1 /******************************************************************************* 2 3 Intel 82599 Virtual Function driver 4 Copyright(c) 1999 - 2015 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, see <http://www.gnu.org/licenses/>. 17 18 The full GNU General Public License is included in this distribution in 19 the file called "COPYING". 20 21 Contact Information: 22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 25 *******************************************************************************/ 26 27 /****************************************************************************** 28 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 29 ******************************************************************************/ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/types.h> 34 #include <linux/bitops.h> 35 #include <linux/module.h> 36 #include <linux/pci.h> 37 #include <linux/netdevice.h> 38 #include <linux/vmalloc.h> 39 #include <linux/string.h> 40 #include <linux/in.h> 41 #include <linux/ip.h> 42 #include <linux/tcp.h> 43 #include <linux/sctp.h> 44 #include <linux/ipv6.h> 45 #include <linux/slab.h> 46 #include <net/checksum.h> 47 #include <net/ip6_checksum.h> 48 #include <linux/ethtool.h> 49 #include <linux/if.h> 50 #include <linux/if_vlan.h> 51 #include <linux/prefetch.h> 52 #include <net/mpls.h> 53 54 #include "ixgbevf.h" 55 56 const char ixgbevf_driver_name[] = "ixgbevf"; 57 static const char ixgbevf_driver_string[] = 58 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 59 60 #define DRV_VERSION "4.1.0-k" 61 const char ixgbevf_driver_version[] = DRV_VERSION; 62 static char ixgbevf_copyright[] = 63 "Copyright (c) 2009 - 2015 Intel Corporation."; 64 65 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 66 [board_82599_vf] = &ixgbevf_82599_vf_info, 67 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 68 [board_X540_vf] = &ixgbevf_X540_vf_info, 69 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 70 [board_X550_vf] = &ixgbevf_X550_vf_info, 71 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 72 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 73 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 74 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 75 }; 76 77 /* ixgbevf_pci_tbl - PCI Device ID Table 78 * 79 * Wildcard entries (PCI_ANY_ID) should come last 80 * Last entry must be all 0s 81 * 82 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 83 * Class, Class Mask, private data (not used) } 84 */ 85 static const struct pci_device_id ixgbevf_pci_tbl[] = { 86 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 87 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 88 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 89 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 90 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 91 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 92 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 93 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 94 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 95 /* required last entry */ 96 {0, } 97 }; 98 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 99 100 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 101 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 102 MODULE_LICENSE("GPL"); 103 MODULE_VERSION(DRV_VERSION); 104 105 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 106 static int debug = -1; 107 module_param(debug, int, 0); 108 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 109 110 static struct workqueue_struct *ixgbevf_wq; 111 112 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 113 { 114 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 115 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 116 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 117 queue_work(ixgbevf_wq, &adapter->service_task); 118 } 119 120 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 121 { 122 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 123 124 /* flush memory to make sure state is correct before next watchdog */ 125 smp_mb__before_atomic(); 126 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 127 } 128 129 /* forward decls */ 130 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 131 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 132 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 133 134 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 135 { 136 struct ixgbevf_adapter *adapter = hw->back; 137 138 if (!hw->hw_addr) 139 return; 140 hw->hw_addr = NULL; 141 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 142 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 143 ixgbevf_service_event_schedule(adapter); 144 } 145 146 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 147 { 148 u32 value; 149 150 /* The following check not only optimizes a bit by not 151 * performing a read on the status register when the 152 * register just read was a status register read that 153 * returned IXGBE_FAILED_READ_REG. It also blocks any 154 * potential recursion. 155 */ 156 if (reg == IXGBE_VFSTATUS) { 157 ixgbevf_remove_adapter(hw); 158 return; 159 } 160 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 161 if (value == IXGBE_FAILED_READ_REG) 162 ixgbevf_remove_adapter(hw); 163 } 164 165 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 166 { 167 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 168 u32 value; 169 170 if (IXGBE_REMOVED(reg_addr)) 171 return IXGBE_FAILED_READ_REG; 172 value = readl(reg_addr + reg); 173 if (unlikely(value == IXGBE_FAILED_READ_REG)) 174 ixgbevf_check_remove(hw, reg); 175 return value; 176 } 177 178 /** 179 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 180 * @adapter: pointer to adapter struct 181 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 182 * @queue: queue to map the corresponding interrupt to 183 * @msix_vector: the vector to map to the corresponding queue 184 **/ 185 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 186 u8 queue, u8 msix_vector) 187 { 188 u32 ivar, index; 189 struct ixgbe_hw *hw = &adapter->hw; 190 191 if (direction == -1) { 192 /* other causes */ 193 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 194 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 195 ivar &= ~0xFF; 196 ivar |= msix_vector; 197 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 198 } else { 199 /* Tx or Rx causes */ 200 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 201 index = ((16 * (queue & 1)) + (8 * direction)); 202 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 203 ivar &= ~(0xFF << index); 204 ivar |= (msix_vector << index); 205 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 206 } 207 } 208 209 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring, 210 struct ixgbevf_tx_buffer *tx_buffer) 211 { 212 if (tx_buffer->skb) { 213 dev_kfree_skb_any(tx_buffer->skb); 214 if (dma_unmap_len(tx_buffer, len)) 215 dma_unmap_single(tx_ring->dev, 216 dma_unmap_addr(tx_buffer, dma), 217 dma_unmap_len(tx_buffer, len), 218 DMA_TO_DEVICE); 219 } else if (dma_unmap_len(tx_buffer, len)) { 220 dma_unmap_page(tx_ring->dev, 221 dma_unmap_addr(tx_buffer, dma), 222 dma_unmap_len(tx_buffer, len), 223 DMA_TO_DEVICE); 224 } 225 tx_buffer->next_to_watch = NULL; 226 tx_buffer->skb = NULL; 227 dma_unmap_len_set(tx_buffer, len, 0); 228 /* tx_buffer must be completely set up in the transmit path */ 229 } 230 231 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 232 { 233 return ring->stats.packets; 234 } 235 236 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 237 { 238 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 239 struct ixgbe_hw *hw = &adapter->hw; 240 241 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 242 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 243 244 if (head != tail) 245 return (head < tail) ? 246 tail - head : (tail + ring->count - head); 247 248 return 0; 249 } 250 251 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 252 { 253 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 254 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 255 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 256 257 clear_check_for_tx_hang(tx_ring); 258 259 /* Check for a hung queue, but be thorough. This verifies 260 * that a transmit has been completed since the previous 261 * check AND there is at least one packet pending. The 262 * ARMED bit is set to indicate a potential hang. 263 */ 264 if ((tx_done_old == tx_done) && tx_pending) { 265 /* make sure it is true for two checks in a row */ 266 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 267 &tx_ring->state); 268 } 269 /* reset the countdown */ 270 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 271 272 /* update completed stats and continue */ 273 tx_ring->tx_stats.tx_done_old = tx_done; 274 275 return false; 276 } 277 278 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 279 { 280 /* Do the reset outside of interrupt context */ 281 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 282 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 283 ixgbevf_service_event_schedule(adapter); 284 } 285 } 286 287 /** 288 * ixgbevf_tx_timeout - Respond to a Tx Hang 289 * @netdev: network interface device structure 290 **/ 291 static void ixgbevf_tx_timeout(struct net_device *netdev) 292 { 293 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 294 295 ixgbevf_tx_timeout_reset(adapter); 296 } 297 298 /** 299 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 300 * @q_vector: board private structure 301 * @tx_ring: tx ring to clean 302 * @napi_budget: Used to determine if we are in netpoll 303 **/ 304 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 305 struct ixgbevf_ring *tx_ring, int napi_budget) 306 { 307 struct ixgbevf_adapter *adapter = q_vector->adapter; 308 struct ixgbevf_tx_buffer *tx_buffer; 309 union ixgbe_adv_tx_desc *tx_desc; 310 unsigned int total_bytes = 0, total_packets = 0; 311 unsigned int budget = tx_ring->count / 2; 312 unsigned int i = tx_ring->next_to_clean; 313 314 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 315 return true; 316 317 tx_buffer = &tx_ring->tx_buffer_info[i]; 318 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 319 i -= tx_ring->count; 320 321 do { 322 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 323 324 /* if next_to_watch is not set then there is no work pending */ 325 if (!eop_desc) 326 break; 327 328 /* prevent any other reads prior to eop_desc */ 329 read_barrier_depends(); 330 331 /* if DD is not set pending work has not been completed */ 332 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 333 break; 334 335 /* clear next_to_watch to prevent false hangs */ 336 tx_buffer->next_to_watch = NULL; 337 338 /* update the statistics for this packet */ 339 total_bytes += tx_buffer->bytecount; 340 total_packets += tx_buffer->gso_segs; 341 342 /* free the skb */ 343 napi_consume_skb(tx_buffer->skb, napi_budget); 344 345 /* unmap skb header data */ 346 dma_unmap_single(tx_ring->dev, 347 dma_unmap_addr(tx_buffer, dma), 348 dma_unmap_len(tx_buffer, len), 349 DMA_TO_DEVICE); 350 351 /* clear tx_buffer data */ 352 tx_buffer->skb = NULL; 353 dma_unmap_len_set(tx_buffer, len, 0); 354 355 /* unmap remaining buffers */ 356 while (tx_desc != eop_desc) { 357 tx_buffer++; 358 tx_desc++; 359 i++; 360 if (unlikely(!i)) { 361 i -= tx_ring->count; 362 tx_buffer = tx_ring->tx_buffer_info; 363 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 364 } 365 366 /* unmap any remaining paged data */ 367 if (dma_unmap_len(tx_buffer, len)) { 368 dma_unmap_page(tx_ring->dev, 369 dma_unmap_addr(tx_buffer, dma), 370 dma_unmap_len(tx_buffer, len), 371 DMA_TO_DEVICE); 372 dma_unmap_len_set(tx_buffer, len, 0); 373 } 374 } 375 376 /* move us one more past the eop_desc for start of next pkt */ 377 tx_buffer++; 378 tx_desc++; 379 i++; 380 if (unlikely(!i)) { 381 i -= tx_ring->count; 382 tx_buffer = tx_ring->tx_buffer_info; 383 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 384 } 385 386 /* issue prefetch for next Tx descriptor */ 387 prefetch(tx_desc); 388 389 /* update budget accounting */ 390 budget--; 391 } while (likely(budget)); 392 393 i += tx_ring->count; 394 tx_ring->next_to_clean = i; 395 u64_stats_update_begin(&tx_ring->syncp); 396 tx_ring->stats.bytes += total_bytes; 397 tx_ring->stats.packets += total_packets; 398 u64_stats_update_end(&tx_ring->syncp); 399 q_vector->tx.total_bytes += total_bytes; 400 q_vector->tx.total_packets += total_packets; 401 402 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 403 struct ixgbe_hw *hw = &adapter->hw; 404 union ixgbe_adv_tx_desc *eop_desc; 405 406 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 407 408 pr_err("Detected Tx Unit Hang\n" 409 " Tx Queue <%d>\n" 410 " TDH, TDT <%x>, <%x>\n" 411 " next_to_use <%x>\n" 412 " next_to_clean <%x>\n" 413 "tx_buffer_info[next_to_clean]\n" 414 " next_to_watch <%p>\n" 415 " eop_desc->wb.status <%x>\n" 416 " time_stamp <%lx>\n" 417 " jiffies <%lx>\n", 418 tx_ring->queue_index, 419 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 420 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 421 tx_ring->next_to_use, i, 422 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 423 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 424 425 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 426 427 /* schedule immediate reset if we believe we hung */ 428 ixgbevf_tx_timeout_reset(adapter); 429 430 return true; 431 } 432 433 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 434 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 435 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 436 /* Make sure that anybody stopping the queue after this 437 * sees the new next_to_clean. 438 */ 439 smp_mb(); 440 441 if (__netif_subqueue_stopped(tx_ring->netdev, 442 tx_ring->queue_index) && 443 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 444 netif_wake_subqueue(tx_ring->netdev, 445 tx_ring->queue_index); 446 ++tx_ring->tx_stats.restart_queue; 447 } 448 } 449 450 return !!budget; 451 } 452 453 /** 454 * ixgbevf_rx_skb - Helper function to determine proper Rx method 455 * @q_vector: structure containing interrupt and ring information 456 * @skb: packet to send up 457 **/ 458 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 459 struct sk_buff *skb) 460 { 461 napi_gro_receive(&q_vector->napi, skb); 462 } 463 464 #define IXGBE_RSS_L4_TYPES_MASK \ 465 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 466 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 467 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 468 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 469 470 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 471 union ixgbe_adv_rx_desc *rx_desc, 472 struct sk_buff *skb) 473 { 474 u16 rss_type; 475 476 if (!(ring->netdev->features & NETIF_F_RXHASH)) 477 return; 478 479 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 480 IXGBE_RXDADV_RSSTYPE_MASK; 481 482 if (!rss_type) 483 return; 484 485 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 486 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 487 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 488 } 489 490 /** 491 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 492 * @ring: structure containig ring specific data 493 * @rx_desc: current Rx descriptor being processed 494 * @skb: skb currently being received and modified 495 **/ 496 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 497 union ixgbe_adv_rx_desc *rx_desc, 498 struct sk_buff *skb) 499 { 500 skb_checksum_none_assert(skb); 501 502 /* Rx csum disabled */ 503 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 504 return; 505 506 /* if IP and error */ 507 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 508 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 509 ring->rx_stats.csum_err++; 510 return; 511 } 512 513 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 514 return; 515 516 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 517 ring->rx_stats.csum_err++; 518 return; 519 } 520 521 /* It must be a TCP or UDP packet with a valid checksum */ 522 skb->ip_summed = CHECKSUM_UNNECESSARY; 523 } 524 525 /** 526 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 527 * @rx_ring: rx descriptor ring packet is being transacted on 528 * @rx_desc: pointer to the EOP Rx descriptor 529 * @skb: pointer to current skb being populated 530 * 531 * This function checks the ring, descriptor, and packet information in 532 * order to populate the checksum, VLAN, protocol, and other fields within 533 * the skb. 534 **/ 535 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 536 union ixgbe_adv_rx_desc *rx_desc, 537 struct sk_buff *skb) 538 { 539 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 540 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 541 542 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 543 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 544 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 545 546 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 547 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 548 } 549 550 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 551 } 552 553 /** 554 * ixgbevf_is_non_eop - process handling of non-EOP buffers 555 * @rx_ring: Rx ring being processed 556 * @rx_desc: Rx descriptor for current buffer 557 * @skb: current socket buffer containing buffer in progress 558 * 559 * This function updates next to clean. If the buffer is an EOP buffer 560 * this function exits returning false, otherwise it will place the 561 * sk_buff in the next buffer to be chained and return true indicating 562 * that this is in fact a non-EOP buffer. 