1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 34 #include "ixgbevf.h" 35 36 const char ixgbevf_driver_name[] = "ixgbevf"; 37 static const char ixgbevf_driver_string[] = 38 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 39 40 #define DRV_VERSION "4.1.0-k" 41 const char ixgbevf_driver_version[] = DRV_VERSION; 42 static char ixgbevf_copyright[] = 43 "Copyright (c) 2009 - 2015 Intel Corporation."; 44 45 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 46 [board_82599_vf] = &ixgbevf_82599_vf_info, 47 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 48 [board_X540_vf] = &ixgbevf_X540_vf_info, 49 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 50 [board_X550_vf] = &ixgbevf_X550_vf_info, 51 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 52 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 53 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 54 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 55 }; 56 57 /* ixgbevf_pci_tbl - PCI Device ID Table 58 * 59 * Wildcard entries (PCI_ANY_ID) should come last 60 * Last entry must be all 0s 61 * 62 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 63 * Class, Class Mask, private data (not used) } 64 */ 65 static const struct pci_device_id ixgbevf_pci_tbl[] = { 66 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 74 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 75 /* required last entry */ 76 {0, } 77 }; 78 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 79 80 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 81 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 82 MODULE_LICENSE("GPL"); 83 MODULE_VERSION(DRV_VERSION); 84 85 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 86 static int debug = -1; 87 module_param(debug, int, 0); 88 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 89 90 static struct workqueue_struct *ixgbevf_wq; 91 92 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 93 { 94 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 95 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 96 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 97 queue_work(ixgbevf_wq, &adapter->service_task); 98 } 99 100 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 101 { 102 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 103 104 /* flush memory to make sure state is correct before next watchdog */ 105 smp_mb__before_atomic(); 106 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 107 } 108 109 /* forward decls */ 110 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 111 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 112 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 113 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 114 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 115 struct ixgbevf_rx_buffer *old_buff); 116 117 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 118 { 119 struct ixgbevf_adapter *adapter = hw->back; 120 121 if (!hw->hw_addr) 122 return; 123 hw->hw_addr = NULL; 124 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 125 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 126 ixgbevf_service_event_schedule(adapter); 127 } 128 129 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 130 { 131 u32 value; 132 133 /* The following check not only optimizes a bit by not 134 * performing a read on the status register when the 135 * register just read was a status register read that 136 * returned IXGBE_FAILED_READ_REG. It also blocks any 137 * potential recursion. 138 */ 139 if (reg == IXGBE_VFSTATUS) { 140 ixgbevf_remove_adapter(hw); 141 return; 142 } 143 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 144 if (value == IXGBE_FAILED_READ_REG) 145 ixgbevf_remove_adapter(hw); 146 } 147 148 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 149 { 150 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 151 u32 value; 152 153 if (IXGBE_REMOVED(reg_addr)) 154 return IXGBE_FAILED_READ_REG; 155 value = readl(reg_addr + reg); 156 if (unlikely(value == IXGBE_FAILED_READ_REG)) 157 ixgbevf_check_remove(hw, reg); 158 return value; 159 } 160 161 /** 162 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 163 * @adapter: pointer to adapter struct 164 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 165 * @queue: queue to map the corresponding interrupt to 166 * @msix_vector: the vector to map to the corresponding queue 167 **/ 168 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 169 u8 queue, u8 msix_vector) 170 { 171 u32 ivar, index; 172 struct ixgbe_hw *hw = &adapter->hw; 173 174 if (direction == -1) { 175 /* other causes */ 176 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 177 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 178 ivar &= ~0xFF; 179 ivar |= msix_vector; 180 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 181 } else { 182 /* Tx or Rx causes */ 183 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 184 index = ((16 * (queue & 1)) + (8 * direction)); 185 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 186 ivar &= ~(0xFF << index); 187 ivar |= (msix_vector << index); 188 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 189 } 190 } 191 192 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 193 { 194 return ring->stats.packets; 195 } 196 197 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 198 { 199 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 200 struct ixgbe_hw *hw = &adapter->hw; 201 202 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 203 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 204 205 if (head != tail) 206 return (head < tail) ? 207 tail - head : (tail + ring->count - head); 208 209 return 0; 210 } 211 212 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 213 { 214 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 215 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 216 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 217 218 clear_check_for_tx_hang(tx_ring); 219 220 /* Check for a hung queue, but be thorough. This verifies 221 * that a transmit has been completed since the previous 222 * check AND there is at least one packet pending. The 223 * ARMED bit is set to indicate a potential hang. 224 */ 225 if ((tx_done_old == tx_done) && tx_pending) { 226 /* make sure it is true for two checks in a row */ 227 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 228 &tx_ring->state); 229 } 230 /* reset the countdown */ 231 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 232 233 /* update completed stats and continue */ 234 tx_ring->tx_stats.tx_done_old = tx_done; 235 236 return false; 237 } 238 239 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 240 { 241 /* Do the reset outside of interrupt context */ 242 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 243 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 244 ixgbevf_service_event_schedule(adapter); 245 } 246 } 247 248 /** 249 * ixgbevf_tx_timeout - Respond to a Tx Hang 250 * @netdev: network interface device structure 251 **/ 252 static void ixgbevf_tx_timeout(struct net_device *netdev) 253 { 254 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 255 256 ixgbevf_tx_timeout_reset(adapter); 257 } 258 259 /** 260 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 261 * @q_vector: board private structure 262 * @tx_ring: tx ring to clean 263 * @napi_budget: Used to determine if we are in netpoll 264 **/ 265 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 266 struct ixgbevf_ring *tx_ring, int napi_budget) 267 { 268 struct ixgbevf_adapter *adapter = q_vector->adapter; 269 struct ixgbevf_tx_buffer *tx_buffer; 270 union ixgbe_adv_tx_desc *tx_desc; 271 unsigned int total_bytes = 0, total_packets = 0; 272 unsigned int budget = tx_ring->count / 2; 273 unsigned int i = tx_ring->next_to_clean; 274 275 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 276 return true; 277 278 tx_buffer = &tx_ring->tx_buffer_info[i]; 279 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 280 i -= tx_ring->count; 281 282 do { 283 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 284 285 /* if next_to_watch is not set then there is no work pending */ 286 if (!eop_desc) 287 break; 288 289 /* prevent any other reads prior to eop_desc */ 290 smp_rmb(); 291 292 /* if DD is not set pending work has not been completed */ 293 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 294 break; 295 296 /* clear next_to_watch to prevent false hangs */ 297 tx_buffer->next_to_watch = NULL; 298 299 /* update the statistics for this packet */ 300 total_bytes += tx_buffer->bytecount; 301 total_packets += tx_buffer->gso_segs; 302 303 /* free the skb */ 304 if (ring_is_xdp(tx_ring)) 305 page_frag_free(tx_buffer->data); 306 else 307 napi_consume_skb(tx_buffer->skb, napi_budget); 308 309 /* unmap skb header data */ 310 dma_unmap_single(tx_ring->dev, 311 dma_unmap_addr(tx_buffer, dma), 312 dma_unmap_len(tx_buffer, len), 313 DMA_TO_DEVICE); 314 315 /* clear tx_buffer data */ 316 dma_unmap_len_set(tx_buffer, len, 0); 317 318 /* unmap remaining buffers */ 319 while (tx_desc != eop_desc) { 320 tx_buffer++; 321 tx_desc++; 322 i++; 323 if (unlikely(!i)) { 324 i -= tx_ring->count; 325 tx_buffer = tx_ring->tx_buffer_info; 326 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 327 } 328 329 /* unmap any remaining paged data */ 330 if (dma_unmap_len(tx_buffer, len)) { 331 dma_unmap_page(tx_ring->dev, 332 dma_unmap_addr(tx_buffer, dma), 333 dma_unmap_len(tx_buffer, len), 334 DMA_TO_DEVICE); 335 dma_unmap_len_set(tx_buffer, len, 0); 336 } 337 } 338 339 /* move us one more past the eop_desc for start of next pkt */ 340 tx_buffer++; 341 tx_desc++; 342 i++; 343 if (unlikely(!i)) { 344 i -= tx_ring->count; 345 tx_buffer = tx_ring->tx_buffer_info; 346 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 347 } 348 349 /* issue prefetch for next Tx descriptor */ 350 prefetch(tx_desc); 351 352 /* update budget accounting */ 353 budget--; 354 } while (likely(budget)); 355 356 i += tx_ring->count; 357 tx_ring->next_to_clean = i; 358 u64_stats_update_begin(&tx_ring->syncp); 359 tx_ring->stats.bytes += total_bytes; 360 tx_ring->stats.packets += total_packets; 361 u64_stats_update_end(&tx_ring->syncp); 362 q_vector->tx.total_bytes += total_bytes; 363 q_vector->tx.total_packets += total_packets; 364 365 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 366 struct ixgbe_hw *hw = &adapter->hw; 367 union ixgbe_adv_tx_desc *eop_desc; 368 369 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 370 371 pr_err("Detected Tx Unit Hang%s\n" 372 " Tx Queue <%d>\n" 373 " TDH, TDT <%x>, <%x>\n" 374 " next_to_use <%x>\n" 375 " next_to_clean <%x>\n" 376 "tx_buffer_info[next_to_clean]\n" 377 " next_to_watch <%p>\n" 378 " eop_desc->wb.status <%x>\n" 379 " time_stamp <%lx>\n" 380 " jiffies <%lx>\n", 381 ring_is_xdp(tx_ring) ? " XDP" : "", 382 tx_ring->queue_index, 383 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 384 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 385 tx_ring->next_to_use, i, 386 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 387 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 388 389 if (!ring_is_xdp(tx_ring)) 390 netif_stop_subqueue(tx_ring->netdev, 391 tx_ring->queue_index); 392 393 /* schedule immediate reset if we believe we hung */ 394 ixgbevf_tx_timeout_reset(adapter); 395 396 return true; 397 } 398 399 if (ring_is_xdp(tx_ring)) 400 return !!budget; 401 402 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 403 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 404 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 405 /* Make sure that anybody stopping the queue after this 406 * sees the new next_to_clean. 