1 /*******************************************************************************
2 
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2015 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17 
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20 
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25 *******************************************************************************/
26 
27 /******************************************************************************
28  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
29 ******************************************************************************/
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/types.h>
34 #include <linux/bitops.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/vmalloc.h>
39 #include <linux/string.h>
40 #include <linux/in.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/sctp.h>
44 #include <linux/ipv6.h>
45 #include <linux/slab.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/ethtool.h>
49 #include <linux/if.h>
50 #include <linux/if_vlan.h>
51 #include <linux/prefetch.h>
52 
53 #include "ixgbevf.h"
54 
55 const char ixgbevf_driver_name[] = "ixgbevf";
56 static const char ixgbevf_driver_string[] =
57 	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
58 
59 #define DRV_VERSION "2.12.1-k"
60 const char ixgbevf_driver_version[] = DRV_VERSION;
61 static char ixgbevf_copyright[] =
62 	"Copyright (c) 2009 - 2015 Intel Corporation.";
63 
64 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
65 	[board_82599_vf] = &ixgbevf_82599_vf_info,
66 	[board_X540_vf]  = &ixgbevf_X540_vf_info,
67 	[board_X550_vf]  = &ixgbevf_X550_vf_info,
68 	[board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info,
69 };
70 
71 /* ixgbevf_pci_tbl - PCI Device ID Table
72  *
73  * Wildcard entries (PCI_ANY_ID) should come last
74  * Last entry must be all 0s
75  *
76  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
77  *   Class, Class Mask, private data (not used) }
78  */
79 static const struct pci_device_id ixgbevf_pci_tbl[] = {
80 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
81 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
82 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
83 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
84 	/* required last entry */
85 	{0, }
86 };
87 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
88 
89 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
90 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_VERSION);
93 
94 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
95 static int debug = -1;
96 module_param(debug, int, 0);
97 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
98 
99 static struct workqueue_struct *ixgbevf_wq;
100 
101 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
102 {
103 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
104 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
105 	    !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
106 		queue_work(ixgbevf_wq, &adapter->service_task);
107 }
108 
109 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
110 {
111 	BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
112 
113 	/* flush memory to make sure state is correct before next watchdog */
114 	smp_mb__before_atomic();
115 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
116 }
117 
118 /* forward decls */
119 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
120 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
121 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
122 
123 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
124 {
125 	struct ixgbevf_adapter *adapter = hw->back;
126 
127 	if (!hw->hw_addr)
128 		return;
129 	hw->hw_addr = NULL;
130 	dev_err(&adapter->pdev->dev, "Adapter removed\n");
131 	if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
132 		ixgbevf_service_event_schedule(adapter);
133 }
134 
135 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
136 {
137 	u32 value;
138 
139 	/* The following check not only optimizes a bit by not
140 	 * performing a read on the status register when the
141 	 * register just read was a status register read that
142 	 * returned IXGBE_FAILED_READ_REG. It also blocks any
143 	 * potential recursion.
144 	 */
145 	if (reg == IXGBE_VFSTATUS) {
146 		ixgbevf_remove_adapter(hw);
147 		return;
148 	}
149 	value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
150 	if (value == IXGBE_FAILED_READ_REG)
151 		ixgbevf_remove_adapter(hw);
152 }
153 
154 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
155 {
156 	u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr);
157 	u32 value;
158 
159 	if (IXGBE_REMOVED(reg_addr))
160 		return IXGBE_FAILED_READ_REG;
161 	value = readl(reg_addr + reg);
162 	if (unlikely(value == IXGBE_FAILED_READ_REG))
163 		ixgbevf_check_remove(hw, reg);
164 	return value;
165 }
166 
167 /**
168  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
169  * @adapter: pointer to adapter struct
170  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
171  * @queue: queue to map the corresponding interrupt to
172  * @msix_vector: the vector to map to the corresponding queue
173  **/
174 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
175 			     u8 queue, u8 msix_vector)
176 {
177 	u32 ivar, index;
178 	struct ixgbe_hw *hw = &adapter->hw;
179 
180 	if (direction == -1) {
181 		/* other causes */
182 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
183 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
184 		ivar &= ~0xFF;
185 		ivar |= msix_vector;
186 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
187 	} else {
188 		/* Tx or Rx causes */
189 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
190 		index = ((16 * (queue & 1)) + (8 * direction));
191 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
192 		ivar &= ~(0xFF << index);
193 		ivar |= (msix_vector << index);
194 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
195 	}
196 }
197 
198 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
199 					struct ixgbevf_tx_buffer *tx_buffer)
200 {
201 	if (tx_buffer->skb) {
202 		dev_kfree_skb_any(tx_buffer->skb);
203 		if (dma_unmap_len(tx_buffer, len))
204 			dma_unmap_single(tx_ring->dev,
205 					 dma_unmap_addr(tx_buffer, dma),
206 					 dma_unmap_len(tx_buffer, len),
207 					 DMA_TO_DEVICE);
208 	} else if (dma_unmap_len(tx_buffer, len)) {
209 		dma_unmap_page(tx_ring->dev,
210 			       dma_unmap_addr(tx_buffer, dma),
211 			       dma_unmap_len(tx_buffer, len),
212 			       DMA_TO_DEVICE);
213 	}
214 	tx_buffer->next_to_watch = NULL;
215 	tx_buffer->skb = NULL;
216 	dma_unmap_len_set(tx_buffer, len, 0);
217 	/* tx_buffer must be completely set up in the transmit path */
218 }
219 
220 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
221 {
222 	return ring->stats.packets;
223 }
224 
225 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
226 {
227 	struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
228 	struct ixgbe_hw *hw = &adapter->hw;
229 
230 	u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
231 	u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
232 
233 	if (head != tail)
234 		return (head < tail) ?
235 			tail - head : (tail + ring->count - head);
236 
237 	return 0;
238 }
239 
240 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
241 {
242 	u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
243 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
244 	u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
245 
246 	clear_check_for_tx_hang(tx_ring);
247 
248 	/* Check for a hung queue, but be thorough. This verifies
249 	 * that a transmit has been completed since the previous
250 	 * check AND there is at least one packet pending. The
251 	 * ARMED bit is set to indicate a potential hang.
252 	 */
253 	if ((tx_done_old == tx_done) && tx_pending) {
254 		/* make sure it is true for two checks in a row */
255 		return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
256 					&tx_ring->state);
257 	}
258 	/* reset the countdown */
259 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
260 
261 	/* update completed stats and continue */
262 	tx_ring->tx_stats.tx_done_old = tx_done;
263 
264 	return false;
265 }
266 
267 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
268 {
269 	/* Do the reset outside of interrupt context */
270 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
271 		adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED;
272 		ixgbevf_service_event_schedule(adapter);
273 	}
274 }
275 
276 /**
277  * ixgbevf_tx_timeout - Respond to a Tx Hang
278  * @netdev: network interface device structure
279  **/
280 static void ixgbevf_tx_timeout(struct net_device *netdev)
281 {
282 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
283 
284 	ixgbevf_tx_timeout_reset(adapter);
285 }
286 
287 /**
288  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
289  * @q_vector: board private structure
290  * @tx_ring: tx ring to clean
291  **/
292 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
293 				 struct ixgbevf_ring *tx_ring)
294 {
295 	struct ixgbevf_adapter *adapter = q_vector->adapter;
296 	struct ixgbevf_tx_buffer *tx_buffer;
297 	union ixgbe_adv_tx_desc *tx_desc;
298 	unsigned int total_bytes = 0, total_packets = 0;
299 	unsigned int budget = tx_ring->count / 2;
300 	unsigned int i = tx_ring->next_to_clean;
301 
302 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
303 		return true;
304 
305 	tx_buffer = &tx_ring->tx_buffer_info[i];
306 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
307 	i -= tx_ring->count;
308 
309 	do {
310 		union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
311 
312 		/* if next_to_watch is not set then there is no work pending */
313 		if (!eop_desc)
314 			break;
315 
316 		/* prevent any other reads prior to eop_desc */
317 		read_barrier_depends();
318 
319 		/* if DD is not set pending work has not been completed */
320 		if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
321 			break;
322 
323 		/* clear next_to_watch to prevent false hangs */
324 		tx_buffer->next_to_watch = NULL;
325 
326 		/* update the statistics for this packet */
327 		total_bytes += tx_buffer->bytecount;
328 		total_packets += tx_buffer->gso_segs;
329 
330 		/* free the skb */
331 		dev_kfree_skb_any(tx_buffer->skb);
332 
333 		/* unmap skb header data */
334 		dma_unmap_single(tx_ring->dev,
335 				 dma_unmap_addr(tx_buffer, dma),
336 				 dma_unmap_len(tx_buffer, len),
337 				 DMA_TO_DEVICE);
338 
339 		/* clear tx_buffer data */
340 		tx_buffer->skb = NULL;
341 		dma_unmap_len_set(tx_buffer, len, 0);
342 
343 		/* unmap remaining buffers */
344 		while (tx_desc != eop_desc) {
345 			tx_buffer++;
346 			tx_desc++;
347 			i++;
348 			if (unlikely(!i)) {
349 				i -= tx_ring->count;
350 				tx_buffer = tx_ring->tx_buffer_info;
351 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
352 			}
353 
354 			/* unmap any remaining paged data */
355 			if (dma_unmap_len(tx_buffer, len)) {
356 				dma_unmap_page(tx_ring->dev,
357 					       dma_unmap_addr(tx_buffer, dma),
358 					       dma_unmap_len(tx_buffer, len),
359 					       DMA_TO_DEVICE);
360 				dma_unmap_len_set(tx_buffer, len, 0);
361 			}
362 		}
363 
364 		/* move us one more past the eop_desc for start of next pkt */
365 		tx_buffer++;
366 		tx_desc++;
367 		i++;
368 		if (unlikely(!i)) {
369 			i -= tx_ring->count;
370 			tx_buffer = tx_ring->tx_buffer_info;
371 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
372 		}
373 
374 		/* issue prefetch for next Tx descriptor */
375 		prefetch(tx_desc);
376 
377 		/* update budget accounting */
378 		budget--;
379 	} while (likely(budget));
380 
381 	i += tx_ring->count;
382 	tx_ring->next_to_clean = i;
383 	u64_stats_update_begin(&tx_ring->syncp);
384 	tx_ring->stats.bytes += total_bytes;
385 	tx_ring->stats.packets += total_packets;
386 	u64_stats_update_end(&tx_ring->syncp);
387 	q_vector->tx.total_bytes += total_bytes;
388 	q_vector->tx.total_packets += total_packets;
389 
390 	if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
391 		struct ixgbe_hw *hw = &adapter->hw;
392 		union ixgbe_adv_tx_desc *eop_desc;
393 
394 		eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
395 
396 		pr_err("Detected Tx Unit Hang\n"
397 		       "  Tx Queue             <%d>\n"
398 		       "  TDH, TDT             <%x>, <%x>\n"
399 		       "  next_to_use          <%x>\n"
400 		       "  next_to_clean        <%x>\n"
401 		       "tx_buffer_info[next_to_clean]\n"
402 		       "  next_to_watch        <%p>\n"
403 		       "  eop_desc->wb.status  <%x>\n"
404 		       "  time_stamp           <%lx>\n"
405 		       "  jiffies              <%lx>\n",
406 		       tx_ring->queue_index,
407 		       IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
408 		       IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
409 		       tx_ring->next_to_use, i,
410 		       eop_desc, (eop_desc ? eop_desc->wb.status : 0),
411 		       tx_ring->tx_buffer_info[i].time_stamp, jiffies);
412 
413 		netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
414 
415 		/* schedule immediate reset if we believe we hung */
416 		ixgbevf_tx_timeout_reset(adapter);
417 
418 		return true;
419 	}
420 
421 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
422 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
423 		     (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
424 		/* Make sure that anybody stopping the queue after this
425 		 * sees the new next_to_clean.
426 		 */
427 		smp_mb();
428 
429 		if (__netif_subqueue_stopped(tx_ring->netdev,
430 					     tx_ring->queue_index) &&
431 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
432 			netif_wake_subqueue(tx_ring->netdev,
433 					    tx_ring->queue_index);
434 			++tx_ring->tx_stats.restart_queue;
435 		}
436 	}
437 
438 	return !!budget;
439 }
440 
441 /**
442  * ixgbevf_rx_skb - Helper function to determine proper Rx method
443  * @q_vector: structure containing interrupt and ring information
444  * @skb: packet to send up
445  **/
446 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
447 			   struct sk_buff *skb)
448 {
449 #ifdef CONFIG_NET_RX_BUSY_POLL
450 	skb_mark_napi_id(skb, &q_vector->napi);
451 
452 	if (ixgbevf_qv_busy_polling(q_vector)) {
453 		netif_receive_skb(skb);
454 		/* exit early if we busy polled */
455 		return;
456 	}
457 #endif /* CONFIG_NET_RX_BUSY_POLL */
458 
459 	napi_gro_receive(&q_vector->napi, skb);
460 }
461 
462 #define IXGBE_RSS_L4_TYPES_MASK \
463 	((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
464 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
465 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
466 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
467 
468 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
469 				   union ixgbe_adv_rx_desc *rx_desc,
470 				   struct sk_buff *skb)
471 {
472 	u16 rss_type;
473 
474 	if (!(ring->netdev->features & NETIF_F_RXHASH))
475 		return;
476 
477 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
478 		   IXGBE_RXDADV_RSSTYPE_MASK;
479 
480 	if (!rss_type)
481 		return;
482 
483 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
484 		     (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
485 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
486 }
487 
488 /**
489  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
490  * @ring: structure containig ring specific data
491  * @rx_desc: current Rx descriptor being processed
492  * @skb: skb currently being received and modified
493  **/
494 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
495 				       union ixgbe_adv_rx_desc *rx_desc,
496 				       struct sk_buff *skb)
497 {
498 	skb_checksum_none_assert(skb);
499 
500 	/* Rx csum disabled */
501 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
502 		return;
503 
504 	/* if IP and error */
505 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
506 	    ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
507 		ring->rx_stats.csum_err++;
508 		return;
509 	}
510 
511 	if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
512 		return;
513 
514 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
515 		ring->rx_stats.csum_err++;
516 		return;
517 	}
518 
519 	/* It must be a TCP or UDP packet with a valid checksum */
520 	skb->ip_summed = CHECKSUM_UNNECESSARY;
521 }
522 
523 /**
524  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
525  * @rx_ring: rx descriptor ring packet is being transacted on
526  * @rx_desc: pointer to the EOP Rx descriptor
527  * @skb: pointer to current skb being populated
528  *
529  * This function checks the ring, descriptor, and packet information in
530  * order to populate the checksum, VLAN, protocol, and other fields within
531  * the skb.
532  **/
533 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
534 				       union ixgbe_adv_rx_desc *rx_desc,
535 				       struct sk_buff *skb)
536 {
537 	ixgbevf_rx_hash(rx_ring, rx_desc, skb);
538 	ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
539 
540 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
541 		u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
542 		unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
543 
544 		if (test_bit(vid & VLAN_VID_MASK, active_vlans))
545 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
546 	}
547 
548 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
549 }
550 
551 /**
552  * ixgbevf_is_non_eop - process handling of non-EOP buffers
553  * @rx_ring: Rx ring being processed
554  * @rx_desc: Rx descriptor for current buffer
555  * @skb: current socket buffer containing buffer in progress
556  *
557  * This function updates next to clean.  If the buffer is an EOP buffer
558  * this function exits returning false, otherwise it will place the
559  * sk_buff in the next buffer to be chained and return true indicating
560  * that this is in fact a non-EOP buffer.