563 **/ 564 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 565 union ixgbe_adv_rx_desc *rx_desc) 566 { 567 u32 ntc = rx_ring->next_to_clean + 1; 568 569 /* fetch, update, and store next to clean */ 570 ntc = (ntc < rx_ring->count) ? ntc : 0; 571 rx_ring->next_to_clean = ntc; 572 573 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 574 575 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 576 return false; 577 578 return true; 579 } 580 581 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 582 struct ixgbevf_rx_buffer *bi) 583 { 584 struct page *page = bi->page; 585 dma_addr_t dma = bi->dma; 586 587 /* since we are recycling buffers we should seldom need to alloc */ 588 if (likely(page)) 589 return true; 590 591 /* alloc new page for storage */ 592 page = dev_alloc_page(); 593 if (unlikely(!page)) { 594 rx_ring->rx_stats.alloc_rx_page_failed++; 595 return false; 596 } 597 598 /* map page for use */ 599 dma = dma_map_page(rx_ring->dev, page, 0, 600 PAGE_SIZE, DMA_FROM_DEVICE); 601 602 /* if mapping failed free memory back to system since 603 * there isn't much point in holding memory we can't use 604 */ 605 if (dma_mapping_error(rx_ring->dev, dma)) { 606 __free_page(page); 607 608 rx_ring->rx_stats.alloc_rx_buff_failed++; 609 return false; 610 } 611 612 bi->dma = dma; 613 bi->page = page; 614 bi->page_offset = 0; 615 616 return true; 617 } 618 619 /** 620 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 621 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 622 * @cleaned_count: number of buffers to replace 623 **/ 624 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 625 u16 cleaned_count) 626 { 627 union ixgbe_adv_rx_desc *rx_desc; 628 struct ixgbevf_rx_buffer *bi; 629 unsigned int i = rx_ring->next_to_use; 630 631 /* nothing to do or no valid netdev defined */ 632 if (!cleaned_count || !rx_ring->netdev) 633 return; 634 635 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 636 bi = &rx_ring->rx_buffer_info[i]; 637 i -= rx_ring->count; 638 639 do { 640 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 641 break; 642 643 /* Refresh the desc even if pkt_addr didn't change 644 * because each write-back erases this info. 645 */ 646 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 647 648 rx_desc++; 649 bi++; 650 i++; 651 if (unlikely(!i)) { 652 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 653 bi = rx_ring->rx_buffer_info; 654 i -= rx_ring->count; 655 } 656 657 /* clear the hdr_addr for the next_to_use descriptor */ 658 rx_desc->read.hdr_addr = 0; 659 660 cleaned_count--; 661 } while (cleaned_count); 662 663 i += rx_ring->count; 664 665 if (rx_ring->next_to_use != i) { 666 /* record the next descriptor to use */ 667 rx_ring->next_to_use = i; 668 669 /* update next to alloc since we have filled the ring */ 670 rx_ring->next_to_alloc = i; 671 672 /* Force memory writes to complete before letting h/w 673 * know there are new descriptors to fetch. (Only 674 * applicable for weak-ordered memory model archs, 675 * such as IA-64). 676 */ 677 wmb(); 678 ixgbevf_write_tail(rx_ring, i); 679 } 680 } 681 682 /** 683 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 684 * @rx_ring: rx descriptor ring packet is being transacted on 685 * @rx_desc: pointer to the EOP Rx descriptor 686 * @skb: pointer to current skb being fixed 687 * 688 * Check for corrupted packet headers caused by senders on the local L2 689 * embedded NIC switch not setting up their Tx Descriptors right. These 690 * should be very rare. 691 * 692 * Also address the case where we are pulling data in on pages only 693 * and as such no data is present in the skb header. 694 * 695 * In addition if skb is not at least 60 bytes we need to pad it so that 696 * it is large enough to qualify as a valid Ethernet frame. 697 * 698 * Returns true if an error was encountered and skb was freed. 699 **/ 700 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 701 union ixgbe_adv_rx_desc *rx_desc, 702 struct sk_buff *skb) 703 { 704 /* verify that the packet does not have any known errors */ 705 if (unlikely(ixgbevf_test_staterr(rx_desc, 706 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 707 struct net_device *netdev = rx_ring->netdev; 708 709 if (!(netdev->features & NETIF_F_RXALL)) { 710 dev_kfree_skb_any(skb); 711 return true; 712 } 713 } 714 715 /* if eth_skb_pad returns an error the skb was freed */ 716 if (eth_skb_pad(skb)) 717 return true; 718 719 return false; 720 } 721 722 /** 723 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 724 * @rx_ring: rx descriptor ring to store buffers on 725 * @old_buff: donor buffer to have page reused 726 * 727 * Synchronizes page for reuse by the adapter 728 **/ 729 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 730 struct ixgbevf_rx_buffer *old_buff) 731 { 732 struct ixgbevf_rx_buffer *new_buff; 733 u16 nta = rx_ring->next_to_alloc; 734 735 new_buff = &rx_ring->rx_buffer_info[nta]; 736 737 /* update, and store next to alloc */ 738 nta++; 739 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 740 741 /* transfer page from old buffer to new buffer */ 742 new_buff->page = old_buff->page; 743 new_buff->dma = old_buff->dma; 744 new_buff->page_offset = old_buff->page_offset; 745 746 /* sync the buffer for use by the device */ 747 dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma, 748 new_buff->page_offset, 749 IXGBEVF_RX_BUFSZ, 750 DMA_FROM_DEVICE); 751 } 752 753 static inline bool ixgbevf_page_is_reserved(struct page *page) 754 { 755 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 756 } 757 758 /** 759 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 760 * @rx_ring: rx descriptor ring to transact packets on 761 * @rx_buffer: buffer containing page to add 762 * @rx_desc: descriptor containing length of buffer written by hardware 763 * @skb: sk_buff to place the data into 764 * 765 * This function will add the data contained in rx_buffer->page to the skb. 766 * This is done either through a direct copy if the data in the buffer is 767 * less than the skb header size, otherwise it will just attach the page as 768 * a frag to the skb. 769 * 770 * The function will then update the page offset if necessary and return 771 * true if the buffer can be reused by the adapter. 772 **/ 773 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 774 struct ixgbevf_rx_buffer *rx_buffer, 775 union ixgbe_adv_rx_desc *rx_desc, 776 struct sk_buff *skb) 777 { 778 struct page *page = rx_buffer->page; 779 unsigned char *va = page_address(page) + rx_buffer->page_offset; 780 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 781 #if (PAGE_SIZE < 8192) 782 unsigned int truesize = IXGBEVF_RX_BUFSZ; 783 #else 784 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 785 #endif 786 unsigned int pull_len; 787 788 if (unlikely(skb_is_nonlinear(skb))) 789 goto add_tail_frag; 790 791 if (likely(size <= IXGBEVF_RX_HDR_SIZE)) { 792 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 793 794 /* page is not reserved, we can reuse buffer as is */ 795 if (likely(!ixgbevf_page_is_reserved(page))) 796 return true; 797 798 /* this page cannot be reused so discard it */ 799 put_page(page); 800 return false; 801 } 802 803 /* we need the header to contain the greater of either ETH_HLEN or 804 * 60 bytes if the skb->len is less than 60 for skb_pad. 805 */ 806 pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE); 807 808 /* align pull length to size of long to optimize memcpy performance */ 809 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 810 811 /* update all of the pointers */ 812 va += pull_len; 813 size -= pull_len; 814 815 add_tail_frag: 816 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 817 (unsigned long)va & ~PAGE_MASK, size, truesize); 818 819 /* avoid re-using remote pages */ 820 if (unlikely(ixgbevf_page_is_reserved(page))) 821 return false; 822 823 #if (PAGE_SIZE < 8192) 824 /* if we are only owner of page we can reuse it */ 825 if (unlikely(page_count(page) != 1)) 826 return false; 827 828 /* flip page offset to other buffer */ 829 rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ; 830 831 #else 832 /* move offset up to the next cache line */ 833 rx_buffer->page_offset += truesize; 834 835 if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ)) 836 return false; 837 838 #endif 839 /* Even if we own the page, we are not allowed to use atomic_set() 840 * This would break get_page_unless_zero() users. 841 */ 842 page_ref_inc(page); 843 844 return true; 845 } 846 847 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring, 848 union ixgbe_adv_rx_desc *rx_desc, 849 struct sk_buff *skb) 850 { 851 struct ixgbevf_rx_buffer *rx_buffer; 852 struct page *page; 853 854 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 855 page = rx_buffer->page; 856 prefetchw(page); 857 858 if (likely(!skb)) { 859 void *page_addr = page_address(page) + 860 rx_buffer->page_offset; 861 862 /* prefetch first cache line of first page */ 863 prefetch(page_addr); 864 #if L1_CACHE_BYTES < 128 865 prefetch(page_addr + L1_CACHE_BYTES); 866 #endif 867 868 /* allocate a skb to store the frags */ 869 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 870 IXGBEVF_RX_HDR_SIZE); 871 if (unlikely(!skb)) { 872 rx_ring->rx_stats.alloc_rx_buff_failed++; 873 return NULL; 874 } 875 876 /* we will be copying header into skb->data in 877 * pskb_may_pull so it is in our interest to prefetch 878 * it now to avoid a possible cache miss 879 */ 880 prefetchw(skb->data); 881 } 882 883 /* we are reusing so sync this buffer for CPU use */ 884 dma_sync_single_range_for_cpu(rx_ring->dev, 885 rx_buffer->dma, 886 rx_buffer->page_offset, 887 IXGBEVF_RX_BUFSZ, 888 DMA_FROM_DEVICE); 889 890 /* pull page into skb */ 891 if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { 892 /* hand second half of page back to the ring */ 893 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 894 } else { 895 /* we are not reusing the buffer so unmap it */ 896 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 897 PAGE_SIZE, DMA_FROM_DEVICE); 898 } 899 900 /* clear contents of buffer_info */ 901 rx_buffer->dma = 0; 902 rx_buffer->page = NULL; 903 904 return skb; 905 } 906 907 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 908 u32 qmask) 909 { 910 struct ixgbe_hw *hw = &adapter->hw; 911 912 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 913 } 914 915 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 916 struct ixgbevf_ring *rx_ring, 917 int budget) 918 { 919 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 920 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 921 struct sk_buff *skb = rx_ring->skb; 922 923 while (likely(total_rx_packets < budget)) { 924 union ixgbe_adv_rx_desc *rx_desc; 925 926 /* return some buffers to hardware, one at a time is too slow */ 927 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 928 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 929 cleaned_count = 0; 930 } 931 932 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 933 934 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD)) 935 break; 936 937 /* This memory barrier is needed to keep us from reading 938 * any other fields out of the rx_desc until we know the 939 * RXD_STAT_DD bit is set 940 */ 941 rmb(); 942 943 /* retrieve a buffer from the ring */ 944 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb); 945 946 /* exit if we failed to retrieve a buffer */ 947 if (!skb) 948 break; 949 950 cleaned_count++; 951 952 /* fetch next buffer in frame if non-eop */ 953 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 954 continue; 955 956 /* verify the packet layout is correct */ 957 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 958 skb = NULL; 959 continue; 960 } 961 962 /* probably a little skewed due to removing CRC */ 963 total_rx_bytes += skb->len; 964 965 /* Workaround hardware that can't do proper VEPA multicast 966 * source pruning. 967 */ 968 if ((skb->pkt_type == PACKET_BROADCAST || 969 skb->pkt_type == PACKET_MULTICAST) && 970 ether_addr_equal(rx_ring->netdev->dev_addr, 971 eth_hdr(skb)->h_source)) { 972 dev_kfree_skb_irq(skb); 973 continue; 974 } 975 976 /* populate checksum, VLAN, and protocol */ 977 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 978 979 ixgbevf_rx_skb(q_vector, skb); 980 981 /* reset skb pointer */ 982 skb = NULL; 983 984 /* update budget accounting */ 985 total_rx_packets++; 986 } 987 988 /* place incomplete frames back on ring for completion */ 989 rx_ring->skb = skb; 990 991 u64_stats_update_begin(&rx_ring->syncp); 992 rx_ring->stats.packets += total_rx_packets; 993 rx_ring->stats.bytes += total_rx_bytes; 994 u64_stats_update_end(&rx_ring->syncp); 995 q_vector->rx.total_packets += total_rx_packets; 996 q_vector->rx.total_bytes += total_rx_bytes; 997 998 return total_rx_packets; 999 } 1000 1001 /** 1002 * ixgbevf_poll - NAPI polling calback 1003 * @napi: napi struct with our devices info in it 1004 * @budget: amount of work driver is allowed to do this pass, in packets 1005 * 1006 * This function will clean more than one or more rings associated with a 1007 * q_vector. 1008 **/ 1009 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1010 { 1011 struct ixgbevf_q_vector *q_vector = 1012 container_of(napi, struct ixgbevf_q_vector, napi); 1013 struct ixgbevf_adapter *adapter = q_vector->adapter; 1014 struct ixgbevf_ring *ring; 1015 int per_ring_budget, work_done = 0; 1016 bool clean_complete = true; 1017 1018 ixgbevf_for_each_ring(ring, q_vector->tx) { 1019 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1020 clean_complete = false; 1021 } 1022 1023 if (budget <= 0) 1024 return budget; 1025 1026 /* attempt to distribute budget to each queue fairly, but don't allow 1027 * the budget to go below 1 because we'll exit polling 1028 */ 1029 if (q_vector->rx.count > 1) 1030 per_ring_budget = max(budget/q_vector->rx.count, 1); 1031 else 1032 per_ring_budget = budget; 1033 1034 ixgbevf_for_each_ring(ring, q_vector->rx) { 1035 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1036 per_ring_budget); 1037 work_done += cleaned; 1038 if (cleaned >= per_ring_budget) 1039 clean_complete = false; 1040 } 1041 1042 /* If all work not completed, return budget and keep polling */ 1043 if (!clean_complete) 1044 return budget; 1045 /* all work done, exit the polling mode */ 1046 napi_complete_done(napi, work_done); 1047 if (adapter->rx_itr_setting == 1) 1048 ixgbevf_set_itr(q_vector); 1049 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1050 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1051 ixgbevf_irq_enable_queues(adapter, 1052 BIT(q_vector->v_idx)); 1053 1054 return 0; 1055 } 1056 1057 /** 1058 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1059 * @q_vector: structure containing interrupt and ring information 1060 **/ 1061 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1062 { 1063 struct ixgbevf_adapter *adapter = q_vector->adapter; 1064 struct ixgbe_hw *hw = &adapter->hw; 1065 int v_idx = q_vector->v_idx; 1066 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1067 1068 /* set the WDIS bit to not clear the timer bits and cause an 1069 * immediate assertion of the interrupt 1070 */ 1071 itr_reg |= IXGBE_EITR_CNT_WDIS; 1072 1073 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1074 } 1075 1076 /** 1077 * ixgbevf_configure_msix - Configure MSI-X hardware 1078 * @adapter: board private structure 1079 * 1080 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1081 * interrupts. 