1 /*******************************************************************************
2 
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2015 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17 
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20 
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25 *******************************************************************************/
26 
27 /******************************************************************************
28  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
29 ******************************************************************************/
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/types.h>
34 #include <linux/bitops.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/vmalloc.h>
39 #include <linux/string.h>
40 #include <linux/in.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/sctp.h>
44 #include <linux/ipv6.h>
45 #include <linux/slab.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/ethtool.h>
49 #include <linux/if.h>
50 #include <linux/if_vlan.h>
51 #include <linux/prefetch.h>
52 
53 #include "ixgbevf.h"
54 
55 const char ixgbevf_driver_name[] = "ixgbevf";
56 static const char ixgbevf_driver_string[] =
57 	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
58 
59 #define DRV_VERSION "2.12.1-k"
60 const char ixgbevf_driver_version[] = DRV_VERSION;
61 static char ixgbevf_copyright[] =
62 	"Copyright (c) 2009 - 2012 Intel Corporation.";
63 
64 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
65 	[board_82599_vf] = &ixgbevf_82599_vf_info,
66 	[board_X540_vf]  = &ixgbevf_X540_vf_info,
67 	[board_X550_vf]  = &ixgbevf_X550_vf_info,
68 	[board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info,
69 };
70 
71 /* ixgbevf_pci_tbl - PCI Device ID Table
72  *
73  * Wildcard entries (PCI_ANY_ID) should come last
74  * Last entry must be all 0s
75  *
76  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
77  *   Class, Class Mask, private data (not used) }
78  */
79 static const struct pci_device_id ixgbevf_pci_tbl[] = {
80 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
81 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
82 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
83 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
84 	/* required last entry */
85 	{0, }
86 };
87 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
88 
89 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
90 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_VERSION);
93 
94 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
95 static int debug = -1;
96 module_param(debug, int, 0);
97 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
98 
99 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
100 {
101 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
102 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
103 	    !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
104 		schedule_work(&adapter->service_task);
105 }
106 
107 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
108 {
109 	BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
110 
111 	/* flush memory to make sure state is correct before next watchdog */
112 	smp_mb__before_atomic();
113 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
114 }
115 
116 /* forward decls */
117 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
118 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
119 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
120 
121 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
122 {
123 	struct ixgbevf_adapter *adapter = hw->back;
124 
125 	if (!hw->hw_addr)
126 		return;
127 	hw->hw_addr = NULL;
128 	dev_err(&adapter->pdev->dev, "Adapter removed\n");
129 	if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
130 		ixgbevf_service_event_schedule(adapter);
131 }
132 
133 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
134 {
135 	u32 value;
136 
137 	/* The following check not only optimizes a bit by not
138 	 * performing a read on the status register when the
139 	 * register just read was a status register read that
140 	 * returned IXGBE_FAILED_READ_REG. It also blocks any
141 	 * potential recursion.
142 	 */
143 	if (reg == IXGBE_VFSTATUS) {
144 		ixgbevf_remove_adapter(hw);
145 		return;
146 	}
147 	value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
148 	if (value == IXGBE_FAILED_READ_REG)
149 		ixgbevf_remove_adapter(hw);
150 }
151 
152 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
153 {
154 	u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr);
155 	u32 value;
156 
157 	if (IXGBE_REMOVED(reg_addr))
158 		return IXGBE_FAILED_READ_REG;
159 	value = readl(reg_addr + reg);
160 	if (unlikely(value == IXGBE_FAILED_READ_REG))
161 		ixgbevf_check_remove(hw, reg);
162 	return value;
163 }
164 
165 /**
166  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
167  * @adapter: pointer to adapter struct
168  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
169  * @queue: queue to map the corresponding interrupt to
170  * @msix_vector: the vector to map to the corresponding queue
171  **/
172 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
173 			     u8 queue, u8 msix_vector)
174 {
175 	u32 ivar, index;
176 	struct ixgbe_hw *hw = &adapter->hw;
177 
178 	if (direction == -1) {
179 		/* other causes */
180 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
181 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
182 		ivar &= ~0xFF;
183 		ivar |= msix_vector;
184 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
185 	} else {
186 		/* Tx or Rx causes */
187 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
188 		index = ((16 * (queue & 1)) + (8 * direction));
189 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
190 		ivar &= ~(0xFF << index);
191 		ivar |= (msix_vector << index);
192 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
193 	}
194 }
195 
196 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
197 					struct ixgbevf_tx_buffer *tx_buffer)
198 {
199 	if (tx_buffer->skb) {
200 		dev_kfree_skb_any(tx_buffer->skb);
201 		if (dma_unmap_len(tx_buffer, len))
202 			dma_unmap_single(tx_ring->dev,
203 					 dma_unmap_addr(tx_buffer, dma),
204 					 dma_unmap_len(tx_buffer, len),
205 					 DMA_TO_DEVICE);
206 	} else if (dma_unmap_len(tx_buffer, len)) {
207 		dma_unmap_page(tx_ring->dev,
208 			       dma_unmap_addr(tx_buffer, dma),
209 			       dma_unmap_len(tx_buffer, len),
210 			       DMA_TO_DEVICE);
211 	}
212 	tx_buffer->next_to_watch = NULL;
213 	tx_buffer->skb = NULL;
214 	dma_unmap_len_set(tx_buffer, len, 0);
215 	/* tx_buffer must be completely set up in the transmit path */
216 }
217 
218 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
219 {
220 	return ring->stats.packets;
221 }
222 
223 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
224 {
225 	struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
226 	struct ixgbe_hw *hw = &adapter->hw;
227 
228 	u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
229 	u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
230 
231 	if (head != tail)
232 		return (head < tail) ?
233 			tail - head : (tail + ring->count - head);
234 
235 	return 0;
236 }
237 
238 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
239 {
240 	u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
241 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
242 	u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
243 
244 	clear_check_for_tx_hang(tx_ring);
245 
246 	/* Check for a hung queue, but be thorough. This verifies
247 	 * that a transmit has been completed since the previous
248 	 * check AND there is at least one packet pending. The
249 	 * ARMED bit is set to indicate a potential hang.
250 	 */
251 	if ((tx_done_old == tx_done) && tx_pending) {
252 		/* make sure it is true for two checks in a row */
253 		return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
254 					&tx_ring->state);
255 	}
256 	/* reset the countdown */
257 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
258 
259 	/* update completed stats and continue */
260 	tx_ring->tx_stats.tx_done_old = tx_done;
261 
262 	return false;
263 }
264 
265 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
266 {
267 	/* Do the reset outside of interrupt context */
268 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
269 		adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED;
270 		ixgbevf_service_event_schedule(adapter);
271 	}
272 }
273 
274 /**
275  * ixgbevf_tx_timeout - Respond to a Tx Hang
276  * @netdev: network interface device structure
277  **/
278 static void ixgbevf_tx_timeout(struct net_device *netdev)
279 {
280 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
281 
282 	ixgbevf_tx_timeout_reset(adapter);
283 }
284 
285 /**
286  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
287  * @q_vector: board private structure
288  * @tx_ring: tx ring to clean
289  **/
290 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
291 				 struct ixgbevf_ring *tx_ring)
292 {
293 	struct ixgbevf_adapter *adapter = q_vector->adapter;
294 	struct ixgbevf_tx_buffer *tx_buffer;
295 	union ixgbe_adv_tx_desc *tx_desc;
296 	unsigned int total_bytes = 0, total_packets = 0;
297 	unsigned int budget = tx_ring->count / 2;
298 	unsigned int i = tx_ring->next_to_clean;
299 
300 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
301 		return true;
302 
303 	tx_buffer = &tx_ring->tx_buffer_info[i];
304 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
305 	i -= tx_ring->count;
306 
307 	do {
308 		union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
309 
310 		/* if next_to_watch is not set then there is no work pending */
311 		if (!eop_desc)
312 			break;
313 
314 		/* prevent any other reads prior to eop_desc */
315 		read_barrier_depends();
316 
317 		/* if DD is not set pending work has not been completed */
318 		if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
319 			break;
320 
321 		/* clear next_to_watch to prevent false hangs */
322 		tx_buffer->next_to_watch = NULL;
323 
324 		/* update the statistics for this packet */
325 		total_bytes += tx_buffer->bytecount;
326 		total_packets += tx_buffer->gso_segs;
327 
328 		/* free the skb */
329 		dev_kfree_skb_any(tx_buffer->skb);
330 
331 		/* unmap skb header data */
332 		dma_unmap_single(tx_ring->dev,
333 				 dma_unmap_addr(tx_buffer, dma),
334 				 dma_unmap_len(tx_buffer, len),
335 				 DMA_TO_DEVICE);
336 
337 		/* clear tx_buffer data */
338 		tx_buffer->skb = NULL;
339 		dma_unmap_len_set(tx_buffer, len, 0);
340 
341 		/* unmap remaining buffers */
342 		while (tx_desc != eop_desc) {
343 			tx_buffer++;
344 			tx_desc++;
345 			i++;
346 			if (unlikely(!i)) {
347 				i -= tx_ring->count;
348 				tx_buffer = tx_ring->tx_buffer_info;
349 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
350 			}
351 
352 			/* unmap any remaining paged data */
353 			if (dma_unmap_len(tx_buffer, len)) {
354 				dma_unmap_page(tx_ring->dev,
355 					       dma_unmap_addr(tx_buffer, dma),
356 					       dma_unmap_len(tx_buffer, len),
357 					       DMA_TO_DEVICE);
358 				dma_unmap_len_set(tx_buffer, len, 0);
359 			}
360 		}
361 
362 		/* move us one more past the eop_desc for start of next pkt */
363 		tx_buffer++;
364 		tx_desc++;
365 		i++;
366 		if (unlikely(!i)) {
367 			i -= tx_ring->count;
368 			tx_buffer = tx_ring->tx_buffer_info;
369 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
370 		}
371 
372 		/* issue prefetch for next Tx descriptor */
373 		prefetch(tx_desc);
374 
375 		/* update budget accounting */
376 		budget--;
377 	} while (likely(budget));
378 
379 	i += tx_ring->count;
380 	tx_ring->next_to_clean = i;
381 	u64_stats_update_begin(&tx_ring->syncp);
382 	tx_ring->stats.bytes += total_bytes;
383 	tx_ring->stats.packets += total_packets;
384 	u64_stats_update_end(&tx_ring->syncp);
385 	q_vector->tx.total_bytes += total_bytes;
386 	q_vector->tx.total_packets += total_packets;
387 
388 	if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
389 		struct ixgbe_hw *hw = &adapter->hw;
390 		union ixgbe_adv_tx_desc *eop_desc;
391 
392 		eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
393 
394 		pr_err("Detected Tx Unit Hang\n"
395 		       "  Tx Queue             <%d>\n"
396 		       "  TDH, TDT             <%x>, <%x>\n"
397 		       "  next_to_use          <%x>\n"
398 		       "  next_to_clean        <%x>\n"
399 		       "tx_buffer_info[next_to_clean]\n"
400 		       "  next_to_watch        <%p>\n"
401 		       "  eop_desc->wb.status  <%x>\n"
402 		       "  time_stamp           <%lx>\n"
403 		       "  jiffies              <%lx>\n",
404 		       tx_ring->queue_index,
405 		       IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
406 		       IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
407 		       tx_ring->next_to_use, i,
408 		       eop_desc, (eop_desc ? eop_desc->wb.status : 0),
409 		       tx_ring->tx_buffer_info[i].time_stamp, jiffies);
410 
411 		netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
412 
413 		/* schedule immediate reset if we believe we hung */
414 		ixgbevf_tx_timeout_reset(adapter);
415 
416 		return true;
417 	}
418 
419 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
420 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
421 		     (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
422 		/* Make sure that anybody stopping the queue after this
423 		 * sees the new next_to_clean.
424 		 */
425 		smp_mb();
426 
427 		if (__netif_subqueue_stopped(tx_ring->netdev,
428 					     tx_ring->queue_index) &&
429 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
430 			netif_wake_subqueue(tx_ring->netdev,
431 					    tx_ring->queue_index);
432 			++tx_ring->tx_stats.restart_queue;
433 		}
434 	}
435 
436 	return !!budget;
437 }
438 
439 /**
440  * ixgbevf_rx_skb - Helper function to determine proper Rx method
441  * @q_vector: structure containing interrupt and ring information
442  * @skb: packet to send up
443  **/
444 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
445 			   struct sk_buff *skb)
446 {
447 #ifdef CONFIG_NET_RX_BUSY_POLL
448 	skb_mark_napi_id(skb, &q_vector->napi);
449 
450 	if (ixgbevf_qv_busy_polling(q_vector)) {
451 		netif_receive_skb(skb);
452 		/* exit early if we busy polled */
453 		return;
454 	}
455 #endif /* CONFIG_NET_RX_BUSY_POLL */
456 
457 	napi_gro_receive(&q_vector->napi, skb);
458 }
459 
460 #define IXGBE_RSS_L4_TYPES_MASK \
461 	((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
462 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
463 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
464 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
465 
466 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
467 				   union ixgbe_adv_rx_desc *rx_desc,
468 				   struct sk_buff *skb)
469 {
470 	u16 rss_type;
471 
472 	if (!(ring->netdev->features & NETIF_F_RXHASH))
473 		return;
474 
475 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
476 		   IXGBE_RXDADV_RSSTYPE_MASK;
477 
478 	if (!rss_type)
479 		return;
480 
481 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
482 		     (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
483 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
484 }
485 
486 /**
487  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
488  * @ring: structure containig ring specific data
489  * @rx_desc: current Rx descriptor being processed
490  * @skb: skb currently being received and modified
491  **/
492 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
493 				       union ixgbe_adv_rx_desc *rx_desc,
494 				       struct sk_buff *skb)
495 {
496 	skb_checksum_none_assert(skb);
497 
498 	/* Rx csum disabled */
499 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
500 		return;
501 
502 	/* if IP and error */
503 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
504 	    ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
505 		ring->rx_stats.csum_err++;
506 		return;
507 	}
508 
509 	if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
510 		return;
511 
512 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
513 		ring->rx_stats.csum_err++;
514 		return;
515 	}
516 
517 	/* It must be a TCP or UDP packet with a valid checksum */
518 	skb->ip_summed = CHECKSUM_UNNECESSARY;
519 }
520 
521 /**
522  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
523  * @rx_ring: rx descriptor ring packet is being transacted on
524  * @rx_desc: pointer to the EOP Rx descriptor
525  * @skb: pointer to current skb being populated
526  *
527  * This function checks the ring, descriptor, and packet information in
528  * order to populate the checksum, VLAN, protocol, and other fields within
529  * the skb.
530  **/
531 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
532 				       union ixgbe_adv_rx_desc *rx_desc,
533 				       struct sk_buff *skb)
534 {
535 	ixgbevf_rx_hash(rx_ring, rx_desc, skb);
536 	ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
537 
538 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
539 		u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
540 		unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
541 
542 		if (test_bit(vid & VLAN_VID_MASK, active_vlans))
543 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
544 	}
545 
546 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
547 }
548 
549 /**
550  * ixgbevf_is_non_eop - process handling of non-EOP buffers
551  * @rx_ring: Rx ring being processed
552  * @rx_desc: Rx descriptor for current buffer
553  * @skb: current socket buffer containing buffer in progress
554  *
555  * This function updates next to clean.  If the buffer is an EOP buffer
556  * this function exits returning false, otherwise it will place the
557  * sk_buff in the next buffer to be chained and return true indicating
558  * that this is in fact a non-EOP buffer.