561  **/
562 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
563 			       union ixgbe_adv_rx_desc *rx_desc)
564 {
565 	u32 ntc = rx_ring->next_to_clean + 1;
566 
567 	/* fetch, update, and store next to clean */
568 	ntc = (ntc < rx_ring->count) ? ntc : 0;
569 	rx_ring->next_to_clean = ntc;
570 
571 	prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
572 
573 	if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
574 		return false;
575 
576 	return true;
577 }
578 
579 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
580 				      struct ixgbevf_rx_buffer *bi)
581 {
582 	struct page *page = bi->page;
583 	dma_addr_t dma = bi->dma;
584 
585 	/* since we are recycling buffers we should seldom need to alloc */
586 	if (likely(page))
587 		return true;
588 
589 	/* alloc new page for storage */
590 	page = dev_alloc_page();
591 	if (unlikely(!page)) {
592 		rx_ring->rx_stats.alloc_rx_page_failed++;
593 		return false;
594 	}
595 
596 	/* map page for use */
597 	dma = dma_map_page(rx_ring->dev, page, 0,
598 			   PAGE_SIZE, DMA_FROM_DEVICE);
599 
600 	/* if mapping failed free memory back to system since
601 	 * there isn't much point in holding memory we can't use
602 	 */
603 	if (dma_mapping_error(rx_ring->dev, dma)) {
604 		__free_page(page);
605 
606 		rx_ring->rx_stats.alloc_rx_buff_failed++;
607 		return false;
608 	}
609 
610 	bi->dma = dma;
611 	bi->page = page;
612 	bi->page_offset = 0;
613 
614 	return true;
615 }
616 
617 /**
618  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
619  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
620  * @cleaned_count: number of buffers to replace
621  **/
622 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
623 				     u16 cleaned_count)
624 {
625 	union ixgbe_adv_rx_desc *rx_desc;
626 	struct ixgbevf_rx_buffer *bi;
627 	unsigned int i = rx_ring->next_to_use;
628 
629 	/* nothing to do or no valid netdev defined */
630 	if (!cleaned_count || !rx_ring->netdev)
631 		return;
632 
633 	rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
634 	bi = &rx_ring->rx_buffer_info[i];
635 	i -= rx_ring->count;
636 
637 	do {
638 		if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
639 			break;
640 
641 		/* Refresh the desc even if pkt_addr didn't change
642 		 * because each write-back erases this info.
643 		 */
644 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
645 
646 		rx_desc++;
647 		bi++;
648 		i++;
649 		if (unlikely(!i)) {
650 			rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
651 			bi = rx_ring->rx_buffer_info;
652 			i -= rx_ring->count;
653 		}
654 
655 		/* clear the hdr_addr for the next_to_use descriptor */
656 		rx_desc->read.hdr_addr = 0;
657 
658 		cleaned_count--;
659 	} while (cleaned_count);
660 
661 	i += rx_ring->count;
662 
663 	if (rx_ring->next_to_use != i) {
664 		/* record the next descriptor to use */
665 		rx_ring->next_to_use = i;
666 
667 		/* update next to alloc since we have filled the ring */
668 		rx_ring->next_to_alloc = i;
669 
670 		/* Force memory writes to complete before letting h/w
671 		 * know there are new descriptors to fetch.  (Only
672 		 * applicable for weak-ordered memory model archs,
673 		 * such as IA-64).
674 		 */
675 		wmb();
676 		ixgbevf_write_tail(rx_ring, i);
677 	}
678 }
679 
680 /**
681  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
682  * @rx_ring: rx descriptor ring packet is being transacted on
683  * @rx_desc: pointer to the EOP Rx descriptor
684  * @skb: pointer to current skb being fixed
685  *
686  * Check for corrupted packet headers caused by senders on the local L2
687  * embedded NIC switch not setting up their Tx Descriptors right.  These
688  * should be very rare.
689  *
690  * Also address the case where we are pulling data in on pages only
691  * and as such no data is present in the skb header.
692  *
693  * In addition if skb is not at least 60 bytes we need to pad it so that
694  * it is large enough to qualify as a valid Ethernet frame.
695  *
696  * Returns true if an error was encountered and skb was freed.
697  **/
698 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
699 				    union ixgbe_adv_rx_desc *rx_desc,
700 				    struct sk_buff *skb)
701 {
702 	/* verify that the packet does not have any known errors */
703 	if (unlikely(ixgbevf_test_staterr(rx_desc,
704 					  IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
705 		struct net_device *netdev = rx_ring->netdev;
706 
707 		if (!(netdev->features & NETIF_F_RXALL)) {
708 			dev_kfree_skb_any(skb);
709 			return true;
710 		}
711 	}
712 
713 	/* if eth_skb_pad returns an error the skb was freed */
714 	if (eth_skb_pad(skb))
715 		return true;
716 
717 	return false;
718 }
719 
720 /**
721  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
722  * @rx_ring: rx descriptor ring to store buffers on
723  * @old_buff: donor buffer to have page reused
724  *
725  * Synchronizes page for reuse by the adapter
726  **/
727 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
728 				  struct ixgbevf_rx_buffer *old_buff)
729 {
730 	struct ixgbevf_rx_buffer *new_buff;
731 	u16 nta = rx_ring->next_to_alloc;
732 
733 	new_buff = &rx_ring->rx_buffer_info[nta];
734 
735 	/* update, and store next to alloc */
736 	nta++;
737 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
738 
739 	/* transfer page from old buffer to new buffer */
740 	new_buff->page = old_buff->page;
741 	new_buff->dma = old_buff->dma;
742 	new_buff->page_offset = old_buff->page_offset;
743 
744 	/* sync the buffer for use by the device */
745 	dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma,
746 					 new_buff->page_offset,
747 					 IXGBEVF_RX_BUFSZ,
748 					 DMA_FROM_DEVICE);
749 }
750 
751 static inline bool ixgbevf_page_is_reserved(struct page *page)
752 {
753 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
754 }
755 
756 /**
757  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
758  * @rx_ring: rx descriptor ring to transact packets on
759  * @rx_buffer: buffer containing page to add
760  * @rx_desc: descriptor containing length of buffer written by hardware
761  * @skb: sk_buff to place the data into
762  *
763  * This function will add the data contained in rx_buffer->page to the skb.
764  * This is done either through a direct copy if the data in the buffer is
765  * less than the skb header size, otherwise it will just attach the page as
766  * a frag to the skb.
767  *
768  * The function will then update the page offset if necessary and return
769  * true if the buffer can be reused by the adapter.
770  **/
771 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
772 				struct ixgbevf_rx_buffer *rx_buffer,
773 				union ixgbe_adv_rx_desc *rx_desc,
774 				struct sk_buff *skb)
775 {
776 	struct page *page = rx_buffer->page;
777 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
778 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
779 #if (PAGE_SIZE < 8192)
780 	unsigned int truesize = IXGBEVF_RX_BUFSZ;
781 #else
782 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
783 #endif
784 	unsigned int pull_len;
785 
786 	if (unlikely(skb_is_nonlinear(skb)))
787 		goto add_tail_frag;
788 
789 	if (likely(size <= IXGBEVF_RX_HDR_SIZE)) {
790 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
791 
792 		/* page is not reserved, we can reuse buffer as is */
793 		if (likely(!ixgbevf_page_is_reserved(page)))
794 			return true;
795 
796 		/* this page cannot be reused so discard it */
797 		put_page(page);
798 		return false;
799 	}
800 
801 	/* we need the header to contain the greater of either ETH_HLEN or
802 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
803 	 */
804 	pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE);
805 
806 	/* align pull length to size of long to optimize memcpy performance */
807 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
808 
809 	/* update all of the pointers */
810 	va += pull_len;
811 	size -= pull_len;
812 
813 add_tail_frag:
814 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
815 			(unsigned long)va & ~PAGE_MASK, size, truesize);
816 
817 	/* avoid re-using remote pages */
818 	if (unlikely(ixgbevf_page_is_reserved(page)))
819 		return false;
820 
821 #if (PAGE_SIZE < 8192)
822 	/* if we are only owner of page we can reuse it */
823 	if (unlikely(page_count(page) != 1))
824 		return false;
825 
826 	/* flip page offset to other buffer */
827 	rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ;
828 
829 #else
830 	/* move offset up to the next cache line */
831 	rx_buffer->page_offset += truesize;
832 
833 	if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ))
834 		return false;
835 
836 #endif
837 	/* Even if we own the page, we are not allowed to use atomic_set()
838 	 * This would break get_page_unless_zero() users.
839 	 */
840 	atomic_inc(&page->_count);
841 
842 	return true;
843 }
844 
845 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring,
846 					       union ixgbe_adv_rx_desc *rx_desc,
847 					       struct sk_buff *skb)
848 {
849 	struct ixgbevf_rx_buffer *rx_buffer;
850 	struct page *page;
851 
852 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
853 	page = rx_buffer->page;
854 	prefetchw(page);
855 
856 	if (likely(!skb)) {
857 		void *page_addr = page_address(page) +
858 				  rx_buffer->page_offset;
859 
860 		/* prefetch first cache line of first page */
861 		prefetch(page_addr);
862 #if L1_CACHE_BYTES < 128
863 		prefetch(page_addr + L1_CACHE_BYTES);
864 #endif
865 
866 		/* allocate a skb to store the frags */
867 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
868 						IXGBEVF_RX_HDR_SIZE);
869 		if (unlikely(!skb)) {
870 			rx_ring->rx_stats.alloc_rx_buff_failed++;
871 			return NULL;
872 		}
873 
874 		/* we will be copying header into skb->data in
875 		 * pskb_may_pull so it is in our interest to prefetch
876 		 * it now to avoid a possible cache miss
877 		 */
878 		prefetchw(skb->data);
879 	}
880 
881 	/* we are reusing so sync this buffer for CPU use */
882 	dma_sync_single_range_for_cpu(rx_ring->dev,
883 				      rx_buffer->dma,
884 				      rx_buffer->page_offset,
885 				      IXGBEVF_RX_BUFSZ,
886 				      DMA_FROM_DEVICE);
887 
888 	/* pull page into skb */
889 	if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
890 		/* hand second half of page back to the ring */
891 		ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
892 	} else {
893 		/* we are not reusing the buffer so unmap it */
894 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
895 			       PAGE_SIZE, DMA_FROM_DEVICE);
896 	}
897 
898 	/* clear contents of buffer_info */
899 	rx_buffer->dma = 0;
900 	rx_buffer->page = NULL;
901 
902 	return skb;
903 }
904 
905 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
906 					     u32 qmask)
907 {
908 	struct ixgbe_hw *hw = &adapter->hw;
909 
910 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
911 }
912 
913 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
914 				struct ixgbevf_ring *rx_ring,
915 				int budget)
916 {
917 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
918 	u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
919 	struct sk_buff *skb = rx_ring->skb;
920 
921 	while (likely(total_rx_packets < budget)) {
922 		union ixgbe_adv_rx_desc *rx_desc;
923 
924 		/* return some buffers to hardware, one at a time is too slow */
925 		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
926 			ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
927 			cleaned_count = 0;
928 		}
929 
930 		rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
931 
932 		if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD))
933 			break;
934 
935 		/* This memory barrier is needed to keep us from reading
936 		 * any other fields out of the rx_desc until we know the
937 		 * RXD_STAT_DD bit is set
938 		 */
939 		rmb();
940 
941 		/* retrieve a buffer from the ring */
942 		skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb);
943 
944 		/* exit if we failed to retrieve a buffer */
945 		if (!skb)
946 			break;
947 
948 		cleaned_count++;
949 
950 		/* fetch next buffer in frame if non-eop */
951 		if (ixgbevf_is_non_eop(rx_ring, rx_desc))
952 			continue;
953 
954 		/* verify the packet layout is correct */
955 		if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
956 			skb = NULL;
957 			continue;
958 		}
959 
960 		/* probably a little skewed due to removing CRC */
961 		total_rx_bytes += skb->len;
962 
963 		/* Workaround hardware that can't do proper VEPA multicast
964 		 * source pruning.
965 		 */
966 		if ((skb->pkt_type == PACKET_BROADCAST ||
967 		     skb->pkt_type == PACKET_MULTICAST) &&
968 		    ether_addr_equal(rx_ring->netdev->dev_addr,
969 				     eth_hdr(skb)->h_source)) {
970 			dev_kfree_skb_irq(skb);
971 			continue;
972 		}
973 
974 		/* populate checksum, VLAN, and protocol */
975 		ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
976 
977 		ixgbevf_rx_skb(q_vector, skb);
978 
979 		/* reset skb pointer */
980 		skb = NULL;
981 
982 		/* update budget accounting */
983 		total_rx_packets++;
984 	}
985 
986 	/* place incomplete frames back on ring for completion */
987 	rx_ring->skb = skb;
988 
989 	u64_stats_update_begin(&rx_ring->syncp);
990 	rx_ring->stats.packets += total_rx_packets;
991 	rx_ring->stats.bytes += total_rx_bytes;
992 	u64_stats_update_end(&rx_ring->syncp);
993 	q_vector->rx.total_packets += total_rx_packets;
994 	q_vector->rx.total_bytes += total_rx_bytes;
995 
996 	return total_rx_packets;
997 }
998 
999 /**
1000  * ixgbevf_poll - NAPI polling calback
1001  * @napi: napi struct with our devices info in it
1002  * @budget: amount of work driver is allowed to do this pass, in packets
1003  *
1004  * This function will clean more than one or more rings associated with a
1005  * q_vector.
1006  **/
1007 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1008 {
1009 	struct ixgbevf_q_vector *q_vector =
1010 		container_of(napi, struct ixgbevf_q_vector, napi);
1011 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1012 	struct ixgbevf_ring *ring;
1013 	int per_ring_budget, work_done = 0;
1014 	bool clean_complete = true;
1015 
1016 	ixgbevf_for_each_ring(ring, q_vector->tx)
1017 		clean_complete &= ixgbevf_clean_tx_irq(q_vector, ring);
1018 
1019 	if (budget <= 0)
1020 		return budget;
1021 #ifdef CONFIG_NET_RX_BUSY_POLL
1022 	if (!ixgbevf_qv_lock_napi(q_vector))
1023 		return budget;
1024 #endif
1025 
1026 	/* attempt to distribute budget to each queue fairly, but don't allow
1027 	 * the budget to go below 1 because we'll exit polling
1028 	 */
1029 	if (q_vector->rx.count > 1)
1030 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1031 	else
1032 		per_ring_budget = budget;
1033 
1034 	ixgbevf_for_each_ring(ring, q_vector->rx) {
1035 		int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1036 						   per_ring_budget);
1037 		work_done += cleaned;
1038 		clean_complete &= (cleaned < per_ring_budget);
1039 	}
1040 
1041 #ifdef CONFIG_NET_RX_BUSY_POLL
1042 	ixgbevf_qv_unlock_napi(q_vector);
1043 #endif
1044 
1045 	/* If all work not completed, return budget and keep polling */
1046 	if (!clean_complete)
1047 		return budget;
1048 	/* all work done, exit the polling mode */
1049 	napi_complete_done(napi, work_done);
1050 	if (adapter->rx_itr_setting == 1)
1051 		ixgbevf_set_itr(q_vector);
1052 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1053 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1054 		ixgbevf_irq_enable_queues(adapter,
1055 					  1 << q_vector->v_idx);
1056 
1057 	return 0;
1058 }
1059 
1060 /**
1061  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1062  * @q_vector: structure containing interrupt and ring information
1063  **/
1064 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1065 {
1066 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1067 	struct ixgbe_hw *hw = &adapter->hw;
1068 	int v_idx = q_vector->v_idx;
1069 	u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1070 
1071 	/* set the WDIS bit to not clear the timer bits and cause an
1072 	 * immediate assertion of the interrupt
1073 	 */
1074 	itr_reg |= IXGBE_EITR_CNT_WDIS;
1075 
1076 	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1077 }
1078 
1079 #ifdef CONFIG_NET_RX_BUSY_POLL
1080 /* must be called with local_bh_disable()d */
1081 static int ixgbevf_busy_poll_recv(struct napi_struct *napi)
1082 {
1083 	struct ixgbevf_q_vector *q_vector =
1084 			container_of(napi, struct ixgbevf_q_vector, napi);
1085 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1086 	struct ixgbevf_ring  *ring;
1087 	int found = 0;
1088 
1089 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
1090 		return LL_FLUSH_FAILED;
1091 
1092 	if (!ixgbevf_qv_lock_poll(q_vector))
1093 		return LL_FLUSH_BUSY;
1094 
1095 	ixgbevf_for_each_ring(ring, q_vector->rx) {
1096 		found = ixgbevf_clean_rx_irq(q_vector, ring, 4);
1097 #ifdef BP_EXTENDED_STATS
1098 		if (found)
1099 			ring->stats.cleaned += found;
1100 		else
1101 			ring->stats.misses++;
1102 #endif
1103 		if (found)
1104 			break;
1105 	}
1106 
1107 	ixgbevf_qv_unlock_poll(q_vector);
1108 
1109 	return found;
1110 }
1111 #endif /* CONFIG_NET_RX_BUSY_POLL */
1112 
1113 /**
1114  * ixgbevf_configure_msix - Configure MSI-X hardware
1115  * @adapter: board private structure
1116  *
1117  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1118  * interrupts.