1082 **/ 1083 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1084 { 1085 struct ixgbevf_q_vector *q_vector; 1086 int q_vectors, v_idx; 1087 1088 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1089 adapter->eims_enable_mask = 0; 1090 1091 /* Populate the IVAR table and set the ITR values to the 1092 * corresponding register. 1093 */ 1094 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1095 struct ixgbevf_ring *ring; 1096 1097 q_vector = adapter->q_vector[v_idx]; 1098 1099 ixgbevf_for_each_ring(ring, q_vector->rx) 1100 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1101 1102 ixgbevf_for_each_ring(ring, q_vector->tx) 1103 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1104 1105 if (q_vector->tx.ring && !q_vector->rx.ring) { 1106 /* Tx only vector */ 1107 if (adapter->tx_itr_setting == 1) 1108 q_vector->itr = IXGBE_12K_ITR; 1109 else 1110 q_vector->itr = adapter->tx_itr_setting; 1111 } else { 1112 /* Rx or Rx/Tx vector */ 1113 if (adapter->rx_itr_setting == 1) 1114 q_vector->itr = IXGBE_20K_ITR; 1115 else 1116 q_vector->itr = adapter->rx_itr_setting; 1117 } 1118 1119 /* add q_vector eims value to global eims_enable_mask */ 1120 adapter->eims_enable_mask |= BIT(v_idx); 1121 1122 ixgbevf_write_eitr(q_vector); 1123 } 1124 1125 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1126 /* setup eims_other and add value to global eims_enable_mask */ 1127 adapter->eims_other = BIT(v_idx); 1128 adapter->eims_enable_mask |= adapter->eims_other; 1129 } 1130 1131 enum latency_range { 1132 lowest_latency = 0, 1133 low_latency = 1, 1134 bulk_latency = 2, 1135 latency_invalid = 255 1136 }; 1137 1138 /** 1139 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1140 * @q_vector: structure containing interrupt and ring information 1141 * @ring_container: structure containing ring performance data 1142 * 1143 * Stores a new ITR value based on packets and byte 1144 * counts during the last interrupt. The advantage of per interrupt 1145 * computation is faster updates and more accurate ITR for the current 1146 * traffic pattern. Constants in this function were computed 1147 * based on theoretical maximum wire speed and thresholds were set based 1148 * on testing data as well as attempting to minimize response time 1149 * while increasing bulk throughput. 1150 **/ 1151 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1152 struct ixgbevf_ring_container *ring_container) 1153 { 1154 int bytes = ring_container->total_bytes; 1155 int packets = ring_container->total_packets; 1156 u32 timepassed_us; 1157 u64 bytes_perint; 1158 u8 itr_setting = ring_container->itr; 1159 1160 if (packets == 0) 1161 return; 1162 1163 /* simple throttle rate management 1164 * 0-20MB/s lowest (100000 ints/s) 1165 * 20-100MB/s low (20000 ints/s) 1166 * 100-1249MB/s bulk (12000 ints/s) 1167 */ 1168 /* what was last interrupt timeslice? */ 1169 timepassed_us = q_vector->itr >> 2; 1170 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1171 1172 switch (itr_setting) { 1173 case lowest_latency: 1174 if (bytes_perint > 10) 1175 itr_setting = low_latency; 1176 break; 1177 case low_latency: 1178 if (bytes_perint > 20) 1179 itr_setting = bulk_latency; 1180 else if (bytes_perint <= 10) 1181 itr_setting = lowest_latency; 1182 break; 1183 case bulk_latency: 1184 if (bytes_perint <= 20) 1185 itr_setting = low_latency; 1186 break; 1187 } 1188 1189 /* clear work counters since we have the values we need */ 1190 ring_container->total_bytes = 0; 1191 ring_container->total_packets = 0; 1192 1193 /* write updated itr to ring container */ 1194 ring_container->itr = itr_setting; 1195 } 1196 1197 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1198 { 1199 u32 new_itr = q_vector->itr; 1200 u8 current_itr; 1201 1202 ixgbevf_update_itr(q_vector, &q_vector->tx); 1203 ixgbevf_update_itr(q_vector, &q_vector->rx); 1204 1205 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1206 1207 switch (current_itr) { 1208 /* counts and packets in update_itr are dependent on these numbers */ 1209 case lowest_latency: 1210 new_itr = IXGBE_100K_ITR; 1211 break; 1212 case low_latency: 1213 new_itr = IXGBE_20K_ITR; 1214 break; 1215 case bulk_latency: 1216 new_itr = IXGBE_12K_ITR; 1217 break; 1218 default: 1219 break; 1220 } 1221 1222 if (new_itr != q_vector->itr) { 1223 /* do an exponential smoothing */ 1224 new_itr = (10 * new_itr * q_vector->itr) / 1225 ((9 * new_itr) + q_vector->itr); 1226 1227 /* save the algorithm value here */ 1228 q_vector->itr = new_itr; 1229 1230 ixgbevf_write_eitr(q_vector); 1231 } 1232 } 1233 1234 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1235 { 1236 struct ixgbevf_adapter *adapter = data; 1237 struct ixgbe_hw *hw = &adapter->hw; 1238 1239 hw->mac.get_link_status = 1; 1240 1241 ixgbevf_service_event_schedule(adapter); 1242 1243 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1244 1245 return IRQ_HANDLED; 1246 } 1247 1248 /** 1249 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1250 * @irq: unused 1251 * @data: pointer to our q_vector struct for this interrupt vector 1252 **/ 1253 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1254 { 1255 struct ixgbevf_q_vector *q_vector = data; 1256 1257 /* EIAM disabled interrupts (on this vector) for us */ 1258 if (q_vector->rx.ring || q_vector->tx.ring) 1259 napi_schedule_irqoff(&q_vector->napi); 1260 1261 return IRQ_HANDLED; 1262 } 1263 1264 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx, 1265 int r_idx) 1266 { 1267 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx]; 1268 1269 a->rx_ring[r_idx]->next = q_vector->rx.ring; 1270 q_vector->rx.ring = a->rx_ring[r_idx]; 1271 q_vector->rx.count++; 1272 } 1273 1274 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx, 1275 int t_idx) 1276 { 1277 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx]; 1278 1279 a->tx_ring[t_idx]->next = q_vector->tx.ring; 1280 q_vector->tx.ring = a->tx_ring[t_idx]; 1281 q_vector->tx.count++; 1282 } 1283 1284 /** 1285 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors 1286 * @adapter: board private structure to initialize 1287 * 1288 * This function maps descriptor rings to the queue-specific vectors 1289 * we were allotted through the MSI-X enabling code. Ideally, we'd have 1290 * one vector per ring/queue, but on a constrained vector budget, we 1291 * group the rings as "efficiently" as possible. You would add new 1292 * mapping configurations in here. 1293 **/ 1294 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter) 1295 { 1296 int q_vectors; 1297 int v_start = 0; 1298 int rxr_idx = 0, txr_idx = 0; 1299 int rxr_remaining = adapter->num_rx_queues; 1300 int txr_remaining = adapter->num_tx_queues; 1301 int i, j; 1302 int rqpv, tqpv; 1303 1304 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1305 1306 /* The ideal configuration... 1307 * We have enough vectors to map one per queue. 1308 */ 1309 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) { 1310 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++) 1311 map_vector_to_rxq(adapter, v_start, rxr_idx); 1312 1313 for (; txr_idx < txr_remaining; v_start++, txr_idx++) 1314 map_vector_to_txq(adapter, v_start, txr_idx); 1315 return 0; 1316 } 1317 1318 /* If we don't have enough vectors for a 1-to-1 1319 * mapping, we'll have to group them so there are 1320 * multiple queues per vector. 1321 */ 1322 /* Re-adjusting *qpv takes care of the remainder. */ 1323 for (i = v_start; i < q_vectors; i++) { 1324 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i); 1325 for (j = 0; j < rqpv; j++) { 1326 map_vector_to_rxq(adapter, i, rxr_idx); 1327 rxr_idx++; 1328 rxr_remaining--; 1329 } 1330 } 1331 for (i = v_start; i < q_vectors; i++) { 1332 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i); 1333 for (j = 0; j < tqpv; j++) { 1334 map_vector_to_txq(adapter, i, txr_idx); 1335 txr_idx++; 1336 txr_remaining--; 1337 } 1338 } 1339 1340 return 0; 1341 } 1342 1343 /** 1344 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1345 * @adapter: board private structure 1346 * 1347 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1348 * interrupts from the kernel. 1349 **/ 1350 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1351 { 1352 struct net_device *netdev = adapter->netdev; 1353 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1354 unsigned int ri = 0, ti = 0; 1355 int vector, err; 1356 1357 for (vector = 0; vector < q_vectors; vector++) { 1358 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1359 struct msix_entry *entry = &adapter->msix_entries[vector]; 1360 1361 if (q_vector->tx.ring && q_vector->rx.ring) { 1362 snprintf(q_vector->name, sizeof(q_vector->name), 1363 "%s-TxRx-%u", netdev->name, ri++); 1364 ti++; 1365 } else if (q_vector->rx.ring) { 1366 snprintf(q_vector->name, sizeof(q_vector->name), 1367 "%s-rx-%u", netdev->name, ri++); 1368 } else if (q_vector->tx.ring) { 1369 snprintf(q_vector->name, sizeof(q_vector->name), 1370 "%s-tx-%u", netdev->name, ti++); 1371 } else { 1372 /* skip this unused q_vector */ 1373 continue; 1374 } 1375 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1376 q_vector->name, q_vector); 1377 if (err) { 1378 hw_dbg(&adapter->hw, 1379 "request_irq failed for MSIX interrupt Error: %d\n", 1380 err); 1381 goto free_queue_irqs; 1382 } 1383 } 1384 1385 err = request_irq(adapter->msix_entries[vector].vector, 1386 &ixgbevf_msix_other, 0, netdev->name, adapter); 1387 if (err) { 1388 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1389 err); 1390 goto free_queue_irqs; 1391 } 1392 1393 return 0; 1394 1395 free_queue_irqs: 1396 while (vector) { 1397 vector--; 1398 free_irq(adapter->msix_entries[vector].vector, 1399 adapter->q_vector[vector]); 1400 } 1401 /* This failure is non-recoverable - it indicates the system is 1402 * out of MSIX vector resources and the VF driver cannot run 1403 * without them. Set the number of msix vectors to zero 1404 * indicating that not enough can be allocated. The error 1405 * will be returned to the user indicating device open failed. 1406 * Any further attempts to force the driver to open will also 1407 * fail. The only way to recover is to unload the driver and 1408 * reload it again. If the system has recovered some MSIX 1409 * vectors then it may succeed. 1410 */ 1411 adapter->num_msix_vectors = 0; 1412 return err; 1413 } 1414 1415 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter) 1416 { 1417 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1418 1419 for (i = 0; i < q_vectors; i++) { 1420 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i]; 1421 1422 q_vector->rx.ring = NULL; 1423 q_vector->tx.ring = NULL; 1424 q_vector->rx.count = 0; 1425 q_vector->tx.count = 0; 1426 } 1427 } 1428 1429 /** 1430 * ixgbevf_request_irq - initialize interrupts 1431 * @adapter: board private structure 1432 * 1433 * Attempts to configure interrupts using the best available 1434 * capabilities of the hardware and kernel. 1435 **/ 1436 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1437 { 1438 int err = ixgbevf_request_msix_irqs(adapter); 1439 1440 if (err) 1441 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1442 1443 return err; 1444 } 1445 1446 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1447 { 1448 int i, q_vectors; 1449 1450 if (!adapter->msix_entries) 1451 return; 1452 1453 q_vectors = adapter->num_msix_vectors; 1454 i = q_vectors - 1; 1455 1456 free_irq(adapter->msix_entries[i].vector, adapter); 1457 i--; 1458 1459 for (; i >= 0; i--) { 1460 /* free only the irqs that were actually requested */ 1461 if (!adapter->q_vector[i]->rx.ring && 1462 !adapter->q_vector[i]->tx.ring) 1463 continue; 1464 1465 free_irq(adapter->msix_entries[i].vector, 1466 adapter->q_vector[i]); 1467 } 1468 1469 ixgbevf_reset_q_vectors(adapter); 1470 } 1471 1472 /** 1473 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1474 * @adapter: board private structure 1475 **/ 1476 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1477 { 1478 struct ixgbe_hw *hw = &adapter->hw; 1479 int i; 1480 1481 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1482 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1483 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1484 1485 IXGBE_WRITE_FLUSH(hw); 1486 1487 for (i = 0; i < adapter->num_msix_vectors; i++) 1488 synchronize_irq(adapter->msix_entries[i].vector); 1489 } 1490 1491 /** 1492 * ixgbevf_irq_enable - Enable default interrupt generation settings 1493 * @adapter: board private structure 1494 **/ 1495 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1496 { 1497 struct ixgbe_hw *hw = &adapter->hw; 1498 1499 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1500 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1501 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1502 } 1503 1504 /** 1505 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1506 * @adapter: board private structure 1507 * @ring: structure containing ring specific data 1508 * 1509 * Configure the Tx descriptor ring after a reset. 1510 **/ 1511 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1512 struct ixgbevf_ring *ring) 1513 { 1514 struct ixgbe_hw *hw = &adapter->hw; 1515 u64 tdba = ring->dma; 1516 int wait_loop = 10; 1517 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1518 u8 reg_idx = ring->reg_idx; 1519 1520 /* disable queue to avoid issues while updating state */ 1521 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1522 IXGBE_WRITE_FLUSH(hw); 1523 1524 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1525 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1526 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1527 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1528 1529 /* disable head writeback */ 1530 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1531 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1532 1533 /* enable relaxed ordering */ 1534 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1535 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1536 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1537 1538 /* reset head and tail pointers */ 1539 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1540 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1541 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1542 1543 /* reset ntu and ntc to place SW in sync with hardwdare */ 1544 ring->next_to_clean = 0; 1545 ring->next_to_use = 0; 1546 1547 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1548 * to or less than the number of on chip descriptors, which is 1549 * currently 40. 1550 */ 1551 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1552 1553 /* Setting PTHRESH to 32 both improves performance */ 1554 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1555 32; /* PTHRESH = 32 */ 1556 1557 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1558 1559 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1560 1561 /* poll to verify queue is enabled */ 1562 do { 1563 usleep_range(1000, 2000); 1564 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1565 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1566 if (!wait_loop) 1567 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1568 } 1569 1570 /** 1571 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1572 * @adapter: board private structure 1573 * 1574 * Configure the Tx unit of the MAC after a reset. 