1 /******************************************************************************* 2 3 Intel 82599 Virtual Function driver 4 Copyright(c) 1999 - 2015 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, see <http://www.gnu.org/licenses/>. 17 18 The full GNU General Public License is included in this distribution in 19 the file called "COPYING". 20 21 Contact Information: 22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 25 *******************************************************************************/ 26 27 /****************************************************************************** 28 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 29 ******************************************************************************/ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/types.h> 34 #include <linux/bitops.h> 35 #include <linux/module.h> 36 #include <linux/pci.h> 37 #include <linux/netdevice.h> 38 #include <linux/vmalloc.h> 39 #include <linux/string.h> 40 #include <linux/in.h> 41 #include <linux/ip.h> 42 #include <linux/tcp.h> 43 #include <linux/sctp.h> 44 #include <linux/ipv6.h> 45 #include <linux/slab.h> 46 #include <net/checksum.h> 47 #include <net/ip6_checksum.h> 48 #include <linux/ethtool.h> 49 #include <linux/if.h> 50 #include <linux/if_vlan.h> 51 #include <linux/prefetch.h> 52 53 #include "ixgbevf.h" 54 55 const char ixgbevf_driver_name[] = "ixgbevf"; 56 static const char ixgbevf_driver_string[] = 57 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 58 59 #define DRV_VERSION "2.12.1-k" 60 const char ixgbevf_driver_version[] = DRV_VERSION; 61 static char ixgbevf_copyright[] = 62 "Copyright (c) 2009 - 2015 Intel Corporation."; 63 64 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 65 [board_82599_vf] = &ixgbevf_82599_vf_info, 66 [board_X540_vf] = &ixgbevf_X540_vf_info, 67 [board_X550_vf] = &ixgbevf_X550_vf_info, 68 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 69 }; 70 71 /* ixgbevf_pci_tbl - PCI Device ID Table 72 * 73 * Wildcard entries (PCI_ANY_ID) should come last 74 * Last entry must be all 0s 75 * 76 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 77 * Class, Class Mask, private data (not used) } 78 */ 79 static const struct pci_device_id ixgbevf_pci_tbl[] = { 80 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 81 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 82 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 83 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 84 /* required last entry */ 85 {0, } 86 }; 87 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 88 89 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 90 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 91 MODULE_LICENSE("GPL"); 92 MODULE_VERSION(DRV_VERSION); 93 94 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 95 static int debug = -1; 96 module_param(debug, int, 0); 97 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 98 99 static struct workqueue_struct *ixgbevf_wq; 100 101 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 102 { 103 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 104 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 105 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 106 queue_work(ixgbevf_wq, &adapter->service_task); 107 } 108 109 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 110 { 111 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 112 113 /* flush memory to make sure state is correct before next watchdog */ 114 smp_mb__before_atomic(); 115 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 116 } 117 118 /* forward decls */ 119 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 120 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 121 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 122 123 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 124 { 125 struct ixgbevf_adapter *adapter = hw->back; 126 127 if (!hw->hw_addr) 128 return; 129 hw->hw_addr = NULL; 130 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 131 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 132 ixgbevf_service_event_schedule(adapter); 133 } 134 135 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 136 { 137 u32 value; 138 139 /* The following check not only optimizes a bit by not 140 * performing a read on the status register when the 141 * register just read was a status register read that 142 * returned IXGBE_FAILED_READ_REG. It also blocks any 143 * potential recursion. 144 */ 145 if (reg == IXGBE_VFSTATUS) { 146 ixgbevf_remove_adapter(hw); 147 return; 148 } 149 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 150 if (value == IXGBE_FAILED_READ_REG) 151 ixgbevf_remove_adapter(hw); 152 } 153 154 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 155 { 156 u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr); 157 u32 value; 158 159 if (IXGBE_REMOVED(reg_addr)) 160 return IXGBE_FAILED_READ_REG; 161 value = readl(reg_addr + reg); 162 if (unlikely(value == IXGBE_FAILED_READ_REG)) 163 ixgbevf_check_remove(hw, reg); 164 return value; 165 } 166 167 /** 168 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 169 * @adapter: pointer to adapter struct 170 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 171 * @queue: queue to map the corresponding interrupt to 172 * @msix_vector: the vector to map to the corresponding queue 173 **/ 174 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 175 u8 queue, u8 msix_vector) 176 { 177 u32 ivar, index; 178 struct ixgbe_hw *hw = &adapter->hw; 179 180 if (direction == -1) { 181 /* other causes */ 182 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 183 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 184 ivar &= ~0xFF; 185 ivar |= msix_vector; 186 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 187 } else { 188 /* Tx or Rx causes */ 189 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 190 index = ((16 * (queue & 1)) + (8 * direction)); 191 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 192 ivar &= ~(0xFF << index); 193 ivar |= (msix_vector << index); 194 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 195 } 196 } 197 198 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring, 199 struct ixgbevf_tx_buffer *tx_buffer) 200 { 201 if (tx_buffer->skb) { 202 dev_kfree_skb_any(tx_buffer->skb); 203 if (dma_unmap_len(tx_buffer, len)) 204 dma_unmap_single(tx_ring->dev, 205 dma_unmap_addr(tx_buffer, dma), 206 dma_unmap_len(tx_buffer, len), 207 DMA_TO_DEVICE); 208 } else if (dma_unmap_len(tx_buffer, len)) { 209 dma_unmap_page(tx_ring->dev, 210 dma_unmap_addr(tx_buffer, dma), 211 dma_unmap_len(tx_buffer, len), 212 DMA_TO_DEVICE); 213 } 214 tx_buffer->next_to_watch = NULL; 215 tx_buffer->skb = NULL; 216 dma_unmap_len_set(tx_buffer, len, 0); 217 /* tx_buffer must be completely set up in the transmit path */ 218 } 219 220 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 221 { 222 return ring->stats.packets; 223 } 224 225 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 226 { 227 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 228 struct ixgbe_hw *hw = &adapter->hw; 229 230 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 231 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 232 233 if (head != tail) 234 return (head < tail) ? 235 tail - head : (tail + ring->count - head); 236 237 return 0; 238 } 239 240 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 241 { 242 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 243 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 244 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 245 246 clear_check_for_tx_hang(tx_ring); 247 248 /* Check for a hung queue, but be thorough. This verifies 249 * that a transmit has been completed since the previous 250 * check AND there is at least one packet pending. The 251 * ARMED bit is set to indicate a potential hang. 252 */ 253 if ((tx_done_old == tx_done) && tx_pending) { 254 /* make sure it is true for two checks in a row */ 255 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 256 &tx_ring->state); 257 } 258 /* reset the countdown */ 259 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 260 261 /* update completed stats and continue */ 262 tx_ring->tx_stats.tx_done_old = tx_done; 263 264 return false; 265 } 266 267 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 268 { 269 /* Do the reset outside of interrupt context */ 270 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 271 adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED; 272 ixgbevf_service_event_schedule(adapter); 273 } 274 } 275 276 /** 277 * ixgbevf_tx_timeout - Respond to a Tx Hang 278 * @netdev: network interface device structure 279 **/ 280 static void ixgbevf_tx_timeout(struct net_device *netdev) 281 { 282 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 283 284 ixgbevf_tx_timeout_reset(adapter); 285 } 286 287 /** 288 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 289 * @q_vector: board private structure 290 * @tx_ring: tx ring to clean 291 **/ 292 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 293 struct ixgbevf_ring *tx_ring) 294 { 295 struct ixgbevf_adapter *adapter = q_vector->adapter; 296 struct ixgbevf_tx_buffer *tx_buffer; 297 union ixgbe_adv_tx_desc *tx_desc; 298 unsigned int total_bytes = 0, total_packets = 0; 299 unsigned int budget = tx_ring->count / 2; 300 unsigned int i = tx_ring->next_to_clean; 301 302 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 303 return true; 304 305 tx_buffer = &tx_ring->tx_buffer_info[i]; 306 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 307 i -= tx_ring->count; 308 309 do { 310 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 311 312 /* if next_to_watch is not set then there is no work pending */ 313 if (!eop_desc) 314 break; 315 316 /* prevent any other reads prior to eop_desc */ 317 read_barrier_depends(); 318 319 /* if DD is not set pending work has not been completed */ 320 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 321 break; 322 323 /* clear next_to_watch to prevent false hangs */ 324 tx_buffer->next_to_watch = NULL; 325 326 /* update the statistics for this packet */ 327 total_bytes += tx_buffer->bytecount; 328 total_packets += tx_buffer->gso_segs; 329 330 /* free the skb */ 331 dev_kfree_skb_any(tx_buffer->skb); 332 333 /* unmap skb header data */ 334 dma_unmap_single(tx_ring->dev, 335 dma_unmap_addr(tx_buffer, dma), 336 dma_unmap_len(tx_buffer, len), 337 DMA_TO_DEVICE); 338 339 /* clear tx_buffer data */ 340 tx_buffer->skb = NULL; 341 dma_unmap_len_set(tx_buffer, len, 0); 342 343 /* unmap remaining buffers */ 344 while (tx_desc != eop_desc) { 345 tx_buffer++; 346 tx_desc++; 347 i++; 348 if (unlikely(!i)) { 349 i -= tx_ring->count; 350 tx_buffer = tx_ring->tx_buffer_info; 351 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 352 } 353 354 /* unmap any remaining paged data */ 355 if (dma_unmap_len(tx_buffer, len)) { 356 dma_unmap_page(tx_ring->dev, 357 dma_unmap_addr(tx_buffer, dma), 358 dma_unmap_len(tx_buffer, len), 359 DMA_TO_DEVICE); 360 dma_unmap_len_set(tx_buffer, len, 0); 361 } 362 } 363 364 /* move us one more past the eop_desc for start of next pkt */ 365 tx_buffer++; 366 tx_desc++; 367 i++; 368 if (unlikely(!i)) { 369 i -= tx_ring->count; 370 tx_buffer = tx_ring->tx_buffer_info; 371 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 372 } 373 374 /* issue prefetch for next Tx descriptor */ 375 prefetch(tx_desc); 376 377 /* update budget accounting */ 378 budget--; 379 } while (likely(budget)); 380 381 i += tx_ring->count; 382 tx_ring->next_to_clean = i; 383 u64_stats_update_begin(&tx_ring->syncp); 384 tx_ring->stats.bytes += total_bytes; 385 tx_ring->stats.packets += total_packets; 386 u64_stats_update_end(&tx_ring->syncp); 387 q_vector->tx.total_bytes += total_bytes; 388 q_vector->tx.total_packets += total_packets; 389 390 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 391 struct ixgbe_hw *hw = &adapter->hw; 392 union ixgbe_adv_tx_desc *eop_desc; 393 394 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 395 396 pr_err("Detected Tx Unit Hang\n" 397 " Tx Queue <%d>\n" 398 " TDH, TDT <%x>, <%x>\n" 399 " next_to_use <%x>\n" 400 " next_to_clean <%x>\n" 401 "tx_buffer_info[next_to_clean]\n" 402 " next_to_watch <%p>\n" 403 " eop_desc->wb.status <%x>\n" 404 " time_stamp <%lx>\n" 405 " jiffies <%lx>\n", 406 tx_ring->queue_index, 407 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 408 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 409 tx_ring->next_to_use, i, 410 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 411 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 412 413 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 414 415 /* schedule immediate reset if we believe we hung */ 416 ixgbevf_tx_timeout_reset(adapter); 417 418 return true; 419 } 420 421 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 422 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 423 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 424 /* Make sure that anybody stopping the queue after this 425 * sees the new next_to_clean. 426 */ 427 smp_mb(); 428 429 if (__netif_subqueue_stopped(tx_ring->netdev, 430 tx_ring->queue_index) && 431 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 432 netif_wake_subqueue(tx_ring->netdev, 433 tx_ring->queue_index); 434 ++tx_ring->tx_stats.restart_queue; 435 } 436 } 437 438 return !!budget; 439 } 440 441 /** 442 * ixgbevf_rx_skb - Helper function to determine proper Rx method 443 * @q_vector: structure containing interrupt and ring information 444 * @skb: packet to send up 445 **/ 446 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 447 struct sk_buff *skb) 448 { 449 #ifdef CONFIG_NET_RX_BUSY_POLL 450 skb_mark_napi_id(skb, &q_vector->napi); 451 452 if (ixgbevf_qv_busy_polling(q_vector)) { 453 netif_receive_skb(skb); 454 /* exit early if we busy polled */ 455 return; 456 } 457 #endif /* CONFIG_NET_RX_BUSY_POLL */ 458 459 napi_gro_receive(&q_vector->napi, skb); 460 } 461 462 #define IXGBE_RSS_L4_TYPES_MASK \ 463 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 464 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 465 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 466 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 467 468 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 469 union ixgbe_adv_rx_desc *rx_desc, 470 struct sk_buff *skb) 471 { 472 u16 rss_type; 473 474 if (!(ring->netdev->features & NETIF_F_RXHASH)) 475 return; 476 477 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 478 IXGBE_RXDADV_RSSTYPE_MASK; 479 480 if (!rss_type) 481 return; 482 483 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 484 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 485 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 486 } 487 488 /** 489 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 490 * @ring: structure containig ring specific data 491 * @rx_desc: current Rx descriptor being processed 492 * @skb: skb currently being received and modified 493 **/ 494 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 495 union ixgbe_adv_rx_desc *rx_desc, 496 struct sk_buff *skb) 497 { 498 skb_checksum_none_assert(skb); 499 500 /* Rx csum disabled */ 501 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 502 return; 503 504 /* if IP and error */ 505 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 506 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 507 ring->rx_stats.csum_err++; 508 return; 509 } 510 511 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 512 return; 513 514 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 515 ring->rx_stats.csum_err++; 516 return; 517 } 518 519 /* It must be a TCP or UDP packet with a valid checksum */ 520 skb->ip_summed = CHECKSUM_UNNECESSARY; 521 } 522 523 /** 524 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 525 * @rx_ring: rx descriptor ring packet is being transacted on 526 * @rx_desc: pointer to the EOP Rx descriptor 527 * @skb: pointer to current skb being populated 528 * 529 * This function checks the ring, descriptor, and packet information in 530 * order to populate the checksum, VLAN, protocol, and other fields within 531 * the skb. 532 **/ 533 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 534 union ixgbe_adv_rx_desc *rx_desc, 535 struct sk_buff *skb) 536 { 537 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 538 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 539 540 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 541 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 542 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 543 544 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 545 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 546 } 547 548 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 549 } 550 551 /** 552 * ixgbevf_is_non_eop - process handling of non-EOP buffers 553 * @rx_ring: Rx ring being processed 554 * @rx_desc: Rx descriptor for current buffer 555 * @skb: current socket buffer containing buffer in progress 556 * 557 * This function updates next to clean. If the buffer is an EOP buffer 558 * this function exits returning false, otherwise it will place the 559 * sk_buff in the next buffer to be chained and return true indicating 560 * that this is in fact a non-EOP buffer. 