1119  **/
1120 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1121 {
1122 	struct ixgbevf_q_vector *q_vector;
1123 	int q_vectors, v_idx;
1124 
1125 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1126 	adapter->eims_enable_mask = 0;
1127 
1128 	/* Populate the IVAR table and set the ITR values to the
1129 	 * corresponding register.
1130 	 */
1131 	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1132 		struct ixgbevf_ring *ring;
1133 
1134 		q_vector = adapter->q_vector[v_idx];
1135 
1136 		ixgbevf_for_each_ring(ring, q_vector->rx)
1137 			ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1138 
1139 		ixgbevf_for_each_ring(ring, q_vector->tx)
1140 			ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1141 
1142 		if (q_vector->tx.ring && !q_vector->rx.ring) {
1143 			/* Tx only vector */
1144 			if (adapter->tx_itr_setting == 1)
1145 				q_vector->itr = IXGBE_12K_ITR;
1146 			else
1147 				q_vector->itr = adapter->tx_itr_setting;
1148 		} else {
1149 			/* Rx or Rx/Tx vector */
1150 			if (adapter->rx_itr_setting == 1)
1151 				q_vector->itr = IXGBE_20K_ITR;
1152 			else
1153 				q_vector->itr = adapter->rx_itr_setting;
1154 		}
1155 
1156 		/* add q_vector eims value to global eims_enable_mask */
1157 		adapter->eims_enable_mask |= 1 << v_idx;
1158 
1159 		ixgbevf_write_eitr(q_vector);
1160 	}
1161 
1162 	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1163 	/* setup eims_other and add value to global eims_enable_mask */
1164 	adapter->eims_other = 1 << v_idx;
1165 	adapter->eims_enable_mask |= adapter->eims_other;
1166 }
1167 
1168 enum latency_range {
1169 	lowest_latency = 0,
1170 	low_latency = 1,
1171 	bulk_latency = 2,
1172 	latency_invalid = 255
1173 };
1174 
1175 /**
1176  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1177  * @q_vector: structure containing interrupt and ring information
1178  * @ring_container: structure containing ring performance data
1179  *
1180  * Stores a new ITR value based on packets and byte
1181  * counts during the last interrupt.  The advantage of per interrupt
1182  * computation is faster updates and more accurate ITR for the current
1183  * traffic pattern.  Constants in this function were computed
1184  * based on theoretical maximum wire speed and thresholds were set based
1185  * on testing data as well as attempting to minimize response time
1186  * while increasing bulk throughput.
1187  **/
1188 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1189 			       struct ixgbevf_ring_container *ring_container)
1190 {
1191 	int bytes = ring_container->total_bytes;
1192 	int packets = ring_container->total_packets;
1193 	u32 timepassed_us;
1194 	u64 bytes_perint;
1195 	u8 itr_setting = ring_container->itr;
1196 
1197 	if (packets == 0)
1198 		return;
1199 
1200 	/* simple throttle rate management
1201 	 *    0-20MB/s lowest (100000 ints/s)
1202 	 *   20-100MB/s low   (20000 ints/s)
1203 	 *  100-1249MB/s bulk (12000 ints/s)
1204 	 */
1205 	/* what was last interrupt timeslice? */
1206 	timepassed_us = q_vector->itr >> 2;
1207 	bytes_perint = bytes / timepassed_us; /* bytes/usec */
1208 
1209 	switch (itr_setting) {
1210 	case lowest_latency:
1211 		if (bytes_perint > 10)
1212 			itr_setting = low_latency;
1213 		break;
1214 	case low_latency:
1215 		if (bytes_perint > 20)
1216 			itr_setting = bulk_latency;
1217 		else if (bytes_perint <= 10)
1218 			itr_setting = lowest_latency;
1219 		break;
1220 	case bulk_latency:
1221 		if (bytes_perint <= 20)
1222 			itr_setting = low_latency;
1223 		break;
1224 	}
1225 
1226 	/* clear work counters since we have the values we need */
1227 	ring_container->total_bytes = 0;
1228 	ring_container->total_packets = 0;
1229 
1230 	/* write updated itr to ring container */
1231 	ring_container->itr = itr_setting;
1232 }
1233 
1234 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1235 {
1236 	u32 new_itr = q_vector->itr;
1237 	u8 current_itr;
1238 
1239 	ixgbevf_update_itr(q_vector, &q_vector->tx);
1240 	ixgbevf_update_itr(q_vector, &q_vector->rx);
1241 
1242 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1243 
1244 	switch (current_itr) {
1245 	/* counts and packets in update_itr are dependent on these numbers */
1246 	case lowest_latency:
1247 		new_itr = IXGBE_100K_ITR;
1248 		break;
1249 	case low_latency:
1250 		new_itr = IXGBE_20K_ITR;
1251 		break;
1252 	case bulk_latency:
1253 		new_itr = IXGBE_12K_ITR;
1254 		break;
1255 	default:
1256 		break;
1257 	}
1258 
1259 	if (new_itr != q_vector->itr) {
1260 		/* do an exponential smoothing */
1261 		new_itr = (10 * new_itr * q_vector->itr) /
1262 			  ((9 * new_itr) + q_vector->itr);
1263 
1264 		/* save the algorithm value here */
1265 		q_vector->itr = new_itr;
1266 
1267 		ixgbevf_write_eitr(q_vector);
1268 	}
1269 }
1270 
1271 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1272 {
1273 	struct ixgbevf_adapter *adapter = data;
1274 	struct ixgbe_hw *hw = &adapter->hw;
1275 
1276 	hw->mac.get_link_status = 1;
1277 
1278 	ixgbevf_service_event_schedule(adapter);
1279 
1280 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1281 
1282 	return IRQ_HANDLED;
1283 }
1284 
1285 /**
1286  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1287  * @irq: unused
1288  * @data: pointer to our q_vector struct for this interrupt vector
1289  **/
1290 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1291 {
1292 	struct ixgbevf_q_vector *q_vector = data;
1293 
1294 	/* EIAM disabled interrupts (on this vector) for us */
1295 	if (q_vector->rx.ring || q_vector->tx.ring)
1296 		napi_schedule_irqoff(&q_vector->napi);
1297 
1298 	return IRQ_HANDLED;
1299 }
1300 
1301 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1302 				     int r_idx)
1303 {
1304 	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1305 
1306 	a->rx_ring[r_idx]->next = q_vector->rx.ring;
1307 	q_vector->rx.ring = a->rx_ring[r_idx];
1308 	q_vector->rx.count++;
1309 }
1310 
1311 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1312 				     int t_idx)
1313 {
1314 	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1315 
1316 	a->tx_ring[t_idx]->next = q_vector->tx.ring;
1317 	q_vector->tx.ring = a->tx_ring[t_idx];
1318 	q_vector->tx.count++;
1319 }
1320 
1321 /**
1322  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1323  * @adapter: board private structure to initialize
1324  *
1325  * This function maps descriptor rings to the queue-specific vectors
1326  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1327  * one vector per ring/queue, but on a constrained vector budget, we
1328  * group the rings as "efficiently" as possible.  You would add new
1329  * mapping configurations in here.
1330  **/
1331 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1332 {
1333 	int q_vectors;
1334 	int v_start = 0;
1335 	int rxr_idx = 0, txr_idx = 0;
1336 	int rxr_remaining = adapter->num_rx_queues;
1337 	int txr_remaining = adapter->num_tx_queues;
1338 	int i, j;
1339 	int rqpv, tqpv;
1340 
1341 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1342 
1343 	/* The ideal configuration...
1344 	 * We have enough vectors to map one per queue.
1345 	 */
1346 	if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1347 		for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1348 			map_vector_to_rxq(adapter, v_start, rxr_idx);
1349 
1350 		for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1351 			map_vector_to_txq(adapter, v_start, txr_idx);
1352 		return 0;
1353 	}
1354 
1355 	/* If we don't have enough vectors for a 1-to-1
1356 	 * mapping, we'll have to group them so there are
1357 	 * multiple queues per vector.
1358 	 */
1359 	/* Re-adjusting *qpv takes care of the remainder. */
1360 	for (i = v_start; i < q_vectors; i++) {
1361 		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1362 		for (j = 0; j < rqpv; j++) {
1363 			map_vector_to_rxq(adapter, i, rxr_idx);
1364 			rxr_idx++;
1365 			rxr_remaining--;
1366 		}
1367 	}
1368 	for (i = v_start; i < q_vectors; i++) {
1369 		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1370 		for (j = 0; j < tqpv; j++) {
1371 			map_vector_to_txq(adapter, i, txr_idx);
1372 			txr_idx++;
1373 			txr_remaining--;
1374 		}
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 /**
1381  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1382  * @adapter: board private structure
1383  *
1384  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1385  * interrupts from the kernel.
1386  **/
1387 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1388 {
1389 	struct net_device *netdev = adapter->netdev;
1390 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1391 	int vector, err;
1392 	int ri = 0, ti = 0;
1393 
1394 	for (vector = 0; vector < q_vectors; vector++) {
1395 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1396 		struct msix_entry *entry = &adapter->msix_entries[vector];
1397 
1398 		if (q_vector->tx.ring && q_vector->rx.ring) {
1399 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1400 				 "%s-%s-%d", netdev->name, "TxRx", ri++);
1401 			ti++;
1402 		} else if (q_vector->rx.ring) {
1403 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1404 				 "%s-%s-%d", netdev->name, "rx", ri++);
1405 		} else if (q_vector->tx.ring) {
1406 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1407 				 "%s-%s-%d", netdev->name, "tx", ti++);
1408 		} else {
1409 			/* skip this unused q_vector */
1410 			continue;
1411 		}
1412 		err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1413 				  q_vector->name, q_vector);
1414 		if (err) {
1415 			hw_dbg(&adapter->hw,
1416 			       "request_irq failed for MSIX interrupt Error: %d\n",
1417 			       err);
1418 			goto free_queue_irqs;
1419 		}
1420 	}
1421 
1422 	err = request_irq(adapter->msix_entries[vector].vector,
1423 			  &ixgbevf_msix_other, 0, netdev->name, adapter);
1424 	if (err) {
1425 		hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1426 		       err);
1427 		goto free_queue_irqs;
1428 	}
1429 
1430 	return 0;
1431 
1432 free_queue_irqs:
1433 	while (vector) {
1434 		vector--;
1435 		free_irq(adapter->msix_entries[vector].vector,
1436 			 adapter->q_vector[vector]);
1437 	}
1438 	/* This failure is non-recoverable - it indicates the system is
1439 	 * out of MSIX vector resources and the VF driver cannot run
1440 	 * without them.  Set the number of msix vectors to zero
1441 	 * indicating that not enough can be allocated.  The error
1442 	 * will be returned to the user indicating device open failed.
1443 	 * Any further attempts to force the driver to open will also
1444 	 * fail.  The only way to recover is to unload the driver and
1445 	 * reload it again.  If the system has recovered some MSIX
1446 	 * vectors then it may succeed.
1447 	 */
1448 	adapter->num_msix_vectors = 0;
1449 	return err;
1450 }
1451 
1452 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1453 {
1454 	int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1455 
1456 	for (i = 0; i < q_vectors; i++) {
1457 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1458 
1459 		q_vector->rx.ring = NULL;
1460 		q_vector->tx.ring = NULL;
1461 		q_vector->rx.count = 0;
1462 		q_vector->tx.count = 0;
1463 	}
1464 }
1465 
1466 /**
1467  * ixgbevf_request_irq - initialize interrupts
1468  * @adapter: board private structure
1469  *
1470  * Attempts to configure interrupts using the best available
1471  * capabilities of the hardware and kernel.
1472  **/
1473 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1474 {
1475 	int err = ixgbevf_request_msix_irqs(adapter);
1476 
1477 	if (err)
1478 		hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1479 
1480 	return err;
1481 }
1482 
1483 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1484 {
1485 	int i, q_vectors;
1486 
1487 	q_vectors = adapter->num_msix_vectors;
1488 	i = q_vectors - 1;
1489 
1490 	free_irq(adapter->msix_entries[i].vector, adapter);
1491 	i--;
1492 
1493 	for (; i >= 0; i--) {
1494 		/* free only the irqs that were actually requested */
1495 		if (!adapter->q_vector[i]->rx.ring &&
1496 		    !adapter->q_vector[i]->tx.ring)
1497 			continue;
1498 
1499 		free_irq(adapter->msix_entries[i].vector,
1500 			 adapter->q_vector[i]);
1501 	}
1502 
1503 	ixgbevf_reset_q_vectors(adapter);
1504 }
1505 
1506 /**
1507  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1508  * @adapter: board private structure
1509  **/
1510 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1511 {
1512 	struct ixgbe_hw *hw = &adapter->hw;
1513 	int i;
1514 
1515 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1516 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1517 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1518 
1519 	IXGBE_WRITE_FLUSH(hw);
1520 
1521 	for (i = 0; i < adapter->num_msix_vectors; i++)
1522 		synchronize_irq(adapter->msix_entries[i].vector);
1523 }
1524 
1525 /**
1526  * ixgbevf_irq_enable - Enable default interrupt generation settings
1527  * @adapter: board private structure
1528  **/
1529 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1530 {
1531 	struct ixgbe_hw *hw = &adapter->hw;
1532 
1533 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1534 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1535 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1536 }
1537 
1538 /**
1539  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1540  * @adapter: board private structure
1541  * @ring: structure containing ring specific data
1542  *
1543  * Configure the Tx descriptor ring after a reset.
1544  **/
1545 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1546 				      struct ixgbevf_ring *ring)
1547 {
1548 	struct ixgbe_hw *hw = &adapter->hw;
1549 	u64 tdba = ring->dma;
1550 	int wait_loop = 10;
1551 	u32 txdctl = IXGBE_TXDCTL_ENABLE;
1552 	u8 reg_idx = ring->reg_idx;
1553 
1554 	/* disable queue to avoid issues while updating state */
1555 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1556 	IXGBE_WRITE_FLUSH(hw);
1557 
1558 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1559 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1560 	IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1561 			ring->count * sizeof(union ixgbe_adv_tx_desc));
1562 
1563 	/* disable head writeback */
1564 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1565 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1566 
1567 	/* enable relaxed ordering */
1568 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1569 			(IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1570 			 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1571 
1572 	/* reset head and tail pointers */
1573 	IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1574 	IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1575 	ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1576 
1577 	/* reset ntu and ntc to place SW in sync with hardwdare */
1578 	ring->next_to_clean = 0;
1579 	ring->next_to_use = 0;
1580 
1581 	/* In order to avoid issues WTHRESH + PTHRESH should always be equal
1582 	 * to or less than the number of on chip descriptors, which is
1583 	 * currently 40.
1584 	 */
1585 	txdctl |= (8 << 16);    /* WTHRESH = 8 */
1586 
1587 	/* Setting PTHRESH to 32 both improves performance */
1588 	txdctl |= (1 << 8) |    /* HTHRESH = 1 */
1589 		  32;          /* PTHRESH = 32 */
1590 
1591 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1592 
1593 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1594 
1595 	/* poll to verify queue is enabled */
1596 	do {
1597 		usleep_range(1000, 2000);
1598 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1599 	}  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1600 	if (!wait_loop)
1601 		pr_err("Could not enable Tx Queue %d\n", reg_idx);
1602 }
1603 
1604 /**
1605  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1606  * @adapter: board private structure
1607  *
1608  * Configure the Tx unit of the MAC after a reset.