407 */ 408 smp_mb(); 409 410 if (__netif_subqueue_stopped(tx_ring->netdev, 411 tx_ring->queue_index) && 412 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 413 netif_wake_subqueue(tx_ring->netdev, 414 tx_ring->queue_index); 415 ++tx_ring->tx_stats.restart_queue; 416 } 417 } 418 419 return !!budget; 420 } 421 422 /** 423 * ixgbevf_rx_skb - Helper function to determine proper Rx method 424 * @q_vector: structure containing interrupt and ring information 425 * @skb: packet to send up 426 **/ 427 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 428 struct sk_buff *skb) 429 { 430 napi_gro_receive(&q_vector->napi, skb); 431 } 432 433 #define IXGBE_RSS_L4_TYPES_MASK \ 434 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 435 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 436 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 437 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 438 439 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 440 union ixgbe_adv_rx_desc *rx_desc, 441 struct sk_buff *skb) 442 { 443 u16 rss_type; 444 445 if (!(ring->netdev->features & NETIF_F_RXHASH)) 446 return; 447 448 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 449 IXGBE_RXDADV_RSSTYPE_MASK; 450 451 if (!rss_type) 452 return; 453 454 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 455 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 456 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 457 } 458 459 /** 460 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 461 * @ring: structure containig ring specific data 462 * @rx_desc: current Rx descriptor being processed 463 * @skb: skb currently being received and modified 464 **/ 465 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 466 union ixgbe_adv_rx_desc *rx_desc, 467 struct sk_buff *skb) 468 { 469 skb_checksum_none_assert(skb); 470 471 /* Rx csum disabled */ 472 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 473 return; 474 475 /* if IP and error */ 476 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 477 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 478 ring->rx_stats.csum_err++; 479 return; 480 } 481 482 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 483 return; 484 485 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 486 ring->rx_stats.csum_err++; 487 return; 488 } 489 490 /* It must be a TCP or UDP packet with a valid checksum */ 491 skb->ip_summed = CHECKSUM_UNNECESSARY; 492 } 493 494 /** 495 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 496 * @rx_ring: rx descriptor ring packet is being transacted on 497 * @rx_desc: pointer to the EOP Rx descriptor 498 * @skb: pointer to current skb being populated 499 * 500 * This function checks the ring, descriptor, and packet information in 501 * order to populate the checksum, VLAN, protocol, and other fields within 502 * the skb. 503 **/ 504 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 505 union ixgbe_adv_rx_desc *rx_desc, 506 struct sk_buff *skb) 507 { 508 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 509 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 510 511 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 512 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 513 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 514 515 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 516 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 517 } 518 519 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 520 } 521 522 static 523 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 524 const unsigned int size) 525 { 526 struct ixgbevf_rx_buffer *rx_buffer; 527 528 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 529 prefetchw(rx_buffer->page); 530 531 /* we are reusing so sync this buffer for CPU use */ 532 dma_sync_single_range_for_cpu(rx_ring->dev, 533 rx_buffer->dma, 534 rx_buffer->page_offset, 535 size, 536 DMA_FROM_DEVICE); 537 538 rx_buffer->pagecnt_bias--; 539 540 return rx_buffer; 541 } 542 543 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 544 struct ixgbevf_rx_buffer *rx_buffer, 545 struct sk_buff *skb) 546 { 547 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 548 /* hand second half of page back to the ring */ 549 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 550 } else { 551 if (IS_ERR(skb)) 552 /* We are not reusing the buffer so unmap it and free 553 * any references we are holding to it 554 */ 555 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 556 ixgbevf_rx_pg_size(rx_ring), 557 DMA_FROM_DEVICE, 558 IXGBEVF_RX_DMA_ATTR); 559 __page_frag_cache_drain(rx_buffer->page, 560 rx_buffer->pagecnt_bias); 561 } 562 563 /* clear contents of rx_buffer */ 564 rx_buffer->page = NULL; 565 } 566 567 /** 568 * ixgbevf_is_non_eop - process handling of non-EOP buffers 569 * @rx_ring: Rx ring being processed 570 * @rx_desc: Rx descriptor for current buffer 571 * 572 * This function updates next to clean. If the buffer is an EOP buffer 573 * this function exits returning false, otherwise it will place the 574 * sk_buff in the next buffer to be chained and return true indicating 575 * that this is in fact a non-EOP buffer. 576 **/ 577 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 578 union ixgbe_adv_rx_desc *rx_desc) 579 { 580 u32 ntc = rx_ring->next_to_clean + 1; 581 582 /* fetch, update, and store next to clean */ 583 ntc = (ntc < rx_ring->count) ? ntc : 0; 584 rx_ring->next_to_clean = ntc; 585 586 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 587 588 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 589 return false; 590 591 return true; 592 } 593 594 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 595 { 596 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 597 } 598 599 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 600 struct ixgbevf_rx_buffer *bi) 601 { 602 struct page *page = bi->page; 603 dma_addr_t dma; 604 605 /* since we are recycling buffers we should seldom need to alloc */ 606 if (likely(page)) 607 return true; 608 609 /* alloc new page for storage */ 610 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 611 if (unlikely(!page)) { 612 rx_ring->rx_stats.alloc_rx_page_failed++; 613 return false; 614 } 615 616 /* map page for use */ 617 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 618 ixgbevf_rx_pg_size(rx_ring), 619 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 620 621 /* if mapping failed free memory back to system since 622 * there isn't much point in holding memory we can't use 623 */ 624 if (dma_mapping_error(rx_ring->dev, dma)) { 625 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 626 627 rx_ring->rx_stats.alloc_rx_page_failed++; 628 return false; 629 } 630 631 bi->dma = dma; 632 bi->page = page; 633 bi->page_offset = ixgbevf_rx_offset(rx_ring); 634 bi->pagecnt_bias = 1; 635 rx_ring->rx_stats.alloc_rx_page++; 636 637 return true; 638 } 639 640 /** 641 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 642 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 643 * @cleaned_count: number of buffers to replace 644 **/ 645 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 646 u16 cleaned_count) 647 { 648 union ixgbe_adv_rx_desc *rx_desc; 649 struct ixgbevf_rx_buffer *bi; 650 unsigned int i = rx_ring->next_to_use; 651 652 /* nothing to do or no valid netdev defined */ 653 if (!cleaned_count || !rx_ring->netdev) 654 return; 655 656 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 657 bi = &rx_ring->rx_buffer_info[i]; 658 i -= rx_ring->count; 659 660 do { 661 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 662 break; 663 664 /* sync the buffer for use by the device */ 665 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 666 bi->page_offset, 667 ixgbevf_rx_bufsz(rx_ring), 668 DMA_FROM_DEVICE); 669 670 /* Refresh the desc even if pkt_addr didn't change 671 * because each write-back erases this info. 672 */ 673 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 674 675 rx_desc++; 676 bi++; 677 i++; 678 if (unlikely(!i)) { 679 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 680 bi = rx_ring->rx_buffer_info; 681 i -= rx_ring->count; 682 } 683 684 /* clear the length for the next_to_use descriptor */ 685 rx_desc->wb.upper.length = 0; 686 687 cleaned_count--; 688 } while (cleaned_count); 689 690 i += rx_ring->count; 691 692 if (rx_ring->next_to_use != i) { 693 /* record the next descriptor to use */ 694 rx_ring->next_to_use = i; 695 696 /* update next to alloc since we have filled the ring */ 697 rx_ring->next_to_alloc = i; 698 699 /* Force memory writes to complete before letting h/w 700 * know there are new descriptors to fetch. (Only 701 * applicable for weak-ordered memory model archs, 702 * such as IA-64). 703 */ 704 wmb(); 705 ixgbevf_write_tail(rx_ring, i); 706 } 707 } 708 709 /** 710 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 711 * @rx_ring: rx descriptor ring packet is being transacted on 712 * @rx_desc: pointer to the EOP Rx descriptor 713 * @skb: pointer to current skb being fixed 714 * 715 * Check for corrupted packet headers caused by senders on the local L2 716 * embedded NIC switch not setting up their Tx Descriptors right. These 717 * should be very rare. 718 * 719 * Also address the case where we are pulling data in on pages only 720 * and as such no data is present in the skb header. 721 * 722 * In addition if skb is not at least 60 bytes we need to pad it so that 723 * it is large enough to qualify as a valid Ethernet frame. 724 * 725 * Returns true if an error was encountered and skb was freed. 726 **/ 727 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 728 union ixgbe_adv_rx_desc *rx_desc, 729 struct sk_buff *skb) 730 { 731 /* XDP packets use error pointer so abort at this point */ 732 if (IS_ERR(skb)) 733 return true; 734 735 /* verify that the packet does not have any known errors */ 736 if (unlikely(ixgbevf_test_staterr(rx_desc, 737 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 738 struct net_device *netdev = rx_ring->netdev; 739 740 if (!