561 **/ 562 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 563 union ixgbe_adv_rx_desc *rx_desc) 564 { 565 u32 ntc = rx_ring->next_to_clean + 1; 566 567 /* fetch, update, and store next to clean */ 568 ntc = (ntc < rx_ring->count) ? ntc : 0; 569 rx_ring->next_to_clean = ntc; 570 571 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 572 573 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 574 return false; 575 576 return true; 577 } 578 579 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 580 struct ixgbevf_rx_buffer *bi) 581 { 582 struct page *page = bi->page; 583 dma_addr_t dma = bi->dma; 584 585 /* since we are recycling buffers we should seldom need to alloc */ 586 if (likely(page)) 587 return true; 588 589 /* alloc new page for storage */ 590 page = dev_alloc_page(); 591 if (unlikely(!page)) { 592 rx_ring->rx_stats.alloc_rx_page_failed++; 593 return false; 594 } 595 596 /* map page for use */ 597 dma = dma_map_page(rx_ring->dev, page, 0, 598 PAGE_SIZE, DMA_FROM_DEVICE); 599 600 /* if mapping failed free memory back to system since 601 * there isn't much point in holding memory we can't use 602 */ 603 if (dma_mapping_error(rx_ring->dev, dma)) { 604 __free_page(page); 605 606 rx_ring->rx_stats.alloc_rx_buff_failed++; 607 return false; 608 } 609 610 bi->dma = dma; 611 bi->page = page; 612 bi->page_offset = 0; 613 614 return true; 615 } 616 617 /** 618 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 619 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 620 * @cleaned_count: number of buffers to replace 621 **/ 622 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 623 u16 cleaned_count) 624 { 625 union ixgbe_adv_rx_desc *rx_desc; 626 struct ixgbevf_rx_buffer *bi; 627 unsigned int i = rx_ring->next_to_use; 628 629 /* nothing to do or no valid netdev defined */ 630 if (!cleaned_count || !rx_ring->netdev) 631 return; 632 633 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 634 bi = &rx_ring->rx_buffer_info[i]; 635 i -= rx_ring->count; 636 637 do { 638 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 639 break; 640 641 /* Refresh the desc even if pkt_addr didn't change 642 * because each write-back erases this info. 643 */ 644 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 645 646 rx_desc++; 647 bi++; 648 i++; 649 if (unlikely(!i)) { 650 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 651 bi = rx_ring->rx_buffer_info; 652 i -= rx_ring->count; 653 } 654 655 /* clear the hdr_addr for the next_to_use descriptor */ 656 rx_desc->read.hdr_addr = 0; 657 658 cleaned_count--; 659 } while (cleaned_count); 660 661 i += rx_ring->count; 662 663 if (rx_ring->next_to_use != i) { 664 /* record the next descriptor to use */ 665 rx_ring->next_to_use = i; 666 667 /* update next to alloc since we have filled the ring */ 668 rx_ring->next_to_alloc = i; 669 670 /* Force memory writes to complete before letting h/w 671 * know there are new descriptors to fetch. (Only 672 * applicable for weak-ordered memory model archs, 673 * such as IA-64). 674 */ 675 wmb(); 676 ixgbevf_write_tail(rx_ring, i); 677 } 678 } 679 680 /** 681 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 682 * @rx_ring: rx descriptor ring packet is being transacted on 683 * @rx_desc: pointer to the EOP Rx descriptor 684 * @skb: pointer to current skb being fixed 685 * 686 * Check for corrupted packet headers caused by senders on the local L2 687 * embedded NIC switch not setting up their Tx Descriptors right. These 688 * should be very rare. 689 * 690 * Also address the case where we are pulling data in on pages only 691 * and as such no data is present in the skb header. 692 * 693 * In addition if skb is not at least 60 bytes we need to pad it so that 694 * it is large enough to qualify as a valid Ethernet frame. 695 * 696 * Returns true if an error was encountered and skb was freed. 697 **/ 698 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 699 union ixgbe_adv_rx_desc *rx_desc, 700 struct sk_buff *skb) 701 { 702 /* verify that the packet does not have any known errors */ 703 if (unlikely(ixgbevf_test_staterr(rx_desc, 704 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 705 struct net_device *netdev = rx_ring->netdev; 706 707 if (!(netdev->features & NETIF_F_RXALL)) { 708 dev_kfree_skb_any(skb); 709 return true; 710 } 711 } 712 713 /* if eth_skb_pad returns an error the skb was freed */ 714 if (eth_skb_pad(skb)) 715 return true; 716 717 return false; 718 } 719 720 /** 721 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 722 * @rx_ring: rx descriptor ring to store buffers on 723 * @old_buff: donor buffer to have page reused 724 * 725 * Synchronizes page for reuse by the adapter 726 **/ 727 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 728 struct ixgbevf_rx_buffer *old_buff) 729 { 730 struct ixgbevf_rx_buffer *new_buff; 731 u16 nta = rx_ring->next_to_alloc; 732 733 new_buff = &rx_ring->rx_buffer_info[nta]; 734 735 /* update, and store next to alloc */ 736 nta++; 737 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 738 739 /* transfer page from old buffer to new buffer */ 740 new_buff->page = old_buff->page; 741 new_buff->dma = old_buff->dma; 742 new_buff->page_offset = old_buff->page_offset; 743 744 /* sync the buffer for use by the device */ 745 dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma, 746 new_buff->page_offset, 747 IXGBEVF_RX_BUFSZ, 748 DMA_FROM_DEVICE); 749 } 750 751 static inline bool ixgbevf_page_is_reserved(struct page *page) 752 { 753 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 754 } 755 756 /** 757 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 758 * @rx_ring: rx descriptor ring to transact packets on 759 * @rx_buffer: buffer containing page to add 760 * @rx_desc: descriptor containing length of buffer written by hardware 761 * @skb: sk_buff to place the data into 762 * 763 * This function will add the data contained in rx_buffer->page to the skb. 764 * This is done either through a direct copy if the data in the buffer is 765 * less than the skb header size, otherwise it will just attach the page as 766 * a frag to the skb. 767 * 768 * The function will then update the page offset if necessary and return 769 * true if the buffer can be reused by the adapter. 770 **/ 771 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 772 struct ixgbevf_rx_buffer *rx_buffer, 773 union ixgbe_adv_rx_desc *rx_desc, 774 struct sk_buff *skb) 775 { 776 struct page *page = rx_buffer->page; 777 unsigned char *va = page_address(page) + rx_buffer->page_offset; 778 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 779 #if (PAGE_SIZE < 8192) 780 unsigned int truesize = IXGBEVF_RX_BUFSZ; 781 #else 782 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 783 #endif 784 unsigned int pull_len; 785 786 if (unlikely(skb_is_nonlinear(skb))) 787 goto add_tail_frag; 788 789 if (likely(size <= IXGBEVF_RX_HDR_SIZE)) { 790 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 791 792 /* page is not reserved, we can reuse buffer as is */ 793 if (likely(!ixgbevf_page_is_reserved(page))) 794 return true; 795 796 /* this page cannot be reused so discard it */ 797 put_page(page); 798 return false; 799 } 800 801 /* we need the header to contain the greater of either ETH_HLEN or 802 * 60 bytes if the skb->len is less than 60 for skb_pad. 803 */ 804 pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE); 805 806 /* align pull length to size of long to optimize memcpy performance */ 807 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 808 809 /* update all of the pointers */ 810 va += pull_len; 811 size -= pull_len; 812 813 add_tail_frag: 814 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 815 (unsigned long)va & ~PAGE_MASK, size, truesize); 816 817 /* avoid re-using remote pages */ 818 if (unlikely(ixgbevf_page_is_reserved(page))) 819 return false; 820 821 #if (PAGE_SIZE < 8192) 822 /* if we are only owner of page we can reuse it */ 823 if (unlikely(page_count(page) != 1)) 824 return false; 825 826 /* flip page offset to other buffer */ 827 rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ; 828 829 #else 830 /* move offset up to the next cache line */ 831 rx_buffer->page_offset += truesize; 832 833 if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ)) 834 return false; 835 836 #endif 837 /* Even if we own the page, we are not allowed to use atomic_set() 838 * This would break get_page_unless_zero() users. 839 */ 840 atomic_inc(&page->_count); 841 842 return true; 843 } 844 845 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring, 846 union ixgbe_adv_rx_desc *rx_desc, 847 struct sk_buff *skb) 848 { 849 struct ixgbevf_rx_buffer *rx_buffer; 850 struct page *page; 851 852 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 853 page = rx_buffer->page; 854 prefetchw(page); 855 856 if (likely(!skb)) { 857 void *page_addr = page_address(page) + 858 rx_buffer->page_offset; 859 860 /* prefetch first cache line of first page */ 861 prefetch(page_addr); 862 #if L1_CACHE_BYTES < 128 863 prefetch(page_addr + L1_CACHE_BYTES); 864 #endif 865 866 /* allocate a skb to store the frags */ 867 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 868 IXGBEVF_RX_HDR_SIZE); 869 if (unlikely(!skb)) { 870 rx_ring->rx_stats.alloc_rx_buff_failed++; 871 return NULL; 872 } 873 874 /* we will be copying header into skb->data in 875 * pskb_may_pull so it is in our interest to prefetch 876 * it now to avoid a possible cache miss 877 */ 878 prefetchw(skb->data); 879 } 880 881 /* we are reusing so sync this buffer for CPU use */ 882 dma_sync_single_range_for_cpu(rx_ring->dev, 883 rx_buffer->dma, 884 rx_buffer->page_offset, 885 IXGBEVF_RX_BUFSZ, 886 DMA_FROM_DEVICE); 887 888 /* pull page into skb */ 889 if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { 890 /* hand second half of page back to the ring */ 891 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 892 } else { 893 /* we are not reusing the buffer so unmap it */ 894 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 895 PAGE_SIZE, DMA_FROM_DEVICE); 896 } 897 898 /* clear contents of buffer_info */ 899 rx_buffer->dma = 0; 900 rx_buffer->page = NULL; 901 902 return skb; 903 } 904 905 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 906 u32 qmask) 907 { 908 struct ixgbe_hw *hw = &adapter->hw; 909 910 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 911 } 912 913 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 914 struct ixgbevf_ring *rx_ring, 915 int budget) 916 { 917 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 918 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 919 struct sk_buff *skb = rx_ring->skb; 920 921 while (likely(total_rx_packets < budget)) { 922 union ixgbe_adv_rx_desc *rx_desc; 923 924 /* return some buffers to hardware, one at a time is too slow */ 925 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 926 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 927 cleaned_count = 0; 928 } 929 930 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 931 932 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD)) 933 break; 934 935 /* This memory barrier is needed to keep us from reading 936 * any other fields out of the rx_desc until we know the 937 * RXD_STAT_DD bit is set 938 */ 939 rmb(); 940 941 /* retrieve a buffer from the ring */ 942 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb); 943 944 /* exit if we failed to retrieve a buffer */ 945 if (!skb) 946 break; 947 948 cleaned_count++; 949 950 /* fetch next buffer in frame if non-eop */ 951 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 952 continue; 953 954 /* verify the packet layout is correct */ 955 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 956 skb = NULL; 957 continue; 958 } 959 960 /* probably a little skewed due to removing CRC */ 961 total_rx_bytes += skb->len; 962 963 /* Workaround hardware that can't do proper VEPA multicast 964 * source pruning. 965 */ 966 if ((skb->pkt_type == PACKET_BROADCAST || 967 skb->pkt_type == PACKET_MULTICAST) && 968 ether_addr_equal(rx_ring->netdev->dev_addr, 969 eth_hdr(skb)->h_source)) { 970 dev_kfree_skb_irq(skb); 971 continue; 972 } 973 974 /* populate checksum, VLAN, and protocol */ 975 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 976 977 ixgbevf_rx_skb(q_vector, skb); 978 979 /* reset skb pointer */ 980 skb = NULL; 981 982 /* update budget accounting */ 983 total_rx_packets++; 984 } 985 986 /* place incomplete frames back on ring for completion */ 987 rx_ring->skb = skb; 988 989 u64_stats_update_begin(&rx_ring->syncp); 990 rx_ring->stats.packets += total_rx_packets; 991 rx_ring->stats.bytes += total_rx_bytes; 992 u64_stats_update_end(&rx_ring->syncp); 993 q_vector->rx.total_packets += total_rx_packets; 994 q_vector->rx.total_bytes += total_rx_bytes; 995 996 return total_rx_packets; 997 } 998 999 /** 1000 * ixgbevf_poll - NAPI polling calback 1001 * @napi: napi struct with our devices info in it 1002 * @budget: amount of work driver is allowed to do this pass, in packets 1003 * 1004 * This function will clean more than one or more rings associated with a 1005 * q_vector. 1006 **/ 1007 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1008 { 1009 struct ixgbevf_q_vector *q_vector = 1010 container_of(napi, struct ixgbevf_q_vector, napi); 1011 struct ixgbevf_adapter *adapter = q_vector->adapter; 1012 struct ixgbevf_ring *ring; 1013 int per_ring_budget, work_done = 0; 1014 bool clean_complete = true; 1015 1016 ixgbevf_for_each_ring(ring, q_vector->tx) 1017 clean_complete &= ixgbevf_clean_tx_irq(q_vector, ring); 1018 1019 if (budget <= 0) 1020 return budget; 1021 #ifdef CONFIG_NET_RX_BUSY_POLL 1022 if (!ixgbevf_qv_lock_napi(q_vector)) 1023 return budget; 1024 #endif 1025 1026 /* attempt to distribute budget to each queue fairly, but don't allow 1027 * the budget to go below 1 because we'll exit polling 1028 */ 1029 if (q_vector->rx.count > 1) 1030 per_ring_budget = max(budget/q_vector->rx.count, 1); 1031 else 1032 per_ring_budget = budget; 1033 1034 ixgbevf_for_each_ring(ring, q_vector->rx) { 1035 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1036 per_ring_budget); 1037 work_done += cleaned; 1038 clean_complete &= (cleaned < per_ring_budget); 1039 } 1040 1041 #ifdef CONFIG_NET_RX_BUSY_POLL 1042 ixgbevf_qv_unlock_napi(q_vector); 1043 #endif 1044 1045 /* If all work not completed, return budget and keep polling */ 1046 if (!clean_complete) 1047 return budget; 1048 /* all work done, exit the polling mode */ 1049 napi_complete_done(napi, work_done); 1050 if (adapter->rx_itr_setting == 1) 1051 ixgbevf_set_itr(q_vector); 1052 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1053 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1054 ixgbevf_irq_enable_queues(adapter, 1055 1 << q_vector->v_idx); 1056 1057 return 0; 1058 } 1059 1060 /** 1061 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1062 * @q_vector: structure containing interrupt and ring information 1063 **/ 1064 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1065 { 1066 struct ixgbevf_adapter *adapter = q_vector->adapter; 1067 struct ixgbe_hw *hw = &adapter->hw; 1068 int v_idx = q_vector->v_idx; 1069 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1070 1071 /* set the WDIS bit to not clear the timer bits and cause an 1072 * immediate assertion of the interrupt 1073 */ 1074 itr_reg |= IXGBE_EITR_CNT_WDIS; 1075 1076 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1077 } 1078 1079 #ifdef CONFIG_NET_RX_BUSY_POLL 1080 /* must be called with local_bh_disable()d */ 1081 static int ixgbevf_busy_poll_recv(struct napi_struct *napi) 1082 { 1083 struct ixgbevf_q_vector *q_vector = 1084 container_of(napi, struct ixgbevf_q_vector, napi); 1085 struct ixgbevf_adapter *adapter = q_vector->adapter; 1086 struct ixgbevf_ring *ring; 1087 int found = 0; 1088 1089 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 1090 return LL_FLUSH_FAILED; 1091 1092 if (!ixgbevf_qv_lock_poll(q_vector)) 1093 return LL_FLUSH_BUSY; 1094 1095 ixgbevf_for_each_ring(ring, q_vector->rx) { 1096 found = ixgbevf_clean_rx_irq(q_vector, ring, 4); 1097 #ifdef BP_EXTENDED_STATS 1098 if (found) 1099 ring->stats.cleaned += found; 1100 else 1101 ring->stats.misses++; 1102 #endif 1103 if (found) 1104 break; 1105 } 1106 1107 ixgbevf_qv_unlock_poll(q_vector); 1108 1109 return found; 1110 } 1111 #endif /* CONFIG_NET_RX_BUSY_POLL */ 1112 1113 /** 1114 * ixgbevf_configure_msix - Configure MSI-X hardware 1115 * @adapter: board private structure 1116 * 1117 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1118 * interrupts. 