1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 34 #include "ixgbevf.h" 35 36 const char ixgbevf_driver_name[] = "ixgbevf"; 37 static const char ixgbevf_driver_string[] = 38 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 39 40 #define DRV_VERSION "4.1.0-k" 41 const char ixgbevf_driver_version[] = DRV_VERSION; 42 static char ixgbevf_copyright[] = 43 "Copyright (c) 2009 - 2015 Intel Corporation."; 44 45 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 46 [board_82599_vf] = &ixgbevf_82599_vf_info, 47 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 48 [board_X540_vf] = &ixgbevf_X540_vf_info, 49 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 50 [board_X550_vf] = &ixgbevf_X550_vf_info, 51 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 52 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 53 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 54 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 55 }; 56 57 /* ixgbevf_pci_tbl - PCI Device ID Table 58 * 59 * Wildcard entries (PCI_ANY_ID) should come last 60 * Last entry must be all 0s 61 * 62 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 63 * Class, Class Mask, private data (not used) } 64 */ 65 static const struct pci_device_id ixgbevf_pci_tbl[] = { 66 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 74 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 75 /* required last entry */ 76 {0, } 77 }; 78 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 79 80 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 81 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 82 MODULE_LICENSE("GPL"); 83 MODULE_VERSION(DRV_VERSION); 84 85 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 86 static int debug = -1; 87 module_param(debug, int, 0); 88 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 89 90 static struct workqueue_struct *ixgbevf_wq; 91 92 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 93 { 94 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 95 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 96 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 97 queue_work(ixgbevf_wq, &adapter->service_task); 98 } 99 100 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 101 { 102 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 103 104 /* flush memory to make sure state is correct before next watchdog */ 105 smp_mb__before_atomic(); 106 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 107 } 108 109 /* forward decls */ 110 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 111 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 112 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 113 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 114 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 115 struct ixgbevf_rx_buffer *old_buff); 116 117 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 118 { 119 struct ixgbevf_adapter *adapter = hw->back; 120 121 if (!hw->hw_addr) 122 return; 123 hw->hw_addr = NULL; 124 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 125 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 126 ixgbevf_service_event_schedule(adapter); 127 } 128 129 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 130 { 131 u32 value; 132 133 /* The following check not only optimizes a bit by not 134 * performing a read on the status register when the 135 * register just read was a status register read that 136 * returned IXGBE_FAILED_READ_REG. It also blocks any 137 * potential recursion. 138 */ 139 if (reg == IXGBE_VFSTATUS) { 140 ixgbevf_remove_adapter(hw); 141 return; 142 } 143 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 144 if (value == IXGBE_FAILED_READ_REG) 145 ixgbevf_remove_adapter(hw); 146 } 147 148 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 149 { 150 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 151 u32 value; 152 153 if (IXGBE_REMOVED(reg_addr)) 154 return IXGBE_FAILED_READ_REG; 155 value = readl(reg_addr + reg); 156 if (unlikely(value == IXGBE_FAILED_READ_REG)) 157 ixgbevf_check_remove(hw, reg); 158 return value; 159 } 160 161 /** 162 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 163 * @adapter: pointer to adapter struct 164 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 165 * @queue: queue to map the corresponding interrupt to 166 * @msix_vector: the vector to map to the corresponding queue 167 **/ 168 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 169 u8 queue, u8 msix_vector) 170 { 171 u32 ivar, index; 172 struct ixgbe_hw *hw = &adapter->hw; 173 174 if (direction == -1) { 175 /* other causes */ 176 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 177 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 178 ivar &= ~0xFF; 179 ivar |= msix_vector; 180 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 181 } else { 182 /* Tx or Rx causes */ 183 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 184 index = ((16 * (queue & 1)) + (8 * direction)); 185 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 186 ivar &= ~(0xFF << index); 187 ivar |= (msix_vector << index); 188 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 189 } 190 } 191 192 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 193 { 194 return ring->stats.packets; 195 } 196 197 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 198 { 199 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 200 struct ixgbe_hw *hw = &adapter->hw; 201 202 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 203 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 204 205 if (head != tail) 206 return (head < tail) ? 207 tail - head : (tail + ring->count - head); 208 209 return 0; 210 } 211 212 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 213 { 214 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 215 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 216 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 217 218 clear_check_for_tx_hang(tx_ring); 219 220 /* Check for a hung queue, but be thorough. This verifies 221 * that a transmit has been completed since the previous 222 * check AND there is at least one packet pending. The 223 * ARMED bit is set to indicate a potential hang. 224 */ 225 if ((tx_done_old == tx_done) && tx_pending) { 226 /* make sure it is true for two checks in a row */ 227 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 228 &tx_ring->state); 229 } 230 /* reset the countdown */ 231 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 232 233 /* update completed stats and continue */ 234 tx_ring->tx_stats.tx_done_old = tx_done; 235 236 return false; 237 } 238 239 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 240 { 241 /* Do the reset outside of interrupt context */ 242 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 243 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 244 ixgbevf_service_event_schedule(adapter); 245 } 246 } 247 248 /** 249 * ixgbevf_tx_timeout - Respond to a Tx Hang 250 * @netdev: network interface device structure 251 **/ 252 static void ixgbevf_tx_timeout(struct net_device *netdev) 253 { 254 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 255 256 ixgbevf_tx_timeout_reset(adapter); 257 } 258 259 /** 260 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 261 * @q_vector: board private structure 262 * @tx_ring: tx ring to clean 263 * @napi_budget: Used to determine if we are in netpoll 264 **/ 265 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 266 struct ixgbevf_ring *tx_ring, int napi_budget) 267 { 268 struct ixgbevf_adapter *adapter = q_vector->adapter; 269 struct ixgbevf_tx_buffer *tx_buffer; 270 union ixgbe_adv_tx_desc *tx_desc; 271 unsigned int total_bytes = 0, total_packets = 0; 272 unsigned int budget = tx_ring->count / 2; 273 unsigned int i = tx_ring->next_to_clean; 274 275 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 276 return true; 277 278 tx_buffer = &tx_ring->tx_buffer_info[i]; 279 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 280 i -= tx_ring->count; 281 282 do { 283 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 284 285 /* if next_to_watch is not set then there is no work pending */ 286 if (!eop_desc) 287 break; 288 289 /* prevent any other reads prior to eop_desc */ 290 smp_rmb(); 291 292 /* if DD is not set pending work has not been completed */ 293 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 294 break; 295 296 /* clear next_to_watch to prevent false hangs */ 297 tx_buffer->next_to_watch = NULL; 298 299 /* update the statistics for this packet */ 300 total_bytes += tx_buffer->bytecount; 301 total_packets += tx_buffer->gso_segs; 302 303 /* free the skb */ 304 if (ring_is_xdp(tx_ring)) 305 page_frag_free(tx_buffer->data); 306 else 307 napi_consume_skb(tx_buffer->skb, napi_budget); 308 309 /* unmap skb header data */ 310 dma_unmap_single(tx_ring->dev, 311 dma_unmap_addr(tx_buffer, dma), 312 dma_unmap_len(tx_buffer, len), 313 DMA_TO_DEVICE); 314 315 /* clear tx_buffer data */ 316 dma_unmap_len_set(tx_buffer, len, 0); 317 318 /* unmap remaining buffers */ 319 while (tx_desc != eop_desc) { 320 tx_buffer++; 321 tx_desc++; 322 i++; 323 if (unlikely(!i)) { 324 i -= tx_ring->count; 325 tx_buffer = tx_ring->tx_buffer_info; 326 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 327 } 328 329 /* unmap any remaining paged data */ 330 if (dma_unmap_len(tx_buffer, len)) { 331 dma_unmap_page(tx_ring->dev, 332 dma_unmap_addr(tx_buffer, dma), 333 dma_unmap_len(tx_buffer, len), 334 DMA_TO_DEVICE); 335 dma_unmap_len_set(tx_buffer, len, 0); 336 } 337 } 338 339 /* move us one more past the eop_desc for start of next pkt */ 340 tx_buffer++; 341 tx_desc++; 342 i++; 343 if (unlikely(!i)) { 344 i -= tx_ring->count; 345 tx_buffer = tx_ring->tx_buffer_info; 346 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 347 } 348 349 /* issue prefetch for next Tx descriptor */ 350 prefetch(tx_desc); 351 352 /* update budget accounting */ 353 budget--; 354 } while (likely(budget)); 355 356 i += tx_ring->count; 357 tx_ring->next_to_clean = i; 358 u64_stats_update_begin(&tx_ring->syncp); 359 tx_ring->stats.bytes += total_bytes; 360 tx_ring->stats.packets += total_packets; 361 u64_stats_update_end(&tx_ring->syncp); 362 q_vector->tx.total_bytes += total_bytes; 363 q_vector->tx.total_packets += total_packets; 364 365 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 366 struct ixgbe_hw *hw = &adapter->hw; 367 union ixgbe_adv_tx_desc *eop_desc; 368 369 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 370 371 pr_err("Detected Tx Unit Hang%s\n" 372 " Tx Queue <%d>\n" 373 " TDH, TDT <%x>, <%x>\n" 374 " next_to_use <%x>\n" 375 " next_to_clean <%x>\n" 376 "tx_buffer_info[next_to_clean]\n" 377 " next_to_watch <%p>\n" 378 " eop_desc->wb.status <%x>\n" 379 " time_stamp <%lx>\n" 380 " jiffies <%lx>\n", 381 ring_is_xdp(tx_ring) ? " XDP" : "", 382 tx_ring->queue_index, 383 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 384 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 385 tx_ring->next_to_use, i, 386 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 387 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 388 389 if (!ring_is_xdp(tx_ring)) 390 netif_stop_subqueue(tx_ring->netdev, 391 tx_ring->queue_index); 392 393 /* schedule immediate reset if we believe we hung */ 394 ixgbevf_tx_timeout_reset(adapter); 395 396 return true; 397 } 398 399 if (ring_is_xdp(tx_ring)) 400 return !!budget; 401 402 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 403 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 404 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 405 /* Make sure that anybody stopping the queue after this 406 * sees the new next_to_clean. 407 */ 408 smp_mb(); 409 410 if (__netif_subqueue_stopped(tx_ring->netdev, 411 tx_ring->queue_index) && 412 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 413 netif_wake_subqueue(tx_ring->netdev, 414 tx_ring->queue_index); 415 ++tx_ring->tx_stats.restart_queue; 416 } 417 } 418 419 return !!budget; 420 } 421 422 /** 423 * ixgbevf_rx_skb - Helper function to determine proper Rx method 424 * @q_vector: structure containing interrupt and ring information 425 * @skb: packet to send up 426 **/ 427 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 428 struct sk_buff *skb) 429 { 430 napi_gro_receive(&q_vector->napi, skb); 431 } 432 433 #define IXGBE_RSS_L4_TYPES_MASK \ 434 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 435 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 436 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 437 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 438 439 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 440 union ixgbe_adv_rx_desc *rx_desc, 441 struct sk_buff *skb) 442 { 443 u16 rss_type; 444 445 if (!(ring->netdev->features & NETIF_F_RXHASH)) 446 return; 447 448 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 449 IXGBE_RXDADV_RSSTYPE_MASK; 450 451 if (!rss_type) 452 return; 453 454 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 455 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 456 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 457 } 458 459 /** 460 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 461 * @ring: structure containig ring specific data 462 * @rx_desc: current Rx descriptor being processed 463 * @skb: skb currently being received and modified 464 **/ 465 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 466 union ixgbe_adv_rx_desc *rx_desc, 467 struct sk_buff *skb) 468 { 469 skb_checksum_none_assert(skb); 470 471 /* Rx csum disabled */ 472 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 473 return; 474 475 /* if IP and error */ 476 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 477 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 478 ring->rx_stats.csum_err++; 479 return; 480 } 481 482 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 483 return; 484 485 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 486 ring->rx_stats.csum_err++; 487 return; 488 } 489 490 /* It must be a TCP or UDP packet with a valid checksum */ 491 skb->ip_summed = CHECKSUM_UNNECESSARY; 492 } 493 494 /** 495 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 496 * @rx_ring: rx descriptor ring packet is being transacted on 497 * @rx_desc: pointer to the EOP Rx descriptor 498 * @skb: pointer to current skb being populated 499 * 500 * This function checks the ring, descriptor, and packet information in 501 * order to populate the checksum, VLAN, protocol, and other fields within 502 * the skb. 503 **/ 504 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 505 union ixgbe_adv_rx_desc *rx_desc, 506 struct sk_buff *skb) 507 { 508 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 509 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 510 511 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 512 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 513 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 514 515 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 516 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 517 } 518 519 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 520 } 521 522 static 523 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 524 const unsigned int size) 525 { 526 struct ixgbevf_rx_buffer *rx_buffer; 527 528 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 529 prefetchw(rx_buffer->page); 530 531 /* we are reusing so sync this buffer for CPU use */ 532 dma_sync_single_range_for_cpu(rx_ring->dev, 533 rx_buffer->dma, 534 rx_buffer->page_offset, 535 size, 536 DMA_FROM_DEVICE); 537 538 rx_buffer->pagecnt_bias--; 539 540 return rx_buffer; 541 } 542 543 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 544 struct ixgbevf_rx_buffer *rx_buffer, 545 struct sk_buff *skb) 546 { 547 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 548 /* hand second half of page back to the ring */ 549 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 550 } else { 551 if (IS_ERR(skb)) 552 /* We are not reusing the buffer so unmap it and free 553 * any references we are holding to it 554 */ 555 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 556 ixgbevf_rx_pg_size(rx_ring), 557 DMA_FROM_DEVICE, 558 IXGBEVF_RX_DMA_ATTR); 559 __page_frag_cache_drain(rx_buffer->page, 560 rx_buffer->pagecnt_bias); 561 } 562 563 /* clear contents of rx_buffer */ 564 rx_buffer->page = NULL; 565 } 566 567 /** 568 * ixgbevf_is_non_eop - process handling of non-EOP buffers 569 * @rx_ring: Rx ring being processed 570 * @rx_desc: Rx descriptor for current buffer 571 * 572 * This function updates next to clean. If the buffer is an EOP buffer 573 * this function exits returning false, otherwise it will place the 574 * sk_buff in the next buffer to be chained and return true indicating 575 * that this is in fact a non-EOP buffer. 