * that it should release a PCI device.  The could be caused by a
4708  * Hot-Plug event, or because the driver is going to be removed from
4709  * memory.
4710  **/
4711 static void ixgbevf_remove(struct pci_dev *pdev)
4712 {
4713 	struct net_device *netdev = pci_get_drvdata(pdev);
4714 	struct ixgbevf_adapter *adapter;
4715 	bool disable_dev;
4716 
4717 	if (!netdev)
4718 		return;
4719 
4720 	adapter = netdev_priv(netdev);
4721 
4722 	set_bit(__IXGBEVF_REMOVING, &adapter->state);
4723 	cancel_work_sync(&adapter->service_task);
4724 
4725 	if (netdev->reg_state == NETREG_REGISTERED)
4726 		unregister_netdev(netdev);
4727 
4728 	ixgbevf_stop_ipsec_offload(adapter);
4729 	ixgbevf_clear_interrupt_scheme(adapter);
4730 	ixgbevf_reset_interrupt_capability(adapter);
4731 
4732 	iounmap(adapter->io_addr);
4733 	pci_release_regions(pdev);
4734 
4735 	hw_dbg(&adapter->hw, "Remove complete\n");
4736 
4737 	kfree(adapter->rss_key);
4738 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4739 	free_netdev(netdev);
4740 
4741 	if (disable_dev)
4742 		pci_disable_device(pdev);
4743 }
4744 
4745 /**
4746  * ixgbevf_io_error_detected - called when PCI error is detected
4747  * @pdev: Pointer to PCI device
4748  * @state: The current pci connection state
4749  *
4750  * This function is called after a PCI bus error affecting
4751  * this device has been detected.
4752  **/
4753 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4754 						  pci_channel_state_t state)
4755 {
4756 	struct net_device *netdev = pci_get_drvdata(pdev);
4757 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4758 
4759 	if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4760 		return PCI_ERS_RESULT_DISCONNECT;
4761 
4762 	rtnl_lock();
4763 	netif_device_detach(netdev);
4764 
4765 	if (netif_running(netdev))
4766 		ixgbevf_close_suspend(adapter);
4767 
4768 	if (state == pci_channel_io_perm_failure) {
4769 		rtnl_unlock();
4770 		return PCI_ERS_RESULT_DISCONNECT;
4771 	}
4772 
4773 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4774 		pci_disable_device(pdev);
4775 	rtnl_unlock();
4776 
4777 	/* Request a slot slot reset. */
4778 	return PCI_ERS_RESULT_NEED_RESET;
4779 }
4780 
4781 /**
4782  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4783  * @pdev: Pointer to PCI device
4784  *
4785  * Restart the card from scratch, as if from a cold-boot. Implementation
4786  * resembles the first-half of the ixgbevf_resume routine.
4787  **/
4788 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4789 {
4790 	struct net_device *netdev = pci_get_drvdata(pdev);
4791 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4792 
4793 	if (pci_enable_device_mem(pdev)) {
4794 		dev_err(&pdev->dev,
4795 			"Cannot re-enable PCI device after reset.\n");
4796 		return PCI_ERS_RESULT_DISCONNECT;
4797 	}
4798 
4799 	adapter->hw.hw_addr = adapter->io_addr;
4800 	smp_mb__before_atomic();
4801 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4802 	pci_set_master(pdev);
4803 
4804 	ixgbevf_reset(adapter);
4805 
4806 	return PCI_ERS_RESULT_RECOVERED;
4807 }
4808 
4809 /**
4810  * ixgbevf_io_resume - called when traffic can start flowing again.
4811  * @pdev: Pointer to PCI device
4812  *
4813  * This callback is called when the error recovery driver tells us that
4814  * its OK to resume normal operation. Implementation resembles the
4815  * second-half of the ixgbevf_resume routine.
4816  **/
4817 static void ixgbevf_io_resume(struct pci_dev *pdev)
4818 {
4819 	struct net_device *netdev = pci_get_drvdata(pdev);
4820 
4821 	rtnl_lock();
4822 	if (netif_running(netdev))
4823 		ixgbevf_open(netdev);
4824 
4825 	netif_device_attach(netdev);
4826 	rtnl_unlock();
4827 }
4828 
4829 /* PCI Error Recovery (ERS) */
4830 static const struct pci_error_handlers ixgbevf_err_handler = {
4831 	.error_detected = ixgbevf_io_error_detected,
4832 	.slot_reset = ixgbevf_io_slot_reset,
4833 	.resume = ixgbevf_io_resume,
4834 };
4835 
4836 static SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume);
4837 
4838 static struct pci_driver ixgbevf_driver = {
4839 	.name		= ixgbevf_driver_name,
4840 	.id_table	= ixgbevf_pci_tbl,
4841 	.probe		= ixgbevf_probe,
4842 	.remove		= ixgbevf_remove,
4843 
4844 	/* Power Management Hooks */
4845 	.driver.pm	= &ixgbevf_pm_ops,
4846 
4847 	.shutdown	= ixgbevf_shutdown,
4848 	.err_handler	= &ixgbevf_err_handler
4849 };
4850 
4851 /**
4852  * ixgbevf_init_module - Driver Registration Routine
4853  *
4854  * ixgbevf_init_module is the first routine called when the driver is
4855  * loaded. All it does is register with the PCI subsystem.
4856  **/
4857 static int __init ixgbevf_init_module(void)
4858 {
4859 	pr_info("%s\n", ixgbevf_driver_string);
4860 	pr_info("%s\n", ixgbevf_copyright);
4861 	ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4862 	if (!ixgbevf_wq) {
4863 		pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4864 		return -ENOMEM;
4865 	}
4866 
4867 	return pci_register_driver(&ixgbevf_driver);
4868 }
4869 
4870 module_init(ixgbevf_init_module);
4871 
4872 /**
4873  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4874  *
4875  * ixgbevf_exit_module is called just before the driver is removed
4876  * from memory.
4877  **/
4878 static void __exit ixgbevf_exit_module(void)
4879 {
4880 	pci_unregister_driver(&ixgbevf_driver);
4881 	if (ixgbevf_wq) {
4882 		destroy_workqueue(ixgbevf_wq);
4883 		ixgbevf_wq = NULL;
4884 	}
4885 }
4886 
4887 #ifdef DEBUG
4888 /**
4889  * ixgbevf_get_hw_dev_name - return device name string
4890  * used by hardware layer to print debugging information
4891  * @hw: pointer to private hardware struct
4892  **/
4893 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4894 {
4895 	struct ixgbevf_adapter *adapter = hw->back;
4896 
4897 	return adapter->netdev->name;
4898 }
4899 
4900 #endif
4901 module_exit(ixgbevf_exit_module);
4902 
4903 /* ixgbevf_main.c */
4904