(netdev->features & NETIF_F_RXALL)) { 741 dev_kfree_skb_any(skb); 742 return true; 743 } 744 } 745 746 /* if eth_skb_pad returns an error the skb was freed */ 747 if (eth_skb_pad(skb)) 748 return true; 749 750 return false; 751 } 752 753 /** 754 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 755 * @rx_ring: rx descriptor ring to store buffers on 756 * @old_buff: donor buffer to have page reused 757 * 758 * Synchronizes page for reuse by the adapter 759 **/ 760 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 761 struct ixgbevf_rx_buffer *old_buff) 762 { 763 struct ixgbevf_rx_buffer *new_buff; 764 u16 nta = rx_ring->next_to_alloc; 765 766 new_buff = &rx_ring->rx_buffer_info[nta]; 767 768 /* update, and store next to alloc */ 769 nta++; 770 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 771 772 /* transfer page from old buffer to new buffer */ 773 new_buff->page = old_buff->page; 774 new_buff->dma = old_buff->dma; 775 new_buff->page_offset = old_buff->page_offset; 776 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 777 } 778 779 static inline bool ixgbevf_page_is_reserved(struct page *page) 780 { 781 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 782 } 783 784 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 785 { 786 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 787 struct page *page = rx_buffer->page; 788 789 /* avoid re-using remote pages */ 790 if (unlikely(ixgbevf_page_is_reserved(page))) 791 return false; 792 793 #if (PAGE_SIZE < 8192) 794 /* if we are only owner of page we can reuse it */ 795 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 796 return false; 797 #else 798 #define IXGBEVF_LAST_OFFSET \ 799 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 800 801 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 802 return false; 803 804 #endif 805 806 /* If we have drained the page fragment pool we need to update 807 * the pagecnt_bias and page count so that we fully restock the 808 * number of references the driver holds. 809 */ 810 if (unlikely(!pagecnt_bias)) { 811 page_ref_add(page, USHRT_MAX); 812 rx_buffer->pagecnt_bias = USHRT_MAX; 813 } 814 815 return true; 816 } 817 818 /** 819 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 820 * @rx_ring: rx descriptor ring to transact packets on 821 * @rx_buffer: buffer containing page to add 822 * @skb: sk_buff to place the data into 823 * @size: size of buffer to be added 824 * 825 * This function will add the data contained in rx_buffer->page to the skb. 826 **/ 827 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 828 struct ixgbevf_rx_buffer *rx_buffer, 829 struct sk_buff *skb, 830 unsigned int size) 831 { 832 #if (PAGE_SIZE < 8192) 833 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 834 #else 835 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 836 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 837 SKB_DATA_ALIGN(size); 838 #endif 839 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 840 rx_buffer->page_offset, size, truesize); 841 #if (PAGE_SIZE < 8192) 842 rx_buffer->page_offset ^= truesize; 843 #else 844 rx_buffer->page_offset += truesize; 845 #endif 846 } 847 848 static 849 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 850 struct ixgbevf_rx_buffer *rx_buffer, 851 struct xdp_buff *xdp, 852 union ixgbe_adv_rx_desc *rx_desc) 853 { 854 unsigned int size = xdp->data_end - xdp->data; 855 #if (PAGE_SIZE < 8192) 856 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 857 #else 858 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 859 xdp->data_hard_start); 860 #endif 861 unsigned int headlen; 862 struct sk_buff *skb; 863 864 /* prefetch first cache line of first page */ 865 prefetch(xdp->data); 866 #if L1_CACHE_BYTES < 128 867 prefetch(xdp->data + L1_CACHE_BYTES); 868 #endif 869 /* Note, we get here by enabling legacy-rx via: 870 * 871 * ethtool --set-priv-flags <dev> legacy-rx on 872 * 873 * In this mode, we currently get 0 extra XDP headroom as 874 * opposed to having legacy-rx off, where we process XDP 875 * packets going to stack via ixgbevf_build_skb(). 876 * 877 * For ixgbevf_construct_skb() mode it means that the 878 * xdp->data_meta will always point to xdp->data, since 879 * the helper cannot expand the head. Should this ever 880 * changed in future for legacy-rx mode on, then lets also 881 * add xdp->data_meta handling here. 882 */ 883 884 /* allocate a skb to store the frags */ 885 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 886 if (unlikely(!skb)) 887 return NULL; 888 889 /* Determine available headroom for copy */ 890 headlen = size; 891 if (headlen > IXGBEVF_RX_HDR_SIZE) 892 headlen = eth_get_headlen(xdp->data, IXGBEVF_RX_HDR_SIZE); 893 894 /* align pull length to size of long to optimize memcpy performance */ 895 memcpy(__skb_put(skb, headlen), xdp->data, 896 ALIGN(headlen, sizeof(long))); 897 898 /* update all of the pointers */ 899 size -= headlen; 900 if (size) { 901 skb_add_rx_frag(skb, 0, rx_buffer->page, 902 (xdp->data + headlen) - 903 page_address(rx_buffer->page), 904 size, truesize); 905 #if (PAGE_SIZE < 8192) 906 rx_buffer->page_offset ^= truesize; 907 #else 908 rx_buffer->page_offset += truesize; 909 #endif 910 } else { 911 rx_buffer->pagecnt_bias++; 912 } 913 914 return skb; 915 } 916 917 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 918 u32 qmask) 919 { 920 struct ixgbe_hw *hw = &adapter->hw; 921 922 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 923 } 924 925 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 926 struct ixgbevf_rx_buffer *rx_buffer, 927 struct xdp_buff *xdp, 928 union ixgbe_adv_rx_desc *rx_desc) 929 { 930 unsigned int metasize = xdp->data - xdp->data_meta; 931 #if (PAGE_SIZE < 8192) 932 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 933 #else 934 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 935 SKB_DATA_ALIGN(xdp->data_end - 936 xdp->data_hard_start); 937 #endif 938 struct sk_buff *skb; 939 940 /* Prefetch first cache line of first page. If xdp->data_meta 941 * is unused, this points to xdp->data, otherwise, we likely 942 * have a consumer accessing first few bytes of meta data, 943 * and then actual data. 944 */ 945 prefetch(xdp->data_meta); 946 #if L1_CACHE_BYTES < 128 947 prefetch(xdp->data_meta + L1_CACHE_BYTES); 948 #endif 949 950 /* build an skb around the page buffer */ 951 skb = build_skb(xdp->data_hard_start, truesize); 952 if (unlikely(!skb)) 953 return NULL; 954 955 /* update pointers within the skb to store the data */ 956 skb_reserve(skb, xdp->data - xdp->data_hard_start); 957 __skb_put(skb, xdp->data_end - xdp->data); 958 if (metasize) 959 skb_metadata_set(skb, metasize); 960 961 /* update buffer offset */ 962 #if (PAGE_SIZE < 8192) 963 rx_buffer->page_offset ^= truesize; 964 #else 965 rx_buffer->page_offset += truesize; 966 #endif 967 968 return skb; 969 } 970 971 #define IXGBEVF_XDP_PASS 0 972 #define IXGBEVF_XDP_CONSUMED 1 973 #define IXGBEVF_XDP_TX 2 974 975 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 976 struct xdp_buff *xdp) 977 { 978 struct ixgbevf_tx_buffer *tx_buffer; 979 union ixgbe_adv_tx_desc *tx_desc; 980 u32 len, cmd_type; 981 dma_addr_t dma; 982 u16 i; 983 984 len = xdp->data_end - xdp->data; 985 986 if (unlikely(!ixgbevf_desc_unused(ring))) 987 return IXGBEVF_XDP_CONSUMED; 988 989 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 990 if (dma_mapping_error(ring->dev, dma)) 991 return IXGBEVF_XDP_CONSUMED; 992 993 /* record the location of the first descriptor for this packet */ 994 i = ring->next_to_use; 995 tx_buffer = &ring->tx_buffer_info[i]; 996 997 dma_unmap_len_set(tx_buffer, len, len); 998 dma_unmap_addr_set(tx_buffer, dma, dma); 999 tx_buffer->data = xdp->data; 1000 tx_buffer->bytecount = len; 1001 tx_buffer->gso_segs = 1; 1002 tx_buffer->protocol = 0; 1003 1004 /* Populate minimal context descriptor that will provide for the 1005 * fact that we are expected to process Ethernet frames. 1006 */ 1007 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1008 struct ixgbe_adv_tx_context_desc *context_desc; 1009 1010 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1011 1012 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1013 context_desc->vlan_macip_lens = 1014 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1015 context_desc->seqnum_seed = 0; 1016 context_desc->type_tucmd_mlhl = 1017 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1018 IXGBE_ADVTXD_DTYP_CTXT); 1019 context_desc->mss_l4len_idx = 0; 1020 1021 i = 1; 1022 } 1023 1024 /* put descriptor type bits */ 1025 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1026 IXGBE_ADVTXD_DCMD_DEXT | 1027 IXGBE_ADVTXD_DCMD_IFCS; 1028 cmd_type |= len | IXGBE_TXD_CMD; 1029 1030 tx_desc = IXGBEVF_TX_DESC(ring, i); 1031 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1032 1033 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1034 tx_desc->read.olinfo_status = 1035 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1036 IXGBE_ADVTXD_CC); 1037 1038 /* Avoid any potential race with cleanup */ 1039 smp_wmb(); 1040 1041 /* set next_to_watch value indicating a packet is present */ 1042 i++; 1043 if (i == ring->count) 1044 i = 0; 1045 1046 tx_buffer->next_to_watch = tx_desc; 1047 ring->next_to_use = i; 1048 1049 return IXGBEVF_XDP_TX; 1050 } 1051 1052 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1053 struct ixgbevf_ring *rx_ring, 1054 struct xdp_buff *xdp) 1055 { 1056 int result = IXGBEVF_XDP_PASS; 1057 struct ixgbevf_ring *xdp_ring; 1058 struct bpf_prog *xdp_prog; 1059 u32 act; 1060 1061 rcu_read_lock(); 1062 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1063 1064 if (!xdp_prog) 1065 goto xdp_out; 1066 1067 act = bpf_prog_run_xdp(xdp_prog, xdp); 1068 switch (act) { 1069 case XDP_PASS: 1070 break; 1071 case XDP_TX: 1072 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1073 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1074 break; 1075 default: 1076 bpf_warn_invalid_xdp_action(act); 1077 /* fallthrough */ 1078 case XDP_ABORTED: 1079 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1080 /* fallthrough -- handle aborts by dropping packet */ 1081 case XDP_DROP: 1082 result = IXGBEVF_XDP_CONSUMED; 1083 break; 1084 } 1085 xdp_out: 1086 rcu_read_unlock(); 1087 return ERR_PTR(-result); 1088 } 1089 1090 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1091 struct ixgbevf_rx_buffer *rx_buffer, 1092 unsigned int size) 1093 { 1094 #if (PAGE_SIZE < 8192) 1095 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 1096 1097 rx_buffer->page_offset ^= truesize; 1098 #else 1099 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 1100 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 1101 SKB_DATA_ALIGN(size); 1102 1103 rx_buffer->page_offset += truesize; 1104 #endif 1105 } 1106 1107 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1108 struct ixgbevf_ring *rx_ring, 1109 int budget) 1110 { 1111 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1112 struct ixgbevf_adapter *adapter = q_vector->adapter; 1113 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1114 struct sk_buff *skb = rx_ring->skb; 1115 bool xdp_xmit = false; 1116 struct xdp_buff xdp; 1117 1118 xdp.rxq = &rx_ring->xdp_rxq; 1119 1120 while (likely(total_rx_packets < budget)) { 1121 struct ixgbevf_rx_buffer *rx_buffer; 1122 union ixgbe_adv_rx_desc *rx_desc; 1123 unsigned int size; 1124 1125 /* return some buffers to hardware, one at a time is too slow */ 1126 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1127 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1128 cleaned_count = 