1609  **/
1610 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1611 {
1612 	u32 i;
1613 
1614 	/* Setup the HW Tx Head and Tail descriptor pointers */
1615 	for (i = 0; i < adapter->num_tx_queues; i++)
1616 		ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1617 }
1618 
1619 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1620 
1621 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1622 {
1623 	struct ixgbe_hw *hw = &adapter->hw;
1624 	u32 srrctl;
1625 
1626 	srrctl = IXGBE_SRRCTL_DROP_EN;
1627 
1628 	srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1629 	srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1630 	srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1631 
1632 	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1633 }
1634 
1635 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1636 {
1637 	struct ixgbe_hw *hw = &adapter->hw;
1638 
1639 	/* PSRTYPE must be initialized in 82599 */
1640 	u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1641 		      IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1642 		      IXGBE_PSRTYPE_L2HDR;
1643 
1644 	if (adapter->num_rx_queues > 1)
1645 		psrtype |= 1 << 29;
1646 
1647 	IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1648 }
1649 
1650 #define IXGBEVF_MAX_RX_DESC_POLL 10
1651 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1652 				     struct ixgbevf_ring *ring)
1653 {
1654 	struct ixgbe_hw *hw = &adapter->hw;
1655 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1656 	u32 rxdctl;
1657 	u8 reg_idx = ring->reg_idx;
1658 
1659 	if (IXGBE_REMOVED(hw->hw_addr))
1660 		return;
1661 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1662 	rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1663 
1664 	/* write value back with RXDCTL.ENABLE bit cleared */
1665 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1666 
1667 	/* the hardware may take up to 100us to really disable the Rx queue */
1668 	do {
1669 		udelay(10);
1670 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1671 	} while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1672 
1673 	if (!wait_loop)
1674 		pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1675 		       reg_idx);
1676 }
1677 
1678 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1679 					 struct ixgbevf_ring *ring)
1680 {
1681 	struct ixgbe_hw *hw = &adapter->hw;
1682 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1683 	u32 rxdctl;
1684 	u8 reg_idx = ring->reg_idx;
1685 
1686 	if (IXGBE_REMOVED(hw->hw_addr))
1687 		return;
1688 	do {
1689 		usleep_range(1000, 2000);
1690 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1691 	} while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1692 
1693 	if (!wait_loop)
1694 		pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1695 		       reg_idx);
1696 }
1697 
1698 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1699 {
1700 	struct ixgbe_hw *hw = &adapter->hw;
1701 	u32 vfmrqc = 0, vfreta = 0;
1702 	u16 rss_i = adapter->num_rx_queues;
1703 	u8 i, j;
1704 
1705 	/* Fill out hash function seeds */
1706 	netdev_rss_key_fill(adapter->rss_key, sizeof(adapter->rss_key));
1707 	for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1708 		IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), adapter->rss_key[i]);
1709 
1710 	for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1711 		if (j == rss_i)
1712 			j = 0;
1713 
1714 		adapter->rss_indir_tbl[i] = j;
1715 
1716 		vfreta |= j << (i & 0x3) * 8;
1717 		if ((i & 3) == 3) {
1718 			IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1719 			vfreta = 0;
1720 		}
1721 	}
1722 
1723 	/* Perform hash on these packet types */
1724 	vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1725 		IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1726 		IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1727 		IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1728 
1729 	vfmrqc |= IXGBE_VFMRQC_RSSEN;
1730 
1731 	IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1732 }
1733 
1734 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1735 				      struct ixgbevf_ring *ring)
1736 {
1737 	struct ixgbe_hw *hw = &adapter->hw;
1738 	u64 rdba = ring->dma;
1739 	u32 rxdctl;
1740 	u8 reg_idx = ring->reg_idx;
1741 
1742 	/* disable queue to avoid issues while updating state */
1743 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1744 	ixgbevf_disable_rx_queue(adapter, ring);
1745 
1746 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1747 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1748 	IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1749 			ring->count * sizeof(union ixgbe_adv_rx_desc));
1750 
1751 	/* enable relaxed ordering */
1752 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1753 			IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1754 
1755 	/* reset head and tail pointers */
1756 	IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1757 	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1758 	ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1759 
1760 	/* reset ntu and ntc to place SW in sync with hardwdare */
1761 	ring->next_to_clean = 0;
1762 	ring->next_to_use = 0;
1763 	ring->next_to_alloc = 0;
1764 
1765 	ixgbevf_configure_srrctl(adapter, reg_idx);
1766 
1767 	/* allow any size packet since we can handle overflow */
1768 	rxdctl &= ~IXGBE_RXDCTL_RLPML_EN;
1769 
1770 	rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1771 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1772 
1773 	ixgbevf_rx_desc_queue_enable(adapter, ring);
1774 	ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1775 }
1776 
1777 /**
1778  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1779  * @adapter: board private structure
1780  *
1781  * Configure the Rx unit of the MAC after a reset.
1782  **/
1783 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1784 {
1785 	int i;
1786 	struct ixgbe_hw *hw = &adapter->hw;
1787 	struct net_device *netdev = adapter->netdev;
1788 
1789 	ixgbevf_setup_psrtype(adapter);
1790 	if (hw->mac.type >= ixgbe_mac_X550_vf)
1791 		ixgbevf_setup_vfmrqc(adapter);
1792 
1793 	/* notify the PF of our intent to use this size of frame */
1794 	ixgbevf_rlpml_set_vf(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1795 
1796 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1797 	 * the Base and Length of the Rx Descriptor Ring
1798 	 */
1799 	for (i = 0; i < adapter->num_rx_queues; i++)
1800 		ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]);
1801 }
1802 
1803 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1804 				   __be16 proto, u16 vid)
1805 {
1806 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1807 	struct ixgbe_hw *hw = &adapter->hw;
1808 	int err;
1809 
1810 	spin_lock_bh(&adapter->mbx_lock);
1811 
1812 	/* add VID to filter table */
1813 	err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1814 
1815 	spin_unlock_bh(&adapter->mbx_lock);
1816 
1817 	/* translate error return types so error makes sense */
1818 	if (err == IXGBE_ERR_MBX)
1819 		return -EIO;
1820 
1821 	if (err == IXGBE_ERR_INVALID_ARGUMENT)
1822 		return -EACCES;
1823 
1824 	set_bit(vid, adapter->active_vlans);
1825 
1826 	return err;
1827 }
1828 
1829 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1830 				    __be16 proto, u16 vid)
1831 {
1832 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1833 	struct ixgbe_hw *hw = &adapter->hw;
1834 	int err;
1835 
1836 	spin_lock_bh(&adapter->mbx_lock);
1837 
1838 	/* remove VID from filter table */
1839 	err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1840 
1841 	spin_unlock_bh(&adapter->mbx_lock);
1842 
1843 	clear_bit(vid, adapter->active_vlans);
1844 
1845 	return err;
1846 }
1847 
1848 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1849 {
1850 	u16 vid;
1851 
1852 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1853 		ixgbevf_vlan_rx_add_vid(adapter->netdev,
1854 					htons(ETH_P_8021Q), vid);
1855 }
1856 
1857 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1858 {
1859 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1860 	struct ixgbe_hw *hw = &adapter->hw;
1861 	int count = 0;
1862 
1863 	if ((netdev_uc_count(netdev)) > 10) {
1864 		pr_err("Too many unicast filters - No Space\n");
1865 		return -ENOSPC;
1866 	}
1867 
1868 	if (!netdev_uc_empty(netdev)) {
1869 		struct netdev_hw_addr *ha;
1870 
1871 		netdev_for_each_uc_addr(ha, netdev) {
1872 			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1873 			udelay(200);
1874 		}
1875 	} else {
1876 		/* If the list is empty then send message to PF driver to
1877 		 * clear all MAC VLANs on this VF.
1878 		 */
1879 		hw->mac.ops.set_uc_addr(hw, 0, NULL);
1880 	}
1881 
1882 	return count;
1883 }
1884 
1885 /**
1886  * ixgbevf_set_rx_mode - Multicast and unicast set
1887  * @netdev: network interface device structure
1888  *
1889  * The set_rx_method entry point is called whenever the multicast address
1890  * list, unicast address list or the network interface flags are updated.
1891  * This routine is responsible for configuring the hardware for proper
1892  * multicast mode and configuring requested unicast filters.
1893  **/
1894 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1895 {
1896 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1897 	struct ixgbe_hw *hw = &adapter->hw;
1898 	unsigned int flags = netdev->flags;
1899 	int xcast_mode;
1900 
1901 	xcast_mode = (flags & IFF_ALLMULTI) ? IXGBEVF_XCAST_MODE_ALLMULTI :
1902 		     (flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1903 		     IXGBEVF_XCAST_MODE_MULTI : IXGBEVF_XCAST_MODE_NONE;
1904 
1905 	spin_lock_bh(&adapter->mbx_lock);
1906 
1907 	hw->mac.ops.update_xcast_mode(hw, netdev, xcast_mode);
1908 
1909 	/* reprogram multicast list */
1910 	hw->mac.ops.update_mc_addr_list(hw, netdev);
1911 
1912 	ixgbevf_write_uc_addr_list(netdev);
1913 
1914 	spin_unlock_bh(&adapter->mbx_lock);
1915 }
1916 
1917 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1918 {
1919 	int q_idx;
1920 	struct ixgbevf_q_vector *q_vector;
1921 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1922 
1923 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1924 		q_vector = adapter->q_vector[q_idx];
1925 #ifdef CONFIG_NET_RX_BUSY_POLL
1926 		ixgbevf_qv_init_lock(adapter->q_vector[q_idx]);
1927 #endif
1928 		napi_enable(&q_vector->napi);
1929 	}
1930 }
1931 
1932 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1933 {
1934 	int q_idx;
1935 	struct ixgbevf_q_vector *q_vector;
1936 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1937 
1938 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1939 		q_vector = adapter->q_vector[q_idx];
1940 		napi_disable(&q_vector->napi);
1941 #ifdef CONFIG_NET_RX_BUSY_POLL
1942 		while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) {
1943 			pr_info("QV %d locked\n", q_idx);
1944 			usleep_range(1000, 20000);
1945 		}
1946 #endif /* CONFIG_NET_RX_BUSY_POLL */
1947 	}
1948 }
1949 
1950 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
1951 {
1952 	struct ixgbe_hw *hw = &adapter->hw;
1953 	unsigned int def_q = 0;
1954 	unsigned int num_tcs = 0;
1955 	unsigned int num_rx_queues = adapter->num_rx_queues;
1956 	unsigned int num_tx_queues = adapter->num_tx_queues;
1957 	int err;
1958 
1959 	spin_lock_bh(&adapter->mbx_lock);
1960 
1961 	/* fetch queue configuration from the PF */
1962 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1963 
1964 	spin_unlock_bh(&adapter->mbx_lock);
1965 
1966 	if (err)
1967 		return err;
1968 
1969 	if (num_tcs > 1) {
1970 		/* we need only one Tx queue */
1971 		num_tx_queues = 1;
1972 
1973 		/* update default Tx ring register index */
1974 		adapter->tx_ring[0]->reg_idx = def_q;
1975 
1976 		/* we need as many queues as traffic classes */
1977 		num_rx_queues = num_tcs;
1978 	}
1979 
1980 	/* if we have a bad config abort request queue reset */
1981 	if ((adapter->num_rx_queues != num_rx_queues) ||
1982 	    (adapter->num_tx_queues != num_tx_queues)) {
1983 		/* force mailbox timeout to prevent further messages */
1984 		hw->mbx.timeout = 0;
1985 
1986 		/* wait for watchdog to come around and bail us out */
1987 		adapter->flags |= IXGBEVF_FLAG_QUEUE_RESET_REQUESTED;
1988 	}
1989 
1990 	return 0;
1991 }
1992 
1993 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1994 {
1995 	ixgbevf_configure_dcb(adapter);
1996 
1997 	ixgbevf_set_rx_mode(adapter->netdev);
1998 
1999 	ixgbevf_restore_vlan(adapter);
2000 
2001 	ixgbevf_configure_tx(adapter);
2002 	ixgbevf_configure_rx(adapter);
2003 }
2004 
2005 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2006 {
2007 	/* Only save pre-reset stats if there are some */
2008 	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2009 		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2010 			adapter->stats.base_vfgprc;
2011 		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2012 			adapter->stats.base_vfgptc;
2013 		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2014 			adapter->stats.base_vfgorc;
2015 		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2016 			adapter->stats.base_vfgotc;
2017 		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2018 			adapter->stats.base_vfmprc;
2019 	}
2020 }
2021 
2022 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2023 {
2024 	struct ixgbe_hw *hw = &adapter->hw;
2025 
2026 	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2027 	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2028 	adapter->stats.last_vfgorc |=
2029 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2030 	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2031 	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2032 	adapter->stats.last_vfgotc |=
2033 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2034 	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2035 
2036 	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2037 	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2038 	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2039 	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2040 	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2041 }
2042 
2043 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2044 {
2045 	struct ixgbe_hw *hw = &adapter->hw;
2046 	int api[] = { ixgbe_mbox_api_12,
2047 		      ixgbe_mbox_api_11,
2048 		      ixgbe_mbox_api_10,
2049 		      ixgbe_mbox_api_unknown };
2050 	int err, idx = 0;
2051 
2052 	spin_lock_bh(&adapter->mbx_lock);
2053 
2054 	while (api[idx] != ixgbe_mbox_api_unknown) {
2055 		err = ixgbevf_negotiate_api_version(hw, api[idx]);
2056 		if (!err)
2057 			break;
2058 		idx++;
2059 	}
2060 
2061 	spin_unlock_bh(&adapter->mbx_lock);
2062 }
2063 
2064 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2065 {
2066 	struct net_device *netdev = adapter->netdev;
2067 	struct ixgbe_hw *hw = &adapter->hw;
2068 
2069 	ixgbevf_configure_msix(adapter);
2070 
2071 	spin_lock_bh(&adapter->mbx_lock);
2072 
2073 	if (is_valid_ether_addr(hw->mac.addr))
2074 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2075 	else
2076 		hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2077 
2078 	spin_unlock_bh(&adapter->mbx_lock);
2079 
2080 	smp_mb__before_atomic();
2081 	clear_bit(__IXGBEVF_DOWN, &adapter->state);
2082 	ixgbevf_napi_enable_all(adapter);
2083 
2084 	/* clear any pending interrupts, may auto mask */
2085 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2086 	ixgbevf_irq_enable(adapter);
2087 
2088 	/* enable transmits */
2089 	netif_tx_start_all_queues(netdev);
2090 
2091 	ixgbevf_save_reset_stats(adapter);
2092 	ixgbevf_init_last_counter_stats(adapter);
2093 
2094 	hw->mac.get_link_status = 1;
2095 	mod_timer(&adapter->service_timer, jiffies);
2096 }
2097 
2098 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2099 {
2100 	ixgbevf_configure(adapter);
2101 
2102 	ixgbevf_up_complete(adapter);
2103 }
2104 
2105 /**
2106  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2107  * @rx_ring: ring to free buffers from
2108  **/
2109 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2110 {
2111 	struct device *dev = rx_ring->dev;
2112 	unsigned long size;
2113 	unsigned int i;
2114 
2115 	/* Free Rx ring sk_buff */
2116 	if (rx_ring->skb) {
2117 		dev_kfree_skb(rx_ring->skb);
2118 		rx_ring->skb = NULL;
2119 	}
2120 
2121 	/* ring already cleared, nothing to do */
2122 	if (!rx_ring->rx_buffer_info)
2123 		return;
2124 
2125 	/* Free all the Rx ring pages */
2126 	for (i = 0; i < rx_ring->count; i++) {
2127 		struct ixgbevf_rx_buffer *rx_buffer;
2128 
2129 		rx_buffer = &rx_ring->rx_buffer_info[i];
2130 		if (rx_buffer->dma)
2131 			dma_unmap_page(dev, rx_buffer->dma,
2132 				       PAGE_SIZE, DMA_FROM_DEVICE);
2133 		rx_buffer->dma = 0;
2134 		if (rx_buffer->page)
2135 			__free_page(rx_buffer->page);
2136 		rx_buffer->page = NULL;
2137 	}
2138 
2139 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2140 	memset(rx_ring->rx_buffer_info, 0, size);
2141 
2142 	/* Zero out the descriptor ring */
2143 	memset(rx_ring->desc, 0, rx_ring->size);
2144 }
2145 
2146 /**
2147  * ixgbevf_clean_tx_ring - Free Tx Buffers
2148  * @tx_ring: ring to be cleaned
2149  **/
2150 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2151 {
2152 	struct ixgbevf_tx_buffer *tx_buffer_info;
2153 	unsigned long size;
2154 	unsigned int i;
2155 
2156 	if (!tx_ring->tx_buffer_info)
2157 		return;
2158 
2159 	/* Free all the Tx ring sk_buffs */
2160 	for (i = 0; i < tx_ring->count; i++) {
2161 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2162 		ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2163 	}
2164 
2165 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2166 	memset(tx_ring->tx_buffer_info, 0, size);
2167 
2168 	memset(tx_ring->desc, 0, tx_ring->size);
2169 }
2170 
2171 /**
2172  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2173  * @adapter: board private structure
2174  **/
2175 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2176 {
2177 	int i;
2178 
2179 	for (i = 0; i < adapter->num_rx_queues; i++)
2180 		ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2181 }
2182 
2183 /**
2184  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2185  * @adapter: board private structure
2186  **/
2187 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2188 {
2189 	int i;
2190 
2191 	for (i = 0; i < adapter->num_tx_queues; i++)
2192 		ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2193 }
2194 
2195 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2196 {
2197 	struct net_device *netdev = adapter->netdev;
2198 	struct ixgbe_hw *hw = &adapter->hw;
2199 	int i;
2200 
2201 	/* signal that we are down to the interrupt handler */
2202 	if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2203 		return; /* do nothing if already down */
2204 
2205 	/* disable all enabled Rx queues */
2206 	for (i = 0; i < adapter->num_rx_queues; i++)
2207 		ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2208 
2209 	usleep_range(10000, 20000);
2210 
2211 	netif_tx_stop_all_queues(netdev);
2212 
2213 	/* call carrier off first to avoid false dev_watchdog timeouts */
2214 	netif_carrier_off(netdev);
2215 	netif_tx_disable(netdev);
2216 
2217 	ixgbevf_irq_disable(adapter);
2218 
2219 	ixgbevf_napi_disable_all(adapter);
2220 
2221 	del_timer_sync(&adapter->service_timer);
2222 
2223 	/* disable transmits in the hardware now that interrupts are off */
2224 	for (i = 0; i < adapter->num_tx_queues; i++) {
2225 		u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2226 
2227 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2228 				IXGBE_TXDCTL_SWFLSH);
2229 	}
2230 
2231 	if (!pci_channel_offline(adapter->pdev))
2232 		ixgbevf_reset(adapter);
2233 
2234 	ixgbevf_clean_all_tx_rings(adapter);
2235 	ixgbevf_clean_all_rx_rings(adapter);
2236 }
2237 
2238 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2239 {
2240 	WARN_ON(in_interrupt());
2241 
2242 	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2243 		msleep(1);
2244 
2245 	ixgbevf_down(adapter);
2246 	ixgbevf_up(adapter);
2247 
2248 	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2249 }
2250 
2251 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2252 {
2253 	struct ixgbe_hw *hw = &adapter->hw;
2254 	struct net_device *netdev = adapter->netdev;
2255 
2256 	if (hw->mac.ops.reset_hw(hw)) {
2257 		hw_dbg(hw, "PF still resetting\n");
2258 	} else {
2259 		hw->mac.ops.init_hw(hw);
2260 		ixgbevf_negotiate_api(adapter);
2261 	}
2262 
2263 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2264 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2265 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2266 	}
2267 
2268 	adapter->last_reset = jiffies;
2269 }
2270 
2271 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2272 					int vectors)
2273 {
2274 	int vector_threshold;
2275 
2276 	/* We'll want at least 2 (vector_threshold):
2277 	 * 1) TxQ[0] + RxQ[0] handler
2278 	 * 2) Other (Link Status Change, etc.)