559  **/
560 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
561 			       union ixgbe_adv_rx_desc *rx_desc)
562 {
563 	u32 ntc = rx_ring->next_to_clean + 1;
564 
565 	/* fetch, update, and store next to clean */
566 	ntc = (ntc < rx_ring->count) ? ntc : 0;
567 	rx_ring->next_to_clean = ntc;
568 
569 	prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
570 
571 	if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
572 		return false;
573 
574 	return true;
575 }
576 
577 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
578 				      struct ixgbevf_rx_buffer *bi)
579 {
580 	struct page *page = bi->page;
581 	dma_addr_t dma = bi->dma;
582 
583 	/* since we are recycling buffers we should seldom need to alloc */
584 	if (likely(page))
585 		return true;
586 
587 	/* alloc new page for storage */
588 	page = dev_alloc_page();
589 	if (unlikely(!page)) {
590 		rx_ring->rx_stats.alloc_rx_page_failed++;
591 		return false;
592 	}
593 
594 	/* map page for use */
595 	dma = dma_map_page(rx_ring->dev, page, 0,
596 			   PAGE_SIZE, DMA_FROM_DEVICE);
597 
598 	/* if mapping failed free memory back to system since
599 	 * there isn't much point in holding memory we can't use
600 	 */
601 	if (dma_mapping_error(rx_ring->dev, dma)) {
602 		__free_page(page);
603 
604 		rx_ring->rx_stats.alloc_rx_buff_failed++;
605 		return false;
606 	}
607 
608 	bi->dma = dma;
609 	bi->page = page;
610 	bi->page_offset = 0;
611 
612 	return true;
613 }
614 
615 /**
616  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
617  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
618  * @cleaned_count: number of buffers to replace
619  **/
620 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
621 				     u16 cleaned_count)
622 {
623 	union ixgbe_adv_rx_desc *rx_desc;
624 	struct ixgbevf_rx_buffer *bi;
625 	unsigned int i = rx_ring->next_to_use;
626 
627 	/* nothing to do or no valid netdev defined */
628 	if (!cleaned_count || !rx_ring->netdev)
629 		return;
630 
631 	rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
632 	bi = &rx_ring->rx_buffer_info[i];
633 	i -= rx_ring->count;
634 
635 	do {
636 		if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
637 			break;
638 
639 		/* Refresh the desc even if pkt_addr didn't change
640 		 * because each write-back erases this info.
641 		 */
642 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
643 
644 		rx_desc++;
645 		bi++;
646 		i++;
647 		if (unlikely(!i)) {
648 			rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
649 			bi = rx_ring->rx_buffer_info;
650 			i -= rx_ring->count;
651 		}
652 
653 		/* clear the hdr_addr for the next_to_use descriptor */
654 		rx_desc->read.hdr_addr = 0;
655 
656 		cleaned_count--;
657 	} while (cleaned_count);
658 
659 	i += rx_ring->count;
660 
661 	if (rx_ring->next_to_use != i) {
662 		/* record the next descriptor to use */
663 		rx_ring->next_to_use = i;
664 
665 		/* update next to alloc since we have filled the ring */
666 		rx_ring->next_to_alloc = i;
667 
668 		/* Force memory writes to complete before letting h/w
669 		 * know there are new descriptors to fetch.  (Only
670 		 * applicable for weak-ordered memory model archs,
671 		 * such as IA-64).
672 		 */
673 		wmb();
674 		ixgbevf_write_tail(rx_ring, i);
675 	}
676 }
677 
678 /**
679  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
680  * @rx_ring: rx descriptor ring packet is being transacted on
681  * @rx_desc: pointer to the EOP Rx descriptor
682  * @skb: pointer to current skb being fixed
683  *
684  * Check for corrupted packet headers caused by senders on the local L2
685  * embedded NIC switch not setting up their Tx Descriptors right.  These
686  * should be very rare.
687  *
688  * Also address the case where we are pulling data in on pages only
689  * and as such no data is present in the skb header.
690  *
691  * In addition if skb is not at least 60 bytes we need to pad it so that
692  * it is large enough to qualify as a valid Ethernet frame.
693  *
694  * Returns true if an error was encountered and skb was freed.
695  **/
696 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
697 				    union ixgbe_adv_rx_desc *rx_desc,
698 				    struct sk_buff *skb)
699 {
700 	/* verify that the packet does not have any known errors */
701 	if (unlikely(ixgbevf_test_staterr(rx_desc,
702 					  IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
703 		struct net_device *netdev = rx_ring->netdev;
704 
705 		if (!(netdev->features & NETIF_F_RXALL)) {
706 			dev_kfree_skb_any(skb);
707 			return true;
708 		}
709 	}
710 
711 	/* if eth_skb_pad returns an error the skb was freed */
712 	if (eth_skb_pad(skb))
713 		return true;
714 
715 	return false;
716 }
717 
718 /**
719  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
720  * @rx_ring: rx descriptor ring to store buffers on
721  * @old_buff: donor buffer to have page reused
722  *
723  * Synchronizes page for reuse by the adapter
724  **/
725 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
726 				  struct ixgbevf_rx_buffer *old_buff)
727 {
728 	struct ixgbevf_rx_buffer *new_buff;
729 	u16 nta = rx_ring->next_to_alloc;
730 
731 	new_buff = &rx_ring->rx_buffer_info[nta];
732 
733 	/* update, and store next to alloc */
734 	nta++;
735 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
736 
737 	/* transfer page from old buffer to new buffer */
738 	new_buff->page = old_buff->page;
739 	new_buff->dma = old_buff->dma;
740 	new_buff->page_offset = old_buff->page_offset;
741 
742 	/* sync the buffer for use by the device */
743 	dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma,
744 					 new_buff->page_offset,
745 					 IXGBEVF_RX_BUFSZ,
746 					 DMA_FROM_DEVICE);
747 }
748 
749 static inline bool ixgbevf_page_is_reserved(struct page *page)
750 {
751 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
752 }
753 
754 /**
755  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
756  * @rx_ring: rx descriptor ring to transact packets on
757  * @rx_buffer: buffer containing page to add
758  * @rx_desc: descriptor containing length of buffer written by hardware
759  * @skb: sk_buff to place the data into
760  *
761  * This function will add the data contained in rx_buffer->page to the skb.
762  * This is done either through a direct copy if the data in the buffer is
763  * less than the skb header size, otherwise it will just attach the page as
764  * a frag to the skb.
765  *
766  * The function will then update the page offset if necessary and return
767  * true if the buffer can be reused by the adapter.
768  **/
769 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
770 				struct ixgbevf_rx_buffer *rx_buffer,
771 				union ixgbe_adv_rx_desc *rx_desc,
772 				struct sk_buff *skb)
773 {
774 	struct page *page = rx_buffer->page;
775 	unsigned char *va = page_address(page) + rx_buffer->page_offset;
776 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
777 #if (PAGE_SIZE < 8192)
778 	unsigned int truesize = IXGBEVF_RX_BUFSZ;
779 #else
780 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
781 #endif
782 	unsigned int pull_len;
783 
784 	if (unlikely(skb_is_nonlinear(skb)))
785 		goto add_tail_frag;
786 
787 	if (likely(size <= IXGBEVF_RX_HDR_SIZE)) {
788 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
789 
790 		/* page is not reserved, we can reuse buffer as is */
791 		if (likely(!ixgbevf_page_is_reserved(page)))
792 			return true;
793 
794 		/* this page cannot be reused so discard it */
795 		put_page(page);
796 		return false;
797 	}
798 
799 	/* we need the header to contain the greater of either ETH_HLEN or
800 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
801 	 */
802 	pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE);
803 
804 	/* align pull length to size of long to optimize memcpy performance */
805 	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
806 
807 	/* update all of the pointers */
808 	va += pull_len;
809 	size -= pull_len;
810 
811 add_tail_frag:
812 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
813 			(unsigned long)va & ~PAGE_MASK, size, truesize);
814 
815 	/* avoid re-using remote pages */
816 	if (unlikely(ixgbevf_page_is_reserved(page)))
817 		return false;
818 
819 #if (PAGE_SIZE < 8192)
820 	/* if we are only owner of page we can reuse it */
821 	if (unlikely(page_count(page) != 1))
822 		return false;
823 
824 	/* flip page offset to other buffer */
825 	rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ;
826 
827 #else
828 	/* move offset up to the next cache line */
829 	rx_buffer->page_offset += truesize;
830 
831 	if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ))
832 		return false;
833 
834 #endif
835 	/* Even if we own the page, we are not allowed to use atomic_set()
836 	 * This would break get_page_unless_zero() users.
837 	 */
838 	atomic_inc(&page->_count);
839 
840 	return true;
841 }
842 
843 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring,
844 					       union ixgbe_adv_rx_desc *rx_desc,
845 					       struct sk_buff *skb)
846 {
847 	struct ixgbevf_rx_buffer *rx_buffer;
848 	struct page *page;
849 
850 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
851 	page = rx_buffer->page;
852 	prefetchw(page);
853 
854 	if (likely(!skb)) {
855 		void *page_addr = page_address(page) +
856 				  rx_buffer->page_offset;
857 
858 		/* prefetch first cache line of first page */
859 		prefetch(page_addr);
860 #if L1_CACHE_BYTES < 128
861 		prefetch(page_addr + L1_CACHE_BYTES);
862 #endif
863 
864 		/* allocate a skb to store the frags */
865 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
866 						IXGBEVF_RX_HDR_SIZE);
867 		if (unlikely(!skb)) {
868 			rx_ring->rx_stats.alloc_rx_buff_failed++;
869 			return NULL;
870 		}
871 
872 		/* we will be copying header into skb->data in
873 		 * pskb_may_pull so it is in our interest to prefetch
874 		 * it now to avoid a possible cache miss
875 		 */
876 		prefetchw(skb->data);
877 	}
878 
879 	/* we are reusing so sync this buffer for CPU use */
880 	dma_sync_single_range_for_cpu(rx_ring->dev,
881 				      rx_buffer->dma,
882 				      rx_buffer->page_offset,
883 				      IXGBEVF_RX_BUFSZ,
884 				      DMA_FROM_DEVICE);
885 
886 	/* pull page into skb */
887 	if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
888 		/* hand second half of page back to the ring */
889 		ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
890 	} else {
891 		/* we are not reusing the buffer so unmap it */
892 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
893 			       PAGE_SIZE, DMA_FROM_DEVICE);
894 	}
895 
896 	/* clear contents of buffer_info */
897 	rx_buffer->dma = 0;
898 	rx_buffer->page = NULL;
899 
900 	return skb;
901 }
902 
903 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
904 					     u32 qmask)
905 {
906 	struct ixgbe_hw *hw = &adapter->hw;
907 
908 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
909 }
910 
911 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
912 				struct ixgbevf_ring *rx_ring,
913 				int budget)
914 {
915 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
916 	u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
917 	struct sk_buff *skb = rx_ring->skb;
918 
919 	while (likely(total_rx_packets < budget)) {
920 		union ixgbe_adv_rx_desc *rx_desc;
921 
922 		/* return some buffers to hardware, one at a time is too slow */
923 		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
924 			ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
925 			cleaned_count = 0;
926 		}
927 
928 		rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
929 
930 		if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD))
931 			break;
932 
933 		/* This memory barrier is needed to keep us from reading
934 		 * any other fields out of the rx_desc until we know the
935 		 * RXD_STAT_DD bit is set
936 		 */
937 		rmb();
938 
939 		/* retrieve a buffer from the ring */
940 		skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb);
941 
942 		/* exit if we failed to retrieve a buffer */
943 		if (!skb)
944 			break;
945 
946 		cleaned_count++;
947 
948 		/* fetch next buffer in frame if non-eop */
949 		if (ixgbevf_is_non_eop(rx_ring, rx_desc))
950 			continue;
951 
952 		/* verify the packet layout is correct */
953 		if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
954 			skb = NULL;
955 			continue;
956 		}
957 
958 		/* probably a little skewed due to removing CRC */
959 		total_rx_bytes += skb->len;
960 
961 		/* Workaround hardware that can't do proper VEPA multicast
962 		 * source pruning.
963 		 */
964 		if ((skb->pkt_type == PACKET_BROADCAST ||
965 		     skb->pkt_type == PACKET_MULTICAST) &&
966 		    ether_addr_equal(rx_ring->netdev->dev_addr,
967 				     eth_hdr(skb)->h_source)) {
968 			dev_kfree_skb_irq(skb);
969 			continue;
970 		}
971 
972 		/* populate checksum, VLAN, and protocol */
973 		ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
974 
975 		ixgbevf_rx_skb(q_vector, skb);
976 
977 		/* reset skb pointer */
978 		skb = NULL;
979 
980 		/* update budget accounting */
981 		total_rx_packets++;
982 	}
983 
984 	/* place incomplete frames back on ring for completion */
985 	rx_ring->skb = skb;
986 
987 	u64_stats_update_begin(&rx_ring->syncp);
988 	rx_ring->stats.packets += total_rx_packets;
989 	rx_ring->stats.bytes += total_rx_bytes;
990 	u64_stats_update_end(&rx_ring->syncp);
991 	q_vector->rx.total_packets += total_rx_packets;
992 	q_vector->rx.total_bytes += total_rx_bytes;
993 
994 	return total_rx_packets;
995 }
996 
997 /**
998  * ixgbevf_poll - NAPI polling calback
999  * @napi: napi struct with our devices info in it
1000  * @budget: amount of work driver is allowed to do this pass, in packets
1001  *
1002  * This function will clean more than one or more rings associated with a
1003  * q_vector.
1004  **/
1005 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1006 {
1007 	struct ixgbevf_q_vector *q_vector =
1008 		container_of(napi, struct ixgbevf_q_vector, napi);
1009 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1010 	struct ixgbevf_ring *ring;
1011 	int per_ring_budget, work_done = 0;
1012 	bool clean_complete = true;
1013 
1014 	ixgbevf_for_each_ring(ring, q_vector->tx)
1015 		clean_complete &= ixgbevf_clean_tx_irq(q_vector, ring);
1016 
1017 #ifdef CONFIG_NET_RX_BUSY_POLL
1018 	if (!ixgbevf_qv_lock_napi(q_vector))
1019 		return budget;
1020 #endif
1021 
1022 	/* attempt to distribute budget to each queue fairly, but don't allow
1023 	 * the budget to go below 1 because we'll exit polling
1024 	 */
1025 	if (q_vector->rx.count > 1)
1026 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1027 	else
1028 		per_ring_budget = budget;
1029 
1030 	ixgbevf_for_each_ring(ring, q_vector->rx) {
1031 		int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1032 						   per_ring_budget);
1033 		work_done += cleaned;
1034 		clean_complete &= (cleaned < per_ring_budget);
1035 	}
1036 
1037 #ifdef CONFIG_NET_RX_BUSY_POLL
1038 	ixgbevf_qv_unlock_napi(q_vector);
1039 #endif
1040 
1041 	/* If all work not completed, return budget and keep polling */
1042 	if (!clean_complete)
1043 		return budget;
1044 	/* all work done, exit the polling mode */
1045 	napi_complete_done(napi, work_done);
1046 	if (adapter->rx_itr_setting & 1)
1047 		ixgbevf_set_itr(q_vector);
1048 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1049 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1050 		ixgbevf_irq_enable_queues(adapter,
1051 					  1 << q_vector->v_idx);
1052 
1053 	return 0;
1054 }
1055 
1056 /**
1057  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1058  * @q_vector: structure containing interrupt and ring information
1059  **/
1060 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1061 {
1062 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1063 	struct ixgbe_hw *hw = &adapter->hw;
1064 	int v_idx = q_vector->v_idx;
1065 	u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1066 
1067 	/* set the WDIS bit to not clear the timer bits and cause an
1068 	 * immediate assertion of the interrupt
1069 	 */
1070 	itr_reg |= IXGBE_EITR_CNT_WDIS;
1071 
1072 	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1073 }
1074 
1075 #ifdef CONFIG_NET_RX_BUSY_POLL
1076 /* must be called with local_bh_disable()d */
1077 static int ixgbevf_busy_poll_recv(struct napi_struct *napi)
1078 {
1079 	struct ixgbevf_q_vector *q_vector =
1080 			container_of(napi, struct ixgbevf_q_vector, napi);
1081 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1082 	struct ixgbevf_ring  *ring;
1083 	int found = 0;
1084 
1085 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
1086 		return LL_FLUSH_FAILED;
1087 
1088 	if (!ixgbevf_qv_lock_poll(q_vector))
1089 		return LL_FLUSH_BUSY;
1090 
1091 	ixgbevf_for_each_ring(ring, q_vector->rx) {
1092 		found = ixgbevf_clean_rx_irq(q_vector, ring, 4);
1093 #ifdef BP_EXTENDED_STATS
1094 		if (found)
1095 			ring->stats.cleaned += found;
1096 		else
1097 			ring->stats.misses++;
1098 #endif
1099 		if (found)
1100 			break;
1101 	}
1102 
1103 	ixgbevf_qv_unlock_poll(q_vector);
1104 
1105 	return found;
1106 }
1107 #endif /* CONFIG_NET_RX_BUSY_POLL */
1108 
1109 /**
1110  * ixgbevf_configure_msix - Configure MSI-X hardware
1111  * @adapter: board private structure
1112  *
1113  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1114  * interrupts.
