1 /*******************************************************************************
2 
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2015 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17 
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20 
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25 *******************************************************************************/
26 
27 /******************************************************************************
28  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
29 ******************************************************************************/
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/types.h>
34 #include <linux/bitops.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/vmalloc.h>
39 #include <linux/string.h>
40 #include <linux/in.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/sctp.h>
44 #include <linux/ipv6.h>
45 #include <linux/slab.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/ethtool.h>
49 #include <linux/if.h>
50 #include <linux/if_vlan.h>
51 #include <linux/prefetch.h>
52 #include <net/mpls.h>
53 
54 #include "ixgbevf.h"
55 
56 const char ixgbevf_driver_name[] = "ixgbevf";
57 static const char ixgbevf_driver_string[] =
58 	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
59 
60 #define DRV_VERSION "4.1.0-k"
61 const char ixgbevf_driver_version[] = DRV_VERSION;
62 static char ixgbevf_copyright[] =
63 	"Copyright (c) 2009 - 2015 Intel Corporation.";
64 
65 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
66 	[board_82599_vf]	= &ixgbevf_82599_vf_info,
67 	[board_82599_vf_hv]	= &ixgbevf_82599_vf_hv_info,
68 	[board_X540_vf]		= &ixgbevf_X540_vf_info,
69 	[board_X540_vf_hv]	= &ixgbevf_X540_vf_hv_info,
70 	[board_X550_vf]		= &ixgbevf_X550_vf_info,
71 	[board_X550_vf_hv]	= &ixgbevf_X550_vf_hv_info,
72 	[board_X550EM_x_vf]	= &ixgbevf_X550EM_x_vf_info,
73 	[board_X550EM_x_vf_hv]	= &ixgbevf_X550EM_x_vf_hv_info,
74 	[board_x550em_a_vf]	= &ixgbevf_x550em_a_vf_info,
75 };
76 
77 /* ixgbevf_pci_tbl - PCI Device ID Table
78  *
79  * Wildcard entries (PCI_ANY_ID) should come last
80  * Last entry must be all 0s
81  *
82  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
83  *   Class, Class Mask, private data (not used) }
84  */
85 static const struct pci_device_id ixgbevf_pci_tbl[] = {
86 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
87 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
88 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
89 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
90 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
91 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
92 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
93 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
94 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
95 	/* required last entry */
96 	{0, }
97 };
98 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
99 
100 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
101 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
102 MODULE_LICENSE("GPL");
103 MODULE_VERSION(DRV_VERSION);
104 
105 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
106 static int debug = -1;
107 module_param(debug, int, 0);
108 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
109 
110 static struct workqueue_struct *ixgbevf_wq;
111 
112 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
113 {
114 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
115 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
116 	    !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
117 		queue_work(ixgbevf_wq, &adapter->service_task);
118 }
119 
120 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
121 {
122 	BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
123 
124 	/* flush memory to make sure state is correct before next watchdog */
125 	smp_mb__before_atomic();
126 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
127 }
128 
129 /* forward decls */
130 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
131 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
132 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
133 
134 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
135 {
136 	struct ixgbevf_adapter *adapter = hw->back;
137 
138 	if (!hw->hw_addr)
139 		return;
140 	hw->hw_addr = NULL;
141 	dev_err(&adapter->pdev->dev, "Adapter removed\n");
142 	if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
143 		ixgbevf_service_event_schedule(adapter);
144 }
145 
146 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
147 {
148 	u32 value;
149 
150 	/* The following check not only optimizes a bit by not
151 	 * performing a read on the status register when the
152 	 * register just read was a status register read that
153 	 * returned IXGBE_FAILED_READ_REG. It also blocks any
154 	 * potential recursion.
155 	 */
156 	if (reg == IXGBE_VFSTATUS) {
157 		ixgbevf_remove_adapter(hw);
158 		return;
159 	}
160 	value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
161 	if (value == IXGBE_FAILED_READ_REG)
162 		ixgbevf_remove_adapter(hw);
163 }
164 
165 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
166 {
167 	u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr);
168 	u32 value;
169 
170 	if (IXGBE_REMOVED(reg_addr))
171 		return IXGBE_FAILED_READ_REG;
172 	value = readl(reg_addr + reg);
173 	if (unlikely(value == IXGBE_FAILED_READ_REG))
174 		ixgbevf_check_remove(hw, reg);
175 	return value;
176 }
177 
178 /**
179  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
180  * @adapter: pointer to adapter struct
181  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
182  * @queue: queue to map the corresponding interrupt to
183  * @msix_vector: the vector to map to the corresponding queue
184  **/
185 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
186 			     u8 queue, u8 msix_vector)
187 {
188 	u32 ivar, index;
189 	struct ixgbe_hw *hw = &adapter->hw;
190 
191 	if (direction == -1) {
192 		/* other causes */
193 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
194 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
195 		ivar &= ~0xFF;
196 		ivar |= msix_vector;
197 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
198 	} else {
199 		/* Tx or Rx causes */
200 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
201 		index = ((16 * (queue & 1)) + (8 * direction));
202 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
203 		ivar &= ~(0xFF << index);
204 		ivar |= (msix_vector << index);
205 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
206 	}
207 }
208 
209 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
210 					struct ixgbevf_tx_buffer *tx_buffer)
211 {
212 	if (tx_buffer->skb) {
213 		dev_kfree_skb_any(tx_buffer->skb);
214 		if (dma_unmap_len(tx_buffer, len))
215 			dma_unmap_single(tx_ring->dev,
216 					 dma_unmap_addr(tx_buffer, dma),
217 					 dma_unmap_len(tx_buffer, len),
218 					 DMA_TO_DEVICE);
219 	} else if (dma_unmap_len(tx_buffer, len)) {
220 		dma_unmap_page(tx_ring->dev,
221 			       dma_unmap_addr(tx_buffer, dma),
222 			       dma_unmap_len(tx_buffer, len),
223 			       DMA_TO_DEVICE);
224 	}
225 	tx_buffer->next_to_watch = NULL;
226 	tx_buffer->skb = NULL;
227 	dma_unmap_len_set(tx_buffer, len, 0);
228 	/* tx_buffer must be completely set up in the transmit path */
229 }
230 
231 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
232 {
233 	return ring->stats.packets;
234 }
235 
236 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
237 {
238 	struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
239 	struct ixgbe_hw *hw = &adapter->hw;
240 
241 	u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
242 	u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
243 
244 	if (head != tail)
245 		return (head < tail) ?
246 			tail - head : (tail + ring->count - head);
247 
248 	return 0;
249 }
250 
251 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
252 {
253 	u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
254 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
255 	u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
256 
257 	clear_check_for_tx_hang(tx_ring);
258 
259 	/* Check for a hung queue, but be thorough. This verifies
260 	 * that a transmit has been completed since the previous
261 	 * check AND there is at least one packet pending. The
262 	 * ARMED bit is set to indicate a potential hang.
263 	 */
264 	if ((tx_done_old == tx_done) && tx_pending) {
265 		/* make sure it is true for two checks in a row */
266 		return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
267 					&tx_ring->state);
268 	}
269 	/* reset the countdown */
270 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
271 
272 	/* update completed stats and continue */
273 	tx_ring->tx_stats.tx_done_old = tx_done;
274 
275 	return false;
276 }
277 
278 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
279 {
280 	/* Do the reset outside of interrupt context */
281 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
282 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
283 		ixgbevf_service_event_schedule(adapter);
284 	}
285 }
286 
287 /**
288  * ixgbevf_tx_timeout - Respond to a Tx Hang
289  * @netdev: network interface device structure
290  **/
291 static void ixgbevf_tx_timeout(struct net_device *netdev)
292 {
293 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
294 
295 	ixgbevf_tx_timeout_reset(adapter);
296 }
297 
298 /**
299  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
300  * @q_vector: board private structure
301  * @tx_ring: tx ring to clean
302  * @napi_budget: Used to determine if we are in netpoll
303  **/
304 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
305 				 struct ixgbevf_ring *tx_ring, int napi_budget)
306 {
307 	struct ixgbevf_adapter *adapter = q_vector->adapter;
308 	struct ixgbevf_tx_buffer *tx_buffer;
309 	union ixgbe_adv_tx_desc *tx_desc;
310 	unsigned int total_bytes = 0, total_packets = 0;
311 	unsigned int budget = tx_ring->count / 2;
312 	unsigned int i = tx_ring->next_to_clean;
313 
314 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
315 		return true;
316 
317 	tx_buffer = &tx_ring->tx_buffer_info[i];
318 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
319 	i -= tx_ring->count;
320 
321 	do {
322 		union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
323 
324 		/* if next_to_watch is not set then there is no work pending */
325 		if (!eop_desc)
326 			break;
327 
328 		/* prevent any other reads prior to eop_desc */
329 		read_barrier_depends();
330 
331 		/* if DD is not set pending work has not been completed */
332 		if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
333 			break;
334 
335 		/* clear next_to_watch to prevent false hangs */
336 		tx_buffer->next_to_watch = NULL;
337 
338 		/* update the statistics for this packet */
339 		total_bytes += tx_buffer->bytecount;
340 		total_packets += tx_buffer->gso_segs;
341 
342 		/* free the skb */
343 		napi_consume_skb(tx_buffer->skb, napi_budget);
344 
345 		/* unmap skb header data */
346 		dma_unmap_single(tx_ring->dev,
347 				 dma_unmap_addr(tx_buffer, dma),
348 				 dma_unmap_len(tx_buffer, len),
349 				 DMA_TO_DEVICE);
350 
351 		/* clear tx_buffer data */
352 		tx_buffer->skb = NULL;
353 		dma_unmap_len_set(tx_buffer, len, 0);
354 
355 		/* unmap remaining buffers */
356 		while (tx_desc != eop_desc) {
357 			tx_buffer++;
358 			tx_desc++;
359 			i++;
360 			if (unlikely(!i)) {
361 				i -= tx_ring->count;
362 				tx_buffer = tx_ring->tx_buffer_info;
363 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
364 			}
365 
366 			/* unmap any remaining paged data */
367 			if (dma_unmap_len(tx_buffer, len)) {
368 				dma_unmap_page(tx_ring->dev,
369 					       dma_unmap_addr(tx_buffer, dma),
370 					       dma_unmap_len(tx_buffer, len),
371 					       DMA_TO_DEVICE);
372 				dma_unmap_len_set(tx_buffer, len, 0);
373 			}
374 		}
375 
376 		/* move us one more past the eop_desc for start of next pkt */
377 		tx_buffer++;
378 		tx_desc++;
379 		i++;
380 		if (unlikely(!i)) {
381 			i -= tx_ring->count;
382 			tx_buffer = tx_ring->tx_buffer_info;
383 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
384 		}
385 
386 		/* issue prefetch for next Tx descriptor */
387 		prefetch(tx_desc);
388 
389 		/* update budget accounting */
390 		budget--;
391 	} while (likely(budget));
392 
393 	i += tx_ring->count;
394 	tx_ring->next_to_clean = i;
395 	u64_stats_update_begin(&tx_ring->syncp);
396 	tx_ring->stats.bytes += total_bytes;
397 	tx_ring->stats.packets += total_packets;
398 	u64_stats_update_end(&tx_ring->syncp);
399 	q_vector->tx.total_bytes += total_bytes;
400 	q_vector->tx.total_packets += total_packets;
401 
402 	if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
403 		struct ixgbe_hw *hw = &adapter->hw;
404 		union ixgbe_adv_tx_desc *eop_desc;
405 
406 		eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
407 
408 		pr_err("Detected Tx Unit Hang\n"
409 		       "  Tx Queue             <%d>\n"
410 		       "  TDH, TDT             <%x>, <%x>\n"
411 		       "  next_to_use          <%x>\n"
412 		       "  next_to_clean        <%x>\n"
413 		       "tx_buffer_info[next_to_clean]\n"
414 		       "  next_to_watch        <%p>\n"
415 		       "  eop_desc->wb.status  <%x>\n"
416 		       "  time_stamp           <%lx>\n"
417 		       "  jiffies              <%lx>\n",
418 		       tx_ring->queue_index,
419 		       IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
420 		       IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
421 		       tx_ring->next_to_use, i,
422 		       eop_desc, (eop_desc ? eop_desc->wb.status : 0),
423 		       tx_ring->tx_buffer_info[i].time_stamp, jiffies);
424 
425 		netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
426 
427 		/* schedule immediate reset if we believe we hung */
428 		ixgbevf_tx_timeout_reset(adapter);
429 
430 		return true;
431 	}
432 
433 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
434 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
435 		     (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
436 		/* Make sure that anybody stopping the queue after this
437 		 * sees the new next_to_clean.
438 		 */
439 		smp_mb();
440 
441 		if (__netif_subqueue_stopped(tx_ring->netdev,
442 					     tx_ring->queue_index) &&
443 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
444 			netif_wake_subqueue(tx_ring->netdev,
445 					    tx_ring->queue_index);
446 			++tx_ring->tx_stats.restart_queue;
447 		}
448 	}
449 
450 	return !!budget;
451 }
452 
453 /**
454  * ixgbevf_rx_skb - Helper function to determine proper Rx method
455  * @q_vector: structure containing interrupt and ring information
456  * @skb: packet to send up
457  **/
458 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
459 			   struct sk_buff *skb)
460 {
461 	napi_gro_receive(&q_vector->napi, skb);
462 }
463 
464 #define IXGBE_RSS_L4_TYPES_MASK \
465 	((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
466 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
467 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
468 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
469 
470 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
471 				   union ixgbe_adv_rx_desc *rx_desc,
472 				   struct sk_buff *skb)
473 {
474 	u16 rss_type;
475 
476 	if (!(ring->netdev->features & NETIF_F_RXHASH))
477 		return;
478 
479 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
480 		   IXGBE_RXDADV_RSSTYPE_MASK;
481 
482 	if (!rss_type)
483 		return;
484 
485 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
486 		     (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
487 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
488 }
489 
490 /**
491  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
492  * @ring: structure containig ring specific data
493  * @rx_desc: current Rx descriptor being processed
494  * @skb: skb currently being received and modified
495  **/
496 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
497 				       union ixgbe_adv_rx_desc *rx_desc,
498 				       struct sk_buff *skb)
499 {
500 	skb_checksum_none_assert(skb);
501 
502 	/* Rx csum disabled */
503 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
504 		return;
505 
506 	/* if IP and error */
507 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
508 	    ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
509 		ring->rx_stats.csum_err++;
510 		return;
511 	}
512 
513 	if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
514 		return;
515 
516 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
517 		ring->rx_stats.csum_err++;
518 		return;
519 	}
520 
521 	/* It must be a TCP or UDP packet with a valid checksum */
522 	skb->ip_summed = CHECKSUM_UNNECESSARY;
523 }
524 
525 /**
526  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
527  * @rx_ring: rx descriptor ring packet is being transacted on
528  * @rx_desc: pointer to the EOP Rx descriptor
529  * @skb: pointer to current skb being populated
530  *
531  * This function checks the ring, descriptor, and packet information in
532  * order to populate the checksum, VLAN, protocol, and other fields within
533  * the skb.
534  **/
535 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
536 				       union ixgbe_adv_rx_desc *rx_desc,
537 				       struct sk_buff *skb)
538 {
539 	ixgbevf_rx_hash(rx_ring, rx_desc, skb);
540 	ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
541 
542 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
543 		u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
544 		unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
545 
546 		if (test_bit(vid & VLAN_VID_MASK, active_vlans))
547 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
548 	}
549 
550 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
551 }
552 
553 /**
554  * ixgbevf_is_non_eop - process handling of non-EOP buffers
555  * @rx_ring: Rx ring being processed
556  * @rx_desc: Rx descriptor for current buffer
557  * @skb: current socket buffer containing buffer in progress
558  *
559  * This function updates next to clean.  If the buffer is an EOP buffer
560  * this function exits returning false, otherwise it will place the
561  * sk_buff in the next buffer to be chained and return true indicating
562  * that this is in fact a non-EOP buffer.