576 **/ 577 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 578 union ixgbe_adv_rx_desc *rx_desc) 579 { 580 u32 ntc = rx_ring->next_to_clean + 1; 581 582 /* fetch, update, and store next to clean */ 583 ntc = (ntc < rx_ring->count) ? ntc : 0; 584 rx_ring->next_to_clean = ntc; 585 586 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 587 588 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 589 return false; 590 591 return true; 592 } 593 594 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 595 { 596 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 597 } 598 599 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 600 struct ixgbevf_rx_buffer *bi) 601 { 602 struct page *page = bi->page; 603 dma_addr_t dma; 604 605 /* since we are recycling buffers we should seldom need to alloc */ 606 if (likely(page)) 607 return true; 608 609 /* alloc new page for storage */ 610 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 611 if (unlikely(!page)) { 612 rx_ring->rx_stats.alloc_rx_page_failed++; 613 return false; 614 } 615 616 /* map page for use */ 617 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 618 ixgbevf_rx_pg_size(rx_ring), 619 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 620 621 /* if mapping failed free memory back to system since 622 * there isn't much point in holding memory we can't use 623 */ 624 if (dma_mapping_error(rx_ring->dev, dma)) { 625 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 626 627 rx_ring->rx_stats.alloc_rx_page_failed++; 628 return false; 629 } 630 631 bi->dma = dma; 632 bi->page = page; 633 bi->page_offset = ixgbevf_rx_offset(rx_ring); 634 bi->pagecnt_bias = 1; 635 rx_ring->rx_stats.alloc_rx_page++; 636 637 return true; 638 } 639 640 /** 641 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 642 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 643 * @cleaned_count: number of buffers to replace 644 **/ 645 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 646 u16 cleaned_count) 647 { 648 union ixgbe_adv_rx_desc *rx_desc; 649 struct ixgbevf_rx_buffer *bi; 650 unsigned int i = rx_ring->next_to_use; 651 652 /* nothing to do or no valid netdev defined */ 653 if (!cleaned_count || !rx_ring->netdev) 654 return; 655 656 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 657 bi = &rx_ring->rx_buffer_info[i]; 658 i -= rx_ring->count; 659 660 do { 661 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 662 break; 663 664 /* sync the buffer for use by the device */ 665 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 666 bi->page_offset, 667 ixgbevf_rx_bufsz(rx_ring), 668 DMA_FROM_DEVICE); 669 670 /* Refresh the desc even if pkt_addr didn't change 671 * because each write-back erases this info. 672 */ 673 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 674 675 rx_desc++; 676 bi++; 677 i++; 678 if (unlikely(!i)) { 679 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 680 bi = rx_ring->rx_buffer_info; 681 i -= rx_ring->count; 682 } 683 684 /* clear the length for the next_to_use descriptor */ 685 rx_desc->wb.upper.length = 0; 686 687 cleaned_count--; 688 } while (cleaned_count); 689 690 i += rx_ring->count; 691 692 if (rx_ring->next_to_use != i) { 693 /* record the next descriptor to use */ 694 rx_ring->next_to_use = i; 695 696 /* update next to alloc since we have filled the ring */ 697 rx_ring->next_to_alloc = i; 698 699 /* Force memory writes to complete before letting h/w 700 * know there are new descriptors to fetch. (Only 701 * applicable for weak-ordered memory model archs, 702 * such as IA-64). 703 */ 704 wmb(); 705 ixgbevf_write_tail(rx_ring, i); 706 } 707 } 708 709 /** 710 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 711 * @rx_ring: rx descriptor ring packet is being transacted on 712 * @rx_desc: pointer to the EOP Rx descriptor 713 * @skb: pointer to current skb being fixed 714 * 715 * Check for corrupted packet headers caused by senders on the local L2 716 * embedded NIC switch not setting up their Tx Descriptors right. These 717 * should be very rare. 718 * 719 * Also address the case where we are pulling data in on pages only 720 * and as such no data is present in the skb header. 721 * 722 * In addition if skb is not at least 60 bytes we need to pad it so that 723 * it is large enough to qualify as a valid Ethernet frame. 724 * 725 * Returns true if an error was encountered and skb was freed. 726 **/ 727 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 728 union ixgbe_adv_rx_desc *rx_desc, 729 struct sk_buff *skb) 730 { 731 /* XDP packets use error pointer so abort at this point */ 732 if (IS_ERR(skb)) 733 return true; 734 735 /* verify that the packet does not have any known errors */ 736 if (unlikely(ixgbevf_test_staterr(rx_desc, 737 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 738 struct net_device *netdev = rx_ring->netdev; 739 740 if (!(netdev->features & NETIF_F_RXALL)) { 741 dev_kfree_skb_any(skb); 742 return true; 743 } 744 } 745 746 /* if eth_skb_pad returns an error the skb was freed */ 747 if (eth_skb_pad(skb)) 748 return true; 749 750 return false; 751 } 752 753 /** 754 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 755 * @rx_ring: rx descriptor ring to store buffers on 756 * @old_buff: donor buffer to have page reused 757 * 758 * Synchronizes page for reuse by the adapter 759 **/ 760 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 761 struct ixgbevf_rx_buffer *old_buff) 762 { 763 struct ixgbevf_rx_buffer *new_buff; 764 u16 nta = rx_ring->next_to_alloc; 765 766 new_buff = &rx_ring->rx_buffer_info[nta]; 767 768 /* update, and store next to alloc */ 769 nta++; 770 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 771 772 /* transfer page from old buffer to new buffer */ 773 new_buff->page = old_buff->page; 774 new_buff->dma = old_buff->dma; 775 new_buff->page_offset = old_buff->page_offset; 776 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 777 } 778 779 static inline bool ixgbevf_page_is_reserved(struct page *page) 780 { 781 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 782 } 783 784 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 785 { 786 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 787 struct page *page = rx_buffer->page; 788 789 /* avoid re-using remote pages */ 790 if (unlikely(ixgbevf_page_is_reserved(page))) 791 return false; 792 793 #if (PAGE_SIZE < 8192) 794 /* if we are only owner of page we can reuse it */ 795 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 796 return false; 797 #else 798 #define IXGBEVF_LAST_OFFSET \ 799 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 800 801 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 802 return false; 803 804 #endif 805 806 /* If we have drained the page fragment pool we need to update 807 * the pagecnt_bias and page count so that we fully restock the 808 * number of references the driver holds. 809 */ 810 if (unlikely(!pagecnt_bias)) { 811 page_ref_add(page, USHRT_MAX); 812 rx_buffer->pagecnt_bias = USHRT_MAX; 813 } 814 815 return true; 816 } 817 818 /** 819 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 820 * @rx_ring: rx descriptor ring to transact packets on 821 * @rx_buffer: buffer containing page to add 822 * @skb: sk_buff to place the data into 823 * @size: size of buffer to be added 824 * 825 * This function will add the data contained in rx_buffer->page to the skb. 826 **/ 827 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 828 struct ixgbevf_rx_buffer *rx_buffer, 829 struct sk_buff *skb, 830 unsigned int size) 831 { 832 #if (PAGE_SIZE < 8192) 833 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 834 #else 835 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 836 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 837 SKB_DATA_ALIGN(size); 838 #endif 839 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 840 rx_buffer->page_offset, size, truesize); 841 #if (PAGE_SIZE < 8192) 842 rx_buffer->page_offset ^= truesize; 843 #else 844 rx_buffer->page_offset += truesize; 845 #endif 846 } 847 848 static 849 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 850 struct ixgbevf_rx_buffer *rx_buffer, 851 struct xdp_buff *xdp, 852 union ixgbe_adv_rx_desc *rx_desc) 853 { 854 unsigned int size = xdp->data_end - xdp->data; 855 #if (PAGE_SIZE < 8192) 856 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 857 #else 858 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 859 xdp->data_hard_start); 860 #endif 861 unsigned int headlen; 862 struct sk_buff *skb; 863 864 /* prefetch first cache line of first page */ 865 prefetch(xdp->data); 866 #if L1_CACHE_BYTES < 128 867 prefetch(xdp->data + L1_CACHE_BYTES); 868 #endif 869 /* Note, we get here by enabling legacy-rx via: 870 * 871 * ethtool --set-priv-flags <dev> legacy-rx on 872 * 873 * In this mode, we currently get 0 extra XDP headroom as 874 * opposed to having legacy-rx off, where we process XDP 875 * packets going to stack via ixgbevf_build_skb(). 876 * 877 * For ixgbevf_construct_skb() mode it means that the 878 * xdp->data_meta will always point to xdp->data, since 879 * the helper cannot expand the head. Should this ever 880 * changed in future for legacy-rx mode on, then lets also 881 * add xdp->data_meta handling here. 882 */ 883 884 /* allocate a skb to store the frags */ 885 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 886 if (unlikely(!skb)) 887 return NULL; 888 889 /* Determine available headroom for copy */ 890 headlen = size; 891 if (headlen > IXGBEVF_RX_HDR_SIZE) 892 headlen = eth_get_headlen(xdp->data, IXGBEVF_RX_HDR_SIZE); 893 894 /* align pull length to size of long to optimize memcpy performance */ 895 memcpy(__skb_put(skb, headlen), xdp->data, 896 ALIGN(headlen, sizeof(long))); 897 898 /* update all of the pointers */ 899 size -= headlen; 900 if (size) { 901 skb_add_rx_frag(skb, 0, rx_buffer->page, 902 (xdp->data + headlen) - 903 page_address(rx_buffer->page), 904 size, truesize); 905 #if (PAGE_SIZE < 8192) 906 rx_buffer->page_offset ^= truesize; 907 #else 908 rx_buffer->page_offset += truesize; 909 #endif 910 } else { 911 rx_buffer->pagecnt_bias++; 912 } 913 914 return skb; 915 } 916 917 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 918 u32 qmask) 919 { 920 struct ixgbe_hw *hw = &adapter->hw; 921 922 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 923 } 924 925 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 926 struct ixgbevf_rx_buffer *rx_buffer, 927 struct xdp_buff *xdp, 928 union ixgbe_adv_rx_desc *rx_desc) 929 { 930 unsigned int metasize = xdp->data - xdp->data_meta; 931 #if (PAGE_SIZE < 8192) 932 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 933 #else 934 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 935 SKB_DATA_ALIGN(xdp->data_end - 936 xdp->data_hard_start); 937 #endif 938 struct sk_buff *skb; 939 940 /* Prefetch first cache line of first page. If xdp->data_meta 941 * is unused, this points to xdp->data, otherwise, we likely 942 * have a consumer accessing first few bytes of meta data, 943 * and then actual data. 944 */ 945 prefetch(xdp->data_meta); 946 #if L1_CACHE_BYTES < 128 947 prefetch(xdp->data_meta + L1_CACHE_BYTES); 948 #endif 949 950 /* build an skb around the page buffer */ 951 skb = build_skb(xdp->data_hard_start, truesize); 952 if (unlikely(!skb)) 953 return NULL; 954 955 /* update pointers within the skb to store the data */ 956 skb_reserve(skb, xdp->data - xdp->data_hard_start); 957 __skb_put(skb, xdp->data_end - xdp->data); 958 if (metasize) 959 skb_metadata_set(skb, metasize); 960 961 /* update buffer offset */ 962 #if (PAGE_SIZE < 8192) 963 rx_buffer->page_offset ^= truesize; 964 #else 965 rx_buffer->page_offset += truesize; 966 #endif 967 968 return skb; 969 } 970 971 #define IXGBEVF_XDP_PASS 0 972 #define IXGBEVF_XDP_CONSUMED 1 973 #define IXGBEVF_XDP_TX 2 974 975 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 976 struct xdp_buff *xdp) 977 { 978 struct ixgbevf_tx_buffer *tx_buffer; 979 union ixgbe_adv_tx_desc *tx_desc; 980 u32 len, cmd_type; 981 dma_addr_t dma; 982 u16 i; 983 984 len = xdp->data_end - xdp->data; 985 986 if (unlikely(!ixgbevf_desc_unused(ring))) 987 return IXGBEVF_XDP_CONSUMED; 988 989 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 990 if (dma_mapping_error(ring->dev, dma)) 991 return IXGBEVF_XDP_CONSUMED; 992 993 /* record the location of the first descriptor for this packet */ 994 tx_buffer = &ring->tx_buffer_info[ring->next_to_use]; 995 tx_buffer->bytecount = len; 996 tx_buffer->gso_segs = 1; 997 tx_buffer->protocol = 0; 998 999 i = ring->next_to_use; 1000 tx_desc = IXGBEVF_TX_DESC(ring, i); 1001 1002 dma_unmap_len_set(tx_buffer, len, len); 1003 dma_unmap_addr_set(tx_buffer, dma, dma); 1004 tx_buffer->data = xdp->data; 1005 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1006 1007 /* put descriptor type bits */ 1008 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1009 IXGBE_ADVTXD_DCMD_DEXT | 1010 IXGBE_ADVTXD_DCMD_IFCS; 1011 cmd_type |= len | IXGBE_TXD_CMD; 1012 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1013 tx_desc->read.olinfo_status = 1014 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1015 IXGBE_ADVTXD_CC); 1016 1017 /* Avoid any potential race with cleanup */ 1018 smp_wmb(); 1019 1020 /* set next_to_watch value indicating a packet is present */ 1021 i++; 1022 if (i == ring->count) 1023 i = 0; 1024 1025 tx_buffer->next_to_watch = tx_desc; 1026 ring->next_to_use = i; 1027 1028 return IXGBEVF_XDP_TX; 1029 } 1030 1031 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1032 struct ixgbevf_ring *rx_ring, 1033 struct xdp_buff *xdp) 1034 { 1035 int result = IXGBEVF_XDP_PASS; 1036 struct ixgbevf_ring *xdp_ring; 1037 struct bpf_prog *xdp_prog; 1038 u32 act; 1039 1040 rcu_read_lock(); 1041 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1042 1043 if (!xdp_prog) 1044 goto xdp_out; 1045 1046 act = bpf_prog_run_xdp(xdp_prog, xdp); 1047 switch (act) { 1048 case XDP_PASS: 1049 break; 1050 case XDP_TX: 1051 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1052 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1053 break; 1054 default: 1055 bpf_warn_invalid_xdp_action(act); 1056 /* fallthrough */ 1057 case XDP_ABORTED: 1058 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1059 /* fallthrough -- handle aborts by dropping packet */ 1060 case XDP_DROP: 1061 result = IXGBEVF_XDP_CONSUMED; 1062 break; 1063 } 1064 xdp_out: 1065 rcu_read_unlock(); 1066 return ERR_PTR(-result); 1067 } 1068 1069 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1070 struct ixgbevf_rx_buffer *rx_buffer, 1071 unsigned int size) 1072 { 1073 #if (PAGE_SIZE < 8192) 1074 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 1075 1076 rx_buffer->page_offset ^= truesize; 1077 #else 1078 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 1079 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 1080 SKB_DATA_ALIGN(size); 1081 1082 rx_buffer->page_offset += truesize; 1083 #endif 1084 } 1085 1086 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1087 struct ixgbevf_ring *rx_ring, 1088 int budget) 1089 { 1090 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1091 struct ixgbevf_adapter *adapter = q_vector->adapter; 1092 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1093 struct sk_buff *skb = rx_ring->skb; 1094 bool xdp_xmit = false; 1095 struct xdp_buff xdp; 1096 1097 xdp.rxq = &rx_ring->xdp_rxq; 1098 1099 while (likely(total_rx_packets < budget)) { 1100 struct ixgbevf_rx_buffer *rx_buffer; 1101 union ixgbe_adv_rx_desc *rx_desc; 1102 unsigned int size; 1103 1104 /* return some buffers to hardware, one at a time is too slow */ 1105 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1106 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1107 cleaned_count = 0; 1108 } 1109 1110 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1111 size = le16_to_cpu(rx_desc->wb.upper.length); 1112 if (!size) 1113 break; 1114 1115 /* This memory barrier is needed to keep us from reading 1116 * any other fields out of the rx_desc until we know the 1117 * RXD_STAT_DD bit is set 1118 */ 1119 rmb(); 1120 1121 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1122 1123 /* retrieve a buffer from the ring */ 1124 if (!skb) { 1125 xdp.data = page_address(rx_buffer->page) + 1126 rx_buffer->page_offset; 1127 xdp.data_meta = xdp.data; 1128 xdp.data_hard_start = xdp.data - 1129 ixgbevf_rx_offset(rx_ring); 1130 xdp.data_end = xdp.data + size; 1131 1132 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1133 } 1134 1135 if (IS_ERR(skb)) { 1136 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1137 xdp_xmit = true; 1138 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1139 size); 1140 } else { 1141 rx_buffer->pagecnt_bias++; 1142 } 1143 total_rx_packets++; 1144 total_rx_bytes += size; 1145 } else if (skb) { 1146 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1147 } else if (ring_uses_build_skb(rx_ring)) { 1148 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1149 &xdp, rx_desc); 1150 } else { 1151 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1152 &xdp, rx_desc); 1153 } 1154 1155 /* exit if we failed to retrieve a buffer */ 1156 if (!skb) { 1157 rx_ring->rx_stats.alloc_rx_buff_failed++; 1158 rx_buffer->pagecnt_bias++; 1159 break; 1160 } 1161 1162 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1163 cleaned_count++; 1164 1165 /* fetch next buffer in frame if non-eop */ 1166 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1167 continue; 1168 1169 /* verify the packet layout is correct */ 1170 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1171 skb = NULL; 1172 continue; 1173 } 1174 1175 /* probably a little skewed due to removing CRC */ 1176 total_rx_bytes += skb->len; 1177 1178 /* Workaround hardware that can't do proper VEPA multicast 1179 * source pruning. 1180 */ 1181 if ((skb->pkt_type == PACKET_BROADCAST || 1182 skb->pkt_type == PACKET_MULTICAST) && 1183 ether_addr_equal(rx_ring->netdev->dev_addr, 1184 eth_hdr(skb)->h_source)) { 1185 dev_kfree_skb_irq(skb); 1186 continue; 1187 } 1188 1189 /* populate checksum, VLAN, and protocol */ 1190 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1191 1192 ixgbevf_rx_skb(q_vector, skb); 1193 1194 /* reset skb pointer */ 1195 skb = NULL; 1196 1197 /* update budget accounting */ 1198 total_rx_packets++; 1199 } 1200 1201 /* place incomplete frames back on ring for completion */ 1202 rx_ring->skb = skb; 1203 1204 if (xdp_xmit) { 1205 struct ixgbevf_ring *xdp_ring = 1206 adapter->xdp_ring[rx_ring->queue_index]; 1207 1208 /* Force memory writes to complete before letting h/w 1209 * know there are new descriptors to fetch. 1210 */ 1211 wmb(); 1212 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1213 } 1214 1215 u64_stats_update_begin(&rx_ring->syncp); 1216 rx_ring->stats.packets += total_rx_packets; 1217 rx_ring->stats.bytes += total_rx_bytes; 1218 u64_stats_update_end(&rx_ring->syncp); 1219 q_vector->rx.total_packets += total_rx_packets; 1220 q_vector->rx.total_bytes += total_rx_bytes; 1221 1222 return total_rx_packets; 1223 } 1224 1225 /** 1226 * ixgbevf_poll - NAPI polling calback 1227 * @napi: napi struct with our devices info in it 1228 * @budget: amount of work driver is allowed to do this pass, in packets 1229 * 1230 * This function will clean more than one or more rings associated with a 1231 * q_vector. 