1115  **/
1116 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1117 {
1118 	struct ixgbevf_q_vector *q_vector;
1119 	int q_vectors, v_idx;
1120 
1121 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1122 	adapter->eims_enable_mask = 0;
1123 
1124 	/* Populate the IVAR table and set the ITR values to the
1125 	 * corresponding register.
1126 	 */
1127 	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1128 		struct ixgbevf_ring *ring;
1129 
1130 		q_vector = adapter->q_vector[v_idx];
1131 
1132 		ixgbevf_for_each_ring(ring, q_vector->rx)
1133 			ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1134 
1135 		ixgbevf_for_each_ring(ring, q_vector->tx)
1136 			ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1137 
1138 		if (q_vector->tx.ring && !q_vector->rx.ring) {
1139 			/* Tx only vector */
1140 			if (adapter->tx_itr_setting == 1)
1141 				q_vector->itr = IXGBE_10K_ITR;
1142 			else
1143 				q_vector->itr = adapter->tx_itr_setting;
1144 		} else {
1145 			/* Rx or Rx/Tx vector */
1146 			if (adapter->rx_itr_setting == 1)
1147 				q_vector->itr = IXGBE_20K_ITR;
1148 			else
1149 				q_vector->itr = adapter->rx_itr_setting;
1150 		}
1151 
1152 		/* add q_vector eims value to global eims_enable_mask */
1153 		adapter->eims_enable_mask |= 1 << v_idx;
1154 
1155 		ixgbevf_write_eitr(q_vector);
1156 	}
1157 
1158 	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1159 	/* setup eims_other and add value to global eims_enable_mask */
1160 	adapter->eims_other = 1 << v_idx;
1161 	adapter->eims_enable_mask |= adapter->eims_other;
1162 }
1163 
1164 enum latency_range {
1165 	lowest_latency = 0,
1166 	low_latency = 1,
1167 	bulk_latency = 2,
1168 	latency_invalid = 255
1169 };
1170 
1171 /**
1172  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1173  * @q_vector: structure containing interrupt and ring information
1174  * @ring_container: structure containing ring performance data
1175  *
1176  * Stores a new ITR value based on packets and byte
1177  * counts during the last interrupt.  The advantage of per interrupt
1178  * computation is faster updates and more accurate ITR for the current
1179  * traffic pattern.  Constants in this function were computed
1180  * based on theoretical maximum wire speed and thresholds were set based
1181  * on testing data as well as attempting to minimize response time
1182  * while increasing bulk throughput.
1183  **/
1184 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1185 			       struct ixgbevf_ring_container *ring_container)
1186 {
1187 	int bytes = ring_container->total_bytes;
1188 	int packets = ring_container->total_packets;
1189 	u32 timepassed_us;
1190 	u64 bytes_perint;
1191 	u8 itr_setting = ring_container->itr;
1192 
1193 	if (packets == 0)
1194 		return;
1195 
1196 	/* simple throttle rate management
1197 	 *    0-20MB/s lowest (100000 ints/s)
1198 	 *   20-100MB/s low   (20000 ints/s)
1199 	 *  100-1249MB/s bulk (8000 ints/s)
1200 	 */
1201 	/* what was last interrupt timeslice? */
1202 	timepassed_us = q_vector->itr >> 2;
1203 	bytes_perint = bytes / timepassed_us; /* bytes/usec */
1204 
1205 	switch (itr_setting) {
1206 	case lowest_latency:
1207 		if (bytes_perint > 10)
1208 			itr_setting = low_latency;
1209 		break;
1210 	case low_latency:
1211 		if (bytes_perint > 20)
1212 			itr_setting = bulk_latency;
1213 		else if (bytes_perint <= 10)
1214 			itr_setting = lowest_latency;
1215 		break;
1216 	case bulk_latency:
1217 		if (bytes_perint <= 20)
1218 			itr_setting = low_latency;
1219 		break;
1220 	}
1221 
1222 	/* clear work counters since we have the values we need */
1223 	ring_container->total_bytes = 0;
1224 	ring_container->total_packets = 0;
1225 
1226 	/* write updated itr to ring container */
1227 	ring_container->itr = itr_setting;
1228 }
1229 
1230 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1231 {
1232 	u32 new_itr = q_vector->itr;
1233 	u8 current_itr;
1234 
1235 	ixgbevf_update_itr(q_vector, &q_vector->tx);
1236 	ixgbevf_update_itr(q_vector, &q_vector->rx);
1237 
1238 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1239 
1240 	switch (current_itr) {
1241 	/* counts and packets in update_itr are dependent on these numbers */
1242 	case lowest_latency:
1243 		new_itr = IXGBE_100K_ITR;
1244 		break;
1245 	case low_latency:
1246 		new_itr = IXGBE_20K_ITR;
1247 		break;
1248 	case bulk_latency:
1249 	default:
1250 		new_itr = IXGBE_8K_ITR;
1251 		break;
1252 	}
1253 
1254 	if (new_itr != q_vector->itr) {
1255 		/* do an exponential smoothing */
1256 		new_itr = (10 * new_itr * q_vector->itr) /
1257 			  ((9 * new_itr) + q_vector->itr);
1258 
1259 		/* save the algorithm value here */
1260 		q_vector->itr = new_itr;
1261 
1262 		ixgbevf_write_eitr(q_vector);
1263 	}
1264 }
1265 
1266 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1267 {
1268 	struct ixgbevf_adapter *adapter = data;
1269 	struct ixgbe_hw *hw = &adapter->hw;
1270 
1271 	hw->mac.get_link_status = 1;
1272 
1273 	ixgbevf_service_event_schedule(adapter);
1274 
1275 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1276 
1277 	return IRQ_HANDLED;
1278 }
1279 
1280 /**
1281  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1282  * @irq: unused
1283  * @data: pointer to our q_vector struct for this interrupt vector
1284  **/
1285 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1286 {
1287 	struct ixgbevf_q_vector *q_vector = data;
1288 
1289 	/* EIAM disabled interrupts (on this vector) for us */
1290 	if (q_vector->rx.ring || q_vector->tx.ring)
1291 		napi_schedule(&q_vector->napi);
1292 
1293 	return IRQ_HANDLED;
1294 }
1295 
1296 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1297 				     int r_idx)
1298 {
1299 	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1300 
1301 	a->rx_ring[r_idx]->next = q_vector->rx.ring;
1302 	q_vector->rx.ring = a->rx_ring[r_idx];
1303 	q_vector->rx.count++;
1304 }
1305 
1306 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1307 				     int t_idx)
1308 {
1309 	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1310 
1311 	a->tx_ring[t_idx]->next = q_vector->tx.ring;
1312 	q_vector->tx.ring = a->tx_ring[t_idx];
1313 	q_vector->tx.count++;
1314 }
1315 
1316 /**
1317  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1318  * @adapter: board private structure to initialize
1319  *
1320  * This function maps descriptor rings to the queue-specific vectors
1321  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1322  * one vector per ring/queue, but on a constrained vector budget, we
1323  * group the rings as "efficiently" as possible.  You would add new
1324  * mapping configurations in here.
1325  **/
1326 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1327 {
1328 	int q_vectors;
1329 	int v_start = 0;
1330 	int rxr_idx = 0, txr_idx = 0;
1331 	int rxr_remaining = adapter->num_rx_queues;
1332 	int txr_remaining = adapter->num_tx_queues;
1333 	int i, j;
1334 	int rqpv, tqpv;
1335 	int err = 0;
1336 
1337 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1338 
1339 	/* The ideal configuration...
1340 	 * We have enough vectors to map one per queue.
1341 	 */
1342 	if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1343 		for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1344 			map_vector_to_rxq(adapter, v_start, rxr_idx);
1345 
1346 		for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1347 			map_vector_to_txq(adapter, v_start, txr_idx);
1348 		goto out;
1349 	}
1350 
1351 	/* If we don't have enough vectors for a 1-to-1
1352 	 * mapping, we'll have to group them so there are
1353 	 * multiple queues per vector.
1354 	 */
1355 	/* Re-adjusting *qpv takes care of the remainder. */
1356 	for (i = v_start; i < q_vectors; i++) {
1357 		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1358 		for (j = 0; j < rqpv; j++) {
1359 			map_vector_to_rxq(adapter, i, rxr_idx);
1360 			rxr_idx++;
1361 			rxr_remaining--;
1362 		}
1363 	}
1364 	for (i = v_start; i < q_vectors; i++) {
1365 		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1366 		for (j = 0; j < tqpv; j++) {
1367 			map_vector_to_txq(adapter, i, txr_idx);
1368 			txr_idx++;
1369 			txr_remaining--;
1370 		}
1371 	}
1372 
1373 out:
1374 	return err;
1375 }
1376 
1377 /**
1378  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1379  * @adapter: board private structure
1380  *
1381  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1382  * interrupts from the kernel.
1383  **/
1384 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1385 {
1386 	struct net_device *netdev = adapter->netdev;
1387 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1388 	int vector, err;
1389 	int ri = 0, ti = 0;
1390 
1391 	for (vector = 0; vector < q_vectors; vector++) {
1392 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1393 		struct msix_entry *entry = &adapter->msix_entries[vector];
1394 
1395 		if (q_vector->tx.ring && q_vector->rx.ring) {
1396 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1397 				 "%s-%s-%d", netdev->name, "TxRx", ri++);
1398 			ti++;
1399 		} else if (q_vector->rx.ring) {
1400 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1401 				 "%s-%s-%d", netdev->name, "rx", ri++);
1402 		} else if (q_vector->tx.ring) {
1403 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1404 				 "%s-%s-%d", netdev->name, "tx", ti++);
1405 		} else {
1406 			/* skip this unused q_vector */
1407 			continue;
1408 		}
1409 		err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1410 				  q_vector->name, q_vector);
1411 		if (err) {
1412 			hw_dbg(&adapter->hw,
1413 			       "request_irq failed for MSIX interrupt Error: %d\n",
1414 			       err);
1415 			goto free_queue_irqs;
1416 		}
1417 	}
1418 
1419 	err = request_irq(adapter->msix_entries[vector].vector,
1420 			  &ixgbevf_msix_other, 0, netdev->name, adapter);
1421 	if (err) {
1422 		hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1423 		       err);
1424 		goto free_queue_irqs;
1425 	}
1426 
1427 	return 0;
1428 
1429 free_queue_irqs:
1430 	while (vector) {
1431 		vector--;
1432 		free_irq(adapter->msix_entries[vector].vector,
1433 			 adapter->q_vector[vector]);
1434 	}
1435 	/* This failure is non-recoverable - it indicates the system is
1436 	 * out of MSIX vector resources and the VF driver cannot run
1437 	 * without them.  Set the number of msix vectors to zero
1438 	 * indicating that not enough can be allocated.  The error
1439 	 * will be returned to the user indicating device open failed.
1440 	 * Any further attempts to force the driver to open will also
1441 	 * fail.  The only way to recover is to unload the driver and
1442 	 * reload it again.  If the system has recovered some MSIX
1443 	 * vectors then it may succeed.
1444 	 */
1445 	adapter->num_msix_vectors = 0;
1446 	return err;
1447 }
1448 
1449 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1450 {
1451 	int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1452 
1453 	for (i = 0; i < q_vectors; i++) {
1454 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1455 
1456 		q_vector->rx.ring = NULL;
1457 		q_vector->tx.ring = NULL;
1458 		q_vector->rx.count = 0;
1459 		q_vector->tx.count = 0;
1460 	}
1461 }
1462 
1463 /**
1464  * ixgbevf_request_irq - initialize interrupts
1465  * @adapter: board private structure
1466  *
1467  * Attempts to configure interrupts using the best available
1468  * capabilities of the hardware and kernel.
1469  **/
1470 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1471 {
1472 	int err = 0;
1473 
1474 	err = ixgbevf_request_msix_irqs(adapter);
1475 
1476 	if (err)
1477 		hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1478 
1479 	return err;
1480 }
1481 
1482 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1483 {
1484 	int i, q_vectors;
1485 
1486 	q_vectors = adapter->num_msix_vectors;
1487 	i = q_vectors - 1;
1488 
1489 	free_irq(adapter->msix_entries[i].vector, adapter);
1490 	i--;
1491 
1492 	for (; i >= 0; i--) {
1493 		/* free only the irqs that were actually requested */
1494 		if (!adapter->q_vector[i]->rx.ring &&
1495 		    !adapter->q_vector[i]->tx.ring)
1496 			continue;
1497 
1498 		free_irq(adapter->msix_entries[i].vector,
1499 			 adapter->q_vector[i]);
1500 	}
1501 
1502 	ixgbevf_reset_q_vectors(adapter);
1503 }
1504 
1505 /**
1506  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1507  * @adapter: board private structure
1508  **/
1509 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1510 {
1511 	struct ixgbe_hw *hw = &adapter->hw;
1512 	int i;
1513 
1514 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1515 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1516 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1517 
1518 	IXGBE_WRITE_FLUSH(hw);
1519 
1520 	for (i = 0; i < adapter->num_msix_vectors; i++)
1521 		synchronize_irq(adapter->msix_entries[i].vector);
1522 }
1523 
1524 /**
1525  * ixgbevf_irq_enable - Enable default interrupt generation settings
1526  * @adapter: board private structure
1527  **/
1528 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1529 {
1530 	struct ixgbe_hw *hw = &adapter->hw;
1531 
1532 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1533 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1534 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1535 }
1536 
1537 /**
1538  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1539  * @adapter: board private structure
1540  * @ring: structure containing ring specific data
1541  *
1542  * Configure the Tx descriptor ring after a reset.
1543  **/
1544 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1545 				      struct ixgbevf_ring *ring)
1546 {
1547 	struct ixgbe_hw *hw = &adapter->hw;
1548 	u64 tdba = ring->dma;
1549 	int wait_loop = 10;
1550 	u32 txdctl = IXGBE_TXDCTL_ENABLE;
1551 	u8 reg_idx = ring->reg_idx;
1552 
1553 	/* disable queue to avoid issues while updating state */
1554 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1555 	IXGBE_WRITE_FLUSH(hw);
1556 
1557 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1558 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1559 	IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1560 			ring->count * sizeof(union ixgbe_adv_tx_desc));
1561 
1562 	/* disable head writeback */
1563 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1564 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1565 
1566 	/* enable relaxed ordering */
1567 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1568 			(IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1569 			 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1570 
1571 	/* reset head and tail pointers */
1572 	IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1573 	IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1574 	ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1575 
1576 	/* reset ntu and ntc to place SW in sync with hardwdare */
1577 	ring->next_to_clean = 0;
1578 	ring->next_to_use = 0;
1579 
1580 	/* In order to avoid issues WTHRESH + PTHRESH should always be equal
1581 	 * to or less than the number of on chip descriptors, which is
1582 	 * currently 40.
1583 	 */
1584 	txdctl |= (8 << 16);    /* WTHRESH = 8 */
1585 
1586 	/* Setting PTHRESH to 32 both improves performance */
1587 	txdctl |= (1 << 8) |    /* HTHRESH = 1 */
1588 		  32;          /* PTHRESH = 32 */
1589 
1590 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1591 
1592 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1593 
1594 	/* poll to verify queue is enabled */
1595 	do {
1596 		usleep_range(1000, 2000);
1597 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1598 	}  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1599 	if (!wait_loop)
1600 		pr_err("Could not enable Tx Queue %d\n", reg_idx);
1601 }
1602 
1603 /**
1604  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1605  * @adapter: board private structure
1606  *
1607  * Configure the Tx unit of the MAC after a reset.