1119 **/ 1120 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1121 { 1122 struct ixgbevf_q_vector *q_vector; 1123 int q_vectors, v_idx; 1124 1125 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1126 adapter->eims_enable_mask = 0; 1127 1128 /* Populate the IVAR table and set the ITR values to the 1129 * corresponding register. 1130 */ 1131 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1132 struct ixgbevf_ring *ring; 1133 1134 q_vector = adapter->q_vector[v_idx]; 1135 1136 ixgbevf_for_each_ring(ring, q_vector->rx) 1137 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1138 1139 ixgbevf_for_each_ring(ring, q_vector->tx) 1140 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1141 1142 if (q_vector->tx.ring && !q_vector->rx.ring) { 1143 /* Tx only vector */ 1144 if (adapter->tx_itr_setting == 1) 1145 q_vector->itr = IXGBE_12K_ITR; 1146 else 1147 q_vector->itr = adapter->tx_itr_setting; 1148 } else { 1149 /* Rx or Rx/Tx vector */ 1150 if (adapter->rx_itr_setting == 1) 1151 q_vector->itr = IXGBE_20K_ITR; 1152 else 1153 q_vector->itr = adapter->rx_itr_setting; 1154 } 1155 1156 /* add q_vector eims value to global eims_enable_mask */ 1157 adapter->eims_enable_mask |= 1 << v_idx; 1158 1159 ixgbevf_write_eitr(q_vector); 1160 } 1161 1162 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1163 /* setup eims_other and add value to global eims_enable_mask */ 1164 adapter->eims_other = 1 << v_idx; 1165 adapter->eims_enable_mask |= adapter->eims_other; 1166 } 1167 1168 enum latency_range { 1169 lowest_latency = 0, 1170 low_latency = 1, 1171 bulk_latency = 2, 1172 latency_invalid = 255 1173 }; 1174 1175 /** 1176 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1177 * @q_vector: structure containing interrupt and ring information 1178 * @ring_container: structure containing ring performance data 1179 * 1180 * Stores a new ITR value based on packets and byte 1181 * counts during the last interrupt. The advantage of per interrupt 1182 * computation is faster updates and more accurate ITR for the current 1183 * traffic pattern. Constants in this function were computed 1184 * based on theoretical maximum wire speed and thresholds were set based 1185 * on testing data as well as attempting to minimize response time 1186 * while increasing bulk throughput. 1187 **/ 1188 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1189 struct ixgbevf_ring_container *ring_container) 1190 { 1191 int bytes = ring_container->total_bytes; 1192 int packets = ring_container->total_packets; 1193 u32 timepassed_us; 1194 u64 bytes_perint; 1195 u8 itr_setting = ring_container->itr; 1196 1197 if (packets == 0) 1198 return; 1199 1200 /* simple throttle rate management 1201 * 0-20MB/s lowest (100000 ints/s) 1202 * 20-100MB/s low (20000 ints/s) 1203 * 100-1249MB/s bulk (12000 ints/s) 1204 */ 1205 /* what was last interrupt timeslice? */ 1206 timepassed_us = q_vector->itr >> 2; 1207 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1208 1209 switch (itr_setting) { 1210 case lowest_latency: 1211 if (bytes_perint > 10) 1212 itr_setting = low_latency; 1213 break; 1214 case low_latency: 1215 if (bytes_perint > 20) 1216 itr_setting = bulk_latency; 1217 else if (bytes_perint <= 10) 1218 itr_setting = lowest_latency; 1219 break; 1220 case bulk_latency: 1221 if (bytes_perint <= 20) 1222 itr_setting = low_latency; 1223 break; 1224 } 1225 1226 /* clear work counters since we have the values we need */ 1227 ring_container->total_bytes = 0; 1228 ring_container->total_packets = 0; 1229 1230 /* write updated itr to ring container */ 1231 ring_container->itr = itr_setting; 1232 } 1233 1234 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1235 { 1236 u32 new_itr = q_vector->itr; 1237 u8 current_itr; 1238 1239 ixgbevf_update_itr(q_vector, &q_vector->tx); 1240 ixgbevf_update_itr(q_vector, &q_vector->rx); 1241 1242 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1243 1244 switch (current_itr) { 1245 /* counts and packets in update_itr are dependent on these numbers */ 1246 case lowest_latency: 1247 new_itr = IXGBE_100K_ITR; 1248 break; 1249 case low_latency: 1250 new_itr = IXGBE_20K_ITR; 1251 break; 1252 case bulk_latency: 1253 new_itr = IXGBE_12K_ITR; 1254 break; 1255 default: 1256 break; 1257 } 1258 1259 if (new_itr != q_vector->itr) { 1260 /* do an exponential smoothing */ 1261 new_itr = (10 * new_itr * q_vector->itr) / 1262 ((9 * new_itr) + q_vector->itr); 1263 1264 /* save the algorithm value here */ 1265 q_vector->itr = new_itr; 1266 1267 ixgbevf_write_eitr(q_vector); 1268 } 1269 } 1270 1271 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1272 { 1273 struct ixgbevf_adapter *adapter = data; 1274 struct ixgbe_hw *hw = &adapter->hw; 1275 1276 hw->mac.get_link_status = 1; 1277 1278 ixgbevf_service_event_schedule(adapter); 1279 1280 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1281 1282 return IRQ_HANDLED; 1283 } 1284 1285 /** 1286 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1287 * @irq: unused 1288 * @data: pointer to our q_vector struct for this interrupt vector 1289 **/ 1290 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1291 { 1292 struct ixgbevf_q_vector *q_vector = data; 1293 1294 /* EIAM disabled interrupts (on this vector) for us */ 1295 if (q_vector->rx.ring || q_vector->tx.ring) 1296 napi_schedule_irqoff(&q_vector->napi); 1297 1298 return IRQ_HANDLED; 1299 } 1300 1301 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx, 1302 int r_idx) 1303 { 1304 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx]; 1305 1306 a->rx_ring[r_idx]->next = q_vector->rx.ring; 1307 q_vector->rx.ring = a->rx_ring[r_idx]; 1308 q_vector->rx.count++; 1309 } 1310 1311 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx, 1312 int t_idx) 1313 { 1314 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx]; 1315 1316 a->tx_ring[t_idx]->next = q_vector->tx.ring; 1317 q_vector->tx.ring = a->tx_ring[t_idx]; 1318 q_vector->tx.count++; 1319 } 1320 1321 /** 1322 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors 1323 * @adapter: board private structure to initialize 1324 * 1325 * This function maps descriptor rings to the queue-specific vectors 1326 * we were allotted through the MSI-X enabling code. Ideally, we'd have 1327 * one vector per ring/queue, but on a constrained vector budget, we 1328 * group the rings as "efficiently" as possible. You would add new 1329 * mapping configurations in here. 1330 **/ 1331 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter) 1332 { 1333 int q_vectors; 1334 int v_start = 0; 1335 int rxr_idx = 0, txr_idx = 0; 1336 int rxr_remaining = adapter->num_rx_queues; 1337 int txr_remaining = adapter->num_tx_queues; 1338 int i, j; 1339 int rqpv, tqpv; 1340 1341 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1342 1343 /* The ideal configuration... 1344 * We have enough vectors to map one per queue. 1345 */ 1346 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) { 1347 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++) 1348 map_vector_to_rxq(adapter, v_start, rxr_idx); 1349 1350 for (; txr_idx < txr_remaining; v_start++, txr_idx++) 1351 map_vector_to_txq(adapter, v_start, txr_idx); 1352 return 0; 1353 } 1354 1355 /* If we don't have enough vectors for a 1-to-1 1356 * mapping, we'll have to group them so there are 1357 * multiple queues per vector. 1358 */ 1359 /* Re-adjusting *qpv takes care of the remainder. */ 1360 for (i = v_start; i < q_vectors; i++) { 1361 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i); 1362 for (j = 0; j < rqpv; j++) { 1363 map_vector_to_rxq(adapter, i, rxr_idx); 1364 rxr_idx++; 1365 rxr_remaining--; 1366 } 1367 } 1368 for (i = v_start; i < q_vectors; i++) { 1369 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i); 1370 for (j = 0; j < tqpv; j++) { 1371 map_vector_to_txq(adapter, i, txr_idx); 1372 txr_idx++; 1373 txr_remaining--; 1374 } 1375 } 1376 1377 return 0; 1378 } 1379 1380 /** 1381 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1382 * @adapter: board private structure 1383 * 1384 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1385 * interrupts from the kernel. 1386 **/ 1387 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1388 { 1389 struct net_device *netdev = adapter->netdev; 1390 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1391 int vector, err; 1392 int ri = 0, ti = 0; 1393 1394 for (vector = 0; vector < q_vectors; vector++) { 1395 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1396 struct msix_entry *entry = &adapter->msix_entries[vector]; 1397 1398 if (q_vector->tx.ring && q_vector->rx.ring) { 1399 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1400 "%s-%s-%d", netdev->name, "TxRx", ri++); 1401 ti++; 1402 } else if (q_vector->rx.ring) { 1403 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1404 "%s-%s-%d", netdev->name, "rx", ri++); 1405 } else if (q_vector->tx.ring) { 1406 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1407 "%s-%s-%d", netdev->name, "tx", ti++); 1408 } else { 1409 /* skip this unused q_vector */ 1410 continue; 1411 } 1412 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1413 q_vector->name, q_vector); 1414 if (err) { 1415 hw_dbg(&adapter->hw, 1416 "request_irq failed for MSIX interrupt Error: %d\n", 1417 err); 1418 goto free_queue_irqs; 1419 } 1420 } 1421 1422 err = request_irq(adapter->msix_entries[vector].vector, 1423 &ixgbevf_msix_other, 0, netdev->name, adapter); 1424 if (err) { 1425 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1426 err); 1427 goto free_queue_irqs; 1428 } 1429 1430 return 0; 1431 1432 free_queue_irqs: 1433 while (vector) { 1434 vector--; 1435 free_irq(adapter->msix_entries[vector].vector, 1436 adapter->q_vector[vector]); 1437 } 1438 /* This failure is non-recoverable - it indicates the system is 1439 * out of MSIX vector resources and the VF driver cannot run 1440 * without them. Set the number of msix vectors to zero 1441 * indicating that not enough can be allocated. The error 1442 * will be returned to the user indicating device open failed. 1443 * Any further attempts to force the driver to open will also 1444 * fail. The only way to recover is to unload the driver and 1445 * reload it again. If the system has recovered some MSIX 1446 * vectors then it may succeed. 1447 */ 1448 adapter->num_msix_vectors = 0; 1449 return err; 1450 } 1451 1452 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter) 1453 { 1454 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1455 1456 for (i = 0; i < q_vectors; i++) { 1457 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i]; 1458 1459 q_vector->rx.ring = NULL; 1460 q_vector->tx.ring = NULL; 1461 q_vector->rx.count = 0; 1462 q_vector->tx.count = 0; 1463 } 1464 } 1465 1466 /** 1467 * ixgbevf_request_irq - initialize interrupts 1468 * @adapter: board private structure 1469 * 1470 * Attempts to configure interrupts using the best available 1471 * capabilities of the hardware and kernel. 1472 **/ 1473 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1474 { 1475 int err = ixgbevf_request_msix_irqs(adapter); 1476 1477 if (err) 1478 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1479 1480 return err; 1481 } 1482 1483 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1484 { 1485 int i, q_vectors; 1486 1487 q_vectors = adapter->num_msix_vectors; 1488 i = q_vectors - 1; 1489 1490 free_irq(adapter->msix_entries[i].vector, adapter); 1491 i--; 1492 1493 for (; i >= 0; i--) { 1494 /* free only the irqs that were actually requested */ 1495 if (!adapter->q_vector[i]->rx.ring && 1496 !adapter->q_vector[i]->tx.ring) 1497 continue; 1498 1499 free_irq(adapter->msix_entries[i].vector, 1500 adapter->q_vector[i]); 1501 } 1502 1503 ixgbevf_reset_q_vectors(adapter); 1504 } 1505 1506 /** 1507 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1508 * @adapter: board private structure 1509 **/ 1510 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1511 { 1512 struct ixgbe_hw *hw = &adapter->hw; 1513 int i; 1514 1515 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1516 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1517 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1518 1519 IXGBE_WRITE_FLUSH(hw); 1520 1521 for (i = 0; i < adapter->num_msix_vectors; i++) 1522 synchronize_irq(adapter->msix_entries[i].vector); 1523 } 1524 1525 /** 1526 * ixgbevf_irq_enable - Enable default interrupt generation settings 1527 * @adapter: board private structure 1528 **/ 1529 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1530 { 1531 struct ixgbe_hw *hw = &adapter->hw; 1532 1533 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1534 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1535 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1536 } 1537 1538 /** 1539 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1540 * @adapter: board private structure 1541 * @ring: structure containing ring specific data 1542 * 1543 * Configure the Tx descriptor ring after a reset. 1544 **/ 1545 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1546 struct ixgbevf_ring *ring) 1547 { 1548 struct ixgbe_hw *hw = &adapter->hw; 1549 u64 tdba = ring->dma; 1550 int wait_loop = 10; 1551 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1552 u8 reg_idx = ring->reg_idx; 1553 1554 /* disable queue to avoid issues while updating state */ 1555 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1556 IXGBE_WRITE_FLUSH(hw); 1557 1558 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1559 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1560 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1561 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1562 1563 /* disable head writeback */ 1564 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1565 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1566 1567 /* enable relaxed ordering */ 1568 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1569 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1570 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1571 1572 /* reset head and tail pointers */ 1573 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1574 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1575 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1576 1577 /* reset ntu and ntc to place SW in sync with hardwdare */ 1578 ring->next_to_clean = 0; 1579 ring->next_to_use = 0; 1580 1581 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1582 * to or less than the number of on chip descriptors, which is 1583 * currently 40. 