0; 1129 } 1130 1131 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1132 size = le16_to_cpu(rx_desc->wb.upper.length); 1133 if (!size) 1134 break; 1135 1136 /* This memory barrier is needed to keep us from reading 1137 * any other fields out of the rx_desc until we know the 1138 * RXD_STAT_DD bit is set 1139 */ 1140 rmb(); 1141 1142 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1143 1144 /* retrieve a buffer from the ring */ 1145 if (!skb) { 1146 xdp.data = page_address(rx_buffer->page) + 1147 rx_buffer->page_offset; 1148 xdp.data_meta = xdp.data; 1149 xdp.data_hard_start = xdp.data - 1150 ixgbevf_rx_offset(rx_ring); 1151 xdp.data_end = xdp.data + size; 1152 1153 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1154 } 1155 1156 if (IS_ERR(skb)) { 1157 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1158 xdp_xmit = true; 1159 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1160 size); 1161 } else { 1162 rx_buffer->pagecnt_bias++; 1163 } 1164 total_rx_packets++; 1165 total_rx_bytes += size; 1166 } else if (skb) { 1167 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1168 } else if (ring_uses_build_skb(rx_ring)) { 1169 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1170 &xdp, rx_desc); 1171 } else { 1172 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1173 &xdp, rx_desc); 1174 } 1175 1176 /* exit if we failed to retrieve a buffer */ 1177 if (!skb) { 1178 rx_ring->rx_stats.alloc_rx_buff_failed++; 1179 rx_buffer->pagecnt_bias++; 1180 break; 1181 } 1182 1183 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1184 cleaned_count++; 1185 1186 /* fetch next buffer in frame if non-eop */ 1187 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1188 continue; 1189 1190 /* verify the packet layout is correct */ 1191 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1192 skb = NULL; 1193 continue; 1194 } 1195 1196 /* probably a little skewed due to removing CRC */ 1197 total_rx_bytes += skb->len; 1198 1199 /* Workaround hardware that can't do proper VEPA multicast 1200 * source pruning. 1201 */ 1202 if ((skb->pkt_type == PACKET_BROADCAST || 1203 skb->pkt_type == PACKET_MULTICAST) && 1204 ether_addr_equal(rx_ring->netdev->dev_addr, 1205 eth_hdr(skb)->h_source)) { 1206 dev_kfree_skb_irq(skb); 1207 continue; 1208 } 1209 1210 /* populate checksum, VLAN, and protocol */ 1211 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1212 1213 ixgbevf_rx_skb(q_vector, skb); 1214 1215 /* reset skb pointer */ 1216 skb = NULL; 1217 1218 /* update budget accounting */ 1219 total_rx_packets++; 1220 } 1221 1222 /* place incomplete frames back on ring for completion */ 1223 rx_ring->skb = skb; 1224 1225 if (xdp_xmit) { 1226 struct ixgbevf_ring *xdp_ring = 1227 adapter->xdp_ring[rx_ring->queue_index]; 1228 1229 /* Force memory writes to complete before letting h/w 1230 * know there are new descriptors to fetch. 1231 */ 1232 wmb(); 1233 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1234 } 1235 1236 u64_stats_update_begin(&rx_ring->syncp); 1237 rx_ring->stats.packets += total_rx_packets; 1238 rx_ring->stats.bytes += total_rx_bytes; 1239 u64_stats_update_end(&rx_ring->syncp); 1240 q_vector->rx.total_packets += total_rx_packets; 1241 q_vector->rx.total_bytes += total_rx_bytes; 1242 1243 return total_rx_packets; 1244 } 1245 1246 /** 1247 * ixgbevf_poll - NAPI polling calback 1248 * @napi: napi struct with our devices info in it 1249 * @budget: amount of work driver is allowed to do this pass, in packets 1250 * 1251 * This function will clean more than one or more rings associated with a 1252 * q_vector. 1253 **/ 1254 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1255 { 1256 struct ixgbevf_q_vector *q_vector = 1257 container_of(napi, struct ixgbevf_q_vector, napi); 1258 struct ixgbevf_adapter *adapter = q_vector->adapter; 1259 struct ixgbevf_ring *ring; 1260 int per_ring_budget, work_done = 0; 1261 bool clean_complete = true; 1262 1263 ixgbevf_for_each_ring(ring, q_vector->tx) { 1264 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1265 clean_complete = false; 1266 } 1267 1268 if (budget <= 0) 1269 return budget; 1270 1271 /* attempt to distribute budget to each queue fairly, but don't allow 1272 * the budget to go below 1 because we'll exit polling 1273 */ 1274 if (q_vector->rx.count > 1) 1275 per_ring_budget = max(budget/q_vector->rx.count, 1); 1276 else 1277 per_ring_budget = budget; 1278 1279 ixgbevf_for_each_ring(ring, q_vector->rx) { 1280 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1281 per_ring_budget); 1282 work_done += cleaned; 1283 if (cleaned >= per_ring_budget) 1284 clean_complete = false; 1285 } 1286 1287 /* If all work not completed, return budget and keep polling */ 1288 if (!clean_complete) 1289 return budget; 1290 /* all work done, exit the polling mode */ 1291 napi_complete_done(napi, work_done); 1292 if (adapter->rx_itr_setting == 1) 1293 ixgbevf_set_itr(q_vector); 1294 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1295 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1296 ixgbevf_irq_enable_queues(adapter, 1297 BIT(q_vector->v_idx)); 1298 1299 return 0; 1300 } 1301 1302 /** 1303 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1304 * @q_vector: structure containing interrupt and ring information 1305 **/ 1306 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1307 { 1308 struct ixgbevf_adapter *adapter = q_vector->adapter; 1309 struct ixgbe_hw *hw = &adapter->hw; 1310 int v_idx = q_vector->v_idx; 1311 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1312 1313 /* set the WDIS bit to not clear the timer bits and cause an 1314 * immediate assertion of the interrupt 1315 */ 1316 itr_reg |= IXGBE_EITR_CNT_WDIS; 1317 1318 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1319 } 1320 1321 /** 1322 * ixgbevf_configure_msix - Configure MSI-X hardware 1323 * @adapter: board private structure 1324 * 1325 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1326 * interrupts. 1327 **/ 1328 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1329 { 1330 struct ixgbevf_q_vector *q_vector; 1331 int q_vectors, v_idx; 1332 1333 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1334 adapter->eims_enable_mask = 0; 1335 1336 /* Populate the IVAR table and set the ITR values to the 1337 * corresponding register. 1338 */ 1339 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1340 struct ixgbevf_ring *ring; 1341 1342 q_vector = adapter->q_vector[v_idx]; 1343 1344 ixgbevf_for_each_ring(ring, q_vector->rx) 1345 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1346 1347 ixgbevf_for_each_ring(ring, q_vector->tx) 1348 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1349 1350 if (q_vector->tx.ring && !q_vector->rx.ring) { 1351 /* Tx only vector */ 1352 if (adapter->tx_itr_setting == 1) 1353 q_vector->itr = IXGBE_12K_ITR; 1354 else 1355 q_vector->itr = adapter->tx_itr_setting; 1356 } else { 1357 /* Rx or Rx/Tx vector */ 1358 if (adapter->rx_itr_setting == 1) 1359 q_vector->itr = IXGBE_20K_ITR; 1360 else 1361 q_vector->itr = adapter->rx_itr_setting; 1362 } 1363 1364 /* add q_vector eims value to global eims_enable_mask */ 1365 adapter->eims_enable_mask |= BIT(v_idx); 1366 1367 ixgbevf_write_eitr(q_vector); 1368 } 1369 1370 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1371 /* setup eims_other and add value to global eims_enable_mask */ 1372 adapter->eims_other = BIT(v_idx); 1373 adapter->eims_enable_mask |= adapter->eims_other; 1374 } 1375 1376 enum latency_range { 1377 lowest_latency = 0, 1378 low_latency = 1, 1379 bulk_latency = 2, 1380 latency_invalid = 255 1381 }; 1382 1383 /** 1384 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1385 * @q_vector: structure containing interrupt and ring information 1386 * @ring_container: structure containing ring performance data 1387 * 1388 * Stores a new ITR value based on packets and byte 1389 * counts during the last interrupt. The advantage of per interrupt 1390 * computation is faster updates and more accurate ITR for the current 1391 * traffic pattern. Constants in this function were computed 1392 * based on theoretical maximum wire speed and thresholds were set based 1393 * on testing data as well as attempting to minimize response time 1394 * while increasing bulk throughput. 1395 **/ 1396 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1397 struct ixgbevf_ring_container *ring_container) 1398 { 1399 int bytes = ring_container->total_bytes; 1400 int packets = ring_container->total_packets; 1401 u32 timepassed_us; 1402 u64 bytes_perint; 1403 u8 itr_setting = ring_container->itr; 1404 1405 if (packets == 0) 1406 return; 1407 1408 /* simple throttle rate management 1409 * 0-20MB/s lowest (100000 ints/s) 1410 * 20-100MB/s low (20000 ints/s) 1411 * 100-1249MB/s bulk (12000 ints/s) 1412 */ 1413 /* what was last interrupt timeslice? */ 1414 timepassed_us = q_vector->itr >> 2; 1415 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1416 1417 switch (itr_setting) { 1418 case lowest_latency: 1419 if (bytes_perint > 10) 1420 itr_setting = low_latency; 1421 break; 1422 case low_latency: 1423 if (bytes_perint > 20) 1424 itr_setting = bulk_latency; 1425 else if (bytes_perint <= 10) 1426 itr_setting = lowest_latency; 1427 break; 1428 case bulk_latency: 1429 if (bytes_perint <= 20) 1430 itr_setting = low_latency; 1431 break; 1432 } 1433 1434 /* clear work counters since we have the values we need */ 1435 ring_container->total_bytes = 0; 1436 ring_container->total_packets = 0; 1437 1438 /* write updated itr to ring container */ 1439 ring_container->itr = itr_setting; 1440 } 1441 1442 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1443 { 1444 u32 new_itr = q_vector->itr; 1445 u8 current_itr; 1446 1447 ixgbevf_update_itr(q_vector, &q_vector->tx); 1448 ixgbevf_update_itr(q_vector, &q_vector->rx); 1449 1450 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1451 1452 switch (current_itr) { 1453 /* counts and packets in update_itr are dependent on these numbers */ 1454 case lowest_latency: 1455 new_itr = IXGBE_100K_ITR; 1456 break; 1457 case low_latency: 1458 new_itr = IXGBE_20K_ITR; 1459 break; 1460 case bulk_latency: 1461 new_itr = IXGBE_12K_ITR; 1462 break; 1463 default: 1464 break; 1465 } 1466 1467 if (new_itr != q_vector->itr) { 1468 /* do an exponential smoothing */ 1469 new_itr = (10 * new_itr * q_vector->itr) / 1470 ((9 * new_itr) + q_vector->itr); 1471 1472 /* save the algorithm value here */ 1473 q_vector->itr = new_itr; 1474 1475 ixgbevf_write_eitr(q_vector); 1476 } 1477 } 1478 1479 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1480 { 1481 struct ixgbevf_adapter *adapter = data; 1482 struct ixgbe_hw *hw = &adapter->hw; 1483 1484 hw->mac.get_link_status = 1; 1485 1486 ixgbevf_service_event_schedule(adapter); 1487 1488 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1489 1490 return IRQ_HANDLED; 1491 } 1492 1493 /** 1494 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1495 * @irq: unused 1496 * @data: pointer to our q_vector struct for this interrupt vector 1497 **/ 1498 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1499 { 1500 struct ixgbevf_q_vector *q_vector = data; 1501 1502 /* EIAM disabled interrupts (on this vector) for us */ 1503 if (q_vector->rx.ring || q_vector->tx.ring) 1504 napi_schedule_irqoff(&q_vector->napi); 1505 1506 return IRQ_HANDLED; 1507 } 1508 1509 /** 1510 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1511 * @adapter: board private structure 1512 * 1513 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1514 * interrupts from the kernel. 