1232 **/ 1233 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1234 { 1235 struct ixgbevf_q_vector *q_vector = 1236 container_of(napi, struct ixgbevf_q_vector, napi); 1237 struct ixgbevf_adapter *adapter = q_vector->adapter; 1238 struct ixgbevf_ring *ring; 1239 int per_ring_budget, work_done = 0; 1240 bool clean_complete = true; 1241 1242 ixgbevf_for_each_ring(ring, q_vector->tx) { 1243 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1244 clean_complete = false; 1245 } 1246 1247 if (budget <= 0) 1248 return budget; 1249 1250 /* attempt to distribute budget to each queue fairly, but don't allow 1251 * the budget to go below 1 because we'll exit polling 1252 */ 1253 if (q_vector->rx.count > 1) 1254 per_ring_budget = max(budget/q_vector->rx.count, 1); 1255 else 1256 per_ring_budget = budget; 1257 1258 ixgbevf_for_each_ring(ring, q_vector->rx) { 1259 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1260 per_ring_budget); 1261 work_done += cleaned; 1262 if (cleaned >= per_ring_budget) 1263 clean_complete = false; 1264 } 1265 1266 /* If all work not completed, return budget and keep polling */ 1267 if (!clean_complete) 1268 return budget; 1269 /* all work done, exit the polling mode */ 1270 napi_complete_done(napi, work_done); 1271 if (adapter->rx_itr_setting == 1) 1272 ixgbevf_set_itr(q_vector); 1273 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1274 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1275 ixgbevf_irq_enable_queues(adapter, 1276 BIT(q_vector->v_idx)); 1277 1278 return 0; 1279 } 1280 1281 /** 1282 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1283 * @q_vector: structure containing interrupt and ring information 1284 **/ 1285 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1286 { 1287 struct ixgbevf_adapter *adapter = q_vector->adapter; 1288 struct ixgbe_hw *hw = &adapter->hw; 1289 int v_idx = q_vector->v_idx; 1290 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1291 1292 /* set the WDIS bit to not clear the timer bits and cause an 1293 * immediate assertion of the interrupt 1294 */ 1295 itr_reg |= IXGBE_EITR_CNT_WDIS; 1296 1297 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1298 } 1299 1300 /** 1301 * ixgbevf_configure_msix - Configure MSI-X hardware 1302 * @adapter: board private structure 1303 * 1304 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1305 * interrupts. 1306 **/ 1307 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1308 { 1309 struct ixgbevf_q_vector *q_vector; 1310 int q_vectors, v_idx; 1311 1312 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1313 adapter->eims_enable_mask = 0; 1314 1315 /* Populate the IVAR table and set the ITR values to the 1316 * corresponding register. 1317 */ 1318 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1319 struct ixgbevf_ring *ring; 1320 1321 q_vector = adapter->q_vector[v_idx]; 1322 1323 ixgbevf_for_each_ring(ring, q_vector->rx) 1324 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1325 1326 ixgbevf_for_each_ring(ring, q_vector->tx) 1327 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1328 1329 if (q_vector->tx.ring && !q_vector->rx.ring) { 1330 /* Tx only vector */ 1331 if (adapter->tx_itr_setting == 1) 1332 q_vector->itr = IXGBE_12K_ITR; 1333 else 1334 q_vector->itr = adapter->tx_itr_setting; 1335 } else { 1336 /* Rx or Rx/Tx vector */ 1337 if (adapter->rx_itr_setting == 1) 1338 q_vector->itr = IXGBE_20K_ITR; 1339 else 1340 q_vector->itr = adapter->rx_itr_setting; 1341 } 1342 1343 /* add q_vector eims value to global eims_enable_mask */ 1344 adapter->eims_enable_mask |= BIT(v_idx); 1345 1346 ixgbevf_write_eitr(q_vector); 1347 } 1348 1349 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1350 /* setup eims_other and add value to global eims_enable_mask */ 1351 adapter->eims_other = BIT(v_idx); 1352 adapter->eims_enable_mask |= adapter->eims_other; 1353 } 1354 1355 enum latency_range { 1356 lowest_latency = 0, 1357 low_latency = 1, 1358 bulk_latency = 2, 1359 latency_invalid = 255 1360 }; 1361 1362 /** 1363 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1364 * @q_vector: structure containing interrupt and ring information 1365 * @ring_container: structure containing ring performance data 1366 * 1367 * Stores a new ITR value based on packets and byte 1368 * counts during the last interrupt. The advantage of per interrupt 1369 * computation is faster updates and more accurate ITR for the current 1370 * traffic pattern. Constants in this function were computed 1371 * based on theoretical maximum wire speed and thresholds were set based 1372 * on testing data as well as attempting to minimize response time 1373 * while increasing bulk throughput. 1374 **/ 1375 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1376 struct ixgbevf_ring_container *ring_container) 1377 { 1378 int bytes = ring_container->total_bytes; 1379 int packets = ring_container->total_packets; 1380 u32 timepassed_us; 1381 u64 bytes_perint; 1382 u8 itr_setting = ring_container->itr; 1383 1384 if (packets == 0) 1385 return; 1386 1387 /* simple throttle rate management 1388 * 0-20MB/s lowest (100000 ints/s) 1389 * 20-100MB/s low (20000 ints/s) 1390 * 100-1249MB/s bulk (12000 ints/s) 1391 */ 1392 /* what was last interrupt timeslice? */ 1393 timepassed_us = q_vector->itr >> 2; 1394 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1395 1396 switch (itr_setting) { 1397 case lowest_latency: 1398 if (bytes_perint > 10) 1399 itr_setting = low_latency; 1400 break; 1401 case low_latency: 1402 if (bytes_perint > 20) 1403 itr_setting = bulk_latency; 1404 else if (bytes_perint <= 10) 1405 itr_setting = lowest_latency; 1406 break; 1407 case bulk_latency: 1408 if (bytes_perint <= 20) 1409 itr_setting = low_latency; 1410 break; 1411 } 1412 1413 /* clear work counters since we have the values we need */ 1414 ring_container->total_bytes = 0; 1415 ring_container->total_packets = 0; 1416 1417 /* write updated itr to ring container */ 1418 ring_container->itr = itr_setting; 1419 } 1420 1421 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1422 { 1423 u32 new_itr = q_vector->itr; 1424 u8 current_itr; 1425 1426 ixgbevf_update_itr(q_vector, &q_vector->tx); 1427 ixgbevf_update_itr(q_vector, &q_vector->rx); 1428 1429 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1430 1431 switch (current_itr) { 1432 /* counts and packets in update_itr are dependent on these numbers */ 1433 case lowest_latency: 1434 new_itr = IXGBE_100K_ITR; 1435 break; 1436 case low_latency: 1437 new_itr = IXGBE_20K_ITR; 1438 break; 1439 case bulk_latency: 1440 new_itr = IXGBE_12K_ITR; 1441 break; 1442 default: 1443 break; 1444 } 1445 1446 if (new_itr != q_vector->itr) { 1447 /* do an exponential smoothing */ 1448 new_itr = (10 * new_itr * q_vector->itr) / 1449 ((9 * new_itr) + q_vector->itr); 1450 1451 /* save the algorithm value here */ 1452 q_vector->itr = new_itr; 1453 1454 ixgbevf_write_eitr(q_vector); 1455 } 1456 } 1457 1458 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1459 { 1460 struct ixgbevf_adapter *adapter = data; 1461 struct ixgbe_hw *hw = &adapter->hw; 1462 1463 hw->mac.get_link_status = 1; 1464 1465 ixgbevf_service_event_schedule(adapter); 1466 1467 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1468 1469 return IRQ_HANDLED; 1470 } 1471 1472 /** 1473 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1474 * @irq: unused 1475 * @data: pointer to our q_vector struct for this interrupt vector 1476 **/ 1477 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1478 { 1479 struct ixgbevf_q_vector *q_vector = data; 1480 1481 /* EIAM disabled interrupts (on this vector) for us */ 1482 if (q_vector->rx.ring || q_vector->tx.ring) 1483 napi_schedule_irqoff(&q_vector->napi); 1484 1485 return IRQ_HANDLED; 1486 } 1487 1488 /** 1489 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1490 * @adapter: board private structure 1491 * 1492 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1493 * interrupts from the kernel. 1494 **/ 1495 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1496 { 1497 struct net_device *netdev = adapter->netdev; 1498 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1499 unsigned int ri = 0, ti = 0; 1500 int vector, err; 1501 1502 for (vector = 0; vector < q_vectors; vector++) { 1503 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1504 struct msix_entry *entry = &adapter->msix_entries[vector]; 1505 1506 if (q_vector->tx.ring && q_vector->rx.ring) { 1507 snprintf(q_vector->name, sizeof(q_vector->name), 1508 "%s-TxRx-%u", netdev->name, ri++); 1509 ti++; 1510 } else if (q_vector->rx.ring) { 1511 snprintf(q_vector->name, sizeof(q_vector->name), 1512 "%s-rx-%u", netdev->name, ri++); 1513 } else if (q_vector->tx.ring) { 1514 snprintf(q_vector->name, sizeof(q_vector->name), 1515 "%s-tx-%u", netdev->name, ti++); 1516 } else { 1517 /* skip this unused q_vector */ 1518 continue; 1519 } 1520 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1521 q_vector->name, q_vector); 1522 if (err) { 1523 hw_dbg(&adapter->hw, 1524 "request_irq failed for MSIX interrupt Error: %d\n", 1525 err); 1526 goto free_queue_irqs; 1527 } 1528 } 1529 1530 err = request_irq(adapter->msix_entries[vector].vector, 1531 &ixgbevf_msix_other, 0, netdev->name, adapter); 1532 if (err) { 1533 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1534 err); 1535 goto free_queue_irqs; 1536 } 1537 1538 return 0; 1539 1540 free_queue_irqs: 1541 while (vector) { 1542 vector--; 1543 free_irq(adapter->msix_entries[vector].vector, 1544 adapter->q_vector[vector]); 1545 } 1546 /* This failure is non-recoverable - it indicates the system is 1547 * out of MSIX vector resources and the VF driver cannot run 1548 * without them. Set the number of msix vectors to zero 1549 * indicating that not enough can be allocated. The error 1550 * will be returned to the user indicating device open failed. 1551 * Any further attempts to force the driver to open will also 1552 * fail. The only way to recover is to unload the driver and 1553 * reload it again. If the system has recovered some MSIX 1554 * vectors then it may succeed. 1555 */ 1556 adapter->num_msix_vectors = 0; 1557 return err; 1558 } 1559 1560 /** 1561 * ixgbevf_request_irq - initialize interrupts 1562 * @adapter: board private structure 1563 * 1564 * Attempts to configure interrupts using the best available 1565 * capabilities of the hardware and kernel. 1566 **/ 1567 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1568 { 1569 int err = ixgbevf_request_msix_irqs(adapter); 1570 1571 if (err) 1572 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1573 1574 return err; 1575 } 1576 1577 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1578 { 1579 int i, q_vectors; 1580 1581 if (!adapter->msix_entries) 1582 return; 1583 1584 q_vectors = adapter->num_msix_vectors; 1585 i = q_vectors - 1; 1586 1587 free_irq(adapter->msix_entries[i].vector, adapter); 1588 i--; 1589 1590 for (; i >= 0; i--) { 1591 /* free only the irqs that were actually requested */ 1592 if (!adapter->q_vector[i]->rx.ring && 1593 !adapter->q_vector[i]->tx.ring) 1594 continue; 1595 1596 free_irq(adapter->msix_entries[i].vector, 1597 adapter->q_vector[i]); 1598 } 1599 } 1600 1601 /** 1602 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1603 * @adapter: board private structure 1604 **/ 1605 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1606 { 1607 struct ixgbe_hw *hw = &adapter->hw; 1608 int i; 1609 1610 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1611 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1612 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1613 1614 IXGBE_WRITE_FLUSH(hw); 1615 1616 for (i = 0; i < adapter->num_msix_vectors; i++) 1617 synchronize_irq(adapter->msix_entries[i].vector); 1618 } 1619 1620 /** 1621 * ixgbevf_irq_enable - Enable default interrupt generation settings 1622 * @adapter: board private structure 1623 **/ 1624 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1625 { 1626 struct ixgbe_hw *hw = &adapter->hw; 1627 1628 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1629 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1630 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1631 } 1632 1633 /** 1634 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1635 * @adapter: board private structure 1636 * @ring: structure containing ring specific data 1637 * 1638 * Configure the Tx descriptor ring after a reset. 1639 **/ 1640 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1641 struct ixgbevf_ring *ring) 1642 { 1643 struct ixgbe_hw *hw = &adapter->hw; 1644 u64 tdba = ring->dma; 1645 int wait_loop = 10; 1646 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1647 u8 reg_idx = ring->reg_idx; 1648 1649 /* disable queue to avoid issues while updating state */ 1650 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1651 IXGBE_WRITE_FLUSH(hw); 1652 1653 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1654 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1655 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1656 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1657 1658 /* disable head writeback */ 1659 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1660 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1661 1662 /* enable relaxed ordering */ 1663 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1664 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1665 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1666 1667 /* reset head and tail pointers */ 1668 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1669 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1670 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1671 1672 /* reset ntu and ntc to place SW in sync with hardwdare */ 1673 ring->next_to_clean = 0; 1674 ring->next_to_use = 0; 1675 1676 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1677 * to or less than the number of on chip descriptors, which is 1678 * currently 40. 1679 */ 1680 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1681 1682 /* Setting PTHRESH to 32 both improves performance */ 1683 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1684 32; /* PTHRESH = 32 */ 1685 1686 /* reinitialize tx_buffer_info */ 1687 memset(ring->tx_buffer_info, 0, 1688 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1689 1690 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1691 1692 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1693 1694 /* poll to verify queue is enabled */ 1695 do { 1696 usleep_range(1000, 2000); 1697 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1698 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1699 if (!wait_loop) 1700 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1701 } 1702 1703 /** 1704 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1705 * @adapter: board private structure 1706 * 1707 * Configure the Tx unit of the MAC after a reset. 1708 **/ 1709 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1710 { 1711 u32 i; 1712 1713 /* Setup the HW Tx Head and Tail descriptor pointers */ 1714 for (i = 0; i < adapter->num_tx_queues; i++) 1715 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1716 for (i = 0; i < adapter->num_xdp_queues; i++) 1717 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1718 } 1719 1720 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1721 1722 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1723 struct ixgbevf_ring *ring, int index) 1724 { 1725 struct ixgbe_hw *hw = &adapter->hw; 1726 u32 srrctl; 1727 1728 srrctl = IXGBE_SRRCTL_DROP_EN; 1729 1730 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1731 if (ring_uses_large_buffer(ring)) 1732 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1733 else 1734 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1735 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1736 1737 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1738 } 1739 1740 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1741 { 1742 struct ixgbe_hw *hw = &adapter->hw; 1743 1744 /* PSRTYPE must be initialized in 82599 */ 1745 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1746 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1747 IXGBE_PSRTYPE_L2HDR; 1748 1749 if (adapter->num_rx_queues > 1) 1750 psrtype |= BIT(29); 1751 1752 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1753 } 1754 1755 #define IXGBEVF_MAX_RX_DESC_POLL 10 1756 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1757 struct ixgbevf_ring *ring) 1758 { 1759 struct ixgbe_hw *hw = &adapter->hw; 1760 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1761 u32 rxdctl; 1762 u8 reg_idx = ring->reg_idx; 1763 1764 if (IXGBE_REMOVED(hw->hw_addr)) 1765 return; 1766 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1767 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1768 1769 /* write value back with RXDCTL.ENABLE bit cleared */ 1770 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1771 1772 /* the hardware may take up to 100us to really disable the Rx queue */ 1773 do { 1774 udelay(10); 1775 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1776 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1777 1778 if (!wait_loop) 1779 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1780 reg_idx); 1781 } 1782 1783 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1784 struct ixgbevf_ring *ring) 1785 { 1786 struct ixgbe_hw *hw = &adapter->hw; 1787 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1788 u32 rxdctl; 1789 u8 reg_idx = ring->reg_idx; 1790 1791 if (IXGBE_REMOVED(hw->hw_addr)) 1792 return; 1793 do { 1794 usleep_range(1000, 2000); 1795 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1796 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1797 1798 if (!wait_loop) 1799 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1800 reg_idx); 1801 } 1802 1803 /** 1804 * ixgbevf_init_rss_key - Initialize adapter RSS key 1805 * @adapter: device handle 1806 * 1807 * Allocates and initializes the RSS key if it is not allocated. 