1584 */ 1585 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1586 1587 /* Setting PTHRESH to 32 both improves performance */ 1588 txdctl |= (1 << 8) | /* HTHRESH = 1 */ 1589 32; /* PTHRESH = 32 */ 1590 1591 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1592 1593 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1594 1595 /* poll to verify queue is enabled */ 1596 do { 1597 usleep_range(1000, 2000); 1598 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1599 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1600 if (!wait_loop) 1601 pr_err("Could not enable Tx Queue %d\n", reg_idx); 1602 } 1603 1604 /** 1605 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1606 * @adapter: board private structure 1607 * 1608 * Configure the Tx unit of the MAC after a reset. 1609 **/ 1610 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1611 { 1612 u32 i; 1613 1614 /* Setup the HW Tx Head and Tail descriptor pointers */ 1615 for (i = 0; i < adapter->num_tx_queues; i++) 1616 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1617 } 1618 1619 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1620 1621 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index) 1622 { 1623 struct ixgbe_hw *hw = &adapter->hw; 1624 u32 srrctl; 1625 1626 srrctl = IXGBE_SRRCTL_DROP_EN; 1627 1628 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1629 srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1630 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1631 1632 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1633 } 1634 1635 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1636 { 1637 struct ixgbe_hw *hw = &adapter->hw; 1638 1639 /* PSRTYPE must be initialized in 82599 */ 1640 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1641 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1642 IXGBE_PSRTYPE_L2HDR; 1643 1644 if (adapter->num_rx_queues > 1) 1645 psrtype |= 1 << 29; 1646 1647 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1648 } 1649 1650 #define IXGBEVF_MAX_RX_DESC_POLL 10 1651 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1652 struct ixgbevf_ring *ring) 1653 { 1654 struct ixgbe_hw *hw = &adapter->hw; 1655 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1656 u32 rxdctl; 1657 u8 reg_idx = ring->reg_idx; 1658 1659 if (IXGBE_REMOVED(hw->hw_addr)) 1660 return; 1661 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1662 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1663 1664 /* write value back with RXDCTL.ENABLE bit cleared */ 1665 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1666 1667 /* the hardware may take up to 100us to really disable the Rx queue */ 1668 do { 1669 udelay(10); 1670 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1671 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1672 1673 if (!wait_loop) 1674 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1675 reg_idx); 1676 } 1677 1678 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1679 struct ixgbevf_ring *ring) 1680 { 1681 struct ixgbe_hw *hw = &adapter->hw; 1682 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1683 u32 rxdctl; 1684 u8 reg_idx = ring->reg_idx; 1685 1686 if (IXGBE_REMOVED(hw->hw_addr)) 1687 return; 1688 do { 1689 usleep_range(1000, 2000); 1690 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1691 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1692 1693 if (!wait_loop) 1694 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1695 reg_idx); 1696 } 1697 1698 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1699 { 1700 struct ixgbe_hw *hw = &adapter->hw; 1701 u32 vfmrqc = 0, vfreta = 0; 1702 u16 rss_i = adapter->num_rx_queues; 1703 u8 i, j; 1704 1705 /* Fill out hash function seeds */ 1706 netdev_rss_key_fill(adapter->rss_key, sizeof(adapter->rss_key)); 1707 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1708 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), adapter->rss_key[i]); 1709 1710 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1711 if (j == rss_i) 1712 j = 0; 1713 1714 adapter->rss_indir_tbl[i] = j; 1715 1716 vfreta |= j << (i & 0x3) * 8; 1717 if ((i & 3) == 3) { 1718 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1719 vfreta = 0; 1720 } 1721 } 1722 1723 /* Perform hash on these packet types */ 1724 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1725 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1726 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1727 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1728 1729 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1730 1731 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1732 } 1733 1734 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1735 struct ixgbevf_ring *ring) 1736 { 1737 struct ixgbe_hw *hw = &adapter->hw; 1738 u64 rdba = ring->dma; 1739 u32 rxdctl; 1740 u8 reg_idx = ring->reg_idx; 1741 1742 /* disable queue to avoid issues while updating state */ 1743 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1744 ixgbevf_disable_rx_queue(adapter, ring); 1745 1746 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1747 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1748 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1749 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1750 1751 /* enable relaxed ordering */ 1752 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1753 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1754 1755 /* reset head and tail pointers */ 1756 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1757 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1758 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1759 1760 /* reset ntu and ntc to place SW in sync with hardwdare */ 1761 ring->next_to_clean = 0; 1762 ring->next_to_use = 0; 1763 ring->next_to_alloc = 0; 1764 1765 ixgbevf_configure_srrctl(adapter, reg_idx); 1766 1767 /* allow any size packet since we can handle overflow */ 1768 rxdctl &= ~IXGBE_RXDCTL_RLPML_EN; 1769 1770 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1771 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1772 1773 ixgbevf_rx_desc_queue_enable(adapter, ring); 1774 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1775 } 1776 1777 /** 1778 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1779 * @adapter: board private structure 1780 * 1781 * Configure the Rx unit of the MAC after a reset. 1782 **/ 1783 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 1784 { 1785 int i; 1786 struct ixgbe_hw *hw = &adapter->hw; 1787 struct net_device *netdev = adapter->netdev; 1788 1789 ixgbevf_setup_psrtype(adapter); 1790 if (hw->mac.type >= ixgbe_mac_X550_vf) 1791 ixgbevf_setup_vfmrqc(adapter); 1792 1793 /* notify the PF of our intent to use this size of frame */ 1794 ixgbevf_rlpml_set_vf(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 1795 1796 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1797 * the Base and Length of the Rx Descriptor Ring 1798 */ 1799 for (i = 0; i < adapter->num_rx_queues; i++) 1800 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]); 1801 } 1802 1803 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 1804 __be16 proto, u16 vid) 1805 { 1806 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1807 struct ixgbe_hw *hw = &adapter->hw; 1808 int err; 1809 1810 spin_lock_bh(&adapter->mbx_lock); 1811 1812 /* add VID to filter table */ 1813 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 1814 1815 spin_unlock_bh(&adapter->mbx_lock); 1816 1817 /* translate error return types so error makes sense */ 1818 if (err == IXGBE_ERR_MBX) 1819 return -EIO; 1820 1821 if (err == IXGBE_ERR_INVALID_ARGUMENT) 1822 return -EACCES; 1823 1824 set_bit(vid, adapter->active_vlans); 1825 1826 return err; 1827 } 1828 1829 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 1830 __be16 proto, u16 vid) 1831 { 1832 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1833 struct ixgbe_hw *hw = &adapter->hw; 1834 int err; 1835 1836 spin_lock_bh(&adapter->mbx_lock); 1837 1838 /* remove VID from filter table */ 1839 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 1840 1841 spin_unlock_bh(&adapter->mbx_lock); 1842 1843 clear_bit(vid, adapter->active_vlans); 1844 1845 return err; 1846 } 1847 1848 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 1849 { 1850 u16 vid; 1851 1852 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 1853 ixgbevf_vlan_rx_add_vid(adapter->netdev, 1854 htons(ETH_P_8021Q), vid); 1855 } 1856 1857 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 1858 { 1859 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1860 struct ixgbe_hw *hw = &adapter->hw; 1861 int count = 0; 1862 1863 if ((netdev_uc_count(netdev)) > 10) { 1864 pr_err("Too many unicast filters - No Space\n"); 1865 return -ENOSPC; 1866 } 1867 1868 if (!netdev_uc_empty(netdev)) { 1869 struct netdev_hw_addr *ha; 1870 1871 netdev_for_each_uc_addr(ha, netdev) { 1872 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 1873 udelay(200); 1874 } 1875 } else { 1876 /* If the list is empty then send message to PF driver to 1877 * clear all MAC VLANs on this VF. 1878 */ 1879 hw->mac.ops.set_uc_addr(hw, 0, NULL); 1880 } 1881 1882 return count; 1883 } 1884 1885 /** 1886 * ixgbevf_set_rx_mode - Multicast and unicast set 1887 * @netdev: network interface device structure 1888 * 1889 * The set_rx_method entry point is called whenever the multicast address 1890 * list, unicast address list or the network interface flags are updated. 1891 * This routine is responsible for configuring the hardware for proper 1892 * multicast mode and configuring requested unicast filters. 1893 **/ 1894 static void ixgbevf_set_rx_mode(struct net_device *netdev) 1895 { 1896 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1897 struct ixgbe_hw *hw = &adapter->hw; 1898 unsigned int flags = netdev->flags; 1899 int xcast_mode; 1900 1901 xcast_mode = (flags & IFF_ALLMULTI) ? IXGBEVF_XCAST_MODE_ALLMULTI : 1902 (flags & (IFF_BROADCAST | IFF_MULTICAST)) ? 1903 IXGBEVF_XCAST_MODE_MULTI : IXGBEVF_XCAST_MODE_NONE; 1904 1905 spin_lock_bh(&adapter->mbx_lock); 1906 1907 hw->mac.ops.update_xcast_mode(hw, netdev, xcast_mode); 1908 1909 /* reprogram multicast list */ 1910 hw->mac.ops.update_mc_addr_list(hw, netdev); 1911 1912 ixgbevf_write_uc_addr_list(netdev); 1913 1914 spin_unlock_bh(&adapter->mbx_lock); 1915 } 1916 1917 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 1918 { 1919 int q_idx; 1920 struct ixgbevf_q_vector *q_vector; 1921 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1922 1923 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1924 q_vector = adapter->q_vector[q_idx]; 1925 #ifdef CONFIG_NET_RX_BUSY_POLL 1926 ixgbevf_qv_init_lock(adapter->q_vector[q_idx]); 1927 #endif 1928 napi_enable(&q_vector->napi); 1929 } 1930 } 1931 1932 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 1933 { 1934 int q_idx; 1935 struct ixgbevf_q_vector *q_vector; 1936 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1937 1938 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1939 q_vector = adapter->q_vector[q_idx]; 1940 napi_disable(&q_vector->napi); 1941 #ifdef CONFIG_NET_RX_BUSY_POLL 1942 while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) { 1943 pr_info("QV %d locked\n", q_idx); 1944 usleep_range(1000, 20000); 1945 } 1946 #endif /* CONFIG_NET_RX_BUSY_POLL */ 1947 } 1948 } 1949 1950 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 1951 { 1952 struct ixgbe_hw *hw = &adapter->hw; 1953 unsigned int def_q = 0; 1954 unsigned int num_tcs = 0; 1955 unsigned int num_rx_queues = adapter->num_rx_queues; 1956 unsigned int num_tx_queues = adapter->num_tx_queues; 1957 int err; 1958 1959 spin_lock_bh(&adapter->mbx_lock); 1960 1961 /* fetch queue configuration from the PF */ 1962 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 1963 1964 spin_unlock_bh(&adapter->mbx_lock); 1965 1966 if (err) 1967 return err; 1968 1969 if (num_tcs > 1) { 1970 /* we need only one Tx queue */ 1971 num_tx_queues = 1; 1972 1973 /* update default Tx ring register index */ 1974 adapter->tx_ring[0]->reg_idx = def_q; 1975 1976 /* we need as many queues as traffic classes */ 1977 num_rx_queues = num_tcs; 1978 } 1979 1980 /* if we have a bad config abort request queue reset */ 1981 if ((adapter->num_rx_queues != num_rx_queues) || 1982 (adapter->num_tx_queues != num_tx_queues)) { 1983 /* force mailbox timeout to prevent further messages */ 1984 hw->mbx.timeout = 0; 1985 1986 /* wait for watchdog to come around and bail us out */ 1987 adapter->flags |= IXGBEVF_FLAG_QUEUE_RESET_REQUESTED; 1988 } 1989 1990 return 0; 1991 } 1992 1993 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 1994 { 1995 ixgbevf_configure_dcb(adapter); 1996 1997 ixgbevf_set_rx_mode(adapter->netdev); 1998 1999 ixgbevf_restore_vlan(adapter); 2000 2001 ixgbevf_configure_tx(adapter); 2002 ixgbevf_configure_rx(adapter); 2003 } 2004 2005 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2006 { 2007 /* Only save pre-reset stats if there are some */ 2008 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2009 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2010 adapter->stats.base_vfgprc; 2011 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2012 adapter->stats.base_vfgptc; 2013 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2014 adapter->stats.base_vfgorc; 2015 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2016 adapter->stats.base_vfgotc; 2017 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2018 adapter->stats.base_vfmprc; 2019 } 2020 } 2021 2022 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2023 { 2024 struct ixgbe_hw *hw = &adapter->hw; 2025 2026 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2027 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2028 adapter->stats.last_vfgorc |= 2029 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2030 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2031 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2032 adapter->stats.last_vfgotc |= 2033 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2034 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2035 2036 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2037 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2038 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2039 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2040 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2041 } 2042 2043 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2044 { 2045 struct ixgbe_hw *hw = &adapter->hw; 2046 int api[] = { ixgbe_mbox_api_12, 2047 ixgbe_mbox_api_11, 2048 ixgbe_mbox_api_10, 2049 ixgbe_mbox_api_unknown }; 2050 int err, idx = 0; 2051 2052 spin_lock_bh(&adapter->mbx_lock); 2053 2054 while (api[idx] != ixgbe_mbox_api_unknown) { 2055 err = ixgbevf_negotiate_api_version(hw, api[idx]); 2056 if (!err) 2057 break; 2058 idx++; 2059 } 2060 2061 spin_unlock_bh(&adapter->mbx_lock); 2062 } 2063 2064 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2065 { 2066 struct net_device *netdev = adapter->netdev; 2067 struct ixgbe_hw *hw = &adapter->hw; 2068 2069 ixgbevf_configure_msix(adapter); 2070 2071 spin_lock_bh(&adapter->mbx_lock); 2072 2073 if (is_valid_ether_addr(hw->mac.addr)) 2074 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2075 else 2076 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2077 2078 spin_unlock_bh(&adapter->mbx_lock); 2079 2080 smp_mb__before_atomic(); 2081 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2082 ixgbevf_napi_enable_all(adapter); 2083 2084 /* clear any pending interrupts, may auto mask */ 2085 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2086 ixgbevf_irq_enable(adapter); 2087 2088 /* enable transmits */ 2089 netif_tx_start_all_queues(netdev); 2090 2091 ixgbevf_save_reset_stats(adapter); 2092 ixgbevf_init_last_counter_stats(adapter); 2093 2094 hw->mac.get_link_status = 1; 2095 mod_timer(&adapter->service_timer, jiffies); 2096 } 2097 2098 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2099 { 2100 ixgbevf_configure(adapter); 2101 2102 ixgbevf_up_complete(adapter); 2103 } 2104 2105 /** 2106 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2107 * @rx_ring: ring to free buffers from 2108 **/ 2109 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2110 { 2111 struct device *dev = rx_ring->dev; 2112 unsigned long size; 2113 unsigned int i; 2114 2115 /* Free Rx ring sk_buff */ 2116 if (rx_ring->skb) { 2117 dev_kfree_skb(rx_ring->skb); 2118 rx_ring->skb = NULL; 2119 } 2120 2121 /* ring already cleared, nothing to do */ 2122 if (!rx_ring->rx_buffer_info) 2123 return; 2124 2125 /* Free all the Rx ring pages */ 2126 for (i = 0; i < rx_ring->count; i++) { 2127 struct ixgbevf_rx_buffer *rx_buffer; 2128 2129 rx_buffer = &rx_ring->rx_buffer_info[i]; 2130 if (rx_buffer->dma) 2131 dma_unmap_page(dev, rx_buffer->dma, 2132 PAGE_SIZE, DMA_FROM_DEVICE); 2133 rx_buffer->dma = 0; 2134 if (rx_buffer->page) 2135 __free_page(rx_buffer->page); 2136 rx_buffer->page = NULL; 2137 } 2138 2139 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 2140 memset(rx_ring->rx_buffer_info, 0, size); 2141 2142 /* Zero out the descriptor ring */ 2143 memset(rx_ring->desc, 0, rx_ring->size); 2144 } 2145 2146 /** 2147 * ixgbevf_clean_tx_ring - Free Tx Buffers 2148 * @tx_ring: ring to be cleaned 2149 **/ 2150 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2151 { 2152 struct ixgbevf_tx_buffer *tx_buffer_info; 2153 unsigned long size; 2154 unsigned int i; 2155 2156 if (!tx_ring->tx_buffer_info) 2157 return; 2158 2159 /* Free all the Tx ring sk_buffs */ 2160 for (i = 0; i < tx_ring->count; i++) { 2161 tx_buffer_info = &tx_ring->tx_buffer_info[i]; 2162 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); 2163 } 2164 2165 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 2166 memset(tx_ring->tx_buffer_info, 0, size); 2167 2168 memset(tx_ring->desc, 0, tx_ring->size); 2169 } 2170 2171 /** 2172 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2173 * @adapter: board private structure 2174 **/ 2175 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2176 { 2177 int i; 2178 2179 for (i = 0; i < adapter->num_rx_queues; i++) 2180 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2181 } 2182 2183 /** 2184 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2185 * @adapter: board private structure 2186 **/ 2187 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2188 { 2189 int i; 2190 2191 for (i = 0; i < adapter->num_tx_queues; i++) 2192 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2193 } 2194 2195 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2196 { 2197 struct net_device *netdev = adapter->netdev; 2198 struct ixgbe_hw *hw = &adapter->hw; 2199 int i; 2200 2201 /* signal that we are down to the interrupt handler */ 2202 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2203 return; /* do nothing if already down */ 2204 2205 /* disable all enabled Rx queues */ 2206 for (i = 0; i < adapter->num_rx_queues; i++) 2207 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2208 2209 usleep_range(10000, 20000); 2210 2211 netif_tx_stop_all_queues(netdev); 2212 2213 /* call carrier off first to avoid false dev_watchdog timeouts */ 2214 netif_carrier_off(netdev); 2215 netif_tx_disable(netdev); 2216 2217 ixgbevf_irq_disable(adapter); 2218 2219 ixgbevf_napi_disable_all(adapter); 2220 2221 del_timer_sync(&adapter->service_timer); 2222 2223 /* disable transmits in the hardware now that interrupts are off */ 2224 for (i = 0; i < adapter->num_tx_queues; i++) { 2225 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2226 2227 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2228 IXGBE_TXDCTL_SWFLSH); 2229 } 2230 2231 if (!pci_channel_offline(adapter->pdev)) 2232 ixgbevf_reset(adapter); 2233 2234 ixgbevf_clean_all_tx_rings(adapter); 2235 ixgbevf_clean_all_rx_rings(adapter); 2236 } 2237 2238 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2239 { 2240 WARN_ON(in_interrupt()); 2241 2242 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2243 msleep(1); 2244 2245 ixgbevf_down(adapter); 2246 ixgbevf_up(adapter); 2247 2248 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2249 } 2250 2251 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2252 { 2253 struct ixgbe_hw *hw = &adapter->hw; 2254 struct net_device *netdev = adapter->netdev; 2255 2256 if (hw->mac.ops.reset_hw(hw)) { 2257 hw_dbg(hw, "PF still resetting\n"); 2258 } else { 2259 hw->mac.ops.init_hw(hw); 2260 ixgbevf_negotiate_api(adapter); 2261 } 2262 2263 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2264 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2265 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2266 } 2267 2268 adapter->last_reset = jiffies; 2269 } 2270 2271 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2272 int vectors) 2273 { 2274 int vector_threshold; 2275 2276 /* We'll want at least 2 (vector_threshold): 2277 * 1) TxQ[0] + RxQ[0] handler 2278 * 2) Other (Link Status Change, etc.) 2279 */ 2280 vector_threshold = MIN_MSIX_COUNT; 2281 2282 /* The more we get, the more we will assign to Tx/Rx Cleanup 2283 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2284 * Right now, we simply care about how many we'll get; we'll 2285 * set them up later while requesting irq's. 2286 */ 2287 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2288 vector_threshold, vectors); 2289 2290 if (vectors < 0) { 2291 dev_err(&adapter->pdev->dev, 2292 "Unable to allocate MSI-X interrupts\n"); 2293 kfree(adapter->msix_entries); 2294 adapter->msix_entries = NULL; 2295 return vectors; 2296 } 2297 2298 /* Adjust for only the vectors we'll use, which is minimum 2299 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2300 * vectors we were allocated. 2301 */ 2302 adapter->num_msix_vectors = vectors; 2303 2304 return 0; 2305 } 2306 2307 /** 2308 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2309 * @adapter: board private structure to initialize 2310 * 2311 * This is the top level queue allocation routine. The order here is very 2312 * important, starting with the "most" number of features turned on at once, 2313 * and ending with the smallest set of features. This way large combinations 2314 * can be allocated if they're turned on, and smaller combinations are the 2315 * fallthrough conditions. 2316 * 2317 **/ 2318 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2319 { 2320 struct ixgbe_hw *hw = &adapter->hw; 2321 unsigned int def_q = 0; 2322 unsigned int num_tcs = 0; 2323 int err; 2324 2325 /* Start with base case */ 2326 adapter->num_rx_queues = 1; 2327 adapter->num_tx_queues = 1; 2328 2329 spin_lock_bh(&adapter->mbx_lock); 2330 2331 /* fetch queue configuration from the PF */ 2332 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2333 2334 spin_unlock_bh(&adapter->mbx_lock); 2335 2336 if (err) 2337 return; 2338 2339 /* we need as many queues as traffic classes */ 2340 if (num_tcs > 1) { 2341 adapter->num_rx_queues = num_tcs; 2342 } else { 2343 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2344 2345 switch (hw->api_version) { 2346 case ixgbe_mbox_api_11: 2347 case ixgbe_mbox_api_12: 2348 adapter->num_rx_queues = rss; 2349 adapter->num_tx_queues = rss; 2350 default: 2351 break; 2352 } 2353 } 2354 } 2355 2356 /** 2357 * ixgbevf_alloc_queues - Allocate memory for all rings 2358 * @adapter: board private structure to initialize 2359 * 2360 * We allocate one ring per queue at run-time since we don't know the 2361 * number of queues at compile-time. The polling_netdev array is 2362 * intended for Multiqueue, but should work fine with a single queue. 2363 **/ 2364 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter) 2365 { 2366 struct ixgbevf_ring *ring; 2367 int rx = 0, tx = 0; 2368 2369 for (; tx < adapter->num_tx_queues; tx++) { 2370 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 2371 if (!ring) 2372 goto err_allocation; 2373 2374 ring->dev = &adapter->pdev->dev; 2375 ring->netdev = adapter->netdev; 2376 ring->count = adapter->tx_ring_count; 2377 ring->queue_index = tx; 2378 ring->reg_idx = tx; 2379 2380 adapter->tx_ring[tx] = ring; 2381 } 2382 2383 for (; rx < adapter->num_rx_queues; rx++) { 2384 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 2385 if (!ring) 2386 goto err_allocation; 2387 2388 ring->dev = &adapter->pdev->dev; 2389 ring->netdev = adapter->netdev; 2390 2391 ring->count = adapter->rx_ring_count; 2392 ring->queue_index = rx; 2393 ring->reg_idx = rx; 2394 2395 adapter->rx_ring[rx] = ring; 2396 } 2397 2398 return 0; 2399 2400 err_allocation: 2401 while (tx) { 2402 kfree(adapter->tx_ring[--tx]); 2403 adapter->tx_ring[tx] = NULL; 2404 } 2405 2406 while (rx) { 2407 kfree(adapter->rx_ring[--rx]); 2408 adapter->rx_ring[rx] = NULL; 2409 } 2410 return -ENOMEM; 2411 } 2412 2413 /** 2414 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2415 * @adapter: board private structure to initialize 2416 * 2417 * Attempt to configure the interrupts using the best available 2418 * capabilities of the hardware and the kernel. 2419 **/ 2420 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2421 { 2422 struct net_device *netdev = adapter->netdev; 2423 int err; 2424 int vector, v_budget; 2425 2426 /* It's easy to be greedy for MSI-X vectors, but it really 2427 * doesn't do us much good if we have a lot more vectors 2428 * than CPU's. So let's be conservative and only ask for 2429 * (roughly) the same number of vectors as there are CPU's. 2430 * The default is to use pairs of vectors. 2431 */ 2432 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2433 v_budget = min_t(int, v_budget, num_online_cpus()); 2434 v_budget += NON_Q_VECTORS; 2435 2436 /* A failure in MSI-X entry allocation isn't fatal, but it does 2437 * mean we disable MSI-X capabilities of the adapter. 2438 */ 2439 adapter->msix_entries = kcalloc(v_budget, 2440 sizeof(struct msix_entry), GFP_KERNEL); 2441 if (!adapter->msix_entries) 2442 return -ENOMEM; 2443 2444 for (vector = 0; vector < v_budget; vector++) 2445 adapter->msix_entries[vector].entry = vector; 2446 2447 err = ixgbevf_acquire_msix_vectors(adapter, v_budget); 2448 if (err) 2449 return err; 2450 2451 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 2452 if (err) 2453 return err; 2454 2455 return netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 2456 } 2457 2458 /** 2459 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2460 * @adapter: board private structure to initialize 2461 * 2462 * We allocate one q_vector per queue interrupt. If allocation fails we 2463 * return -ENOMEM. 2464 **/ 2465 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2466 { 2467 int q_idx, num_q_vectors; 2468 struct ixgbevf_q_vector *q_vector; 2469 2470 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2471 2472 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 2473 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL); 2474 if (!q_vector) 2475 goto err_out; 2476 q_vector->adapter = adapter; 2477 q_vector->v_idx = q_idx; 2478 netif_napi_add(adapter->netdev, &q_vector->napi, 2479 ixgbevf_poll, 64); 2480 adapter->q_vector[q_idx] = q_vector; 2481 } 2482 2483 return 0; 2484 2485 err_out: 2486 while (q_idx) { 2487 q_idx--; 2488 q_vector = adapter->q_vector[q_idx]; 2489 #ifdef CONFIG_NET_RX_BUSY_POLL 2490 napi_hash_del(&q_vector->napi); 2491 #endif 2492 netif_napi_del(&q_vector->napi); 2493 kfree(q_vector); 2494 adapter->q_vector[q_idx] = NULL; 2495 } 2496 return -ENOMEM; 2497 } 2498 2499 /** 2500 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2501 * @adapter: board private structure to initialize 2502 * 2503 * This function frees the memory allocated to the q_vectors. In addition if 2504 * NAPI is enabled it will delete any references to the NAPI struct prior 2505 * to freeing the q_vector. 2506 **/ 2507 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2508 { 2509 int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2510 2511 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 2512 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx]; 2513 2514 adapter->q_vector[q_idx] = NULL; 2515 #ifdef CONFIG_NET_RX_BUSY_POLL 2516 napi_hash_del(&q_vector->napi); 2517 #endif 2518 netif_napi_del(&q_vector->napi); 2519 kfree(q_vector); 2520 } 2521 } 2522 2523 /** 2524 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2525 * @adapter: board private structure 2526 * 2527 **/ 2528 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2529 { 2530 pci_disable_msix(adapter->pdev); 2531 kfree(adapter->msix_entries); 2532 adapter->msix_entries = NULL; 2533 } 2534 2535 /** 2536 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2537 * @adapter: board private structure to initialize 2538 * 2539 **/ 2540 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2541 { 2542 int err; 2543 2544 /* Number of supported queues */ 2545 ixgbevf_set_num_queues(adapter); 2546 2547 err = ixgbevf_set_interrupt_capability(adapter); 2548 if (err) { 2549 hw_dbg(&adapter->hw, 2550 "Unable to setup interrupt capabilities\n"); 2551 goto err_set_interrupt; 2552 } 2553 2554 err = ixgbevf_alloc_q_vectors(adapter); 2555 if (err) { 2556 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2557 goto err_alloc_q_vectors; 2558 } 2559 2560 err = ixgbevf_alloc_queues(adapter); 2561 if (err) { 2562 pr_err("Unable to allocate memory for queues\n"); 2563 goto err_alloc_queues; 2564 } 2565 2566 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n", 2567 (adapter->num_rx_queues > 1) ? "Enabled" : 2568 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues); 2569 2570 set_bit(__IXGBEVF_DOWN, &adapter->state); 2571 2572 return 0; 2573 err_alloc_queues: 2574 ixgbevf_free_q_vectors(adapter); 2575 err_alloc_q_vectors: 2576 ixgbevf_reset_interrupt_capability(adapter); 2577 err_set_interrupt: 2578 return err; 2579 } 2580 2581 /** 2582 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2583 * @adapter: board private structure to clear interrupt scheme on 2584 * 2585 * We go through and clear interrupt specific resources and reset the structure 2586 * to pre-load conditions 2587 **/ 2588 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2589 { 2590 int i; 2591 2592 for (i = 0; i < adapter->num_tx_queues; i++) { 2593 kfree(adapter->tx_ring[i]); 2594 adapter->tx_ring[i] = NULL; 2595 } 2596 for (i = 0; i < adapter->num_rx_queues; i++) { 2597 kfree(adapter->rx_ring[i]); 2598 adapter->rx_ring[i] = NULL; 2599 } 2600 2601 adapter->num_tx_queues = 0; 2602 adapter->num_rx_queues = 0; 2603 2604 ixgbevf_free_q_vectors(adapter); 2605 ixgbevf_reset_interrupt_capability(adapter); 2606 } 2607 2608 /** 2609 * ixgbevf_sw_init - Initialize general software structures 2610 * @adapter: board private structure to initialize 2611 * 2612 * ixgbevf_sw_init initializes the Adapter private data structure. 2613 * Fields are initialized based on PCI device information and 2614 * OS network device settings (MTU size). 2615 **/ 2616 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 2617 { 2618 struct ixgbe_hw *hw = &adapter->hw; 2619 struct pci_dev *pdev = adapter->pdev; 2620 struct net_device *netdev = adapter->netdev; 2621 int err; 2622 2623 /* PCI config space info */ 2624 hw->vendor_id = pdev->vendor; 2625 hw->device_id = pdev->device; 2626 hw->revision_id = pdev->revision; 2627 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2628 hw->subsystem_device_id = pdev->subsystem_device; 2629 2630 hw->mbx.ops.init_params(hw); 2631 2632 /* assume legacy case in which PF would only give VF 2 queues */ 2633 hw->mac.max_tx_queues = 2; 2634 hw->mac.max_rx_queues = 2; 2635 2636 /* lock to protect mailbox accesses */ 2637 spin_lock_init(&adapter->mbx_lock); 2638 2639 err = hw->mac.ops.reset_hw(hw); 2640 if (err) { 2641 dev_info(&pdev->dev, 2642 "PF still in reset state. Is the PF interface up?\n"); 2643 } else { 2644 err = hw->mac.ops.init_hw(hw); 2645 if (err) { 2646 pr_err("init_shared_code failed: %d\n", err); 2647 goto out; 2648 } 2649 ixgbevf_negotiate_api(adapter); 2650 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 2651 if (err) 2652 dev_info(&pdev->dev, "Error reading MAC address\n"); 2653 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 2654 dev_info(&pdev->dev, 2655 "MAC address not assigned by administrator.