1575 **/ 1576 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1577 { 1578 u32 i; 1579 1580 /* Setup the HW Tx Head and Tail descriptor pointers */ 1581 for (i = 0; i < adapter->num_tx_queues; i++) 1582 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1583 } 1584 1585 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1586 1587 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index) 1588 { 1589 struct ixgbe_hw *hw = &adapter->hw; 1590 u32 srrctl; 1591 1592 srrctl = IXGBE_SRRCTL_DROP_EN; 1593 1594 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1595 srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1596 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1597 1598 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1599 } 1600 1601 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1602 { 1603 struct ixgbe_hw *hw = &adapter->hw; 1604 1605 /* PSRTYPE must be initialized in 82599 */ 1606 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1607 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1608 IXGBE_PSRTYPE_L2HDR; 1609 1610 if (adapter->num_rx_queues > 1) 1611 psrtype |= BIT(29); 1612 1613 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1614 } 1615 1616 #define IXGBEVF_MAX_RX_DESC_POLL 10 1617 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1618 struct ixgbevf_ring *ring) 1619 { 1620 struct ixgbe_hw *hw = &adapter->hw; 1621 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1622 u32 rxdctl; 1623 u8 reg_idx = ring->reg_idx; 1624 1625 if (IXGBE_REMOVED(hw->hw_addr)) 1626 return; 1627 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1628 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1629 1630 /* write value back with RXDCTL.ENABLE bit cleared */ 1631 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1632 1633 /* the hardware may take up to 100us to really disable the Rx queue */ 1634 do { 1635 udelay(10); 1636 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1637 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1638 1639 if (!wait_loop) 1640 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1641 reg_idx); 1642 } 1643 1644 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1645 struct ixgbevf_ring *ring) 1646 { 1647 struct ixgbe_hw *hw = &adapter->hw; 1648 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1649 u32 rxdctl; 1650 u8 reg_idx = ring->reg_idx; 1651 1652 if (IXGBE_REMOVED(hw->hw_addr)) 1653 return; 1654 do { 1655 usleep_range(1000, 2000); 1656 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1657 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1658 1659 if (!wait_loop) 1660 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1661 reg_idx); 1662 } 1663 1664 /** 1665 * ixgbevf_init_rss_key - Initialize adapter RSS key 1666 * @adapter: device handle 1667 * 1668 * Allocates and initializes the RSS key if it is not allocated. 1669 **/ 1670 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1671 { 1672 u32 *rss_key; 1673 1674 if (!adapter->rss_key) { 1675 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1676 if (unlikely(!rss_key)) 1677 return -ENOMEM; 1678 1679 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1680 adapter->rss_key = rss_key; 1681 } 1682 1683 return 0; 1684 } 1685 1686 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1687 { 1688 struct ixgbe_hw *hw = &adapter->hw; 1689 u32 vfmrqc = 0, vfreta = 0; 1690 u16 rss_i = adapter->num_rx_queues; 1691 u8 i, j; 1692 1693 /* Fill out hash function seeds */ 1694 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1695 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1696 1697 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1698 if (j == rss_i) 1699 j = 0; 1700 1701 adapter->rss_indir_tbl[i] = j; 1702 1703 vfreta |= j << (i & 0x3) * 8; 1704 if ((i & 3) == 3) { 1705 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1706 vfreta = 0; 1707 } 1708 } 1709 1710 /* Perform hash on these packet types */ 1711 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1712 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1713 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1714 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1715 1716 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1717 1718 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1719 } 1720 1721 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1722 struct ixgbevf_ring *ring) 1723 { 1724 struct ixgbe_hw *hw = &adapter->hw; 1725 u64 rdba = ring->dma; 1726 u32 rxdctl; 1727 u8 reg_idx = ring->reg_idx; 1728 1729 /* disable queue to avoid issues while updating state */ 1730 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1731 ixgbevf_disable_rx_queue(adapter, ring); 1732 1733 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1734 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1735 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1736 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1737 1738 #ifndef CONFIG_SPARC 1739 /* enable relaxed ordering */ 1740 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1741 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1742 #else 1743 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1744 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1745 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1746 #endif 1747 1748 /* reset head and tail pointers */ 1749 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1750 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1751 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1752 1753 /* reset ntu and ntc to place SW in sync with hardwdare */ 1754 ring->next_to_clean = 0; 1755 ring->next_to_use = 0; 1756 ring->next_to_alloc = 0; 1757 1758 ixgbevf_configure_srrctl(adapter, reg_idx); 1759 1760 /* allow any size packet since we can handle overflow */ 1761 rxdctl &= ~IXGBE_RXDCTL_RLPML_EN; 1762 1763 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1764 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1765 1766 ixgbevf_rx_desc_queue_enable(adapter, ring); 1767 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1768 } 1769 1770 /** 1771 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1772 * @adapter: board private structure 1773 * 1774 * Configure the Rx unit of the MAC after a reset. 1775 **/ 1776 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 1777 { 1778 struct ixgbe_hw *hw = &adapter->hw; 1779 struct net_device *netdev = adapter->netdev; 1780 int i, ret; 1781 1782 ixgbevf_setup_psrtype(adapter); 1783 if (hw->mac.type >= ixgbe_mac_X550_vf) 1784 ixgbevf_setup_vfmrqc(adapter); 1785 1786 spin_lock_bh(&adapter->mbx_lock); 1787 /* notify the PF of our intent to use this size of frame */ 1788 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 1789 spin_unlock_bh(&adapter->mbx_lock); 1790 if (ret) 1791 dev_err(&adapter->pdev->dev, 1792 "Failed to set MTU at %d\n", netdev->mtu); 1793 1794 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1795 * the Base and Length of the Rx Descriptor Ring 1796 */ 1797 for (i = 0; i < adapter->num_rx_queues; i++) 1798 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]); 1799 } 1800 1801 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 1802 __be16 proto, u16 vid) 1803 { 1804 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1805 struct ixgbe_hw *hw = &adapter->hw; 1806 int err; 1807 1808 spin_lock_bh(&adapter->mbx_lock); 1809 1810 /* add VID to filter table */ 1811 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 1812 1813 spin_unlock_bh(&adapter->mbx_lock); 1814 1815 /* translate error return types so error makes sense */ 1816 if (err == IXGBE_ERR_MBX) 1817 return -EIO; 1818 1819 if (err == IXGBE_ERR_INVALID_ARGUMENT) 1820 return -EACCES; 1821 1822 set_bit(vid, adapter->active_vlans); 1823 1824 return err; 1825 } 1826 1827 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 1828 __be16 proto, u16 vid) 1829 { 1830 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1831 struct ixgbe_hw *hw = &adapter->hw; 1832 int err; 1833 1834 spin_lock_bh(&adapter->mbx_lock); 1835 1836 /* remove VID from filter table */ 1837 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 1838 1839 spin_unlock_bh(&adapter->mbx_lock); 1840 1841 clear_bit(vid, adapter->active_vlans); 1842 1843 return err; 1844 } 1845 1846 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 1847 { 1848 u16 vid; 1849 1850 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 1851 ixgbevf_vlan_rx_add_vid(adapter->netdev, 1852 htons(ETH_P_8021Q), vid); 1853 } 1854 1855 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 1856 { 1857 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1858 struct ixgbe_hw *hw = &adapter->hw; 1859 int count = 0; 1860 1861 if ((netdev_uc_count(netdev)) > 10) { 1862 pr_err("Too many unicast filters - No Space\n"); 1863 return -ENOSPC; 1864 } 1865 1866 if (!netdev_uc_empty(netdev)) { 1867 struct netdev_hw_addr *ha; 1868 1869 netdev_for_each_uc_addr(ha, netdev) { 1870 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 1871 udelay(200); 1872 } 1873 } else { 1874 /* If the list is empty then send message to PF driver to 1875 * clear all MAC VLANs on this VF. 1876 */ 1877 hw->mac.ops.set_uc_addr(hw, 0, NULL); 1878 } 1879 1880 return count; 1881 } 1882 1883 /** 1884 * ixgbevf_set_rx_mode - Multicast and unicast set 1885 * @netdev: network interface device structure 1886 * 1887 * The set_rx_method entry point is called whenever the multicast address 1888 * list, unicast address list or the network interface flags are updated. 1889 * This routine is responsible for configuring the hardware for proper 1890 * multicast mode and configuring requested unicast filters. 1891 **/ 1892 static void ixgbevf_set_rx_mode(struct net_device *netdev) 1893 { 1894 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1895 struct ixgbe_hw *hw = &adapter->hw; 1896 unsigned int flags = netdev->flags; 1897 int xcast_mode; 1898 1899 xcast_mode = (flags & IFF_ALLMULTI) ? IXGBEVF_XCAST_MODE_ALLMULTI : 1900 (flags & (IFF_BROADCAST | IFF_MULTICAST)) ? 1901 IXGBEVF_XCAST_MODE_MULTI : IXGBEVF_XCAST_MODE_NONE; 1902 1903 /* request the most inclusive mode we need */ 1904 if (flags & IFF_PROMISC) 1905 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 1906 else if (flags & IFF_ALLMULTI) 1907 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 1908 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 1909 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 1910 else 1911 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 1912 1913 spin_lock_bh(&adapter->mbx_lock); 1914 1915 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 1916 1917 /* reprogram multicast list */ 1918 hw->mac.ops.update_mc_addr_list(hw, netdev); 1919 1920 ixgbevf_write_uc_addr_list(netdev); 1921 1922 spin_unlock_bh(&adapter->mbx_lock); 1923 } 1924 1925 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 1926 { 1927 int q_idx; 1928 struct ixgbevf_q_vector *q_vector; 1929 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1930 1931 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1932 q_vector = adapter->q_vector[q_idx]; 1933 napi_enable(&q_vector->napi); 1934 } 1935 } 1936 1937 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 1938 { 1939 int q_idx; 1940 struct ixgbevf_q_vector *q_vector; 1941 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1942 1943 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1944 q_vector = adapter->q_vector[q_idx]; 1945 napi_disable(&q_vector->napi); 1946 } 1947 } 1948 1949 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 1950 { 1951 struct ixgbe_hw *hw = &adapter->hw; 1952 unsigned int def_q = 0; 1953 unsigned int num_tcs = 0; 1954 unsigned int num_rx_queues = adapter->num_rx_queues; 1955 unsigned int num_tx_queues = adapter->num_tx_queues; 1956 int err; 1957 1958 spin_lock_bh(&adapter->mbx_lock); 1959 1960 /* fetch queue configuration from the PF */ 1961 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 1962 1963 spin_unlock_bh(&adapter->mbx_lock); 1964 1965 if (err) 1966 return err; 1967 1968 if (num_tcs > 1) { 1969 /* we need only one Tx queue */ 1970 num_tx_queues = 1; 1971 1972 /* update default Tx ring register index */ 1973 adapter->tx_ring[0]->reg_idx = def_q; 1974 1975 /* we need as many queues as traffic classes */ 1976 num_rx_queues = num_tcs; 1977 } 1978 1979 /* if we have a bad config abort request queue reset */ 1980 if ((adapter->num_rx_queues != num_rx_queues) || 1981 (adapter->num_tx_queues != num_tx_queues)) { 1982 /* force mailbox timeout to prevent further messages */ 1983 hw->mbx.timeout = 0; 1984 1985 /* wait for watchdog to come around and bail us out */ 1986 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 1987 } 1988 1989 return 0; 1990 } 1991 1992 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 1993 { 1994 ixgbevf_configure_dcb(adapter); 1995 1996 ixgbevf_set_rx_mode(adapter->netdev); 1997 1998 ixgbevf_restore_vlan(adapter); 1999 2000 ixgbevf_configure_tx(adapter); 2001 ixgbevf_configure_rx(adapter); 2002 } 2003 2004 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2005 { 2006 /* Only save pre-reset stats if there are some */ 2007 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2008 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2009 adapter->stats.base_vfgprc; 2010 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2011 adapter->stats.base_vfgptc; 2012 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2013 adapter->stats.base_vfgorc; 2014 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2015 adapter->stats.base_vfgotc; 2016 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2017 adapter->stats.base_vfmprc; 2018 } 2019 } 2020 2021 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2022 { 2023 struct ixgbe_hw *hw = &adapter->hw; 2024 2025 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2026 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2027 adapter->stats.last_vfgorc |= 2028 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2029 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2030 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2031 adapter->stats.last_vfgotc |= 2032 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2033 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2034 2035 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2036 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2037 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2038 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2039 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2040 } 2041 2042 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2043 { 2044 struct ixgbe_hw *hw = &adapter->hw; 2045 int api[] = { ixgbe_mbox_api_13, 2046 ixgbe_mbox_api_12, 2047 ixgbe_mbox_api_11, 2048 ixgbe_mbox_api_10, 2049 ixgbe_mbox_api_unknown }; 2050 int err, idx = 0; 2051 2052 spin_lock_bh(&adapter->mbx_lock); 2053 2054 while (api[idx] != ixgbe_mbox_api_unknown) { 2055 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2056 if (!err) 2057 break; 2058 idx++; 2059 } 2060 2061 spin_unlock_bh(&adapter->mbx_lock); 2062 } 2063 2064 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2065 { 2066 struct net_device *netdev = adapter->netdev; 2067 struct ixgbe_hw *hw = &adapter->hw; 2068 2069 ixgbevf_configure_msix(adapter); 2070 2071 spin_lock_bh(&adapter->mbx_lock); 2072 2073 if (is_valid_ether_addr(hw->mac.addr)) 2074 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2075 else 2076 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2077 2078 spin_unlock_bh(&adapter->mbx_lock); 2079 2080 smp_mb__before_atomic(); 2081 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2082 ixgbevf_napi_enable_all(adapter); 2083 2084 /* clear any pending interrupts, may auto mask */ 2085 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2086 ixgbevf_irq_enable(adapter); 2087 2088 /* enable transmits */ 2089 netif_tx_start_all_queues(netdev); 2090 2091 ixgbevf_save_reset_stats(adapter); 2092 ixgbevf_init_last_counter_stats(adapter); 2093 2094 hw->mac.get_link_status = 1; 2095 mod_timer(&adapter->service_timer, jiffies); 2096 } 2097 2098 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2099 { 2100 ixgbevf_configure(adapter); 2101 2102 ixgbevf_up_complete(adapter); 2103 } 2104 2105 /** 2106 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2107 * @rx_ring: ring to free buffers from 2108 **/ 2109 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2110 { 2111 struct device *dev = rx_ring->dev; 2112 unsigned long size; 2113 unsigned int i; 2114 2115 /* Free Rx ring sk_buff */ 2116 if (rx_ring->skb) { 2117 dev_kfree_skb(rx_ring->skb); 2118 rx_ring->skb = NULL; 2119 } 2120 2121 /* ring already cleared, nothing to do */ 2122 if (!rx_ring->rx_buffer_info) 2123 return; 2124 2125 /* Free all the Rx ring pages */ 2126 for (i = 0; i < rx_ring->count; i++) { 2127 struct ixgbevf_rx_buffer *rx_buffer; 2128 2129 rx_buffer = &rx_ring->rx_buffer_info[i]; 2130 if (rx_buffer->dma) 2131 dma_unmap_page(dev, rx_buffer->dma, 2132 PAGE_SIZE, DMA_FROM_DEVICE); 2133 rx_buffer->dma = 0; 2134 if (rx_buffer->page) 2135 __free_page(rx_buffer->page); 2136 rx_buffer->page = NULL; 2137 } 2138 2139 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 2140 memset(rx_ring->rx_buffer_info, 0, size); 2141 2142 /* Zero out the descriptor ring */ 2143 memset(rx_ring->desc, 0, rx_ring->size); 2144 } 2145 2146 /** 2147 * ixgbevf_clean_tx_ring - Free Tx Buffers 2148 * @tx_ring: ring to be cleaned 2149 **/ 2150 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2151 { 2152 struct ixgbevf_tx_buffer *tx_buffer_info; 2153 unsigned long size; 2154 unsigned int i; 2155 2156 if (!tx_ring->tx_buffer_info) 2157 return; 2158 2159 /* Free all the Tx ring sk_buffs */ 2160 for (i = 0; i < tx_ring->count; i++) { 2161 tx_buffer_info = &tx_ring->tx_buffer_info[i]; 2162 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); 2163 } 2164 2165 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 2166 memset(tx_ring->tx_buffer_info, 0, size); 2167 2168 memset(tx_ring->desc, 0, tx_ring->size); 2169 } 2170 2171 /** 2172 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2173 * @adapter: board private structure 2174 **/ 2175 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2176 { 2177 int i; 2178 2179 for (i = 0; i < adapter->num_rx_queues; i++) 2180 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2181 } 2182 2183 /** 2184 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2185 * @adapter: board private structure 2186 **/ 2187 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2188 { 2189 int i; 2190 2191 for (i = 0; i < adapter->num_tx_queues; i++) 2192 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2193 } 2194 2195 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2196 { 2197 struct net_device *netdev = adapter->netdev; 2198 struct ixgbe_hw *hw = &adapter->hw; 2199 int i; 2200 2201 /* signal that we are down to the interrupt handler */ 2202 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2203 return; /* do nothing if already down */ 2204 2205 /* disable all enabled Rx queues */ 2206 for (i = 0; i < adapter->num_rx_queues; i++) 2207 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2208 2209 usleep_range(10000, 20000); 2210 2211 netif_tx_stop_all_queues(netdev); 2212 2213 /* call carrier off first to avoid false dev_watchdog timeouts */ 2214 netif_carrier_off(netdev); 2215 netif_tx_disable(netdev); 2216 2217 ixgbevf_irq_disable(adapter); 2218 2219 ixgbevf_napi_disable_all(adapter); 2220 2221 del_timer_sync(&adapter->service_timer); 2222 2223 /* disable transmits in the hardware now that interrupts are off */ 2224 for (i = 0; i < adapter->num_tx_queues; i++) { 2225 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2226 2227 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2228 IXGBE_TXDCTL_SWFLSH); 2229 } 2230 2231 if (!pci_channel_offline(adapter->pdev)) 2232 ixgbevf_reset(adapter); 2233 2234 ixgbevf_clean_all_tx_rings(adapter); 2235 ixgbevf_clean_all_rx_rings(adapter); 2236 } 2237 2238 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2239 { 2240 WARN_ON(in_interrupt()); 2241 2242 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2243 msleep(1); 2244 2245 ixgbevf_down(adapter); 2246 ixgbevf_up(adapter); 2247 2248 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2249 } 2250 2251 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2252 { 2253 struct ixgbe_hw *hw = &adapter->hw; 2254 struct net_device *netdev = adapter->netdev; 2255 2256 if (hw->mac.ops.reset_hw(hw)) { 2257 hw_dbg(hw, "PF still resetting\n"); 2258 } else { 2259 hw->mac.ops.init_hw(hw); 2260 ixgbevf_negotiate_api(adapter); 2261 } 2262 2263 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2264 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2265 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2266 } 2267 2268 adapter->last_reset = jiffies; 2269 } 2270 2271 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2272 int vectors) 2273 { 2274 int vector_threshold; 2275 2276 /* We'll want at least 2 (vector_threshold): 2277 * 1) TxQ[0] + RxQ[0] handler 2278 * 2) Other (Link Status Change, etc.) 2279 */ 2280 vector_threshold = MIN_MSIX_COUNT; 2281 2282 /* The more we get, the more we will assign to Tx/Rx Cleanup 2283 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2284 * Right now, we simply care about how many we'll get; we'll 2285 * set them up later while requesting irq's. 2286 */ 2287 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2288 vector_threshold, vectors); 2289 2290 if (vectors < 0) { 2291 dev_err(&adapter->pdev->dev, 2292 "Unable to allocate MSI-X interrupts\n"); 2293 kfree(adapter->msix_entries); 2294 adapter->msix_entries = NULL; 2295 return vectors; 2296 } 2297 2298 /* Adjust for only the vectors we'll use, which is minimum 2299 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2300 * vectors we were allocated. 2301 */ 2302 adapter->num_msix_vectors = vectors; 2303 2304 return 0; 2305 } 2306 2307 /** 2308 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2309 * @adapter: board private structure to initialize 2310 * 2311 * This is the top level queue allocation routine. The order here is very 2312 * important, starting with the "most" number of features turned on at once, 2313 * and ending with the smallest set of features. This way large combinations 2314 * can be allocated if they're turned on, and smaller combinations are the 2315 * fallthrough conditions. 2316 * 2317 **/ 2318 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2319 { 2320 struct ixgbe_hw *hw = &adapter->hw; 2321 unsigned int def_q = 0; 2322 unsigned int num_tcs = 0; 2323 int err; 2324 2325 /* Start with base case */ 2326 adapter->num_rx_queues = 1; 2327 adapter->num_tx_queues = 1; 2328 2329 spin_lock_bh(&adapter->mbx_lock); 2330 2331 /* fetch queue configuration from the PF */ 2332 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2333 2334 spin_unlock_bh(&adapter->mbx_lock); 2335 2336 if (err) 2337 return; 2338 2339 /* we need as many queues as traffic classes */ 2340 if (num_tcs > 1) { 2341 adapter->num_rx_queues = num_tcs; 2342 } else { 2343 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2344 2345 switch (hw->api_version) { 2346 case ixgbe_mbox_api_11: 2347 case ixgbe_mbox_api_12: 2348 case ixgbe_mbox_api_13: 2349 adapter->num_rx_queues = rss; 2350 adapter->num_tx_queues = rss; 2351 default: 2352 break; 2353 } 2354 } 2355 } 2356 2357 /** 2358 * ixgbevf_alloc_queues - Allocate memory for all rings 2359 * @adapter: board private structure to initialize 2360 * 2361 * We allocate one ring per queue at run-time since we don't know the 2362 * number of queues at compile-time. The polling_netdev array is 2363 * intended for Multiqueue, but should work fine with a single queue. 2364 **/ 2365 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter) 2366 { 2367 struct ixgbevf_ring *ring; 2368 int rx = 0, tx = 0; 2369 2370 for (; tx < adapter->num_tx_queues; tx++) { 2371 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 2372 if (!ring) 2373 goto err_allocation; 2374 2375 ring->dev = &adapter->pdev->dev; 2376 ring->netdev = adapter->netdev; 2377 ring->count = adapter->tx_ring_count; 2378 ring->queue_index = tx; 2379 ring->reg_idx = tx; 2380 2381 adapter->tx_ring[tx] = ring; 2382 } 2383 2384 for (; rx < adapter->num_rx_queues; rx++) { 2385 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 2386 if (!ring) 2387 goto err_allocation; 2388 2389 ring->dev = &adapter->pdev->dev; 2390 ring->netdev = adapter->netdev; 2391 2392 ring->count = adapter->rx_ring_count; 2393 ring->queue_index = rx; 2394 ring->reg_idx = rx; 2395 2396 adapter->rx_ring[rx] = ring; 2397 } 2398 2399 return 0; 2400 2401 err_allocation: 2402 while (tx) { 2403 kfree(adapter->tx_ring[--tx]); 2404 adapter->tx_ring[tx] = NULL; 2405 } 2406 2407 while (rx) { 2408 kfree(adapter->rx_ring[--rx]); 2409 adapter->rx_ring[rx] = NULL; 2410 } 2411 return -ENOMEM; 2412 } 2413 2414 /** 2415 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2416 * @adapter: board private structure to initialize 2417 * 2418 * Attempt to configure the interrupts using the best available 2419 * capabilities of the hardware and the kernel. 2420 **/ 2421 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2422 { 2423 struct net_device *netdev = adapter->netdev; 2424 int err; 2425 int vector, v_budget; 2426 2427 /* It's easy to be greedy for MSI-X vectors, but it really 2428 * doesn't do us much good if we have a lot more vectors 2429 * than CPU's. So let's be conservative and only ask for 2430 * (roughly) the same number of vectors as there are CPU's. 2431 * The default is to use pairs of vectors. 2432 */ 2433 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2434 v_budget = min_t(int, v_budget, num_online_cpus()); 2435 v_budget += NON_Q_VECTORS; 2436 2437 /* A failure in MSI-X entry allocation isn't fatal, but it does 2438 * mean we disable MSI-X capabilities of the adapter. 2439 */ 2440 adapter->msix_entries = kcalloc(v_budget, 2441 sizeof(struct msix_entry), GFP_KERNEL); 2442 if (!adapter->msix_entries) 2443 return -ENOMEM; 2444 2445 for (vector = 0; vector < v_budget; vector++) 2446 adapter->msix_entries[vector].entry = vector; 2447 2448 err = ixgbevf_acquire_msix_vectors(adapter, v_budget); 2449 if (err) 2450 return err; 2451 2452 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 2453 if (err) 2454 return err; 2455 2456 return netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 2457 } 2458 2459 /** 2460 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2461 * @adapter: board private structure to initialize 2462 * 2463 * We allocate one q_vector per queue interrupt. If allocation fails we 2464 * return -ENOMEM. 2465 **/ 2466 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2467 { 2468 int q_idx, num_q_vectors; 2469 struct ixgbevf_q_vector *q_vector; 2470 2471 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2472 2473 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 2474 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL); 2475 if (!q_vector) 2476 goto err_out; 2477 q_vector->adapter = adapter; 2478 q_vector->v_idx = q_idx; 2479 netif_napi_add(adapter->netdev, &q_vector->napi, 2480 ixgbevf_poll, 64); 2481 adapter->q_vector[q_idx] = q_vector; 2482 } 2483 2484 return 0; 2485 2486 err_out: 2487 while (q_idx) { 2488 q_idx--; 2489 q_vector = adapter->q_vector[q_idx]; 2490 #ifdef CONFIG_NET_RX_BUSY_POLL 2491 napi_hash_del(&q_vector->napi); 2492 #endif 2493 netif_napi_del(&q_vector->napi); 2494 kfree(q_vector); 2495 adapter->q_vector[q_idx] = NULL; 2496 } 2497 return -ENOMEM; 2498 } 2499 2500 /** 2501 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2502 * @adapter: board private structure to initialize 2503 * 2504 * This function frees the memory allocated to the q_vectors. In addition if 2505 * NAPI is enabled it will delete any references to the NAPI struct prior 2506 * to freeing the q_vector. 2507 **/ 2508 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2509 { 2510 int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2511 2512 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 2513 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx]; 2514 2515 adapter->q_vector[q_idx] = NULL; 2516 #ifdef CONFIG_NET_RX_BUSY_POLL 2517 napi_hash_del(&q_vector->napi); 2518 #endif 2519 netif_napi_del(&q_vector->napi); 2520 kfree(q_vector); 2521 } 2522 } 2523 2524 /** 2525 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2526 * @adapter: board private structure 2527 * 2528 **/ 2529 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2530 { 2531 if (!adapter->msix_entries) 2532 return; 2533 2534 pci_disable_msix(adapter->pdev); 2535 kfree(adapter->msix_entries); 2536 adapter->msix_entries = NULL; 2537 } 2538 2539 /** 2540 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2541 * @adapter: board private structure to initialize 2542 * 2543 **/ 2544 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2545 { 2546 int err; 2547 2548 /* Number of supported queues */ 2549 ixgbevf_set_num_queues(adapter); 2550 2551 err = ixgbevf_set_interrupt_capability(adapter); 2552 if (err) { 2553 hw_dbg(&adapter->hw, 2554 "Unable to setup interrupt capabilities\n"); 2555 goto err_set_interrupt; 2556 } 2557 2558 err = ixgbevf_alloc_q_vectors(adapter); 2559 if (err) { 2560 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2561 goto err_alloc_q_vectors; 2562 } 2563 2564 err = ixgbevf_alloc_queues(adapter); 2565 if (err) { 2566 pr_err("Unable to allocate memory for queues\n"); 2567 goto err_alloc_queues; 2568 } 2569 2570 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n", 2571 (adapter->num_rx_queues > 1) ? "Enabled" : 2572 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues); 2573 2574 set_bit(__IXGBEVF_DOWN, &adapter->state); 2575 2576 return 0; 2577 err_alloc_queues: 2578 ixgbevf_free_q_vectors(adapter); 2579 err_alloc_q_vectors: 2580 ixgbevf_reset_interrupt_capability(adapter); 2581 err_set_interrupt: 2582 return err; 2583 } 2584 2585 /** 2586 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2587 * @adapter: board private structure to clear interrupt scheme on 2588 * 2589 * We go through and clear interrupt specific resources and reset the structure 2590 * to pre-load conditions 2591 **/ 2592 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2593 { 2594 int i; 2595 2596 for (i = 0; i < adapter->num_tx_queues; i++) { 2597 kfree(adapter->tx_ring[i]); 2598 adapter->tx_ring[i] = NULL; 2599 } 2600 for (i = 0; i < adapter->num_rx_queues; i++) { 2601 kfree(adapter->rx_ring[i]); 2602 adapter->rx_ring[i] = NULL; 2603 } 2604 2605 adapter->num_tx_queues = 0; 2606 adapter->num_rx_queues = 0; 2607 2608 ixgbevf_free_q_vectors(adapter); 2609 ixgbevf_reset_interrupt_capability(adapter); 2610 } 2611 2612 /** 2613 * ixgbevf_sw_init - Initialize general software structures 2614 * @adapter: board private structure to initialize 2615 * 2616 * ixgbevf_sw_init initializes the Adapter private data structure. 2617 * Fields are initialized based on PCI device information and 2618 * OS network device settings (MTU size). 2619 **/ 2620 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 2621 { 2622 struct ixgbe_hw *hw = &adapter->hw; 2623 struct pci_dev *pdev = adapter->pdev; 2624 struct net_device *netdev = adapter->netdev; 2625 int err; 2626 2627 /* PCI config space info */ 2628 hw->vendor_id = pdev->vendor; 2629 hw->device_id = pdev->device; 2630 hw->revision_id = pdev->revision; 2631 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2632 hw->subsystem_device_id = pdev->subsystem_device; 2633 2634 hw->mbx.ops.init_params(hw); 2635 2636 if (hw->mac.type >= ixgbe_mac_X550_vf) { 2637 err = ixgbevf_init_rss_key(adapter); 2638 if (err) 2639 goto out; 2640 } 2641 2642 /* assume legacy case in which PF would only give VF 2 queues */ 2643 hw->mac.max_tx_queues = 2; 2644 hw->mac.max_rx_queues = 2; 2645 2646 /* lock to protect mailbox accesses */ 2647 spin_lock_init(&adapter->mbx_lock); 2648 2649 err = hw->mac.ops.reset_hw(hw); 2650 if (err) { 2651 dev_info(&pdev->dev, 2652 "PF still in reset state. Is the PF interface up?\n"); 2653 } else { 2654 err = hw->mac.ops.init_hw(hw); 2655 if (err) { 2656 pr_err("init_shared_code failed: %d\n", err); 2657 goto out; 2658 } 2659 ixgbevf_negotiate_api(adapter); 2660 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 2661 if (err) 2662 dev_info(&pdev->dev, "Error reading MAC address\n"); 2663 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 2664 dev_info(&pdev->dev, 2665 "MAC address not assigned by administrator.\n"); 2666 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 2667 } 2668 2669 if (!is_valid_ether_addr(netdev->dev_addr)) { 2670 dev_info(&pdev->dev, "Assigning random MAC address\n"); 2671 eth_hw_addr_random(netdev); 2672 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 2673 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 2674 } 2675 2676 /* Enable dynamic interrupt throttling rates */ 2677 adapter->rx_itr_setting = 1; 2678 adapter->tx_itr_setting = 1; 2679 2680 /* set default ring sizes */ 2681 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 2682 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 2683 2684 set_bit(__IXGBEVF_DOWN, &adapter->state); 2685 return 0; 2686 2687 out: 2688 return err; 2689 } 2690 2691 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 2692 { \ 2693 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 2694 if (current_counter < last_counter) \ 2695 counter += 0x100000000LL; \ 2696 last_counter = current_counter; \ 2697 counter &= 0xFFFFFFFF00000000LL; \ 2698 counter |= current_counter; \ 2699 } 2700 2701 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 2702 { \ 2703 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 2704 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 2705 u64 current_counter = (current_counter_msb << 32) | \ 2706 current_counter_lsb; \ 2707 if (current_counter < last_counter) \ 2708 counter += 0x1000000000LL; \ 2709 last_counter = current_counter; \ 2710 counter &= 0xFFFFFFF000000000LL; \ 2711 counter |= current_counter; \ 2712 } 2713 /** 2714 * ixgbevf_update_stats - Update the board statistics counters. 