1515 **/ 1516 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1517 { 1518 struct net_device *netdev = adapter->netdev; 1519 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1520 unsigned int ri = 0, ti = 0; 1521 int vector, err; 1522 1523 for (vector = 0; vector < q_vectors; vector++) { 1524 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1525 struct msix_entry *entry = &adapter->msix_entries[vector]; 1526 1527 if (q_vector->tx.ring && q_vector->rx.ring) { 1528 snprintf(q_vector->name, sizeof(q_vector->name), 1529 "%s-TxRx-%u", netdev->name, ri++); 1530 ti++; 1531 } else if (q_vector->rx.ring) { 1532 snprintf(q_vector->name, sizeof(q_vector->name), 1533 "%s-rx-%u", netdev->name, ri++); 1534 } else if (q_vector->tx.ring) { 1535 snprintf(q_vector->name, sizeof(q_vector->name), 1536 "%s-tx-%u", netdev->name, ti++); 1537 } else { 1538 /* skip this unused q_vector */ 1539 continue; 1540 } 1541 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1542 q_vector->name, q_vector); 1543 if (err) { 1544 hw_dbg(&adapter->hw, 1545 "request_irq failed for MSIX interrupt Error: %d\n", 1546 err); 1547 goto free_queue_irqs; 1548 } 1549 } 1550 1551 err = request_irq(adapter->msix_entries[vector].vector, 1552 &ixgbevf_msix_other, 0, netdev->name, adapter); 1553 if (err) { 1554 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1555 err); 1556 goto free_queue_irqs; 1557 } 1558 1559 return 0; 1560 1561 free_queue_irqs: 1562 while (vector) { 1563 vector--; 1564 free_irq(adapter->msix_entries[vector].vector, 1565 adapter->q_vector[vector]); 1566 } 1567 /* This failure is non-recoverable - it indicates the system is 1568 * out of MSIX vector resources and the VF driver cannot run 1569 * without them. Set the number of msix vectors to zero 1570 * indicating that not enough can be allocated. The error 1571 * will be returned to the user indicating device open failed. 1572 * Any further attempts to force the driver to open will also 1573 * fail. The only way to recover is to unload the driver and 1574 * reload it again. If the system has recovered some MSIX 1575 * vectors then it may succeed. 1576 */ 1577 adapter->num_msix_vectors = 0; 1578 return err; 1579 } 1580 1581 /** 1582 * ixgbevf_request_irq - initialize interrupts 1583 * @adapter: board private structure 1584 * 1585 * Attempts to configure interrupts using the best available 1586 * capabilities of the hardware and kernel. 1587 **/ 1588 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1589 { 1590 int err = ixgbevf_request_msix_irqs(adapter); 1591 1592 if (err) 1593 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1594 1595 return err; 1596 } 1597 1598 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1599 { 1600 int i, q_vectors; 1601 1602 if (!adapter->msix_entries) 1603 return; 1604 1605 q_vectors = adapter->num_msix_vectors; 1606 i = q_vectors - 1; 1607 1608 free_irq(adapter->msix_entries[i].vector, adapter); 1609 i--; 1610 1611 for (; i >= 0; i--) { 1612 /* free only the irqs that were actually requested */ 1613 if (!adapter->q_vector[i]->rx.ring && 1614 !adapter->q_vector[i]->tx.ring) 1615 continue; 1616 1617 free_irq(adapter->msix_entries[i].vector, 1618 adapter->q_vector[i]); 1619 } 1620 } 1621 1622 /** 1623 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1624 * @adapter: board private structure 1625 **/ 1626 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1627 { 1628 struct ixgbe_hw *hw = &adapter->hw; 1629 int i; 1630 1631 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1632 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1633 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1634 1635 IXGBE_WRITE_FLUSH(hw); 1636 1637 for (i = 0; i < adapter->num_msix_vectors; i++) 1638 synchronize_irq(adapter->msix_entries[i].vector); 1639 } 1640 1641 /** 1642 * ixgbevf_irq_enable - Enable default interrupt generation settings 1643 * @adapter: board private structure 1644 **/ 1645 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1646 { 1647 struct ixgbe_hw *hw = &adapter->hw; 1648 1649 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1650 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1651 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1652 } 1653 1654 /** 1655 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1656 * @adapter: board private structure 1657 * @ring: structure containing ring specific data 1658 * 1659 * Configure the Tx descriptor ring after a reset. 1660 **/ 1661 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1662 struct ixgbevf_ring *ring) 1663 { 1664 struct ixgbe_hw *hw = &adapter->hw; 1665 u64 tdba = ring->dma; 1666 int wait_loop = 10; 1667 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1668 u8 reg_idx = ring->reg_idx; 1669 1670 /* disable queue to avoid issues while updating state */ 1671 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1672 IXGBE_WRITE_FLUSH(hw); 1673 1674 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1675 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1676 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1677 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1678 1679 /* disable head writeback */ 1680 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1681 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1682 1683 /* enable relaxed ordering */ 1684 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1685 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1686 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1687 1688 /* reset head and tail pointers */ 1689 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1690 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1691 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1692 1693 /* reset ntu and ntc to place SW in sync with hardwdare */ 1694 ring->next_to_clean = 0; 1695 ring->next_to_use = 0; 1696 1697 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1698 * to or less than the number of on chip descriptors, which is 1699 * currently 40. 1700 */ 1701 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1702 1703 /* Setting PTHRESH to 32 both improves performance */ 1704 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1705 32; /* PTHRESH = 32 */ 1706 1707 /* reinitialize tx_buffer_info */ 1708 memset(ring->tx_buffer_info, 0, 1709 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1710 1711 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1712 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1713 1714 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1715 1716 /* poll to verify queue is enabled */ 1717 do { 1718 usleep_range(1000, 2000); 1719 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1720 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1721 if (!wait_loop) 1722 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1723 } 1724 1725 /** 1726 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1727 * @adapter: board private structure 1728 * 1729 * Configure the Tx unit of the MAC after a reset. 1730 **/ 1731 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1732 { 1733 u32 i; 1734 1735 /* Setup the HW Tx Head and Tail descriptor pointers */ 1736 for (i = 0; i < adapter->num_tx_queues; i++) 1737 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1738 for (i = 0; i < adapter->num_xdp_queues; i++) 1739 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1740 } 1741 1742 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1743 1744 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1745 struct ixgbevf_ring *ring, int index) 1746 { 1747 struct ixgbe_hw *hw = &adapter->hw; 1748 u32 srrctl; 1749 1750 srrctl = IXGBE_SRRCTL_DROP_EN; 1751 1752 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1753 if (ring_uses_large_buffer(ring)) 1754 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1755 else 1756 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1757 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1758 1759 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1760 } 1761 1762 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1763 { 1764 struct ixgbe_hw *hw = &adapter->hw; 1765 1766 /* PSRTYPE must be initialized in 82599 */ 1767 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1768 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1769 IXGBE_PSRTYPE_L2HDR; 1770 1771 if (adapter->num_rx_queues > 1) 1772 psrtype |= BIT(29); 1773 1774 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1775 } 1776 1777 #define IXGBEVF_MAX_RX_DESC_POLL 10 1778 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1779 struct ixgbevf_ring *ring) 1780 { 1781 struct ixgbe_hw *hw = &adapter->hw; 1782 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1783 u32 rxdctl; 1784 u8 reg_idx = ring->reg_idx; 1785 1786 if (IXGBE_REMOVED(hw->hw_addr)) 1787 return; 1788 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1789 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1790 1791 /* write value back with RXDCTL.ENABLE bit cleared */ 1792 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1793 1794 /* the hardware may take up to 100us to really disable the Rx queue */ 1795 do { 1796 udelay(10); 1797 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1798 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1799 1800 if (!wait_loop) 1801 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1802 reg_idx); 1803 } 1804 1805 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1806 struct ixgbevf_ring *ring) 1807 { 1808 struct ixgbe_hw *hw = &adapter->hw; 1809 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1810 u32 rxdctl; 1811 u8 reg_idx = ring->reg_idx; 1812 1813 if (IXGBE_REMOVED(hw->hw_addr)) 1814 return; 1815 do { 1816 usleep_range(1000, 2000); 1817 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1818 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1819 1820 if (!wait_loop) 1821 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1822 reg_idx); 1823 } 1824 1825 /** 1826 * ixgbevf_init_rss_key - Initialize adapter RSS key 1827 * @adapter: device handle 1828 * 1829 * Allocates and initializes the RSS key if it is not allocated. 