1808 **/ 1809 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1810 { 1811 u32 *rss_key; 1812 1813 if (!adapter->rss_key) { 1814 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1815 if (unlikely(!rss_key)) 1816 return -ENOMEM; 1817 1818 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1819 adapter->rss_key = rss_key; 1820 } 1821 1822 return 0; 1823 } 1824 1825 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1826 { 1827 struct ixgbe_hw *hw = &adapter->hw; 1828 u32 vfmrqc = 0, vfreta = 0; 1829 u16 rss_i = adapter->num_rx_queues; 1830 u8 i, j; 1831 1832 /* Fill out hash function seeds */ 1833 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1834 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1835 1836 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1837 if (j == rss_i) 1838 j = 0; 1839 1840 adapter->rss_indir_tbl[i] = j; 1841 1842 vfreta |= j << (i & 0x3) * 8; 1843 if ((i & 3) == 3) { 1844 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1845 vfreta = 0; 1846 } 1847 } 1848 1849 /* Perform hash on these packet types */ 1850 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1851 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1852 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1853 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1854 1855 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1856 1857 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1858 } 1859 1860 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1861 struct ixgbevf_ring *ring) 1862 { 1863 struct ixgbe_hw *hw = &adapter->hw; 1864 union ixgbe_adv_rx_desc *rx_desc; 1865 u64 rdba = ring->dma; 1866 u32 rxdctl; 1867 u8 reg_idx = ring->reg_idx; 1868 1869 /* disable queue to avoid issues while updating state */ 1870 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1871 ixgbevf_disable_rx_queue(adapter, ring); 1872 1873 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1874 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1875 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1876 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1877 1878 #ifndef CONFIG_SPARC 1879 /* enable relaxed ordering */ 1880 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1881 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1882 #else 1883 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1884 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1885 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1886 #endif 1887 1888 /* reset head and tail pointers */ 1889 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1890 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1891 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1892 1893 /* initialize rx_buffer_info */ 1894 memset(ring->rx_buffer_info, 0, 1895 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1896 1897 /* initialize Rx descriptor 0 */ 1898 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1899 rx_desc->wb.upper.length = 0; 1900 1901 /* reset ntu and ntc to place SW in sync with hardwdare */ 1902 ring->next_to_clean = 0; 1903 ring->next_to_use = 0; 1904 ring->next_to_alloc = 0; 1905 1906 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1907 1908 /* RXDCTL.RLPML does not work on 82599 */ 1909 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1910 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1911 IXGBE_RXDCTL_RLPML_EN); 1912 1913 #if (PAGE_SIZE < 8192) 1914 /* Limit the maximum frame size so we don't overrun the skb */ 1915 if (ring_uses_build_skb(ring) && 1916 !ring_uses_large_buffer(ring)) 1917 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1918 IXGBE_RXDCTL_RLPML_EN; 1919 #endif 1920 } 1921 1922 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1923 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1924 1925 ixgbevf_rx_desc_queue_enable(adapter, ring); 1926 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1927 } 1928 1929 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1930 struct ixgbevf_ring *rx_ring) 1931 { 1932 struct net_device *netdev = adapter->netdev; 1933 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1934 1935 /* set build_skb and buffer size flags */ 1936 clear_ring_build_skb_enabled(rx_ring); 1937 clear_ring_uses_large_buffer(rx_ring); 1938 1939 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1940 return; 1941 1942 set_ring_build_skb_enabled(rx_ring); 1943 1944 if (PAGE_SIZE < 8192) { 1945 if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB) 1946 return; 1947 1948 set_ring_uses_large_buffer(rx_ring); 1949 } 1950 } 1951 1952 /** 1953 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1954 * @adapter: board private structure 1955 * 1956 * Configure the Rx unit of the MAC after a reset. 1957 **/ 1958 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 1959 { 1960 struct ixgbe_hw *hw = &adapter->hw; 1961 struct net_device *netdev = adapter->netdev; 1962 int i, ret; 1963 1964 ixgbevf_setup_psrtype(adapter); 1965 if (hw->mac.type >= ixgbe_mac_X550_vf) 1966 ixgbevf_setup_vfmrqc(adapter); 1967 1968 spin_lock_bh(&adapter->mbx_lock); 1969 /* notify the PF of our intent to use this size of frame */ 1970 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 1971 spin_unlock_bh(&adapter->mbx_lock); 1972 if (ret) 1973 dev_err(&adapter->pdev->dev, 1974 "Failed to set MTU at %d\n", netdev->mtu); 1975 1976 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1977 * the Base and Length of the Rx Descriptor Ring 1978 */ 1979 for (i = 0; i < adapter->num_rx_queues; i++) { 1980 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 1981 1982 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 1983 ixgbevf_configure_rx_ring(adapter, rx_ring); 1984 } 1985 } 1986 1987 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 1988 __be16 proto, u16 vid) 1989 { 1990 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1991 struct ixgbe_hw *hw = &adapter->hw; 1992 int err; 1993 1994 spin_lock_bh(&adapter->mbx_lock); 1995 1996 /* add VID to filter table */ 1997 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 1998 1999 spin_unlock_bh(&adapter->mbx_lock); 2000 2001 /* translate error return types so error makes sense */ 2002 if (err == IXGBE_ERR_MBX) 2003 return -EIO; 2004 2005 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2006 return -EACCES; 2007 2008 set_bit(vid, adapter->active_vlans); 2009 2010 return err; 2011 } 2012 2013 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2014 __be16 proto, u16 vid) 2015 { 2016 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2017 struct ixgbe_hw *hw = &adapter->hw; 2018 int err; 2019 2020 spin_lock_bh(&adapter->mbx_lock); 2021 2022 /* remove VID from filter table */ 2023 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2024 2025 spin_unlock_bh(&adapter->mbx_lock); 2026 2027 clear_bit(vid, adapter->active_vlans); 2028 2029 return err; 2030 } 2031 2032 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2033 { 2034 u16 vid; 2035 2036 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2037 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2038 htons(ETH_P_8021Q), vid); 2039 } 2040 2041 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2042 { 2043 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2044 struct ixgbe_hw *hw = &adapter->hw; 2045 int count = 0; 2046 2047 if ((netdev_uc_count(netdev)) > 10) { 2048 pr_err("Too many unicast filters - No Space\n"); 2049 return -ENOSPC; 2050 } 2051 2052 if (!netdev_uc_empty(netdev)) { 2053 struct netdev_hw_addr *ha; 2054 2055 netdev_for_each_uc_addr(ha, netdev) { 2056 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2057 udelay(200); 2058 } 2059 } else { 2060 /* If the list is empty then send message to PF driver to 2061 * clear all MAC VLANs on this VF. 2062 */ 2063 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2064 } 2065 2066 return count; 2067 } 2068 2069 /** 2070 * ixgbevf_set_rx_mode - Multicast and unicast set 2071 * @netdev: network interface device structure 2072 * 2073 * The set_rx_method entry point is called whenever the multicast address 2074 * list, unicast address list or the network interface flags are updated. 2075 * This routine is responsible for configuring the hardware for proper 2076 * multicast mode and configuring requested unicast filters. 2077 **/ 2078 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2079 { 2080 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2081 struct ixgbe_hw *hw = &adapter->hw; 2082 unsigned int flags = netdev->flags; 2083 int xcast_mode; 2084 2085 /* request the most inclusive mode we need */ 2086 if (flags & IFF_PROMISC) 2087 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2088 else if (flags & IFF_ALLMULTI) 2089 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2090 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2091 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2092 else 2093 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2094 2095 spin_lock_bh(&adapter->mbx_lock); 2096 2097 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2098 2099 /* reprogram multicast list */ 2100 hw->mac.ops.update_mc_addr_list(hw, netdev); 2101 2102 ixgbevf_write_uc_addr_list(netdev); 2103 2104 spin_unlock_bh(&adapter->mbx_lock); 2105 } 2106 2107 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2108 { 2109 int q_idx; 2110 struct ixgbevf_q_vector *q_vector; 2111 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2112 2113 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2114 q_vector = adapter->q_vector[q_idx]; 2115 napi_enable(&q_vector->napi); 2116 } 2117 } 2118 2119 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2120 { 2121 int q_idx; 2122 struct ixgbevf_q_vector *q_vector; 2123 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2124 2125 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2126 q_vector = adapter->q_vector[q_idx]; 2127 napi_disable(&q_vector->napi); 2128 } 2129 } 2130 2131 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2132 { 2133 struct ixgbe_hw *hw = &adapter->hw; 2134 unsigned int def_q = 0; 2135 unsigned int num_tcs = 0; 2136 unsigned int num_rx_queues = adapter->num_rx_queues; 2137 unsigned int num_tx_queues = adapter->num_tx_queues; 2138 int err; 2139 2140 spin_lock_bh(&adapter->mbx_lock); 2141 2142 /* fetch queue configuration from the PF */ 2143 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2144 2145 spin_unlock_bh(&adapter->mbx_lock); 2146 2147 if (err) 2148 return err; 2149 2150 if (num_tcs > 1) { 2151 /* we need only one Tx queue */ 2152 num_tx_queues = 1; 2153 2154 /* update default Tx ring register index */ 2155 adapter->tx_ring[0]->reg_idx = def_q; 2156 2157 /* we need as many queues as traffic classes */ 2158 num_rx_queues = num_tcs; 2159 } 2160 2161 /* if we have a bad config abort request queue reset */ 2162 if ((adapter->num_rx_queues != num_rx_queues) || 2163 (adapter->num_tx_queues != num_tx_queues)) { 2164 /* force mailbox timeout to prevent further messages */ 2165 hw->mbx.timeout = 0; 2166 2167 /* wait for watchdog to come around and bail us out */ 2168 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2169 } 2170 2171 return 0; 2172 } 2173 2174 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2175 { 2176 ixgbevf_configure_dcb(adapter); 2177 2178 ixgbevf_set_rx_mode(adapter->netdev); 2179 2180 ixgbevf_restore_vlan(adapter); 2181 2182 ixgbevf_configure_tx(adapter); 2183 ixgbevf_configure_rx(adapter); 2184 } 2185 2186 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2187 { 2188 /* Only save pre-reset stats if there are some */ 2189 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2190 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2191 adapter->stats.base_vfgprc; 2192 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2193 adapter->stats.base_vfgptc; 2194 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2195 adapter->stats.base_vfgorc; 2196 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2197 adapter->stats.base_vfgotc; 2198 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2199 adapter->stats.base_vfmprc; 2200 } 2201 } 2202 2203 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2204 { 2205 struct ixgbe_hw *hw = &adapter->hw; 2206 2207 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2208 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2209 adapter->stats.last_vfgorc |= 2210 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2211 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2212 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2213 adapter->stats.last_vfgotc |= 2214 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2215 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2216 2217 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2218 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2219 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2220 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2221 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2222 } 2223 2224 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2225 { 2226 struct ixgbe_hw *hw = &adapter->hw; 2227 int api[] = { ixgbe_mbox_api_13, 2228 ixgbe_mbox_api_12, 2229 ixgbe_mbox_api_11, 2230 ixgbe_mbox_api_10, 2231 ixgbe_mbox_api_unknown }; 2232 int err, idx = 0; 2233 2234 spin_lock_bh(&adapter->mbx_lock); 2235 2236 while (api[idx] != ixgbe_mbox_api_unknown) { 2237 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2238 if (!err) 2239 break; 2240 idx++; 2241 } 2242 2243 spin_unlock_bh(&adapter->mbx_lock); 2244 } 2245 2246 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2247 { 2248 struct net_device *netdev = adapter->netdev; 2249 struct ixgbe_hw *hw = &adapter->hw; 2250 2251 ixgbevf_configure_msix(adapter); 2252 2253 spin_lock_bh(&adapter->mbx_lock); 2254 2255 if (is_valid_ether_addr(hw->mac.addr)) 2256 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2257 else 2258 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2259 2260 spin_unlock_bh(&adapter->mbx_lock); 2261 2262 smp_mb__before_atomic(); 2263 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2264 ixgbevf_napi_enable_all(adapter); 2265 2266 /* clear any pending interrupts, may auto mask */ 2267 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2268 ixgbevf_irq_enable(adapter); 2269 2270 /* enable transmits */ 2271 netif_tx_start_all_queues(netdev); 2272 2273 ixgbevf_save_reset_stats(adapter); 2274 ixgbevf_init_last_counter_stats(adapter); 2275 2276 hw->mac.get_link_status = 1; 2277 mod_timer(&adapter->service_timer, jiffies); 2278 } 2279 2280 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2281 { 2282 ixgbevf_configure(adapter); 2283 2284 ixgbevf_up_complete(adapter); 2285 } 2286 2287 /** 2288 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2289 * @rx_ring: ring to free buffers from 2290 **/ 2291 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2292 { 2293 u16 i = rx_ring->next_to_clean; 2294 2295 /* Free Rx ring sk_buff */ 2296 if (rx_ring->skb) { 2297 dev_kfree_skb(rx_ring->skb); 2298 rx_ring->skb = NULL; 2299 } 2300 2301 /* Free all the Rx ring pages */ 2302 while (i != rx_ring->next_to_alloc) { 2303 struct ixgbevf_rx_buffer *rx_buffer; 2304 2305 rx_buffer = &rx_ring->rx_buffer_info[i]; 2306 2307 /* Invalidate cache lines that may have been written to by 2308 * device so that we avoid corrupting memory. 2309 */ 2310 dma_sync_single_range_for_cpu(rx_ring->dev, 2311 rx_buffer->dma, 2312 rx_buffer->page_offset, 2313 ixgbevf_rx_bufsz(rx_ring), 2314 DMA_FROM_DEVICE); 2315 2316 /* free resources associated with mapping */ 2317 dma_unmap_page_attrs(rx_ring->dev, 2318 rx_buffer->dma, 2319 ixgbevf_rx_pg_size(rx_ring), 2320 DMA_FROM_DEVICE, 2321 IXGBEVF_RX_DMA_ATTR); 2322 2323 __page_frag_cache_drain(rx_buffer->page, 2324 rx_buffer->pagecnt_bias); 2325 2326 i++; 2327 if (i == rx_ring->count) 2328 i = 0; 2329 } 2330 2331 rx_ring->next_to_alloc = 0; 2332 rx_ring->next_to_clean = 0; 2333 rx_ring->next_to_use = 0; 2334 } 2335 2336 /** 2337 * ixgbevf_clean_tx_ring - Free Tx Buffers 2338 * @tx_ring: ring to be cleaned 2339 **/ 2340 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2341 { 2342 u16 i = tx_ring->next_to_clean; 2343 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2344 2345 while (i != tx_ring->next_to_use) { 2346 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2347 2348 /* Free all the Tx ring sk_buffs */ 2349 if (ring_is_xdp(tx_ring)) 2350 page_frag_free(tx_buffer->data); 2351 else 2352 dev_kfree_skb_any(tx_buffer->skb); 2353 2354 /* unmap skb header data */ 2355 dma_unmap_single(tx_ring->dev, 2356 dma_unmap_addr(tx_buffer, dma), 2357 dma_unmap_len(tx_buffer, len), 2358 DMA_TO_DEVICE); 2359 2360 /* check for eop_desc to determine the end of the packet */ 2361 eop_desc = tx_buffer->next_to_watch; 2362 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2363 2364 /* unmap remaining buffers */ 2365 while (tx_desc != eop_desc) { 2366 tx_buffer++; 2367 tx_desc++; 2368 i++; 2369 if (unlikely(i == tx_ring->count)) { 2370 i = 0; 2371 tx_buffer = tx_ring->tx_buffer_info; 2372 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2373 } 2374 2375 /* unmap any remaining paged data */ 2376 if (dma_unmap_len(tx_buffer, len)) 2377 dma_unmap_page(tx_ring->dev, 2378 dma_unmap_addr(tx_buffer, dma), 2379 dma_unmap_len(tx_buffer, len), 2380 DMA_TO_DEVICE); 2381 } 2382 2383 /* move us one more past the eop_desc for start of next pkt */ 2384 tx_buffer++; 2385 i++; 2386 if (unlikely(i == tx_ring->count)) { 2387 i = 0; 2388 tx_buffer = tx_ring->tx_buffer_info; 2389 } 2390 } 2391 2392 /* reset next_to_use and next_to_clean */ 2393 tx_ring->next_to_use = 0; 2394 tx_ring->next_to_clean = 0; 2395 2396 } 2397 2398 /** 2399 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2400 * @adapter: board private structure 2401 **/ 2402 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2403 { 2404 int i; 2405 2406 for (i = 0; i < adapter->num_rx_queues; i++) 2407 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2408 } 2409 2410 /** 2411 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2412 * @adapter: board private structure 2413 **/ 2414 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2415 { 2416 int i; 2417 2418 for (i = 0; i < adapter->num_tx_queues; i++) 2419 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2420 for (i = 0; i < adapter->num_xdp_queues; i++) 2421 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2422 } 2423 2424 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2425 { 2426 struct net_device *netdev = adapter->netdev; 2427 struct ixgbe_hw *hw = &adapter->hw; 2428 int i; 2429 2430 /* signal that we are down to the interrupt handler */ 2431 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2432 