2279 	 */
2280 	vector_threshold = MIN_MSIX_COUNT;
2281 
2282 	/* The more we get, the more we will assign to Tx/Rx Cleanup
2283 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2284 	 * Right now, we simply care about how many we'll get; we'll
2285 	 * set them up later while requesting irq's.
2286 	 */
2287 	vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2288 					vector_threshold, vectors);
2289 
2290 	if (vectors < 0) {
2291 		dev_err(&adapter->pdev->dev,
2292 			"Unable to allocate MSI-X interrupts\n");
2293 		kfree(adapter->msix_entries);
2294 		adapter->msix_entries = NULL;
2295 		return vectors;
2296 	}
2297 
2298 	/* Adjust for only the vectors we'll use, which is minimum
2299 	 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2300 	 * vectors we were allocated.
2301 	 */
2302 	adapter->num_msix_vectors = vectors;
2303 
2304 	return 0;
2305 }
2306 
2307 /**
2308  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2309  * @adapter: board private structure to initialize
2310  *
2311  * This is the top level queue allocation routine.  The order here is very
2312  * important, starting with the "most" number of features turned on at once,
2313  * and ending with the smallest set of features.  This way large combinations
2314  * can be allocated if they're turned on, and smaller combinations are the
2315  * fallthrough conditions.
2316  *
2317  **/
2318 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2319 {
2320 	struct ixgbe_hw *hw = &adapter->hw;
2321 	unsigned int def_q = 0;
2322 	unsigned int num_tcs = 0;
2323 	int err;
2324 
2325 	/* Start with base case */
2326 	adapter->num_rx_queues = 1;
2327 	adapter->num_tx_queues = 1;
2328 
2329 	spin_lock_bh(&adapter->mbx_lock);
2330 
2331 	/* fetch queue configuration from the PF */
2332 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2333 
2334 	spin_unlock_bh(&adapter->mbx_lock);
2335 
2336 	if (err)
2337 		return;
2338 
2339 	/* we need as many queues as traffic classes */
2340 	if (num_tcs > 1) {
2341 		adapter->num_rx_queues = num_tcs;
2342 	} else {
2343 		u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2344 
2345 		switch (hw->api_version) {
2346 		case ixgbe_mbox_api_11:
2347 		case ixgbe_mbox_api_12:
2348 			adapter->num_rx_queues = rss;
2349 			adapter->num_tx_queues = rss;
2350 		default:
2351 			break;
2352 		}
2353 	}
2354 }
2355 
2356 /**
2357  * ixgbevf_alloc_queues - Allocate memory for all rings
2358  * @adapter: board private structure to initialize
2359  *
2360  * We allocate one ring per queue at run-time since we don't know the
2361  * number of queues at compile-time.  The polling_netdev array is
2362  * intended for Multiqueue, but should work fine with a single queue.
2363  **/
2364 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2365 {
2366 	struct ixgbevf_ring *ring;
2367 	int rx = 0, tx = 0;
2368 
2369 	for (; tx < adapter->num_tx_queues; tx++) {
2370 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2371 		if (!ring)
2372 			goto err_allocation;
2373 
2374 		ring->dev = &adapter->pdev->dev;
2375 		ring->netdev = adapter->netdev;
2376 		ring->count = adapter->tx_ring_count;
2377 		ring->queue_index = tx;
2378 		ring->reg_idx = tx;
2379 
2380 		adapter->tx_ring[tx] = ring;
2381 	}
2382 
2383 	for (; rx < adapter->num_rx_queues; rx++) {
2384 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2385 		if (!ring)
2386 			goto err_allocation;
2387 
2388 		ring->dev = &adapter->pdev->dev;
2389 		ring->netdev = adapter->netdev;
2390 
2391 		ring->count = adapter->rx_ring_count;
2392 		ring->queue_index = rx;
2393 		ring->reg_idx = rx;
2394 
2395 		adapter->rx_ring[rx] = ring;
2396 	}
2397 
2398 	return 0;
2399 
2400 err_allocation:
2401 	while (tx) {
2402 		kfree(adapter->tx_ring[--tx]);
2403 		adapter->tx_ring[tx] = NULL;
2404 	}
2405 
2406 	while (rx) {
2407 		kfree(adapter->rx_ring[--rx]);
2408 		adapter->rx_ring[rx] = NULL;
2409 	}
2410 	return -ENOMEM;
2411 }
2412 
2413 /**
2414  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2415  * @adapter: board private structure to initialize
2416  *
2417  * Attempt to configure the interrupts using the best available
2418  * capabilities of the hardware and the kernel.
2419  **/
2420 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2421 {
2422 	struct net_device *netdev = adapter->netdev;
2423 	int err;
2424 	int vector, v_budget;
2425 
2426 	/* It's easy to be greedy for MSI-X vectors, but it really
2427 	 * doesn't do us much good if we have a lot more vectors
2428 	 * than CPU's.  So let's be conservative and only ask for
2429 	 * (roughly) the same number of vectors as there are CPU's.
2430 	 * The default is to use pairs of vectors.
2431 	 */
2432 	v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2433 	v_budget = min_t(int, v_budget, num_online_cpus());
2434 	v_budget += NON_Q_VECTORS;
2435 
2436 	/* A failure in MSI-X entry allocation isn't fatal, but it does
2437 	 * mean we disable MSI-X capabilities of the adapter.
2438 	 */
2439 	adapter->msix_entries = kcalloc(v_budget,
2440 					sizeof(struct msix_entry), GFP_KERNEL);
2441 	if (!adapter->msix_entries)
2442 		return -ENOMEM;
2443 
2444 	for (vector = 0; vector < v_budget; vector++)
2445 		adapter->msix_entries[vector].entry = vector;
2446 
2447 	err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
2448 	if (err)
2449 		return err;
2450 
2451 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
2452 	if (err)
2453 		return err;
2454 
2455 	return netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
2456 }
2457 
2458 /**
2459  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2460  * @adapter: board private structure to initialize
2461  *
2462  * We allocate one q_vector per queue interrupt.  If allocation fails we
2463  * return -ENOMEM.
2464  **/
2465 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2466 {
2467 	int q_idx, num_q_vectors;
2468 	struct ixgbevf_q_vector *q_vector;
2469 
2470 	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2471 
2472 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2473 		q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2474 		if (!q_vector)
2475 			goto err_out;
2476 		q_vector->adapter = adapter;
2477 		q_vector->v_idx = q_idx;
2478 		netif_napi_add(adapter->netdev, &q_vector->napi,
2479 			       ixgbevf_poll, 64);
2480 		adapter->q_vector[q_idx] = q_vector;
2481 	}
2482 
2483 	return 0;
2484 
2485 err_out:
2486 	while (q_idx) {
2487 		q_idx--;
2488 		q_vector = adapter->q_vector[q_idx];
2489 #ifdef CONFIG_NET_RX_BUSY_POLL
2490 		napi_hash_del(&q_vector->napi);
2491 #endif
2492 		netif_napi_del(&q_vector->napi);
2493 		kfree(q_vector);
2494 		adapter->q_vector[q_idx] = NULL;
2495 	}
2496 	return -ENOMEM;
2497 }
2498 
2499 /**
2500  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2501  * @adapter: board private structure to initialize
2502  *
2503  * This function frees the memory allocated to the q_vectors.  In addition if
2504  * NAPI is enabled it will delete any references to the NAPI struct prior
2505  * to freeing the q_vector.
2506  **/
2507 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2508 {
2509 	int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2510 
2511 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2512 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2513 
2514 		adapter->q_vector[q_idx] = NULL;
2515 #ifdef CONFIG_NET_RX_BUSY_POLL
2516 		napi_hash_del(&q_vector->napi);
2517 #endif
2518 		netif_napi_del(&q_vector->napi);
2519 		kfree(q_vector);
2520 	}
2521 }
2522 
2523 /**
2524  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2525  * @adapter: board private structure
2526  *
2527  **/
2528 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2529 {
2530 	pci_disable_msix(adapter->pdev);
2531 	kfree(adapter->msix_entries);
2532 	adapter->msix_entries = NULL;
2533 }
2534 
2535 /**
2536  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2537  * @adapter: board private structure to initialize
2538  *
2539  **/
2540 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2541 {
2542 	int err;
2543 
2544 	/* Number of supported queues */
2545 	ixgbevf_set_num_queues(adapter);
2546 
2547 	err = ixgbevf_set_interrupt_capability(adapter);
2548 	if (err) {
2549 		hw_dbg(&adapter->hw,
2550 		       "Unable to setup interrupt capabilities\n");
2551 		goto err_set_interrupt;
2552 	}
2553 
2554 	err = ixgbevf_alloc_q_vectors(adapter);
2555 	if (err) {
2556 		hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2557 		goto err_alloc_q_vectors;
2558 	}
2559 
2560 	err = ixgbevf_alloc_queues(adapter);
2561 	if (err) {
2562 		pr_err("Unable to allocate memory for queues\n");
2563 		goto err_alloc_queues;
2564 	}
2565 
2566 	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n",
2567 	       (adapter->num_rx_queues > 1) ? "Enabled" :
2568 	       "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2569 
2570 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2571 
2572 	return 0;
2573 err_alloc_queues:
2574 	ixgbevf_free_q_vectors(adapter);
2575 err_alloc_q_vectors:
2576 	ixgbevf_reset_interrupt_capability(adapter);
2577 err_set_interrupt:
2578 	return err;
2579 }
2580 
2581 /**
2582  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2583  * @adapter: board private structure to clear interrupt scheme on
2584  *
2585  * We go through and clear interrupt specific resources and reset the structure
2586  * to pre-load conditions
2587  **/
2588 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2589 {
2590 	int i;
2591 
2592 	for (i = 0; i < adapter->num_tx_queues; i++) {
2593 		kfree(adapter->tx_ring[i]);
2594 		adapter->tx_ring[i] = NULL;
2595 	}
2596 	for (i = 0; i < adapter->num_rx_queues; i++) {
2597 		kfree(adapter->rx_ring[i]);
2598 		adapter->rx_ring[i] = NULL;
2599 	}
2600 
2601 	adapter->num_tx_queues = 0;
2602 	adapter->num_rx_queues = 0;
2603 
2604 	ixgbevf_free_q_vectors(adapter);
2605 	ixgbevf_reset_interrupt_capability(adapter);
2606 }
2607 
2608 /**
2609  * ixgbevf_sw_init - Initialize general software structures
2610  * @adapter: board private structure to initialize
2611  *
2612  * ixgbevf_sw_init initializes the Adapter private data structure.
2613  * Fields are initialized based on PCI device information and
2614  * OS network device settings (MTU size).
2615  **/
2616 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2617 {
2618 	struct ixgbe_hw *hw = &adapter->hw;
2619 	struct pci_dev *pdev = adapter->pdev;
2620 	struct net_device *netdev = adapter->netdev;
2621 	int err;
2622 
2623 	/* PCI config space info */
2624 	hw->vendor_id = pdev->vendor;
2625 	hw->device_id = pdev->device;
2626 	hw->revision_id = pdev->revision;
2627 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2628 	hw->subsystem_device_id = pdev->subsystem_device;
2629 
2630 	hw->mbx.ops.init_params(hw);
2631 
2632 	/* assume legacy case in which PF would only give VF 2 queues */
2633 	hw->mac.max_tx_queues = 2;
2634 	hw->mac.max_rx_queues = 2;
2635 
2636 	/* lock to protect mailbox accesses */
2637 	spin_lock_init(&adapter->mbx_lock);
2638 
2639 	err = hw->mac.ops.reset_hw(hw);
2640 	if (err) {
2641 		dev_info(&pdev->dev,
2642 			 "PF still in reset state.  Is the PF interface up?\n");
2643 	} else {
2644 		err = hw->mac.ops.init_hw(hw);
2645 		if (err) {
2646 			pr_err("init_shared_code failed: %d\n", err);
2647 			goto out;
2648 		}
2649 		ixgbevf_negotiate_api(adapter);
2650 		err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2651 		if (err)
2652 			dev_info(&pdev->dev, "Error reading MAC address\n");
2653 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2654 			dev_info(&pdev->dev,
2655 				 "MAC address not assigned by administrator.\n");
2656 		ether_addr_copy(netdev->dev_addr, hw->mac.addr);
2657 	}
2658 
2659 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2660 		dev_info(&pdev->dev, "Assigning random MAC address\n");
2661 		eth_hw_addr_random(netdev);
2662 		ether_addr_copy(hw->mac.addr, netdev->dev_addr);
2663 		ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
2664 	}
2665 
2666 	/* Enable dynamic interrupt throttling rates */
2667 	adapter->rx_itr_setting = 1;
2668 	adapter->tx_itr_setting = 1;
2669 
2670 	/* set default ring sizes */
2671 	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2672 	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2673 
2674 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2675 	return 0;
2676 
2677 out:
2678 	return err;
2679 }
2680 
2681 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
2682 	{							\
2683 		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
2684 		if (current_counter < last_counter)		\
2685 			counter += 0x100000000LL;		\
2686 		last_counter = current_counter;			\
2687 		counter &= 0xFFFFFFFF00000000LL;		\
2688 		counter |= current_counter;			\
2689 	}
2690 
2691 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2692 	{								 \
2693 		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
2694 		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
2695 		u64 current_counter = (current_counter_msb << 32) |	 \
2696 			current_counter_lsb;				 \
2697 		if (current_counter < last_counter)			 \
2698 			counter += 0x1000000000LL;			 \
2699 		last_counter = current_counter;				 \
2700 		counter &= 0xFFFFFFF000000000LL;			 \
2701 		counter |= current_counter;				 \
2702 	}
2703 /**
2704  * ixgbevf_update_stats - Update the board statistics counters.