1830 **/ 1831 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1832 { 1833 u32 *rss_key; 1834 1835 if (!adapter->rss_key) { 1836 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1837 if (unlikely(!rss_key)) 1838 return -ENOMEM; 1839 1840 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1841 adapter->rss_key = rss_key; 1842 } 1843 1844 return 0; 1845 } 1846 1847 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1848 { 1849 struct ixgbe_hw *hw = &adapter->hw; 1850 u32 vfmrqc = 0, vfreta = 0; 1851 u16 rss_i = adapter->num_rx_queues; 1852 u8 i, j; 1853 1854 /* Fill out hash function seeds */ 1855 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1856 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1857 1858 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1859 if (j == rss_i) 1860 j = 0; 1861 1862 adapter->rss_indir_tbl[i] = j; 1863 1864 vfreta |= j << (i & 0x3) * 8; 1865 if ((i & 3) == 3) { 1866 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1867 vfreta = 0; 1868 } 1869 } 1870 1871 /* Perform hash on these packet types */ 1872 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1873 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1874 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1875 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1876 1877 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1878 1879 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1880 } 1881 1882 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1883 struct ixgbevf_ring *ring) 1884 { 1885 struct ixgbe_hw *hw = &adapter->hw; 1886 union ixgbe_adv_rx_desc *rx_desc; 1887 u64 rdba = ring->dma; 1888 u32 rxdctl; 1889 u8 reg_idx = ring->reg_idx; 1890 1891 /* disable queue to avoid issues while updating state */ 1892 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1893 ixgbevf_disable_rx_queue(adapter, ring); 1894 1895 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1896 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1897 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1898 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1899 1900 #ifndef CONFIG_SPARC 1901 /* enable relaxed ordering */ 1902 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1903 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1904 #else 1905 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1906 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1907 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1908 #endif 1909 1910 /* reset head and tail pointers */ 1911 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1912 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1913 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1914 1915 /* initialize rx_buffer_info */ 1916 memset(ring->rx_buffer_info, 0, 1917 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1918 1919 /* initialize Rx descriptor 0 */ 1920 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1921 rx_desc->wb.upper.length = 0; 1922 1923 /* reset ntu and ntc to place SW in sync with hardwdare */ 1924 ring->next_to_clean = 0; 1925 ring->next_to_use = 0; 1926 ring->next_to_alloc = 0; 1927 1928 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1929 1930 /* RXDCTL.RLPML does not work on 82599 */ 1931 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1932 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1933 IXGBE_RXDCTL_RLPML_EN); 1934 1935 #if (PAGE_SIZE < 8192) 1936 /* Limit the maximum frame size so we don't overrun the skb */ 1937 if (ring_uses_build_skb(ring) && 1938 !ring_uses_large_buffer(ring)) 1939 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1940 IXGBE_RXDCTL_RLPML_EN; 1941 #endif 1942 } 1943 1944 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1945 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1946 1947 ixgbevf_rx_desc_queue_enable(adapter, ring); 1948 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1949 } 1950 1951 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1952 struct ixgbevf_ring *rx_ring) 1953 { 1954 struct net_device *netdev = adapter->netdev; 1955 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1956 1957 /* set build_skb and buffer size flags */ 1958 clear_ring_build_skb_enabled(rx_ring); 1959 clear_ring_uses_large_buffer(rx_ring); 1960 1961 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1962 return; 1963 1964 set_ring_build_skb_enabled(rx_ring); 1965 1966 if (PAGE_SIZE < 8192) { 1967 if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB) 1968 return; 1969 1970 set_ring_uses_large_buffer(rx_ring); 1971 } 1972 } 1973 1974 /** 1975 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1976 * @adapter: board private structure 1977 * 1978 * Configure the Rx unit of the MAC after a reset. 1979 **/ 1980 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 1981 { 1982 struct ixgbe_hw *hw = &adapter->hw; 1983 struct net_device *netdev = adapter->netdev; 1984 int i, ret; 1985 1986 ixgbevf_setup_psrtype(adapter); 1987 if (hw->mac.type >= ixgbe_mac_X550_vf) 1988 ixgbevf_setup_vfmrqc(adapter); 1989 1990 spin_lock_bh(&adapter->mbx_lock); 1991 /* notify the PF of our intent to use this size of frame */ 1992 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 1993 spin_unlock_bh(&adapter->mbx_lock); 1994 if (ret) 1995 dev_err(&adapter->pdev->dev, 1996 "Failed to set MTU at %d\n", netdev->mtu); 1997 1998 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1999 * the Base and Length of the Rx Descriptor Ring 2000 */ 2001 for (i = 0; i < adapter->num_rx_queues; i++) { 2002 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2003 2004 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2005 ixgbevf_configure_rx_ring(adapter, rx_ring); 2006 } 2007 } 2008 2009 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2010 __be16 proto, u16 vid) 2011 { 2012 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2013 struct ixgbe_hw *hw = &adapter->hw; 2014 int err; 2015 2016 spin_lock_bh(&adapter->mbx_lock); 2017 2018 /* add VID to filter table */ 2019 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2020 2021 spin_unlock_bh(&adapter->mbx_lock); 2022 2023 /* translate error return types so error makes sense */ 2024 if (err == IXGBE_ERR_MBX) 2025 return -EIO; 2026 2027 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2028 return -EACCES; 2029 2030 set_bit(vid, adapter->active_vlans); 2031 2032 return err; 2033 } 2034 2035 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2036 __be16 proto, u16 vid) 2037 { 2038 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2039 struct ixgbe_hw *hw = &adapter->hw; 2040 int err; 2041 2042 spin_lock_bh(&adapter->mbx_lock); 2043 2044 /* remove VID from filter table */ 2045 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2046 2047 spin_unlock_bh(&adapter->mbx_lock); 2048 2049 clear_bit(vid, adapter->active_vlans); 2050 2051 return err; 2052 } 2053 2054 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2055 { 2056 u16 vid; 2057 2058 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2059 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2060 htons(ETH_P_8021Q), vid); 2061 } 2062 2063 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2064 { 2065 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2066 struct ixgbe_hw *hw = &adapter->hw; 2067 int count = 0; 2068 2069 if ((netdev_uc_count(netdev)) > 10) { 2070 pr_err("Too many unicast filters - No Space\n"); 2071 return -ENOSPC; 2072 } 2073 2074 if (!netdev_uc_empty(netdev)) { 2075 struct netdev_hw_addr *ha; 2076 2077 netdev_for_each_uc_addr(ha, netdev) { 2078 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2079 udelay(200); 2080 } 2081 } else { 2082 /* If the list is empty then send message to PF driver to 2083 * clear all MAC VLANs on this VF. 2084 */ 2085 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2086 } 2087 2088 return count; 2089 } 2090 2091 /** 2092 * ixgbevf_set_rx_mode - Multicast and unicast set 2093 * @netdev: network interface device structure 2094 * 2095 * The set_rx_method entry point is called whenever the multicast address 2096 * list, unicast address list or the network interface flags are updated. 2097 * This routine is responsible for configuring the hardware for proper 2098 * multicast mode and configuring requested unicast filters. 2099 **/ 2100 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2101 { 2102 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2103 struct ixgbe_hw *hw = &adapter->hw; 2104 unsigned int flags = netdev->flags; 2105 int xcast_mode; 2106 2107 /* request the most inclusive mode we need */ 2108 if (flags & IFF_PROMISC) 2109 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2110 else if (flags & IFF_ALLMULTI) 2111 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2112 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2113 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2114 else 2115 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2116 2117 spin_lock_bh(&adapter->mbx_lock); 2118 2119 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2120 2121 /* reprogram multicast list */ 2122 hw->mac.ops.update_mc_addr_list(hw, netdev); 2123 2124 ixgbevf_write_uc_addr_list(netdev); 2125 2126 spin_unlock_bh(&adapter->mbx_lock); 2127 } 2128 2129 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2130 { 2131 int q_idx; 2132 struct ixgbevf_q_vector *q_vector; 2133 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2134 2135 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2136 q_vector = adapter->q_vector[q_idx]; 2137 napi_enable(&q_vector->napi); 2138 } 2139 } 2140 2141 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2142 { 2143 int q_idx; 2144 struct ixgbevf_q_vector *q_vector; 2145 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2146 2147 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2148 q_vector = adapter->q_vector[q_idx]; 2149 napi_disable(&q_vector->napi); 2150 } 2151 } 2152 2153 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2154 { 2155 struct ixgbe_hw *hw = &adapter->hw; 2156 unsigned int def_q = 0; 2157 unsigned int num_tcs = 0; 2158 unsigned int num_rx_queues = adapter->num_rx_queues; 2159 unsigned int num_tx_queues = adapter->num_tx_queues; 2160 int err; 2161 2162 spin_lock_bh(&adapter->mbx_lock); 2163 2164 /* fetch queue configuration from the PF */ 2165 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2166 2167 spin_unlock_bh(&adapter->mbx_lock); 2168 2169 if (err) 2170 return err; 2171 2172 if (num_tcs > 1) { 2173 /* we need only one Tx queue */ 2174 num_tx_queues = 1; 2175 2176 /* update default Tx ring register index */ 2177 adapter->tx_ring[0]->reg_idx = def_q; 2178 2179 /* we need as many queues as traffic classes */ 2180 num_rx_queues = num_tcs; 2181 } 2182 2183 /* if we have a bad config abort request queue reset */ 2184 if ((adapter->num_rx_queues != num_rx_queues) || 2185 (adapter->num_tx_queues != num_tx_queues)) { 2186 /* force mailbox timeout to prevent further messages */ 2187 hw->mbx.timeout = 0; 2188 2189 /* wait for watchdog to come around and bail us out */ 2190 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2191 } 2192 2193 return 0; 2194 } 2195 2196 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2197 { 2198 ixgbevf_configure_dcb(adapter); 2199 2200 ixgbevf_set_rx_mode(adapter->netdev); 2201 2202 ixgbevf_restore_vlan(adapter); 2203 2204 ixgbevf_configure_tx(adapter); 2205 ixgbevf_configure_rx(adapter); 2206 } 2207 2208 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2209 { 2210 /* Only save pre-reset stats if there are some */ 2211 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2212 