return; /* do nothing if already down */ 2433 2434 /* disable all enabled Rx queues */ 2435 for (i = 0; i < adapter->num_rx_queues; i++) 2436 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2437 2438 usleep_range(10000, 20000); 2439 2440 netif_tx_stop_all_queues(netdev); 2441 2442 /* call carrier off first to avoid false dev_watchdog timeouts */ 2443 netif_carrier_off(netdev); 2444 netif_tx_disable(netdev); 2445 2446 ixgbevf_irq_disable(adapter); 2447 2448 ixgbevf_napi_disable_all(adapter); 2449 2450 del_timer_sync(&adapter->service_timer); 2451 2452 /* disable transmits in the hardware now that interrupts are off */ 2453 for (i = 0; i < adapter->num_tx_queues; i++) { 2454 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2455 2456 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2457 IXGBE_TXDCTL_SWFLSH); 2458 } 2459 2460 for (i = 0; i < adapter->num_xdp_queues; i++) { 2461 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2462 2463 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2464 IXGBE_TXDCTL_SWFLSH); 2465 } 2466 2467 if (!pci_channel_offline(adapter->pdev)) 2468 ixgbevf_reset(adapter); 2469 2470 ixgbevf_clean_all_tx_rings(adapter); 2471 ixgbevf_clean_all_rx_rings(adapter); 2472 } 2473 2474 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2475 { 2476 WARN_ON(in_interrupt()); 2477 2478 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2479 msleep(1); 2480 2481 ixgbevf_down(adapter); 2482 ixgbevf_up(adapter); 2483 2484 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2485 } 2486 2487 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2488 { 2489 struct ixgbe_hw *hw = &adapter->hw; 2490 struct net_device *netdev = adapter->netdev; 2491 2492 if (hw->mac.ops.reset_hw(hw)) { 2493 hw_dbg(hw, "PF still resetting\n"); 2494 } else { 2495 hw->mac.ops.init_hw(hw); 2496 ixgbevf_negotiate_api(adapter); 2497 } 2498 2499 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2500 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2501 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2502 } 2503 2504 adapter->last_reset = jiffies; 2505 } 2506 2507 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2508 int vectors) 2509 { 2510 int vector_threshold; 2511 2512 /* We'll want at least 2 (vector_threshold): 2513 * 1) TxQ[0] + RxQ[0] handler 2514 * 2) Other (Link Status Change, etc.) 2515 */ 2516 vector_threshold = MIN_MSIX_COUNT; 2517 2518 /* The more we get, the more we will assign to Tx/Rx Cleanup 2519 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2520 * Right now, we simply care about how many we'll get; we'll 2521 * set them up later while requesting irq's. 2522 */ 2523 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2524 vector_threshold, vectors); 2525 2526 if (vectors < 0) { 2527 dev_err(&adapter->pdev->dev, 2528 "Unable to allocate MSI-X interrupts\n"); 2529 kfree(adapter->msix_entries); 2530 adapter->msix_entries = NULL; 2531 return vectors; 2532 } 2533 2534 /* Adjust for only the vectors we'll use, which is minimum 2535 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2536 * vectors we were allocated. 2537 */ 2538 adapter->num_msix_vectors = vectors; 2539 2540 return 0; 2541 } 2542 2543 /** 2544 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2545 * @adapter: board private structure to initialize 2546 * 2547 * This is the top level queue allocation routine. The order here is very 2548 * important, starting with the "most" number of features turned on at once, 2549 * and ending with the smallest set of features. This way large combinations 2550 * can be allocated if they're turned on, and smaller combinations are the 2551 * fallthrough conditions. 2552 * 2553 **/ 2554 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2555 { 2556 struct ixgbe_hw *hw = &adapter->hw; 2557 unsigned int def_q = 0; 2558 unsigned int num_tcs = 0; 2559 int err; 2560 2561 /* Start with base case */ 2562 adapter->num_rx_queues = 1; 2563 adapter->num_tx_queues = 1; 2564 adapter->num_xdp_queues = 0; 2565 2566 spin_lock_bh(&adapter->mbx_lock); 2567 2568 /* fetch queue configuration from the PF */ 2569 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2570 2571 spin_unlock_bh(&adapter->mbx_lock); 2572 2573 if (err) 2574 return; 2575 2576 /* we need as many queues as traffic classes */ 2577 if (num_tcs > 1) { 2578 adapter->num_rx_queues = num_tcs; 2579 } else { 2580 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2581 2582 switch (hw->api_version) { 2583 case ixgbe_mbox_api_11: 2584 case ixgbe_mbox_api_12: 2585 case ixgbe_mbox_api_13: 2586 if (adapter->xdp_prog && 2587 hw->mac.max_tx_queues == rss) 2588 rss = rss > 3 ? 2 : 1; 2589 2590 adapter->num_rx_queues = rss; 2591 adapter->num_tx_queues = rss; 2592 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2593 default: 2594 break; 2595 } 2596 } 2597 } 2598 2599 /** 2600 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2601 * @adapter: board private structure to initialize 2602 * 2603 * Attempt to configure the interrupts using the best available 2604 * capabilities of the hardware and the kernel. 2605 **/ 2606 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2607 { 2608 int vector, v_budget; 2609 2610 /* It's easy to be greedy for MSI-X vectors, but it really 2611 * doesn't do us much good if we have a lot more vectors 2612 * than CPU's. So let's be conservative and only ask for 2613 * (roughly) the same number of vectors as there are CPU's. 2614 * The default is to use pairs of vectors. 2615 */ 2616 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2617 v_budget = min_t(int, v_budget, num_online_cpus()); 2618 v_budget += NON_Q_VECTORS; 2619 2620 adapter->msix_entries = kcalloc(v_budget, 2621 sizeof(struct msix_entry), GFP_KERNEL); 2622 if (!adapter->msix_entries) 2623 return -ENOMEM; 2624 2625 for (vector = 0; vector < v_budget; vector++) 2626 adapter->msix_entries[vector].entry = vector; 2627 2628 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2629 * does not support any other modes, so we will simply fail here. Note 2630 * that we clean up the msix_entries pointer else-where. 2631 */ 2632 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2633 } 2634 2635 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2636 struct ixgbevf_ring_container *head) 2637 { 2638 ring->next = head->ring; 2639 head->ring = ring; 2640 head->count++; 2641 } 2642 2643 /** 2644 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2645 * @adapter: board private structure to initialize 2646 * @v_idx: index of vector in adapter struct 2647 * @txr_count: number of Tx rings for q vector 2648 * @txr_idx: index of first Tx ring to assign 2649 * @xdp_count: total number of XDP rings to allocate 2650 * @xdp_idx: index of first XDP ring to allocate 2651 * @rxr_count: number of Rx rings for q vector 2652 * @rxr_idx: index of first Rx ring to assign 2653 * 2654 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2655 **/ 2656 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2657 int txr_count, int txr_idx, 2658 int xdp_count, int xdp_idx, 2659 int rxr_count, int rxr_idx) 2660 { 2661 struct ixgbevf_q_vector *q_vector; 2662 int reg_idx = txr_idx + xdp_idx; 2663 struct ixgbevf_ring *ring; 2664 int ring_count, size; 2665 2666 ring_count = txr_count + xdp_count + rxr_count; 2667 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2668 2669 /* allocate q_vector and rings */ 2670 q_vector = kzalloc(size, GFP_KERNEL); 2671 if (!q_vector) 2672 return -ENOMEM; 2673 2674 /* initialize NAPI */ 2675 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64); 2676 2677 /* tie q_vector and adapter together */ 2678 adapter->q_vector[v_idx] = q_vector; 2679 q_vector->adapter = adapter; 2680 q_vector->v_idx = v_idx; 2681 2682 /* initialize pointer to rings */ 2683 ring = q_vector->ring; 2684 2685 while (txr_count) { 2686 /* assign generic ring traits */ 2687 ring->dev = &adapter->pdev->dev; 2688 ring->netdev = adapter->netdev; 2689 2690 /* configure backlink on ring */ 2691 ring->q_vector = q_vector; 2692 2693 /* update q_vector Tx values */ 2694 ixgbevf_add_ring(ring, &q_vector->tx); 2695 2696 /* apply Tx specific ring traits */ 2697 ring->count = adapter->tx_ring_count; 2698 ring->queue_index = txr_idx; 2699 ring->reg_idx = reg_idx; 2700 2701 /* assign ring to adapter */ 2702 adapter->tx_ring[txr_idx] = ring; 2703 2704 /* update count and index */ 2705 txr_count--; 2706 txr_idx++; 2707 reg_idx++; 2708 2709 /* push pointer to next ring */ 2710 ring++; 2711 } 2712 2713 while (xdp_count) { 2714 /* assign generic ring traits */ 2715 ring->dev = &adapter->pdev->dev; 2716 ring->netdev = adapter->netdev; 2717 2718 /* configure backlink on ring */ 2719 ring->q_vector = q_vector; 2720 2721 /* update q_vector Tx values */ 2722 ixgbevf_add_ring(ring, &q_vector->tx); 2723 2724 /* apply Tx specific ring traits */ 2725 ring->count = adapter->tx_ring_count; 2726 ring->queue_index = xdp_idx; 2727 ring->reg_idx = reg_idx; 2728 set_ring_xdp(ring); 2729 2730 /* assign ring to adapter */ 2731 adapter->xdp_ring[xdp_idx] = ring; 2732 2733 /* update count and index */ 2734 xdp_count--; 2735 xdp_idx++; 2736 reg_idx++; 2737 2738 /* push pointer to next ring */ 2739 ring++; 2740 } 2741 2742 while (rxr_count) { 2743 /* assign generic ring traits */ 2744 ring->dev = &adapter->pdev->dev; 2745 ring->netdev = adapter->netdev; 2746 2747 /* configure backlink on ring */ 2748 ring->q_vector = q_vector; 2749 2750 /* update q_vector Rx values */ 2751 ixgbevf_add_ring(ring, &q_vector->rx); 2752 2753 /* apply Rx specific ring traits */ 2754 ring->count = adapter->rx_ring_count; 2755 ring->queue_index = rxr_idx; 2756 ring->reg_idx = rxr_idx; 2757 2758 /* assign ring to adapter */ 2759 adapter->rx_ring[rxr_idx] = ring; 2760 2761 /* update count and index */ 2762 rxr_count--; 2763 rxr_idx++; 2764 2765 /* push pointer to next ring */ 2766 ring++; 2767 } 2768 2769 return 0; 2770 } 2771 2772 /** 2773 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2774 * @adapter: board private structure to initialize 2775 * @v_idx: index of vector in adapter struct 2776 * 2777 * This function frees the memory allocated to the q_vector. In addition if 2778 * NAPI is enabled it will delete any references to the NAPI struct prior 2779 * to freeing the q_vector. 2780 **/ 2781 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2782 { 2783 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2784 struct ixgbevf_ring *ring; 2785 2786 ixgbevf_for_each_ring(ring, q_vector->tx) { 2787 if (ring_is_xdp(ring)) 2788 adapter->xdp_ring[ring->queue_index] = NULL; 2789 else 2790 adapter->tx_ring[ring->queue_index] = NULL; 2791 } 2792 2793 ixgbevf_for_each_ring(ring, q_vector->rx) 2794 adapter->rx_ring[ring->queue_index] = NULL; 2795 2796 adapter->q_vector[v_idx] = NULL; 2797 netif_napi_del(&q_vector->napi); 2798 2799 /* ixgbevf_get_stats() might access the rings on this vector, 2800 * we must wait a grace period before freeing it. 2801 */ 2802 kfree_rcu(q_vector, rcu); 2803 } 2804 2805 /** 2806 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2807 * @adapter: board private structure to initialize 2808 * 2809 * We allocate one q_vector per queue interrupt. If allocation fails we 2810 * return -ENOMEM. 2811 **/ 2812 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2813 { 2814 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2815 int rxr_remaining = adapter->num_rx_queues; 2816 int txr_remaining = adapter->num_tx_queues; 2817 int xdp_remaining = adapter->num_xdp_queues; 2818 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2819 int err; 2820 2821 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2822 for (; rxr_remaining; v_idx++, q_vectors--) { 2823 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2824 2825 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2826 0, 0, 0, 0, rqpv, rxr_idx); 2827 if (err) 2828 goto err_out; 2829 2830 /* update counts and index */ 2831 rxr_remaining -= rqpv; 2832 rxr_idx += rqpv; 2833 } 2834 } 2835 2836 for (; q_vectors; v_idx++, q_vectors--) { 2837 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2838 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2839 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2840 2841 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2842 tqpv, txr_idx, 2843 xqpv, xdp_idx, 2844 rqpv, rxr_idx); 2845 2846 if (err) 2847 goto err_out; 2848 2849 /* update counts and index */ 2850 rxr_remaining -= rqpv; 2851 rxr_idx += rqpv; 2852 txr_remaining -= tqpv; 2853 txr_idx += tqpv; 2854 xdp_remaining -= xqpv; 2855 xdp_idx += xqpv; 2856 } 2857 2858 return 0; 2859 2860 err_out: 2861 while (v_idx) { 2862 v_idx--; 2863 ixgbevf_free_q_vector(adapter, v_idx); 2864 } 2865 2866 return -ENOMEM; 2867 } 2868 2869 /** 2870 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2871 * @adapter: board private structure to initialize 2872 * 2873 * This function frees the memory allocated to the q_vectors. In addition if 2874 * NAPI is enabled it will delete any references to the NAPI struct prior 2875 * to freeing the q_vector. 2876 **/ 2877 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2878 { 2879 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2880 2881 while (q_vectors) { 2882 q_vectors--; 2883 ixgbevf_free_q_vector(adapter, q_vectors); 2884 } 2885 } 2886 2887 /** 2888 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2889 * @adapter: board private structure 2890 * 2891 **/ 2892 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2893 { 2894 if (!adapter->msix_entries) 2895 return; 2896 2897 pci_disable_msix(adapter->pdev); 2898 kfree(adapter->msix_entries); 2899 adapter->msix_entries = NULL; 2900 } 2901 2902 /** 2903 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2904 * @adapter: board private structure to initialize 2905 * 2906 **/ 2907 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2908 { 2909 int err; 2910 2911 /* Number of supported queues */ 2912 ixgbevf_set_num_queues(adapter); 2913 2914 err = ixgbevf_set_interrupt_capability(adapter); 2915 if (err) { 2916 hw_dbg(&adapter->hw, 2917 "Unable to setup interrupt capabilities\n"); 2918 goto err_set_interrupt; 2919 } 2920 2921 err = ixgbevf_alloc_q_vectors(adapter); 2922 if (err) { 2923 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2924 goto err_alloc_q_vectors; 2925 } 2926 2927 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2928 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2929 adapter->num_rx_queues, adapter->num_tx_queues, 2930 adapter->num_xdp_queues); 2931 2932 set_bit(__IXGBEVF_DOWN, &adapter->state); 2933 2934 return 0; 2935 err_alloc_q_vectors: 2936 ixgbevf_reset_interrupt_capability(adapter); 2937 err_set_interrupt: 2938 return err; 2939 } 2940 2941 /** 2942 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2943 * @adapter: board private structure to clear interrupt scheme on 2944 * 2945 * We go through and clear interrupt specific resources and reset the structure 2946 * to pre-load conditions 2947 **/ 2948 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2949 { 2950 adapter->num_tx_queues = 0; 2951 adapter->num_xdp_queues = 0; 2952 adapter->num_rx_queues = 0; 2953 2954 ixgbevf_free_q_vectors(adapter); 2955 ixgbevf_reset_interrupt_capability(adapter); 2956 } 2957 2958 /** 2959 * ixgbevf_sw_init - Initialize general software structures 2960 * @adapter: board private structure to initialize 2961 * 2962 * ixgbevf_sw_init initializes the Adapter private data structure. 2963 * Fields are initialized based on PCI device information and 2964 * OS network device settings (MTU size). 2965 **/ 2966 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 2967 { 2968 struct ixgbe_hw *hw = &adapter->hw; 2969 struct pci_dev *pdev = adapter->pdev; 2970 struct net_device *netdev = adapter->netdev; 2971 int err; 2972 2973 /* PCI config space info */ 2974 hw->vendor_id = pdev->vendor; 2975 hw->device_id = pdev->device; 2976 hw->revision_id = pdev->revision; 2977 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2978 hw->subsystem_device_id = pdev->subsystem_device; 2979 2980 hw->mbx.ops.init_params(hw); 2981 2982 if (hw->mac.type >= ixgbe_mac_X550_vf) { 2983 err = ixgbevf_init_rss_key(adapter); 2984 if (err) 2985 goto out; 2986 } 2987 2988 /* assume legacy case in which PF would only give VF 2 queues */ 2989 hw->mac.max_tx_queues = 2; 2990 hw->mac.max_rx_queues = 2; 2991 2992 /* lock to protect mailbox accesses */ 2993 spin_lock_init(&adapter->mbx_lock); 2994 2995 err = hw->mac.ops.reset_hw(hw); 2996 if (err) { 2997 dev_info(&pdev->dev, 2998 "PF still in reset state. Is the PF interface up?\n"); 2999 } else { 3000 err = hw->mac.ops.init_hw(hw); 3001 if (err) { 3002 pr_err("init_shared_code failed: %d\n", err); 3003 goto out; 3004 } 3005 ixgbevf_negotiate_api(adapter); 3006 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3007 if (err) 3008 dev_info(&pdev->dev, "Error reading MAC address\n"); 3009 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3010 dev_info(&pdev->dev, 3011 "MAC address not assigned by administrator.\n"); 3012 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 3013 } 3014 3015 if (!is_valid_ether_addr(netdev->dev_addr)) { 3016 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3017 eth_hw_addr_random(netdev); 3018 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3019 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3020 } 3021 3022 /* Enable dynamic interrupt throttling rates */ 3023 adapter->rx_itr_setting = 1; 3024 adapter->tx_itr_setting = 1; 3025 3026 /* set default ring sizes */ 3027 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3028 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3029 3030 set_bit(__IXGBEVF_DOWN, &adapter->state); 3031 return 0; 3032 3033 out: 3034 return err; 3035 } 3036 3037 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3038 { \ 3039 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3040 if (current_counter < last_counter) \ 3041 counter += 0x100000000LL; \ 3042 last_counter = current_counter; \ 3043 counter &= 0xFFFFFFFF00000000LL; \ 3044 counter |= current_counter; \ 3045 } 3046 3047 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3048 { \ 3049 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3050 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3051 u64 current_counter = (current_counter_msb << 32) | \ 3052 current_counter_lsb; \ 3053 if (current_counter < last_counter) \ 3054 counter += 0x1000000000LL; \ 3055 last_counter = current_counter; \ 3056 counter &= 0xFFFFFFF000000000LL; \ 3057 counter |= current_counter; \ 3058 } 3059 /** 3060 * ixgbevf_update_stats - Update the board statistics counters. 