1608  **/
1609 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1610 {
1611 	u32 i;
1612 
1613 	/* Setup the HW Tx Head and Tail descriptor pointers */
1614 	for (i = 0; i < adapter->num_tx_queues; i++)
1615 		ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1616 }
1617 
1618 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1619 
1620 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1621 {
1622 	struct ixgbe_hw *hw = &adapter->hw;
1623 	u32 srrctl;
1624 
1625 	srrctl = IXGBE_SRRCTL_DROP_EN;
1626 
1627 	srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1628 	srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1629 	srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1630 
1631 	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1632 }
1633 
1634 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1635 {
1636 	struct ixgbe_hw *hw = &adapter->hw;
1637 
1638 	/* PSRTYPE must be initialized in 82599 */
1639 	u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1640 		      IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1641 		      IXGBE_PSRTYPE_L2HDR;
1642 
1643 	if (adapter->num_rx_queues > 1)
1644 		psrtype |= 1 << 29;
1645 
1646 	IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1647 }
1648 
1649 #define IXGBEVF_MAX_RX_DESC_POLL 10
1650 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1651 				     struct ixgbevf_ring *ring)
1652 {
1653 	struct ixgbe_hw *hw = &adapter->hw;
1654 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1655 	u32 rxdctl;
1656 	u8 reg_idx = ring->reg_idx;
1657 
1658 	if (IXGBE_REMOVED(hw->hw_addr))
1659 		return;
1660 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1661 	rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1662 
1663 	/* write value back with RXDCTL.ENABLE bit cleared */
1664 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1665 
1666 	/* the hardware may take up to 100us to really disable the Rx queue */
1667 	do {
1668 		udelay(10);
1669 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1670 	} while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1671 
1672 	if (!wait_loop)
1673 		pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1674 		       reg_idx);
1675 }
1676 
1677 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1678 					 struct ixgbevf_ring *ring)
1679 {
1680 	struct ixgbe_hw *hw = &adapter->hw;
1681 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1682 	u32 rxdctl;
1683 	u8 reg_idx = ring->reg_idx;
1684 
1685 	if (IXGBE_REMOVED(hw->hw_addr))
1686 		return;
1687 	do {
1688 		usleep_range(1000, 2000);
1689 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1690 	} while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1691 
1692 	if (!wait_loop)
1693 		pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1694 		       reg_idx);
1695 }
1696 
1697 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1698 {
1699 	struct ixgbe_hw *hw = &adapter->hw;
1700 	u32 vfmrqc = 0, vfreta = 0;
1701 	u16 rss_i = adapter->num_rx_queues;
1702 	u8 i, j;
1703 
1704 	/* Fill out hash function seeds */
1705 	netdev_rss_key_fill(adapter->rss_key, sizeof(adapter->rss_key));
1706 	for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1707 		IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), adapter->rss_key[i]);
1708 
1709 	for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1710 		if (j == rss_i)
1711 			j = 0;
1712 
1713 		adapter->rss_indir_tbl[i] = j;
1714 
1715 		vfreta |= j << (i & 0x3) * 8;
1716 		if ((i & 3) == 3) {
1717 			IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1718 			vfreta = 0;
1719 		}
1720 	}
1721 
1722 	/* Perform hash on these packet types */
1723 	vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1724 		IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1725 		IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1726 		IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1727 
1728 	vfmrqc |= IXGBE_VFMRQC_RSSEN;
1729 
1730 	IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1731 }
1732 
1733 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1734 				      struct ixgbevf_ring *ring)
1735 {
1736 	struct ixgbe_hw *hw = &adapter->hw;
1737 	u64 rdba = ring->dma;
1738 	u32 rxdctl;
1739 	u8 reg_idx = ring->reg_idx;
1740 
1741 	/* disable queue to avoid issues while updating state */
1742 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1743 	ixgbevf_disable_rx_queue(adapter, ring);
1744 
1745 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1746 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1747 	IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1748 			ring->count * sizeof(union ixgbe_adv_rx_desc));
1749 
1750 	/* enable relaxed ordering */
1751 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1752 			IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1753 
1754 	/* reset head and tail pointers */
1755 	IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1756 	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1757 	ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1758 
1759 	/* reset ntu and ntc to place SW in sync with hardwdare */
1760 	ring->next_to_clean = 0;
1761 	ring->next_to_use = 0;
1762 	ring->next_to_alloc = 0;
1763 
1764 	ixgbevf_configure_srrctl(adapter, reg_idx);
1765 
1766 	/* allow any size packet since we can handle overflow */
1767 	rxdctl &= ~IXGBE_RXDCTL_RLPML_EN;
1768 
1769 	rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1770 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1771 
1772 	ixgbevf_rx_desc_queue_enable(adapter, ring);
1773 	ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1774 }
1775 
1776 /**
1777  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1778  * @adapter: board private structure
1779  *
1780  * Configure the Rx unit of the MAC after a reset.
1781  **/
1782 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1783 {
1784 	int i;
1785 	struct ixgbe_hw *hw = &adapter->hw;
1786 	struct net_device *netdev = adapter->netdev;
1787 
1788 	ixgbevf_setup_psrtype(adapter);
1789 	if (hw->mac.type >= ixgbe_mac_X550_vf)
1790 		ixgbevf_setup_vfmrqc(adapter);
1791 
1792 	/* notify the PF of our intent to use this size of frame */
1793 	ixgbevf_rlpml_set_vf(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1794 
1795 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1796 	 * the Base and Length of the Rx Descriptor Ring
1797 	 */
1798 	for (i = 0; i < adapter->num_rx_queues; i++)
1799 		ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]);
1800 }
1801 
1802 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1803 				   __be16 proto, u16 vid)
1804 {
1805 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1806 	struct ixgbe_hw *hw = &adapter->hw;
1807 	int err;
1808 
1809 	spin_lock_bh(&adapter->mbx_lock);
1810 
1811 	/* add VID to filter table */
1812 	err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1813 
1814 	spin_unlock_bh(&adapter->mbx_lock);
1815 
1816 	/* translate error return types so error makes sense */
1817 	if (err == IXGBE_ERR_MBX)
1818 		return -EIO;
1819 
1820 	if (err == IXGBE_ERR_INVALID_ARGUMENT)
1821 		return -EACCES;
1822 
1823 	set_bit(vid, adapter->active_vlans);
1824 
1825 	return err;
1826 }
1827 
1828 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1829 				    __be16 proto, u16 vid)
1830 {
1831 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1832 	struct ixgbe_hw *hw = &adapter->hw;
1833 	int err = -EOPNOTSUPP;
1834 
1835 	spin_lock_bh(&adapter->mbx_lock);
1836 
1837 	/* remove VID from filter table */
1838 	err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1839 
1840 	spin_unlock_bh(&adapter->mbx_lock);
1841 
1842 	clear_bit(vid, adapter->active_vlans);
1843 
1844 	return err;
1845 }
1846 
1847 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1848 {
1849 	u16 vid;
1850 
1851 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1852 		ixgbevf_vlan_rx_add_vid(adapter->netdev,
1853 					htons(ETH_P_8021Q), vid);
1854 }
1855 
1856 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1857 {
1858 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1859 	struct ixgbe_hw *hw = &adapter->hw;
1860 	int count = 0;
1861 
1862 	if ((netdev_uc_count(netdev)) > 10) {
1863 		pr_err("Too many unicast filters - No Space\n");
1864 		return -ENOSPC;
1865 	}
1866 
1867 	if (!netdev_uc_empty(netdev)) {
1868 		struct netdev_hw_addr *ha;
1869 
1870 		netdev_for_each_uc_addr(ha, netdev) {
1871 			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1872 			udelay(200);
1873 		}
1874 	} else {
1875 		/* If the list is empty then send message to PF driver to
1876 		 * clear all MAC VLANs on this VF.
1877 		 */
1878 		hw->mac.ops.set_uc_addr(hw, 0, NULL);
1879 	}
1880 
1881 	return count;
1882 }
1883 
1884 /**
1885  * ixgbevf_set_rx_mode - Multicast and unicast set
1886  * @netdev: network interface device structure
1887  *
1888  * The set_rx_method entry point is called whenever the multicast address
1889  * list, unicast address list or the network interface flags are updated.
1890  * This routine is responsible for configuring the hardware for proper
1891  * multicast mode and configuring requested unicast filters.
1892  **/
1893 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1894 {
1895 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1896 	struct ixgbe_hw *hw = &adapter->hw;
1897 	unsigned int flags = netdev->flags;
1898 	int xcast_mode;
1899 
1900 	xcast_mode = (flags & IFF_ALLMULTI) ? IXGBEVF_XCAST_MODE_ALLMULTI :
1901 		     (flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1902 		     IXGBEVF_XCAST_MODE_MULTI : IXGBEVF_XCAST_MODE_NONE;
1903 
1904 	spin_lock_bh(&adapter->mbx_lock);
1905 
1906 	hw->mac.ops.update_xcast_mode(hw, netdev, xcast_mode);
1907 
1908 	/* reprogram multicast list */
1909 	hw->mac.ops.update_mc_addr_list(hw, netdev);
1910 
1911 	ixgbevf_write_uc_addr_list(netdev);
1912 
1913 	spin_unlock_bh(&adapter->mbx_lock);
1914 }
1915 
1916 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1917 {
1918 	int q_idx;
1919 	struct ixgbevf_q_vector *q_vector;
1920 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1921 
1922 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1923 		q_vector = adapter->q_vector[q_idx];
1924 #ifdef CONFIG_NET_RX_BUSY_POLL
1925 		ixgbevf_qv_init_lock(adapter->q_vector[q_idx]);
1926 #endif
1927 		napi_enable(&q_vector->napi);
1928 	}
1929 }
1930 
1931 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1932 {
1933 	int q_idx;
1934 	struct ixgbevf_q_vector *q_vector;
1935 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1936 
1937 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1938 		q_vector = adapter->q_vector[q_idx];
1939 		napi_disable(&q_vector->napi);
1940 #ifdef CONFIG_NET_RX_BUSY_POLL
1941 		while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) {
1942 			pr_info("QV %d locked\n", q_idx);
1943 			usleep_range(1000, 20000);
1944 		}
1945 #endif /* CONFIG_NET_RX_BUSY_POLL */
1946 	}
1947 }
1948 
1949 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
1950 {
1951 	struct ixgbe_hw *hw = &adapter->hw;
1952 	unsigned int def_q = 0;
1953 	unsigned int num_tcs = 0;
1954 	unsigned int num_rx_queues = adapter->num_rx_queues;
1955 	unsigned int num_tx_queues = adapter->num_tx_queues;
1956 	int err;
1957 
1958 	spin_lock_bh(&adapter->mbx_lock);
1959 
1960 	/* fetch queue configuration from the PF */
1961 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1962 
1963 	spin_unlock_bh(&adapter->mbx_lock);
1964 
1965 	if (err)
1966 		return err;
1967 
1968 	if (num_tcs > 1) {
1969 		/* we need only one Tx queue */
1970 		num_tx_queues = 1;
1971 
1972 		/* update default Tx ring register index */
1973 		adapter->tx_ring[0]->reg_idx = def_q;
1974 
1975 		/* we need as many queues as traffic classes */
1976 		num_rx_queues = num_tcs;
1977 	}
1978 
1979 	/* if we have a bad config abort request queue reset */
1980 	if ((adapter->num_rx_queues != num_rx_queues) ||
1981 	    (adapter->num_tx_queues != num_tx_queues)) {
1982 		/* force mailbox timeout to prevent further messages */
1983 		hw->mbx.timeout = 0;
1984 
1985 		/* wait for watchdog to come around and bail us out */
1986 		adapter->flags |= IXGBEVF_FLAG_QUEUE_RESET_REQUESTED;
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1993 {
1994 	ixgbevf_configure_dcb(adapter);
1995 
1996 	ixgbevf_set_rx_mode(adapter->netdev);
1997 
1998 	ixgbevf_restore_vlan(adapter);
1999 
2000 	ixgbevf_configure_tx(adapter);
2001 	ixgbevf_configure_rx(adapter);
2002 }
2003 
2004 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2005 {
2006 	/* Only save pre-reset stats if there are some */
2007 	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2008 		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2009 			adapter->stats.base_vfgprc;
2010 		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2011 			adapter->stats.base_vfgptc;
2012 		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2013 			adapter->stats.base_vfgorc;
2014 		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2015 			adapter->stats.base_vfgotc;
2016 		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2017 			adapter->stats.base_vfmprc;
2018 	}
2019 }
2020 
2021 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2022 {
2023 	struct ixgbe_hw *hw = &adapter->hw;
2024 
2025 	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2026 	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2027 	adapter->stats.last_vfgorc |=
2028 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2029 	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2030 	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2031 	adapter->stats.last_vfgotc |=
2032 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2033 	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2034 
2035 	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2036 	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2037 	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2038 	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2039 	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2040 }
2041 
2042 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2043 {
2044 	struct ixgbe_hw *hw = &adapter->hw;
2045 	int api[] = { ixgbe_mbox_api_12,
2046 		      ixgbe_mbox_api_11,
2047 		      ixgbe_mbox_api_10,
2048 		      ixgbe_mbox_api_unknown };
2049 	int err = 0, idx = 0;
2050 
2051 	spin_lock_bh(&adapter->mbx_lock);
2052 
2053 	while (api[idx] != ixgbe_mbox_api_unknown) {
2054 		err = ixgbevf_negotiate_api_version(hw, api[idx]);
2055 		if (!err)
2056 			break;
2057 		idx++;
2058 	}
2059 
2060 	spin_unlock_bh(&adapter->mbx_lock);
2061 }
2062 
2063 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2064 {
2065 	struct net_device *netdev = adapter->netdev;
2066 	struct ixgbe_hw *hw = &adapter->hw;
2067 
2068 	ixgbevf_configure_msix(adapter);
2069 
2070 	spin_lock_bh(&adapter->mbx_lock);
2071 
2072 	if (is_valid_ether_addr(hw->mac.addr))
2073 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2074 	else
2075 		hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2076 
2077 	spin_unlock_bh(&adapter->mbx_lock);
2078 
2079 	smp_mb__before_atomic();
2080 	clear_bit(__IXGBEVF_DOWN, &adapter->state);
2081 	ixgbevf_napi_enable_all(adapter);
2082 
2083 	/* clear any pending interrupts, may auto mask */
2084 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2085 	ixgbevf_irq_enable(adapter);
2086 
2087 	/* enable transmits */
2088 	netif_tx_start_all_queues(netdev);
2089 
2090 	ixgbevf_save_reset_stats(adapter);
2091 	ixgbevf_init_last_counter_stats(adapter);
2092 
2093 	hw->mac.get_link_status = 1;
2094 	mod_timer(&adapter->service_timer, jiffies);
2095 }
2096 
2097 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2098 {
2099 	ixgbevf_configure(adapter);
2100 
2101 	ixgbevf_up_complete(adapter);
2102 }
2103 
2104 /**
2105  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2106  * @rx_ring: ring to free buffers from
2107  **/
2108 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2109 {
2110 	struct device *dev = rx_ring->dev;
2111 	unsigned long size;
2112 	unsigned int i;
2113 
2114 	/* Free Rx ring sk_buff */
2115 	if (rx_ring->skb) {
2116 		dev_kfree_skb(rx_ring->skb);
2117 		rx_ring->skb = NULL;
2118 	}
2119 
2120 	/* ring already cleared, nothing to do */
2121 	if (!rx_ring->rx_buffer_info)
2122 		return;
2123 
2124 	/* Free all the Rx ring pages */
2125 	for (i = 0; i < rx_ring->count; i++) {
2126 		struct ixgbevf_rx_buffer *rx_buffer;
2127 
2128 		rx_buffer = &rx_ring->rx_buffer_info[i];
2129 		if (rx_buffer->dma)
2130 			dma_unmap_page(dev, rx_buffer->dma,
2131 				       PAGE_SIZE, DMA_FROM_DEVICE);
2132 		rx_buffer->dma = 0;
2133 		if (rx_buffer->page)
2134 			__free_page(rx_buffer->page);
2135 		rx_buffer->page = NULL;
2136 	}
2137 
2138 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2139 	memset(rx_ring->rx_buffer_info, 0, size);
2140 
2141 	/* Zero out the descriptor ring */
2142 	memset(rx_ring->desc, 0, rx_ring->size);
2143 }
2144 
2145 /**
2146  * ixgbevf_clean_tx_ring - Free Tx Buffers
2147  * @tx_ring: ring to be cleaned
2148  **/
2149 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2150 {
2151 	struct ixgbevf_tx_buffer *tx_buffer_info;
2152 	unsigned long size;
2153 	unsigned int i;
2154 
2155 	if (!tx_ring->tx_buffer_info)
2156 		return;
2157 
2158 	/* Free all the Tx ring sk_buffs */
2159 	for (i = 0; i < tx_ring->count; i++) {
2160 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2161 		ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2162 	}
2163 
2164 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2165 	memset(tx_ring->tx_buffer_info, 0, size);
2166 
2167 	memset(tx_ring->desc, 0, tx_ring->size);
2168 }
2169 
2170 /**
2171  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2172  * @adapter: board private structure
2173  **/
2174 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2175 {
2176 	int i;
2177 
2178 	for (i = 0; i < adapter->num_rx_queues; i++)
2179 		ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2180 }
2181 
2182 /**
2183  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2184  * @adapter: board private structure
2185  **/
2186 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2187 {
2188 	int i;
2189 
2190 	for (i = 0; i < adapter->num_tx_queues; i++)
2191 		ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2192 }
2193 
2194 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2195 {
2196 	struct net_device *netdev = adapter->netdev;
2197 	struct ixgbe_hw *hw = &adapter->hw;
2198 	int i;
2199 
2200 	/* signal that we are down to the interrupt handler */
2201 	if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2202 		return; /* do nothing if already down */
2203 
2204 	/* disable all enabled Rx queues */
2205 	for (i = 0; i < adapter->num_rx_queues; i++)
2206 		ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2207 
2208 	usleep_range(10000, 20000);
2209 
2210 	netif_tx_stop_all_queues(netdev);
2211 
2212 	/* call carrier off first to avoid false dev_watchdog timeouts */
2213 	netif_carrier_off(netdev);
2214 	netif_tx_disable(netdev);
2215 
2216 	ixgbevf_irq_disable(adapter);
2217 
2218 	ixgbevf_napi_disable_all(adapter);
2219 
2220 	del_timer_sync(&adapter->service_timer);
2221 
2222 	/* disable transmits in the hardware now that interrupts are off */
2223 	for (i = 0; i < adapter->num_tx_queues; i++) {
2224 		u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2225 
2226 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2227 				IXGBE_TXDCTL_SWFLSH);
2228 	}
2229 
2230 	if (!pci_channel_offline(adapter->pdev))
2231 		ixgbevf_reset(adapter);
2232 
2233 	ixgbevf_clean_all_tx_rings(adapter);
2234 	ixgbevf_clean_all_rx_rings(adapter);
2235 }
2236 
2237 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2238 {
2239 	WARN_ON(in_interrupt());
2240 
2241 	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2242 		msleep(1);
2243 
2244 	ixgbevf_down(adapter);
2245 	ixgbevf_up(adapter);
2246 
2247 	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2248 }
2249 
2250 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2251 {
2252 	struct ixgbe_hw *hw = &adapter->hw;
2253 	struct net_device *netdev = adapter->netdev;
2254 
2255 	if (hw->mac.ops.reset_hw(hw)) {
2256 		hw_dbg(hw, "PF still resetting\n");
2257 	} else {
2258 		hw->mac.ops.init_hw(hw);
2259 		ixgbevf_negotiate_api(adapter);
2260 	}
2261 
2262 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2263 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2264 		       netdev->addr_len);
2265 		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
2266 		       netdev->addr_len);
2267 	}
2268 
2269 	adapter->last_reset = jiffies;
2270 }
2271 
2272 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2273 					int vectors)
2274 {
2275 	int vector_threshold;
2276 
2277 	/* We'll want at least 2 (vector_threshold):
2278 	 * 1) TxQ[0] + RxQ[0] handler
2279 	 * 2) Other (Link Status Change, etc.)