2705  * @adapter: board private structure
2706  **/
2707 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2708 {
2709 	struct ixgbe_hw *hw = &adapter->hw;
2710 	int i;
2711 
2712 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2713 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2714 		return;
2715 
2716 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2717 				adapter->stats.vfgprc);
2718 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2719 				adapter->stats.vfgptc);
2720 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2721 				adapter->stats.last_vfgorc,
2722 				adapter->stats.vfgorc);
2723 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2724 				adapter->stats.last_vfgotc,
2725 				adapter->stats.vfgotc);
2726 	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2727 				adapter->stats.vfmprc);
2728 
2729 	for (i = 0;  i  < adapter->num_rx_queues;  i++) {
2730 		adapter->hw_csum_rx_error +=
2731 			adapter->rx_ring[i]->hw_csum_rx_error;
2732 		adapter->rx_ring[i]->hw_csum_rx_error = 0;
2733 	}
2734 }
2735 
2736 /**
2737  * ixgbevf_service_timer - Timer Call-back
2738  * @data: pointer to adapter cast into an unsigned long
2739  **/
2740 static void ixgbevf_service_timer(unsigned long data)
2741 {
2742 	struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2743 
2744 	/* Reset the timer */
2745 	mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
2746 
2747 	ixgbevf_service_event_schedule(adapter);
2748 }
2749 
2750 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
2751 {
2752 	if (!(adapter->flags & IXGBEVF_FLAG_RESET_REQUESTED))
2753 		return;
2754 
2755 	adapter->flags &= ~IXGBEVF_FLAG_RESET_REQUESTED;
2756 
2757 	/* If we're already down or resetting, just bail */
2758 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2759 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2760 		return;
2761 
2762 	adapter->tx_timeout_count++;
2763 
2764 	ixgbevf_reinit_locked(adapter);
2765 }
2766 
2767 /**
2768  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
2769  * @adapter: pointer to the device adapter structure
2770  *
2771  * This function serves two purposes.  First it strobes the interrupt lines
2772  * in order to make certain interrupts are occurring.  Secondly it sets the
2773  * bits needed to check for TX hangs.  As a result we should immediately
2774  * determine if a hang has occurred.
2775  **/
2776 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
2777 {
2778 	struct ixgbe_hw *hw = &adapter->hw;
2779 	u32 eics = 0;
2780 	int i;
2781 
2782 	/* If we're down or resetting, just bail */
2783 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2784 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2785 		return;
2786 
2787 	/* Force detection of hung controller */
2788 	if (netif_carrier_ok(adapter->netdev)) {
2789 		for (i = 0; i < adapter->num_tx_queues; i++)
2790 			set_check_for_tx_hang(adapter->tx_ring[i]);
2791 	}
2792 
2793 	/* get one bit for every active Tx/Rx interrupt vector */
2794 	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2795 		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2796 
2797 		if (qv->rx.ring || qv->tx.ring)
2798 			eics |= 1 << i;
2799 	}
2800 
2801 	/* Cause software interrupt to ensure rings are cleaned */
2802 	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2803 }
2804 
2805 /**
2806  * ixgbevf_watchdog_update_link - update the link status
2807  * @adapter: pointer to the device adapter structure
2808  **/
2809 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
2810 {
2811 	struct ixgbe_hw *hw = &adapter->hw;
2812 	u32 link_speed = adapter->link_speed;
2813 	bool link_up = adapter->link_up;
2814 	s32 err;
2815 
2816 	spin_lock_bh(&adapter->mbx_lock);
2817 
2818 	err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2819 
2820 	spin_unlock_bh(&adapter->mbx_lock);
2821 
2822 	/* if check for link returns error we will need to reset */
2823 	if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
2824 		adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED;
2825 		link_up = false;
2826 	}
2827 
2828 	adapter->link_up = link_up;
2829 	adapter->link_speed = link_speed;
2830 }
2831 
2832 /**
2833  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
2834  *				 print link up message
2835  * @adapter: pointer to the device adapter structure
2836  **/
2837 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
2838 {
2839 	struct net_device *netdev = adapter->netdev;
2840 
2841 	/* only continue if link was previously down */
2842 	if (netif_carrier_ok(netdev))
2843 		return;
2844 
2845 	dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
2846 		 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2847 		 "10 Gbps" :
2848 		 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
2849 		 "1 Gbps" :
2850 		 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
2851 		 "100 Mbps" :
2852 		 "unknown speed");
2853 
2854 	netif_carrier_on(netdev);
2855 }
2856 
2857 /**
2858  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
2859  *				   print link down message
2860  * @adapter: pointer to the adapter structure
2861  **/
2862 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
2863 {
2864 	struct net_device *netdev = adapter->netdev;
2865 
2866 	adapter->link_speed = 0;
2867 
2868 	/* only continue if link was up previously */
2869 	if (!netif_carrier_ok(netdev))
2870 		return;
2871 
2872 	dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2873 
2874 	netif_carrier_off(netdev);
2875 }
2876 
2877 /**
2878  * ixgbevf_watchdog_subtask - worker thread to bring link up
2879  * @work: pointer to work_struct containing our data
2880  **/
2881 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
2882 {
2883 	/* if interface is down do nothing */
2884 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2885 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2886 		return;
2887 
2888 	ixgbevf_watchdog_update_link(adapter);
2889 
2890 	if (adapter->link_up)
2891 		ixgbevf_watchdog_link_is_up(adapter);
2892 	else
2893 		ixgbevf_watchdog_link_is_down(adapter);
2894 
2895 	ixgbevf_update_stats(adapter);
2896 }
2897 
2898 /**
2899  * ixgbevf_service_task - manages and runs subtasks
2900  * @work: pointer to work_struct containing our data
2901  **/
2902 static void ixgbevf_service_task(struct work_struct *work)
2903 {
2904 	struct ixgbevf_adapter *adapter = container_of(work,
2905 						       struct ixgbevf_adapter,
2906 						       service_task);
2907 	struct ixgbe_hw *hw = &adapter->hw;
2908 
2909 	if (IXGBE_REMOVED(hw->hw_addr)) {
2910 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
2911 			rtnl_lock();
2912 			ixgbevf_down(adapter);
2913 			rtnl_unlock();
2914 		}
2915 		return;
2916 	}
2917 
2918 	ixgbevf_queue_reset_subtask(adapter);
2919 	ixgbevf_reset_subtask(adapter);
2920 	ixgbevf_watchdog_subtask(adapter);
2921 	ixgbevf_check_hang_subtask(adapter);
2922 
2923 	ixgbevf_service_event_complete(adapter);
2924 }
2925 
2926 /**
2927  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2928  * @tx_ring: Tx descriptor ring for a specific queue
2929  *
2930  * Free all transmit software resources
2931  **/
2932 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
2933 {
2934 	ixgbevf_clean_tx_ring(tx_ring);
2935 
2936 	vfree(tx_ring->tx_buffer_info);
2937 	tx_ring->tx_buffer_info = NULL;
2938 
2939 	/* if not set, then don't free */
2940 	if (!tx_ring->desc)
2941 		return;
2942 
2943 	dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
2944 			  tx_ring->dma);
2945 
2946 	tx_ring->desc = NULL;
2947 }
2948 
2949 /**
2950  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2951  * @adapter: board private structure
2952  *
2953  * Free all transmit software resources
2954  **/
2955 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2956 {
2957 	int i;
2958 
2959 	for (i = 0; i < adapter->num_tx_queues; i++)
2960 		if (adapter->tx_ring[i]->desc)
2961 			ixgbevf_free_tx_resources(adapter->tx_ring[i]);
2962 }
2963 
2964 /**
2965  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2966  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
2967  *
2968  * Return 0 on success, negative on failure
2969  **/
2970 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
2971 {
2972 	int size;
2973 
2974 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2975 	tx_ring->tx_buffer_info = vzalloc(size);
2976 	if (!tx_ring->tx_buffer_info)
2977 		goto err;
2978 
2979 	/* round up to nearest 4K */
2980 	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2981 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2982 
2983 	tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
2984 					   &tx_ring->dma, GFP_KERNEL);
2985 	if (!tx_ring->desc)
2986 		goto err;
2987 
2988 	return 0;
2989 
2990 err:
2991 	vfree(tx_ring->tx_buffer_info);
2992 	tx_ring->tx_buffer_info = NULL;
2993 	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
2994 	return -ENOMEM;
2995 }
2996 
2997 /**
2998  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2999  * @adapter: board private structure
3000  *
3001  * If this function returns with an error, then it's possible one or
3002  * more of the rings is populated (while the rest are not).  It is the
3003  * callers duty to clean those orphaned rings.
3004  *
3005  * Return 0 on success, negative on failure
3006  **/
3007 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3008 {
3009 	int i, err = 0;
3010 
3011 	for (i = 0; i < adapter->num_tx_queues; i++) {
3012 		err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3013 		if (!err)
3014 			continue;
3015 		hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3016 		break;
3017 	}
3018 
3019 	return err;
3020 }
3021 
3022 /**
3023  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3024  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3025  *
3026  * Returns 0 on success, negative on failure
3027  **/
3028 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring)
3029 {
3030 	int size;
3031 
3032 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3033 	rx_ring->rx_buffer_info = vzalloc(size);
3034 	if (!rx_ring->rx_buffer_info)
3035 		goto err;
3036 
3037 	/* Round up to nearest 4K */
3038 	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3039 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3040 
3041 	rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3042 					   &rx_ring->dma, GFP_KERNEL);
3043 
3044 	if (!rx_ring->desc)
3045 		goto err;
3046 
3047 	return 0;
3048 err:
3049 	vfree(rx_ring->rx_buffer_info);
3050 	rx_ring->rx_buffer_info = NULL;
3051 	dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3052 	return -ENOMEM;
3053 }
3054 
3055 /**
3056  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3057  * @adapter: board private structure
3058  *
3059  * If this function returns with an error, then it's possible one or
3060  * more of the rings is populated (while the rest are not).  It is the
3061  * callers duty to clean those orphaned rings.
3062  *
3063  * Return 0 on success, negative on failure
3064  **/
3065 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3066 {
3067 	int i, err = 0;
3068 
3069 	for (i = 0; i < adapter->num_rx_queues; i++) {
3070 		err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]);
3071 		if (!err)
3072 			continue;
3073 		hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3074 		break;
3075 	}
3076 	return err;
3077 }
3078 
3079 /**
3080  * ixgbevf_free_rx_resources - Free Rx Resources
3081  * @rx_ring: ring to clean the resources from
3082  *
3083  * Free all receive software resources
3084  **/
3085 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3086 {
3087 	ixgbevf_clean_rx_ring(rx_ring);
3088 
3089 	vfree(rx_ring->rx_buffer_info);
3090 	rx_ring->rx_buffer_info = NULL;
3091 
3092 	dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3093 			  rx_ring->dma);
3094 
3095 	rx_ring->desc = NULL;
3096 }
3097 
3098 /**
3099  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3100  * @adapter: board private structure
3101  *
3102  * Free all receive software resources
3103  **/
3104 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3105 {
3106 	int i;
3107 
3108 	for (i = 0; i < adapter->num_rx_queues; i++)
3109 		if (adapter->rx_ring[i]->desc)
3110 			ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3111 }
3112 
3113 /**
3114  * ixgbevf_open - Called when a network interface is made active
3115  * @netdev: network interface device structure
3116  *
3117  * Returns 0 on success, negative value on failure
3118  *
3119  * The open entry point is called when a network interface is made
3120  * active by the system (IFF_UP).  At this point all resources needed
3121  * for transmit and receive operations are allocated, the interrupt
3122  * handler is registered with the OS, the watchdog timer is started,
3123  * and the stack is notified that the interface is ready.
3124  **/
3125 static int ixgbevf_open(struct net_device *netdev)
3126 {
3127 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3128 	struct ixgbe_hw *hw = &adapter->hw;
3129 	int err;
3130 
3131 	/* A previous failure to open the device because of a lack of
3132 	 * available MSIX vector resources may have reset the number
3133 	 * of msix vectors variable to zero.  The only way to recover
3134 	 * is to unload/reload the driver and hope that the system has
3135 	 * been able to recover some MSIX vector resources.
3136 	 */
3137 	if (!adapter->num_msix_vectors)
3138 		return -ENOMEM;
3139 
3140 	if (hw->adapter_stopped) {
3141 		ixgbevf_reset(adapter);
3142 		/* if adapter is still stopped then PF isn't up and
3143 		 * the VF can't start.
3144 		 */
3145 		if (hw->adapter_stopped) {
3146 			err = IXGBE_ERR_MBX;
3147 			pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3148 			goto err_setup_reset;
3149 		}
3150 	}
3151 
3152 	/* disallow open during test */
3153 	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3154 		return -EBUSY;
3155 
3156 	netif_carrier_off(netdev);
3157 
3158 	/* allocate transmit descriptors */
3159 	err = ixgbevf_setup_all_tx_resources(adapter);
3160 	if (err)
3161 		goto err_setup_tx;
3162 
3163 	/* allocate receive descriptors */
3164 	err = ixgbevf_setup_all_rx_resources(adapter);
3165 	if (err)
3166 		goto err_setup_rx;
3167 
3168 	ixgbevf_configure(adapter);
3169 
3170 	/* Map the Tx/Rx rings to the vectors we were allotted.
3171 	 * if request_irq will be called in this function map_rings
3172 	 * must be called *before* up_complete
3173 	 */
3174 	ixgbevf_map_rings_to_vectors(adapter);
3175 
3176 	err = ixgbevf_request_irq(adapter);
3177 	if (err)
3178 		goto err_req_irq;
3179 
3180 	ixgbevf_up_complete(adapter);
3181 
3182 	return 0;
3183 
3184 err_req_irq:
3185 	ixgbevf_down(adapter);
3186 err_setup_rx:
3187 	ixgbevf_free_all_rx_resources(adapter);
3188 err_setup_tx:
3189 	ixgbevf_free_all_tx_resources(adapter);
3190 	ixgbevf_reset(adapter);
3191 
3192 err_setup_reset:
3193 
3194 	return err;
3195 }
3196 
3197 /**
3198  * ixgbevf_close - Disables a network interface
3199  * @netdev: network interface device structure
3200  *
3201  * Returns 0, this is not allowed to fail
3202  *
3203  * The close entry point is called when an interface is de-activated
3204  * by the OS.  The hardware is still under the drivers control, but
3205  * needs to be disabled.  A global MAC reset is issued to stop the
3206  * hardware, and all transmit and receive resources are freed.
3207  **/
3208 static int ixgbevf_close(struct net_device *netdev)
3209 {
3210 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3211 
3212 	ixgbevf_down(adapter);
3213 	ixgbevf_free_irq(adapter);
3214 
3215 	ixgbevf_free_all_tx_resources(adapter);
3216 	ixgbevf_free_all_rx_resources(adapter);
3217 
3218 	return 0;
3219 }
3220 
3221 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3222 {
3223 	struct net_device *dev = adapter->netdev;
3224 
3225 	if (!(adapter->flags & IXGBEVF_FLAG_QUEUE_RESET_REQUESTED))
3226 		return;
3227 
3228 	adapter->flags &= ~IXGBEVF_FLAG_QUEUE_RESET_REQUESTED;
3229 
3230 	/* if interface is down do nothing */
3231 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3232 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3233 		return;
3234 
3235 	/* Hardware has to reinitialize queues and interrupts to
3236 	 * match packet buffer alignment. Unfortunately, the
3237 	 * hardware is not flexible enough to do this dynamically.