\n"); 2656 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 2657 } 2658 2659 if (!is_valid_ether_addr(netdev->dev_addr)) { 2660 dev_info(&pdev->dev, "Assigning random MAC address\n"); 2661 eth_hw_addr_random(netdev); 2662 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 2663 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 2664 } 2665 2666 /* Enable dynamic interrupt throttling rates */ 2667 adapter->rx_itr_setting = 1; 2668 adapter->tx_itr_setting = 1; 2669 2670 /* set default ring sizes */ 2671 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 2672 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 2673 2674 set_bit(__IXGBEVF_DOWN, &adapter->state); 2675 return 0; 2676 2677 out: 2678 return err; 2679 } 2680 2681 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 2682 { \ 2683 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 2684 if (current_counter < last_counter) \ 2685 counter += 0x100000000LL; \ 2686 last_counter = current_counter; \ 2687 counter &= 0xFFFFFFFF00000000LL; \ 2688 counter |= current_counter; \ 2689 } 2690 2691 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 2692 { \ 2693 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 2694 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 2695 u64 current_counter = (current_counter_msb << 32) | \ 2696 current_counter_lsb; \ 2697 if (current_counter < last_counter) \ 2698 counter += 0x1000000000LL; \ 2699 last_counter = current_counter; \ 2700 counter &= 0xFFFFFFF000000000LL; \ 2701 counter |= current_counter; \ 2702 } 2703 /** 2704 * ixgbevf_update_stats - Update the board statistics counters. 2705 * @adapter: board private structure 2706 **/ 2707 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 2708 { 2709 struct ixgbe_hw *hw = &adapter->hw; 2710 int i; 2711 2712 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2713 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2714 return; 2715 2716 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 2717 adapter->stats.vfgprc); 2718 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 2719 adapter->stats.vfgptc); 2720 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 2721 adapter->stats.last_vfgorc, 2722 adapter->stats.vfgorc); 2723 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 2724 adapter->stats.last_vfgotc, 2725 adapter->stats.vfgotc); 2726 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 2727 adapter->stats.vfmprc); 2728 2729 for (i = 0; i < adapter->num_rx_queues; i++) { 2730 adapter->hw_csum_rx_error += 2731 adapter->rx_ring[i]->hw_csum_rx_error; 2732 adapter->rx_ring[i]->hw_csum_rx_error = 0; 2733 } 2734 } 2735 2736 /** 2737 * ixgbevf_service_timer - Timer Call-back 2738 * @data: pointer to adapter cast into an unsigned long 2739 **/ 2740 static void ixgbevf_service_timer(unsigned long data) 2741 { 2742 struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data; 2743 2744 /* Reset the timer */ 2745 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 2746 2747 ixgbevf_service_event_schedule(adapter); 2748 } 2749 2750 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 2751 { 2752 if (!(adapter->flags & IXGBEVF_FLAG_RESET_REQUESTED)) 2753 return; 2754 2755 adapter->flags &= ~IXGBEVF_FLAG_RESET_REQUESTED; 2756 2757 /* If we're already down or resetting, just bail */ 2758 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2759 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2760 return; 2761 2762 adapter->tx_timeout_count++; 2763 2764 ixgbevf_reinit_locked(adapter); 2765 } 2766 2767 /** 2768 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 2769 * @adapter: pointer to the device adapter structure 2770 * 2771 * This function serves two purposes. First it strobes the interrupt lines 2772 * in order to make certain interrupts are occurring. Secondly it sets the 2773 * bits needed to check for TX hangs. As a result we should immediately 2774 * determine if a hang has occurred. 2775 **/ 2776 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 2777 { 2778 struct ixgbe_hw *hw = &adapter->hw; 2779 u32 eics = 0; 2780 int i; 2781 2782 /* If we're down or resetting, just bail */ 2783 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2784 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2785 return; 2786 2787 /* Force detection of hung controller */ 2788 if (netif_carrier_ok(adapter->netdev)) { 2789 for (i = 0; i < adapter->num_tx_queues; i++) 2790 set_check_for_tx_hang(adapter->tx_ring[i]); 2791 } 2792 2793 /* get one bit for every active Tx/Rx interrupt vector */ 2794 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 2795 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 2796 2797 if (qv->rx.ring || qv->tx.ring) 2798 eics |= 1 << i; 2799 } 2800 2801 /* Cause software interrupt to ensure rings are cleaned */ 2802 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 2803 } 2804 2805 /** 2806 * ixgbevf_watchdog_update_link - update the link status 2807 * @adapter: pointer to the device adapter structure 2808 **/ 2809 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 2810 { 2811 struct ixgbe_hw *hw = &adapter->hw; 2812 u32 link_speed = adapter->link_speed; 2813 bool link_up = adapter->link_up; 2814 s32 err; 2815 2816 spin_lock_bh(&adapter->mbx_lock); 2817 2818 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 2819 2820 spin_unlock_bh(&adapter->mbx_lock); 2821 2822 /* if check for link returns error we will need to reset */ 2823 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 2824 adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED; 2825 link_up = false; 2826 } 2827 2828 adapter->link_up = link_up; 2829 adapter->link_speed = link_speed; 2830 } 2831 2832 /** 2833 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 2834 * print link up message 2835 * @adapter: pointer to the device adapter structure 2836 **/ 2837 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 2838 { 2839 struct net_device *netdev = adapter->netdev; 2840 2841 /* only continue if link was previously down */ 2842 if (netif_carrier_ok(netdev)) 2843 return; 2844 2845 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 2846 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 2847 "10 Gbps" : 2848 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 2849 "1 Gbps" : 2850 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 2851 "100 Mbps" : 2852 "unknown speed"); 2853 2854 netif_carrier_on(netdev); 2855 } 2856 2857 /** 2858 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 2859 * print link down message 2860 * @adapter: pointer to the adapter structure 2861 **/ 2862 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 2863 { 2864 struct net_device *netdev = adapter->netdev; 2865 2866 adapter->link_speed = 0; 2867 2868 /* only continue if link was up previously */ 2869 if (!netif_carrier_ok(netdev)) 2870 return; 2871 2872 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 2873 2874 netif_carrier_off(netdev); 2875 } 2876 2877 /** 2878 * ixgbevf_watchdog_subtask - worker thread to bring link up 2879 * @work: pointer to work_struct containing our data 2880 **/ 2881 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 2882 { 2883 /* if interface is down do nothing */ 2884 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2885 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2886 return; 2887 2888 ixgbevf_watchdog_update_link(adapter); 2889 2890 if (adapter->link_up) 2891 ixgbevf_watchdog_link_is_up(adapter); 2892 else 2893 ixgbevf_watchdog_link_is_down(adapter); 2894 2895 ixgbevf_update_stats(adapter); 2896 } 2897 2898 /** 2899 * ixgbevf_service_task - manages and runs subtasks 2900 * @work: pointer to work_struct containing our data 2901 **/ 2902 static void ixgbevf_service_task(struct work_struct *work) 2903 { 2904 struct ixgbevf_adapter *adapter = container_of(work, 2905 struct ixgbevf_adapter, 2906 service_task); 2907 struct ixgbe_hw *hw = &adapter->hw; 2908 2909 if (IXGBE_REMOVED(hw->hw_addr)) { 2910 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 2911 rtnl_lock(); 2912 ixgbevf_down(adapter); 2913 rtnl_unlock(); 2914 } 2915 return; 2916 } 2917 2918 ixgbevf_queue_reset_subtask(adapter); 2919 ixgbevf_reset_subtask(adapter); 2920 ixgbevf_watchdog_subtask(adapter); 2921 ixgbevf_check_hang_subtask(adapter); 2922 2923 ixgbevf_service_event_complete(adapter); 2924 } 2925 2926 /** 2927 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 2928 * @tx_ring: Tx descriptor ring for a specific queue 2929 * 2930 * Free all transmit software resources 2931 **/ 2932 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 2933 { 2934 ixgbevf_clean_tx_ring(tx_ring); 2935 2936 vfree(tx_ring->tx_buffer_info); 2937 tx_ring->tx_buffer_info = NULL; 2938 2939 /* if not set, then don't free */ 2940 if (!tx_ring->desc) 2941 return; 2942 2943 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 2944 tx_ring->dma); 2945 2946 tx_ring->desc = NULL; 2947 } 2948 2949 /** 2950 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 2951 * @adapter: board private structure 2952 * 2953 * Free all transmit software resources 2954 **/ 2955 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 2956 { 2957 int i; 2958 2959 for (i = 0; i < adapter->num_tx_queues; i++) 2960 if (adapter->tx_ring[i]->desc) 2961 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 2962 } 2963 2964 /** 2965 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 2966 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 2967 * 2968 * Return 0 on success, negative on failure 2969 **/ 2970 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 2971 { 2972 int size; 2973 2974 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 2975 tx_ring->tx_buffer_info = vzalloc(size); 2976 if (!tx_ring->tx_buffer_info) 2977 goto err; 2978 2979 /* round up to nearest 4K */ 2980 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 2981 tx_ring->size = ALIGN(tx_ring->size, 4096); 2982 2983 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 2984 &tx_ring->dma, GFP_KERNEL); 2985 if (!tx_ring->desc) 2986 goto err; 2987 2988 return 0; 2989 2990 err: 2991 vfree(tx_ring->tx_buffer_info); 2992 tx_ring->tx_buffer_info = NULL; 2993 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 2994 return -ENOMEM; 2995 } 2996 2997 /** 2998 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 2999 * @adapter: board private structure 3000 * 3001 * If this function returns with an error, then it's possible one or 3002 * more of the rings is populated (while the rest are not). It is the 3003 * callers duty to clean those orphaned rings. 3004 * 3005 * Return 0 on success, negative on failure 3006 **/ 3007 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3008 { 3009 int i, err = 0; 3010 3011 for (i = 0; i < adapter->num_tx_queues; i++) { 3012 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3013 if (!err) 3014 continue; 3015 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3016 break; 3017 } 3018 3019 return err; 3020 } 3021 3022 /** 3023 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3024 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3025 * 3026 * Returns 0 on success, negative on failure 3027 **/ 3028 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring) 3029 { 3030 int size; 3031 3032 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3033 rx_ring->rx_buffer_info = vzalloc(size); 3034 if (!rx_ring->rx_buffer_info) 3035 goto err; 3036 3037 /* Round up to nearest 4K */ 3038 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3039 rx_ring->size = ALIGN(rx_ring->size, 4096); 3040 3041 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3042 &rx_ring->dma, GFP_KERNEL); 3043 3044 if (!rx_ring->desc) 3045 goto err; 3046 3047 return 0; 3048 err: 3049 vfree(rx_ring->rx_buffer_info); 3050 rx_ring->rx_buffer_info = NULL; 3051 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3052 return -ENOMEM; 3053 } 3054 3055 /** 3056 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3057 * @adapter: board private structure 3058 * 3059 * If this function returns with an error, then it's possible one or 3060 * more of the rings is populated (while the rest are not). It is the 3061 * callers duty to clean those orphaned rings. 3062 * 3063 * Return 0 on success, negative on failure 3064 **/ 3065 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3066 { 3067 int i, err = 0; 3068 3069 for (i = 0; i < adapter->num_rx_queues; i++) { 3070 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]); 3071 if (!err) 3072 continue; 3073 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3074 break; 3075 } 3076 return err; 3077 } 3078 3079 /** 3080 * ixgbevf_free_rx_resources - Free Rx Resources 3081 * @rx_ring: ring to clean the resources from 3082 * 3083 * Free all receive software resources 3084 **/ 3085 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3086 { 3087 ixgbevf_clean_rx_ring(rx_ring); 3088 3089 vfree(rx_ring->rx_buffer_info); 3090 rx_ring->rx_buffer_info = NULL; 3091 3092 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3093 rx_ring->dma); 3094 3095 rx_ring->desc = NULL; 3096 } 3097 3098 /** 3099 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3100 * @adapter: board private structure 3101 * 3102 * Free all receive software resources 3103 **/ 3104 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3105 { 3106 int i; 3107 3108 for (i = 0; i < adapter->num_rx_queues; i++) 3109 if (adapter->rx_ring[i]->desc) 3110 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3111 } 3112 3113 /** 3114 * ixgbevf_open - Called when a network interface is made active 3115 * @netdev: network interface device structure 3116 * 3117 * Returns 0 on success, negative value on failure 3118 * 3119 * The open entry point is called when a network interface is made 3120 * active by the system (IFF_UP). At this point all resources needed 3121 * for transmit and receive operations are allocated, the interrupt 3122 * handler is registered with the OS, the watchdog timer is started, 3123 * and the stack is notified that the interface is ready. 3124 **/ 3125 static int ixgbevf_open(struct net_device *netdev) 3126 { 3127 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3128 struct ixgbe_hw *hw = &adapter->hw; 3129 int err; 3130 3131 /* A previous failure to open the device because of a lack of 3132 * available MSIX vector resources may have reset the number 3133 * of msix vectors variable to zero. The only way to recover 3134 * is to unload/reload the driver and hope that the system has 3135 * been able to recover some MSIX vector resources. 3136 */ 3137 if (!adapter->num_msix_vectors) 3138 return -ENOMEM; 3139 3140 if (hw->adapter_stopped) { 3141 ixgbevf_reset(adapter); 3142 /* if adapter is still stopped then PF isn't up and 3143 * the VF can't start. 3144 */ 3145 if (hw->adapter_stopped) { 3146 err = IXGBE_ERR_MBX; 3147 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3148 goto err_setup_reset; 3149 } 3150 } 3151 3152 /* disallow open during test */ 3153 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3154 return -EBUSY; 3155 3156 netif_carrier_off(netdev); 3157 3158 /* allocate transmit descriptors */ 3159 err = ixgbevf_setup_all_tx_resources(adapter); 3160 if (err) 3161 goto err_setup_tx; 3162 3163 /* allocate receive descriptors */ 3164 err = ixgbevf_setup_all_rx_resources(adapter); 3165 if (err) 3166 goto err_setup_rx; 3167 3168 ixgbevf_configure(adapter); 3169 3170 /* Map the Tx/Rx rings to the vectors we were allotted. 3171 * if request_irq will be called in this function map_rings 3172 * must be called *before* up_complete 3173 */ 3174 ixgbevf_map_rings_to_vectors(adapter); 3175 3176 err = ixgbevf_request_irq(adapter); 3177 if (err) 3178 goto err_req_irq; 3179 3180 ixgbevf_up_complete(adapter); 3181 3182 return 0; 3183 3184 err_req_irq: 3185 ixgbevf_down(adapter); 3186 err_setup_rx: 3187 ixgbevf_free_all_rx_resources(adapter); 3188 err_setup_tx: 3189 ixgbevf_free_all_tx_resources(adapter); 3190 ixgbevf_reset(adapter); 3191 3192 err_setup_reset: 3193 3194 return err; 3195 } 3196 3197 /** 3198 * ixgbevf_close - Disables a network interface 3199 * @netdev: network interface device structure 3200 * 3201 * Returns 0, this is not allowed to fail 3202 * 3203 * The close entry point is called when an interface is de-activated 3204 * by the OS. The hardware is still under the drivers control, but 3205 * needs to be disabled. A global MAC reset is issued to stop the 3206 * hardware, and all transmit and receive resources are freed. 