2280 	 */
2281 	vector_threshold = MIN_MSIX_COUNT;
2282 
2283 	/* The more we get, the more we will assign to Tx/Rx Cleanup
2284 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2285 	 * Right now, we simply care about how many we'll get; we'll
2286 	 * set them up later while requesting irq's.
2287 	 */
2288 	vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2289 					vector_threshold, vectors);
2290 
2291 	if (vectors < 0) {
2292 		dev_err(&adapter->pdev->dev,
2293 			"Unable to allocate MSI-X interrupts\n");
2294 		kfree(adapter->msix_entries);
2295 		adapter->msix_entries = NULL;
2296 		return vectors;
2297 	}
2298 
2299 	/* Adjust for only the vectors we'll use, which is minimum
2300 	 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2301 	 * vectors we were allocated.
2302 	 */
2303 	adapter->num_msix_vectors = vectors;
2304 
2305 	return 0;
2306 }
2307 
2308 /**
2309  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2310  * @adapter: board private structure to initialize
2311  *
2312  * This is the top level queue allocation routine.  The order here is very
2313  * important, starting with the "most" number of features turned on at once,
2314  * and ending with the smallest set of features.  This way large combinations
2315  * can be allocated if they're turned on, and smaller combinations are the
2316  * fallthrough conditions.
2317  *
2318  **/
2319 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2320 {
2321 	struct ixgbe_hw *hw = &adapter->hw;
2322 	unsigned int def_q = 0;
2323 	unsigned int num_tcs = 0;
2324 	int err;
2325 
2326 	/* Start with base case */
2327 	adapter->num_rx_queues = 1;
2328 	adapter->num_tx_queues = 1;
2329 
2330 	spin_lock_bh(&adapter->mbx_lock);
2331 
2332 	/* fetch queue configuration from the PF */
2333 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2334 
2335 	spin_unlock_bh(&adapter->mbx_lock);
2336 
2337 	if (err)
2338 		return;
2339 
2340 	/* we need as many queues as traffic classes */
2341 	if (num_tcs > 1) {
2342 		adapter->num_rx_queues = num_tcs;
2343 	} else {
2344 		u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2345 
2346 		switch (hw->api_version) {
2347 		case ixgbe_mbox_api_11:
2348 		case ixgbe_mbox_api_12:
2349 			adapter->num_rx_queues = rss;
2350 			adapter->num_tx_queues = rss;
2351 		default:
2352 			break;
2353 		}
2354 	}
2355 }
2356 
2357 /**
2358  * ixgbevf_alloc_queues - Allocate memory for all rings
2359  * @adapter: board private structure to initialize
2360  *
2361  * We allocate one ring per queue at run-time since we don't know the
2362  * number of queues at compile-time.  The polling_netdev array is
2363  * intended for Multiqueue, but should work fine with a single queue.
2364  **/
2365 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2366 {
2367 	struct ixgbevf_ring *ring;
2368 	int rx = 0, tx = 0;
2369 
2370 	for (; tx < adapter->num_tx_queues; tx++) {
2371 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2372 		if (!ring)
2373 			goto err_allocation;
2374 
2375 		ring->dev = &adapter->pdev->dev;
2376 		ring->netdev = adapter->netdev;
2377 		ring->count = adapter->tx_ring_count;
2378 		ring->queue_index = tx;
2379 		ring->reg_idx = tx;
2380 
2381 		adapter->tx_ring[tx] = ring;
2382 	}
2383 
2384 	for (; rx < adapter->num_rx_queues; rx++) {
2385 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2386 		if (!ring)
2387 			goto err_allocation;
2388 
2389 		ring->dev = &adapter->pdev->dev;
2390 		ring->netdev = adapter->netdev;
2391 
2392 		ring->count = adapter->rx_ring_count;
2393 		ring->queue_index = rx;
2394 		ring->reg_idx = rx;
2395 
2396 		adapter->rx_ring[rx] = ring;
2397 	}
2398 
2399 	return 0;
2400 
2401 err_allocation:
2402 	while (tx) {
2403 		kfree(adapter->tx_ring[--tx]);
2404 		adapter->tx_ring[tx] = NULL;
2405 	}
2406 
2407 	while (rx) {
2408 		kfree(adapter->rx_ring[--rx]);
2409 		adapter->rx_ring[rx] = NULL;
2410 	}
2411 	return -ENOMEM;
2412 }
2413 
2414 /**
2415  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2416  * @adapter: board private structure to initialize
2417  *
2418  * Attempt to configure the interrupts using the best available
2419  * capabilities of the hardware and the kernel.
2420  **/
2421 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2422 {
2423 	struct net_device *netdev = adapter->netdev;
2424 	int err = 0;
2425 	int vector, v_budget;
2426 
2427 	/* It's easy to be greedy for MSI-X vectors, but it really
2428 	 * doesn't do us much good if we have a lot more vectors
2429 	 * than CPU's.  So let's be conservative and only ask for
2430 	 * (roughly) the same number of vectors as there are CPU's.
2431 	 * The default is to use pairs of vectors.
2432 	 */
2433 	v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2434 	v_budget = min_t(int, v_budget, num_online_cpus());
2435 	v_budget += NON_Q_VECTORS;
2436 
2437 	/* A failure in MSI-X entry allocation isn't fatal, but it does
2438 	 * mean we disable MSI-X capabilities of the adapter.
2439 	 */
2440 	adapter->msix_entries = kcalloc(v_budget,
2441 					sizeof(struct msix_entry), GFP_KERNEL);
2442 	if (!adapter->msix_entries) {
2443 		err = -ENOMEM;
2444 		goto out;
2445 	}
2446 
2447 	for (vector = 0; vector < v_budget; vector++)
2448 		adapter->msix_entries[vector].entry = vector;
2449 
2450 	err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
2451 	if (err)
2452 		goto out;
2453 
2454 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
2455 	if (err)
2456 		goto out;
2457 
2458 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
2459 
2460 out:
2461 	return err;
2462 }
2463 
2464 /**
2465  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2466  * @adapter: board private structure to initialize
2467  *
2468  * We allocate one q_vector per queue interrupt.  If allocation fails we
2469  * return -ENOMEM.
2470  **/
2471 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2472 {
2473 	int q_idx, num_q_vectors;
2474 	struct ixgbevf_q_vector *q_vector;
2475 
2476 	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2477 
2478 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2479 		q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2480 		if (!q_vector)
2481 			goto err_out;
2482 		q_vector->adapter = adapter;
2483 		q_vector->v_idx = q_idx;
2484 		netif_napi_add(adapter->netdev, &q_vector->napi,
2485 			       ixgbevf_poll, 64);
2486 #ifdef CONFIG_NET_RX_BUSY_POLL
2487 		napi_hash_add(&q_vector->napi);
2488 #endif
2489 		adapter->q_vector[q_idx] = q_vector;
2490 	}
2491 
2492 	return 0;
2493 
2494 err_out:
2495 	while (q_idx) {
2496 		q_idx--;
2497 		q_vector = adapter->q_vector[q_idx];
2498 #ifdef CONFIG_NET_RX_BUSY_POLL
2499 		napi_hash_del(&q_vector->napi);
2500 #endif
2501 		netif_napi_del(&q_vector->napi);
2502 		kfree(q_vector);
2503 		adapter->q_vector[q_idx] = NULL;
2504 	}
2505 	return -ENOMEM;
2506 }
2507 
2508 /**
2509  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2510  * @adapter: board private structure to initialize
2511  *
2512  * This function frees the memory allocated to the q_vectors.  In addition if
2513  * NAPI is enabled it will delete any references to the NAPI struct prior
2514  * to freeing the q_vector.
2515  **/
2516 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2517 {
2518 	int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2519 
2520 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2521 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2522 
2523 		adapter->q_vector[q_idx] = NULL;
2524 #ifdef CONFIG_NET_RX_BUSY_POLL
2525 		napi_hash_del(&q_vector->napi);
2526 #endif
2527 		netif_napi_del(&q_vector->napi);
2528 		kfree(q_vector);
2529 	}
2530 }
2531 
2532 /**
2533  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2534  * @adapter: board private structure
2535  *
2536  **/
2537 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2538 {
2539 	pci_disable_msix(adapter->pdev);
2540 	kfree(adapter->msix_entries);
2541 	adapter->msix_entries = NULL;
2542 }
2543 
2544 /**
2545  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2546  * @adapter: board private structure to initialize
2547  *
2548  **/
2549 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2550 {
2551 	int err;
2552 
2553 	/* Number of supported queues */
2554 	ixgbevf_set_num_queues(adapter);
2555 
2556 	err = ixgbevf_set_interrupt_capability(adapter);
2557 	if (err) {
2558 		hw_dbg(&adapter->hw,
2559 		       "Unable to setup interrupt capabilities\n");
2560 		goto err_set_interrupt;
2561 	}
2562 
2563 	err = ixgbevf_alloc_q_vectors(adapter);
2564 	if (err) {
2565 		hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2566 		goto err_alloc_q_vectors;
2567 	}
2568 
2569 	err = ixgbevf_alloc_queues(adapter);
2570 	if (err) {
2571 		pr_err("Unable to allocate memory for queues\n");
2572 		goto err_alloc_queues;
2573 	}
2574 
2575 	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n",
2576 	       (adapter->num_rx_queues > 1) ? "Enabled" :
2577 	       "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2578 
2579 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2580 
2581 	return 0;
2582 err_alloc_queues:
2583 	ixgbevf_free_q_vectors(adapter);
2584 err_alloc_q_vectors:
2585 	ixgbevf_reset_interrupt_capability(adapter);
2586 err_set_interrupt:
2587 	return err;
2588 }
2589 
2590 /**
2591  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2592  * @adapter: board private structure to clear interrupt scheme on
2593  *
2594  * We go through and clear interrupt specific resources and reset the structure
2595  * to pre-load conditions
2596  **/
2597 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2598 {
2599 	int i;
2600 
2601 	for (i = 0; i < adapter->num_tx_queues; i++) {
2602 		kfree(adapter->tx_ring[i]);
2603 		adapter->tx_ring[i] = NULL;
2604 	}
2605 	for (i = 0; i < adapter->num_rx_queues; i++) {
2606 		kfree(adapter->rx_ring[i]);
2607 		adapter->rx_ring[i] = NULL;
2608 	}
2609 
2610 	adapter->num_tx_queues = 0;
2611 	adapter->num_rx_queues = 0;
2612 
2613 	ixgbevf_free_q_vectors(adapter);
2614 	ixgbevf_reset_interrupt_capability(adapter);
2615 }
2616 
2617 /**
2618  * ixgbevf_sw_init - Initialize general software structures
2619  * @adapter: board private structure to initialize
2620  *
2621  * ixgbevf_sw_init initializes the Adapter private data structure.
2622  * Fields are initialized based on PCI device information and
2623  * OS network device settings (MTU size).
2624  **/
2625 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2626 {
2627 	struct ixgbe_hw *hw = &adapter->hw;
2628 	struct pci_dev *pdev = adapter->pdev;
2629 	struct net_device *netdev = adapter->netdev;
2630 	int err;
2631 
2632 	/* PCI config space info */
2633 	hw->vendor_id = pdev->vendor;
2634 	hw->device_id = pdev->device;
2635 	hw->revision_id = pdev->revision;
2636 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2637 	hw->subsystem_device_id = pdev->subsystem_device;
2638 
2639 	hw->mbx.ops.init_params(hw);
2640 
2641 	/* assume legacy case in which PF would only give VF 2 queues */
2642 	hw->mac.max_tx_queues = 2;
2643 	hw->mac.max_rx_queues = 2;
2644 
2645 	/* lock to protect mailbox accesses */
2646 	spin_lock_init(&adapter->mbx_lock);
2647 
2648 	err = hw->mac.ops.reset_hw(hw);
2649 	if (err) {
2650 		dev_info(&pdev->dev,
2651 			 "PF still in reset state.  Is the PF interface up?\n");
2652 	} else {
2653 		err = hw->mac.ops.init_hw(hw);
2654 		if (err) {
2655 			pr_err("init_shared_code failed: %d\n", err);
2656 			goto out;
2657 		}
2658 		ixgbevf_negotiate_api(adapter);
2659 		err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2660 		if (err)
2661 			dev_info(&pdev->dev, "Error reading MAC address\n");
2662 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2663 			dev_info(&pdev->dev,
2664 				 "MAC address not assigned by administrator.\n");
2665 		memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2666 	}
2667 
2668 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2669 		dev_info(&pdev->dev, "Assigning random MAC address\n");
2670 		eth_hw_addr_random(netdev);
2671 		memcpy(hw->mac.addr, netdev->dev_addr, netdev->addr_len);
2672 	}
2673 
2674 	/* Enable dynamic interrupt throttling rates */
2675 	adapter->rx_itr_setting = 1;
2676 	adapter->tx_itr_setting = 1;
2677 
2678 	/* set default ring sizes */
2679 	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2680 	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2681 
2682 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2683 	return 0;
2684 
2685 out:
2686 	return err;
2687 }
2688 
2689 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
2690 	{							\
2691 		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
2692 		if (current_counter < last_counter)		\
2693 			counter += 0x100000000LL;		\
2694 		last_counter = current_counter;			\
2695 		counter &= 0xFFFFFFFF00000000LL;		\
2696 		counter |= current_counter;			\
2697 	}
2698 
2699 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2700 	{								 \
2701 		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
2702 		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
2703 		u64 current_counter = (current_counter_msb << 32) |	 \
2704 			current_counter_lsb;				 \
2705 		if (current_counter < last_counter)			 \
2706 			counter += 0x1000000000LL;			 \
2707 		last_counter = current_counter;				 \
2708 		counter &= 0xFFFFFFF000000000LL;			 \
2709 		counter |= current_counter;				 \
2710 	}
2711 /**
2712  * ixgbevf_update_stats - Update the board statistics counters.