3238 	 */
3239 	if (netif_running(dev))
3240 		ixgbevf_close(dev);
3241 
3242 	ixgbevf_clear_interrupt_scheme(adapter);
3243 	ixgbevf_init_interrupt_scheme(adapter);
3244 
3245 	if (netif_running(dev))
3246 		ixgbevf_open(dev);
3247 }
3248 
3249 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3250 				u32 vlan_macip_lens, u32 type_tucmd,
3251 				u32 mss_l4len_idx)
3252 {
3253 	struct ixgbe_adv_tx_context_desc *context_desc;
3254 	u16 i = tx_ring->next_to_use;
3255 
3256 	context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3257 
3258 	i++;
3259 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3260 
3261 	/* set bits to identify this as an advanced context descriptor */
3262 	type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3263 
3264 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
3265 	context_desc->seqnum_seed	= 0;
3266 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
3267 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
3268 }
3269 
3270 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3271 		       struct ixgbevf_tx_buffer *first,
3272 		       u8 *hdr_len)
3273 {
3274 	struct sk_buff *skb = first->skb;
3275 	u32 vlan_macip_lens, type_tucmd;
3276 	u32 mss_l4len_idx, l4len;
3277 	int err;
3278 
3279 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3280 		return 0;
3281 
3282 	if (!skb_is_gso(skb))
3283 		return 0;
3284 
3285 	err = skb_cow_head(skb, 0);
3286 	if (err < 0)
3287 		return err;
3288 
3289 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3290 	type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3291 
3292 	if (first->protocol == htons(ETH_P_IP)) {
3293 		struct iphdr *iph = ip_hdr(skb);
3294 
3295 		iph->tot_len = 0;
3296 		iph->check = 0;
3297 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3298 							 iph->daddr, 0,
3299 							 IPPROTO_TCP,
3300 							 0);
3301 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3302 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3303 				   IXGBE_TX_FLAGS_CSUM |
3304 				   IXGBE_TX_FLAGS_IPV4;
3305 	} else if (skb_is_gso_v6(skb)) {
3306 		ipv6_hdr(skb)->payload_len = 0;
3307 		tcp_hdr(skb)->check =
3308 		    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3309 				     &ipv6_hdr(skb)->daddr,
3310 				     0, IPPROTO_TCP, 0);
3311 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3312 				   IXGBE_TX_FLAGS_CSUM;
3313 	}
3314 
3315 	/* compute header lengths */
3316 	l4len = tcp_hdrlen(skb);
3317 	*hdr_len += l4len;
3318 	*hdr_len = skb_transport_offset(skb) + l4len;
3319 
3320 	/* update GSO size and bytecount with header size */
3321 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3322 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3323 
3324 	/* mss_l4len_id: use 1 as index for TSO */
3325 	mss_l4len_idx = l4len << IXGBE_ADVTXD_L4LEN_SHIFT;
3326 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3327 	mss_l4len_idx |= 1 << IXGBE_ADVTXD_IDX_SHIFT;
3328 
3329 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3330 	vlan_macip_lens = skb_network_header_len(skb);
3331 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3332 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3333 
3334 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3335 			    type_tucmd, mss_l4len_idx);
3336 
3337 	return 1;
3338 }
3339 
3340 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3341 			    struct ixgbevf_tx_buffer *first)
3342 {
3343 	struct sk_buff *skb = first->skb;
3344 	u32 vlan_macip_lens = 0;
3345 	u32 mss_l4len_idx = 0;
3346 	u32 type_tucmd = 0;
3347 
3348 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3349 		u8 l4_hdr = 0;
3350 		__be16 frag_off;
3351 
3352 		switch (first->protocol) {
3353 		case htons(ETH_P_IP):
3354 			vlan_macip_lens |= skb_network_header_len(skb);
3355 			type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3356 			l4_hdr = ip_hdr(skb)->protocol;
3357 			break;
3358 		case htons(ETH_P_IPV6):
3359 			vlan_macip_lens |= skb_network_header_len(skb);
3360 			l4_hdr = ipv6_hdr(skb)->nexthdr;
3361 			if (likely(skb_network_header_len(skb) ==
3362 				   sizeof(struct ipv6hdr)))
3363 				break;
3364 			ipv6_skip_exthdr(skb, skb_network_offset(skb) +
3365 					      sizeof(struct ipv6hdr),
3366 					 &l4_hdr, &frag_off);
3367 			if (unlikely(frag_off))
3368 				l4_hdr = NEXTHDR_FRAGMENT;
3369 			break;
3370 		default:
3371 			break;
3372 		}
3373 
3374 		switch (l4_hdr) {
3375 		case IPPROTO_TCP:
3376 			type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
3377 			mss_l4len_idx = tcp_hdrlen(skb) <<
3378 					IXGBE_ADVTXD_L4LEN_SHIFT;
3379 			break;
3380 		case IPPROTO_SCTP:
3381 			type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3382 			mss_l4len_idx = sizeof(struct sctphdr) <<
3383 					IXGBE_ADVTXD_L4LEN_SHIFT;
3384 			break;
3385 		case IPPROTO_UDP:
3386 			mss_l4len_idx = sizeof(struct udphdr) <<
3387 					IXGBE_ADVTXD_L4LEN_SHIFT;
3388 			break;
3389 		default:
3390 			if (unlikely(net_ratelimit())) {
3391 				dev_warn(tx_ring->dev,
3392 					 "partial checksum, l3 proto=%x, l4 proto=%x\n",
3393 					 first->protocol, l4_hdr);
3394 			}
3395 			skb_checksum_help(skb);
3396 			goto no_csum;
3397 		}
3398 
3399 		/* update TX checksum flag */
3400 		first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3401 	}
3402 
3403 no_csum:
3404 	/* vlan_macip_lens: MACLEN, VLAN tag */
3405 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3406 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3407 
3408 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3409 			    type_tucmd, mss_l4len_idx);
3410 }
3411 
3412 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3413 {
3414 	/* set type for advanced descriptor with frame checksum insertion */
3415 	__le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3416 				      IXGBE_ADVTXD_DCMD_IFCS |
3417 				      IXGBE_ADVTXD_DCMD_DEXT);
3418 
3419 	/* set HW VLAN bit if VLAN is present */
3420 	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3421 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3422 
3423 	/* set segmentation enable bits for TSO/FSO */
3424 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3425 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3426 
3427 	return cmd_type;
3428 }
3429 
3430 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3431 				     u32 tx_flags, unsigned int paylen)
3432 {
3433 	__le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3434 
3435 	/* enable L4 checksum for TSO and TX checksum offload */
3436 	if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3437 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3438 
3439 	/* enble IPv4 checksum for TSO */
3440 	if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3441 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3442 
3443 	/* use index 1 context for TSO/FSO/FCOE */
3444 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3445 		olinfo_status |= cpu_to_le32(1 << IXGBE_ADVTXD_IDX_SHIFT);
3446 
3447 	/* Check Context must be set if Tx switch is enabled, which it
3448 	 * always is for case where virtual functions are running
3449 	 */
3450 	olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3451 
3452 	tx_desc->read.olinfo_status = olinfo_status;
3453 }
3454 
3455 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3456 			   struct ixgbevf_tx_buffer *first,
3457 			   const u8 hdr_len)
3458 {
3459 	dma_addr_t dma;
3460 	struct sk_buff *skb = first->skb;
3461 	struct ixgbevf_tx_buffer *tx_buffer;
3462 	union ixgbe_adv_tx_desc *tx_desc;
3463 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
3464 	unsigned int data_len = skb->data_len;
3465 	unsigned int size = skb_headlen(skb);
3466 	unsigned int paylen = skb->len - hdr_len;
3467 	u32 tx_flags = first->tx_flags;
3468 	__le32 cmd_type;
3469 	u16 i = tx_ring->next_to_use;
3470 
3471 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3472 
3473 	ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen);
3474 	cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3475 
3476 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3477 	if (dma_mapping_error(tx_ring->dev, dma))
3478 		goto dma_error;
3479 
3480 	/* record length, and DMA address */
3481 	dma_unmap_len_set(first, len, size);
3482 	dma_unmap_addr_set(first, dma, dma);
3483 
3484 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
3485 
3486 	for (;;) {
3487 		while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3488 			tx_desc->read.cmd_type_len =
3489 				cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3490 
3491 			i++;
3492 			tx_desc++;
3493 			if (i == tx_ring->count) {
3494 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3495 				i = 0;
3496 			}
3497 
3498 			dma += IXGBE_MAX_DATA_PER_TXD;
3499 			size -= IXGBE_MAX_DATA_PER_TXD;
3500 
3501 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
3502 			tx_desc->read.olinfo_status = 0;
3503 		}
3504 
3505 		if (likely(!data_len))
3506 			break;
3507 
3508 		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3509 
3510 		i++;
3511 		tx_desc++;
3512 		if (i == tx_ring->count) {
3513 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3514 			i = 0;
3515 		}
3516 
3517 		size = skb_frag_size(frag);
3518 		data_len -= size;
3519 
3520 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3521 				       DMA_TO_DEVICE);
3522 		if (dma_mapping_error(tx_ring->dev, dma))
3523 			goto dma_error;
3524 
3525 		tx_buffer = &tx_ring->tx_buffer_info[i];
3526 		dma_unmap_len_set(tx_buffer, len, size);
3527 		dma_unmap_addr_set(tx_buffer, dma, dma);
3528 
3529 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3530 		tx_desc->read.olinfo_status = 0;
3531 
3532 		frag++;
3533 	}
3534 
3535 	/* write last descriptor with RS and EOP bits */
3536 	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3537 	tx_desc->read.cmd_type_len = cmd_type;
3538 
3539 	/* set the timestamp */
3540 	first->time_stamp = jiffies;
3541 
3542 	/* Force memory writes to complete before letting h/w know there
3543 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
3544 	 * memory model archs, such as IA-64).
3545 	 *
3546 	 * We also need this memory barrier (wmb) to make certain all of the
3547 	 * status bits have been updated before next_to_watch is written.
3548 	 */
3549 	wmb();
3550 
3551 	/* set next_to_watch value indicating a packet is present */
3552 	first->next_to_watch = tx_desc;
3553 
3554 	i++;
3555 	if (i == tx_ring->count)
3556 		i = 0;
3557 
3558 	tx_ring->next_to_use = i;
3559 
3560 	/* notify HW of packet */
3561 	ixgbevf_write_tail(tx_ring, i);
3562 
3563 	return;
3564 dma_error:
3565 	dev_err(tx_ring->dev, "TX DMA map failed\n");
3566 
3567 	/* clear dma mappings for failed tx_buffer_info map */
3568 	for (;;) {
3569 		tx_buffer = &tx_ring->tx_buffer_info[i];
3570 		ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer);
3571 		if (tx_buffer == first)
3572 			break;
3573 		if (i == 0)
3574 			i = tx_ring->count;
3575 		i--;
3576 	}
3577 
3578 	tx_ring->next_to_use = i;
3579 }
3580 
3581 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3582 {
3583 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3584 	/* Herbert's original patch had:
3585 	 *  smp_mb__after_netif_stop_queue();
3586 	 * but since that doesn't exist yet, just open code it.
3587 	 */
3588 	smp_mb();
3589 
3590 	/* We need to check again in a case another CPU has just
3591 	 * made room available.
3592 	 */
3593 	if (likely(ixgbevf_desc_unused(tx_ring) < size))
3594 		return -EBUSY;
3595 
3596 	/* A reprieve! - use start_queue because it doesn't call schedule */
3597 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3598 	++tx_ring->tx_stats.restart_queue;
3599 
3600 	return 0;
3601 }
3602 
3603 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3604 {
3605 	if (likely(ixgbevf_desc_unused(tx_ring) >= size))
3606 		return 0;
3607 	return __ixgbevf_maybe_stop_tx(tx_ring, size);
3608 }
3609 
3610 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3611 {
3612 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3613 	struct ixgbevf_tx_buffer *first;
3614 	struct ixgbevf_ring *tx_ring;
3615 	int tso;
3616 	u32 tx_flags = 0;
3617 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
3618 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3619 	unsigned short f;
3620 #endif
3621 	u8 hdr_len = 0;
3622 	u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3623 
3624 	if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3625 		dev_kfree_skb_any(skb);
3626 		return NETDEV_TX_OK;
3627 	}
3628 
3629 	tx_ring = adapter->tx_ring[skb->queue_mapping];
3630 
3631 	/* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3632 	 *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3633 	 *       + 2 desc gap to keep tail from touching head,
3634 	 *       + 1 desc for context descriptor,
3635 	 * otherwise try next time
3636 	 */
3637 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3638 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3639 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3640 #else
3641 	count += skb_shinfo(skb)->nr_frags;
3642 #endif
3643 	if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3644 		tx_ring->tx_stats.tx_busy++;
3645 		return NETDEV_TX_BUSY;
3646 	}
3647 
3648 	/* record the location of the first descriptor for this packet */
3649 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3650 	first->skb = skb;
3651 	first->bytecount = skb->len;
3652 	first->gso_segs = 1;
3653 
3654 	if (skb_vlan_tag_present(skb)) {
3655 		tx_flags |= skb_vlan_tag_get(skb);
3656 		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3657 		tx_flags |= IXGBE_TX_FLAGS_VLAN;
3658 	}
3659 
3660 	/* record initial flags and protocol */
3661 	first->tx_flags = tx_flags;
3662 	first->protocol = vlan_get_protocol(skb);
3663 
3664 	tso = ixgbevf_tso(tx_ring, first, &hdr_len);
3665 	if (tso < 0)
3666 		goto out_drop;
3667 	else if (!tso)
3668 		ixgbevf_tx_csum(tx_ring, first);
3669 
3670 	ixgbevf_tx_map(tx_ring, first, hdr_len);
3671 
3672 	ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3673 
3674 	return NETDEV_TX_OK;
3675 
3676 out_drop:
3677 	dev_kfree_skb_any(first->skb);
3678 	first->skb = NULL;
3679 
3680 	return NETDEV_TX_OK;
3681 }
3682 
3683 /**
3684  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3685  * @netdev: network interface device structure
3686  * @p: pointer to an address structure
3687  *
3688  * Returns 0 on success, negative on failure
3689  **/
3690 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3691 {
3692 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3693 	struct ixgbe_hw *hw = &adapter->hw;
3694 	struct sockaddr *addr = p;
3695 
3696 	if (!is_valid_ether_addr(addr->sa_data))
3697 		return -EADDRNOTAVAIL;
3698 
3699 	ether_addr_copy(netdev->dev_addr, addr->sa_data);
3700 	ether_addr_copy(hw->mac.addr, addr->sa_data);
3701 
3702 	spin_lock_bh(&adapter->mbx_lock);
3703 
3704 	hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3705 
3706 	spin_unlock_bh(&adapter->mbx_lock);
3707 
3708 	return 0;
3709 }
3710 
3711 /**
3712  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3713  * @netdev: network interface device structure
3714  * @new_mtu: new value for maximum frame size
3715  *
3716  * Returns 0 on success, negative on failure
3717  **/
3718 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3719 {
3720 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3721 	struct ixgbe_hw *hw = &adapter->hw;
3722 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3723 	int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3724 
3725 	switch (adapter->hw.api_version) {
3726 	case ixgbe_mbox_api_11:
3727 	case ixgbe_mbox_api_12:
3728 		max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3729 		break;
3730 	default:
3731 		if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
3732 			max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3733 		break;
3734 	}
3735 
3736 	/* MTU < 68 is an error and causes problems on some kernels */
3737 	if ((new_mtu < 68) || (max_frame > max_possible_frame))
3738 		return -EINVAL;
3739 
3740 	hw_dbg(hw, "changing MTU from %d to %d\n",
3741 	       netdev->mtu, new_mtu);
3742 	/* must set new MTU before calling down or up */
3743 	netdev->mtu = new_mtu;
3744 
3745 	/* notify the PF of our intent to use this size of frame */
3746 	ixgbevf_rlpml_set_vf(hw, max_frame);
3747 
3748 	return 0;
3749 }
3750 
3751 #ifdef CONFIG_NET_POLL_CONTROLLER
3752 /* Polling 'interrupt' - used by things like netconsole to send skbs
3753  * without having to re-enable interrupts. It's not called while
3754  * the interrupt routine is executing.
3755  */
3756 static void ixgbevf_netpoll(struct net_device *netdev)
3757 {
3758 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3759 	int i;
3760 
3761 	/* if interface is down do nothing */
3762 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
3763 		return;
3764 	for (i = 0; i < adapter->num_rx_queues; i++)
3765 		ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
3766 }
3767 #endif /* CONFIG_NET_POLL_CONTROLLER */
3768 
3769 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3770 {
3771 	struct net_device *netdev = pci_get_drvdata(pdev);
3772 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3773 #ifdef CONFIG_PM
3774 	int retval = 0;
3775 #endif
3776 
3777 	netif_device_detach(netdev);
3778 
3779 	if (netif_running(netdev)) {
3780 		rtnl_lock();
3781 		ixgbevf_down(adapter);
3782 		ixgbevf_free_irq(adapter);
3783 		ixgbevf_free_all_tx_resources(adapter);
3784 		ixgbevf_free_all_rx_resources(adapter);
3785 		rtnl_unlock();
3786 	}
3787 
3788 	ixgbevf_clear_interrupt_scheme(adapter);
3789 
3790 #ifdef CONFIG_PM
3791 	retval = pci_save_state(pdev);
3792 	if (retval)
3793 		return retval;
3794 
3795 #endif
3796 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3797 		pci_disable_device(pdev);
3798 
3799 	return 0;
3800 }
3801 
3802 #ifdef CONFIG_PM
3803 static int ixgbevf_resume(struct pci_dev *pdev)
3804 {
3805 	struct net_device *netdev = pci_get_drvdata(pdev);
3806 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3807 	u32 err;
3808 
3809 	pci_restore_state(pdev);
3810 	/* pci_restore_state clears dev->state_saved so call
3811 	 * pci_save_state to restore it.