3207 **/ 3208 static int ixgbevf_close(struct net_device *netdev) 3209 { 3210 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3211 3212 ixgbevf_down(adapter); 3213 ixgbevf_free_irq(adapter); 3214 3215 ixgbevf_free_all_tx_resources(adapter); 3216 ixgbevf_free_all_rx_resources(adapter); 3217 3218 return 0; 3219 } 3220 3221 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3222 { 3223 struct net_device *dev = adapter->netdev; 3224 3225 if (!(adapter->flags & IXGBEVF_FLAG_QUEUE_RESET_REQUESTED)) 3226 return; 3227 3228 adapter->flags &= ~IXGBEVF_FLAG_QUEUE_RESET_REQUESTED; 3229 3230 /* if interface is down do nothing */ 3231 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3232 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3233 return; 3234 3235 /* Hardware has to reinitialize queues and interrupts to 3236 * match packet buffer alignment. Unfortunately, the 3237 * hardware is not flexible enough to do this dynamically. 3238 */ 3239 if (netif_running(dev)) 3240 ixgbevf_close(dev); 3241 3242 ixgbevf_clear_interrupt_scheme(adapter); 3243 ixgbevf_init_interrupt_scheme(adapter); 3244 3245 if (netif_running(dev)) 3246 ixgbevf_open(dev); 3247 } 3248 3249 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3250 u32 vlan_macip_lens, u32 type_tucmd, 3251 u32 mss_l4len_idx) 3252 { 3253 struct ixgbe_adv_tx_context_desc *context_desc; 3254 u16 i = tx_ring->next_to_use; 3255 3256 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3257 3258 i++; 3259 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3260 3261 /* set bits to identify this as an advanced context descriptor */ 3262 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3263 3264 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3265 context_desc->seqnum_seed = 0; 3266 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3267 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3268 } 3269 3270 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3271 struct ixgbevf_tx_buffer *first, 3272 u8 *hdr_len) 3273 { 3274 struct sk_buff *skb = first->skb; 3275 u32 vlan_macip_lens, type_tucmd; 3276 u32 mss_l4len_idx, l4len; 3277 int err; 3278 3279 if (skb->ip_summed != CHECKSUM_PARTIAL) 3280 return 0; 3281 3282 if (!skb_is_gso(skb)) 3283 return 0; 3284 3285 err = skb_cow_head(skb, 0); 3286 if (err < 0) 3287 return err; 3288 3289 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3290 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3291 3292 if (first->protocol == htons(ETH_P_IP)) { 3293 struct iphdr *iph = ip_hdr(skb); 3294 3295 iph->tot_len = 0; 3296 iph->check = 0; 3297 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 3298 iph->daddr, 0, 3299 IPPROTO_TCP, 3300 0); 3301 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3302 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3303 IXGBE_TX_FLAGS_CSUM | 3304 IXGBE_TX_FLAGS_IPV4; 3305 } else if (skb_is_gso_v6(skb)) { 3306 ipv6_hdr(skb)->payload_len = 0; 3307 tcp_hdr(skb)->check = 3308 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 3309 &ipv6_hdr(skb)->daddr, 3310 0, IPPROTO_TCP, 0); 3311 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3312 IXGBE_TX_FLAGS_CSUM; 3313 } 3314 3315 /* compute header lengths */ 3316 l4len = tcp_hdrlen(skb); 3317 *hdr_len += l4len; 3318 *hdr_len = skb_transport_offset(skb) + l4len; 3319 3320 /* update GSO size and bytecount with header size */ 3321 first->gso_segs = skb_shinfo(skb)->gso_segs; 3322 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3323 3324 /* mss_l4len_id: use 1 as index for TSO */ 3325 mss_l4len_idx = l4len << IXGBE_ADVTXD_L4LEN_SHIFT; 3326 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3327 mss_l4len_idx |= 1 << IXGBE_ADVTXD_IDX_SHIFT; 3328 3329 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3330 vlan_macip_lens = skb_network_header_len(skb); 3331 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3332 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3333 3334 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3335 type_tucmd, mss_l4len_idx); 3336 3337 return 1; 3338 } 3339 3340 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3341 struct ixgbevf_tx_buffer *first) 3342 { 3343 struct sk_buff *skb = first->skb; 3344 u32 vlan_macip_lens = 0; 3345 u32 mss_l4len_idx = 0; 3346 u32 type_tucmd = 0; 3347 3348 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3349 u8 l4_hdr = 0; 3350 __be16 frag_off; 3351 3352 switch (first->protocol) { 3353 case htons(ETH_P_IP): 3354 vlan_macip_lens |= skb_network_header_len(skb); 3355 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3356 l4_hdr = ip_hdr(skb)->protocol; 3357 break; 3358 case htons(ETH_P_IPV6): 3359 vlan_macip_lens |= skb_network_header_len(skb); 3360 l4_hdr = ipv6_hdr(skb)->nexthdr; 3361 if (likely(skb_network_header_len(skb) == 3362 sizeof(struct ipv6hdr))) 3363 break; 3364 ipv6_skip_exthdr(skb, skb_network_offset(skb) + 3365 sizeof(struct ipv6hdr), 3366 &l4_hdr, &frag_off); 3367 if (unlikely(frag_off)) 3368 l4_hdr = NEXTHDR_FRAGMENT; 3369 break; 3370 default: 3371 break; 3372 } 3373 3374 switch (l4_hdr) { 3375 case IPPROTO_TCP: 3376 type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_TCP; 3377 mss_l4len_idx = tcp_hdrlen(skb) << 3378 IXGBE_ADVTXD_L4LEN_SHIFT; 3379 break; 3380 case IPPROTO_SCTP: 3381 type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3382 mss_l4len_idx = sizeof(struct sctphdr) << 3383 IXGBE_ADVTXD_L4LEN_SHIFT; 3384 break; 3385 case IPPROTO_UDP: 3386 mss_l4len_idx = sizeof(struct udphdr) << 3387 IXGBE_ADVTXD_L4LEN_SHIFT; 3388 break; 3389 default: 3390 if (unlikely(net_ratelimit())) { 3391 dev_warn(tx_ring->dev, 3392 "partial checksum, l3 proto=%x, l4 proto=%x\n", 3393 first->protocol, l4_hdr); 3394 } 3395 skb_checksum_help(skb); 3396 goto no_csum; 3397 } 3398 3399 /* update TX checksum flag */ 3400 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3401 } 3402 3403 no_csum: 3404 /* vlan_macip_lens: MACLEN, VLAN tag */ 3405 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3406 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3407 3408 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3409 type_tucmd, mss_l4len_idx); 3410 } 3411 3412 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3413 { 3414 /* set type for advanced descriptor with frame checksum insertion */ 3415 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3416 IXGBE_ADVTXD_DCMD_IFCS | 3417 IXGBE_ADVTXD_DCMD_DEXT); 3418 3419 /* set HW VLAN bit if VLAN is present */ 3420 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3421 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3422 3423 /* set segmentation enable bits for TSO/FSO */ 3424 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3425 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3426 3427 return cmd_type; 3428 } 3429 3430 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3431 u32 tx_flags, unsigned int paylen) 3432 { 3433 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3434 3435 /* enable L4 checksum for TSO and TX checksum offload */ 3436 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3437 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3438 3439 /* enble IPv4 checksum for TSO */ 3440 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3441 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3442 3443 /* use index 1 context for TSO/FSO/FCOE */ 3444 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3445 olinfo_status |= cpu_to_le32(1 << IXGBE_ADVTXD_IDX_SHIFT); 3446 3447 /* Check Context must be set if Tx switch is enabled, which it 3448 * always is for case where virtual functions are running 3449 */ 3450 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3451 3452 tx_desc->read.olinfo_status = olinfo_status; 3453 } 3454 3455 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3456 struct ixgbevf_tx_buffer *first, 3457 const u8 hdr_len) 3458 { 3459 dma_addr_t dma; 3460 struct sk_buff *skb = first->skb; 3461 struct ixgbevf_tx_buffer *tx_buffer; 3462 union ixgbe_adv_tx_desc *tx_desc; 3463 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 3464 unsigned int data_len = skb->data_len; 3465 unsigned int size = skb_headlen(skb); 3466 unsigned int paylen = skb->len - hdr_len; 3467 u32 tx_flags = first->tx_flags; 3468 __le32 cmd_type; 3469 u16 i = tx_ring->next_to_use; 3470 3471 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3472 3473 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen); 3474 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3475 3476 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3477 if (dma_mapping_error(tx_ring->dev, dma)) 3478 goto dma_error; 3479 3480 /* record length, and DMA address */ 3481 dma_unmap_len_set(first, len, size); 3482 dma_unmap_addr_set(first, dma, dma); 3483 3484 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3485 3486 for (;;) { 3487 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3488 tx_desc->read.cmd_type_len = 3489 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3490 3491 i++; 3492 tx_desc++; 3493 if (i == tx_ring->count) { 3494 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3495 i = 0; 3496 } 3497 3498 dma += IXGBE_MAX_DATA_PER_TXD; 3499 size -= IXGBE_MAX_DATA_PER_TXD; 3500 3501 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3502 tx_desc->read.olinfo_status = 0; 3503 } 3504 3505 if (likely(!data_len)) 3506 break; 3507 3508 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 3509 3510 i++; 3511 tx_desc++; 3512 if (i == tx_ring->count) { 3513 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3514 i = 0; 3515 } 3516 3517 size = skb_frag_size(frag); 3518 data_len -= size; 3519 3520 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3521 DMA_TO_DEVICE); 3522 if (dma_mapping_error(tx_ring->dev, dma)) 3523 goto dma_error; 3524 3525 tx_buffer = &tx_ring->tx_buffer_info[i]; 3526 dma_unmap_len_set(tx_buffer, len, size); 3527 dma_unmap_addr_set(tx_buffer, dma, dma); 3528 3529 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3530 tx_desc->read.olinfo_status = 0; 3531 3532 frag++; 3533 } 3534 3535 /* write last descriptor with RS and EOP bits */ 3536 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 3537 tx_desc->read.cmd_type_len = cmd_type; 3538 3539 /* set the timestamp */ 3540 first->time_stamp = jiffies; 3541 3542 /* Force memory writes to complete before letting h/w know there 3543 * are new descriptors to fetch. (Only applicable for weak-ordered 3544 * memory model archs, such as IA-64). 3545 * 3546 * We also need this memory barrier (wmb) to make certain all of the 3547 * status bits have been updated before next_to_watch is written. 3548 */ 3549 wmb(); 3550 3551 /* set next_to_watch value indicating a packet is present */ 3552 first->next_to_watch = tx_desc; 3553 3554 i++; 3555 if (i == tx_ring->count) 3556 i = 0; 3557 3558 tx_ring->next_to_use = i; 3559 3560 /* notify HW of packet */ 3561 ixgbevf_write_tail(tx_ring, i); 3562 3563 return; 3564 dma_error: 3565 dev_err(tx_ring->dev, "TX DMA map failed\n"); 3566 3567 /* clear dma mappings for failed tx_buffer_info map */ 3568 for (;;) { 3569 tx_buffer = &tx_ring->tx_buffer_info[i]; 3570 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer); 3571 if (tx_buffer == first) 3572 break; 3573 if (i == 0) 3574 i = tx_ring->count; 3575 i--; 3576 } 3577 3578 tx_ring->next_to_use = i; 3579 } 3580 3581 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 3582 { 3583 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3584 /* Herbert's original patch had: 3585 * smp_mb__after_netif_stop_queue(); 3586 * but since that doesn't exist yet, just open code it. 3587 */ 3588 smp_mb(); 3589 3590 /* We need to check again in a case another CPU has just 3591 * made room available. 3592 */ 3593 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 3594 return -EBUSY; 3595 3596 /* A reprieve! - use start_queue because it doesn't call schedule */ 3597 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3598 ++tx_ring->tx_stats.restart_queue; 3599 3600 return 0; 3601 } 3602 3603 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 3604 { 3605 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 3606 return 0; 3607 return __ixgbevf_maybe_stop_tx(tx_ring, size); 3608 } 3609 3610 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3611 { 3612 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3613 struct ixgbevf_tx_buffer *first; 3614 struct ixgbevf_ring *tx_ring; 3615 int tso; 3616 u32 tx_flags = 0; 3617 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 3618 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 3619 unsigned short f; 3620 #endif 3621 u8 hdr_len = 0; 3622 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 3623 3624 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 3625 dev_kfree_skb_any(skb); 3626 return NETDEV_TX_OK; 3627 } 3628 3629 tx_ring = adapter->tx_ring[skb->queue_mapping]; 3630 3631 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 3632 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 3633 * + 2 desc gap to keep tail from touching head, 3634 * + 1 desc for context descriptor, 3635 * otherwise try next time 3636 */ 3637 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 3638 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 3639 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 3640 #else 3641 count += skb_shinfo(skb)->nr_frags; 3642 #endif 3643 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 3644 tx_ring->tx_stats.tx_busy++; 3645 return NETDEV_TX_BUSY; 3646 } 3647 3648 /* record the location of the first descriptor for this packet */ 3649 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 3650 first->skb = skb; 3651 first->bytecount = skb->len; 3652 first->gso_segs = 1; 3653 3654 if (skb_vlan_tag_present(skb)) { 3655 tx_flags |= skb_vlan_tag_get(skb); 3656 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 3657 tx_flags |= IXGBE_TX_FLAGS_VLAN; 3658 } 3659 3660 /* record initial flags and protocol */ 3661 first->tx_flags = tx_flags; 3662 first->protocol = vlan_get_protocol(skb); 3663 3664 tso = ixgbevf_tso(tx_ring, first, &hdr_len); 3665 if (tso < 0) 3666 goto out_drop; 3667 else if (!tso) 3668 ixgbevf_tx_csum(tx_ring, first); 3669 3670 ixgbevf_tx_map(tx_ring, first, hdr_len); 3671 3672 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 3673 3674 return NETDEV_TX_OK; 3675 3676 out_drop: 3677 dev_kfree_skb_any(first->skb); 3678 first->skb = NULL; 3679 3680 return NETDEV_TX_OK; 3681 } 3682 3683 /** 3684 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 3685 * @netdev: network interface device structure 3686 * @p: pointer to an address structure 3687 * 3688 * Returns 0 on success, negative on failure 3689 **/ 3690 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 3691 { 3692 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3693 struct ixgbe_hw *hw = &adapter->hw; 3694 struct sockaddr *addr = p; 3695 3696 if (!is_valid_ether_addr(addr->sa_data)) 3697 return -EADDRNOTAVAIL; 3698 3699 ether_addr_copy(netdev->dev_addr, addr->sa_data); 3700 ether_addr_copy(hw->mac.addr, addr->sa_data); 3701 3702 spin_lock_bh(&adapter->mbx_lock); 3703 3704 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 3705 3706 spin_unlock_bh(&adapter->mbx_lock); 3707 3708 return 0; 3709 } 3710 3711 /** 3712 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 3713 * @netdev: network interface device structure 3714 * @new_mtu: new value for maximum frame size 3715 * 3716 * Returns 0 on success, negative on failure 3717 **/ 3718 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 3719 { 3720 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3721 struct ixgbe_hw *hw = &adapter->hw; 3722 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3723 int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE; 3724 3725 switch (adapter->hw.api_version) { 3726 case ixgbe_mbox_api_11: 3727 case ixgbe_mbox_api_12: 3728 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE; 3729 break; 3730 default: 3731 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 3732 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE; 3733 break; 3734 } 3735 3736 /* MTU < 68 is an error and causes problems on some kernels */ 3737 if ((new_mtu < 68) || (max_frame > max_possible_frame)) 3738 return -EINVAL; 3739 3740 hw_dbg(hw, "changing MTU from %d to %d\n", 3741 netdev->mtu, new_mtu); 3742 /* must set new MTU before calling down or up */ 3743 netdev->mtu = new_mtu; 3744 3745 /* notify the PF of our intent to use this size of frame */ 3746 ixgbevf_rlpml_set_vf(hw, max_frame); 3747 3748 return 0; 3749 } 3750 3751 #ifdef CONFIG_NET_POLL_CONTROLLER 3752 /* Polling 'interrupt' - used by things like netconsole to send skbs 3753 * without having to re-enable interrupts. It's not called while 3754 * the interrupt routine is executing. 