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2213 adapter->stats.base_vfgprc; 2214 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2215 adapter->stats.base_vfgptc; 2216 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2217 adapter->stats.base_vfgorc; 2218 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2219 adapter->stats.base_vfgotc; 2220 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2221 adapter->stats.base_vfmprc; 2222 } 2223 } 2224 2225 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2226 { 2227 struct ixgbe_hw *hw = &adapter->hw; 2228 2229 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2230 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2231 adapter->stats.last_vfgorc |= 2232 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2233 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2234 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2235 adapter->stats.last_vfgotc |= 2236 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2237 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2238 2239 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2240 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2241 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2242 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2243 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2244 } 2245 2246 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2247 { 2248 struct ixgbe_hw *hw = &adapter->hw; 2249 int api[] = { ixgbe_mbox_api_13, 2250 ixgbe_mbox_api_12, 2251 ixgbe_mbox_api_11, 2252 ixgbe_mbox_api_10, 2253 ixgbe_mbox_api_unknown }; 2254 int err, idx = 0; 2255 2256 spin_lock_bh(&adapter->mbx_lock); 2257 2258 while (api[idx] != ixgbe_mbox_api_unknown) { 2259 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2260 if (!err) 2261 break; 2262 idx++; 2263 } 2264 2265 spin_unlock_bh(&adapter->mbx_lock); 2266 } 2267 2268 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2269 { 2270 struct net_device *netdev = adapter->netdev; 2271 struct ixgbe_hw *hw = &adapter->hw; 2272 2273 ixgbevf_configure_msix(adapter); 2274 2275 spin_lock_bh(&adapter->mbx_lock); 2276 2277 if (is_valid_ether_addr(hw->mac.addr)) 2278 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2279 else 2280 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2281 2282 spin_unlock_bh(&adapter->mbx_lock); 2283 2284 smp_mb__before_atomic(); 2285 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2286 ixgbevf_napi_enable_all(adapter); 2287 2288 /* clear any pending interrupts, may auto mask */ 2289 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2290 ixgbevf_irq_enable(adapter); 2291 2292 /* enable transmits */ 2293 netif_tx_start_all_queues(netdev); 2294 2295 ixgbevf_save_reset_stats(adapter); 2296 ixgbevf_init_last_counter_stats(adapter); 2297 2298 hw->mac.get_link_status = 1; 2299 mod_timer(&adapter->service_timer, jiffies); 2300 } 2301 2302 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2303 { 2304 ixgbevf_configure(adapter); 2305 2306 ixgbevf_up_complete(adapter); 2307 } 2308 2309 /** 2310 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2311 * @rx_ring: ring to free buffers from 2312 **/ 2313 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2314 { 2315 u16 i = rx_ring->next_to_clean; 2316 2317 /* Free Rx ring sk_buff */ 2318 if (rx_ring->skb) { 2319 dev_kfree_skb(rx_ring->skb); 2320 rx_ring->skb = NULL; 2321 } 2322 2323 /* Free all the Rx ring pages */ 2324 while (i != rx_ring->next_to_alloc) { 2325 struct ixgbevf_rx_buffer *rx_buffer; 2326 2327 rx_buffer = &rx_ring->rx_buffer_info[i]; 2328 2329 /* Invalidate cache lines that may have been written to by 2330 * device so that we avoid corrupting memory. 2331 */ 2332 dma_sync_single_range_for_cpu(rx_ring->dev, 2333 rx_buffer->dma, 2334 rx_buffer->page_offset, 2335 ixgbevf_rx_bufsz(rx_ring), 2336 DMA_FROM_DEVICE); 2337 2338 /* free resources associated with mapping */ 2339 dma_unmap_page_attrs(rx_ring->dev, 2340 rx_buffer->dma, 2341 ixgbevf_rx_pg_size(rx_ring), 2342 DMA_FROM_DEVICE, 2343 IXGBEVF_RX_DMA_ATTR); 2344 2345 __page_frag_cache_drain(rx_buffer->page, 2346 rx_buffer->pagecnt_bias); 2347 2348 i++; 2349 if (i == rx_ring->count) 2350 i = 0; 2351 } 2352 2353 rx_ring->next_to_alloc = 0; 2354 rx_ring->next_to_clean = 0; 2355 rx_ring->next_to_use = 0; 2356 } 2357 2358 /** 2359 * ixgbevf_clean_tx_ring - Free Tx Buffers 2360 * @tx_ring: ring to be cleaned 2361 **/ 2362 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2363 { 2364 u16 i = tx_ring->next_to_clean; 2365 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2366 2367 while (i != tx_ring->next_to_use) { 2368 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2369 2370 /* Free all the Tx ring sk_buffs */ 2371 if (ring_is_xdp(tx_ring)) 2372 page_frag_free(tx_buffer->data); 2373 else 2374 dev_kfree_skb_any(tx_buffer->skb); 2375 2376 /* unmap skb header data */ 2377 dma_unmap_single(tx_ring->dev, 2378 dma_unmap_addr(tx_buffer, dma), 2379 dma_unmap_len(tx_buffer, len), 2380 DMA_TO_DEVICE); 2381 2382 /* check for eop_desc to determine the end of the packet */ 2383 eop_desc = tx_buffer->next_to_watch; 2384 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2385 2386 /* unmap remaining buffers */ 2387 while (tx_desc != eop_desc) { 2388 tx_buffer++; 2389 tx_desc++; 2390 i++; 2391 if (unlikely(i == tx_ring->count)) { 2392 i = 0; 2393 tx_buffer = tx_ring->tx_buffer_info; 2394 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2395 } 2396 2397 /* unmap any remaining paged data */ 2398 if (dma_unmap_len(tx_buffer, len)) 2399 dma_unmap_page(tx_ring->dev, 2400 dma_unmap_addr(tx_buffer, dma), 2401 dma_unmap_len(tx_buffer, len), 2402 DMA_TO_DEVICE); 2403 } 2404 2405 /* move us one more past the eop_desc for start of next pkt */ 2406 tx_buffer++; 2407 i++; 2408 if (unlikely(i == tx_ring->count)) { 2409 i = 0; 2410 tx_buffer = tx_ring->tx_buffer_info; 2411 } 2412 } 2413 2414 /* reset next_to_use and next_to_clean */ 2415 tx_ring->next_to_use = 0; 2416 tx_ring->next_to_clean = 0; 2417 2418 } 2419 2420 /** 2421 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2422 * @adapter: board private structure 2423 **/ 2424 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2425 { 2426 int i; 2427 2428 for (i = 0; i < adapter->num_rx_queues; i++) 2429 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2430 } 2431 2432 /** 2433 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2434 * @adapter: board private structure 2435 **/ 2436 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2437 { 2438 int i; 2439 2440 for (i = 0; i < adapter->num_tx_queues; i++) 2441 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2442 for (i = 0; i < adapter->num_xdp_queues; i++) 2443 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2444 } 2445 2446 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2447 { 2448 struct net_device *netdev = adapter->netdev; 2449 struct ixgbe_hw *hw = &adapter->hw; 2450 int i; 2451 2452 /* signal that we are down to the interrupt handler */ 2453 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2454 return; /* do nothing if already down */ 2455 2456 /* disable all enabled Rx queues */ 2457 for (i = 0; i < adapter->num_rx_queues; i++) 2458 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2459 2460 usleep_range(10000, 20000); 2461 2462 netif_tx_stop_all_queues(netdev); 2463 2464 /* call carrier off first to avoid false dev_watchdog timeouts */ 2465 netif_carrier_off(netdev); 2466 netif_tx_disable(netdev); 2467 2468 ixgbevf_irq_disable(adapter); 2469 2470 ixgbevf_napi_disable_all(adapter); 2471 2472 del_timer_sync(&adapter->service_timer); 2473 2474 /* disable transmits in the hardware now that interrupts are off */ 2475 for (i = 0; i < adapter->num_tx_queues; i++) { 2476 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2477 2478 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2479 IXGBE_TXDCTL_SWFLSH); 2480 } 2481 2482 for (i = 0; i < adapter->num_xdp_queues; i++) { 2483 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2484 2485 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2486 IXGBE_TXDCTL_SWFLSH); 2487 } 2488 2489 if (!pci_channel_offline(adapter->pdev)) 2490 ixgbevf_reset(adapter); 2491 2492 ixgbevf_clean_all_tx_rings(adapter); 2493 ixgbevf_clean_all_rx_rings(adapter); 2494 } 2495 2496 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2497 { 2498 WARN_ON(in_interrupt()); 2499 2500 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2501 msleep(1); 2502 2503 ixgbevf_down(adapter); 2504 ixgbevf_up(adapter); 2505 2506 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2507 } 2508 2509 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2510 { 2511 struct ixgbe_hw *hw = &adapter->hw; 2512 struct net_device *netdev = adapter->netdev; 2513 2514 if (hw->mac.ops.reset_hw(hw)) { 2515 hw_dbg(hw, "PF still resetting\n"); 2516 } else { 2517 hw->mac.ops.init_hw(hw); 2518 ixgbevf_negotiate_api(adapter); 2519 } 2520 2521 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2522 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2523 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2524 } 2525 2526 adapter->last_reset = jiffies; 2527 } 2528 2529 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2530 int vectors) 2531 { 2532 int vector_threshold; 2533 2534 /* We'll want at least 2 (vector_threshold): 2535 * 1) TxQ[0] + RxQ[0] handler 2536 * 2) Other (Link Status Change, etc.) 2537 */ 2538 vector_threshold = MIN_MSIX_COUNT; 2539 2540 /* The more we get, the more we will assign to Tx/Rx Cleanup 2541 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2542 * Right now, we simply care about how many we'll get; we'll 2543 * set them up later while requesting irq's. 2544 */ 2545 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2546 vector_threshold, vectors); 2547 2548 if (vectors < 0) { 2549 dev_err(&adapter->pdev->dev, 2550 "Unable to allocate MSI-X interrupts\n"); 2551 kfree(adapter->msix_entries); 2552 adapter->msix_entries = NULL; 2553 return vectors; 2554 } 2555 2556 /* Adjust for only the vectors we'll use, which is minimum 2557 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2558 * vectors we were allocated. 2559 */ 2560 adapter->num_msix_vectors = vectors; 2561 2562 return 0; 2563 } 2564 2565 /** 2566 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2567 * @adapter: board private structure to initialize 2568 * 2569 * This is the top level queue allocation routine. The order here is very 2570 * important, starting with the "most" number of features turned on at once, 2571 * and ending with the smallest set of features. This way large combinations 2572 * can be allocated if they're turned on, and smaller combinations are the 2573 * fallthrough conditions. 