563  **/
564 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
565 			       union ixgbe_adv_rx_desc *rx_desc)
566 {
567 	u32 ntc = rx_ring->next_to_clean + 1;
568 
569 	/* fetch, update, and store next to clean */
570 	ntc = (ntc < rx_ring->count) ? ntc : 0;
571 	rx_ring->next_to_clean = ntc;
572 
573 	prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
574 
575 	if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
576 		return false;
577 
578 	return true;
579 }
580 
581 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
582 				      struct ixgbevf_rx_buffer *bi)
583 {
584 	struct page *page = bi->page;
585 	dma_addr_t dma = bi->dma;
586 
587 	/* since we are recycling buffers we should seldom need to alloc */
588 	if (likely(page))
589 		return true;
590 
591 	/* alloc new page for storage */
592 	page = dev_alloc_page();
593 	if (unlikely(!page)) {
594 		rx_ring->rx_stats.alloc_rx_page_failed++;
595 		return false;
596 	}
597 
598 	/* map page for use */
599 	dma = dma_map_page(rx_ring->dev, page, 0,
600 			   PAGE_SIZE, DMA_FROM_DEVICE);
601 
602 	/* if mapping failed free memory back to system since
603 	 * there isn't much point in holding memory we can't use
604 	 */
605 	if (dma_mapping_error(rx_ring->dev, dma)) {
606 		__free_page(page);
607 
608 		rx_ring->rx_stats.alloc_rx_buff_failed++;
609 		return false;
610 	}
611 
612 	bi->dma = dma;
613 	bi->page = page;
614 	bi->page_offset = 0;
615 
616 	return true;
617 }
618 
619 /**
620  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
621  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
622  * @cleaned_count: number of buffers to replace
623  **/
624 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
625 				     u16 cleaned_count)
626 {
627 	union ixgbe_adv_rx_desc *rx_desc;
628 	struct ixgbevf_rx_buffer *bi;
629 	unsigned int i = rx_ring->next_to_use;
630 
631 	/* nothing to do or no valid netdev defined */
632 	if (!cleaned_count || !rx_ring->netdev)
633 		return;
634 
635 	rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
636 	bi = &rx_ring->rx_buffer_info[i];
637 	i -= rx_ring->count;
638 
639 	do {
640 		if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
641 			break;
642 
643 		/* Refresh the desc even if pkt_addr didn't change
644 		 * because each write-back erases this info.
645 		 */
646 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
647 
648 		rx_desc++;
649 		bi++;
650 		i++;
651 		if (unlikely(!i)) {
652 			rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
653 			bi = rx_ring->rx_buffer_info;
654 			i -= rx_ring->count;
655 		}
656 
657 		/* clear the hdr_addr for the next_to_use descriptor */
658 		rx_desc->read.hdr_addr = 0;
659 
660 		cleaned_count--;
661 	} while (cleaned_count);
662 
663 	i += rx_ring->count;
664 
665 	if (rx_ring->next_to_use != i) {
666 		/* record the next descriptor to use */
667 		rx_ring->next_to_use = i;
668 
669 		/* update next to alloc since we have filled the ring */
670 		rx_ring->next_to_alloc = i;
671 
672 		/* Force memory writes to complete before letting h/w
673 		 * know there are new descriptors to fetch.  (Only
674 		 * applicable for weak-ordered memory model archs,
675 		 * such as IA-64).
676 		 */
677 		wmb();
678 		ixgbevf_write_tail(rx_ring, i);
679 	}
680 }
681 
682 /**
683  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
684  * @rx_ring: rx descriptor ring packet is being transacted on
685  * @rx_desc: pointer to the EOP Rx descriptor
686  * @skb: pointer to current skb being fixed
687  *
688  * Check for corrupted packet headers caused by senders on the local L2
689  * embedded NIC switch not setting up their Tx Descriptors right.  These
690  * should be very rare.
691  *
692  * Also address the case where we are pulling data in on pages only
693  * and as such no data is present in the skb header.
694  *
695  * In addition if skb is not at least 60 bytes we need to pad it so that
696  * it is large enough to qualify as a valid Ethernet frame.
697  *
698  * Returns true if an error was encountered and skb was freed.
699  **/
700 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
701 				    union ixgbe_adv_rx_desc *rx_desc,
702 				    struct sk_buff *skb)
703 {
704 	/* verify that the packet does not have any known errors */
705 	if (unlikely(ixgbevf_test_staterr(rx_desc,
706 					  IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
707 		struct net_device *netdev = rx_ring->netdev;
708 
709 		if (!(netdev->features & NETIF_F_RXALL)) {
710 			dev_kfree_skb_any(skb);
711 			return true;
712 		}
713 	}
714 
715 	/* if eth_skb_pad returns an error the skb was freed */
716 	if (eth_skb_pad(skb))
717 		return true;
718 
719 	return false;
720 }
721 
722 /**
723  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
724  * @rx_ring: rx descriptor ring to store buffers on
725  * @old_buff: donor buffer to have page reused
726  *
727  * Synchronizes page for reuse by the adapter
728  **/
729 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
730 				  struct ixgbevf_rx_buffer *old_buff)
731 {
732 	struct ixgbevf_rx_buffer *new_buff;
733 	u16 nta = rx_ring->next_to_alloc;
734 
735 	new_buff = &rx_ring->rx_buffer_info[nta];
736 
737 	/* update, and store next to alloc */
738 	nta++;
739 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
740 
741 	/* transfer page from old buffer to new buffer */
742 	new_buff->page = old_buff->page;
743 	new_buff->dma = old_buff->dma;
744 	new_buff->page_offset = old_buff->page_offset;
745 
746 	/* sync the buffer for use by the device */
747 	dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma,
748 					 new_buff->page_offset,
749 					 IXGBEVF_RX_BUFSZ,
750 					 DMA_FROM_DEVICE);
751 }
752 
753 static inline bool ixgbevf_page_is_reserved(struct page *page)
754 {
755 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
756 }
757 
758 /**
759  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
760  * @rx_ring: rx descriptor ring to transact packets on
761  * @rx_buffer: buffer containing page to add
762  * @rx_desc: descriptor containing length of buffer written by hardware
763  * @skb: sk_buff to place the data into
764  *
765  * This function will add the data contained in rx_buffer->page to the skb.
766  * This is done either through a direct copy if the data in the buffer is
767  * less than the skb header size, otherwise it will just attach the page as
768  * a frag to the skb.
769  *
770  * The function will then update the page offset if necessary and return
771  * true if the buffer can be reused by the adapter.
772  **/
773 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
774 				struct ixgbevf_rx_buffer *rx_buffer,
775 				union ixgbe_adv_rx_desc *rx_desc,
776 				struct sk_buff *skb)
777 {
778 	struct page *page = rx_buffer->page;
779 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
780 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
781 #if (PAGE_SIZE < 8192)
782 	unsigned int truesize = IXGBEVF_RX_BUFSZ;
783 #else
784 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
785 #endif
786 	unsigned int pull_len;
787 
788 	if (unlikely(skb_is_nonlinear(skb)))
789 		goto add_tail_frag;
790 
791 	if (likely(size <= IXGBEVF_RX_HDR_SIZE)) {
792 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
793 
794 		/* page is not reserved, we can reuse buffer as is */
795 		if (likely(!ixgbevf_page_is_reserved(page)))
796 			return true;
797 
798 		/* this page cannot be reused so discard it */
799 		put_page(page);
800 		return false;
801 	}
802 
803 	/* we need the header to contain the greater of either ETH_HLEN or
804 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
805 	 */
806 	pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE);
807 
808 	/* align pull length to size of long to optimize memcpy performance */
809 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
810 
811 	/* update all of the pointers */
812 	va += pull_len;
813 	size -= pull_len;
814 
815 add_tail_frag:
816 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
817 			(unsigned long)va & ~PAGE_MASK, size, truesize);
818 
819 	/* avoid re-using remote pages */
820 	if (unlikely(ixgbevf_page_is_reserved(page)))
821 		return false;
822 
823 #if (PAGE_SIZE < 8192)
824 	/* if we are only owner of page we can reuse it */
825 	if (unlikely(page_count(page) != 1))
826 		return false;
827 
828 	/* flip page offset to other buffer */
829 	rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ;
830 
831 #else
832 	/* move offset up to the next cache line */
833 	rx_buffer->page_offset += truesize;
834 
835 	if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ))
836 		return false;
837 
838 #endif
839 	/* Even if we own the page, we are not allowed to use atomic_set()
840 	 * This would break get_page_unless_zero() users.
841 	 */
842 	page_ref_inc(page);
843 
844 	return true;
845 }
846 
847 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring,
848 					       union ixgbe_adv_rx_desc *rx_desc,
849 					       struct sk_buff *skb)
850 {
851 	struct ixgbevf_rx_buffer *rx_buffer;
852 	struct page *page;
853 
854 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
855 	page = rx_buffer->page;
856 	prefetchw(page);
857 
858 	if (likely(!skb)) {
859 		void *page_addr = page_address(page) +
860 				  rx_buffer->page_offset;
861 
862 		/* prefetch first cache line of first page */
863 		prefetch(page_addr);
864 #if L1_CACHE_BYTES < 128
865 		prefetch(page_addr + L1_CACHE_BYTES);
866 #endif
867 
868 		/* allocate a skb to store the frags */
869 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
870 						IXGBEVF_RX_HDR_SIZE);
871 		if (unlikely(!skb)) {
872 			rx_ring->rx_stats.alloc_rx_buff_failed++;
873 			return NULL;
874 		}
875 
876 		/* we will be copying header into skb->data in
877 		 * pskb_may_pull so it is in our interest to prefetch
878 		 * it now to avoid a possible cache miss
879 		 */
880 		prefetchw(skb->data);
881 	}
882 
883 	/* we are reusing so sync this buffer for CPU use */
884 	dma_sync_single_range_for_cpu(rx_ring->dev,
885 				      rx_buffer->dma,
886 				      rx_buffer->page_offset,
887 				      IXGBEVF_RX_BUFSZ,
888 				      DMA_FROM_DEVICE);
889 
890 	/* pull page into skb */
891 	if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
892 		/* hand second half of page back to the ring */
893 		ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
894 	} else {
895 		/* we are not reusing the buffer so unmap it */
896 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
897 			       PAGE_SIZE, DMA_FROM_DEVICE);
898 	}
899 
900 	/* clear contents of buffer_info */
901 	rx_buffer->dma = 0;
902 	rx_buffer->page = NULL;
903 
904 	return skb;
905 }
906 
907 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
908 					     u32 qmask)
909 {
910 	struct ixgbe_hw *hw = &adapter->hw;
911 
912 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
913 }
914 
915 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
916 				struct ixgbevf_ring *rx_ring,
917 				int budget)
918 {
919 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
920 	u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
921 	struct sk_buff *skb = rx_ring->skb;
922 
923 	while (likely(total_rx_packets < budget)) {
924 		union ixgbe_adv_rx_desc *rx_desc;
925 
926 		/* return some buffers to hardware, one at a time is too slow */
927 		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
928 			ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
929 			cleaned_count = 0;
930 		}
931 
932 		rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
933 
934 		if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD))
935 			break;
936 
937 		/* This memory barrier is needed to keep us from reading
938 		 * any other fields out of the rx_desc until we know the
939 		 * RXD_STAT_DD bit is set
940 		 */
941 		rmb();
942 
943 		/* retrieve a buffer from the ring */
944 		skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb);
945 
946 		/* exit if we failed to retrieve a buffer */
947 		if (!skb)
948 			break;
949 
950 		cleaned_count++;
951 
952 		/* fetch next buffer in frame if non-eop */
953 		if (ixgbevf_is_non_eop(rx_ring, rx_desc))
954 			continue;
955 
956 		/* verify the packet layout is correct */
957 		if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
958 			skb = NULL;
959 			continue;
960 		}
961 
962 		/* probably a little skewed due to removing CRC */
963 		total_rx_bytes += skb->len;
964 
965 		/* Workaround hardware that can't do proper VEPA multicast
966 		 * source pruning.
967 		 */
968 		if ((skb->pkt_type == PACKET_BROADCAST ||
969 		     skb->pkt_type == PACKET_MULTICAST) &&
970 		    ether_addr_equal(rx_ring->netdev->dev_addr,
971 				     eth_hdr(skb)->h_source)) {
972 			dev_kfree_skb_irq(skb);
973 			continue;
974 		}
975 
976 		/* populate checksum, VLAN, and protocol */
977 		ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
978 
979 		ixgbevf_rx_skb(q_vector, skb);
980 
981 		/* reset skb pointer */
982 		skb = NULL;
983 
984 		/* update budget accounting */
985 		total_rx_packets++;
986 	}
987 
988 	/* place incomplete frames back on ring for completion */
989 	rx_ring->skb = skb;
990 
991 	u64_stats_update_begin(&rx_ring->syncp);
992 	rx_ring->stats.packets += total_rx_packets;
993 	rx_ring->stats.bytes += total_rx_bytes;
994 	u64_stats_update_end(&rx_ring->syncp);
995 	q_vector->rx.total_packets += total_rx_packets;
996 	q_vector->rx.total_bytes += total_rx_bytes;
997 
998 	return total_rx_packets;
999 }
1000 
1001 /**
1002  * ixgbevf_poll - NAPI polling calback
1003  * @napi: napi struct with our devices info in it
1004  * @budget: amount of work driver is allowed to do this pass, in packets
1005  *
1006  * This function will clean more than one or more rings associated with a
1007  * q_vector.
1008  **/
1009 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1010 {
1011 	struct ixgbevf_q_vector *q_vector =
1012 		container_of(napi, struct ixgbevf_q_vector, napi);
1013 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1014 	struct ixgbevf_ring *ring;
1015 	int per_ring_budget, work_done = 0;
1016 	bool clean_complete = true;
1017 
1018 	ixgbevf_for_each_ring(ring, q_vector->tx) {
1019 		if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1020 			clean_complete = false;
1021 	}
1022 
1023 	if (budget <= 0)
1024 		return budget;
1025 
1026 	/* attempt to distribute budget to each queue fairly, but don't allow
1027 	 * the budget to go below 1 because we'll exit polling
1028 	 */
1029 	if (q_vector->rx.count > 1)
1030 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1031 	else
1032 		per_ring_budget = budget;
1033 
1034 	ixgbevf_for_each_ring(ring, q_vector->rx) {
1035 		int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1036 						   per_ring_budget);
1037 		work_done += cleaned;
1038 		if (cleaned >= per_ring_budget)
1039 			clean_complete = false;
1040 	}
1041 
1042 	/* If all work not completed, return budget and keep polling */
1043 	if (!clean_complete)
1044 		return budget;
1045 	/* all work done, exit the polling mode */
1046 	napi_complete_done(napi, work_done);
1047 	if (adapter->rx_itr_setting == 1)
1048 		ixgbevf_set_itr(q_vector);
1049 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1050 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1051 		ixgbevf_irq_enable_queues(adapter,
1052 					  BIT(q_vector->v_idx));
1053 
1054 	return 0;
1055 }
1056 
1057 /**
1058  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1059  * @q_vector: structure containing interrupt and ring information
1060  **/
1061 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1062 {
1063 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1064 	struct ixgbe_hw *hw = &adapter->hw;
1065 	int v_idx = q_vector->v_idx;
1066 	u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1067 
1068 	/* set the WDIS bit to not clear the timer bits and cause an
1069 	 * immediate assertion of the interrupt
1070 	 */
1071 	itr_reg |= IXGBE_EITR_CNT_WDIS;
1072 
1073 	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1074 }
1075 
1076 /**
1077  * ixgbevf_configure_msix - Configure MSI-X hardware
1078  * @adapter: board private structure
1079  *
1080  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1081  * interrupts.
1082  **/
1083 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1084 {
1085 	struct ixgbevf_q_vector *q_vector;
1086 	int q_vectors, v_idx;
1087 
1088 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1089 	adapter->eims_enable_mask = 0;
1090 
1091 	/* Populate the IVAR table and set the ITR values to the
1092 	 * corresponding register.
1093 	 */
1094 	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1095 		struct ixgbevf_ring *ring;
1096 
1097 		q_vector = adapter->q_vector[v_idx];
1098 
1099 		ixgbevf_for_each_ring(ring, q_vector->rx)
1100 			ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1101 
1102 		ixgbevf_for_each_ring(ring, q_vector->tx)
1103 			ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1104 
1105 		if (q_vector->tx.ring && !q_vector->rx.ring) {
1106 			/* Tx only vector */
1107 			if (adapter->tx_itr_setting == 1)
1108 				q_vector->itr = IXGBE_12K_ITR;
1109 			else
1110 				q_vector->itr = adapter->tx_itr_setting;
1111 		} else {
1112 			/* Rx or Rx/Tx vector */
1113 			if (adapter->rx_itr_setting == 1)
1114 				q_vector->itr = IXGBE_20K_ITR;
1115 			else
1116 				q_vector->itr = adapter->rx_itr_setting;
1117 		}
1118 
1119 		/* add q_vector eims value to global eims_enable_mask */
1120 		adapter->eims_enable_mask |= BIT(v_idx);
1121 
1122 		ixgbevf_write_eitr(q_vector);
1123 	}
1124 
1125 	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1126 	/* setup eims_other and add value to global eims_enable_mask */
1127 	adapter->eims_other = BIT(v_idx);
1128 	adapter->eims_enable_mask |= adapter->eims_other;
1129 }
1130 
1131 enum latency_range {
1132 	lowest_latency = 0,
1133 	low_latency = 1,
1134 	bulk_latency = 2,
1135 	latency_invalid = 255
1136 };
1137 
1138 /**
1139  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1140  * @q_vector: structure containing interrupt and ring information
1141  * @ring_container: structure containing ring performance data
1142  *
1143  * Stores a new ITR value based on packets and byte
1144  * counts during the last interrupt.  The advantage of per interrupt
1145  * computation is faster updates and more accurate ITR for the current
1146  * traffic pattern.  Constants in this function were computed
1147  * based on theoretical maximum wire speed and thresholds were set based
1148  * on testing data as well as attempting to minimize response time
1149  * while increasing bulk throughput.