3755 */ 3756 static void ixgbevf_netpoll(struct net_device *netdev) 3757 { 3758 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3759 int i; 3760 3761 /* if interface is down do nothing */ 3762 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 3763 return; 3764 for (i = 0; i < adapter->num_rx_queues; i++) 3765 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]); 3766 } 3767 #endif /* CONFIG_NET_POLL_CONTROLLER */ 3768 3769 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state) 3770 { 3771 struct net_device *netdev = pci_get_drvdata(pdev); 3772 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3773 #ifdef CONFIG_PM 3774 int retval = 0; 3775 #endif 3776 3777 netif_device_detach(netdev); 3778 3779 if (netif_running(netdev)) { 3780 rtnl_lock(); 3781 ixgbevf_down(adapter); 3782 ixgbevf_free_irq(adapter); 3783 ixgbevf_free_all_tx_resources(adapter); 3784 ixgbevf_free_all_rx_resources(adapter); 3785 rtnl_unlock(); 3786 } 3787 3788 ixgbevf_clear_interrupt_scheme(adapter); 3789 3790 #ifdef CONFIG_PM 3791 retval = pci_save_state(pdev); 3792 if (retval) 3793 return retval; 3794 3795 #endif 3796 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 3797 pci_disable_device(pdev); 3798 3799 return 0; 3800 } 3801 3802 #ifdef CONFIG_PM 3803 static int ixgbevf_resume(struct pci_dev *pdev) 3804 { 3805 struct net_device *netdev = pci_get_drvdata(pdev); 3806 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3807 u32 err; 3808 3809 pci_restore_state(pdev); 3810 /* pci_restore_state clears dev->state_saved so call 3811 * pci_save_state to restore it. 3812 */ 3813 pci_save_state(pdev); 3814 3815 err = pci_enable_device_mem(pdev); 3816 if (err) { 3817 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 3818 return err; 3819 } 3820 smp_mb__before_atomic(); 3821 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 3822 pci_set_master(pdev); 3823 3824 ixgbevf_reset(adapter); 3825 3826 rtnl_lock(); 3827 err = ixgbevf_init_interrupt_scheme(adapter); 3828 rtnl_unlock(); 3829 if (err) { 3830 dev_err(&pdev->dev, "Cannot initialize interrupts\n"); 3831 return err; 3832 } 3833 3834 if (netif_running(netdev)) { 3835 err = ixgbevf_open(netdev); 3836 if (err) 3837 return err; 3838 } 3839 3840 netif_device_attach(netdev); 3841 3842 return err; 3843 } 3844 3845 #endif /* CONFIG_PM */ 3846 static void ixgbevf_shutdown(struct pci_dev *pdev) 3847 { 3848 ixgbevf_suspend(pdev, PMSG_SUSPEND); 3849 } 3850 3851 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev, 3852 struct rtnl_link_stats64 *stats) 3853 { 3854 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3855 unsigned int start; 3856 u64 bytes, packets; 3857 const struct ixgbevf_ring *ring; 3858 int i; 3859 3860 ixgbevf_update_stats(adapter); 3861 3862 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 3863 3864 for (i = 0; i < adapter->num_rx_queues; i++) { 3865 ring = adapter->rx_ring[i]; 3866 do { 3867 start = u64_stats_fetch_begin_irq(&ring->syncp); 3868 bytes = ring->stats.bytes; 3869 packets = ring->stats.packets; 3870 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3871 stats->rx_bytes += bytes; 3872 stats->rx_packets += packets; 3873 } 3874 3875 for (i = 0; i < adapter->num_tx_queues; i++) { 3876 ring = adapter->tx_ring[i]; 3877 do { 3878 start = u64_stats_fetch_begin_irq(&ring->syncp); 3879 bytes = ring->stats.bytes; 3880 packets = ring->stats.packets; 3881 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3882 stats->tx_bytes += bytes; 3883 stats->tx_packets += packets; 3884 } 3885 3886 return stats; 3887 } 3888 3889 static const struct net_device_ops ixgbevf_netdev_ops = { 3890 .ndo_open = ixgbevf_open, 3891 .ndo_stop = ixgbevf_close, 3892 .ndo_start_xmit = ixgbevf_xmit_frame, 3893 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 3894 .ndo_get_stats64 = ixgbevf_get_stats, 3895 .ndo_validate_addr = eth_validate_addr, 3896 .ndo_set_mac_address = ixgbevf_set_mac, 3897 .ndo_change_mtu = ixgbevf_change_mtu, 3898 .ndo_tx_timeout = ixgbevf_tx_timeout, 3899 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 3900 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 3901 #ifdef CONFIG_NET_RX_BUSY_POLL 3902 .ndo_busy_poll = ixgbevf_busy_poll_recv, 3903 #endif 3904 #ifdef CONFIG_NET_POLL_CONTROLLER 3905 .ndo_poll_controller = ixgbevf_netpoll, 3906 #endif 3907 .ndo_features_check = passthru_features_check, 3908 }; 3909 3910 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 3911 { 3912 dev->netdev_ops = &ixgbevf_netdev_ops; 3913 ixgbevf_set_ethtool_ops(dev); 3914 dev->watchdog_timeo = 5 * HZ; 3915 } 3916 3917 /** 3918 * ixgbevf_probe - Device Initialization Routine 3919 * @pdev: PCI device information struct 3920 * @ent: entry in ixgbevf_pci_tbl 3921 * 3922 * Returns 0 on success, negative on failure 3923 * 3924 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 3925 * The OS initialization, configuring of the adapter private structure, 3926 * and a hardware reset occur. 3927 **/ 3928 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3929 { 3930 struct net_device *netdev; 3931 struct ixgbevf_adapter *adapter = NULL; 3932 struct ixgbe_hw *hw = NULL; 3933 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 3934 int err, pci_using_dac; 3935 bool disable_dev = false; 3936 3937 err = pci_enable_device(pdev); 3938 if (err) 3939 return err; 3940 3941 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 3942 pci_using_dac = 1; 3943 } else { 3944 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 3945 if (err) { 3946 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 3947 goto err_dma; 3948 } 3949 pci_using_dac = 0; 3950 } 3951 3952 err = pci_request_regions(pdev, ixgbevf_driver_name); 3953 if (err) { 3954 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 3955 goto err_pci_reg; 3956 } 3957 3958 pci_set_master(pdev); 3959 3960 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 3961 MAX_TX_QUEUES); 3962 if (!netdev) { 3963 err = -ENOMEM; 3964 goto err_alloc_etherdev; 3965 } 3966 3967 SET_NETDEV_DEV(netdev, &pdev->dev); 3968 3969 adapter = netdev_priv(netdev); 3970 3971 adapter->netdev = netdev; 3972 adapter->pdev = pdev; 3973 hw = &adapter->hw; 3974 hw->back = adapter; 3975 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 3976 3977 /* call save state here in standalone driver because it relies on 3978 * adapter struct to exist, and needs to call netdev_priv 3979 */ 3980 pci_save_state(pdev); 3981 3982 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 3983 pci_resource_len(pdev, 0)); 3984 adapter->io_addr = hw->hw_addr; 3985 if (!hw->hw_addr) { 3986 err = -EIO; 3987 goto err_ioremap; 3988 } 3989 3990 ixgbevf_assign_netdev_ops(netdev); 3991 3992 /* Setup HW API */ 3993 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 3994 hw->mac.type = ii->mac; 3995 3996 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 3997 sizeof(struct ixgbe_mbx_operations)); 3998 3999 /* setup the private structure */ 4000 err = ixgbevf_sw_init(adapter); 4001 if (err) 4002 goto err_sw_init; 4003 4004 /* The HW MAC address was set and/or determined in sw_init */ 4005 if (!is_valid_ether_addr(netdev->dev_addr)) { 4006 pr_err("invalid MAC address\n"); 4007 err = -EIO; 4008 goto err_sw_init; 4009 } 4010 4011 netdev->hw_features = NETIF_F_SG | 4012 NETIF_F_IP_CSUM | 4013 NETIF_F_IPV6_CSUM | 4014 NETIF_F_TSO | 4015 NETIF_F_TSO6 | 4016 NETIF_F_RXCSUM; 4017 4018 netdev->features = netdev->hw_features | 4019 NETIF_F_HW_VLAN_CTAG_TX | 4020 NETIF_F_HW_VLAN_CTAG_RX | 4021 NETIF_F_HW_VLAN_CTAG_FILTER; 4022 4023 netdev->vlan_features |= NETIF_F_TSO | 4024 NETIF_F_TSO6 | 4025 NETIF_F_IP_CSUM | 4026 NETIF_F_IPV6_CSUM | 4027 NETIF_F_SG; 4028 4029 if (pci_using_dac) 4030 netdev->features |= NETIF_F_HIGHDMA; 4031 4032 netdev->priv_flags |= IFF_UNICAST_FLT; 4033 4034 if (IXGBE_REMOVED(hw->hw_addr)) { 4035 err = -EIO; 4036 goto err_sw_init; 4037 } 4038 4039 setup_timer(&adapter->service_timer, &ixgbevf_service_timer, 4040 (unsigned long)adapter); 4041 4042 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4043 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4044 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4045 4046 err = ixgbevf_init_interrupt_scheme(adapter); 4047 if (err) 4048 goto err_sw_init; 4049 4050 strcpy(netdev->name, "eth%d"); 4051 4052 err = register_netdev(netdev); 4053 if (err) 4054 goto err_register; 4055 4056 pci_set_drvdata(pdev, netdev); 4057 netif_carrier_off(netdev); 4058 4059 ixgbevf_init_last_counter_stats(adapter); 4060 4061 /* print the VF info */ 4062 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4063 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4064 4065 switch (hw->mac.type) { 4066 case ixgbe_mac_X550_vf: 4067 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4068 break; 4069 case ixgbe_mac_X540_vf: 4070 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4071 break; 4072 case ixgbe_mac_82599_vf: 4073 default: 4074 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4075 break; 4076 } 4077 4078 return 0; 4079 4080 err_register: 4081 ixgbevf_clear_interrupt_scheme(adapter); 4082 err_sw_init: 4083 ixgbevf_reset_interrupt_capability(adapter); 4084 iounmap(adapter->io_addr); 4085 err_ioremap: 4086 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4087 free_netdev(netdev); 4088 err_alloc_etherdev: 4089 pci_release_regions(pdev); 4090 err_pci_reg: 4091 err_dma: 4092 if (!adapter || disable_dev) 4093 pci_disable_device(pdev); 4094 return err; 4095 } 4096 4097 /** 4098 * ixgbevf_remove - Device Removal Routine 4099 * @pdev: PCI device information struct 4100 * 4101 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4102 * that it should release a PCI device. The could be caused by a 4103 * Hot-Plug event, or because the driver is going to be removed from 4104 * memory. 4105 **/ 4106 static void ixgbevf_remove(struct pci_dev *pdev) 4107 { 4108 struct net_device *netdev = pci_get_drvdata(pdev); 4109 struct ixgbevf_adapter *adapter; 4110 bool disable_dev; 4111 4112 if (!netdev) 4113 return; 4114 4115 adapter = netdev_priv(netdev); 4116 4117 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4118 cancel_work_sync(&adapter->service_task); 4119 4120 if (netdev->reg_state == NETREG_REGISTERED) 4121 unregister_netdev(netdev); 4122 4123 ixgbevf_clear_interrupt_scheme(adapter); 4124 ixgbevf_reset_interrupt_capability(adapter); 4125 4126 iounmap(adapter->io_addr); 4127 pci_release_regions(pdev); 4128 4129 hw_dbg(&adapter->hw, "Remove complete\n"); 4130 4131 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4132 free_netdev(netdev); 4133 4134 if (disable_dev) 4135 pci_disable_device(pdev); 4136 } 4137 4138 /** 4139 * ixgbevf_io_error_detected - called when PCI error is detected 4140 * @pdev: Pointer to PCI device 4141 * @state: The current pci connection state 4142 * 4143 * This function is called after a PCI bus error affecting 4144 * this device has been detected. 4145 **/ 4146 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4147 pci_channel_state_t state) 4148 { 4149 struct net_device *netdev = pci_get_drvdata(pdev); 4150 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4151 4152 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4153 return PCI_ERS_RESULT_DISCONNECT; 4154 4155 rtnl_lock(); 4156 netif_device_detach(netdev); 4157 4158 if (state == pci_channel_io_perm_failure) { 4159 rtnl_unlock(); 4160 return PCI_ERS_RESULT_DISCONNECT; 4161 } 4162 4163 if (netif_running(netdev)) 4164 ixgbevf_down(adapter); 4165 4166 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4167 pci_disable_device(pdev); 4168 rtnl_unlock(); 4169 4170 /* Request a slot slot reset. */ 4171 return PCI_ERS_RESULT_NEED_RESET; 4172 } 4173 4174 /** 4175 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4176 * @pdev: Pointer to PCI device 4177 * 4178 * Restart the card from scratch, as if from a cold-boot. Implementation 4179 * resembles the first-half of the ixgbevf_resume routine. 4180 **/ 4181 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4182 { 4183 struct net_device *netdev = pci_get_drvdata(pdev); 4184 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4185 4186 if (pci_enable_device_mem(pdev)) { 4187 dev_err(&pdev->dev, 4188 "Cannot re-enable PCI device after reset.\n"); 4189 return PCI_ERS_RESULT_DISCONNECT; 4190 } 4191 4192 smp_mb__before_atomic(); 4193 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4194 pci_set_master(pdev); 4195 4196 ixgbevf_reset(adapter); 4197 4198 return PCI_ERS_RESULT_RECOVERED; 4199 } 4200 4201 /** 4202 * ixgbevf_io_resume - called when traffic can start flowing again. 4203 * @pdev: Pointer to PCI device 4204 * 4205 * This callback is called when the error recovery driver tells us that 4206 * its OK to resume normal operation. Implementation resembles the 4207 * second-half of the ixgbevf_resume routine. 4208 **/ 4209 static void ixgbevf_io_resume(struct pci_dev *pdev) 4210 { 4211 struct net_device *netdev = pci_get_drvdata(pdev); 4212 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4213 4214 if (netif_running(netdev)) 4215 ixgbevf_up(adapter); 4216 4217 netif_device_attach(netdev); 4218 } 4219 4220 /* PCI Error Recovery (ERS) */ 4221 static const struct pci_error_handlers ixgbevf_err_handler = { 4222 .error_detected = ixgbevf_io_error_detected, 4223 .slot_reset = ixgbevf_io_slot_reset, 4224 .resume = ixgbevf_io_resume, 4225 }; 4226 4227 static struct pci_driver ixgbevf_driver = { 4228 .name = ixgbevf_driver_name, 4229 .id_table = ixgbevf_pci_tbl, 4230 .probe = ixgbevf_probe, 4231 .remove = ixgbevf_remove, 4232 #ifdef CONFIG_PM 4233 /* Power Management Hooks */ 4234 .suspend = ixgbevf_suspend, 4235 .resume = ixgbevf_resume, 4236 #endif 4237 .shutdown = ixgbevf_shutdown, 4238 .err_handler = &ixgbevf_err_handler 4239 }; 4240 4241 /** 4242 * ixgbevf_init_module - Driver Registration Routine 4243 * 4244 * ixgbevf_init_module is the first routine called when the driver is 4245 * loaded. All it does is register with the PCI subsystem. 4246 **/ 4247 static int __init ixgbevf_init_module(void) 4248 { 4249 pr_info("%s - version %s\n", ixgbevf_driver_string, 4250 ixgbevf_driver_version); 4251 4252 pr_info("%s\n", ixgbevf_copyright); 4253 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4254 if (!ixgbevf_wq) { 4255 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4256 return -ENOMEM; 4257 } 4258 4259 return pci_register_driver(&ixgbevf_driver); 4260 } 4261 4262 module_init(ixgbevf_init_module); 4263 4264 /** 4265 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4266 * 4267 * ixgbevf_exit_module is called just before the driver is removed 4268 * from memory. 4269 **/ 4270 static void __exit ixgbevf_exit_module(void) 4271 { 4272 pci_unregister_driver(&ixgbevf_driver); 4273 if (ixgbevf_wq) { 4274 destroy_workqueue(ixgbevf_wq); 4275 ixgbevf_wq = NULL; 4276 } 4277 } 4278 4279 #ifdef DEBUG 4280 /** 4281 * ixgbevf_get_hw_dev_name - return device name string 4282 * used by hardware layer to print debugging information 4283 **/ 4284 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4285 { 4286 struct ixgbevf_adapter *adapter = hw->back; 4287 4288 return adapter->netdev->name; 4289 } 4290 4291 #endif 4292 module_exit(ixgbevf_exit_module); 4293 4294 /* ixgbevf_main.c */ 4295