2713  * @adapter: board private structure
2714  **/
2715 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2716 {
2717 	struct ixgbe_hw *hw = &adapter->hw;
2718 	int i;
2719 
2720 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2721 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2722 		return;
2723 
2724 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2725 				adapter->stats.vfgprc);
2726 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2727 				adapter->stats.vfgptc);
2728 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2729 				adapter->stats.last_vfgorc,
2730 				adapter->stats.vfgorc);
2731 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2732 				adapter->stats.last_vfgotc,
2733 				adapter->stats.vfgotc);
2734 	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2735 				adapter->stats.vfmprc);
2736 
2737 	for (i = 0;  i  < adapter->num_rx_queues;  i++) {
2738 		adapter->hw_csum_rx_error +=
2739 			adapter->rx_ring[i]->hw_csum_rx_error;
2740 		adapter->rx_ring[i]->hw_csum_rx_error = 0;
2741 	}
2742 }
2743 
2744 /**
2745  * ixgbevf_service_timer - Timer Call-back
2746  * @data: pointer to adapter cast into an unsigned long
2747  **/
2748 static void ixgbevf_service_timer(unsigned long data)
2749 {
2750 	struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2751 
2752 	/* Reset the timer */
2753 	mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
2754 
2755 	ixgbevf_service_event_schedule(adapter);
2756 }
2757 
2758 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
2759 {
2760 	if (!(adapter->flags & IXGBEVF_FLAG_RESET_REQUESTED))
2761 		return;
2762 
2763 	adapter->flags &= ~IXGBEVF_FLAG_RESET_REQUESTED;
2764 
2765 	/* If we're already down or resetting, just bail */
2766 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2767 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2768 		return;
2769 
2770 	adapter->tx_timeout_count++;
2771 
2772 	ixgbevf_reinit_locked(adapter);
2773 }
2774 
2775 /**
2776  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
2777  * @adapter: pointer to the device adapter structure
2778  *
2779  * This function serves two purposes.  First it strobes the interrupt lines
2780  * in order to make certain interrupts are occurring.  Secondly it sets the
2781  * bits needed to check for TX hangs.  As a result we should immediately
2782  * determine if a hang has occurred.
2783  **/
2784 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
2785 {
2786 	struct ixgbe_hw *hw = &adapter->hw;
2787 	u32 eics = 0;
2788 	int i;
2789 
2790 	/* If we're down or resetting, just bail */
2791 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2792 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2793 		return;
2794 
2795 	/* Force detection of hung controller */
2796 	if (netif_carrier_ok(adapter->netdev)) {
2797 		for (i = 0; i < adapter->num_tx_queues; i++)
2798 			set_check_for_tx_hang(adapter->tx_ring[i]);
2799 	}
2800 
2801 	/* get one bit for every active Tx/Rx interrupt vector */
2802 	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2803 		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2804 
2805 		if (qv->rx.ring || qv->tx.ring)
2806 			eics |= 1 << i;
2807 	}
2808 
2809 	/* Cause software interrupt to ensure rings are cleaned */
2810 	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2811 }
2812 
2813 /**
2814  * ixgbevf_watchdog_update_link - update the link status
2815  * @adapter: pointer to the device adapter structure
2816  **/
2817 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
2818 {
2819 	struct ixgbe_hw *hw = &adapter->hw;
2820 	u32 link_speed = adapter->link_speed;
2821 	bool link_up = adapter->link_up;
2822 	s32 err;
2823 
2824 	spin_lock_bh(&adapter->mbx_lock);
2825 
2826 	err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2827 
2828 	spin_unlock_bh(&adapter->mbx_lock);
2829 
2830 	/* if check for link returns error we will need to reset */
2831 	if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
2832 		adapter->flags |= IXGBEVF_FLAG_RESET_REQUESTED;
2833 		link_up = false;
2834 	}
2835 
2836 	adapter->link_up = link_up;
2837 	adapter->link_speed = link_speed;
2838 }
2839 
2840 /**
2841  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
2842  *				 print link up message
2843  * @adapter: pointer to the device adapter structure
2844  **/
2845 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
2846 {
2847 	struct net_device *netdev = adapter->netdev;
2848 
2849 	/* only continue if link was previously down */
2850 	if (netif_carrier_ok(netdev))
2851 		return;
2852 
2853 	dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
2854 		 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2855 		 "10 Gbps" :
2856 		 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
2857 		 "1 Gbps" :
2858 		 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
2859 		 "100 Mbps" :
2860 		 "unknown speed");
2861 
2862 	netif_carrier_on(netdev);
2863 }
2864 
2865 /**
2866  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
2867  *				   print link down message
2868  * @adapter: pointer to the adapter structure
2869  **/
2870 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
2871 {
2872 	struct net_device *netdev = adapter->netdev;
2873 
2874 	adapter->link_speed = 0;
2875 
2876 	/* only continue if link was up previously */
2877 	if (!netif_carrier_ok(netdev))
2878 		return;
2879 
2880 	dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2881 
2882 	netif_carrier_off(netdev);
2883 }
2884 
2885 /**
2886  * ixgbevf_watchdog_subtask - worker thread to bring link up
2887  * @work: pointer to work_struct containing our data
2888  **/
2889 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
2890 {
2891 	/* if interface is down do nothing */
2892 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2893 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2894 		return;
2895 
2896 	ixgbevf_watchdog_update_link(adapter);
2897 
2898 	if (adapter->link_up)
2899 		ixgbevf_watchdog_link_is_up(adapter);
2900 	else
2901 		ixgbevf_watchdog_link_is_down(adapter);
2902 
2903 	ixgbevf_update_stats(adapter);
2904 }
2905 
2906 /**
2907  * ixgbevf_service_task - manages and runs subtasks
2908  * @work: pointer to work_struct containing our data
2909  **/
2910 static void ixgbevf_service_task(struct work_struct *work)
2911 {
2912 	struct ixgbevf_adapter *adapter = container_of(work,
2913 						       struct ixgbevf_adapter,
2914 						       service_task);
2915 	struct ixgbe_hw *hw = &adapter->hw;
2916 
2917 	if (IXGBE_REMOVED(hw->hw_addr)) {
2918 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
2919 			rtnl_lock();
2920 			ixgbevf_down(adapter);
2921 			rtnl_unlock();
2922 		}
2923 		return;
2924 	}
2925 
2926 	ixgbevf_queue_reset_subtask(adapter);
2927 	ixgbevf_reset_subtask(adapter);
2928 	ixgbevf_watchdog_subtask(adapter);
2929 	ixgbevf_check_hang_subtask(adapter);
2930 
2931 	ixgbevf_service_event_complete(adapter);
2932 }
2933 
2934 /**
2935  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2936  * @tx_ring: Tx descriptor ring for a specific queue
2937  *
2938  * Free all transmit software resources
2939  **/
2940 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
2941 {
2942 	ixgbevf_clean_tx_ring(tx_ring);
2943 
2944 	vfree(tx_ring->tx_buffer_info);
2945 	tx_ring->tx_buffer_info = NULL;
2946 
2947 	/* if not set, then don't free */
2948 	if (!tx_ring->desc)
2949 		return;
2950 
2951 	dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
2952 			  tx_ring->dma);
2953 
2954 	tx_ring->desc = NULL;
2955 }
2956 
2957 /**
2958  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2959  * @adapter: board private structure
2960  *
2961  * Free all transmit software resources
2962  **/
2963 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2964 {
2965 	int i;
2966 
2967 	for (i = 0; i < adapter->num_tx_queues; i++)
2968 		if (adapter->tx_ring[i]->desc)
2969 			ixgbevf_free_tx_resources(adapter->tx_ring[i]);
2970 }
2971 
2972 /**
2973  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2974  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
2975  *
2976  * Return 0 on success, negative on failure
2977  **/
2978 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
2979 {
2980 	int size;
2981 
2982 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2983 	tx_ring->tx_buffer_info = vzalloc(size);
2984 	if (!tx_ring->tx_buffer_info)
2985 		goto err;
2986 
2987 	/* round up to nearest 4K */
2988 	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2989 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2990 
2991 	tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
2992 					   &tx_ring->dma, GFP_KERNEL);
2993 	if (!tx_ring->desc)
2994 		goto err;
2995 
2996 	return 0;
2997 
2998 err:
2999 	vfree(tx_ring->tx_buffer_info);
3000 	tx_ring->tx_buffer_info = NULL;
3001 	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3002 	return -ENOMEM;
3003 }
3004 
3005 /**
3006  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3007  * @adapter: board private structure
3008  *
3009  * If this function returns with an error, then it's possible one or
3010  * more of the rings is populated (while the rest are not).  It is the
3011  * callers duty to clean those orphaned rings.
3012  *
3013  * Return 0 on success, negative on failure
3014  **/
3015 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3016 {
3017 	int i, err = 0;
3018 
3019 	for (i = 0; i < adapter->num_tx_queues; i++) {
3020 		err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3021 		if (!err)
3022 			continue;
3023 		hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3024 		break;
3025 	}
3026 
3027 	return err;
3028 }
3029 
3030 /**
3031  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3032  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3033  *
3034  * Returns 0 on success, negative on failure
3035  **/
3036 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring)
3037 {
3038 	int size;
3039 
3040 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3041 	rx_ring->rx_buffer_info = vzalloc(size);
3042 	if (!rx_ring->rx_buffer_info)
3043 		goto err;
3044 
3045 	/* Round up to nearest 4K */
3046 	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3047 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3048 
3049 	rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3050 					   &rx_ring->dma, GFP_KERNEL);
3051 
3052 	if (!rx_ring->desc)
3053 		goto err;
3054 
3055 	return 0;
3056 err:
3057 	vfree(rx_ring->rx_buffer_info);
3058 	rx_ring->rx_buffer_info = NULL;
3059 	dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3060 	return -ENOMEM;
3061 }
3062 
3063 /**
3064  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3065  * @adapter: board private structure
3066  *
3067  * If this function returns with an error, then it's possible one or
3068  * more of the rings is populated (while the rest are not).  It is the
3069  * callers duty to clean those orphaned rings.
3070  *
3071  * Return 0 on success, negative on failure
3072  **/
3073 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3074 {
3075 	int i, err = 0;
3076 
3077 	for (i = 0; i < adapter->num_rx_queues; i++) {
3078 		err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]);
3079 		if (!err)
3080 			continue;
3081 		hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3082 		break;
3083 	}
3084 	return err;
3085 }
3086 
3087 /**
3088  * ixgbevf_free_rx_resources - Free Rx Resources
3089  * @rx_ring: ring to clean the resources from
3090  *
3091  * Free all receive software resources
3092  **/
3093 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3094 {
3095 	ixgbevf_clean_rx_ring(rx_ring);
3096 
3097 	vfree(rx_ring->rx_buffer_info);
3098 	rx_ring->rx_buffer_info = NULL;
3099 
3100 	dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3101 			  rx_ring->dma);
3102 
3103 	rx_ring->desc = NULL;
3104 }
3105 
3106 /**
3107  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3108  * @adapter: board private structure
3109  *
3110  * Free all receive software resources
3111  **/
3112 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3113 {
3114 	int i;
3115 
3116 	for (i = 0; i < adapter->num_rx_queues; i++)
3117 		if (adapter->rx_ring[i]->desc)
3118 			ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3119 }
3120 
3121 /**
3122  * ixgbevf_open - Called when a network interface is made active
3123  * @netdev: network interface device structure
3124  *
3125  * Returns 0 on success, negative value on failure
3126  *
3127  * The open entry point is called when a network interface is made
3128  * active by the system (IFF_UP).  At this point all resources needed
3129  * for transmit and receive operations are allocated, the interrupt
3130  * handler is registered with the OS, the watchdog timer is started,
3131  * and the stack is notified that the interface is ready.
3132  **/
3133 static int ixgbevf_open(struct net_device *netdev)
3134 {
3135 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3136 	struct ixgbe_hw *hw = &adapter->hw;
3137 	int err;
3138 
3139 	/* A previous failure to open the device because of a lack of
3140 	 * available MSIX vector resources may have reset the number
3141 	 * of msix vectors variable to zero.  The only way to recover
3142 	 * is to unload/reload the driver and hope that the system has
3143 	 * been able to recover some MSIX vector resources.
3144 	 */
3145 	if (!adapter->num_msix_vectors)
3146 		return -ENOMEM;
3147 
3148 	if (hw->adapter_stopped) {
3149 		ixgbevf_reset(adapter);
3150 		/* if adapter is still stopped then PF isn't up and
3151 		 * the VF can't start.
3152 		 */
3153 		if (hw->adapter_stopped) {
3154 			err = IXGBE_ERR_MBX;
3155 			pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3156 			goto err_setup_reset;
3157 		}
3158 	}
3159 
3160 	/* disallow open during test */
3161 	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3162 		return -EBUSY;
3163 
3164 	netif_carrier_off(netdev);
3165 
3166 	/* allocate transmit descriptors */
3167 	err = ixgbevf_setup_all_tx_resources(adapter);
3168 	if (err)
3169 		goto err_setup_tx;
3170 
3171 	/* allocate receive descriptors */
3172 	err = ixgbevf_setup_all_rx_resources(adapter);
3173 	if (err)
3174 		goto err_setup_rx;
3175 
3176 	ixgbevf_configure(adapter);
3177 
3178 	/* Map the Tx/Rx rings to the vectors we were allotted.
3179 	 * if request_irq will be called in this function map_rings
3180 	 * must be called *before* up_complete
3181 	 */
3182 	ixgbevf_map_rings_to_vectors(adapter);
3183 
3184 	err = ixgbevf_request_irq(adapter);
3185 	if (err)
3186 		goto err_req_irq;
3187 
3188 	ixgbevf_up_complete(adapter);
3189 
3190 	return 0;
3191 
3192 err_req_irq:
3193 	ixgbevf_down(adapter);
3194 err_setup_rx:
3195 	ixgbevf_free_all_rx_resources(adapter);
3196 err_setup_tx:
3197 	ixgbevf_free_all_tx_resources(adapter);
3198 	ixgbevf_reset(adapter);
3199 
3200 err_setup_reset:
3201 
3202 	return err;
3203 }
3204 
3205 /**
3206  * ixgbevf_close - Disables a network interface
3207  * @netdev: network interface device structure
3208  *
3209  * Returns 0, this is not allowed to fail
3210  *
3211  * The close entry point is called when an interface is de-activated
3212  * by the OS.  The hardware is still under the drivers control, but
3213  * needs to be disabled.  A global MAC reset is issued to stop the
3214  * hardware, and all transmit and receive resources are freed.
3215  **/
3216 static int ixgbevf_close(struct net_device *netdev)
3217 {
3218 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3219 
3220 	ixgbevf_down(adapter);
3221 	ixgbevf_free_irq(adapter);
3222 
3223 	ixgbevf_free_all_tx_resources(adapter);
3224 	ixgbevf_free_all_rx_resources(adapter);
3225 
3226 	return 0;
3227 }
3228 
3229 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3230 {
3231 	struct net_device *dev = adapter->netdev;
3232 
3233 	if (!(adapter->flags & IXGBEVF_FLAG_QUEUE_RESET_REQUESTED))
3234 		return;
3235 
3236 	adapter->flags &= ~IXGBEVF_FLAG_QUEUE_RESET_REQUESTED;
3237 
3238 	/* if interface is down do nothing */
3239 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3240 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3241 		return;
3242 
3243 	/* Hardware has to reinitialize queues and interrupts to
3244 	 * match packet buffer alignment. Unfortunately, the
3245 	 * hardware is not flexible enough to do this dynamically.