1150  **/
1151 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1152 			       struct ixgbevf_ring_container *ring_container)
1153 {
1154 	int bytes = ring_container->total_bytes;
1155 	int packets = ring_container->total_packets;
1156 	u32 timepassed_us;
1157 	u64 bytes_perint;
1158 	u8 itr_setting = ring_container->itr;
1159 
1160 	if (packets == 0)
1161 		return;
1162 
1163 	/* simple throttle rate management
1164 	 *    0-20MB/s lowest (100000 ints/s)
1165 	 *   20-100MB/s low   (20000 ints/s)
1166 	 *  100-1249MB/s bulk (12000 ints/s)
1167 	 */
1168 	/* what was last interrupt timeslice? */
1169 	timepassed_us = q_vector->itr >> 2;
1170 	bytes_perint = bytes / timepassed_us; /* bytes/usec */
1171 
1172 	switch (itr_setting) {
1173 	case lowest_latency:
1174 		if (bytes_perint > 10)
1175 			itr_setting = low_latency;
1176 		break;
1177 	case low_latency:
1178 		if (bytes_perint > 20)
1179 			itr_setting = bulk_latency;
1180 		else if (bytes_perint <= 10)
1181 			itr_setting = lowest_latency;
1182 		break;
1183 	case bulk_latency:
1184 		if (bytes_perint <= 20)
1185 			itr_setting = low_latency;
1186 		break;
1187 	}
1188 
1189 	/* clear work counters since we have the values we need */
1190 	ring_container->total_bytes = 0;
1191 	ring_container->total_packets = 0;
1192 
1193 	/* write updated itr to ring container */
1194 	ring_container->itr = itr_setting;
1195 }
1196 
1197 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1198 {
1199 	u32 new_itr = q_vector->itr;
1200 	u8 current_itr;
1201 
1202 	ixgbevf_update_itr(q_vector, &q_vector->tx);
1203 	ixgbevf_update_itr(q_vector, &q_vector->rx);
1204 
1205 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1206 
1207 	switch (current_itr) {
1208 	/* counts and packets in update_itr are dependent on these numbers */
1209 	case lowest_latency:
1210 		new_itr = IXGBE_100K_ITR;
1211 		break;
1212 	case low_latency:
1213 		new_itr = IXGBE_20K_ITR;
1214 		break;
1215 	case bulk_latency:
1216 		new_itr = IXGBE_12K_ITR;
1217 		break;
1218 	default:
1219 		break;
1220 	}
1221 
1222 	if (new_itr != q_vector->itr) {
1223 		/* do an exponential smoothing */
1224 		new_itr = (10 * new_itr * q_vector->itr) /
1225 			  ((9 * new_itr) + q_vector->itr);
1226 
1227 		/* save the algorithm value here */
1228 		q_vector->itr = new_itr;
1229 
1230 		ixgbevf_write_eitr(q_vector);
1231 	}
1232 }
1233 
1234 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1235 {
1236 	struct ixgbevf_adapter *adapter = data;
1237 	struct ixgbe_hw *hw = &adapter->hw;
1238 
1239 	hw->mac.get_link_status = 1;
1240 
1241 	ixgbevf_service_event_schedule(adapter);
1242 
1243 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1244 
1245 	return IRQ_HANDLED;
1246 }
1247 
1248 /**
1249  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1250  * @irq: unused
1251  * @data: pointer to our q_vector struct for this interrupt vector
1252  **/
1253 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1254 {
1255 	struct ixgbevf_q_vector *q_vector = data;
1256 
1257 	/* EIAM disabled interrupts (on this vector) for us */
1258 	if (q_vector->rx.ring || q_vector->tx.ring)
1259 		napi_schedule_irqoff(&q_vector->napi);
1260 
1261 	return IRQ_HANDLED;
1262 }
1263 
1264 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1265 				     int r_idx)
1266 {
1267 	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1268 
1269 	a->rx_ring[r_idx]->next = q_vector->rx.ring;
1270 	q_vector->rx.ring = a->rx_ring[r_idx];
1271 	q_vector->rx.count++;
1272 }
1273 
1274 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1275 				     int t_idx)
1276 {
1277 	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1278 
1279 	a->tx_ring[t_idx]->next = q_vector->tx.ring;
1280 	q_vector->tx.ring = a->tx_ring[t_idx];
1281 	q_vector->tx.count++;
1282 }
1283 
1284 /**
1285  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1286  * @adapter: board private structure to initialize
1287  *
1288  * This function maps descriptor rings to the queue-specific vectors
1289  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1290  * one vector per ring/queue, but on a constrained vector budget, we
1291  * group the rings as "efficiently" as possible.  You would add new
1292  * mapping configurations in here.
1293  **/
1294 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1295 {
1296 	int q_vectors;
1297 	int v_start = 0;
1298 	int rxr_idx = 0, txr_idx = 0;
1299 	int rxr_remaining = adapter->num_rx_queues;
1300 	int txr_remaining = adapter->num_tx_queues;
1301 	int i, j;
1302 	int rqpv, tqpv;
1303 
1304 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1305 
1306 	/* The ideal configuration...
1307 	 * We have enough vectors to map one per queue.
1308 	 */
1309 	if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1310 		for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1311 			map_vector_to_rxq(adapter, v_start, rxr_idx);
1312 
1313 		for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1314 			map_vector_to_txq(adapter, v_start, txr_idx);
1315 		return 0;
1316 	}
1317 
1318 	/* If we don't have enough vectors for a 1-to-1
1319 	 * mapping, we'll have to group them so there are
1320 	 * multiple queues per vector.
1321 	 */
1322 	/* Re-adjusting *qpv takes care of the remainder. */
1323 	for (i = v_start; i < q_vectors; i++) {
1324 		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1325 		for (j = 0; j < rqpv; j++) {
1326 			map_vector_to_rxq(adapter, i, rxr_idx);
1327 			rxr_idx++;
1328 			rxr_remaining--;
1329 		}
1330 	}
1331 	for (i = v_start; i < q_vectors; i++) {
1332 		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1333 		for (j = 0; j < tqpv; j++) {
1334 			map_vector_to_txq(adapter, i, txr_idx);
1335 			txr_idx++;
1336 			txr_remaining--;
1337 		}
1338 	}
1339 
1340 	return 0;
1341 }
1342 
1343 /**
1344  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1345  * @adapter: board private structure
1346  *
1347  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1348  * interrupts from the kernel.
1349  **/
1350 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1351 {
1352 	struct net_device *netdev = adapter->netdev;
1353 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1354 	unsigned int ri = 0, ti = 0;
1355 	int vector, err;
1356 
1357 	for (vector = 0; vector < q_vectors; vector++) {
1358 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1359 		struct msix_entry *entry = &adapter->msix_entries[vector];
1360 
1361 		if (q_vector->tx.ring && q_vector->rx.ring) {
1362 			snprintf(q_vector->name, sizeof(q_vector->name),
1363 				 "%s-TxRx-%u", netdev->name, ri++);
1364 			ti++;
1365 		} else if (q_vector->rx.ring) {
1366 			snprintf(q_vector->name, sizeof(q_vector->name),
1367 				 "%s-rx-%u", netdev->name, ri++);
1368 		} else if (q_vector->tx.ring) {
1369 			snprintf(q_vector->name, sizeof(q_vector->name),
1370 				 "%s-tx-%u", netdev->name, ti++);
1371 		} else {
1372 			/* skip this unused q_vector */
1373 			continue;
1374 		}
1375 		err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1376 				  q_vector->name, q_vector);
1377 		if (err) {
1378 			hw_dbg(&adapter->hw,
1379 			       "request_irq failed for MSIX interrupt Error: %d\n",
1380 			       err);
1381 			goto free_queue_irqs;
1382 		}
1383 	}
1384 
1385 	err = request_irq(adapter->msix_entries[vector].vector,
1386 			  &ixgbevf_msix_other, 0, netdev->name, adapter);
1387 	if (err) {
1388 		hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1389 		       err);
1390 		goto free_queue_irqs;
1391 	}
1392 
1393 	return 0;
1394 
1395 free_queue_irqs:
1396 	while (vector) {
1397 		vector--;
1398 		free_irq(adapter->msix_entries[vector].vector,
1399 			 adapter->q_vector[vector]);
1400 	}
1401 	/* This failure is non-recoverable - it indicates the system is
1402 	 * out of MSIX vector resources and the VF driver cannot run
1403 	 * without them.  Set the number of msix vectors to zero
1404 	 * indicating that not enough can be allocated.  The error
1405 	 * will be returned to the user indicating device open failed.
1406 	 * Any further attempts to force the driver to open will also
1407 	 * fail.  The only way to recover is to unload the driver and
1408 	 * reload it again.  If the system has recovered some MSIX
1409 	 * vectors then it may succeed.
1410 	 */
1411 	adapter->num_msix_vectors = 0;
1412 	return err;
1413 }
1414 
1415 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1416 {
1417 	int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1418 
1419 	for (i = 0; i < q_vectors; i++) {
1420 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1421 
1422 		q_vector->rx.ring = NULL;
1423 		q_vector->tx.ring = NULL;
1424 		q_vector->rx.count = 0;
1425 		q_vector->tx.count = 0;
1426 	}
1427 }
1428 
1429 /**
1430  * ixgbevf_request_irq - initialize interrupts
1431  * @adapter: board private structure
1432  *
1433  * Attempts to configure interrupts using the best available
1434  * capabilities of the hardware and kernel.
1435  **/
1436 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1437 {
1438 	int err = ixgbevf_request_msix_irqs(adapter);
1439 
1440 	if (err)
1441 		hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1442 
1443 	return err;
1444 }
1445 
1446 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1447 {
1448 	int i, q_vectors;
1449 
1450 	if (!adapter->msix_entries)
1451 		return;
1452 
1453 	q_vectors = adapter->num_msix_vectors;
1454 	i = q_vectors - 1;
1455 
1456 	free_irq(adapter->msix_entries[i].vector, adapter);
1457 	i--;
1458 
1459 	for (; i >= 0; i--) {
1460 		/* free only the irqs that were actually requested */
1461 		if (!adapter->q_vector[i]->rx.ring &&
1462 		    !adapter->q_vector[i]->tx.ring)
1463 			continue;
1464 
1465 		free_irq(adapter->msix_entries[i].vector,
1466 			 adapter->q_vector[i]);
1467 	}
1468 
1469 	ixgbevf_reset_q_vectors(adapter);
1470 }
1471 
1472 /**
1473  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1474  * @adapter: board private structure
1475  **/
1476 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1477 {
1478 	struct ixgbe_hw *hw = &adapter->hw;
1479 	int i;
1480 
1481 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1482 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1483 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1484 
1485 	IXGBE_WRITE_FLUSH(hw);
1486 
1487 	for (i = 0; i < adapter->num_msix_vectors; i++)
1488 		synchronize_irq(adapter->msix_entries[i].vector);
1489 }
1490 
1491 /**
1492  * ixgbevf_irq_enable - Enable default interrupt generation settings
1493  * @adapter: board private structure
1494  **/
1495 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1496 {
1497 	struct ixgbe_hw *hw = &adapter->hw;
1498 
1499 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1500 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1501 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1502 }
1503 
1504 /**
1505  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1506  * @adapter: board private structure
1507  * @ring: structure containing ring specific data
1508  *
1509  * Configure the Tx descriptor ring after a reset.
1510  **/
1511 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1512 				      struct ixgbevf_ring *ring)
1513 {
1514 	struct ixgbe_hw *hw = &adapter->hw;
1515 	u64 tdba = ring->dma;
1516 	int wait_loop = 10;
1517 	u32 txdctl = IXGBE_TXDCTL_ENABLE;
1518 	u8 reg_idx = ring->reg_idx;
1519 
1520 	/* disable queue to avoid issues while updating state */
1521 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1522 	IXGBE_WRITE_FLUSH(hw);
1523 
1524 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1525 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1526 	IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1527 			ring->count * sizeof(union ixgbe_adv_tx_desc));
1528 
1529 	/* disable head writeback */
1530 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1531 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1532 
1533 	/* enable relaxed ordering */
1534 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1535 			(IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1536 			 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1537 
1538 	/* reset head and tail pointers */
1539 	IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1540 	IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1541 	ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1542 
1543 	/* reset ntu and ntc to place SW in sync with hardwdare */
1544 	ring->next_to_clean = 0;
1545 	ring->next_to_use = 0;
1546 
1547 	/* In order to avoid issues WTHRESH + PTHRESH should always be equal
1548 	 * to or less than the number of on chip descriptors, which is
1549 	 * currently 40.
1550 	 */
1551 	txdctl |= (8 << 16);    /* WTHRESH = 8 */
1552 
1553 	/* Setting PTHRESH to 32 both improves performance */
1554 	txdctl |= (1u << 8) |    /* HTHRESH = 1 */
1555 		   32;           /* PTHRESH = 32 */
1556 
1557 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1558 
1559 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1560 
1561 	/* poll to verify queue is enabled */
1562 	do {
1563 		usleep_range(1000, 2000);
1564 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1565 	}  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1566 	if (!wait_loop)
1567 		hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1568 }
1569 
1570 /**
1571  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1572  * @adapter: board private structure
1573  *
1574  * Configure the Tx unit of the MAC after a reset.
1575  **/
1576 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1577 {
1578 	u32 i;
1579 
1580 	/* Setup the HW Tx Head and Tail descriptor pointers */
1581 	for (i = 0; i < adapter->num_tx_queues; i++)
1582 		ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1583 }
1584 
1585 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1586 
1587 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1588 {
1589 	struct ixgbe_hw *hw = &adapter->hw;
1590 	u32 srrctl;
1591 
1592 	srrctl = IXGBE_SRRCTL_DROP_EN;
1593 
1594 	srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1595 	srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1596 	srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1597 
1598 	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1599 }
1600 
1601 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1602 {
1603 	struct ixgbe_hw *hw = &adapter->hw;
1604 
1605 	/* PSRTYPE must be initialized in 82599 */
1606 	u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1607 		      IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1608 		      IXGBE_PSRTYPE_L2HDR;
1609 
1610 	if (adapter->num_rx_queues > 1)
1611 		psrtype |= BIT(29);
1612 
1613 	IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1614 }
1615 
1616 #define IXGBEVF_MAX_RX_DESC_POLL 10
1617 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1618 				     struct ixgbevf_ring *ring)
1619 {
1620 	struct ixgbe_hw *hw = &adapter->hw;
1621 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1622 	u32 rxdctl;
1623 	u8 reg_idx = ring->reg_idx;
1624 
1625 	if (IXGBE_REMOVED(hw->hw_addr))
1626 		return;
1627 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1628 	rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1629 
1630 	/* write value back with RXDCTL.ENABLE bit cleared */
1631 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1632 
1633 	/* the hardware may take up to 100us to really disable the Rx queue */
1634 	do {
1635 		udelay(10);
1636 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1637 	} while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1638 
1639 	if (!wait_loop)
1640 		pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1641 		       reg_idx);
1642 }
1643 
1644 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1645 					 struct ixgbevf_ring *ring)
1646 {
1647 	struct ixgbe_hw *hw = &adapter->hw;
1648 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1649 	u32 rxdctl;
1650 	u8 reg_idx = ring->reg_idx;
1651 
1652 	if (IXGBE_REMOVED(hw->hw_addr))
1653 		return;
1654 	do {
1655 		usleep_range(1000, 2000);
1656 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1657 	} while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1658 
1659 	if (!wait_loop)
1660 		pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1661 		       reg_idx);
1662 }
1663 
1664 /**
1665  * ixgbevf_init_rss_key - Initialize adapter RSS key
1666  * @adapter: device handle
1667  *
1668  * Allocates and initializes the RSS key if it is not allocated.