3061 * @adapter: board private structure 3062 **/ 3063 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3064 { 3065 struct ixgbe_hw *hw = &adapter->hw; 3066 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3067 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3068 int i; 3069 3070 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3071 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3072 return; 3073 3074 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3075 adapter->stats.vfgprc); 3076 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3077 adapter->stats.vfgptc); 3078 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3079 adapter->stats.last_vfgorc, 3080 adapter->stats.vfgorc); 3081 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3082 adapter->stats.last_vfgotc, 3083 adapter->stats.vfgotc); 3084 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3085 adapter->stats.vfmprc); 3086 3087 for (i = 0; i < adapter->num_rx_queues; i++) { 3088 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3089 3090 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3091 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3092 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3093 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3094 } 3095 3096 adapter->hw_csum_rx_error = hw_csum_rx_error; 3097 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3098 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3099 adapter->alloc_rx_page = alloc_rx_page; 3100 } 3101 3102 /** 3103 * ixgbevf_service_timer - Timer Call-back 3104 * @t: pointer to timer_list struct 3105 **/ 3106 static void ixgbevf_service_timer(struct timer_list *t) 3107 { 3108 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3109 service_timer); 3110 3111 /* Reset the timer */ 3112 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3113 3114 ixgbevf_service_event_schedule(adapter); 3115 } 3116 3117 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3118 { 3119 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3120 return; 3121 3122 /* If we're already down or resetting, just bail */ 3123 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3124 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3125 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3126 return; 3127 3128 adapter->tx_timeout_count++; 3129 3130 rtnl_lock(); 3131 ixgbevf_reinit_locked(adapter); 3132 rtnl_unlock(); 3133 } 3134 3135 /** 3136 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3137 * @adapter: pointer to the device adapter structure 3138 * 3139 * This function serves two purposes. First it strobes the interrupt lines 3140 * in order to make certain interrupts are occurring. Secondly it sets the 3141 * bits needed to check for TX hangs. As a result we should immediately 3142 * determine if a hang has occurred. 3143 **/ 3144 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3145 { 3146 struct ixgbe_hw *hw = &adapter->hw; 3147 u32 eics = 0; 3148 int i; 3149 3150 /* If we're down or resetting, just bail */ 3151 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3152 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3153 return; 3154 3155 /* Force detection of hung controller */ 3156 if (netif_carrier_ok(adapter->netdev)) { 3157 for (i = 0; i < adapter->num_tx_queues; i++) 3158 set_check_for_tx_hang(adapter->tx_ring[i]); 3159 for (i = 0; i < adapter->num_xdp_queues; i++) 3160 set_check_for_tx_hang(adapter->xdp_ring[i]); 3161 } 3162 3163 /* get one bit for every active Tx/Rx interrupt vector */ 3164 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3165 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3166 3167 if (qv->rx.ring || qv->tx.ring) 3168 eics |= BIT(i); 3169 } 3170 3171 /* Cause software interrupt to ensure rings are cleaned */ 3172 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3173 } 3174 3175 /** 3176 * ixgbevf_watchdog_update_link - update the link status 3177 * @adapter: pointer to the device adapter structure 3178 **/ 3179 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3180 { 3181 struct ixgbe_hw *hw = &adapter->hw; 3182 u32 link_speed = adapter->link_speed; 3183 bool link_up = adapter->link_up; 3184 s32 err; 3185 3186 spin_lock_bh(&adapter->mbx_lock); 3187 3188 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3189 3190 spin_unlock_bh(&adapter->mbx_lock); 3191 3192 /* if check for link returns error we will need to reset */ 3193 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3194 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3195 link_up = false; 3196 } 3197 3198 adapter->link_up = link_up; 3199 adapter->link_speed = link_speed; 3200 } 3201 3202 /** 3203 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3204 * print link up message 3205 * @adapter: pointer to the device adapter structure 3206 **/ 3207 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3208 { 3209 struct net_device *netdev = adapter->netdev; 3210 3211 /* only continue if link was previously down */ 3212 if (netif_carrier_ok(netdev)) 3213 return; 3214 3215 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3216 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3217 "10 Gbps" : 3218 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3219 "1 Gbps" : 3220 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3221 "100 Mbps" : 3222 "unknown speed"); 3223 3224 netif_carrier_on(netdev); 3225 } 3226 3227 /** 3228 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3229 * print link down message 3230 * @adapter: pointer to the adapter structure 3231 **/ 3232 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3233 { 3234 struct net_device *netdev = adapter->netdev; 3235 3236 adapter->link_speed = 0; 3237 3238 /* only continue if link was up previously */ 3239 if (!netif_carrier_ok(netdev)) 3240 return; 3241 3242 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3243 3244 netif_carrier_off(netdev); 3245 } 3246 3247 /** 3248 * ixgbevf_watchdog_subtask - worker thread to bring link up 3249 * @adapter: board private structure 3250 **/ 3251 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3252 { 3253 /* if interface is down do nothing */ 3254 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3255 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3256 return; 3257 3258 ixgbevf_watchdog_update_link(adapter); 3259 3260 if (adapter->link_up) 3261 ixgbevf_watchdog_link_is_up(adapter); 3262 else 3263 ixgbevf_watchdog_link_is_down(adapter); 3264 3265 ixgbevf_update_stats(adapter); 3266 } 3267 3268 /** 3269 * ixgbevf_service_task - manages and runs subtasks 3270 * @work: pointer to work_struct containing our data 3271 **/ 3272 static void ixgbevf_service_task(struct work_struct *work) 3273 { 3274 struct ixgbevf_adapter *adapter = container_of(work, 3275 struct ixgbevf_adapter, 3276 service_task); 3277 struct ixgbe_hw *hw = &adapter->hw; 3278 3279 if (IXGBE_REMOVED(hw->hw_addr)) { 3280 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3281 rtnl_lock(); 3282 ixgbevf_down(adapter); 3283 rtnl_unlock(); 3284 } 3285 return; 3286 } 3287 3288 ixgbevf_queue_reset_subtask(adapter); 3289 ixgbevf_reset_subtask(adapter); 3290 ixgbevf_watchdog_subtask(adapter); 3291 ixgbevf_check_hang_subtask(adapter); 3292 3293 ixgbevf_service_event_complete(adapter); 3294 } 3295 3296 /** 3297 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3298 * @tx_ring: Tx descriptor ring for a specific queue 3299 * 3300 * Free all transmit software resources 3301 **/ 3302 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3303 { 3304 ixgbevf_clean_tx_ring(tx_ring); 3305 3306 vfree(tx_ring->tx_buffer_info); 3307 tx_ring->tx_buffer_info = NULL; 3308 3309 /* if not set, then don't free */ 3310 if (!tx_ring->desc) 3311 return; 3312 3313 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3314 tx_ring->dma); 3315 3316 tx_ring->desc = NULL; 3317 } 3318 3319 /** 3320 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3321 * @adapter: board private structure 3322 * 3323 * Free all transmit software resources 3324 **/ 3325 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3326 { 3327 int i; 3328 3329 for (i = 0; i < adapter->num_tx_queues; i++) 3330 if (adapter->tx_ring[i]->desc) 3331 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3332 for (i = 0; i < adapter->num_xdp_queues; i++) 3333 if (adapter->xdp_ring[i]->desc) 3334 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3335 } 3336 3337 /** 3338 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3339 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3340 * 3341 * Return 0 on success, negative on failure 3342 **/ 3343 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3344 { 3345 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3346 int size; 3347 3348 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3349 tx_ring->tx_buffer_info = vmalloc(size); 3350 if (!tx_ring->tx_buffer_info) 3351 goto err; 3352 3353 u64_stats_init(&tx_ring->syncp); 3354 3355 /* round up to nearest 4K */ 3356 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3357 tx_ring->size = ALIGN(tx_ring->size, 4096); 3358 3359 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3360 &tx_ring->dma, GFP_KERNEL); 3361 if (!tx_ring->desc) 3362 goto err; 3363 3364 return 0; 3365 3366 err: 3367 vfree(tx_ring->tx_buffer_info); 3368 tx_ring->tx_buffer_info = NULL; 3369 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3370 return -ENOMEM; 3371 } 3372 3373 /** 3374 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3375 * @adapter: board private structure 3376 * 3377 * If this function returns with an error, then it's possible one or 3378 * more of the rings is populated (while the rest are not). It is the 3379 * callers duty to clean those orphaned rings. 3380 * 3381 * Return 0 on success, negative on failure 3382 **/ 3383 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3384 { 3385 int i, j = 0, err = 0; 3386 3387 for (i = 0; i < adapter->num_tx_queues; i++) { 3388 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3389 if (!err) 3390 continue; 3391 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3392 goto err_setup_tx; 3393 } 3394 3395 for (j = 0; j < adapter->num_xdp_queues; j++) { 3396 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3397 if (!err) 3398 continue; 3399 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3400 goto err_setup_tx; 3401 } 3402 3403 return 0; 3404 err_setup_tx: 3405 /* rewind the index freeing the rings as we go */ 3406 while (j--) 3407 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3408 while (i--) 3409 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3410 3411 return err; 3412 } 3413 3414 /** 3415 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3416 * @adapter: board private structure 3417 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3418 * 3419 * Returns 0 on success, negative on failure 3420 **/ 3421 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3422 struct ixgbevf_ring *rx_ring) 3423 { 3424 int size; 3425 3426 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3427 rx_ring->rx_buffer_info = vmalloc(size); 3428 if (!rx_ring->rx_buffer_info) 3429 goto err; 3430 3431 u64_stats_init(&rx_ring->syncp); 3432 3433 /* Round up to nearest 4K */ 3434 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3435 rx_ring->size = ALIGN(rx_ring->size, 4096); 3436 3437 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3438 &rx_ring->dma, GFP_KERNEL); 3439 3440 if (!rx_ring->desc) 3441 goto err; 3442 3443 /* XDP RX-queue info */ 3444 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3445 rx_ring->queue_index) < 0) 3446 goto err; 3447 3448 rx_ring->xdp_prog = adapter->xdp_prog; 3449 3450 return 0; 3451 err: 3452 vfree(rx_ring->rx_buffer_info); 3453 rx_ring->rx_buffer_info = NULL; 3454 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3455 return -ENOMEM; 3456 } 3457 3458 /** 3459 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3460 * @adapter: board private structure 3461 * 3462 * If this function returns with an error, then it's possible one or 3463 * more of the rings is populated (while the rest are not). It is the 3464 * callers duty to clean those orphaned rings. 3465 * 3466 * Return 0 on success, negative on failure 3467 **/ 3468 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3469 { 3470 int i, err = 0; 3471 3472 for (i = 0; i < adapter->num_rx_queues; i++) { 3473 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3474 if (!err) 3475 continue; 3476 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3477 goto err_setup_rx; 3478 } 3479 3480 return 0; 3481 err_setup_rx: 3482 /* rewind the index freeing the rings as we go */ 3483 while (i--) 3484 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3485 return err; 3486 } 3487 3488 /** 3489 * ixgbevf_free_rx_resources - Free Rx Resources 3490 * @rx_ring: ring to clean the resources from 3491 * 3492 * Free all receive software resources 3493 **/ 3494 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3495 { 3496 ixgbevf_clean_rx_ring(rx_ring); 3497 3498 rx_ring->xdp_prog = NULL; 3499 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3500 vfree(rx_ring->rx_buffer_info); 3501 rx_ring->rx_buffer_info = NULL; 3502 3503 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3504 rx_ring->dma); 3505 3506 rx_ring->desc = NULL; 3507 } 3508 3509 /** 3510 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3511 * @adapter: board private structure 3512 * 3513 * Free all receive software resources 3514 **/ 3515 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3516 { 3517 int i; 3518 3519 for (i = 0; i < adapter->num_rx_queues; i++) 3520 if (adapter->rx_ring[i]->desc) 3521 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3522 } 3523 3524 /** 3525 * ixgbevf_open - Called when a network interface is made active 3526 * @netdev: network interface device structure 3527 * 3528 * Returns 0 on success, negative value on failure 3529 * 3530 * The open entry point is called when a network interface is made 3531 * active by the system (IFF_UP). At this point all resources needed 3532 * for transmit and receive operations are allocated, the interrupt 3533 * handler is registered with the OS, the watchdog timer is started, 3534 * and the stack is notified that the interface is ready. 3535 **/ 3536 int ixgbevf_open(struct net_device *netdev) 3537 { 3538 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3539 struct ixgbe_hw *hw = &adapter->hw; 3540 int err; 3541 3542 /* A previous failure to open the device because of a lack of 3543 * available MSIX vector resources may have reset the number 3544 * of msix vectors variable to zero. The only way to recover 3545 * is to unload/reload the driver and hope that the system has 3546 * been able to recover some MSIX vector resources. 3547 */ 3548 if (!adapter->num_msix_vectors) 3549 return -ENOMEM; 3550 3551 if (hw->adapter_stopped) { 3552 ixgbevf_reset(adapter); 3553 /* if adapter is still stopped then PF isn't up and 3554 * the VF can't start. 3555 */ 3556 if (hw->adapter_stopped) { 3557 err = IXGBE_ERR_MBX; 3558 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3559 goto err_setup_reset; 3560 } 3561 } 3562 3563 /* disallow open during test */ 3564 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3565 return -EBUSY; 3566 3567 netif_carrier_off(netdev); 3568 3569 /* allocate transmit descriptors */ 3570 err = ixgbevf_setup_all_tx_resources(adapter); 3571 if (err) 3572 goto err_setup_tx; 3573 3574 /* allocate receive descriptors */ 3575 err = ixgbevf_setup_all_rx_resources(adapter); 3576 if (err) 3577 goto err_setup_rx; 3578 3579 ixgbevf_configure(adapter); 3580 3581 err = ixgbevf_request_irq(adapter); 3582 if (err) 3583 goto err_req_irq; 3584 3585 /* Notify the stack of the actual queue counts. */ 3586 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3587 if (err) 3588 goto err_set_queues; 3589 3590 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3591 if (err) 3592 goto err_set_queues; 3593 3594 ixgbevf_up_complete(adapter); 3595 3596 return 0; 3597 3598 err_set_queues: 3599 ixgbevf_free_irq(adapter); 3600 err_req_irq: 3601 ixgbevf_free_all_rx_resources(adapter); 3602 err_setup_rx: 3603 ixgbevf_free_all_tx_resources(adapter); 3604 err_setup_tx: 3605 ixgbevf_reset(adapter); 3606 err_setup_reset: 3607 3608 return err; 3609 } 3610 3611 /** 3612 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3613 * @adapter: the private adapter struct 3614 * 3615 * This function should contain the necessary work common to both suspending 3616 * and closing of the device. 3617 */ 3618 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3619 { 3620 ixgbevf_down(adapter); 3621 ixgbevf_free_irq(adapter); 3622 ixgbevf_free_all_tx_resources(adapter); 3623 ixgbevf_free_all_rx_resources(adapter); 3624 } 3625 3626 /** 3627 * ixgbevf_close - Disables a network interface 3628 * @netdev: network interface device structure 3629 * 3630 * Returns 0, this is not allowed to fail 3631 * 3632 * The close entry point is called when an interface is de-activated 3633 * by the OS. The hardware is still under the drivers control, but 3634 * needs to be disabled. A global MAC reset is issued to stop the 3635 * hardware, and all transmit and receive resources are freed. 3636 **/ 3637 int ixgbevf_close(struct net_device *netdev) 3638 { 3639 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3640 3641 if (netif_device_present(netdev)) 3642 ixgbevf_close_suspend(adapter); 3643 3644 return 0; 3645 } 3646 3647 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3648 { 3649 struct net_device *dev = adapter->netdev; 3650 3651 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3652 &adapter->state)) 3653 return; 3654 3655 /* if interface is down do nothing */ 3656 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3657 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3658 return; 3659 3660 /* Hardware has to reinitialize queues and interrupts to 3661 * match packet buffer alignment. Unfortunately, the 3662 * hardware is not flexible enough to do this dynamically. 