2715 * @adapter: board private structure 2716 **/ 2717 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 2718 { 2719 struct ixgbe_hw *hw = &adapter->hw; 2720 int i; 2721 2722 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2723 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2724 return; 2725 2726 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 2727 adapter->stats.vfgprc); 2728 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 2729 adapter->stats.vfgptc); 2730 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 2731 adapter->stats.last_vfgorc, 2732 adapter->stats.vfgorc); 2733 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 2734 adapter->stats.last_vfgotc, 2735 adapter->stats.vfgotc); 2736 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 2737 adapter->stats.vfmprc); 2738 2739 for (i = 0; i < adapter->num_rx_queues; i++) { 2740 adapter->hw_csum_rx_error += 2741 adapter->rx_ring[i]->hw_csum_rx_error; 2742 adapter->rx_ring[i]->hw_csum_rx_error = 0; 2743 } 2744 } 2745 2746 /** 2747 * ixgbevf_service_timer - Timer Call-back 2748 * @data: pointer to adapter cast into an unsigned long 2749 **/ 2750 static void ixgbevf_service_timer(unsigned long data) 2751 { 2752 struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data; 2753 2754 /* Reset the timer */ 2755 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 2756 2757 ixgbevf_service_event_schedule(adapter); 2758 } 2759 2760 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 2761 { 2762 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 2763 return; 2764 2765 /* If we're already down or resetting, just bail */ 2766 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2767 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 2768 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2769 return; 2770 2771 adapter->tx_timeout_count++; 2772 2773 rtnl_lock(); 2774 ixgbevf_reinit_locked(adapter); 2775 rtnl_unlock(); 2776 } 2777 2778 /** 2779 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 2780 * @adapter: pointer to the device adapter structure 2781 * 2782 * This function serves two purposes. First it strobes the interrupt lines 2783 * in order to make certain interrupts are occurring. Secondly it sets the 2784 * bits needed to check for TX hangs. As a result we should immediately 2785 * determine if a hang has occurred. 2786 **/ 2787 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 2788 { 2789 struct ixgbe_hw *hw = &adapter->hw; 2790 u32 eics = 0; 2791 int i; 2792 2793 /* If we're down or resetting, just bail */ 2794 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2795 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2796 return; 2797 2798 /* Force detection of hung controller */ 2799 if (netif_carrier_ok(adapter->netdev)) { 2800 for (i = 0; i < adapter->num_tx_queues; i++) 2801 set_check_for_tx_hang(adapter->tx_ring[i]); 2802 } 2803 2804 /* get one bit for every active Tx/Rx interrupt vector */ 2805 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 2806 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 2807 2808 if (qv->rx.ring || qv->tx.ring) 2809 eics |= BIT(i); 2810 } 2811 2812 /* Cause software interrupt to ensure rings are cleaned */ 2813 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 2814 } 2815 2816 /** 2817 * ixgbevf_watchdog_update_link - update the link status 2818 * @adapter: pointer to the device adapter structure 2819 **/ 2820 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 2821 { 2822 struct ixgbe_hw *hw = &adapter->hw; 2823 u32 link_speed = adapter->link_speed; 2824 bool link_up = adapter->link_up; 2825 s32 err; 2826 2827 spin_lock_bh(&adapter->mbx_lock); 2828 2829 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 2830 2831 spin_unlock_bh(&adapter->mbx_lock); 2832 2833 /* if check for link returns error we will need to reset */ 2834 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 2835 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 2836 link_up = false; 2837 } 2838 2839 adapter->link_up = link_up; 2840 adapter->link_speed = link_speed; 2841 } 2842 2843 /** 2844 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 2845 * print link up message 2846 * @adapter: pointer to the device adapter structure 2847 **/ 2848 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 2849 { 2850 struct net_device *netdev = adapter->netdev; 2851 2852 /* only continue if link was previously down */ 2853 if (netif_carrier_ok(netdev)) 2854 return; 2855 2856 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 2857 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 2858 "10 Gbps" : 2859 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 2860 "1 Gbps" : 2861 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 2862 "100 Mbps" : 2863 "unknown speed"); 2864 2865 netif_carrier_on(netdev); 2866 } 2867 2868 /** 2869 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 2870 * print link down message 2871 * @adapter: pointer to the adapter structure 2872 **/ 2873 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 2874 { 2875 struct net_device *netdev = adapter->netdev; 2876 2877 adapter->link_speed = 0; 2878 2879 /* only continue if link was up previously */ 2880 if (!netif_carrier_ok(netdev)) 2881 return; 2882 2883 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 2884 2885 netif_carrier_off(netdev); 2886 } 2887 2888 /** 2889 * ixgbevf_watchdog_subtask - worker thread to bring link up 2890 * @work: pointer to work_struct containing our data 2891 **/ 2892 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 2893 { 2894 /* if interface is down do nothing */ 2895 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2896 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2897 return; 2898 2899 ixgbevf_watchdog_update_link(adapter); 2900 2901 if (adapter->link_up) 2902 ixgbevf_watchdog_link_is_up(adapter); 2903 else 2904 ixgbevf_watchdog_link_is_down(adapter); 2905 2906 ixgbevf_update_stats(adapter); 2907 } 2908 2909 /** 2910 * ixgbevf_service_task - manages and runs subtasks 2911 * @work: pointer to work_struct containing our data 2912 **/ 2913 static void ixgbevf_service_task(struct work_struct *work) 2914 { 2915 struct ixgbevf_adapter *adapter = container_of(work, 2916 struct ixgbevf_adapter, 2917 service_task); 2918 struct ixgbe_hw *hw = &adapter->hw; 2919 2920 if (IXGBE_REMOVED(hw->hw_addr)) { 2921 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 2922 rtnl_lock(); 2923 ixgbevf_down(adapter); 2924 rtnl_unlock(); 2925 } 2926 return; 2927 } 2928 2929 ixgbevf_queue_reset_subtask(adapter); 2930 ixgbevf_reset_subtask(adapter); 2931 ixgbevf_watchdog_subtask(adapter); 2932 ixgbevf_check_hang_subtask(adapter); 2933 2934 ixgbevf_service_event_complete(adapter); 2935 } 2936 2937 /** 2938 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 2939 * @tx_ring: Tx descriptor ring for a specific queue 2940 * 2941 * Free all transmit software resources 2942 **/ 2943 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 2944 { 2945 ixgbevf_clean_tx_ring(tx_ring); 2946 2947 vfree(tx_ring->tx_buffer_info); 2948 tx_ring->tx_buffer_info = NULL; 2949 2950 /* if not set, then don't free */ 2951 if (!tx_ring->desc) 2952 return; 2953 2954 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 2955 tx_ring->dma); 2956 2957 tx_ring->desc = NULL; 2958 } 2959 2960 /** 2961 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 2962 * @adapter: board private structure 2963 * 2964 * Free all transmit software resources 2965 **/ 2966 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 2967 { 2968 int i; 2969 2970 for (i = 0; i < adapter->num_tx_queues; i++) 2971 if (adapter->tx_ring[i]->desc) 2972 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 2973 } 2974 2975 /** 2976 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 2977 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 2978 * 2979 * Return 0 on success, negative on failure 2980 **/ 2981 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 2982 { 2983 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 2984 int size; 2985 2986 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 2987 tx_ring->tx_buffer_info = vzalloc(size); 2988 if (!tx_ring->tx_buffer_info) 2989 goto err; 2990 2991 u64_stats_init(&tx_ring->syncp); 2992 2993 /* round up to nearest 4K */ 2994 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 2995 tx_ring->size = ALIGN(tx_ring->size, 4096); 2996 2997 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 2998 &tx_ring->dma, GFP_KERNEL); 2999 if (!tx_ring->desc) 3000 goto err; 3001 3002 return 0; 3003 3004 err: 3005 vfree(tx_ring->tx_buffer_info); 3006 tx_ring->tx_buffer_info = NULL; 3007 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3008 return -ENOMEM; 3009 } 3010 3011 /** 3012 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3013 * @adapter: board private structure 3014 * 3015 * If this function returns with an error, then it's possible one or 3016 * more of the rings is populated (while the rest are not). It is the 3017 * callers duty to clean those orphaned rings. 3018 * 3019 * Return 0 on success, negative on failure 3020 **/ 3021 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3022 { 3023 int i, err = 0; 3024 3025 for (i = 0; i < adapter->num_tx_queues; i++) { 3026 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3027 if (!err) 3028 continue; 3029 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3030 break; 3031 } 3032 3033 return err; 3034 } 3035 3036 /** 3037 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3038 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3039 * 3040 * Returns 0 on success, negative on failure 3041 **/ 3042 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring) 3043 { 3044 int size; 3045 3046 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3047 rx_ring->rx_buffer_info = vzalloc(size); 3048 if (!rx_ring->rx_buffer_info) 3049 goto err; 3050 3051 u64_stats_init(&rx_ring->syncp); 3052 3053 /* Round up to nearest 4K */ 3054 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3055 rx_ring->size = ALIGN(rx_ring->size, 4096); 3056 3057 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3058 &rx_ring->dma, GFP_KERNEL); 3059 3060 if (!rx_ring->desc) 3061 goto err; 3062 3063 return 0; 3064 err: 3065 vfree(rx_ring->rx_buffer_info); 3066 rx_ring->rx_buffer_info = NULL; 3067 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3068 return -ENOMEM; 3069 } 3070 3071 /** 3072 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3073 * @adapter: board private structure 3074 * 3075 * If this function returns with an error, then it's possible one or 3076 * more of the rings is populated (while the rest are not). It is the 3077 * callers duty to clean those orphaned rings. 3078 * 3079 * Return 0 on success, negative on failure 3080 **/ 3081 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3082 { 3083 int i, err = 0; 3084 3085 for (i = 0; i < adapter->num_rx_queues; i++) { 3086 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]); 3087 if (!err) 3088 continue; 3089 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3090 break; 3091 } 3092 return err; 3093 } 3094 3095 /** 3096 * ixgbevf_free_rx_resources - Free Rx Resources 3097 * @rx_ring: ring to clean the resources from 3098 * 3099 * Free all receive software resources 3100 **/ 3101 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3102 { 3103 ixgbevf_clean_rx_ring(rx_ring); 3104 3105 vfree(rx_ring->rx_buffer_info); 3106 rx_ring->rx_buffer_info = NULL; 3107 3108 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3109 rx_ring->dma); 3110 3111 rx_ring->desc = NULL; 3112 } 3113 3114 /** 3115 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3116 * @adapter: board private structure 3117 * 3118 * Free all receive software resources 3119 **/ 3120 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3121 { 3122 int i; 3123 3124 for (i = 0; i < adapter->num_rx_queues; i++) 3125 if (adapter->rx_ring[i]->desc) 3126 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3127 } 3128 3129 /** 3130 * ixgbevf_open - Called when a network interface is made active 3131 * @netdev: network interface device structure 3132 * 3133 * Returns 0 on success, negative value on failure 3134 * 3135 * The open entry point is called when a network interface is made 3136 * active by the system (IFF_UP). At this point all resources needed 3137 * for transmit and receive operations are allocated, the interrupt 3138 * handler is registered with the OS, the watchdog timer is started, 3139 * and the stack is notified that the interface is ready. 3140 **/ 3141 int ixgbevf_open(struct net_device *netdev) 3142 { 3143 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3144 struct ixgbe_hw *hw = &adapter->hw; 3145 int err; 3146 3147 /* A previous failure to open the device because of a lack of 3148 * available MSIX vector resources may have reset the number 3149 * of msix vectors variable to zero. The only way to recover 3150 * is to unload/reload the driver and hope that the system has 3151 * been able to recover some MSIX vector resources. 3152 */ 3153 if (!adapter->num_msix_vectors) 3154 return -ENOMEM; 3155 3156 if (hw->adapter_stopped) { 3157 ixgbevf_reset(adapter); 3158 /* if adapter is still stopped then PF isn't up and 3159 * the VF can't start. 3160 */ 3161 if (hw->adapter_stopped) { 3162 err = IXGBE_ERR_MBX; 3163 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3164 goto err_setup_reset; 3165 } 3166 } 3167 3168 /* disallow open during test */ 3169 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3170 return -EBUSY; 3171 3172 netif_carrier_off(netdev); 3173 3174 /* allocate transmit descriptors */ 3175 err = ixgbevf_setup_all_tx_resources(adapter); 3176 if (err) 3177 goto err_setup_tx; 3178 3179 /* allocate receive descriptors */ 3180 err = ixgbevf_setup_all_rx_resources(adapter); 3181 if (err) 3182 goto err_setup_rx; 3183 3184 ixgbevf_configure(adapter); 3185 3186 /* Map the Tx/Rx rings to the vectors we were allotted. 3187 * if request_irq will be called in this function map_rings 3188 * must be called *before* up_complete 3189 */ 3190 ixgbevf_map_rings_to_vectors(adapter); 3191 3192 err = ixgbevf_request_irq(adapter); 3193 if (err) 3194 goto err_req_irq; 3195 3196 ixgbevf_up_complete(adapter); 3197 3198 return 0; 3199 3200 err_req_irq: 3201 ixgbevf_down(adapter); 3202 err_setup_rx: 3203 ixgbevf_free_all_rx_resources(adapter); 3204 err_setup_tx: 3205 ixgbevf_free_all_tx_resources(adapter); 3206 ixgbevf_reset(adapter); 3207 3208 err_setup_reset: 3209 3210 return err; 3211 } 3212 3213 /** 3214 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3215 * @adapter: the private adapter struct 3216 * 3217 * This function should contain the necessary work common to both suspending 3218 * and closing of the device. 3219 */ 3220 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3221 { 3222 ixgbevf_down(adapter); 3223 ixgbevf_free_irq(adapter); 3224 ixgbevf_free_all_tx_resources(adapter); 3225 ixgbevf_free_all_rx_resources(adapter); 3226 } 3227 3228 /** 3229 * ixgbevf_close - Disables a network interface 3230 * @netdev: network interface device structure 3231 * 3232 * Returns 0, this is not allowed to fail 3233 * 3234 * The close entry point is called when an interface is de-activated 3235 * by the OS. The hardware is still under the drivers control, but 3236 * needs to be disabled. A global MAC reset is issued to stop the 3237 * hardware, and all transmit and receive resources are freed. 3238 **/ 3239 int ixgbevf_close(struct net_device *netdev) 3240 { 3241 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3242 3243 if (netif_device_present(netdev)) 3244 ixgbevf_close_suspend(adapter); 3245 3246 return 0; 3247 } 3248 3249 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3250 { 3251 struct net_device *dev = adapter->netdev; 3252 3253 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3254 &adapter->state)) 3255 return; 3256 3257 /* if interface is down do nothing */ 3258 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3259 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3260 return; 3261 3262 /* Hardware has to reinitialize queues and interrupts to 3263 * match packet buffer alignment. Unfortunately, the 3264 * hardware is not flexible enough to do this dynamically. 