1669  **/
1670 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter)
1671 {
1672 	u32 *rss_key;
1673 
1674 	if (!adapter->rss_key) {
1675 		rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL);
1676 		if (unlikely(!rss_key))
1677 			return -ENOMEM;
1678 
1679 		netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE);
1680 		adapter->rss_key = rss_key;
1681 	}
1682 
1683 	return 0;
1684 }
1685 
1686 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1687 {
1688 	struct ixgbe_hw *hw = &adapter->hw;
1689 	u32 vfmrqc = 0, vfreta = 0;
1690 	u16 rss_i = adapter->num_rx_queues;
1691 	u8 i, j;
1692 
1693 	/* Fill out hash function seeds */
1694 	for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1695 		IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i));
1696 
1697 	for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1698 		if (j == rss_i)
1699 			j = 0;
1700 
1701 		adapter->rss_indir_tbl[i] = j;
1702 
1703 		vfreta |= j << (i & 0x3) * 8;
1704 		if ((i & 3) == 3) {
1705 			IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1706 			vfreta = 0;
1707 		}
1708 	}
1709 
1710 	/* Perform hash on these packet types */
1711 	vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1712 		IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1713 		IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1714 		IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1715 
1716 	vfmrqc |= IXGBE_VFMRQC_RSSEN;
1717 
1718 	IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1719 }
1720 
1721 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1722 				      struct ixgbevf_ring *ring)
1723 {
1724 	struct ixgbe_hw *hw = &adapter->hw;
1725 	u64 rdba = ring->dma;
1726 	u32 rxdctl;
1727 	u8 reg_idx = ring->reg_idx;
1728 
1729 	/* disable queue to avoid issues while updating state */
1730 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1731 	ixgbevf_disable_rx_queue(adapter, ring);
1732 
1733 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1734 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1735 	IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1736 			ring->count * sizeof(union ixgbe_adv_rx_desc));
1737 
1738 #ifndef CONFIG_SPARC
1739 	/* enable relaxed ordering */
1740 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1741 			IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1742 #else
1743 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1744 			IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1745 			IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1746 #endif
1747 
1748 	/* reset head and tail pointers */
1749 	IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1750 	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1751 	ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1752 
1753 	/* reset ntu and ntc to place SW in sync with hardwdare */
1754 	ring->next_to_clean = 0;
1755 	ring->next_to_use = 0;
1756 	ring->next_to_alloc = 0;
1757 
1758 	ixgbevf_configure_srrctl(adapter, reg_idx);
1759 
1760 	/* allow any size packet since we can handle overflow */
1761 	rxdctl &= ~IXGBE_RXDCTL_RLPML_EN;
1762 
1763 	rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1764 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1765 
1766 	ixgbevf_rx_desc_queue_enable(adapter, ring);
1767 	ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1768 }
1769 
1770 /**
1771  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1772  * @adapter: board private structure
1773  *
1774  * Configure the Rx unit of the MAC after a reset.
1775  **/
1776 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1777 {
1778 	struct ixgbe_hw *hw = &adapter->hw;
1779 	struct net_device *netdev = adapter->netdev;
1780 	int i, ret;
1781 
1782 	ixgbevf_setup_psrtype(adapter);
1783 	if (hw->mac.type >= ixgbe_mac_X550_vf)
1784 		ixgbevf_setup_vfmrqc(adapter);
1785 
1786 	spin_lock_bh(&adapter->mbx_lock);
1787 	/* notify the PF of our intent to use this size of frame */
1788 	ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1789 	spin_unlock_bh(&adapter->mbx_lock);
1790 	if (ret)
1791 		dev_err(&adapter->pdev->dev,
1792 			"Failed to set MTU at %d\n", netdev->mtu);
1793 
1794 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1795 	 * the Base and Length of the Rx Descriptor Ring
1796 	 */
1797 	for (i = 0; i < adapter->num_rx_queues; i++)
1798 		ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]);
1799 }
1800 
1801 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1802 				   __be16 proto, u16 vid)
1803 {
1804 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1805 	struct ixgbe_hw *hw = &adapter->hw;
1806 	int err;
1807 
1808 	spin_lock_bh(&adapter->mbx_lock);
1809 
1810 	/* add VID to filter table */
1811 	err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1812 
1813 	spin_unlock_bh(&adapter->mbx_lock);
1814 
1815 	/* translate error return types so error makes sense */
1816 	if (err == IXGBE_ERR_MBX)
1817 		return -EIO;
1818 
1819 	if (err == IXGBE_ERR_INVALID_ARGUMENT)
1820 		return -EACCES;
1821 
1822 	set_bit(vid, adapter->active_vlans);
1823 
1824 	return err;
1825 }
1826 
1827 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1828 				    __be16 proto, u16 vid)
1829 {
1830 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1831 	struct ixgbe_hw *hw = &adapter->hw;
1832 	int err;
1833 
1834 	spin_lock_bh(&adapter->mbx_lock);
1835 
1836 	/* remove VID from filter table */
1837 	err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1838 
1839 	spin_unlock_bh(&adapter->mbx_lock);
1840 
1841 	clear_bit(vid, adapter->active_vlans);
1842 
1843 	return err;
1844 }
1845 
1846 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1847 {
1848 	u16 vid;
1849 
1850 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1851 		ixgbevf_vlan_rx_add_vid(adapter->netdev,
1852 					htons(ETH_P_8021Q), vid);
1853 }
1854 
1855 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1856 {
1857 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1858 	struct ixgbe_hw *hw = &adapter->hw;
1859 	int count = 0;
1860 
1861 	if ((netdev_uc_count(netdev)) > 10) {
1862 		pr_err("Too many unicast filters - No Space\n");
1863 		return -ENOSPC;
1864 	}
1865 
1866 	if (!netdev_uc_empty(netdev)) {
1867 		struct netdev_hw_addr *ha;
1868 
1869 		netdev_for_each_uc_addr(ha, netdev) {
1870 			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1871 			udelay(200);
1872 		}
1873 	} else {
1874 		/* If the list is empty then send message to PF driver to
1875 		 * clear all MAC VLANs on this VF.
1876 		 */
1877 		hw->mac.ops.set_uc_addr(hw, 0, NULL);
1878 	}
1879 
1880 	return count;
1881 }
1882 
1883 /**
1884  * ixgbevf_set_rx_mode - Multicast and unicast set
1885  * @netdev: network interface device structure
1886  *
1887  * The set_rx_method entry point is called whenever the multicast address
1888  * list, unicast address list or the network interface flags are updated.
1889  * This routine is responsible for configuring the hardware for proper
1890  * multicast mode and configuring requested unicast filters.
1891  **/
1892 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1893 {
1894 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1895 	struct ixgbe_hw *hw = &adapter->hw;
1896 	unsigned int flags = netdev->flags;
1897 	int xcast_mode;
1898 
1899 	xcast_mode = (flags & IFF_ALLMULTI) ? IXGBEVF_XCAST_MODE_ALLMULTI :
1900 		     (flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1901 		     IXGBEVF_XCAST_MODE_MULTI : IXGBEVF_XCAST_MODE_NONE;
1902 
1903 	/* request the most inclusive mode we need */
1904 	if (flags & IFF_PROMISC)
1905 		xcast_mode = IXGBEVF_XCAST_MODE_PROMISC;
1906 	else if (flags & IFF_ALLMULTI)
1907 		xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI;
1908 	else if (flags & (IFF_BROADCAST | IFF_MULTICAST))
1909 		xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
1910 	else
1911 		xcast_mode = IXGBEVF_XCAST_MODE_NONE;
1912 
1913 	spin_lock_bh(&adapter->mbx_lock);
1914 
1915 	hw->mac.ops.update_xcast_mode(hw, xcast_mode);
1916 
1917 	/* reprogram multicast list */
1918 	hw->mac.ops.update_mc_addr_list(hw, netdev);
1919 
1920 	ixgbevf_write_uc_addr_list(netdev);
1921 
1922 	spin_unlock_bh(&adapter->mbx_lock);
1923 }
1924 
1925 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1926 {
1927 	int q_idx;
1928 	struct ixgbevf_q_vector *q_vector;
1929 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1930 
1931 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1932 		q_vector = adapter->q_vector[q_idx];
1933 		napi_enable(&q_vector->napi);
1934 	}
1935 }
1936 
1937 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1938 {
1939 	int q_idx;
1940 	struct ixgbevf_q_vector *q_vector;
1941 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1942 
1943 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1944 		q_vector = adapter->q_vector[q_idx];
1945 		napi_disable(&q_vector->napi);
1946 	}
1947 }
1948 
1949 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
1950 {
1951 	struct ixgbe_hw *hw = &adapter->hw;
1952 	unsigned int def_q = 0;
1953 	unsigned int num_tcs = 0;
1954 	unsigned int num_rx_queues = adapter->num_rx_queues;
1955 	unsigned int num_tx_queues = adapter->num_tx_queues;
1956 	int err;
1957 
1958 	spin_lock_bh(&adapter->mbx_lock);
1959 
1960 	/* fetch queue configuration from the PF */
1961 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1962 
1963 	spin_unlock_bh(&adapter->mbx_lock);
1964 
1965 	if (err)
1966 		return err;
1967 
1968 	if (num_tcs > 1) {
1969 		/* we need only one Tx queue */
1970 		num_tx_queues = 1;
1971 
1972 		/* update default Tx ring register index */
1973 		adapter->tx_ring[0]->reg_idx = def_q;
1974 
1975 		/* we need as many queues as traffic classes */
1976 		num_rx_queues = num_tcs;
1977 	}
1978 
1979 	/* if we have a bad config abort request queue reset */
1980 	if ((adapter->num_rx_queues != num_rx_queues) ||
1981 	    (adapter->num_tx_queues != num_tx_queues)) {
1982 		/* force mailbox timeout to prevent further messages */
1983 		hw->mbx.timeout = 0;
1984 
1985 		/* wait for watchdog to come around and bail us out */
1986 		set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1993 {
1994 	ixgbevf_configure_dcb(adapter);
1995 
1996 	ixgbevf_set_rx_mode(adapter->netdev);
1997 
1998 	ixgbevf_restore_vlan(adapter);
1999 
2000 	ixgbevf_configure_tx(adapter);
2001 	ixgbevf_configure_rx(adapter);
2002 }
2003 
2004 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2005 {
2006 	/* Only save pre-reset stats if there are some */
2007 	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2008 		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2009 			adapter->stats.base_vfgprc;
2010 		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2011 			adapter->stats.base_vfgptc;
2012 		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2013 			adapter->stats.base_vfgorc;
2014 		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2015 			adapter->stats.base_vfgotc;
2016 		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2017 			adapter->stats.base_vfmprc;
2018 	}
2019 }
2020 
2021 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2022 {
2023 	struct ixgbe_hw *hw = &adapter->hw;
2024 
2025 	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2026 	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2027 	adapter->stats.last_vfgorc |=
2028 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2029 	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2030 	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2031 	adapter->stats.last_vfgotc |=
2032 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2033 	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2034 
2035 	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2036 	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2037 	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2038 	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2039 	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2040 }
2041 
2042 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2043 {
2044 	struct ixgbe_hw *hw = &adapter->hw;
2045 	int api[] = { ixgbe_mbox_api_13,
2046 		      ixgbe_mbox_api_12,
2047 		      ixgbe_mbox_api_11,
2048 		      ixgbe_mbox_api_10,
2049 		      ixgbe_mbox_api_unknown };
2050 	int err, idx = 0;
2051 
2052 	spin_lock_bh(&adapter->mbx_lock);
2053 
2054 	while (api[idx] != ixgbe_mbox_api_unknown) {
2055 		err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2056 		if (!err)
2057 			break;
2058 		idx++;
2059 	}
2060 
2061 	spin_unlock_bh(&adapter->mbx_lock);
2062 }
2063 
2064 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2065 {
2066 	struct net_device *netdev = adapter->netdev;
2067 	struct ixgbe_hw *hw = &adapter->hw;
2068 
2069 	ixgbevf_configure_msix(adapter);
2070 
2071 	spin_lock_bh(&adapter->mbx_lock);
2072 
2073 	if (is_valid_ether_addr(hw->mac.addr))
2074 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2075 	else
2076 		hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2077 
2078 	spin_unlock_bh(&adapter->mbx_lock);
2079 
2080 	smp_mb__before_atomic();
2081 	clear_bit(__IXGBEVF_DOWN, &adapter->state);
2082 	ixgbevf_napi_enable_all(adapter);
2083 
2084 	/* clear any pending interrupts, may auto mask */
2085 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2086 	ixgbevf_irq_enable(adapter);
2087 
2088 	/* enable transmits */
2089 	netif_tx_start_all_queues(netdev);
2090 
2091 	ixgbevf_save_reset_stats(adapter);
2092 	ixgbevf_init_last_counter_stats(adapter);
2093 
2094 	hw->mac.get_link_status = 1;
2095 	mod_timer(&adapter->service_timer, jiffies);
2096 }
2097 
2098 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2099 {
2100 	ixgbevf_configure(adapter);
2101 
2102 	ixgbevf_up_complete(adapter);
2103 }
2104 
2105 /**
2106  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2107  * @rx_ring: ring to free buffers from
2108  **/
2109 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2110 {
2111 	struct device *dev = rx_ring->dev;
2112 	unsigned long size;
2113 	unsigned int i;
2114 
2115 	/* Free Rx ring sk_buff */
2116 	if (rx_ring->skb) {
2117 		dev_kfree_skb(rx_ring->skb);
2118 		rx_ring->skb = NULL;
2119 	}
2120 
2121 	/* ring already cleared, nothing to do */
2122 	if (!rx_ring->rx_buffer_info)
2123 		return;
2124 
2125 	/* Free all the Rx ring pages */
2126 	for (i = 0; i < rx_ring->count; i++) {
2127 		struct ixgbevf_rx_buffer *rx_buffer;
2128 
2129 		rx_buffer = &rx_ring->rx_buffer_info[i];
2130 		if (rx_buffer->dma)
2131 			dma_unmap_page(dev, rx_buffer->dma,
2132 				       PAGE_SIZE, DMA_FROM_DEVICE);
2133 		rx_buffer->dma = 0;
2134 		if (rx_buffer->page)
2135 			__free_page(rx_buffer->page);
2136 		rx_buffer->page = NULL;
2137 	}
2138 
2139 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2140 	memset(rx_ring->rx_buffer_info, 0, size);
2141 
2142 	/* Zero out the descriptor ring */
2143 	memset(rx_ring->desc, 0, rx_ring->size);
2144 }
2145 
2146 /**
2147  * ixgbevf_clean_tx_ring - Free Tx Buffers
2148  * @tx_ring: ring to be cleaned
2149  **/
2150 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2151 {
2152 	struct ixgbevf_tx_buffer *tx_buffer_info;
2153 	unsigned long size;
2154 	unsigned int i;
2155 
2156 	if (!tx_ring->tx_buffer_info)
2157 		return;
2158 
2159 	/* Free all the Tx ring sk_buffs */
2160 	for (i = 0; i < tx_ring->count; i++) {
2161 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2162 		ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2163 	}
2164 
2165 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2166 	memset(tx_ring->tx_buffer_info, 0, size);
2167 
2168 	memset(tx_ring->desc, 0, tx_ring->size);
2169 }
2170 
2171 /**
2172  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2173  * @adapter: board private structure
2174  **/
2175 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2176 {
2177 	int i;
2178 
2179 	for (i = 0; i < adapter->num_rx_queues; i++)
2180 		ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2181 }
2182 
2183 /**
2184  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2185  * @adapter: board private structure
2186  **/
2187 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2188 {
2189 	int i;
2190 
2191 	for (i = 0; i < adapter->num_tx_queues; i++)
2192 		ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2193 }
2194 
2195 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2196 {
2197 	struct net_device *netdev = adapter->netdev;
2198 	struct ixgbe_hw *hw = &adapter->hw;
2199 	int i;
2200 
2201 	/* signal that we are down to the interrupt handler */
2202 	if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2203 		return; /* do nothing if already down */
2204 
2205 	/* disable all enabled Rx queues */
2206 	for (i = 0; i < adapter->num_rx_queues; i++)
2207 		ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2208 
2209 	usleep_range(10000, 20000);
2210 
2211 	netif_tx_stop_all_queues(netdev);
2212 
2213 	/* call carrier off first to avoid false dev_watchdog timeouts */
2214 	netif_carrier_off(netdev);
2215 	netif_tx_disable(netdev);
2216 
2217 	ixgbevf_irq_disable(adapter);
2218 
2219 	ixgbevf_napi_disable_all(adapter);
2220 
2221 	del_timer_sync(&adapter->service_timer);
2222 
2223 	/* disable transmits in the hardware now that interrupts are off */
2224 	for (i = 0; i < adapter->num_tx_queues; i++) {
2225 		u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2226 
2227 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2228 				IXGBE_TXDCTL_SWFLSH);
2229 	}
2230 
2231 	if (!pci_channel_offline(adapter->pdev))
2232 		ixgbevf_reset(adapter);
2233 
2234 	ixgbevf_clean_all_tx_rings(adapter);
2235 	ixgbevf_clean_all_rx_rings(adapter);
2236 }
2237 
2238 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2239 {
2240 	WARN_ON(in_interrupt());
2241 
2242 	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2243 		msleep(1);
2244 
2245 	ixgbevf_down(adapter);
2246 	ixgbevf_up(adapter);
2247 
2248 	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2249 }
2250 
2251 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2252 {
2253 	struct ixgbe_hw *hw = &adapter->hw;
2254 	struct net_device *netdev = adapter->netdev;
2255 
2256 	if (hw->mac.ops.reset_hw(hw)) {
2257 		hw_dbg(hw, "PF still resetting\n");
2258 	} else {
2259 		hw->mac.ops.init_hw(hw);
2260 		ixgbevf_negotiate_api(adapter);
2261 	}
2262 
2263 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2264 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2265 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2266 	}
2267 
2268 	adapter->last_reset = jiffies;
2269 }
2270 
2271 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2272 					int vectors)
2273 {
2274 	int vector_threshold;
2275 
2276 	/* We'll want at least 2 (vector_threshold):
2277 	 * 1) TxQ[0] + RxQ[0] handler
2278 	 * 2) Other (Link Status Change, etc.)