3663 */ 3664 rtnl_lock(); 3665 3666 if (netif_running(dev)) 3667 ixgbevf_close(dev); 3668 3669 ixgbevf_clear_interrupt_scheme(adapter); 3670 ixgbevf_init_interrupt_scheme(adapter); 3671 3672 if (netif_running(dev)) 3673 ixgbevf_open(dev); 3674 3675 rtnl_unlock(); 3676 } 3677 3678 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3679 u32 vlan_macip_lens, u32 type_tucmd, 3680 u32 mss_l4len_idx) 3681 { 3682 struct ixgbe_adv_tx_context_desc *context_desc; 3683 u16 i = tx_ring->next_to_use; 3684 3685 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3686 3687 i++; 3688 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3689 3690 /* set bits to identify this as an advanced context descriptor */ 3691 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3692 3693 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3694 context_desc->seqnum_seed = 0; 3695 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3696 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3697 } 3698 3699 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3700 struct ixgbevf_tx_buffer *first, 3701 u8 *hdr_len) 3702 { 3703 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3704 struct sk_buff *skb = first->skb; 3705 union { 3706 struct iphdr *v4; 3707 struct ipv6hdr *v6; 3708 unsigned char *hdr; 3709 } ip; 3710 union { 3711 struct tcphdr *tcp; 3712 unsigned char *hdr; 3713 } l4; 3714 u32 paylen, l4_offset; 3715 int err; 3716 3717 if (skb->ip_summed != CHECKSUM_PARTIAL) 3718 return 0; 3719 3720 if (!skb_is_gso(skb)) 3721 return 0; 3722 3723 err = skb_cow_head(skb, 0); 3724 if (err < 0) 3725 return err; 3726 3727 if (eth_p_mpls(first->protocol)) 3728 ip.hdr = skb_inner_network_header(skb); 3729 else 3730 ip.hdr = skb_network_header(skb); 3731 l4.hdr = skb_checksum_start(skb); 3732 3733 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3734 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3735 3736 /* initialize outer IP header fields */ 3737 if (ip.v4->version == 4) { 3738 unsigned char *csum_start = skb_checksum_start(skb); 3739 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3740 3741 /* IP header will have to cancel out any data that 3742 * is not a part of the outer IP header 3743 */ 3744 ip.v4->check = csum_fold(csum_partial(trans_start, 3745 csum_start - trans_start, 3746 0)); 3747 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3748 3749 ip.v4->tot_len = 0; 3750 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3751 IXGBE_TX_FLAGS_CSUM | 3752 IXGBE_TX_FLAGS_IPV4; 3753 } else { 3754 ip.v6->payload_len = 0; 3755 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3756 IXGBE_TX_FLAGS_CSUM; 3757 } 3758 3759 /* determine offset of inner transport header */ 3760 l4_offset = l4.hdr - skb->data; 3761 3762 /* compute length of segmentation header */ 3763 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3764 3765 /* remove payload length from inner checksum */ 3766 paylen = skb->len - l4_offset; 3767 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3768 3769 /* update gso size and bytecount with header size */ 3770 first->gso_segs = skb_shinfo(skb)->gso_segs; 3771 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3772 3773 /* mss_l4len_id: use 1 as index for TSO */ 3774 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3775 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3776 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3777 3778 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3779 vlan_macip_lens = l4.hdr - ip.hdr; 3780 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3781 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3782 3783 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3784 type_tucmd, mss_l4len_idx); 3785 3786 return 1; 3787 } 3788 3789 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) 3790 { 3791 unsigned int offset = 0; 3792 3793 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 3794 3795 return offset == skb_checksum_start_offset(skb); 3796 } 3797 3798 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3799 struct ixgbevf_tx_buffer *first) 3800 { 3801 struct sk_buff *skb = first->skb; 3802 u32 vlan_macip_lens = 0; 3803 u32 type_tucmd = 0; 3804 3805 if (skb->ip_summed != CHECKSUM_PARTIAL) 3806 goto no_csum; 3807 3808 switch (skb->csum_offset) { 3809 case offsetof(struct tcphdr, check): 3810 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3811 /* fall through */ 3812 case offsetof(struct udphdr, check): 3813 break; 3814 case offsetof(struct sctphdr, checksum): 3815 /* validate that this is actually an SCTP request */ 3816 if (((first->protocol == htons(ETH_P_IP)) && 3817 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 3818 ((first->protocol == htons(ETH_P_IPV6)) && 3819 ixgbevf_ipv6_csum_is_sctp(skb))) { 3820 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3821 break; 3822 } 3823 /* fall through */ 3824 default: 3825 skb_checksum_help(skb); 3826 goto no_csum; 3827 } 3828 /* update TX checksum flag */ 3829 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3830 vlan_macip_lens = skb_checksum_start_offset(skb) - 3831 skb_network_offset(skb); 3832 no_csum: 3833 /* vlan_macip_lens: MACLEN, VLAN tag */ 3834 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3835 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3836 3837 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0); 3838 } 3839 3840 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3841 { 3842 /* set type for advanced descriptor with frame checksum insertion */ 3843 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3844 IXGBE_ADVTXD_DCMD_IFCS | 3845 IXGBE_ADVTXD_DCMD_DEXT); 3846 3847 /* set HW VLAN bit if VLAN is present */ 3848 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3849 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3850 3851 /* set segmentation enable bits for TSO/FSO */ 3852 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3853 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3854 3855 return cmd_type; 3856 } 3857 3858 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3859 u32 tx_flags, unsigned int paylen) 3860 { 3861 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3862 3863 /* enable L4 checksum for TSO and TX checksum offload */ 3864 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3865 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3866 3867 /* enble IPv4 checksum for TSO */ 3868 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3869 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3870 3871 /* use index 1 context for TSO/FSO/FCOE */ 3872 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3873 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3874 3875 /* Check Context must be set if Tx switch is enabled, which it 3876 * always is for case where virtual functions are running 3877 */ 3878 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3879 3880 tx_desc->read.olinfo_status = olinfo_status; 3881 } 3882 3883 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3884 struct ixgbevf_tx_buffer *first, 3885 const u8 hdr_len) 3886 { 3887 struct sk_buff *skb = first->skb; 3888 struct ixgbevf_tx_buffer *tx_buffer; 3889 union ixgbe_adv_tx_desc *tx_desc; 3890 struct skb_frag_struct *frag; 3891 dma_addr_t dma; 3892 unsigned int data_len, size; 3893 u32 tx_flags = first->tx_flags; 3894 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3895 u16 i = tx_ring->next_to_use; 3896 3897 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3898 3899 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3900 3901 size = skb_headlen(skb); 3902 data_len = skb->data_len; 3903 3904 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3905 3906 tx_buffer = first; 3907 3908 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3909 if (dma_mapping_error(tx_ring->dev, dma)) 3910 goto dma_error; 3911 3912 /* record length, and DMA address */ 3913 dma_unmap_len_set(tx_buffer, len, size); 3914 dma_unmap_addr_set(tx_buffer, dma, dma); 3915 3916 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3917 3918 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3919 tx_desc->read.cmd_type_len = 3920 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3921 3922 i++; 3923 tx_desc++; 3924 if (i == tx_ring->count) { 3925 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3926 i = 0; 3927 } 3928 tx_desc->read.olinfo_status = 0; 3929 3930 dma += IXGBE_MAX_DATA_PER_TXD; 3931 size -= IXGBE_MAX_DATA_PER_TXD; 3932 3933 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3934 } 3935 3936 if (likely(!data_len)) 3937 break; 3938 3939 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 3940 3941 i++; 3942 tx_desc++; 3943 if (i == tx_ring->count) { 3944 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3945 i = 0; 3946 } 3947 tx_desc->read.olinfo_status = 0; 3948 3949 size = skb_frag_size(frag); 3950 data_len -= size; 3951 3952 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3953 DMA_TO_DEVICE); 3954 3955 tx_buffer = &tx_ring->tx_buffer_info[i]; 3956 } 3957 3958 /* write last descriptor with RS and EOP bits */ 3959 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 3960 tx_desc->read.cmd_type_len = cmd_type; 3961 3962 /* set the timestamp */ 3963 first->time_stamp = jiffies; 3964 3965 /* Force memory writes to complete before letting h/w know there 3966 * are new descriptors to fetch. (Only applicable for weak-ordered 3967 * memory model archs, such as IA-64). 3968 * 3969 * We also need this memory barrier (wmb) to make certain all of the 3970 * status bits have been updated before next_to_watch is written. 3971 */ 3972 wmb(); 3973 3974 /* set next_to_watch value indicating a packet is present */ 3975 first->next_to_watch = tx_desc; 3976 3977 i++; 3978 if (i == tx_ring->count) 3979 i = 0; 3980 3981 tx_ring->next_to_use = i; 3982 3983 /* notify HW of packet */ 3984 ixgbevf_write_tail(tx_ring, i); 3985 3986 return; 3987 dma_error: 3988 dev_err(tx_ring->dev, "TX DMA map failed\n"); 3989 tx_buffer = &tx_ring->tx_buffer_info[i]; 3990 3991 /* clear dma mappings for failed tx_buffer_info map */ 3992 while (tx_buffer != first) { 3993 if (dma_unmap_len(tx_buffer, len)) 3994 dma_unmap_page(tx_ring->dev, 3995 dma_unmap_addr(tx_buffer, dma), 3996 dma_unmap_len(tx_buffer, len), 3997 DMA_TO_DEVICE); 3998 dma_unmap_len_set(tx_buffer, len, 0); 3999 4000 if (i-- == 0) 4001 i += tx_ring->count; 4002 tx_buffer = &tx_ring->tx_buffer_info[i]; 4003 } 4004 4005 if (dma_unmap_len(tx_buffer, len)) 4006 dma_unmap_single(tx_ring->dev, 4007 dma_unmap_addr(tx_buffer, dma), 4008 dma_unmap_len(tx_buffer, len), 4009 DMA_TO_DEVICE); 4010 dma_unmap_len_set(tx_buffer, len, 0); 4011 4012 dev_kfree_skb_any(tx_buffer->skb); 4013 tx_buffer->skb = NULL; 4014 4015 tx_ring->next_to_use = i; 4016 } 4017 4018 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4019 { 4020 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4021 /* Herbert's original patch had: 4022 * smp_mb__after_netif_stop_queue(); 4023 * but since that doesn't exist yet, just open code it. 4024 */ 4025 smp_mb(); 4026 4027 /* We need to check again in a case another CPU has just 4028 * made room available. 4029 */ 4030 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4031 return -EBUSY; 4032 4033 /* A reprieve! - use start_queue because it doesn't call schedule */ 4034 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4035 ++tx_ring->tx_stats.restart_queue; 4036 4037 return 0; 4038 } 4039 4040 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4041 { 4042 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4043 return 0; 4044 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4045 } 4046 4047 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4048 struct ixgbevf_ring *tx_ring) 4049 { 4050 struct ixgbevf_tx_buffer *first; 4051 int tso; 4052 u32 tx_flags = 0; 4053 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4054 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4055 unsigned short f; 4056 #endif 4057 u8 hdr_len = 0; 4058 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4059 4060 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4061 dev_kfree_skb_any(skb); 4062 return NETDEV_TX_OK; 4063 } 4064 4065 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4066 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4067 * + 2 desc gap to keep tail from touching head, 4068 * + 1 desc for context descriptor, 4069 * otherwise try next time 4070 */ 4071 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4072 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 4073 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 4074 #else 4075 count += skb_shinfo(skb)->nr_frags; 4076 #endif 4077 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4078 tx_ring->tx_stats.tx_busy++; 4079 return NETDEV_TX_BUSY; 4080 } 4081 4082 /* record the location of the first descriptor for this packet */ 4083 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4084 first->skb = skb; 4085 first->bytecount = skb->len; 4086 first->gso_segs = 1; 4087 4088 if (skb_vlan_tag_present(skb)) { 4089 tx_flags |= skb_vlan_tag_get(skb); 4090 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4091 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4092 } 4093 4094 /* record initial flags and protocol */ 4095 first->tx_flags = tx_flags; 4096 first->protocol = vlan_get_protocol(skb); 4097 4098 tso = ixgbevf_tso(tx_ring, first, &hdr_len); 4099 if (tso < 0) 4100 goto out_drop; 4101 else if (!tso) 4102 ixgbevf_tx_csum(tx_ring, first); 4103 4104 ixgbevf_tx_map(tx_ring, first, hdr_len); 4105 4106 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4107 4108 return NETDEV_TX_OK; 4109 4110 out_drop: 4111 dev_kfree_skb_any(first->skb); 4112 first->skb = NULL; 4113 4114 return NETDEV_TX_OK; 4115 } 4116 4117 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4118 { 4119 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4120 struct ixgbevf_ring *tx_ring; 4121 4122 if (skb->len <= 0) { 4123 dev_kfree_skb_any(skb); 4124 return NETDEV_TX_OK; 4125 } 4126 4127 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4128 * in order to meet this minimum size requirement. 4129 */ 4130 if (skb->len < 17) { 4131 if (skb_padto(skb, 17)) 4132 return NETDEV_TX_OK; 4133 skb->len = 17; 4134 } 4135 4136 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4137 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4138 } 4139 4140 /** 4141 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4142 * @netdev: network interface device structure 4143 * @p: pointer to an address structure 4144 * 4145 * Returns 0 on success, negative on failure 4146 **/ 4147 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4148 { 4149 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4150 struct ixgbe_hw *hw = &adapter->hw; 4151 struct sockaddr *addr = p; 4152 int err; 4153 4154 if (!is_valid_ether_addr(addr->sa_data)) 4155 return -EADDRNOTAVAIL; 4156 4157 spin_lock_bh(&adapter->mbx_lock); 4158 4159 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4160 4161 spin_unlock_bh(&adapter->mbx_lock); 4162 4163 if (err) 4164 return -EPERM; 4165 4166 ether_addr_copy(hw->mac.addr, addr->sa_data); 4167 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4168 ether_addr_copy(netdev->dev_addr, addr->sa_data); 4169 4170 return 0; 4171 } 4172 4173 /** 4174 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4175 * @netdev: network interface device structure 4176 * @new_mtu: new value for maximum frame size 4177 * 4178 * Returns 0 on success, negative on failure 4179 **/ 4180 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4181 { 4182 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4183 struct ixgbe_hw *hw = &adapter->hw; 4184 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4185 int ret; 4186 4187 /* prevent MTU being changed to a size unsupported by XDP */ 4188 if (adapter->xdp_prog) { 4189 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4190 return -EPERM; 4191 } 4192 4193 spin_lock_bh(&adapter->mbx_lock); 4194 /* notify the PF of our intent to use this size of frame */ 4195 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4196 spin_unlock_bh(&adapter->mbx_lock); 4197 if (ret) 4198 return -EINVAL; 4199 4200 hw_dbg(hw, "changing MTU from %d to %d\n", 4201 netdev->mtu, new_mtu); 4202 4203 /* must set new MTU before calling down or up */ 4204 netdev->mtu = new_mtu; 4205 4206 if (netif_running(netdev)) 4207 ixgbevf_reinit_locked(adapter); 4208 4209 return 0; 4210 } 4211 4212 #ifdef CONFIG_NET_POLL_CONTROLLER 4213 /* Polling 'interrupt' - used by things like netconsole to send skbs 4214 * without having to re-enable interrupts. It's not called while 4215 * the interrupt routine is executing. 