3265 */ 3266 rtnl_lock(); 3267 3268 if (netif_running(dev)) 3269 ixgbevf_close(dev); 3270 3271 ixgbevf_clear_interrupt_scheme(adapter); 3272 ixgbevf_init_interrupt_scheme(adapter); 3273 3274 if (netif_running(dev)) 3275 ixgbevf_open(dev); 3276 3277 rtnl_unlock(); 3278 } 3279 3280 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3281 u32 vlan_macip_lens, u32 type_tucmd, 3282 u32 mss_l4len_idx) 3283 { 3284 struct ixgbe_adv_tx_context_desc *context_desc; 3285 u16 i = tx_ring->next_to_use; 3286 3287 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3288 3289 i++; 3290 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3291 3292 /* set bits to identify this as an advanced context descriptor */ 3293 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3294 3295 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3296 context_desc->seqnum_seed = 0; 3297 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3298 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3299 } 3300 3301 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3302 struct ixgbevf_tx_buffer *first, 3303 u8 *hdr_len) 3304 { 3305 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3306 struct sk_buff *skb = first->skb; 3307 union { 3308 struct iphdr *v4; 3309 struct ipv6hdr *v6; 3310 unsigned char *hdr; 3311 } ip; 3312 union { 3313 struct tcphdr *tcp; 3314 unsigned char *hdr; 3315 } l4; 3316 u32 paylen, l4_offset; 3317 int err; 3318 3319 if (skb->ip_summed != CHECKSUM_PARTIAL) 3320 return 0; 3321 3322 if (!skb_is_gso(skb)) 3323 return 0; 3324 3325 err = skb_cow_head(skb, 0); 3326 if (err < 0) 3327 return err; 3328 3329 if (eth_p_mpls(first->protocol)) 3330 ip.hdr = skb_inner_network_header(skb); 3331 else 3332 ip.hdr = skb_network_header(skb); 3333 l4.hdr = skb_checksum_start(skb); 3334 3335 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3336 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3337 3338 /* initialize outer IP header fields */ 3339 if (ip.v4->version == 4) { 3340 unsigned char *csum_start = skb_checksum_start(skb); 3341 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3342 3343 /* IP header will have to cancel out any data that 3344 * is not a part of the outer IP header 3345 */ 3346 ip.v4->check = csum_fold(csum_partial(trans_start, 3347 csum_start - trans_start, 3348 0)); 3349 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3350 3351 ip.v4->tot_len = 0; 3352 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3353 IXGBE_TX_FLAGS_CSUM | 3354 IXGBE_TX_FLAGS_IPV4; 3355 } else { 3356 ip.v6->payload_len = 0; 3357 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3358 IXGBE_TX_FLAGS_CSUM; 3359 } 3360 3361 /* determine offset of inner transport header */ 3362 l4_offset = l4.hdr - skb->data; 3363 3364 /* compute length of segmentation header */ 3365 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3366 3367 /* remove payload length from inner checksum */ 3368 paylen = skb->len - l4_offset; 3369 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3370 3371 /* update gso size and bytecount with header size */ 3372 first->gso_segs = skb_shinfo(skb)->gso_segs; 3373 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3374 3375 /* mss_l4len_id: use 1 as index for TSO */ 3376 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3377 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3378 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3379 3380 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3381 vlan_macip_lens = l4.hdr - ip.hdr; 3382 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3383 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3384 3385 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3386 type_tucmd, mss_l4len_idx); 3387 3388 return 1; 3389 } 3390 3391 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) 3392 { 3393 unsigned int offset = 0; 3394 3395 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 3396 3397 return offset == skb_checksum_start_offset(skb); 3398 } 3399 3400 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3401 struct ixgbevf_tx_buffer *first) 3402 { 3403 struct sk_buff *skb = first->skb; 3404 u32 vlan_macip_lens = 0; 3405 u32 type_tucmd = 0; 3406 3407 if (skb->ip_summed != CHECKSUM_PARTIAL) 3408 goto no_csum; 3409 3410 switch (skb->csum_offset) { 3411 case offsetof(struct tcphdr, check): 3412 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3413 /* fall through */ 3414 case offsetof(struct udphdr, check): 3415 break; 3416 case offsetof(struct sctphdr, checksum): 3417 /* validate that this is actually an SCTP request */ 3418 if (((first->protocol == htons(ETH_P_IP)) && 3419 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 3420 ((first->protocol == htons(ETH_P_IPV6)) && 3421 ixgbevf_ipv6_csum_is_sctp(skb))) { 3422 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3423 break; 3424 } 3425 /* fall through */ 3426 default: 3427 skb_checksum_help(skb); 3428 goto no_csum; 3429 } 3430 /* update TX checksum flag */ 3431 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3432 vlan_macip_lens = skb_checksum_start_offset(skb) - 3433 skb_network_offset(skb); 3434 no_csum: 3435 /* vlan_macip_lens: MACLEN, VLAN tag */ 3436 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3437 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3438 3439 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0); 3440 } 3441 3442 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3443 { 3444 /* set type for advanced descriptor with frame checksum insertion */ 3445 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3446 IXGBE_ADVTXD_DCMD_IFCS | 3447 IXGBE_ADVTXD_DCMD_DEXT); 3448 3449 /* set HW VLAN bit if VLAN is present */ 3450 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3451 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3452 3453 /* set segmentation enable bits for TSO/FSO */ 3454 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3455 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3456 3457 return cmd_type; 3458 } 3459 3460 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3461 u32 tx_flags, unsigned int paylen) 3462 { 3463 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3464 3465 /* enable L4 checksum for TSO and TX checksum offload */ 3466 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3467 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3468 3469 /* enble IPv4 checksum for TSO */ 3470 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3471 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3472 3473 /* use index 1 context for TSO/FSO/FCOE */ 3474 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3475 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3476 3477 /* Check Context must be set if Tx switch is enabled, which it 3478 * always is for case where virtual functions are running 3479 */ 3480 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3481 3482 tx_desc->read.olinfo_status = olinfo_status; 3483 } 3484 3485 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3486 struct ixgbevf_tx_buffer *first, 3487 const u8 hdr_len) 3488 { 3489 dma_addr_t dma; 3490 struct sk_buff *skb = first->skb; 3491 struct ixgbevf_tx_buffer *tx_buffer; 3492 union ixgbe_adv_tx_desc *tx_desc; 3493 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 3494 unsigned int data_len = skb->data_len; 3495 unsigned int size = skb_headlen(skb); 3496 unsigned int paylen = skb->len - hdr_len; 3497 u32 tx_flags = first->tx_flags; 3498 __le32 cmd_type; 3499 u16 i = tx_ring->next_to_use; 3500 3501 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3502 3503 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen); 3504 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3505 3506 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3507 if (dma_mapping_error(tx_ring->dev, dma)) 3508 goto dma_error; 3509 3510 /* record length, and DMA address */ 3511 dma_unmap_len_set(first, len, size); 3512 dma_unmap_addr_set(first, dma, dma); 3513 3514 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3515 3516 for (;;) { 3517 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3518 tx_desc->read.cmd_type_len = 3519 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3520 3521 i++; 3522 tx_desc++; 3523 if (i == tx_ring->count) { 3524 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3525 i = 0; 3526 } 3527 3528 dma += IXGBE_MAX_DATA_PER_TXD; 3529 size -= IXGBE_MAX_DATA_PER_TXD; 3530 3531 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3532 tx_desc->read.olinfo_status = 0; 3533 } 3534 3535 if (likely(!data_len)) 3536 break; 3537 3538 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 3539 3540 i++; 3541 tx_desc++; 3542 if (i == tx_ring->count) { 3543 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3544 i = 0; 3545 } 3546 3547 size = skb_frag_size(frag); 3548 data_len -= size; 3549 3550 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3551 DMA_TO_DEVICE); 3552 if (dma_mapping_error(tx_ring->dev, dma)) 3553 goto dma_error; 3554 3555 tx_buffer = &tx_ring->tx_buffer_info[i]; 3556 dma_unmap_len_set(tx_buffer, len, size); 3557 dma_unmap_addr_set(tx_buffer, dma, dma); 3558 3559 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3560 tx_desc->read.olinfo_status = 0; 3561 3562 frag++; 3563 } 3564 3565 /* write last descriptor with RS and EOP bits */ 3566 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 3567 tx_desc->read.cmd_type_len = cmd_type; 3568 3569 /* set the timestamp */ 3570 first->time_stamp = jiffies; 3571 3572 /* Force memory writes to complete before letting h/w know there 3573 * are new descriptors to fetch. (Only applicable for weak-ordered 3574 * memory model archs, such as IA-64). 3575 * 3576 * We also need this memory barrier (wmb) to make certain all of the 3577 * status bits have been updated before next_to_watch is written. 3578 */ 3579 wmb(); 3580 3581 /* set next_to_watch value indicating a packet is present */ 3582 first->next_to_watch = tx_desc; 3583 3584 i++; 3585 if (i == tx_ring->count) 3586 i = 0; 3587 3588 tx_ring->next_to_use = i; 3589 3590 /* notify HW of packet */ 3591 ixgbevf_write_tail(tx_ring, i); 3592 3593 return; 3594 dma_error: 3595 dev_err(tx_ring->dev, "TX DMA map failed\n"); 3596 3597 /* clear dma mappings for failed tx_buffer_info map */ 3598 for (;;) { 3599 tx_buffer = &tx_ring->tx_buffer_info[i]; 3600 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer); 3601 if (tx_buffer == first) 3602 break; 3603 if (i == 0) 3604 i = tx_ring->count; 3605 i--; 3606 } 3607 3608 tx_ring->next_to_use = i; 3609 } 3610 3611 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 3612 { 3613 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3614 /* Herbert's original patch had: 3615 * smp_mb__after_netif_stop_queue(); 3616 * but since that doesn't exist yet, just open code it. 3617 */ 3618 smp_mb(); 3619 3620 /* We need to check again in a case another CPU has just 3621 * made room available. 3622 */ 3623 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 3624 return -EBUSY; 3625 3626 /* A reprieve! - use start_queue because it doesn't call schedule */ 3627 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3628 ++tx_ring->tx_stats.restart_queue; 3629 3630 return 0; 3631 } 3632 3633 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 3634 { 3635 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 3636 return 0; 3637 return __ixgbevf_maybe_stop_tx(tx_ring, size); 3638 } 3639 3640 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3641 { 3642 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3643 struct ixgbevf_tx_buffer *first; 3644 struct ixgbevf_ring *tx_ring; 3645 int tso; 3646 u32 tx_flags = 0; 3647 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 3648 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 3649 unsigned short f; 3650 #endif 3651 u8 hdr_len = 0; 3652 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 3653 3654 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 3655 dev_kfree_skb_any(skb); 3656 return NETDEV_TX_OK; 3657 } 3658 3659 tx_ring = adapter->tx_ring[skb->queue_mapping]; 3660 3661 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 3662 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 3663 * + 2 desc gap to keep tail from touching head, 3664 * + 1 desc for context descriptor, 3665 * otherwise try next time 3666 */ 3667 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 3668 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 3669 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 3670 #else 3671 count += skb_shinfo(skb)->nr_frags; 3672 #endif 3673 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 3674 tx_ring->tx_stats.tx_busy++; 3675 return NETDEV_TX_BUSY; 3676 } 3677 3678 /* record the location of the first descriptor for this packet */ 3679 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 3680 first->skb = skb; 3681 first->bytecount = skb->len; 3682 first->gso_segs = 1; 3683 3684 if (skb_vlan_tag_present(skb)) { 3685 tx_flags |= skb_vlan_tag_get(skb); 3686 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 3687 tx_flags |= IXGBE_TX_FLAGS_VLAN; 3688 } 3689 3690 /* record initial flags and protocol */ 3691 first->tx_flags = tx_flags; 3692 first->protocol = vlan_get_protocol(skb); 3693 3694 tso = ixgbevf_tso(tx_ring, first, &hdr_len); 3695 if (tso < 0) 3696 goto out_drop; 3697 else if (!tso) 3698 ixgbevf_tx_csum(tx_ring, first); 3699 3700 ixgbevf_tx_map(tx_ring, first, hdr_len); 3701 3702 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 3703 3704 return NETDEV_TX_OK; 3705 3706 out_drop: 3707 dev_kfree_skb_any(first->skb); 3708 first->skb = NULL; 3709 3710 return NETDEV_TX_OK; 3711 } 3712 3713 /** 3714 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 3715 * @netdev: network interface device structure 3716 * @p: pointer to an address structure 3717 * 3718 * Returns 0 on success, negative on failure 3719 **/ 3720 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 3721 { 3722 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3723 struct ixgbe_hw *hw = &adapter->hw; 3724 struct sockaddr *addr = p; 3725 int err; 3726 3727 if (!is_valid_ether_addr(addr->sa_data)) 3728 return -EADDRNOTAVAIL; 3729 3730 spin_lock_bh(&adapter->mbx_lock); 3731 3732 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 3733 3734 spin_unlock_bh(&adapter->mbx_lock); 3735 3736 if (err) 3737 return -EPERM; 3738 3739 ether_addr_copy(hw->mac.addr, addr->sa_data); 3740 ether_addr_copy(netdev->dev_addr, addr->sa_data); 3741 3742 return 0; 3743 } 3744 3745 /** 3746 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 3747 * @netdev: network interface device structure 3748 * @new_mtu: new value for maximum frame size 3749 * 3750 * Returns 0 on success, negative on failure 3751 **/ 3752 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 3753 { 3754 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3755 struct ixgbe_hw *hw = &adapter->hw; 3756 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3757 int ret; 3758 3759 spin_lock_bh(&adapter->mbx_lock); 3760 /* notify the PF of our intent to use this size of frame */ 3761 ret = hw->mac.ops.set_rlpml(hw, max_frame); 3762 spin_unlock_bh(&adapter->mbx_lock); 3763 if (ret) 3764 return -EINVAL; 3765 3766 hw_dbg(hw, "changing MTU from %d to %d\n", 3767 netdev->mtu, new_mtu); 3768 3769 /* must set new MTU before calling down or up */ 3770 netdev->mtu = new_mtu; 3771 3772 return 0; 3773 } 3774 3775 #ifdef CONFIG_NET_POLL_CONTROLLER 3776 /* Polling 'interrupt' - used by things like netconsole to send skbs 3777 * without having to re-enable interrupts. It's not called while 3778 * the interrupt routine is executing. 