2279 	 */
2280 	vector_threshold = MIN_MSIX_COUNT;
2281 
2282 	/* The more we get, the more we will assign to Tx/Rx Cleanup
2283 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2284 	 * Right now, we simply care about how many we'll get; we'll
2285 	 * set them up later while requesting irq's.
2286 	 */
2287 	vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2288 					vector_threshold, vectors);
2289 
2290 	if (vectors < 0) {
2291 		dev_err(&adapter->pdev->dev,
2292 			"Unable to allocate MSI-X interrupts\n");
2293 		kfree(adapter->msix_entries);
2294 		adapter->msix_entries = NULL;
2295 		return vectors;
2296 	}
2297 
2298 	/* Adjust for only the vectors we'll use, which is minimum
2299 	 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2300 	 * vectors we were allocated.
2301 	 */
2302 	adapter->num_msix_vectors = vectors;
2303 
2304 	return 0;
2305 }
2306 
2307 /**
2308  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2309  * @adapter: board private structure to initialize
2310  *
2311  * This is the top level queue allocation routine.  The order here is very
2312  * important, starting with the "most" number of features turned on at once,
2313  * and ending with the smallest set of features.  This way large combinations
2314  * can be allocated if they're turned on, and smaller combinations are the
2315  * fallthrough conditions.
2316  *
2317  **/
2318 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2319 {
2320 	struct ixgbe_hw *hw = &adapter->hw;
2321 	unsigned int def_q = 0;
2322 	unsigned int num_tcs = 0;
2323 	int err;
2324 
2325 	/* Start with base case */
2326 	adapter->num_rx_queues = 1;
2327 	adapter->num_tx_queues = 1;
2328 
2329 	spin_lock_bh(&adapter->mbx_lock);
2330 
2331 	/* fetch queue configuration from the PF */
2332 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2333 
2334 	spin_unlock_bh(&adapter->mbx_lock);
2335 
2336 	if (err)
2337 		return;
2338 
2339 	/* we need as many queues as traffic classes */
2340 	if (num_tcs > 1) {
2341 		adapter->num_rx_queues = num_tcs;
2342 	} else {
2343 		u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2344 
2345 		switch (hw->api_version) {
2346 		case ixgbe_mbox_api_11:
2347 		case ixgbe_mbox_api_12:
2348 		case ixgbe_mbox_api_13:
2349 			adapter->num_rx_queues = rss;
2350 			adapter->num_tx_queues = rss;
2351 		default:
2352 			break;
2353 		}
2354 	}
2355 }
2356 
2357 /**
2358  * ixgbevf_alloc_queues - Allocate memory for all rings
2359  * @adapter: board private structure to initialize
2360  *
2361  * We allocate one ring per queue at run-time since we don't know the
2362  * number of queues at compile-time.  The polling_netdev array is
2363  * intended for Multiqueue, but should work fine with a single queue.
2364  **/
2365 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2366 {
2367 	struct ixgbevf_ring *ring;
2368 	int rx = 0, tx = 0;
2369 
2370 	for (; tx < adapter->num_tx_queues; tx++) {
2371 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2372 		if (!ring)
2373 			goto err_allocation;
2374 
2375 		ring->dev = &adapter->pdev->dev;
2376 		ring->netdev = adapter->netdev;
2377 		ring->count = adapter->tx_ring_count;
2378 		ring->queue_index = tx;
2379 		ring->reg_idx = tx;
2380 
2381 		adapter->tx_ring[tx] = ring;
2382 	}
2383 
2384 	for (; rx < adapter->num_rx_queues; rx++) {
2385 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2386 		if (!ring)
2387 			goto err_allocation;
2388 
2389 		ring->dev = &adapter->pdev->dev;
2390 		ring->netdev = adapter->netdev;
2391 
2392 		ring->count = adapter->rx_ring_count;
2393 		ring->queue_index = rx;
2394 		ring->reg_idx = rx;
2395 
2396 		adapter->rx_ring[rx] = ring;
2397 	}
2398 
2399 	return 0;
2400 
2401 err_allocation:
2402 	while (tx) {
2403 		kfree(adapter->tx_ring[--tx]);
2404 		adapter->tx_ring[tx] = NULL;
2405 	}
2406 
2407 	while (rx) {
2408 		kfree(adapter->rx_ring[--rx]);
2409 		adapter->rx_ring[rx] = NULL;
2410 	}
2411 	return -ENOMEM;
2412 }
2413 
2414 /**
2415  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2416  * @adapter: board private structure to initialize
2417  *
2418  * Attempt to configure the interrupts using the best available
2419  * capabilities of the hardware and the kernel.
2420  **/
2421 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2422 {
2423 	struct net_device *netdev = adapter->netdev;
2424 	int err;
2425 	int vector, v_budget;
2426 
2427 	/* It's easy to be greedy for MSI-X vectors, but it really
2428 	 * doesn't do us much good if we have a lot more vectors
2429 	 * than CPU's.  So let's be conservative and only ask for
2430 	 * (roughly) the same number of vectors as there are CPU's.
2431 	 * The default is to use pairs of vectors.
2432 	 */
2433 	v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2434 	v_budget = min_t(int, v_budget, num_online_cpus());
2435 	v_budget += NON_Q_VECTORS;
2436 
2437 	/* A failure in MSI-X entry allocation isn't fatal, but it does
2438 	 * mean we disable MSI-X capabilities of the adapter.
2439 	 */
2440 	adapter->msix_entries = kcalloc(v_budget,
2441 					sizeof(struct msix_entry), GFP_KERNEL);
2442 	if (!adapter->msix_entries)
2443 		return -ENOMEM;
2444 
2445 	for (vector = 0; vector < v_budget; vector++)
2446 		adapter->msix_entries[vector].entry = vector;
2447 
2448 	err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
2449 	if (err)
2450 		return err;
2451 
2452 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
2453 	if (err)
2454 		return err;
2455 
2456 	return netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
2457 }
2458 
2459 /**
2460  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2461  * @adapter: board private structure to initialize
2462  *
2463  * We allocate one q_vector per queue interrupt.  If allocation fails we
2464  * return -ENOMEM.
2465  **/
2466 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2467 {
2468 	int q_idx, num_q_vectors;
2469 	struct ixgbevf_q_vector *q_vector;
2470 
2471 	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2472 
2473 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2474 		q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2475 		if (!q_vector)
2476 			goto err_out;
2477 		q_vector->adapter = adapter;
2478 		q_vector->v_idx = q_idx;
2479 		netif_napi_add(adapter->netdev, &q_vector->napi,
2480 			       ixgbevf_poll, 64);
2481 		adapter->q_vector[q_idx] = q_vector;
2482 	}
2483 
2484 	return 0;
2485 
2486 err_out:
2487 	while (q_idx) {
2488 		q_idx--;
2489 		q_vector = adapter->q_vector[q_idx];
2490 #ifdef CONFIG_NET_RX_BUSY_POLL
2491 		napi_hash_del(&q_vector->napi);
2492 #endif
2493 		netif_napi_del(&q_vector->napi);
2494 		kfree(q_vector);
2495 		adapter->q_vector[q_idx] = NULL;
2496 	}
2497 	return -ENOMEM;
2498 }
2499 
2500 /**
2501  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2502  * @adapter: board private structure to initialize
2503  *
2504  * This function frees the memory allocated to the q_vectors.  In addition if
2505  * NAPI is enabled it will delete any references to the NAPI struct prior
2506  * to freeing the q_vector.
2507  **/
2508 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2509 {
2510 	int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2511 
2512 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2513 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2514 
2515 		adapter->q_vector[q_idx] = NULL;
2516 #ifdef CONFIG_NET_RX_BUSY_POLL
2517 		napi_hash_del(&q_vector->napi);
2518 #endif
2519 		netif_napi_del(&q_vector->napi);
2520 		kfree(q_vector);
2521 	}
2522 }
2523 
2524 /**
2525  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2526  * @adapter: board private structure
2527  *
2528  **/
2529 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2530 {
2531 	if (!adapter->msix_entries)
2532 		return;
2533 
2534 	pci_disable_msix(adapter->pdev);
2535 	kfree(adapter->msix_entries);
2536 	adapter->msix_entries = NULL;
2537 }
2538 
2539 /**
2540  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2541  * @adapter: board private structure to initialize
2542  *
2543  **/
2544 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2545 {
2546 	int err;
2547 
2548 	/* Number of supported queues */
2549 	ixgbevf_set_num_queues(adapter);
2550 
2551 	err = ixgbevf_set_interrupt_capability(adapter);
2552 	if (err) {
2553 		hw_dbg(&adapter->hw,
2554 		       "Unable to setup interrupt capabilities\n");
2555 		goto err_set_interrupt;
2556 	}
2557 
2558 	err = ixgbevf_alloc_q_vectors(adapter);
2559 	if (err) {
2560 		hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2561 		goto err_alloc_q_vectors;
2562 	}
2563 
2564 	err = ixgbevf_alloc_queues(adapter);
2565 	if (err) {
2566 		pr_err("Unable to allocate memory for queues\n");
2567 		goto err_alloc_queues;
2568 	}
2569 
2570 	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n",
2571 	       (adapter->num_rx_queues > 1) ? "Enabled" :
2572 	       "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2573 
2574 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2575 
2576 	return 0;
2577 err_alloc_queues:
2578 	ixgbevf_free_q_vectors(adapter);
2579 err_alloc_q_vectors:
2580 	ixgbevf_reset_interrupt_capability(adapter);
2581 err_set_interrupt:
2582 	return err;
2583 }
2584 
2585 /**
2586  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2587  * @adapter: board private structure to clear interrupt scheme on
2588  *
2589  * We go through and clear interrupt specific resources and reset the structure
2590  * to pre-load conditions
2591  **/
2592 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2593 {
2594 	int i;
2595 
2596 	for (i = 0; i < adapter->num_tx_queues; i++) {
2597 		kfree(adapter->tx_ring[i]);
2598 		adapter->tx_ring[i] = NULL;
2599 	}
2600 	for (i = 0; i < adapter->num_rx_queues; i++) {
2601 		kfree(adapter->rx_ring[i]);
2602 		adapter->rx_ring[i] = NULL;
2603 	}
2604 
2605 	adapter->num_tx_queues = 0;
2606 	adapter->num_rx_queues = 0;
2607 
2608 	ixgbevf_free_q_vectors(adapter);
2609 	ixgbevf_reset_interrupt_capability(adapter);
2610 }
2611 
2612 /**
2613  * ixgbevf_sw_init - Initialize general software structures
2614  * @adapter: board private structure to initialize
2615  *
2616  * ixgbevf_sw_init initializes the Adapter private data structure.
2617  * Fields are initialized based on PCI device information and
2618  * OS network device settings (MTU size).
2619  **/
2620 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2621 {
2622 	struct ixgbe_hw *hw = &adapter->hw;
2623 	struct pci_dev *pdev = adapter->pdev;
2624 	struct net_device *netdev = adapter->netdev;
2625 	int err;
2626 
2627 	/* PCI config space info */
2628 	hw->vendor_id = pdev->vendor;
2629 	hw->device_id = pdev->device;
2630 	hw->revision_id = pdev->revision;
2631 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2632 	hw->subsystem_device_id = pdev->subsystem_device;
2633 
2634 	hw->mbx.ops.init_params(hw);
2635 
2636 	if (hw->mac.type >= ixgbe_mac_X550_vf) {
2637 		err = ixgbevf_init_rss_key(adapter);
2638 		if (err)
2639 			goto out;
2640 	}
2641 
2642 	/* assume legacy case in which PF would only give VF 2 queues */
2643 	hw->mac.max_tx_queues = 2;
2644 	hw->mac.max_rx_queues = 2;
2645 
2646 	/* lock to protect mailbox accesses */
2647 	spin_lock_init(&adapter->mbx_lock);
2648 
2649 	err = hw->mac.ops.reset_hw(hw);
2650 	if (err) {
2651 		dev_info(&pdev->dev,
2652 			 "PF still in reset state.  Is the PF interface up?\n");
2653 	} else {
2654 		err = hw->mac.ops.init_hw(hw);
2655 		if (err) {
2656 			pr_err("init_shared_code failed: %d\n", err);
2657 			goto out;
2658 		}
2659 		ixgbevf_negotiate_api(adapter);
2660 		err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2661 		if (err)
2662 			dev_info(&pdev->dev, "Error reading MAC address\n");
2663 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2664 			dev_info(&pdev->dev,
2665 				 "MAC address not assigned by administrator.\n");
2666 		ether_addr_copy(netdev->dev_addr, hw->mac.addr);
2667 	}
2668 
2669 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2670 		dev_info(&pdev->dev, "Assigning random MAC address\n");
2671 		eth_hw_addr_random(netdev);
2672 		ether_addr_copy(hw->mac.addr, netdev->dev_addr);
2673 		ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
2674 	}
2675 
2676 	/* Enable dynamic interrupt throttling rates */
2677 	adapter->rx_itr_setting = 1;
2678 	adapter->tx_itr_setting = 1;
2679 
2680 	/* set default ring sizes */
2681 	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2682 	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2683 
2684 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2685 	return 0;
2686 
2687 out:
2688 	return err;
2689 }
2690 
2691 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
2692 	{							\
2693 		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
2694 		if (current_counter < last_counter)		\
2695 			counter += 0x100000000LL;		\
2696 		last_counter = current_counter;			\
2697 		counter &= 0xFFFFFFFF00000000LL;		\
2698 		counter |= current_counter;			\
2699 	}
2700 
2701 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2702 	{								 \
2703 		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
2704 		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
2705 		u64 current_counter = (current_counter_msb << 32) |	 \
2706 			current_counter_lsb;				 \
2707 		if (current_counter < last_counter)			 \
2708 			counter += 0x1000000000LL;			 \
2709 		last_counter = current_counter;				 \
2710 		counter &= 0xFFFFFFF000000000LL;			 \
2711 		counter |= current_counter;				 \
2712 	}
2713 /**
2714  * ixgbevf_update_stats - Update the board statistics counters.
2715  * @adapter: board private structure
2716  **/
2717 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2718 {
2719 	struct ixgbe_hw *hw = &adapter->hw;
2720 	int i;
2721 
2722 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2723 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2724 		return;
2725 
2726 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2727 				adapter->stats.vfgprc);
2728 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2729 				adapter->stats.vfgptc);
2730 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2731 				adapter->stats.last_vfgorc,
2732 				adapter->stats.vfgorc);
2733 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2734 				adapter->stats.last_vfgotc,
2735 				adapter->stats.vfgotc);
2736 	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2737 				adapter->stats.vfmprc);
2738 
2739 	for (i = 0;  i  < adapter->num_rx_queues;  i++) {
2740 		adapter->hw_csum_rx_error +=
2741 			adapter->rx_ring[i]->hw_csum_rx_error;
2742 		adapter->rx_ring[i]->hw_csum_rx_error = 0;
2743 	}
2744 }
2745 
2746 /**
2747  * ixgbevf_service_timer - Timer Call-back
2748  * @data: pointer to adapter cast into an unsigned long
2749  **/
2750 static void ixgbevf_service_timer(unsigned long data)
2751 {
2752 	struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2753 
2754 	/* Reset the timer */
2755 	mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
2756 
2757 	ixgbevf_service_event_schedule(adapter);
2758 }
2759 
2760 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
2761 {
2762 	if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
2763 		return;
2764 
2765 	/* If we're already down or resetting, just bail */
2766 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2767 	    test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
2768 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2769 		return;
2770 
2771 	adapter->tx_timeout_count++;
2772 
2773 	rtnl_lock();
2774 	ixgbevf_reinit_locked(adapter);
2775 	rtnl_unlock();
2776 }
2777 
2778 /**
2779  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
2780  * @adapter: pointer to the device adapter structure
2781  *
2782  * This function serves two purposes.  First it strobes the interrupt lines
2783  * in order to make certain interrupts are occurring.  Secondly it sets the
2784  * bits needed to check for TX hangs.  As a result we should immediately
2785  * determine if a hang has occurred.