3246 	 */
3247 	if (netif_running(dev))
3248 		ixgbevf_close(dev);
3249 
3250 	ixgbevf_clear_interrupt_scheme(adapter);
3251 	ixgbevf_init_interrupt_scheme(adapter);
3252 
3253 	if (netif_running(dev))
3254 		ixgbevf_open(dev);
3255 }
3256 
3257 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3258 				u32 vlan_macip_lens, u32 type_tucmd,
3259 				u32 mss_l4len_idx)
3260 {
3261 	struct ixgbe_adv_tx_context_desc *context_desc;
3262 	u16 i = tx_ring->next_to_use;
3263 
3264 	context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3265 
3266 	i++;
3267 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3268 
3269 	/* set bits to identify this as an advanced context descriptor */
3270 	type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3271 
3272 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
3273 	context_desc->seqnum_seed	= 0;
3274 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
3275 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
3276 }
3277 
3278 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3279 		       struct ixgbevf_tx_buffer *first,
3280 		       u8 *hdr_len)
3281 {
3282 	struct sk_buff *skb = first->skb;
3283 	u32 vlan_macip_lens, type_tucmd;
3284 	u32 mss_l4len_idx, l4len;
3285 	int err;
3286 
3287 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3288 		return 0;
3289 
3290 	if (!skb_is_gso(skb))
3291 		return 0;
3292 
3293 	err = skb_cow_head(skb, 0);
3294 	if (err < 0)
3295 		return err;
3296 
3297 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3298 	type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3299 
3300 	if (first->protocol == htons(ETH_P_IP)) {
3301 		struct iphdr *iph = ip_hdr(skb);
3302 
3303 		iph->tot_len = 0;
3304 		iph->check = 0;
3305 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3306 							 iph->daddr, 0,
3307 							 IPPROTO_TCP,
3308 							 0);
3309 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3310 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3311 				   IXGBE_TX_FLAGS_CSUM |
3312 				   IXGBE_TX_FLAGS_IPV4;
3313 	} else if (skb_is_gso_v6(skb)) {
3314 		ipv6_hdr(skb)->payload_len = 0;
3315 		tcp_hdr(skb)->check =
3316 		    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3317 				     &ipv6_hdr(skb)->daddr,
3318 				     0, IPPROTO_TCP, 0);
3319 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3320 				   IXGBE_TX_FLAGS_CSUM;
3321 	}
3322 
3323 	/* compute header lengths */
3324 	l4len = tcp_hdrlen(skb);
3325 	*hdr_len += l4len;
3326 	*hdr_len = skb_transport_offset(skb) + l4len;
3327 
3328 	/* update GSO size and bytecount with header size */
3329 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3330 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3331 
3332 	/* mss_l4len_id: use 1 as index for TSO */
3333 	mss_l4len_idx = l4len << IXGBE_ADVTXD_L4LEN_SHIFT;
3334 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3335 	mss_l4len_idx |= 1 << IXGBE_ADVTXD_IDX_SHIFT;
3336 
3337 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3338 	vlan_macip_lens = skb_network_header_len(skb);
3339 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3340 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3341 
3342 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3343 			    type_tucmd, mss_l4len_idx);
3344 
3345 	return 1;
3346 }
3347 
3348 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3349 			    struct ixgbevf_tx_buffer *first)
3350 {
3351 	struct sk_buff *skb = first->skb;
3352 	u32 vlan_macip_lens = 0;
3353 	u32 mss_l4len_idx = 0;
3354 	u32 type_tucmd = 0;
3355 
3356 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3357 		u8 l4_hdr = 0;
3358 
3359 		switch (first->protocol) {
3360 		case htons(ETH_P_IP):
3361 			vlan_macip_lens |= skb_network_header_len(skb);
3362 			type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3363 			l4_hdr = ip_hdr(skb)->protocol;
3364 			break;
3365 		case htons(ETH_P_IPV6):
3366 			vlan_macip_lens |= skb_network_header_len(skb);
3367 			l4_hdr = ipv6_hdr(skb)->nexthdr;
3368 			break;
3369 		default:
3370 			if (unlikely(net_ratelimit())) {
3371 				dev_warn(tx_ring->dev,
3372 					 "partial checksum but proto=%x!\n",
3373 					 first->protocol);
3374 			}
3375 			break;
3376 		}
3377 
3378 		switch (l4_hdr) {
3379 		case IPPROTO_TCP:
3380 			type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
3381 			mss_l4len_idx = tcp_hdrlen(skb) <<
3382 					IXGBE_ADVTXD_L4LEN_SHIFT;
3383 			break;
3384 		case IPPROTO_SCTP:
3385 			type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3386 			mss_l4len_idx = sizeof(struct sctphdr) <<
3387 					IXGBE_ADVTXD_L4LEN_SHIFT;
3388 			break;
3389 		case IPPROTO_UDP:
3390 			mss_l4len_idx = sizeof(struct udphdr) <<
3391 					IXGBE_ADVTXD_L4LEN_SHIFT;
3392 			break;
3393 		default:
3394 			if (unlikely(net_ratelimit())) {
3395 				dev_warn(tx_ring->dev,
3396 					 "partial checksum but l4 proto=%x!\n",
3397 					 l4_hdr);
3398 			}
3399 			break;
3400 		}
3401 
3402 		/* update TX checksum flag */
3403 		first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3404 	}
3405 
3406 	/* vlan_macip_lens: MACLEN, VLAN tag */
3407 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3408 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3409 
3410 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3411 			    type_tucmd, mss_l4len_idx);
3412 }
3413 
3414 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3415 {
3416 	/* set type for advanced descriptor with frame checksum insertion */
3417 	__le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3418 				      IXGBE_ADVTXD_DCMD_IFCS |
3419 				      IXGBE_ADVTXD_DCMD_DEXT);
3420 
3421 	/* set HW VLAN bit if VLAN is present */
3422 	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3423 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3424 
3425 	/* set segmentation enable bits for TSO/FSO */
3426 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3427 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3428 
3429 	return cmd_type;
3430 }
3431 
3432 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3433 				     u32 tx_flags, unsigned int paylen)
3434 {
3435 	__le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3436 
3437 	/* enable L4 checksum for TSO and TX checksum offload */
3438 	if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3439 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3440 
3441 	/* enble IPv4 checksum for TSO */
3442 	if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3443 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3444 
3445 	/* use index 1 context for TSO/FSO/FCOE */
3446 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3447 		olinfo_status |= cpu_to_le32(1 << IXGBE_ADVTXD_IDX_SHIFT);
3448 
3449 	/* Check Context must be set if Tx switch is enabled, which it
3450 	 * always is for case where virtual functions are running
3451 	 */
3452 	olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3453 
3454 	tx_desc->read.olinfo_status = olinfo_status;
3455 }
3456 
3457 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3458 			   struct ixgbevf_tx_buffer *first,
3459 			   const u8 hdr_len)
3460 {
3461 	dma_addr_t dma;
3462 	struct sk_buff *skb = first->skb;
3463 	struct ixgbevf_tx_buffer *tx_buffer;
3464 	union ixgbe_adv_tx_desc *tx_desc;
3465 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
3466 	unsigned int data_len = skb->data_len;
3467 	unsigned int size = skb_headlen(skb);
3468 	unsigned int paylen = skb->len - hdr_len;
3469 	u32 tx_flags = first->tx_flags;
3470 	__le32 cmd_type;
3471 	u16 i = tx_ring->next_to_use;
3472 
3473 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3474 
3475 	ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen);
3476 	cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3477 
3478 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3479 	if (dma_mapping_error(tx_ring->dev, dma))
3480 		goto dma_error;
3481 
3482 	/* record length, and DMA address */
3483 	dma_unmap_len_set(first, len, size);
3484 	dma_unmap_addr_set(first, dma, dma);
3485 
3486 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
3487 
3488 	for (;;) {
3489 		while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3490 			tx_desc->read.cmd_type_len =
3491 				cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3492 
3493 			i++;
3494 			tx_desc++;
3495 			if (i == tx_ring->count) {
3496 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3497 				i = 0;
3498 			}
3499 
3500 			dma += IXGBE_MAX_DATA_PER_TXD;
3501 			size -= IXGBE_MAX_DATA_PER_TXD;
3502 
3503 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
3504 			tx_desc->read.olinfo_status = 0;
3505 		}
3506 
3507 		if (likely(!data_len))
3508 			break;
3509 
3510 		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3511 
3512 		i++;
3513 		tx_desc++;
3514 		if (i == tx_ring->count) {
3515 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3516 			i = 0;
3517 		}
3518 
3519 		size = skb_frag_size(frag);
3520 		data_len -= size;
3521 
3522 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3523 				       DMA_TO_DEVICE);
3524 		if (dma_mapping_error(tx_ring->dev, dma))
3525 			goto dma_error;
3526 
3527 		tx_buffer = &tx_ring->tx_buffer_info[i];
3528 		dma_unmap_len_set(tx_buffer, len, size);
3529 		dma_unmap_addr_set(tx_buffer, dma, dma);
3530 
3531 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3532 		tx_desc->read.olinfo_status = 0;
3533 
3534 		frag++;
3535 	}
3536 
3537 	/* write last descriptor with RS and EOP bits */
3538 	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3539 	tx_desc->read.cmd_type_len = cmd_type;
3540 
3541 	/* set the timestamp */
3542 	first->time_stamp = jiffies;
3543 
3544 	/* Force memory writes to complete before letting h/w know there
3545 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
3546 	 * memory model archs, such as IA-64).
3547 	 *
3548 	 * We also need this memory barrier (wmb) to make certain all of the
3549 	 * status bits have been updated before next_to_watch is written.
3550 	 */
3551 	wmb();
3552 
3553 	/* set next_to_watch value indicating a packet is present */
3554 	first->next_to_watch = tx_desc;
3555 
3556 	i++;
3557 	if (i == tx_ring->count)
3558 		i = 0;
3559 
3560 	tx_ring->next_to_use = i;
3561 
3562 	/* notify HW of packet */
3563 	ixgbevf_write_tail(tx_ring, i);
3564 
3565 	return;
3566 dma_error:
3567 	dev_err(tx_ring->dev, "TX DMA map failed\n");
3568 
3569 	/* clear dma mappings for failed tx_buffer_info map */
3570 	for (;;) {
3571 		tx_buffer = &tx_ring->tx_buffer_info[i];
3572 		ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer);
3573 		if (tx_buffer == first)
3574 			break;
3575 		if (i == 0)
3576 			i = tx_ring->count;
3577 		i--;
3578 	}
3579 
3580 	tx_ring->next_to_use = i;
3581 }
3582 
3583 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3584 {
3585 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3586 	/* Herbert's original patch had:
3587 	 *  smp_mb__after_netif_stop_queue();
3588 	 * but since that doesn't exist yet, just open code it.
3589 	 */
3590 	smp_mb();
3591 
3592 	/* We need to check again in a case another CPU has just
3593 	 * made room available.
3594 	 */
3595 	if (likely(ixgbevf_desc_unused(tx_ring) < size))
3596 		return -EBUSY;
3597 
3598 	/* A reprieve! - use start_queue because it doesn't call schedule */
3599 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3600 	++tx_ring->tx_stats.restart_queue;
3601 
3602 	return 0;
3603 }
3604 
3605 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3606 {
3607 	if (likely(ixgbevf_desc_unused(tx_ring) >= size))
3608 		return 0;
3609 	return __ixgbevf_maybe_stop_tx(tx_ring, size);
3610 }
3611 
3612 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3613 {
3614 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3615 	struct ixgbevf_tx_buffer *first;
3616 	struct ixgbevf_ring *tx_ring;
3617 	int tso;
3618 	u32 tx_flags = 0;
3619 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
3620 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3621 	unsigned short f;
3622 #endif
3623 	u8 hdr_len = 0;
3624 	u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3625 
3626 	if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3627 		dev_kfree_skb_any(skb);
3628 		return NETDEV_TX_OK;
3629 	}
3630 
3631 	tx_ring = adapter->tx_ring[skb->queue_mapping];
3632 
3633 	/* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3634 	 *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3635 	 *       + 2 desc gap to keep tail from touching head,
3636 	 *       + 1 desc for context descriptor,
3637 	 * otherwise try next time
3638 	 */
3639 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3640 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3641 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3642 #else
3643 	count += skb_shinfo(skb)->nr_frags;
3644 #endif
3645 	if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3646 		tx_ring->tx_stats.tx_busy++;
3647 		return NETDEV_TX_BUSY;
3648 	}
3649 
3650 	/* record the location of the first descriptor for this packet */
3651 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3652 	first->skb = skb;
3653 	first->bytecount = skb->len;
3654 	first->gso_segs = 1;
3655 
3656 	if (skb_vlan_tag_present(skb)) {
3657 		tx_flags |= skb_vlan_tag_get(skb);
3658 		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3659 		tx_flags |= IXGBE_TX_FLAGS_VLAN;
3660 	}
3661 
3662 	/* record initial flags and protocol */
3663 	first->tx_flags = tx_flags;
3664 	first->protocol = vlan_get_protocol(skb);
3665 
3666 	tso = ixgbevf_tso(tx_ring, first, &hdr_len);
3667 	if (tso < 0)
3668 		goto out_drop;
3669 	else if (!tso)
3670 		ixgbevf_tx_csum(tx_ring, first);
3671 
3672 	ixgbevf_tx_map(tx_ring, first, hdr_len);
3673 
3674 	ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3675 
3676 	return NETDEV_TX_OK;
3677 
3678 out_drop:
3679 	dev_kfree_skb_any(first->skb);
3680 	first->skb = NULL;
3681 
3682 	return NETDEV_TX_OK;
3683 }
3684 
3685 /**
3686  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3687  * @netdev: network interface device structure
3688  * @p: pointer to an address structure
3689  *
3690  * Returns 0 on success, negative on failure
3691  **/
3692 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3693 {
3694 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3695 	struct ixgbe_hw *hw = &adapter->hw;
3696 	struct sockaddr *addr = p;
3697 
3698 	if (!is_valid_ether_addr(addr->sa_data))
3699 		return -EADDRNOTAVAIL;
3700 
3701 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3702 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3703 
3704 	spin_lock_bh(&adapter->mbx_lock);
3705 
3706 	hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3707 
3708 	spin_unlock_bh(&adapter->mbx_lock);
3709 
3710 	return 0;
3711 }
3712 
3713 /**
3714  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3715  * @netdev: network interface device structure
3716  * @new_mtu: new value for maximum frame size
3717  *
3718  * Returns 0 on success, negative on failure
3719  **/
3720 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3721 {
3722 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3723 	struct ixgbe_hw *hw = &adapter->hw;
3724 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3725 	int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3726 
3727 	switch (adapter->hw.api_version) {
3728 	case ixgbe_mbox_api_11:
3729 	case ixgbe_mbox_api_12:
3730 		max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3731 		break;
3732 	default:
3733 		if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
3734 			max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3735 		break;
3736 	}
3737 
3738 	/* MTU < 68 is an error and causes problems on some kernels */
3739 	if ((new_mtu < 68) || (max_frame > max_possible_frame))
3740 		return -EINVAL;
3741 
3742 	hw_dbg(hw, "changing MTU from %d to %d\n",
3743 	       netdev->mtu, new_mtu);
3744 	/* must set new MTU before calling down or up */
3745 	netdev->mtu = new_mtu;
3746 
3747 	/* notify the PF of our intent to use this size of frame */
3748 	ixgbevf_rlpml_set_vf(hw, max_frame);
3749 
3750 	return 0;
3751 }
3752 
3753 #ifdef CONFIG_NET_POLL_CONTROLLER
3754 /* Polling 'interrupt' - used by things like netconsole to send skbs
3755  * without having to re-enable interrupts. It's not called while
3756  * the interrupt routine is executing.
3757  */
3758 static void ixgbevf_netpoll(struct net_device *netdev)
3759 {
3760 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3761 	int i;
3762 
3763 	/* if interface is down do nothing */
3764 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
3765 		return;
3766 	for (i = 0; i < adapter->num_rx_queues; i++)
3767 		ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
3768 }
3769 #endif /* CONFIG_NET_POLL_CONTROLLER */
3770 
3771 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3772 {
3773 	struct net_device *netdev = pci_get_drvdata(pdev);
3774 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3775 #ifdef CONFIG_PM
3776 	int retval = 0;
3777 #endif
3778 
3779 	netif_device_detach(netdev);
3780 
3781 	if (netif_running(netdev)) {
3782 		rtnl_lock();
3783 		ixgbevf_down(adapter);
3784 		ixgbevf_free_irq(adapter);
3785 		ixgbevf_free_all_tx_resources(adapter);
3786 		ixgbevf_free_all_rx_resources(adapter);
3787 		rtnl_unlock();
3788 	}
3789 
3790 	ixgbevf_clear_interrupt_scheme(adapter);
3791 
3792 #ifdef CONFIG_PM
3793 	retval = pci_save_state(pdev);
3794 	if (retval)
3795 		return retval;
3796 
3797 #endif
3798 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3799 		pci_disable_device(pdev);
3800 
3801 	return 0;
3802 }
3803 
3804 #ifdef CONFIG_PM
3805 static int ixgbevf_resume(struct pci_dev *pdev)
3806 {
3807 	struct net_device *netdev = pci_get_drvdata(pdev);
3808 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3809 	u32 err;
3810 
3811 	pci_restore_state(pdev);
3812 	/* pci_restore_state clears dev->state_saved so call
3813 	 * pci_save_state to restore it.