3779 */ 3780 static void ixgbevf_netpoll(struct net_device *netdev) 3781 { 3782 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3783 int i; 3784 3785 /* if interface is down do nothing */ 3786 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 3787 return; 3788 for (i = 0; i < adapter->num_rx_queues; i++) 3789 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]); 3790 } 3791 #endif /* CONFIG_NET_POLL_CONTROLLER */ 3792 3793 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state) 3794 { 3795 struct net_device *netdev = pci_get_drvdata(pdev); 3796 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3797 #ifdef CONFIG_PM 3798 int retval = 0; 3799 #endif 3800 3801 rtnl_lock(); 3802 netif_device_detach(netdev); 3803 3804 if (netif_running(netdev)) 3805 ixgbevf_close_suspend(adapter); 3806 3807 ixgbevf_clear_interrupt_scheme(adapter); 3808 rtnl_unlock(); 3809 3810 #ifdef CONFIG_PM 3811 retval = pci_save_state(pdev); 3812 if (retval) 3813 return retval; 3814 3815 #endif 3816 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 3817 pci_disable_device(pdev); 3818 3819 return 0; 3820 } 3821 3822 #ifdef CONFIG_PM 3823 static int ixgbevf_resume(struct pci_dev *pdev) 3824 { 3825 struct net_device *netdev = pci_get_drvdata(pdev); 3826 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3827 u32 err; 3828 3829 pci_restore_state(pdev); 3830 /* pci_restore_state clears dev->state_saved so call 3831 * pci_save_state to restore it. 3832 */ 3833 pci_save_state(pdev); 3834 3835 err = pci_enable_device_mem(pdev); 3836 if (err) { 3837 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 3838 return err; 3839 } 3840 3841 adapter->hw.hw_addr = adapter->io_addr; 3842 smp_mb__before_atomic(); 3843 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 3844 pci_set_master(pdev); 3845 3846 ixgbevf_reset(adapter); 3847 3848 rtnl_lock(); 3849 err = ixgbevf_init_interrupt_scheme(adapter); 3850 rtnl_unlock(); 3851 if (err) { 3852 dev_err(&pdev->dev, "Cannot initialize interrupts\n"); 3853 return err; 3854 } 3855 3856 if (netif_running(netdev)) { 3857 err = ixgbevf_open(netdev); 3858 if (err) 3859 return err; 3860 } 3861 3862 netif_device_attach(netdev); 3863 3864 return err; 3865 } 3866 3867 #endif /* CONFIG_PM */ 3868 static void ixgbevf_shutdown(struct pci_dev *pdev) 3869 { 3870 ixgbevf_suspend(pdev, PMSG_SUSPEND); 3871 } 3872 3873 static void ixgbevf_get_stats(struct net_device *netdev, 3874 struct rtnl_link_stats64 *stats) 3875 { 3876 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3877 unsigned int start; 3878 u64 bytes, packets; 3879 const struct ixgbevf_ring *ring; 3880 int i; 3881 3882 ixgbevf_update_stats(adapter); 3883 3884 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 3885 3886 for (i = 0; i < adapter->num_rx_queues; i++) { 3887 ring = adapter->rx_ring[i]; 3888 do { 3889 start = u64_stats_fetch_begin_irq(&ring->syncp); 3890 bytes = ring->stats.bytes; 3891 packets = ring->stats.packets; 3892 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3893 stats->rx_bytes += bytes; 3894 stats->rx_packets += packets; 3895 } 3896 3897 for (i = 0; i < adapter->num_tx_queues; i++) { 3898 ring = adapter->tx_ring[i]; 3899 do { 3900 start = u64_stats_fetch_begin_irq(&ring->syncp); 3901 bytes = ring->stats.bytes; 3902 packets = ring->stats.packets; 3903 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3904 stats->tx_bytes += bytes; 3905 stats->tx_packets += packets; 3906 } 3907 } 3908 3909 #define IXGBEVF_MAX_MAC_HDR_LEN 127 3910 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 3911 3912 static netdev_features_t 3913 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 3914 netdev_features_t features) 3915 { 3916 unsigned int network_hdr_len, mac_hdr_len; 3917 3918 /* Make certain the headers can be described by a context descriptor */ 3919 mac_hdr_len = skb_network_header(skb) - skb->data; 3920 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 3921 return features & ~(NETIF_F_HW_CSUM | 3922 NETIF_F_SCTP_CRC | 3923 NETIF_F_HW_VLAN_CTAG_TX | 3924 NETIF_F_TSO | 3925 NETIF_F_TSO6); 3926 3927 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 3928 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 3929 return features & ~(NETIF_F_HW_CSUM | 3930 NETIF_F_SCTP_CRC | 3931 NETIF_F_TSO | 3932 NETIF_F_TSO6); 3933 3934 /* We can only support IPV4 TSO in tunnels if we can mangle the 3935 * inner IP ID field, so strip TSO if MANGLEID is not supported. 3936 */ 3937 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 3938 features &= ~NETIF_F_TSO; 3939 3940 return features; 3941 } 3942 3943 static const struct net_device_ops ixgbevf_netdev_ops = { 3944 .ndo_open = ixgbevf_open, 3945 .ndo_stop = ixgbevf_close, 3946 .ndo_start_xmit = ixgbevf_xmit_frame, 3947 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 3948 .ndo_get_stats64 = ixgbevf_get_stats, 3949 .ndo_validate_addr = eth_validate_addr, 3950 .ndo_set_mac_address = ixgbevf_set_mac, 3951 .ndo_change_mtu = ixgbevf_change_mtu, 3952 .ndo_tx_timeout = ixgbevf_tx_timeout, 3953 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 3954 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 3955 #ifdef CONFIG_NET_POLL_CONTROLLER 3956 .ndo_poll_controller = ixgbevf_netpoll, 3957 #endif 3958 .ndo_features_check = ixgbevf_features_check, 3959 }; 3960 3961 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 3962 { 3963 dev->netdev_ops = &ixgbevf_netdev_ops; 3964 ixgbevf_set_ethtool_ops(dev); 3965 dev->watchdog_timeo = 5 * HZ; 3966 } 3967 3968 /** 3969 * ixgbevf_probe - Device Initialization Routine 3970 * @pdev: PCI device information struct 3971 * @ent: entry in ixgbevf_pci_tbl 3972 * 3973 * Returns 0 on success, negative on failure 3974 * 3975 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 3976 * The OS initialization, configuring of the adapter private structure, 3977 * and a hardware reset occur. 3978 **/ 3979 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3980 { 3981 struct net_device *netdev; 3982 struct ixgbevf_adapter *adapter = NULL; 3983 struct ixgbe_hw *hw = NULL; 3984 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 3985 int err, pci_using_dac; 3986 bool disable_dev = false; 3987 3988 err = pci_enable_device(pdev); 3989 if (err) 3990 return err; 3991 3992 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 3993 pci_using_dac = 1; 3994 } else { 3995 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 3996 if (err) { 3997 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 3998 goto err_dma; 3999 } 4000 pci_using_dac = 0; 4001 } 4002 4003 err = pci_request_regions(pdev, ixgbevf_driver_name); 4004 if (err) { 4005 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4006 goto err_pci_reg; 4007 } 4008 4009 pci_set_master(pdev); 4010 4011 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4012 MAX_TX_QUEUES); 4013 if (!netdev) { 4014 err = -ENOMEM; 4015 goto err_alloc_etherdev; 4016 } 4017 4018 SET_NETDEV_DEV(netdev, &pdev->dev); 4019 4020 adapter = netdev_priv(netdev); 4021 4022 adapter->netdev = netdev; 4023 adapter->pdev = pdev; 4024 hw = &adapter->hw; 4025 hw->back = adapter; 4026 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4027 4028 /* call save state here in standalone driver because it relies on 4029 * adapter struct to exist, and needs to call netdev_priv 4030 */ 4031 pci_save_state(pdev); 4032 4033 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4034 pci_resource_len(pdev, 0)); 4035 adapter->io_addr = hw->hw_addr; 4036 if (!hw->hw_addr) { 4037 err = -EIO; 4038 goto err_ioremap; 4039 } 4040 4041 ixgbevf_assign_netdev_ops(netdev); 4042 4043 /* Setup HW API */ 4044 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4045 hw->mac.type = ii->mac; 4046 4047 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4048 sizeof(struct ixgbe_mbx_operations)); 4049 4050 /* setup the private structure */ 4051 err = ixgbevf_sw_init(adapter); 4052 if (err) 4053 goto err_sw_init; 4054 4055 /* The HW MAC address was set and/or determined in sw_init */ 4056 if (!is_valid_ether_addr(netdev->dev_addr)) { 4057 pr_err("invalid MAC address\n"); 4058 err = -EIO; 4059 goto err_sw_init; 4060 } 4061 4062 netdev->hw_features = NETIF_F_SG | 4063 NETIF_F_TSO | 4064 NETIF_F_TSO6 | 4065 NETIF_F_RXCSUM | 4066 NETIF_F_HW_CSUM | 4067 NETIF_F_SCTP_CRC; 4068 4069 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4070 NETIF_F_GSO_GRE_CSUM | \ 4071 NETIF_F_GSO_IPXIP4 | \ 4072 NETIF_F_GSO_IPXIP6 | \ 4073 NETIF_F_GSO_UDP_TUNNEL | \ 4074 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4075 4076 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4077 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4078 IXGBEVF_GSO_PARTIAL_FEATURES; 4079 4080 netdev->features = netdev->hw_features; 4081 4082 if (pci_using_dac) 4083 netdev->features |= NETIF_F_HIGHDMA; 4084 4085 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4086 netdev->mpls_features |= NETIF_F_SG | 4087 NETIF_F_TSO | 4088 NETIF_F_TSO6 | 4089 NETIF_F_HW_CSUM; 4090 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4091 netdev->hw_enc_features |= netdev->vlan_features; 4092 4093 /* set this bit last since it cannot be part of vlan_features */ 4094 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4095 NETIF_F_HW_VLAN_CTAG_RX | 4096 NETIF_F_HW_VLAN_CTAG_TX; 4097 4098 netdev->priv_flags |= IFF_UNICAST_FLT; 4099 4100 /* MTU range: 68 - 1504 or 9710 */ 4101 netdev->min_mtu = ETH_MIN_MTU; 4102 switch (adapter->hw.api_version) { 4103 case ixgbe_mbox_api_11: 4104 case ixgbe_mbox_api_12: 4105 case ixgbe_mbox_api_13: 4106 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4107 (ETH_HLEN + ETH_FCS_LEN); 4108 break; 4109 default: 4110 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4111 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4112 (ETH_HLEN + ETH_FCS_LEN); 4113 else 4114 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4115 break; 4116 } 4117 4118 if (IXGBE_REMOVED(hw->hw_addr)) { 4119 err = -EIO; 4120 goto err_sw_init; 4121 } 4122 4123 setup_timer(&adapter->service_timer, &ixgbevf_service_timer, 4124 (unsigned long)adapter); 4125 4126 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4127 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4128 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4129 4130 err = ixgbevf_init_interrupt_scheme(adapter); 4131 if (err) 4132 goto err_sw_init; 4133 4134 strcpy(netdev->name, "eth%d"); 4135 4136 err = register_netdev(netdev); 4137 if (err) 4138 goto err_register; 4139 4140 pci_set_drvdata(pdev, netdev); 4141 netif_carrier_off(netdev); 4142 4143 ixgbevf_init_last_counter_stats(adapter); 4144 4145 /* print the VF info */ 4146 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4147 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4148 4149 switch (hw->mac.type) { 4150 case ixgbe_mac_X550_vf: 4151 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4152 break; 4153 case ixgbe_mac_X540_vf: 4154 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4155 break; 4156 case ixgbe_mac_82599_vf: 4157 default: 4158 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4159 break; 4160 } 4161 4162 return 0; 4163 4164 err_register: 4165 ixgbevf_clear_interrupt_scheme(adapter); 4166 err_sw_init: 4167 ixgbevf_reset_interrupt_capability(adapter); 4168 iounmap(adapter->io_addr); 4169 kfree(adapter->rss_key); 4170 err_ioremap: 4171 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4172 free_netdev(netdev); 4173 err_alloc_etherdev: 4174 pci_release_regions(pdev); 4175 err_pci_reg: 4176 err_dma: 4177 if (!adapter || disable_dev) 4178 pci_disable_device(pdev); 4179 return err; 4180 } 4181 4182 /** 4183 * ixgbevf_remove - Device Removal Routine 4184 * @pdev: PCI device information struct 4185 * 4186 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4187 * that it should release a PCI device. The could be caused by a 4188 * Hot-Plug event, or because the driver is going to be removed from 4189 * memory. 4190 **/ 4191 static void ixgbevf_remove(struct pci_dev *pdev) 4192 { 4193 struct net_device *netdev = pci_get_drvdata(pdev); 4194 struct ixgbevf_adapter *adapter; 4195 bool disable_dev; 4196 4197 if (!netdev) 4198 return; 4199 4200 adapter = netdev_priv(netdev); 4201 4202 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4203 cancel_work_sync(&adapter->service_task); 4204 4205 if (netdev->reg_state == NETREG_REGISTERED) 4206 unregister_netdev(netdev); 4207 4208 ixgbevf_clear_interrupt_scheme(adapter); 4209 ixgbevf_reset_interrupt_capability(adapter); 4210 4211 iounmap(adapter->io_addr); 4212 pci_release_regions(pdev); 4213 4214 hw_dbg(&adapter->hw, "Remove complete\n"); 4215 4216 kfree(adapter->rss_key); 4217 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4218 free_netdev(netdev); 4219 4220 if (disable_dev) 4221 pci_disable_device(pdev); 4222 } 4223 4224 /** 4225 * ixgbevf_io_error_detected - called when PCI error is detected 4226 * @pdev: Pointer to PCI device 4227 * @state: The current pci connection state 4228 * 4229 * This function is called after a PCI bus error affecting 4230 * this device has been detected. 4231 **/ 4232 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4233 pci_channel_state_t state) 4234 { 4235 struct net_device *netdev = pci_get_drvdata(pdev); 4236 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4237 4238 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4239 return PCI_ERS_RESULT_DISCONNECT; 4240 4241 rtnl_lock(); 4242 netif_device_detach(netdev); 4243 4244 if (state == pci_channel_io_perm_failure) { 4245 rtnl_unlock(); 4246 return PCI_ERS_RESULT_DISCONNECT; 4247 } 4248 4249 if (netif_running(netdev)) 4250 ixgbevf_close_suspend(adapter); 4251 4252 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4253 pci_disable_device(pdev); 4254 rtnl_unlock(); 4255 4256 /* Request a slot slot reset. */ 4257 return PCI_ERS_RESULT_NEED_RESET; 4258 } 4259 4260 /** 4261 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4262 * @pdev: Pointer to PCI device 4263 * 4264 * Restart the card from scratch, as if from a cold-boot. Implementation 4265 * resembles the first-half of the ixgbevf_resume routine. 4266 **/ 4267 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4268 { 4269 struct net_device *netdev = pci_get_drvdata(pdev); 4270 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4271 4272 if (pci_enable_device_mem(pdev)) { 4273 dev_err(&pdev->dev, 4274 "Cannot re-enable PCI device after reset.\n"); 4275 return PCI_ERS_RESULT_DISCONNECT; 4276 } 4277 4278 adapter->hw.hw_addr = adapter->io_addr; 4279 smp_mb__before_atomic(); 4280 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4281 pci_set_master(pdev); 4282 4283 ixgbevf_reset(adapter); 4284 4285 return PCI_ERS_RESULT_RECOVERED; 4286 } 4287 4288 /** 4289 * ixgbevf_io_resume - called when traffic can start flowing again. 4290 * @pdev: Pointer to PCI device 4291 * 4292 * This callback is called when the error recovery driver tells us that 4293 * its OK to resume normal operation. Implementation resembles the 4294 * second-half of the ixgbevf_resume routine. 4295 **/ 4296 static void ixgbevf_io_resume(struct pci_dev *pdev) 4297 { 4298 struct net_device *netdev = pci_get_drvdata(pdev); 4299 4300 rtnl_lock(); 4301 if (netif_running(netdev)) 4302 ixgbevf_open(netdev); 4303 4304 netif_device_attach(netdev); 4305 rtnl_unlock(); 4306 } 4307 4308 /* PCI Error Recovery (ERS) */ 4309 static const struct pci_error_handlers ixgbevf_err_handler = { 4310 .error_detected = ixgbevf_io_error_detected, 4311 .slot_reset = ixgbevf_io_slot_reset, 4312 .resume = ixgbevf_io_resume, 4313 }; 4314 4315 static struct pci_driver ixgbevf_driver = { 4316 .name = ixgbevf_driver_name, 4317 .id_table = ixgbevf_pci_tbl, 4318 .probe = ixgbevf_probe, 4319 .remove = ixgbevf_remove, 4320 #ifdef CONFIG_PM 4321 /* Power Management Hooks */ 4322 .suspend = ixgbevf_suspend, 4323 .resume = ixgbevf_resume, 4324 #endif 4325 .shutdown = ixgbevf_shutdown, 4326 .err_handler = &ixgbevf_err_handler 4327 }; 4328 4329 /** 4330 * ixgbevf_init_module - Driver Registration Routine 4331 * 4332 * ixgbevf_init_module is the first routine called when the driver is 4333 * loaded. All it does is register with the PCI subsystem. 4334 **/ 4335 static int __init ixgbevf_init_module(void) 4336 { 4337 pr_info("%s - version %s\n", ixgbevf_driver_string, 4338 ixgbevf_driver_version); 4339 4340 pr_info("%s\n", ixgbevf_copyright); 4341 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4342 if (!ixgbevf_wq) { 4343 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4344 return -ENOMEM; 4345 } 4346 4347 return pci_register_driver(&ixgbevf_driver); 4348 } 4349 4350 module_init(ixgbevf_init_module); 4351 4352 /** 4353 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4354 * 4355 * ixgbevf_exit_module is called just before the driver is removed 4356 * from memory. 4357 **/ 4358 static void __exit ixgbevf_exit_module(void) 4359 { 4360 pci_unregister_driver(&ixgbevf_driver); 4361 if (ixgbevf_wq) { 4362 destroy_workqueue(ixgbevf_wq); 4363 ixgbevf_wq = NULL; 4364 } 4365 } 4366 4367 #ifdef DEBUG 4368 /** 4369 * ixgbevf_get_hw_dev_name - return device name string 4370 * used by hardware layer to print debugging information 4371 **/ 4372 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4373 { 4374 struct ixgbevf_adapter *adapter = hw->back; 4375 4376 return adapter->netdev->name; 4377 } 4378 4379 #endif 4380 module_exit(ixgbevf_exit_module); 4381 4382 /* ixgbevf_main.c */ 4383