2786  **/
2787 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
2788 {
2789 	struct ixgbe_hw *hw = &adapter->hw;
2790 	u32 eics = 0;
2791 	int i;
2792 
2793 	/* If we're down or resetting, just bail */
2794 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2795 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2796 		return;
2797 
2798 	/* Force detection of hung controller */
2799 	if (netif_carrier_ok(adapter->netdev)) {
2800 		for (i = 0; i < adapter->num_tx_queues; i++)
2801 			set_check_for_tx_hang(adapter->tx_ring[i]);
2802 	}
2803 
2804 	/* get one bit for every active Tx/Rx interrupt vector */
2805 	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2806 		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2807 
2808 		if (qv->rx.ring || qv->tx.ring)
2809 			eics |= BIT(i);
2810 	}
2811 
2812 	/* Cause software interrupt to ensure rings are cleaned */
2813 	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2814 }
2815 
2816 /**
2817  * ixgbevf_watchdog_update_link - update the link status
2818  * @adapter: pointer to the device adapter structure
2819  **/
2820 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
2821 {
2822 	struct ixgbe_hw *hw = &adapter->hw;
2823 	u32 link_speed = adapter->link_speed;
2824 	bool link_up = adapter->link_up;
2825 	s32 err;
2826 
2827 	spin_lock_bh(&adapter->mbx_lock);
2828 
2829 	err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2830 
2831 	spin_unlock_bh(&adapter->mbx_lock);
2832 
2833 	/* if check for link returns error we will need to reset */
2834 	if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
2835 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
2836 		link_up = false;
2837 	}
2838 
2839 	adapter->link_up = link_up;
2840 	adapter->link_speed = link_speed;
2841 }
2842 
2843 /**
2844  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
2845  *				 print link up message
2846  * @adapter: pointer to the device adapter structure
2847  **/
2848 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
2849 {
2850 	struct net_device *netdev = adapter->netdev;
2851 
2852 	/* only continue if link was previously down */
2853 	if (netif_carrier_ok(netdev))
2854 		return;
2855 
2856 	dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
2857 		 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2858 		 "10 Gbps" :
2859 		 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
2860 		 "1 Gbps" :
2861 		 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
2862 		 "100 Mbps" :
2863 		 "unknown speed");
2864 
2865 	netif_carrier_on(netdev);
2866 }
2867 
2868 /**
2869  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
2870  *				   print link down message
2871  * @adapter: pointer to the adapter structure
2872  **/
2873 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
2874 {
2875 	struct net_device *netdev = adapter->netdev;
2876 
2877 	adapter->link_speed = 0;
2878 
2879 	/* only continue if link was up previously */
2880 	if (!netif_carrier_ok(netdev))
2881 		return;
2882 
2883 	dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2884 
2885 	netif_carrier_off(netdev);
2886 }
2887 
2888 /**
2889  * ixgbevf_watchdog_subtask - worker thread to bring link up
2890  * @work: pointer to work_struct containing our data
2891  **/
2892 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
2893 {
2894 	/* if interface is down do nothing */
2895 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2896 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2897 		return;
2898 
2899 	ixgbevf_watchdog_update_link(adapter);
2900 
2901 	if (adapter->link_up)
2902 		ixgbevf_watchdog_link_is_up(adapter);
2903 	else
2904 		ixgbevf_watchdog_link_is_down(adapter);
2905 
2906 	ixgbevf_update_stats(adapter);
2907 }
2908 
2909 /**
2910  * ixgbevf_service_task - manages and runs subtasks
2911  * @work: pointer to work_struct containing our data
2912  **/
2913 static void ixgbevf_service_task(struct work_struct *work)
2914 {
2915 	struct ixgbevf_adapter *adapter = container_of(work,
2916 						       struct ixgbevf_adapter,
2917 						       service_task);
2918 	struct ixgbe_hw *hw = &adapter->hw;
2919 
2920 	if (IXGBE_REMOVED(hw->hw_addr)) {
2921 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
2922 			rtnl_lock();
2923 			ixgbevf_down(adapter);
2924 			rtnl_unlock();
2925 		}
2926 		return;
2927 	}
2928 
2929 	ixgbevf_queue_reset_subtask(adapter);
2930 	ixgbevf_reset_subtask(adapter);
2931 	ixgbevf_watchdog_subtask(adapter);
2932 	ixgbevf_check_hang_subtask(adapter);
2933 
2934 	ixgbevf_service_event_complete(adapter);
2935 }
2936 
2937 /**
2938  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2939  * @tx_ring: Tx descriptor ring for a specific queue
2940  *
2941  * Free all transmit software resources
2942  **/
2943 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
2944 {
2945 	ixgbevf_clean_tx_ring(tx_ring);
2946 
2947 	vfree(tx_ring->tx_buffer_info);
2948 	tx_ring->tx_buffer_info = NULL;
2949 
2950 	/* if not set, then don't free */
2951 	if (!tx_ring->desc)
2952 		return;
2953 
2954 	dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
2955 			  tx_ring->dma);
2956 
2957 	tx_ring->desc = NULL;
2958 }
2959 
2960 /**
2961  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2962  * @adapter: board private structure
2963  *
2964  * Free all transmit software resources
2965  **/
2966 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2967 {
2968 	int i;
2969 
2970 	for (i = 0; i < adapter->num_tx_queues; i++)
2971 		if (adapter->tx_ring[i]->desc)
2972 			ixgbevf_free_tx_resources(adapter->tx_ring[i]);
2973 }
2974 
2975 /**
2976  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2977  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
2978  *
2979  * Return 0 on success, negative on failure
2980  **/
2981 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
2982 {
2983 	struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
2984 	int size;
2985 
2986 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2987 	tx_ring->tx_buffer_info = vzalloc(size);
2988 	if (!tx_ring->tx_buffer_info)
2989 		goto err;
2990 
2991 	u64_stats_init(&tx_ring->syncp);
2992 
2993 	/* round up to nearest 4K */
2994 	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2995 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2996 
2997 	tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
2998 					   &tx_ring->dma, GFP_KERNEL);
2999 	if (!tx_ring->desc)
3000 		goto err;
3001 
3002 	return 0;
3003 
3004 err:
3005 	vfree(tx_ring->tx_buffer_info);
3006 	tx_ring->tx_buffer_info = NULL;
3007 	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3008 	return -ENOMEM;
3009 }
3010 
3011 /**
3012  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3013  * @adapter: board private structure
3014  *
3015  * If this function returns with an error, then it's possible one or
3016  * more of the rings is populated (while the rest are not).  It is the
3017  * callers duty to clean those orphaned rings.
3018  *
3019  * Return 0 on success, negative on failure
3020  **/
3021 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3022 {
3023 	int i, err = 0;
3024 
3025 	for (i = 0; i < adapter->num_tx_queues; i++) {
3026 		err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3027 		if (!err)
3028 			continue;
3029 		hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3030 		break;
3031 	}
3032 
3033 	return err;
3034 }
3035 
3036 /**
3037  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3038  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3039  *
3040  * Returns 0 on success, negative on failure
3041  **/
3042 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring)
3043 {
3044 	int size;
3045 
3046 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3047 	rx_ring->rx_buffer_info = vzalloc(size);
3048 	if (!rx_ring->rx_buffer_info)
3049 		goto err;
3050 
3051 	u64_stats_init(&rx_ring->syncp);
3052 
3053 	/* Round up to nearest 4K */
3054 	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3055 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3056 
3057 	rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3058 					   &rx_ring->dma, GFP_KERNEL);
3059 
3060 	if (!rx_ring->desc)
3061 		goto err;
3062 
3063 	return 0;
3064 err:
3065 	vfree(rx_ring->rx_buffer_info);
3066 	rx_ring->rx_buffer_info = NULL;
3067 	dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3068 	return -ENOMEM;
3069 }
3070 
3071 /**
3072  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3073  * @adapter: board private structure
3074  *
3075  * If this function returns with an error, then it's possible one or
3076  * more of the rings is populated (while the rest are not).  It is the
3077  * callers duty to clean those orphaned rings.
3078  *
3079  * Return 0 on success, negative on failure
3080  **/
3081 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3082 {
3083 	int i, err = 0;
3084 
3085 	for (i = 0; i < adapter->num_rx_queues; i++) {
3086 		err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]);
3087 		if (!err)
3088 			continue;
3089 		hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3090 		break;
3091 	}
3092 	return err;
3093 }
3094 
3095 /**
3096  * ixgbevf_free_rx_resources - Free Rx Resources
3097  * @rx_ring: ring to clean the resources from
3098  *
3099  * Free all receive software resources
3100  **/
3101 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3102 {
3103 	ixgbevf_clean_rx_ring(rx_ring);
3104 
3105 	vfree(rx_ring->rx_buffer_info);
3106 	rx_ring->rx_buffer_info = NULL;
3107 
3108 	dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3109 			  rx_ring->dma);
3110 
3111 	rx_ring->desc = NULL;
3112 }
3113 
3114 /**
3115  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3116  * @adapter: board private structure
3117  *
3118  * Free all receive software resources
3119  **/
3120 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3121 {
3122 	int i;
3123 
3124 	for (i = 0; i < adapter->num_rx_queues; i++)
3125 		if (adapter->rx_ring[i]->desc)
3126 			ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3127 }
3128 
3129 /**
3130  * ixgbevf_open - Called when a network interface is made active
3131  * @netdev: network interface device structure
3132  *
3133  * Returns 0 on success, negative value on failure
3134  *
3135  * The open entry point is called when a network interface is made
3136  * active by the system (IFF_UP).  At this point all resources needed
3137  * for transmit and receive operations are allocated, the interrupt
3138  * handler is registered with the OS, the watchdog timer is started,
3139  * and the stack is notified that the interface is ready.
3140  **/
3141 int ixgbevf_open(struct net_device *netdev)
3142 {
3143 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3144 	struct ixgbe_hw *hw = &adapter->hw;
3145 	int err;
3146 
3147 	/* A previous failure to open the device because of a lack of
3148 	 * available MSIX vector resources may have reset the number
3149 	 * of msix vectors variable to zero.  The only way to recover
3150 	 * is to unload/reload the driver and hope that the system has
3151 	 * been able to recover some MSIX vector resources.
3152 	 */
3153 	if (!adapter->num_msix_vectors)
3154 		return -ENOMEM;
3155 
3156 	if (hw->adapter_stopped) {
3157 		ixgbevf_reset(adapter);
3158 		/* if adapter is still stopped then PF isn't up and
3159 		 * the VF can't start.
3160 		 */
3161 		if (hw->adapter_stopped) {
3162 			err = IXGBE_ERR_MBX;
3163 			pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3164 			goto err_setup_reset;
3165 		}
3166 	}
3167 
3168 	/* disallow open during test */
3169 	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3170 		return -EBUSY;
3171 
3172 	netif_carrier_off(netdev);
3173 
3174 	/* allocate transmit descriptors */
3175 	err = ixgbevf_setup_all_tx_resources(adapter);
3176 	if (err)
3177 		goto err_setup_tx;
3178 
3179 	/* allocate receive descriptors */
3180 	err = ixgbevf_setup_all_rx_resources(adapter);
3181 	if (err)
3182 		goto err_setup_rx;
3183 
3184 	ixgbevf_configure(adapter);
3185 
3186 	/* Map the Tx/Rx rings to the vectors we were allotted.
3187 	 * if request_irq will be called in this function map_rings
3188 	 * must be called *before* up_complete
3189 	 */
3190 	ixgbevf_map_rings_to_vectors(adapter);
3191 
3192 	err = ixgbevf_request_irq(adapter);
3193 	if (err)
3194 		goto err_req_irq;
3195 
3196 	ixgbevf_up_complete(adapter);
3197 
3198 	return 0;
3199 
3200 err_req_irq:
3201 	ixgbevf_down(adapter);
3202 err_setup_rx:
3203 	ixgbevf_free_all_rx_resources(adapter);
3204 err_setup_tx:
3205 	ixgbevf_free_all_tx_resources(adapter);
3206 	ixgbevf_reset(adapter);
3207 
3208 err_setup_reset:
3209 
3210 	return err;
3211 }
3212 
3213 /**
3214  * ixgbevf_close_suspend - actions necessary to both suspend and close flows
3215  * @adapter: the private adapter struct
3216  *
3217  * This function should contain the necessary work common to both suspending
3218  * and closing of the device.
3219  */
3220 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter)
3221 {
3222 	ixgbevf_down(adapter);
3223 	ixgbevf_free_irq(adapter);
3224 	ixgbevf_free_all_tx_resources(adapter);
3225 	ixgbevf_free_all_rx_resources(adapter);
3226 }
3227 
3228 /**
3229  * ixgbevf_close - Disables a network interface
3230  * @netdev: network interface device structure
3231  *
3232  * Returns 0, this is not allowed to fail
3233  *
3234  * The close entry point is called when an interface is de-activated
3235  * by the OS.  The hardware is still under the drivers control, but
3236  * needs to be disabled.  A global MAC reset is issued to stop the
3237  * hardware, and all transmit and receive resources are freed.
3238  **/
3239 int ixgbevf_close(struct net_device *netdev)
3240 {
3241 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3242 
3243 	if (netif_device_present(netdev))
3244 		ixgbevf_close_suspend(adapter);
3245 
3246 	return 0;
3247 }
3248 
3249 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3250 {
3251 	struct net_device *dev = adapter->netdev;
3252 
3253 	if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3254 				&adapter->state))
3255 		return;
3256 
3257 	/* if interface is down do nothing */
3258 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3259 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3260 		return;
3261 
3262 	/* Hardware has to reinitialize queues and interrupts to
3263 	 * match packet buffer alignment. Unfortunately, the
3264 	 * hardware is not flexible enough to do this dynamically.