3812 	 */
3813 	pci_save_state(pdev);
3814 
3815 	err = pci_enable_device_mem(pdev);
3816 	if (err) {
3817 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3818 		return err;
3819 	}
3820 	smp_mb__before_atomic();
3821 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
3822 	pci_set_master(pdev);
3823 
3824 	ixgbevf_reset(adapter);
3825 
3826 	rtnl_lock();
3827 	err = ixgbevf_init_interrupt_scheme(adapter);
3828 	rtnl_unlock();
3829 	if (err) {
3830 		dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3831 		return err;
3832 	}
3833 
3834 	if (netif_running(netdev)) {
3835 		err = ixgbevf_open(netdev);
3836 		if (err)
3837 			return err;
3838 	}
3839 
3840 	netif_device_attach(netdev);
3841 
3842 	return err;
3843 }
3844 
3845 #endif /* CONFIG_PM */
3846 static void ixgbevf_shutdown(struct pci_dev *pdev)
3847 {
3848 	ixgbevf_suspend(pdev, PMSG_SUSPEND);
3849 }
3850 
3851 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3852 						struct rtnl_link_stats64 *stats)
3853 {
3854 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3855 	unsigned int start;
3856 	u64 bytes, packets;
3857 	const struct ixgbevf_ring *ring;
3858 	int i;
3859 
3860 	ixgbevf_update_stats(adapter);
3861 
3862 	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3863 
3864 	for (i = 0; i < adapter->num_rx_queues; i++) {
3865 		ring = adapter->rx_ring[i];
3866 		do {
3867 			start = u64_stats_fetch_begin_irq(&ring->syncp);
3868 			bytes = ring->stats.bytes;
3869 			packets = ring->stats.packets;
3870 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3871 		stats->rx_bytes += bytes;
3872 		stats->rx_packets += packets;
3873 	}
3874 
3875 	for (i = 0; i < adapter->num_tx_queues; i++) {
3876 		ring = adapter->tx_ring[i];
3877 		do {
3878 			start = u64_stats_fetch_begin_irq(&ring->syncp);
3879 			bytes = ring->stats.bytes;
3880 			packets = ring->stats.packets;
3881 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3882 		stats->tx_bytes += bytes;
3883 		stats->tx_packets += packets;
3884 	}
3885 
3886 	return stats;
3887 }
3888 
3889 static const struct net_device_ops ixgbevf_netdev_ops = {
3890 	.ndo_open		= ixgbevf_open,
3891 	.ndo_stop		= ixgbevf_close,
3892 	.ndo_start_xmit		= ixgbevf_xmit_frame,
3893 	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
3894 	.ndo_get_stats64	= ixgbevf_get_stats,
3895 	.ndo_validate_addr	= eth_validate_addr,
3896 	.ndo_set_mac_address	= ixgbevf_set_mac,
3897 	.ndo_change_mtu		= ixgbevf_change_mtu,
3898 	.ndo_tx_timeout		= ixgbevf_tx_timeout,
3899 	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
3900 	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
3901 #ifdef CONFIG_NET_RX_BUSY_POLL
3902 	.ndo_busy_poll		= ixgbevf_busy_poll_recv,
3903 #endif
3904 #ifdef CONFIG_NET_POLL_CONTROLLER
3905 	.ndo_poll_controller	= ixgbevf_netpoll,
3906 #endif
3907 	.ndo_features_check	= passthru_features_check,
3908 };
3909 
3910 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3911 {
3912 	dev->netdev_ops = &ixgbevf_netdev_ops;
3913 	ixgbevf_set_ethtool_ops(dev);
3914 	dev->watchdog_timeo = 5 * HZ;
3915 }
3916 
3917 /**
3918  * ixgbevf_probe - Device Initialization Routine
3919  * @pdev: PCI device information struct
3920  * @ent: entry in ixgbevf_pci_tbl
3921  *
3922  * Returns 0 on success, negative on failure
3923  *
3924  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3925  * The OS initialization, configuring of the adapter private structure,
3926  * and a hardware reset occur.
3927  **/
3928 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3929 {
3930 	struct net_device *netdev;
3931 	struct ixgbevf_adapter *adapter = NULL;
3932 	struct ixgbe_hw *hw = NULL;
3933 	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3934 	int err, pci_using_dac;
3935 	bool disable_dev = false;
3936 
3937 	err = pci_enable_device(pdev);
3938 	if (err)
3939 		return err;
3940 
3941 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3942 		pci_using_dac = 1;
3943 	} else {
3944 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3945 		if (err) {
3946 			dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
3947 			goto err_dma;
3948 		}
3949 		pci_using_dac = 0;
3950 	}
3951 
3952 	err = pci_request_regions(pdev, ixgbevf_driver_name);
3953 	if (err) {
3954 		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3955 		goto err_pci_reg;
3956 	}
3957 
3958 	pci_set_master(pdev);
3959 
3960 	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3961 				   MAX_TX_QUEUES);
3962 	if (!netdev) {
3963 		err = -ENOMEM;
3964 		goto err_alloc_etherdev;
3965 	}
3966 
3967 	SET_NETDEV_DEV(netdev, &pdev->dev);
3968 
3969 	adapter = netdev_priv(netdev);
3970 
3971 	adapter->netdev = netdev;
3972 	adapter->pdev = pdev;
3973 	hw = &adapter->hw;
3974 	hw->back = adapter;
3975 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3976 
3977 	/* call save state here in standalone driver because it relies on
3978 	 * adapter struct to exist, and needs to call netdev_priv
3979 	 */
3980 	pci_save_state(pdev);
3981 
3982 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3983 			      pci_resource_len(pdev, 0));
3984 	adapter->io_addr = hw->hw_addr;
3985 	if (!hw->hw_addr) {
3986 		err = -EIO;
3987 		goto err_ioremap;
3988 	}
3989 
3990 	ixgbevf_assign_netdev_ops(netdev);
3991 
3992 	/* Setup HW API */
3993 	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3994 	hw->mac.type  = ii->mac;
3995 
3996 	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3997 	       sizeof(struct ixgbe_mbx_operations));
3998 
3999 	/* setup the private structure */
4000 	err = ixgbevf_sw_init(adapter);
4001 	if (err)
4002 		goto err_sw_init;
4003 
4004 	/* The HW MAC address was set and/or determined in sw_init */
4005 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4006 		pr_err("invalid MAC address\n");
4007 		err = -EIO;
4008 		goto err_sw_init;
4009 	}
4010 
4011 	netdev->hw_features = NETIF_F_SG |
4012 			      NETIF_F_IP_CSUM |
4013 			      NETIF_F_IPV6_CSUM |
4014 			      NETIF_F_TSO |
4015 			      NETIF_F_TSO6 |
4016 			      NETIF_F_RXCSUM;
4017 
4018 	netdev->features = netdev->hw_features |
4019 			   NETIF_F_HW_VLAN_CTAG_TX |
4020 			   NETIF_F_HW_VLAN_CTAG_RX |
4021 			   NETIF_F_HW_VLAN_CTAG_FILTER;
4022 
4023 	netdev->vlan_features |= NETIF_F_TSO |
4024 				 NETIF_F_TSO6 |
4025 				 NETIF_F_IP_CSUM |
4026 				 NETIF_F_IPV6_CSUM |
4027 				 NETIF_F_SG;
4028 
4029 	if (pci_using_dac)
4030 		netdev->features |= NETIF_F_HIGHDMA;
4031 
4032 	netdev->priv_flags |= IFF_UNICAST_FLT;
4033 
4034 	if (IXGBE_REMOVED(hw->hw_addr)) {
4035 		err = -EIO;
4036 		goto err_sw_init;
4037 	}
4038 
4039 	setup_timer(&adapter->service_timer, &ixgbevf_service_timer,
4040 		    (unsigned long)adapter);
4041 
4042 	INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4043 	set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4044 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4045 
4046 	err = ixgbevf_init_interrupt_scheme(adapter);
4047 	if (err)
4048 		goto err_sw_init;
4049 
4050 	strcpy(netdev->name, "eth%d");
4051 
4052 	err = register_netdev(netdev);
4053 	if (err)
4054 		goto err_register;
4055 
4056 	pci_set_drvdata(pdev, netdev);
4057 	netif_carrier_off(netdev);
4058 
4059 	ixgbevf_init_last_counter_stats(adapter);
4060 
4061 	/* print the VF info */
4062 	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4063 	dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4064 
4065 	switch (hw->mac.type) {
4066 	case ixgbe_mac_X550_vf:
4067 		dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4068 		break;
4069 	case ixgbe_mac_X540_vf:
4070 		dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4071 		break;
4072 	case ixgbe_mac_82599_vf:
4073 	default:
4074 		dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4075 		break;
4076 	}
4077 
4078 	return 0;
4079 
4080 err_register:
4081 	ixgbevf_clear_interrupt_scheme(adapter);
4082 err_sw_init:
4083 	ixgbevf_reset_interrupt_capability(adapter);
4084 	iounmap(adapter->io_addr);
4085 err_ioremap:
4086 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4087 	free_netdev(netdev);
4088 err_alloc_etherdev:
4089 	pci_release_regions(pdev);
4090 err_pci_reg:
4091 err_dma:
4092 	if (!adapter || disable_dev)
4093 		pci_disable_device(pdev);
4094 	return err;
4095 }
4096 
4097 /**
4098  * ixgbevf_remove - Device Removal Routine
4099  * @pdev: PCI device information struct
4100  *
4101  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4102  * that it should release a PCI device.  The could be caused by a
4103  * Hot-Plug event, or because the driver is going to be removed from
4104  * memory.
4105  **/
4106 static void ixgbevf_remove(struct pci_dev *pdev)
4107 {
4108 	struct net_device *netdev = pci_get_drvdata(pdev);
4109 	struct ixgbevf_adapter *adapter;
4110 	bool disable_dev;
4111 
4112 	if (!netdev)
4113 		return;
4114 
4115 	adapter = netdev_priv(netdev);
4116 
4117 	set_bit(__IXGBEVF_REMOVING, &adapter->state);
4118 	cancel_work_sync(&adapter->service_task);
4119 
4120 	if (netdev->reg_state == NETREG_REGISTERED)
4121 		unregister_netdev(netdev);
4122 
4123 	ixgbevf_clear_interrupt_scheme(adapter);
4124 	ixgbevf_reset_interrupt_capability(adapter);
4125 
4126 	iounmap(adapter->io_addr);
4127 	pci_release_regions(pdev);
4128 
4129 	hw_dbg(&adapter->hw, "Remove complete\n");
4130 
4131 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4132 	free_netdev(netdev);
4133 
4134 	if (disable_dev)
4135 		pci_disable_device(pdev);
4136 }
4137 
4138 /**
4139  * ixgbevf_io_error_detected - called when PCI error is detected
4140  * @pdev: Pointer to PCI device
4141  * @state: The current pci connection state
4142  *
4143  * This function is called after a PCI bus error affecting
4144  * this device has been detected.
4145  **/
4146 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4147 						  pci_channel_state_t state)
4148 {
4149 	struct net_device *netdev = pci_get_drvdata(pdev);
4150 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4151 
4152 	if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4153 		return PCI_ERS_RESULT_DISCONNECT;
4154 
4155 	rtnl_lock();
4156 	netif_device_detach(netdev);
4157 
4158 	if (state == pci_channel_io_perm_failure) {
4159 		rtnl_unlock();
4160 		return PCI_ERS_RESULT_DISCONNECT;
4161 	}
4162 
4163 	if (netif_running(netdev))
4164 		ixgbevf_down(adapter);
4165 
4166 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4167 		pci_disable_device(pdev);
4168 	rtnl_unlock();
4169 
4170 	/* Request a slot slot reset. */
4171 	return PCI_ERS_RESULT_NEED_RESET;
4172 }
4173 
4174 /**
4175  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4176  * @pdev: Pointer to PCI device
4177  *
4178  * Restart the card from scratch, as if from a cold-boot. Implementation
4179  * resembles the first-half of the ixgbevf_resume routine.
4180  **/
4181 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4182 {
4183 	struct net_device *netdev = pci_get_drvdata(pdev);
4184 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4185 
4186 	if (pci_enable_device_mem(pdev)) {
4187 		dev_err(&pdev->dev,
4188 			"Cannot re-enable PCI device after reset.\n");
4189 		return PCI_ERS_RESULT_DISCONNECT;
4190 	}
4191 
4192 	smp_mb__before_atomic();
4193 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4194 	pci_set_master(pdev);
4195 
4196 	ixgbevf_reset(adapter);
4197 
4198 	return PCI_ERS_RESULT_RECOVERED;
4199 }
4200 
4201 /**
4202  * ixgbevf_io_resume - called when traffic can start flowing again.
4203  * @pdev: Pointer to PCI device
4204  *
4205  * This callback is called when the error recovery driver tells us that
4206  * its OK to resume normal operation. Implementation resembles the
4207  * second-half of the ixgbevf_resume routine.
4208  **/
4209 static void ixgbevf_io_resume(struct pci_dev *pdev)
4210 {
4211 	struct net_device *netdev = pci_get_drvdata(pdev);
4212 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4213 
4214 	if (netif_running(netdev))
4215 		ixgbevf_up(adapter);
4216 
4217 	netif_device_attach(netdev);
4218 }
4219 
4220 /* PCI Error Recovery (ERS) */
4221 static const struct pci_error_handlers ixgbevf_err_handler = {
4222 	.error_detected = ixgbevf_io_error_detected,
4223 	.slot_reset = ixgbevf_io_slot_reset,
4224 	.resume = ixgbevf_io_resume,
4225 };
4226 
4227 static struct pci_driver ixgbevf_driver = {
4228 	.name		= ixgbevf_driver_name,
4229 	.id_table	= ixgbevf_pci_tbl,
4230 	.probe		= ixgbevf_probe,
4231 	.remove		= ixgbevf_remove,
4232 #ifdef CONFIG_PM
4233 	/* Power Management Hooks */
4234 	.suspend	= ixgbevf_suspend,
4235 	.resume		= ixgbevf_resume,
4236 #endif
4237 	.shutdown	= ixgbevf_shutdown,
4238 	.err_handler	= &ixgbevf_err_handler
4239 };
4240 
4241 /**
4242  * ixgbevf_init_module - Driver Registration Routine
4243  *
4244  * ixgbevf_init_module is the first routine called when the driver is
4245  * loaded. All it does is register with the PCI subsystem.
4246  **/
4247 static int __init ixgbevf_init_module(void)
4248 {
4249 	pr_info("%s - version %s\n", ixgbevf_driver_string,
4250 		ixgbevf_driver_version);
4251 
4252 	pr_info("%s\n", ixgbevf_copyright);
4253 	ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4254 	if (!ixgbevf_wq) {
4255 		pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4256 		return -ENOMEM;
4257 	}
4258 
4259 	return pci_register_driver(&ixgbevf_driver);
4260 }
4261 
4262 module_init(ixgbevf_init_module);
4263 
4264 /**
4265  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4266  *
4267  * ixgbevf_exit_module is called just before the driver is removed
4268  * from memory.
4269  **/
4270 static void __exit ixgbevf_exit_module(void)
4271 {
4272 	pci_unregister_driver(&ixgbevf_driver);
4273 	if (ixgbevf_wq) {
4274 		destroy_workqueue(ixgbevf_wq);
4275 		ixgbevf_wq = NULL;
4276 	}
4277 }
4278 
4279 #ifdef DEBUG
4280 /**
4281  * ixgbevf_get_hw_dev_name - return device name string
4282  * used by hardware layer to print debugging information
4283  **/
4284 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4285 {
4286 	struct ixgbevf_adapter *adapter = hw->back;
4287 
4288 	return adapter->netdev->name;
4289 }
4290 
4291 #endif
4292 module_exit(ixgbevf_exit_module);
4293 
4294 /* ixgbevf_main.c */
4295