3814 	 */
3815 	pci_save_state(pdev);
3816 
3817 	err = pci_enable_device_mem(pdev);
3818 	if (err) {
3819 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3820 		return err;
3821 	}
3822 	smp_mb__before_atomic();
3823 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
3824 	pci_set_master(pdev);
3825 
3826 	ixgbevf_reset(adapter);
3827 
3828 	rtnl_lock();
3829 	err = ixgbevf_init_interrupt_scheme(adapter);
3830 	rtnl_unlock();
3831 	if (err) {
3832 		dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3833 		return err;
3834 	}
3835 
3836 	if (netif_running(netdev)) {
3837 		err = ixgbevf_open(netdev);
3838 		if (err)
3839 			return err;
3840 	}
3841 
3842 	netif_device_attach(netdev);
3843 
3844 	return err;
3845 }
3846 
3847 #endif /* CONFIG_PM */
3848 static void ixgbevf_shutdown(struct pci_dev *pdev)
3849 {
3850 	ixgbevf_suspend(pdev, PMSG_SUSPEND);
3851 }
3852 
3853 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3854 						struct rtnl_link_stats64 *stats)
3855 {
3856 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3857 	unsigned int start;
3858 	u64 bytes, packets;
3859 	const struct ixgbevf_ring *ring;
3860 	int i;
3861 
3862 	ixgbevf_update_stats(adapter);
3863 
3864 	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3865 
3866 	for (i = 0; i < adapter->num_rx_queues; i++) {
3867 		ring = adapter->rx_ring[i];
3868 		do {
3869 			start = u64_stats_fetch_begin_irq(&ring->syncp);
3870 			bytes = ring->stats.bytes;
3871 			packets = ring->stats.packets;
3872 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3873 		stats->rx_bytes += bytes;
3874 		stats->rx_packets += packets;
3875 	}
3876 
3877 	for (i = 0; i < adapter->num_tx_queues; i++) {
3878 		ring = adapter->tx_ring[i];
3879 		do {
3880 			start = u64_stats_fetch_begin_irq(&ring->syncp);
3881 			bytes = ring->stats.bytes;
3882 			packets = ring->stats.packets;
3883 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3884 		stats->tx_bytes += bytes;
3885 		stats->tx_packets += packets;
3886 	}
3887 
3888 	return stats;
3889 }
3890 
3891 static const struct net_device_ops ixgbevf_netdev_ops = {
3892 	.ndo_open		= ixgbevf_open,
3893 	.ndo_stop		= ixgbevf_close,
3894 	.ndo_start_xmit		= ixgbevf_xmit_frame,
3895 	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
3896 	.ndo_get_stats64	= ixgbevf_get_stats,
3897 	.ndo_validate_addr	= eth_validate_addr,
3898 	.ndo_set_mac_address	= ixgbevf_set_mac,
3899 	.ndo_change_mtu		= ixgbevf_change_mtu,
3900 	.ndo_tx_timeout		= ixgbevf_tx_timeout,
3901 	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
3902 	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
3903 #ifdef CONFIG_NET_RX_BUSY_POLL
3904 	.ndo_busy_poll		= ixgbevf_busy_poll_recv,
3905 #endif
3906 #ifdef CONFIG_NET_POLL_CONTROLLER
3907 	.ndo_poll_controller	= ixgbevf_netpoll,
3908 #endif
3909 	.ndo_features_check	= passthru_features_check,
3910 };
3911 
3912 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3913 {
3914 	dev->netdev_ops = &ixgbevf_netdev_ops;
3915 	ixgbevf_set_ethtool_ops(dev);
3916 	dev->watchdog_timeo = 5 * HZ;
3917 }
3918 
3919 /**
3920  * ixgbevf_probe - Device Initialization Routine
3921  * @pdev: PCI device information struct
3922  * @ent: entry in ixgbevf_pci_tbl
3923  *
3924  * Returns 0 on success, negative on failure
3925  *
3926  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3927  * The OS initialization, configuring of the adapter private structure,
3928  * and a hardware reset occur.
3929  **/
3930 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3931 {
3932 	struct net_device *netdev;
3933 	struct ixgbevf_adapter *adapter = NULL;
3934 	struct ixgbe_hw *hw = NULL;
3935 	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3936 	int err, pci_using_dac;
3937 	bool disable_dev = false;
3938 
3939 	err = pci_enable_device(pdev);
3940 	if (err)
3941 		return err;
3942 
3943 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3944 		pci_using_dac = 1;
3945 	} else {
3946 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3947 		if (err) {
3948 			dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
3949 			goto err_dma;
3950 		}
3951 		pci_using_dac = 0;
3952 	}
3953 
3954 	err = pci_request_regions(pdev, ixgbevf_driver_name);
3955 	if (err) {
3956 		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3957 		goto err_pci_reg;
3958 	}
3959 
3960 	pci_set_master(pdev);
3961 
3962 	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3963 				   MAX_TX_QUEUES);
3964 	if (!netdev) {
3965 		err = -ENOMEM;
3966 		goto err_alloc_etherdev;
3967 	}
3968 
3969 	SET_NETDEV_DEV(netdev, &pdev->dev);
3970 
3971 	adapter = netdev_priv(netdev);
3972 
3973 	adapter->netdev = netdev;
3974 	adapter->pdev = pdev;
3975 	hw = &adapter->hw;
3976 	hw->back = adapter;
3977 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3978 
3979 	/* call save state here in standalone driver because it relies on
3980 	 * adapter struct to exist, and needs to call netdev_priv
3981 	 */
3982 	pci_save_state(pdev);
3983 
3984 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3985 			      pci_resource_len(pdev, 0));
3986 	adapter->io_addr = hw->hw_addr;
3987 	if (!hw->hw_addr) {
3988 		err = -EIO;
3989 		goto err_ioremap;
3990 	}
3991 
3992 	ixgbevf_assign_netdev_ops(netdev);
3993 
3994 	/* Setup HW API */
3995 	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3996 	hw->mac.type  = ii->mac;
3997 
3998 	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3999 	       sizeof(struct ixgbe_mbx_operations));
4000 
4001 	/* setup the private structure */
4002 	err = ixgbevf_sw_init(adapter);
4003 	if (err)
4004 		goto err_sw_init;
4005 
4006 	/* The HW MAC address was set and/or determined in sw_init */
4007 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4008 		pr_err("invalid MAC address\n");
4009 		err = -EIO;
4010 		goto err_sw_init;
4011 	}
4012 
4013 	netdev->hw_features = NETIF_F_SG |
4014 			      NETIF_F_IP_CSUM |
4015 			      NETIF_F_IPV6_CSUM |
4016 			      NETIF_F_TSO |
4017 			      NETIF_F_TSO6 |
4018 			      NETIF_F_RXCSUM;
4019 
4020 	netdev->features = netdev->hw_features |
4021 			   NETIF_F_HW_VLAN_CTAG_TX |
4022 			   NETIF_F_HW_VLAN_CTAG_RX |
4023 			   NETIF_F_HW_VLAN_CTAG_FILTER;
4024 
4025 	netdev->vlan_features |= NETIF_F_TSO |
4026 				 NETIF_F_TSO6 |
4027 				 NETIF_F_IP_CSUM |
4028 				 NETIF_F_IPV6_CSUM |
4029 				 NETIF_F_SG;
4030 
4031 	if (pci_using_dac)
4032 		netdev->features |= NETIF_F_HIGHDMA;
4033 
4034 	netdev->priv_flags |= IFF_UNICAST_FLT;
4035 
4036 	if (IXGBE_REMOVED(hw->hw_addr)) {
4037 		err = -EIO;
4038 		goto err_sw_init;
4039 	}
4040 
4041 	setup_timer(&adapter->service_timer, &ixgbevf_service_timer,
4042 		    (unsigned long)adapter);
4043 
4044 	INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4045 	set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4046 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4047 
4048 	err = ixgbevf_init_interrupt_scheme(adapter);
4049 	if (err)
4050 		goto err_sw_init;
4051 
4052 	strcpy(netdev->name, "eth%d");
4053 
4054 	err = register_netdev(netdev);
4055 	if (err)
4056 		goto err_register;
4057 
4058 	pci_set_drvdata(pdev, netdev);
4059 	netif_carrier_off(netdev);
4060 
4061 	ixgbevf_init_last_counter_stats(adapter);
4062 
4063 	/* print the VF info */
4064 	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4065 	dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4066 
4067 	switch (hw->mac.type) {
4068 	case ixgbe_mac_X550_vf:
4069 		dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4070 		break;
4071 	case ixgbe_mac_X540_vf:
4072 		dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4073 		break;
4074 	case ixgbe_mac_82599_vf:
4075 	default:
4076 		dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4077 		break;
4078 	}
4079 
4080 	return 0;
4081 
4082 err_register:
4083 	ixgbevf_clear_interrupt_scheme(adapter);
4084 err_sw_init:
4085 	ixgbevf_reset_interrupt_capability(adapter);
4086 	iounmap(adapter->io_addr);
4087 err_ioremap:
4088 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4089 	free_netdev(netdev);
4090 err_alloc_etherdev:
4091 	pci_release_regions(pdev);
4092 err_pci_reg:
4093 err_dma:
4094 	if (!adapter || disable_dev)
4095 		pci_disable_device(pdev);
4096 	return err;
4097 }
4098 
4099 /**
4100  * ixgbevf_remove - Device Removal Routine
4101  * @pdev: PCI device information struct
4102  *
4103  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4104  * that it should release a PCI device.  The could be caused by a
4105  * Hot-Plug event, or because the driver is going to be removed from
4106  * memory.
4107  **/
4108 static void ixgbevf_remove(struct pci_dev *pdev)
4109 {
4110 	struct net_device *netdev = pci_get_drvdata(pdev);
4111 	struct ixgbevf_adapter *adapter;
4112 	bool disable_dev;
4113 
4114 	if (!netdev)
4115 		return;
4116 
4117 	adapter = netdev_priv(netdev);
4118 
4119 	set_bit(__IXGBEVF_REMOVING, &adapter->state);
4120 	cancel_work_sync(&adapter->service_task);
4121 
4122 	if (netdev->reg_state == NETREG_REGISTERED)
4123 		unregister_netdev(netdev);
4124 
4125 	ixgbevf_clear_interrupt_scheme(adapter);
4126 	ixgbevf_reset_interrupt_capability(adapter);
4127 
4128 	iounmap(adapter->io_addr);
4129 	pci_release_regions(pdev);
4130 
4131 	hw_dbg(&adapter->hw, "Remove complete\n");
4132 
4133 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4134 	free_netdev(netdev);
4135 
4136 	if (disable_dev)
4137 		pci_disable_device(pdev);
4138 }
4139 
4140 /**
4141  * ixgbevf_io_error_detected - called when PCI error is detected
4142  * @pdev: Pointer to PCI device
4143  * @state: The current pci connection state
4144  *
4145  * This function is called after a PCI bus error affecting
4146  * this device has been detected.
4147  **/
4148 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4149 						  pci_channel_state_t state)
4150 {
4151 	struct net_device *netdev = pci_get_drvdata(pdev);
4152 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4153 
4154 	if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4155 		return PCI_ERS_RESULT_DISCONNECT;
4156 
4157 	rtnl_lock();
4158 	netif_device_detach(netdev);
4159 
4160 	if (state == pci_channel_io_perm_failure) {
4161 		rtnl_unlock();
4162 		return PCI_ERS_RESULT_DISCONNECT;
4163 	}
4164 
4165 	if (netif_running(netdev))
4166 		ixgbevf_down(adapter);
4167 
4168 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4169 		pci_disable_device(pdev);
4170 	rtnl_unlock();
4171 
4172 	/* Request a slot slot reset. */
4173 	return PCI_ERS_RESULT_NEED_RESET;
4174 }
4175 
4176 /**
4177  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4178  * @pdev: Pointer to PCI device
4179  *
4180  * Restart the card from scratch, as if from a cold-boot. Implementation
4181  * resembles the first-half of the ixgbevf_resume routine.
4182  **/
4183 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4184 {
4185 	struct net_device *netdev = pci_get_drvdata(pdev);
4186 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4187 
4188 	if (pci_enable_device_mem(pdev)) {
4189 		dev_err(&pdev->dev,
4190 			"Cannot re-enable PCI device after reset.\n");
4191 		return PCI_ERS_RESULT_DISCONNECT;
4192 	}
4193 
4194 	smp_mb__before_atomic();
4195 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4196 	pci_set_master(pdev);
4197 
4198 	ixgbevf_reset(adapter);
4199 
4200 	return PCI_ERS_RESULT_RECOVERED;
4201 }
4202 
4203 /**
4204  * ixgbevf_io_resume - called when traffic can start flowing again.
4205  * @pdev: Pointer to PCI device
4206  *
4207  * This callback is called when the error recovery driver tells us that
4208  * its OK to resume normal operation. Implementation resembles the
4209  * second-half of the ixgbevf_resume routine.
4210  **/
4211 static void ixgbevf_io_resume(struct pci_dev *pdev)
4212 {
4213 	struct net_device *netdev = pci_get_drvdata(pdev);
4214 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4215 
4216 	if (netif_running(netdev))
4217 		ixgbevf_up(adapter);
4218 
4219 	netif_device_attach(netdev);
4220 }
4221 
4222 /* PCI Error Recovery (ERS) */
4223 static const struct pci_error_handlers ixgbevf_err_handler = {
4224 	.error_detected = ixgbevf_io_error_detected,
4225 	.slot_reset = ixgbevf_io_slot_reset,
4226 	.resume = ixgbevf_io_resume,
4227 };
4228 
4229 static struct pci_driver ixgbevf_driver = {
4230 	.name		= ixgbevf_driver_name,
4231 	.id_table	= ixgbevf_pci_tbl,
4232 	.probe		= ixgbevf_probe,
4233 	.remove		= ixgbevf_remove,
4234 #ifdef CONFIG_PM
4235 	/* Power Management Hooks */
4236 	.suspend	= ixgbevf_suspend,
4237 	.resume		= ixgbevf_resume,
4238 #endif
4239 	.shutdown	= ixgbevf_shutdown,
4240 	.err_handler	= &ixgbevf_err_handler
4241 };
4242 
4243 /**
4244  * ixgbevf_init_module - Driver Registration Routine
4245  *
4246  * ixgbevf_init_module is the first routine called when the driver is
4247  * loaded. All it does is register with the PCI subsystem.
4248  **/
4249 static int __init ixgbevf_init_module(void)
4250 {
4251 	int ret;
4252 
4253 	pr_info("%s - version %s\n", ixgbevf_driver_string,
4254 		ixgbevf_driver_version);
4255 
4256 	pr_info("%s\n", ixgbevf_copyright);
4257 
4258 	ret = pci_register_driver(&ixgbevf_driver);
4259 	return ret;
4260 }
4261 
4262 module_init(ixgbevf_init_module);
4263 
4264 /**
4265  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4266  *
4267  * ixgbevf_exit_module is called just before the driver is removed
4268  * from memory.
4269  **/
4270 static void __exit ixgbevf_exit_module(void)
4271 {
4272 	pci_unregister_driver(&ixgbevf_driver);
4273 }
4274 
4275 #ifdef DEBUG
4276 /**
4277  * ixgbevf_get_hw_dev_name - return device name string
4278  * used by hardware layer to print debugging information
4279  **/
4280 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4281 {
4282 	struct ixgbevf_adapter *adapter = hw->back;
4283 
4284 	return adapter->netdev->name;
4285 }
4286 
4287 #endif
4288 module_exit(ixgbevf_exit_module);
4289 
4290 /* ixgbevf_main.c */
4291