3265 	 */
3266 	rtnl_lock();
3267 
3268 	if (netif_running(dev))
3269 		ixgbevf_close(dev);
3270 
3271 	ixgbevf_clear_interrupt_scheme(adapter);
3272 	ixgbevf_init_interrupt_scheme(adapter);
3273 
3274 	if (netif_running(dev))
3275 		ixgbevf_open(dev);
3276 
3277 	rtnl_unlock();
3278 }
3279 
3280 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3281 				u32 vlan_macip_lens, u32 type_tucmd,
3282 				u32 mss_l4len_idx)
3283 {
3284 	struct ixgbe_adv_tx_context_desc *context_desc;
3285 	u16 i = tx_ring->next_to_use;
3286 
3287 	context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3288 
3289 	i++;
3290 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3291 
3292 	/* set bits to identify this as an advanced context descriptor */
3293 	type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3294 
3295 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
3296 	context_desc->seqnum_seed	= 0;
3297 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
3298 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
3299 }
3300 
3301 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3302 		       struct ixgbevf_tx_buffer *first,
3303 		       u8 *hdr_len)
3304 {
3305 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3306 	struct sk_buff *skb = first->skb;
3307 	union {
3308 		struct iphdr *v4;
3309 		struct ipv6hdr *v6;
3310 		unsigned char *hdr;
3311 	} ip;
3312 	union {
3313 		struct tcphdr *tcp;
3314 		unsigned char *hdr;
3315 	} l4;
3316 	u32 paylen, l4_offset;
3317 	int err;
3318 
3319 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3320 		return 0;
3321 
3322 	if (!skb_is_gso(skb))
3323 		return 0;
3324 
3325 	err = skb_cow_head(skb, 0);
3326 	if (err < 0)
3327 		return err;
3328 
3329 	if (eth_p_mpls(first->protocol))
3330 		ip.hdr = skb_inner_network_header(skb);
3331 	else
3332 		ip.hdr = skb_network_header(skb);
3333 	l4.hdr = skb_checksum_start(skb);
3334 
3335 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3336 	type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3337 
3338 	/* initialize outer IP header fields */
3339 	if (ip.v4->version == 4) {
3340 		unsigned char *csum_start = skb_checksum_start(skb);
3341 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3342 
3343 		/* IP header will have to cancel out any data that
3344 		 * is not a part of the outer IP header
3345 		 */
3346 		ip.v4->check = csum_fold(csum_partial(trans_start,
3347 						      csum_start - trans_start,
3348 						      0));
3349 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3350 
3351 		ip.v4->tot_len = 0;
3352 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3353 				   IXGBE_TX_FLAGS_CSUM |
3354 				   IXGBE_TX_FLAGS_IPV4;
3355 	} else {
3356 		ip.v6->payload_len = 0;
3357 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3358 				   IXGBE_TX_FLAGS_CSUM;
3359 	}
3360 
3361 	/* determine offset of inner transport header */
3362 	l4_offset = l4.hdr - skb->data;
3363 
3364 	/* compute length of segmentation header */
3365 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3366 
3367 	/* remove payload length from inner checksum */
3368 	paylen = skb->len - l4_offset;
3369 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
3370 
3371 	/* update gso size and bytecount with header size */
3372 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3373 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3374 
3375 	/* mss_l4len_id: use 1 as index for TSO */
3376 	mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3377 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3378 	mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3379 
3380 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3381 	vlan_macip_lens = l4.hdr - ip.hdr;
3382 	vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3383 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3384 
3385 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3386 			    type_tucmd, mss_l4len_idx);
3387 
3388 	return 1;
3389 }
3390 
3391 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb)
3392 {
3393 	unsigned int offset = 0;
3394 
3395 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
3396 
3397 	return offset == skb_checksum_start_offset(skb);
3398 }
3399 
3400 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3401 			    struct ixgbevf_tx_buffer *first)
3402 {
3403 	struct sk_buff *skb = first->skb;
3404 	u32 vlan_macip_lens = 0;
3405 	u32 type_tucmd = 0;
3406 
3407 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3408 		goto no_csum;
3409 
3410 	switch (skb->csum_offset) {
3411 	case offsetof(struct tcphdr, check):
3412 		type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3413 		/* fall through */
3414 	case offsetof(struct udphdr, check):
3415 		break;
3416 	case offsetof(struct sctphdr, checksum):
3417 		/* validate that this is actually an SCTP request */
3418 		if (((first->protocol == htons(ETH_P_IP)) &&
3419 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
3420 		    ((first->protocol == htons(ETH_P_IPV6)) &&
3421 		     ixgbevf_ipv6_csum_is_sctp(skb))) {
3422 			type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3423 			break;
3424 		}
3425 		/* fall through */
3426 	default:
3427 		skb_checksum_help(skb);
3428 		goto no_csum;
3429 	}
3430 	/* update TX checksum flag */
3431 	first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3432 	vlan_macip_lens = skb_checksum_start_offset(skb) -
3433 			  skb_network_offset(skb);
3434 no_csum:
3435 	/* vlan_macip_lens: MACLEN, VLAN tag */
3436 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3437 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3438 
3439 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
3440 }
3441 
3442 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3443 {
3444 	/* set type for advanced descriptor with frame checksum insertion */
3445 	__le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3446 				      IXGBE_ADVTXD_DCMD_IFCS |
3447 				      IXGBE_ADVTXD_DCMD_DEXT);
3448 
3449 	/* set HW VLAN bit if VLAN is present */
3450 	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3451 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3452 
3453 	/* set segmentation enable bits for TSO/FSO */
3454 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3455 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3456 
3457 	return cmd_type;
3458 }
3459 
3460 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3461 				     u32 tx_flags, unsigned int paylen)
3462 {
3463 	__le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3464 
3465 	/* enable L4 checksum for TSO and TX checksum offload */
3466 	if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3467 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3468 
3469 	/* enble IPv4 checksum for TSO */
3470 	if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3471 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3472 
3473 	/* use index 1 context for TSO/FSO/FCOE */
3474 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3475 		olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3476 
3477 	/* Check Context must be set if Tx switch is enabled, which it
3478 	 * always is for case where virtual functions are running
3479 	 */
3480 	olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3481 
3482 	tx_desc->read.olinfo_status = olinfo_status;
3483 }
3484 
3485 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3486 			   struct ixgbevf_tx_buffer *first,
3487 			   const u8 hdr_len)
3488 {
3489 	dma_addr_t dma;
3490 	struct sk_buff *skb = first->skb;
3491 	struct ixgbevf_tx_buffer *tx_buffer;
3492 	union ixgbe_adv_tx_desc *tx_desc;
3493 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
3494 	unsigned int data_len = skb->data_len;
3495 	unsigned int size = skb_headlen(skb);
3496 	unsigned int paylen = skb->len - hdr_len;
3497 	u32 tx_flags = first->tx_flags;
3498 	__le32 cmd_type;
3499 	u16 i = tx_ring->next_to_use;
3500 
3501 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3502 
3503 	ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen);
3504 	cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3505 
3506 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3507 	if (dma_mapping_error(tx_ring->dev, dma))
3508 		goto dma_error;
3509 
3510 	/* record length, and DMA address */
3511 	dma_unmap_len_set(first, len, size);
3512 	dma_unmap_addr_set(first, dma, dma);
3513 
3514 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
3515 
3516 	for (;;) {
3517 		while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3518 			tx_desc->read.cmd_type_len =
3519 				cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3520 
3521 			i++;
3522 			tx_desc++;
3523 			if (i == tx_ring->count) {
3524 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3525 				i = 0;
3526 			}
3527 
3528 			dma += IXGBE_MAX_DATA_PER_TXD;
3529 			size -= IXGBE_MAX_DATA_PER_TXD;
3530 
3531 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
3532 			tx_desc->read.olinfo_status = 0;
3533 		}
3534 
3535 		if (likely(!data_len))
3536 			break;
3537 
3538 		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3539 
3540 		i++;
3541 		tx_desc++;
3542 		if (i == tx_ring->count) {
3543 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3544 			i = 0;
3545 		}
3546 
3547 		size = skb_frag_size(frag);
3548 		data_len -= size;
3549 
3550 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3551 				       DMA_TO_DEVICE);
3552 		if (dma_mapping_error(tx_ring->dev, dma))
3553 			goto dma_error;
3554 
3555 		tx_buffer = &tx_ring->tx_buffer_info[i];
3556 		dma_unmap_len_set(tx_buffer, len, size);
3557 		dma_unmap_addr_set(tx_buffer, dma, dma);
3558 
3559 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3560 		tx_desc->read.olinfo_status = 0;
3561 
3562 		frag++;
3563 	}
3564 
3565 	/* write last descriptor with RS and EOP bits */
3566 	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3567 	tx_desc->read.cmd_type_len = cmd_type;
3568 
3569 	/* set the timestamp */
3570 	first->time_stamp = jiffies;
3571 
3572 	/* Force memory writes to complete before letting h/w know there
3573 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
3574 	 * memory model archs, such as IA-64).
3575 	 *
3576 	 * We also need this memory barrier (wmb) to make certain all of the
3577 	 * status bits have been updated before next_to_watch is written.
3578 	 */
3579 	wmb();
3580 
3581 	/* set next_to_watch value indicating a packet is present */
3582 	first->next_to_watch = tx_desc;
3583 
3584 	i++;
3585 	if (i == tx_ring->count)
3586 		i = 0;
3587 
3588 	tx_ring->next_to_use = i;
3589 
3590 	/* notify HW of packet */
3591 	ixgbevf_write_tail(tx_ring, i);
3592 
3593 	return;
3594 dma_error:
3595 	dev_err(tx_ring->dev, "TX DMA map failed\n");
3596 
3597 	/* clear dma mappings for failed tx_buffer_info map */
3598 	for (;;) {
3599 		tx_buffer = &tx_ring->tx_buffer_info[i];
3600 		ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer);
3601 		if (tx_buffer == first)
3602 			break;
3603 		if (i == 0)
3604 			i = tx_ring->count;
3605 		i--;
3606 	}
3607 
3608 	tx_ring->next_to_use = i;
3609 }
3610 
3611 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3612 {
3613 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3614 	/* Herbert's original patch had:
3615 	 *  smp_mb__after_netif_stop_queue();
3616 	 * but since that doesn't exist yet, just open code it.
3617 	 */
3618 	smp_mb();
3619 
3620 	/* We need to check again in a case another CPU has just
3621 	 * made room available.
3622 	 */
3623 	if (likely(ixgbevf_desc_unused(tx_ring) < size))
3624 		return -EBUSY;
3625 
3626 	/* A reprieve! - use start_queue because it doesn't call schedule */
3627 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3628 	++tx_ring->tx_stats.restart_queue;
3629 
3630 	return 0;
3631 }
3632 
3633 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3634 {
3635 	if (likely(ixgbevf_desc_unused(tx_ring) >= size))
3636 		return 0;
3637 	return __ixgbevf_maybe_stop_tx(tx_ring, size);
3638 }
3639 
3640 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3641 {
3642 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3643 	struct ixgbevf_tx_buffer *first;
3644 	struct ixgbevf_ring *tx_ring;
3645 	int tso;
3646 	u32 tx_flags = 0;
3647 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
3648 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3649 	unsigned short f;
3650 #endif
3651 	u8 hdr_len = 0;
3652 	u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3653 
3654 	if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3655 		dev_kfree_skb_any(skb);
3656 		return NETDEV_TX_OK;
3657 	}
3658 
3659 	tx_ring = adapter->tx_ring[skb->queue_mapping];
3660 
3661 	/* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3662 	 *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3663 	 *       + 2 desc gap to keep tail from touching head,
3664 	 *       + 1 desc for context descriptor,
3665 	 * otherwise try next time
3666 	 */
3667 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3668 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3669 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3670 #else
3671 	count += skb_shinfo(skb)->nr_frags;
3672 #endif
3673 	if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3674 		tx_ring->tx_stats.tx_busy++;
3675 		return NETDEV_TX_BUSY;
3676 	}
3677 
3678 	/* record the location of the first descriptor for this packet */
3679 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3680 	first->skb = skb;
3681 	first->bytecount = skb->len;
3682 	first->gso_segs = 1;
3683 
3684 	if (skb_vlan_tag_present(skb)) {
3685 		tx_flags |= skb_vlan_tag_get(skb);
3686 		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3687 		tx_flags |= IXGBE_TX_FLAGS_VLAN;
3688 	}
3689 
3690 	/* record initial flags and protocol */
3691 	first->tx_flags = tx_flags;
3692 	first->protocol = vlan_get_protocol(skb);
3693 
3694 	tso = ixgbevf_tso(tx_ring, first, &hdr_len);
3695 	if (tso < 0)
3696 		goto out_drop;
3697 	else if (!tso)
3698 		ixgbevf_tx_csum(tx_ring, first);
3699 
3700 	ixgbevf_tx_map(tx_ring, first, hdr_len);
3701 
3702 	ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3703 
3704 	return NETDEV_TX_OK;
3705 
3706 out_drop:
3707 	dev_kfree_skb_any(first->skb);
3708 	first->skb = NULL;
3709 
3710 	return NETDEV_TX_OK;
3711 }
3712 
3713 /**
3714  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3715  * @netdev: network interface device structure
3716  * @p: pointer to an address structure
3717  *
3718  * Returns 0 on success, negative on failure
3719  **/
3720 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3721 {
3722 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3723 	struct ixgbe_hw *hw = &adapter->hw;
3724 	struct sockaddr *addr = p;
3725 	int err;
3726 
3727 	if (!is_valid_ether_addr(addr->sa_data))
3728 		return -EADDRNOTAVAIL;
3729 
3730 	spin_lock_bh(&adapter->mbx_lock);
3731 
3732 	err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
3733 
3734 	spin_unlock_bh(&adapter->mbx_lock);
3735 
3736 	if (err)
3737 		return -EPERM;
3738 
3739 	ether_addr_copy(hw->mac.addr, addr->sa_data);
3740 	ether_addr_copy(netdev->dev_addr, addr->sa_data);
3741 
3742 	return 0;
3743 }
3744 
3745 /**
3746  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3747  * @netdev: network interface device structure
3748  * @new_mtu: new value for maximum frame size
3749  *
3750  * Returns 0 on success, negative on failure
3751  **/
3752 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3753 {
3754 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3755 	struct ixgbe_hw *hw = &adapter->hw;
3756 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3757 	int ret;
3758 
3759 	spin_lock_bh(&adapter->mbx_lock);
3760 	/* notify the PF of our intent to use this size of frame */
3761 	ret = hw->mac.ops.set_rlpml(hw, max_frame);
3762 	spin_unlock_bh(&adapter->mbx_lock);
3763 	if (ret)
3764 		return -EINVAL;
3765 
3766 	hw_dbg(hw, "changing MTU from %d to %d\n",
3767 	       netdev->mtu, new_mtu);
3768 
3769 	/* must set new MTU before calling down or up */
3770 	netdev->mtu = new_mtu;
3771 
3772 	return 0;
3773 }
3774 
3775 #ifdef CONFIG_NET_POLL_CONTROLLER
3776 /* Polling 'interrupt' - used by things like netconsole to send skbs
3777  * without having to re-enable interrupts. It's not called while
3778  * the interrupt routine is executing.
3779  */
3780 static void ixgbevf_netpoll(struct net_device *netdev)
3781 {
3782 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3783 	int i;
3784 
3785 	/* if interface is down do nothing */
3786 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
3787 		return;
3788 	for (i = 0; i < adapter->num_rx_queues; i++)
3789 		ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
3790 }
3791 #endif /* CONFIG_NET_POLL_CONTROLLER */
3792 
3793 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3794 {
3795 	struct net_device *netdev = pci_get_drvdata(pdev);
3796 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3797 #ifdef CONFIG_PM
3798 	int retval = 0;
3799 #endif
3800 
3801 	rtnl_lock();
3802 	netif_device_detach(netdev);
3803 
3804 	if (netif_running(netdev))
3805 		ixgbevf_close_suspend(adapter);
3806 
3807 	ixgbevf_clear_interrupt_scheme(adapter);
3808 	rtnl_unlock();
3809 
3810 #ifdef CONFIG_PM
3811 	retval = pci_save_state(pdev);
3812 	if (retval)
3813 		return retval;
3814 
3815 #endif
3816 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3817 		pci_disable_device(pdev);
3818 
3819 	return 0;
3820 }
3821 
3822 #ifdef CONFIG_PM
3823 static int ixgbevf_resume(struct pci_dev *pdev)
3824 {
3825 	struct net_device *netdev = pci_get_drvdata(pdev);
3826 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3827 	u32 err;
3828 
3829 	pci_restore_state(pdev);
3830 	/* pci_restore_state clears dev->state_saved so call
3831 	 * pci_save_state to restore it.