4216 */ 4217 static void ixgbevf_netpoll(struct net_device *netdev) 4218 { 4219 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4220 int i; 4221 4222 /* if interface is down do nothing */ 4223 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 4224 return; 4225 for (i = 0; i < adapter->num_rx_queues; i++) 4226 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]); 4227 } 4228 #endif /* CONFIG_NET_POLL_CONTROLLER */ 4229 4230 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state) 4231 { 4232 struct net_device *netdev = pci_get_drvdata(pdev); 4233 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4234 #ifdef CONFIG_PM 4235 int retval = 0; 4236 #endif 4237 4238 rtnl_lock(); 4239 netif_device_detach(netdev); 4240 4241 if (netif_running(netdev)) 4242 ixgbevf_close_suspend(adapter); 4243 4244 ixgbevf_clear_interrupt_scheme(adapter); 4245 rtnl_unlock(); 4246 4247 #ifdef CONFIG_PM 4248 retval = pci_save_state(pdev); 4249 if (retval) 4250 return retval; 4251 4252 #endif 4253 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4254 pci_disable_device(pdev); 4255 4256 return 0; 4257 } 4258 4259 #ifdef CONFIG_PM 4260 static int ixgbevf_resume(struct pci_dev *pdev) 4261 { 4262 struct net_device *netdev = pci_get_drvdata(pdev); 4263 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4264 u32 err; 4265 4266 pci_restore_state(pdev); 4267 /* pci_restore_state clears dev->state_saved so call 4268 * pci_save_state to restore it. 4269 */ 4270 pci_save_state(pdev); 4271 4272 err = pci_enable_device_mem(pdev); 4273 if (err) { 4274 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 4275 return err; 4276 } 4277 4278 adapter->hw.hw_addr = adapter->io_addr; 4279 smp_mb__before_atomic(); 4280 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4281 pci_set_master(pdev); 4282 4283 ixgbevf_reset(adapter); 4284 4285 rtnl_lock(); 4286 err = ixgbevf_init_interrupt_scheme(adapter); 4287 if (!err && netif_running(netdev)) 4288 err = ixgbevf_open(netdev); 4289 rtnl_unlock(); 4290 if (err) 4291 return err; 4292 4293 netif_device_attach(netdev); 4294 4295 return err; 4296 } 4297 4298 #endif /* CONFIG_PM */ 4299 static void ixgbevf_shutdown(struct pci_dev *pdev) 4300 { 4301 ixgbevf_suspend(pdev, PMSG_SUSPEND); 4302 } 4303 4304 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4305 const struct ixgbevf_ring *ring) 4306 { 4307 u64 bytes, packets; 4308 unsigned int start; 4309 4310 if (ring) { 4311 do { 4312 start = u64_stats_fetch_begin_irq(&ring->syncp); 4313 bytes = ring->stats.bytes; 4314 packets = ring->stats.packets; 4315 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4316 stats->tx_bytes += bytes; 4317 stats->tx_packets += packets; 4318 } 4319 } 4320 4321 static void ixgbevf_get_stats(struct net_device *netdev, 4322 struct rtnl_link_stats64 *stats) 4323 { 4324 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4325 unsigned int start; 4326 u64 bytes, packets; 4327 const struct ixgbevf_ring *ring; 4328 int i; 4329 4330 ixgbevf_update_stats(adapter); 4331 4332 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4333 4334 rcu_read_lock(); 4335 for (i = 0; i < adapter->num_rx_queues; i++) { 4336 ring = adapter->rx_ring[i]; 4337 do { 4338 start = u64_stats_fetch_begin_irq(&ring->syncp); 4339 bytes = ring->stats.bytes; 4340 packets = ring->stats.packets; 4341 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4342 stats->rx_bytes += bytes; 4343 stats->rx_packets += packets; 4344 } 4345 4346 for (i = 0; i < adapter->num_tx_queues; i++) { 4347 ring = adapter->tx_ring[i]; 4348 ixgbevf_get_tx_ring_stats(stats, ring); 4349 } 4350 4351 for (i = 0; i < adapter->num_xdp_queues; i++) { 4352 ring = adapter->xdp_ring[i]; 4353 ixgbevf_get_tx_ring_stats(stats, ring); 4354 } 4355 rcu_read_unlock(); 4356 } 4357 4358 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4359 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4360 4361 static netdev_features_t 4362 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4363 netdev_features_t features) 4364 { 4365 unsigned int network_hdr_len, mac_hdr_len; 4366 4367 /* Make certain the headers can be described by a context descriptor */ 4368 mac_hdr_len = skb_network_header(skb) - skb->data; 4369 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4370 return features & ~(NETIF_F_HW_CSUM | 4371 NETIF_F_SCTP_CRC | 4372 NETIF_F_HW_VLAN_CTAG_TX | 4373 NETIF_F_TSO | 4374 NETIF_F_TSO6); 4375 4376 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4377 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4378 return features & ~(NETIF_F_HW_CSUM | 4379 NETIF_F_SCTP_CRC | 4380 NETIF_F_TSO | 4381 NETIF_F_TSO6); 4382 4383 /* We can only support IPV4 TSO in tunnels if we can mangle the 4384 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4385 */ 4386 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4387 features &= ~NETIF_F_TSO; 4388 4389 return features; 4390 } 4391 4392 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4393 { 4394 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4395 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4396 struct bpf_prog *old_prog; 4397 4398 /* verify ixgbevf ring attributes are sufficient for XDP */ 4399 for (i = 0; i < adapter->num_rx_queues; i++) { 4400 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4401 4402 if (frame_size > ixgbevf_rx_bufsz(ring)) 4403 return -EINVAL; 4404 } 4405 4406 old_prog = xchg(&adapter->xdp_prog, prog); 4407 4408 /* If transitioning XDP modes reconfigure rings */ 4409 if (!!prog != !!old_prog) { 4410 /* Hardware has to reinitialize queues and interrupts to 4411 * match packet buffer alignment. Unfortunately, the 4412 * hardware is not flexible enough to do this dynamically. 4413 */ 4414 if (netif_running(dev)) 4415 ixgbevf_close(dev); 4416 4417 ixgbevf_clear_interrupt_scheme(adapter); 4418 ixgbevf_init_interrupt_scheme(adapter); 4419 4420 if (netif_running(dev)) 4421 ixgbevf_open(dev); 4422 } else { 4423 for (i = 0; i < adapter->num_rx_queues; i++) 4424 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4425 } 4426 4427 if (old_prog) 4428 bpf_prog_put(old_prog); 4429 4430 return 0; 4431 } 4432 4433 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4434 { 4435 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4436 4437 switch (xdp->command) { 4438 case XDP_SETUP_PROG: 4439 return ixgbevf_xdp_setup(dev, xdp->prog); 4440 case XDP_QUERY_PROG: 4441 xdp->prog_attached = !!(adapter->xdp_prog); 4442 xdp->prog_id = adapter->xdp_prog ? 4443 adapter->xdp_prog->aux->id : 0; 4444 return 0; 4445 default: 4446 return -EINVAL; 4447 } 4448 } 4449 4450 static const struct net_device_ops ixgbevf_netdev_ops = { 4451 .ndo_open = ixgbevf_open, 4452 .ndo_stop = ixgbevf_close, 4453 .ndo_start_xmit = ixgbevf_xmit_frame, 4454 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4455 .ndo_get_stats64 = ixgbevf_get_stats, 4456 .ndo_validate_addr = eth_validate_addr, 4457 .ndo_set_mac_address = ixgbevf_set_mac, 4458 .ndo_change_mtu = ixgbevf_change_mtu, 4459 .ndo_tx_timeout = ixgbevf_tx_timeout, 4460 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4461 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4462 #ifdef CONFIG_NET_POLL_CONTROLLER 4463 .ndo_poll_controller = ixgbevf_netpoll, 4464 #endif 4465 .ndo_features_check = ixgbevf_features_check, 4466 .ndo_bpf = ixgbevf_xdp, 4467 }; 4468 4469 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4470 { 4471 dev->netdev_ops = &ixgbevf_netdev_ops; 4472 ixgbevf_set_ethtool_ops(dev); 4473 dev->watchdog_timeo = 5 * HZ; 4474 } 4475 4476 /** 4477 * ixgbevf_probe - Device Initialization Routine 4478 * @pdev: PCI device information struct 4479 * @ent: entry in ixgbevf_pci_tbl 4480 * 4481 * Returns 0 on success, negative on failure 4482 * 4483 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4484 * The OS initialization, configuring of the adapter private structure, 4485 * and a hardware reset occur. 4486 **/ 4487 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4488 { 4489 struct net_device *netdev; 4490 struct ixgbevf_adapter *adapter = NULL; 4491 struct ixgbe_hw *hw = NULL; 4492 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4493 int err, pci_using_dac; 4494 bool disable_dev = false; 4495 4496 err = pci_enable_device(pdev); 4497 if (err) 4498 return err; 4499 4500 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 4501 pci_using_dac = 1; 4502 } else { 4503 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4504 if (err) { 4505 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4506 goto err_dma; 4507 } 4508 pci_using_dac = 0; 4509 } 4510 4511 err = pci_request_regions(pdev, ixgbevf_driver_name); 4512 if (err) { 4513 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4514 goto err_pci_reg; 4515 } 4516 4517 pci_set_master(pdev); 4518 4519 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4520 MAX_TX_QUEUES); 4521 if (!netdev) { 4522 err = -ENOMEM; 4523 goto err_alloc_etherdev; 4524 } 4525 4526 SET_NETDEV_DEV(netdev, &pdev->dev); 4527 4528 adapter = netdev_priv(netdev); 4529 4530 adapter->netdev = netdev; 4531 adapter->pdev = pdev; 4532 hw = &adapter->hw; 4533 hw->back = adapter; 4534 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4535 4536 /* call save state here in standalone driver because it relies on 4537 * adapter struct to exist, and needs to call netdev_priv 4538 */ 4539 pci_save_state(pdev); 4540 4541 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4542 pci_resource_len(pdev, 0)); 4543 adapter->io_addr = hw->hw_addr; 4544 if (!hw->hw_addr) { 4545 err = -EIO; 4546 goto err_ioremap; 4547 } 4548 4549 ixgbevf_assign_netdev_ops(netdev); 4550 4551 /* Setup HW API */ 4552 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4553 hw->mac.type = ii->mac; 4554 4555 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4556 sizeof(struct ixgbe_mbx_operations)); 4557 4558 /* setup the private structure */ 4559 err = ixgbevf_sw_init(adapter); 4560 if (err) 4561 goto err_sw_init; 4562 4563 /* The HW MAC address was set and/or determined in sw_init */ 4564 if (!is_valid_ether_addr(netdev->dev_addr)) { 4565 pr_err("invalid MAC address\n"); 4566 err = -EIO; 4567 goto err_sw_init; 4568 } 4569 4570 netdev->hw_features = NETIF_F_SG | 4571 NETIF_F_TSO | 4572 NETIF_F_TSO6 | 4573 NETIF_F_RXCSUM | 4574 NETIF_F_HW_CSUM | 4575 NETIF_F_SCTP_CRC; 4576 4577 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4578 NETIF_F_GSO_GRE_CSUM | \ 4579 NETIF_F_GSO_IPXIP4 | \ 4580 NETIF_F_GSO_IPXIP6 | \ 4581 NETIF_F_GSO_UDP_TUNNEL | \ 4582 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4583 4584 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4585 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4586 IXGBEVF_GSO_PARTIAL_FEATURES; 4587 4588 netdev->features = netdev->hw_features; 4589 4590 if (pci_using_dac) 4591 netdev->features |= NETIF_F_HIGHDMA; 4592 4593 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4594 netdev->mpls_features |= NETIF_F_SG | 4595 NETIF_F_TSO | 4596 NETIF_F_TSO6 | 4597 NETIF_F_HW_CSUM; 4598 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4599 netdev->hw_enc_features |= netdev->vlan_features; 4600 4601 /* set this bit last since it cannot be part of vlan_features */ 4602 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4603 NETIF_F_HW_VLAN_CTAG_RX | 4604 NETIF_F_HW_VLAN_CTAG_TX; 4605 4606 netdev->priv_flags |= IFF_UNICAST_FLT; 4607 4608 /* MTU range: 68 - 1504 or 9710 */ 4609 netdev->min_mtu = ETH_MIN_MTU; 4610 switch (adapter->hw.api_version) { 4611 case ixgbe_mbox_api_11: 4612 case ixgbe_mbox_api_12: 4613 case ixgbe_mbox_api_13: 4614 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4615 (ETH_HLEN + ETH_FCS_LEN); 4616 break; 4617 default: 4618 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4619 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4620 (ETH_HLEN + ETH_FCS_LEN); 4621 else 4622 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4623 break; 4624 } 4625 4626 if (IXGBE_REMOVED(hw->hw_addr)) { 4627 err = -EIO; 4628 goto err_sw_init; 4629 } 4630 4631 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4632 4633 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4634 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4635 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4636 4637 err = ixgbevf_init_interrupt_scheme(adapter); 4638 if (err) 4639 goto err_sw_init; 4640 4641 strcpy(netdev->name, "eth%d"); 4642 4643 err = register_netdev(netdev); 4644 if (err) 4645 goto err_register; 4646 4647 pci_set_drvdata(pdev, netdev); 4648 netif_carrier_off(netdev); 4649 4650 ixgbevf_init_last_counter_stats(adapter); 4651 4652 /* print the VF info */ 4653 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4654 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4655 4656 switch (hw->mac.type) { 4657 case ixgbe_mac_X550_vf: 4658 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4659 break; 4660 case ixgbe_mac_X540_vf: 4661 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4662 break; 4663 case ixgbe_mac_82599_vf: 4664 default: 4665 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4666 break; 4667 } 4668 4669 return 0; 4670 4671 err_register: 4672 ixgbevf_clear_interrupt_scheme(adapter); 4673 err_sw_init: 4674 ixgbevf_reset_interrupt_capability(adapter); 4675 iounmap(adapter->io_addr); 4676 kfree(adapter->rss_key); 4677 err_ioremap: 4678 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4679 free_netdev(netdev); 4680 err_alloc_etherdev: 4681 pci_release_regions(pdev); 4682 err_pci_reg: 4683 err_dma: 4684 if (!adapter || disable_dev) 4685 pci_disable_device(pdev); 4686 return err; 4687 } 4688 4689 /** 4690 * ixgbevf_remove - Device Removal Routine 4691 * @pdev: PCI device information struct 4692 * 4693 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4694 * that it should release a PCI device. The could be caused by a 4695 * Hot-Plug event, or because the driver is going to be removed from 4696 * memory. 4697 **/ 4698 static void ixgbevf_remove(struct pci_dev *pdev) 4699 { 4700 struct net_device *netdev = pci_get_drvdata(pdev); 4701 struct ixgbevf_adapter *adapter; 4702 bool disable_dev; 4703 4704 if (!netdev) 4705 return; 4706 4707 adapter = netdev_priv(netdev); 4708 4709 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4710 cancel_work_sync(&adapter->service_task); 4711 4712 if (netdev->reg_state == NETREG_REGISTERED) 4713 unregister_netdev(netdev); 4714 4715 ixgbevf_clear_interrupt_scheme(adapter); 4716 ixgbevf_reset_interrupt_capability(adapter); 4717 4718 iounmap(adapter->io_addr); 4719 pci_release_regions(pdev); 4720 4721 hw_dbg(&adapter->hw, "Remove complete\n"); 4722 4723 kfree(adapter->rss_key); 4724 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4725 free_netdev(netdev); 4726 4727 if (disable_dev) 4728 pci_disable_device(pdev); 4729 } 4730 4731 /** 4732 * ixgbevf_io_error_detected - called when PCI error is detected 4733 * @pdev: Pointer to PCI device 4734 * @state: The current pci connection state 4735 * 4736 * This function is called after a PCI bus error affecting 4737 * this device has been detected. 4738 **/ 4739 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4740 pci_channel_state_t state) 4741 { 4742 struct net_device *netdev = pci_get_drvdata(pdev); 4743 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4744 4745 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4746 return PCI_ERS_RESULT_DISCONNECT; 4747 4748 rtnl_lock(); 4749 netif_device_detach(netdev); 4750 4751 if (netif_running(netdev)) 4752 ixgbevf_close_suspend(adapter); 4753 4754 if (state == pci_channel_io_perm_failure) { 4755 rtnl_unlock(); 4756 return PCI_ERS_RESULT_DISCONNECT; 4757 } 4758 4759 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4760 pci_disable_device(pdev); 4761 rtnl_unlock(); 4762 4763 /* Request a slot slot reset. */ 4764 return PCI_ERS_RESULT_NEED_RESET; 4765 } 4766 4767 /** 4768 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4769 * @pdev: Pointer to PCI device 4770 * 4771 * Restart the card from scratch, as if from a cold-boot. Implementation 4772 * resembles the first-half of the ixgbevf_resume routine. 4773 **/ 4774 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4775 { 4776 struct net_device *netdev = pci_get_drvdata(pdev); 4777 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4778 4779 if (pci_enable_device_mem(pdev)) { 4780 dev_err(&pdev->dev, 4781 "Cannot re-enable PCI device after reset.\n"); 4782 return PCI_ERS_RESULT_DISCONNECT; 4783 } 4784 4785 adapter->hw.hw_addr = adapter->io_addr; 4786 smp_mb__before_atomic(); 4787 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4788 pci_set_master(pdev); 4789 4790 ixgbevf_reset(adapter); 4791 4792 return PCI_ERS_RESULT_RECOVERED; 4793 } 4794 4795 /** 4796 * ixgbevf_io_resume - called when traffic can start flowing again. 4797 * @pdev: Pointer to PCI device 4798 * 4799 * This callback is called when the error recovery driver tells us that 4800 * its OK to resume normal operation. Implementation resembles the 4801 * second-half of the ixgbevf_resume routine. 4802 **/ 4803 static void ixgbevf_io_resume(struct pci_dev *pdev) 4804 { 4805 struct net_device *netdev = pci_get_drvdata(pdev); 4806 4807 rtnl_lock(); 4808 if (netif_running(netdev)) 4809 ixgbevf_open(netdev); 4810 4811 netif_device_attach(netdev); 4812 rtnl_unlock(); 4813 } 4814 4815 /* PCI Error Recovery (ERS) */ 4816 static const struct pci_error_handlers ixgbevf_err_handler = { 4817 .error_detected = ixgbevf_io_error_detected, 4818 .slot_reset = ixgbevf_io_slot_reset, 4819 .resume = ixgbevf_io_resume, 4820 }; 4821 4822 static struct pci_driver ixgbevf_driver = { 4823 .name = ixgbevf_driver_name, 4824 .id_table = ixgbevf_pci_tbl, 4825 .probe = ixgbevf_probe, 4826 .remove = ixgbevf_remove, 4827 #ifdef CONFIG_PM 4828 /* Power Management Hooks */ 4829 .suspend = ixgbevf_suspend, 4830 .resume = ixgbevf_resume, 4831 #endif 4832 .shutdown = ixgbevf_shutdown, 4833 .err_handler = &ixgbevf_err_handler 4834 }; 4835 4836 /** 4837 * ixgbevf_init_module - Driver Registration Routine 4838 * 4839 * ixgbevf_init_module is the first routine called when the driver is 4840 * loaded. All it does is register with the PCI subsystem. 4841 **/ 4842 static int __init ixgbevf_init_module(void) 4843 { 4844 pr_info("%s - version %s\n", ixgbevf_driver_string, 4845 ixgbevf_driver_version); 4846 4847 pr_info("%s\n", ixgbevf_copyright); 4848 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4849 if (!ixgbevf_wq) { 4850 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4851 return -ENOMEM; 4852 } 4853 4854 return pci_register_driver(&ixgbevf_driver); 4855 } 4856 4857 module_init(ixgbevf_init_module); 4858 4859 /** 4860 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4861 * 4862 * ixgbevf_exit_module is called just before the driver is removed 4863 * from memory. 4864 **/ 4865 static void __exit ixgbevf_exit_module(void) 4866 { 4867 pci_unregister_driver(&ixgbevf_driver); 4868 if (ixgbevf_wq) { 4869 destroy_workqueue(ixgbevf_wq); 4870 ixgbevf_wq = NULL; 4871 } 4872 } 4873 4874 #ifdef DEBUG 4875 /** 4876 * ixgbevf_get_hw_dev_name - return device name string 4877 * used by hardware layer to print debugging information 4878 * @hw: pointer to private hardware struct 4879 **/ 4880 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4881 { 4882 struct ixgbevf_adapter *adapter = hw->back; 4883 4884 return adapter->netdev->name; 4885 } 4886 4887 #endif 4888 module_exit(ixgbevf_exit_module); 4889 4890 /* ixgbevf_main.c */ 4891