3832 	 */
3833 	pci_save_state(pdev);
3834 
3835 	err = pci_enable_device_mem(pdev);
3836 	if (err) {
3837 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3838 		return err;
3839 	}
3840 
3841 	adapter->hw.hw_addr = adapter->io_addr;
3842 	smp_mb__before_atomic();
3843 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
3844 	pci_set_master(pdev);
3845 
3846 	ixgbevf_reset(adapter);
3847 
3848 	rtnl_lock();
3849 	err = ixgbevf_init_interrupt_scheme(adapter);
3850 	rtnl_unlock();
3851 	if (err) {
3852 		dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3853 		return err;
3854 	}
3855 
3856 	if (netif_running(netdev)) {
3857 		err = ixgbevf_open(netdev);
3858 		if (err)
3859 			return err;
3860 	}
3861 
3862 	netif_device_attach(netdev);
3863 
3864 	return err;
3865 }
3866 
3867 #endif /* CONFIG_PM */
3868 static void ixgbevf_shutdown(struct pci_dev *pdev)
3869 {
3870 	ixgbevf_suspend(pdev, PMSG_SUSPEND);
3871 }
3872 
3873 static void ixgbevf_get_stats(struct net_device *netdev,
3874 			      struct rtnl_link_stats64 *stats)
3875 {
3876 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3877 	unsigned int start;
3878 	u64 bytes, packets;
3879 	const struct ixgbevf_ring *ring;
3880 	int i;
3881 
3882 	ixgbevf_update_stats(adapter);
3883 
3884 	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3885 
3886 	for (i = 0; i < adapter->num_rx_queues; i++) {
3887 		ring = adapter->rx_ring[i];
3888 		do {
3889 			start = u64_stats_fetch_begin_irq(&ring->syncp);
3890 			bytes = ring->stats.bytes;
3891 			packets = ring->stats.packets;
3892 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3893 		stats->rx_bytes += bytes;
3894 		stats->rx_packets += packets;
3895 	}
3896 
3897 	for (i = 0; i < adapter->num_tx_queues; i++) {
3898 		ring = adapter->tx_ring[i];
3899 		do {
3900 			start = u64_stats_fetch_begin_irq(&ring->syncp);
3901 			bytes = ring->stats.bytes;
3902 			packets = ring->stats.packets;
3903 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3904 		stats->tx_bytes += bytes;
3905 		stats->tx_packets += packets;
3906 	}
3907 }
3908 
3909 #define IXGBEVF_MAX_MAC_HDR_LEN		127
3910 #define IXGBEVF_MAX_NETWORK_HDR_LEN	511
3911 
3912 static netdev_features_t
3913 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
3914 		       netdev_features_t features)
3915 {
3916 	unsigned int network_hdr_len, mac_hdr_len;
3917 
3918 	/* Make certain the headers can be described by a context descriptor */
3919 	mac_hdr_len = skb_network_header(skb) - skb->data;
3920 	if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
3921 		return features & ~(NETIF_F_HW_CSUM |
3922 				    NETIF_F_SCTP_CRC |
3923 				    NETIF_F_HW_VLAN_CTAG_TX |
3924 				    NETIF_F_TSO |
3925 				    NETIF_F_TSO6);
3926 
3927 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
3928 	if (unlikely(network_hdr_len >  IXGBEVF_MAX_NETWORK_HDR_LEN))
3929 		return features & ~(NETIF_F_HW_CSUM |
3930 				    NETIF_F_SCTP_CRC |
3931 				    NETIF_F_TSO |
3932 				    NETIF_F_TSO6);
3933 
3934 	/* We can only support IPV4 TSO in tunnels if we can mangle the
3935 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
3936 	 */
3937 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
3938 		features &= ~NETIF_F_TSO;
3939 
3940 	return features;
3941 }
3942 
3943 static const struct net_device_ops ixgbevf_netdev_ops = {
3944 	.ndo_open		= ixgbevf_open,
3945 	.ndo_stop		= ixgbevf_close,
3946 	.ndo_start_xmit		= ixgbevf_xmit_frame,
3947 	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
3948 	.ndo_get_stats64	= ixgbevf_get_stats,
3949 	.ndo_validate_addr	= eth_validate_addr,
3950 	.ndo_set_mac_address	= ixgbevf_set_mac,
3951 	.ndo_change_mtu		= ixgbevf_change_mtu,
3952 	.ndo_tx_timeout		= ixgbevf_tx_timeout,
3953 	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
3954 	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
3955 #ifdef CONFIG_NET_POLL_CONTROLLER
3956 	.ndo_poll_controller	= ixgbevf_netpoll,
3957 #endif
3958 	.ndo_features_check	= ixgbevf_features_check,
3959 };
3960 
3961 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3962 {
3963 	dev->netdev_ops = &ixgbevf_netdev_ops;
3964 	ixgbevf_set_ethtool_ops(dev);
3965 	dev->watchdog_timeo = 5 * HZ;
3966 }
3967 
3968 /**
3969  * ixgbevf_probe - Device Initialization Routine
3970  * @pdev: PCI device information struct
3971  * @ent: entry in ixgbevf_pci_tbl
3972  *
3973  * Returns 0 on success, negative on failure
3974  *
3975  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3976  * The OS initialization, configuring of the adapter private structure,
3977  * and a hardware reset occur.
3978  **/
3979 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3980 {
3981 	struct net_device *netdev;
3982 	struct ixgbevf_adapter *adapter = NULL;
3983 	struct ixgbe_hw *hw = NULL;
3984 	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3985 	int err, pci_using_dac;
3986 	bool disable_dev = false;
3987 
3988 	err = pci_enable_device(pdev);
3989 	if (err)
3990 		return err;
3991 
3992 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3993 		pci_using_dac = 1;
3994 	} else {
3995 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3996 		if (err) {
3997 			dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
3998 			goto err_dma;
3999 		}
4000 		pci_using_dac = 0;
4001 	}
4002 
4003 	err = pci_request_regions(pdev, ixgbevf_driver_name);
4004 	if (err) {
4005 		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4006 		goto err_pci_reg;
4007 	}
4008 
4009 	pci_set_master(pdev);
4010 
4011 	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4012 				   MAX_TX_QUEUES);
4013 	if (!netdev) {
4014 		err = -ENOMEM;
4015 		goto err_alloc_etherdev;
4016 	}
4017 
4018 	SET_NETDEV_DEV(netdev, &pdev->dev);
4019 
4020 	adapter = netdev_priv(netdev);
4021 
4022 	adapter->netdev = netdev;
4023 	adapter->pdev = pdev;
4024 	hw = &adapter->hw;
4025 	hw->back = adapter;
4026 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4027 
4028 	/* call save state here in standalone driver because it relies on
4029 	 * adapter struct to exist, and needs to call netdev_priv
4030 	 */
4031 	pci_save_state(pdev);
4032 
4033 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4034 			      pci_resource_len(pdev, 0));
4035 	adapter->io_addr = hw->hw_addr;
4036 	if (!hw->hw_addr) {
4037 		err = -EIO;
4038 		goto err_ioremap;
4039 	}
4040 
4041 	ixgbevf_assign_netdev_ops(netdev);
4042 
4043 	/* Setup HW API */
4044 	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4045 	hw->mac.type  = ii->mac;
4046 
4047 	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
4048 	       sizeof(struct ixgbe_mbx_operations));
4049 
4050 	/* setup the private structure */
4051 	err = ixgbevf_sw_init(adapter);
4052 	if (err)
4053 		goto err_sw_init;
4054 
4055 	/* The HW MAC address was set and/or determined in sw_init */
4056 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4057 		pr_err("invalid MAC address\n");
4058 		err = -EIO;
4059 		goto err_sw_init;
4060 	}
4061 
4062 	netdev->hw_features = NETIF_F_SG |
4063 			      NETIF_F_TSO |
4064 			      NETIF_F_TSO6 |
4065 			      NETIF_F_RXCSUM |
4066 			      NETIF_F_HW_CSUM |
4067 			      NETIF_F_SCTP_CRC;
4068 
4069 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4070 				      NETIF_F_GSO_GRE_CSUM | \
4071 				      NETIF_F_GSO_IPXIP4 | \
4072 				      NETIF_F_GSO_IPXIP6 | \
4073 				      NETIF_F_GSO_UDP_TUNNEL | \
4074 				      NETIF_F_GSO_UDP_TUNNEL_CSUM)
4075 
4076 	netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4077 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4078 			       IXGBEVF_GSO_PARTIAL_FEATURES;
4079 
4080 	netdev->features = netdev->hw_features;
4081 
4082 	if (pci_using_dac)
4083 		netdev->features |= NETIF_F_HIGHDMA;
4084 
4085 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4086 	netdev->mpls_features |= NETIF_F_SG |
4087 				 NETIF_F_TSO |
4088 				 NETIF_F_TSO6 |
4089 				 NETIF_F_HW_CSUM;
4090 	netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES;
4091 	netdev->hw_enc_features |= netdev->vlan_features;
4092 
4093 	/* set this bit last since it cannot be part of vlan_features */
4094 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4095 			    NETIF_F_HW_VLAN_CTAG_RX |
4096 			    NETIF_F_HW_VLAN_CTAG_TX;
4097 
4098 	netdev->priv_flags |= IFF_UNICAST_FLT;
4099 
4100 	/* MTU range: 68 - 1504 or 9710 */
4101 	netdev->min_mtu = ETH_MIN_MTU;
4102 	switch (adapter->hw.api_version) {
4103 	case ixgbe_mbox_api_11:
4104 	case ixgbe_mbox_api_12:
4105 	case ixgbe_mbox_api_13:
4106 		netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4107 				  (ETH_HLEN + ETH_FCS_LEN);
4108 		break;
4109 	default:
4110 		if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
4111 			netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4112 					  (ETH_HLEN + ETH_FCS_LEN);
4113 		else
4114 			netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
4115 		break;
4116 	}
4117 
4118 	if (IXGBE_REMOVED(hw->hw_addr)) {
4119 		err = -EIO;
4120 		goto err_sw_init;
4121 	}
4122 
4123 	setup_timer(&adapter->service_timer, &ixgbevf_service_timer,
4124 		    (unsigned long)adapter);
4125 
4126 	INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4127 	set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4128 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4129 
4130 	err = ixgbevf_init_interrupt_scheme(adapter);
4131 	if (err)
4132 		goto err_sw_init;
4133 
4134 	strcpy(netdev->name, "eth%d");
4135 
4136 	err = register_netdev(netdev);
4137 	if (err)
4138 		goto err_register;
4139 
4140 	pci_set_drvdata(pdev, netdev);
4141 	netif_carrier_off(netdev);
4142 
4143 	ixgbevf_init_last_counter_stats(adapter);
4144 
4145 	/* print the VF info */
4146 	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4147 	dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4148 
4149 	switch (hw->mac.type) {
4150 	case ixgbe_mac_X550_vf:
4151 		dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4152 		break;
4153 	case ixgbe_mac_X540_vf:
4154 		dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4155 		break;
4156 	case ixgbe_mac_82599_vf:
4157 	default:
4158 		dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4159 		break;
4160 	}
4161 
4162 	return 0;
4163 
4164 err_register:
4165 	ixgbevf_clear_interrupt_scheme(adapter);
4166 err_sw_init:
4167 	ixgbevf_reset_interrupt_capability(adapter);
4168 	iounmap(adapter->io_addr);
4169 	kfree(adapter->rss_key);
4170 err_ioremap:
4171 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4172 	free_netdev(netdev);
4173 err_alloc_etherdev:
4174 	pci_release_regions(pdev);
4175 err_pci_reg:
4176 err_dma:
4177 	if (!adapter || disable_dev)
4178 		pci_disable_device(pdev);
4179 	return err;
4180 }
4181 
4182 /**
4183  * ixgbevf_remove - Device Removal Routine
4184  * @pdev: PCI device information struct
4185  *
4186  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4187  * that it should release a PCI device.  The could be caused by a
4188  * Hot-Plug event, or because the driver is going to be removed from
4189  * memory.
4190  **/
4191 static void ixgbevf_remove(struct pci_dev *pdev)
4192 {
4193 	struct net_device *netdev = pci_get_drvdata(pdev);
4194 	struct ixgbevf_adapter *adapter;
4195 	bool disable_dev;
4196 
4197 	if (!netdev)
4198 		return;
4199 
4200 	adapter = netdev_priv(netdev);
4201 
4202 	set_bit(__IXGBEVF_REMOVING, &adapter->state);
4203 	cancel_work_sync(&adapter->service_task);
4204 
4205 	if (netdev->reg_state == NETREG_REGISTERED)
4206 		unregister_netdev(netdev);
4207 
4208 	ixgbevf_clear_interrupt_scheme(adapter);
4209 	ixgbevf_reset_interrupt_capability(adapter);
4210 
4211 	iounmap(adapter->io_addr);
4212 	pci_release_regions(pdev);
4213 
4214 	hw_dbg(&adapter->hw, "Remove complete\n");
4215 
4216 	kfree(adapter->rss_key);
4217 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4218 	free_netdev(netdev);
4219 
4220 	if (disable_dev)
4221 		pci_disable_device(pdev);
4222 }
4223 
4224 /**
4225  * ixgbevf_io_error_detected - called when PCI error is detected
4226  * @pdev: Pointer to PCI device
4227  * @state: The current pci connection state
4228  *
4229  * This function is called after a PCI bus error affecting
4230  * this device has been detected.
4231  **/
4232 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4233 						  pci_channel_state_t state)
4234 {
4235 	struct net_device *netdev = pci_get_drvdata(pdev);
4236 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4237 
4238 	if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4239 		return PCI_ERS_RESULT_DISCONNECT;
4240 
4241 	rtnl_lock();
4242 	netif_device_detach(netdev);
4243 
4244 	if (state == pci_channel_io_perm_failure) {
4245 		rtnl_unlock();
4246 		return PCI_ERS_RESULT_DISCONNECT;
4247 	}
4248 
4249 	if (netif_running(netdev))
4250 		ixgbevf_close_suspend(adapter);
4251 
4252 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4253 		pci_disable_device(pdev);
4254 	rtnl_unlock();
4255 
4256 	/* Request a slot slot reset. */
4257 	return PCI_ERS_RESULT_NEED_RESET;
4258 }
4259 
4260 /**
4261  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4262  * @pdev: Pointer to PCI device
4263  *
4264  * Restart the card from scratch, as if from a cold-boot. Implementation
4265  * resembles the first-half of the ixgbevf_resume routine.
4266  **/
4267 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4268 {
4269 	struct net_device *netdev = pci_get_drvdata(pdev);
4270 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4271 
4272 	if (pci_enable_device_mem(pdev)) {
4273 		dev_err(&pdev->dev,
4274 			"Cannot re-enable PCI device after reset.\n");
4275 		return PCI_ERS_RESULT_DISCONNECT;
4276 	}
4277 
4278 	adapter->hw.hw_addr = adapter->io_addr;
4279 	smp_mb__before_atomic();
4280 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4281 	pci_set_master(pdev);
4282 
4283 	ixgbevf_reset(adapter);
4284 
4285 	return PCI_ERS_RESULT_RECOVERED;
4286 }
4287 
4288 /**
4289  * ixgbevf_io_resume - called when traffic can start flowing again.
4290  * @pdev: Pointer to PCI device
4291  *
4292  * This callback is called when the error recovery driver tells us that
4293  * its OK to resume normal operation. Implementation resembles the
4294  * second-half of the ixgbevf_resume routine.
4295  **/
4296 static void ixgbevf_io_resume(struct pci_dev *pdev)
4297 {
4298 	struct net_device *netdev = pci_get_drvdata(pdev);
4299 
4300 	rtnl_lock();
4301 	if (netif_running(netdev))
4302 		ixgbevf_open(netdev);
4303 
4304 	netif_device_attach(netdev);
4305 	rtnl_unlock();
4306 }
4307 
4308 /* PCI Error Recovery (ERS) */
4309 static const struct pci_error_handlers ixgbevf_err_handler = {
4310 	.error_detected = ixgbevf_io_error_detected,
4311 	.slot_reset = ixgbevf_io_slot_reset,
4312 	.resume = ixgbevf_io_resume,
4313 };
4314 
4315 static struct pci_driver ixgbevf_driver = {
4316 	.name		= ixgbevf_driver_name,
4317 	.id_table	= ixgbevf_pci_tbl,
4318 	.probe		= ixgbevf_probe,
4319 	.remove		= ixgbevf_remove,
4320 #ifdef CONFIG_PM
4321 	/* Power Management Hooks */
4322 	.suspend	= ixgbevf_suspend,
4323 	.resume		= ixgbevf_resume,
4324 #endif
4325 	.shutdown	= ixgbevf_shutdown,
4326 	.err_handler	= &ixgbevf_err_handler
4327 };
4328 
4329 /**
4330  * ixgbevf_init_module - Driver Registration Routine
4331  *
4332  * ixgbevf_init_module is the first routine called when the driver is
4333  * loaded. All it does is register with the PCI subsystem.
4334  **/
4335 static int __init ixgbevf_init_module(void)
4336 {
4337 	pr_info("%s - version %s\n", ixgbevf_driver_string,
4338 		ixgbevf_driver_version);
4339 
4340 	pr_info("%s\n", ixgbevf_copyright);
4341 	ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4342 	if (!ixgbevf_wq) {
4343 		pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4344 		return -ENOMEM;
4345 	}
4346 
4347 	return pci_register_driver(&ixgbevf_driver);
4348 }
4349 
4350 module_init(ixgbevf_init_module);
4351 
4352 /**
4353  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4354  *
4355  * ixgbevf_exit_module is called just before the driver is removed
4356  * from memory.
4357  **/
4358 static void __exit ixgbevf_exit_module(void)
4359 {
4360 	pci_unregister_driver(&ixgbevf_driver);
4361 	if (ixgbevf_wq) {
4362 		destroy_workqueue(ixgbevf_wq);
4363 		ixgbevf_wq = NULL;
4364 	}
4365 }
4366 
4367 #ifdef DEBUG
4368 /**
4369  * ixgbevf_get_hw_dev_name - return device name string
4370  * used by hardware layer to print debugging information
4371  **/
4372 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4373 {
4374 	struct ixgbevf_adapter *adapter = hw->back;
4375 
4376 	return adapter->netdev->name;
4377 }
4378 
4379 #endif
4380 module_exit(ixgbevf_exit_module);
4381 
4382 /* ixgbevf_main.c */
4383