2574 * 2575 **/ 2576 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2577 { 2578 struct ixgbe_hw *hw = &adapter->hw; 2579 unsigned int def_q = 0; 2580 unsigned int num_tcs = 0; 2581 int err; 2582 2583 /* Start with base case */ 2584 adapter->num_rx_queues = 1; 2585 adapter->num_tx_queues = 1; 2586 adapter->num_xdp_queues = 0; 2587 2588 spin_lock_bh(&adapter->mbx_lock); 2589 2590 /* fetch queue configuration from the PF */ 2591 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2592 2593 spin_unlock_bh(&adapter->mbx_lock); 2594 2595 if (err) 2596 return; 2597 2598 /* we need as many queues as traffic classes */ 2599 if (num_tcs > 1) { 2600 adapter->num_rx_queues = num_tcs; 2601 } else { 2602 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2603 2604 switch (hw->api_version) { 2605 case ixgbe_mbox_api_11: 2606 case ixgbe_mbox_api_12: 2607 case ixgbe_mbox_api_13: 2608 if (adapter->xdp_prog && 2609 hw->mac.max_tx_queues == rss) 2610 rss = rss > 3 ? 2 : 1; 2611 2612 adapter->num_rx_queues = rss; 2613 adapter->num_tx_queues = rss; 2614 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2615 default: 2616 break; 2617 } 2618 } 2619 } 2620 2621 /** 2622 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2623 * @adapter: board private structure to initialize 2624 * 2625 * Attempt to configure the interrupts using the best available 2626 * capabilities of the hardware and the kernel. 2627 **/ 2628 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2629 { 2630 int vector, v_budget; 2631 2632 /* It's easy to be greedy for MSI-X vectors, but it really 2633 * doesn't do us much good if we have a lot more vectors 2634 * than CPU's. So let's be conservative and only ask for 2635 * (roughly) the same number of vectors as there are CPU's. 2636 * The default is to use pairs of vectors. 2637 */ 2638 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2639 v_budget = min_t(int, v_budget, num_online_cpus()); 2640 v_budget += NON_Q_VECTORS; 2641 2642 adapter->msix_entries = kcalloc(v_budget, 2643 sizeof(struct msix_entry), GFP_KERNEL); 2644 if (!adapter->msix_entries) 2645 return -ENOMEM; 2646 2647 for (vector = 0; vector < v_budget; vector++) 2648 adapter->msix_entries[vector].entry = vector; 2649 2650 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2651 * does not support any other modes, so we will simply fail here. Note 2652 * that we clean up the msix_entries pointer else-where. 2653 */ 2654 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2655 } 2656 2657 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2658 struct ixgbevf_ring_container *head) 2659 { 2660 ring->next = head->ring; 2661 head->ring = ring; 2662 head->count++; 2663 } 2664 2665 /** 2666 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2667 * @adapter: board private structure to initialize 2668 * @v_idx: index of vector in adapter struct 2669 * @txr_count: number of Tx rings for q vector 2670 * @txr_idx: index of first Tx ring to assign 2671 * @xdp_count: total number of XDP rings to allocate 2672 * @xdp_idx: index of first XDP ring to allocate 2673 * @rxr_count: number of Rx rings for q vector 2674 * @rxr_idx: index of first Rx ring to assign 2675 * 2676 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2677 **/ 2678 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2679 int txr_count, int txr_idx, 2680 int xdp_count, int xdp_idx, 2681 int rxr_count, int rxr_idx) 2682 { 2683 struct ixgbevf_q_vector *q_vector; 2684 int reg_idx = txr_idx + xdp_idx; 2685 struct ixgbevf_ring *ring; 2686 int ring_count, size; 2687 2688 ring_count = txr_count + xdp_count + rxr_count; 2689 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2690 2691 /* allocate q_vector and rings */ 2692 q_vector = kzalloc(size, GFP_KERNEL); 2693 if (!q_vector) 2694 return -ENOMEM; 2695 2696 /* initialize NAPI */ 2697 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64); 2698 2699 /* tie q_vector and adapter together */ 2700 adapter->q_vector[v_idx] = q_vector; 2701 q_vector->adapter = adapter; 2702 q_vector->v_idx = v_idx; 2703 2704 /* initialize pointer to rings */ 2705 ring = q_vector->ring; 2706 2707 while (txr_count) { 2708 /* assign generic ring traits */ 2709 ring->dev = &adapter->pdev->dev; 2710 ring->netdev = adapter->netdev; 2711 2712 /* configure backlink on ring */ 2713 ring->q_vector = q_vector; 2714 2715 /* update q_vector Tx values */ 2716 ixgbevf_add_ring(ring, &q_vector->tx); 2717 2718 /* apply Tx specific ring traits */ 2719 ring->count = adapter->tx_ring_count; 2720 ring->queue_index = txr_idx; 2721 ring->reg_idx = reg_idx; 2722 2723 /* assign ring to adapter */ 2724 adapter->tx_ring[txr_idx] = ring; 2725 2726 /* update count and index */ 2727 txr_count--; 2728 txr_idx++; 2729 reg_idx++; 2730 2731 /* push pointer to next ring */ 2732 ring++; 2733 } 2734 2735 while (xdp_count) { 2736 /* assign generic ring traits */ 2737 ring->dev = &adapter->pdev->dev; 2738 ring->netdev = adapter->netdev; 2739 2740 /* configure backlink on ring */ 2741 ring->q_vector = q_vector; 2742 2743 /* update q_vector Tx values */ 2744 ixgbevf_add_ring(ring, &q_vector->tx); 2745 2746 /* apply Tx specific ring traits */ 2747 ring->count = adapter->tx_ring_count; 2748 ring->queue_index = xdp_idx; 2749 ring->reg_idx = reg_idx; 2750 set_ring_xdp(ring); 2751 2752 /* assign ring to adapter */ 2753 adapter->xdp_ring[xdp_idx] = ring; 2754 2755 /* update count and index */ 2756 xdp_count--; 2757 xdp_idx++; 2758 reg_idx++; 2759 2760 /* push pointer to next ring */ 2761 ring++; 2762 } 2763 2764 while (rxr_count) { 2765 /* assign generic ring traits */ 2766 ring->dev = &adapter->pdev->dev; 2767 ring->netdev = adapter->netdev; 2768 2769 /* configure backlink on ring */ 2770 ring->q_vector = q_vector; 2771 2772 /* update q_vector Rx values */ 2773 ixgbevf_add_ring(ring, &q_vector->rx); 2774 2775 /* apply Rx specific ring traits */ 2776 ring->count = adapter->rx_ring_count; 2777 ring->queue_index = rxr_idx; 2778 ring->reg_idx = rxr_idx; 2779 2780 /* assign ring to adapter */ 2781 adapter->rx_ring[rxr_idx] = ring; 2782 2783 /* update count and index */ 2784 rxr_count--; 2785 rxr_idx++; 2786 2787 /* push pointer to next ring */ 2788 ring++; 2789 } 2790 2791 return 0; 2792 } 2793 2794 /** 2795 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2796 * @adapter: board private structure to initialize 2797 * @v_idx: index of vector in adapter struct 2798 * 2799 * This function frees the memory allocated to the q_vector. In addition if 2800 * NAPI is enabled it will delete any references to the NAPI struct prior 2801 * to freeing the q_vector. 2802 **/ 2803 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2804 { 2805 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2806 struct ixgbevf_ring *ring; 2807 2808 ixgbevf_for_each_ring(ring, q_vector->tx) { 2809 if (ring_is_xdp(ring)) 2810 adapter->xdp_ring[ring->queue_index] = NULL; 2811 else 2812 adapter->tx_ring[ring->queue_index] = NULL; 2813 } 2814 2815 ixgbevf_for_each_ring(ring, q_vector->rx) 2816 adapter->rx_ring[ring->queue_index] = NULL; 2817 2818 adapter->q_vector[v_idx] = NULL; 2819 netif_napi_del(&q_vector->napi); 2820 2821 /* ixgbevf_get_stats() might access the rings on this vector, 2822 * we must wait a grace period before freeing it. 2823 */ 2824 kfree_rcu(q_vector, rcu); 2825 } 2826 2827 /** 2828 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2829 * @adapter: board private structure to initialize 2830 * 2831 * We allocate one q_vector per queue interrupt. If allocation fails we 2832 * return -ENOMEM. 2833 **/ 2834 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2835 { 2836 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2837 int rxr_remaining = adapter->num_rx_queues; 2838 int txr_remaining = adapter->num_tx_queues; 2839 int xdp_remaining = adapter->num_xdp_queues; 2840 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2841 int err; 2842 2843 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2844 for (; rxr_remaining; v_idx++, q_vectors--) { 2845 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2846 2847 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2848 0, 0, 0, 0, rqpv, rxr_idx); 2849 if (err) 2850 goto err_out; 2851 2852 /* update counts and index */ 2853 rxr_remaining -= rqpv; 2854 rxr_idx += rqpv; 2855 } 2856 } 2857 2858 for (; q_vectors; v_idx++, q_vectors--) { 2859 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2860 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2861 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2862 2863 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2864 tqpv, txr_idx, 2865 xqpv, xdp_idx, 2866 rqpv, rxr_idx); 2867 2868 if (err) 2869 goto err_out; 2870 2871 /* update counts and index */ 2872 rxr_remaining -= rqpv; 2873 rxr_idx += rqpv; 2874 txr_remaining -= tqpv; 2875 txr_idx += tqpv; 2876 xdp_remaining -= xqpv; 2877 xdp_idx += xqpv; 2878 } 2879 2880 return 0; 2881 2882 err_out: 2883 while (v_idx) { 2884 v_idx--; 2885 ixgbevf_free_q_vector(adapter, v_idx); 2886 } 2887 2888 return -ENOMEM; 2889 } 2890 2891 /** 2892 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2893 * @adapter: board private structure to initialize 2894 * 2895 * This function frees the memory allocated to the q_vectors. In addition if 2896 * NAPI is enabled it will delete any references to the NAPI struct prior 2897 * to freeing the q_vector. 2898 **/ 2899 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2900 { 2901 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2902 2903 while (q_vectors) { 2904 q_vectors--; 2905 ixgbevf_free_q_vector(adapter, q_vectors); 2906 } 2907 } 2908 2909 /** 2910 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2911 * @adapter: board private structure 2912 * 2913 **/ 2914 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2915 { 2916 if (!adapter->msix_entries) 2917 return; 2918 2919 pci_disable_msix(adapter->pdev); 2920 kfree(adapter->msix_entries); 2921 adapter->msix_entries = NULL; 2922 } 2923 2924 /** 2925 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2926 * @adapter: board private structure to initialize 2927 * 2928 **/ 2929 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2930 { 2931 int err; 2932 2933 /* Number of supported queues */ 2934 ixgbevf_set_num_queues(adapter); 2935 2936 err = ixgbevf_set_interrupt_capability(adapter); 2937 if (err) { 2938 hw_dbg(&adapter->hw, 2939 "Unable to setup interrupt capabilities\n"); 2940 goto err_set_interrupt; 2941 } 2942 2943 err = ixgbevf_alloc_q_vectors(adapter); 2944 if (err) { 2945 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2946 goto err_alloc_q_vectors; 2947 } 2948 2949 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2950 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2951 adapter->num_rx_queues, adapter->num_tx_queues, 2952 adapter->num_xdp_queues); 2953 2954 set_bit(__IXGBEVF_DOWN, &adapter->state); 2955 2956 return 0; 2957 err_alloc_q_vectors: 2958 ixgbevf_reset_interrupt_capability(adapter); 2959 err_set_interrupt: 2960 return err; 2961 } 2962 2963 /** 2964 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2965 * @adapter: board private structure to clear interrupt scheme on 2966 * 2967 * We go through and clear interrupt specific resources and reset the structure 2968 * to pre-load conditions 2969 **/ 2970 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2971 { 2972 adapter->num_tx_queues = 0; 2973 adapter->num_xdp_queues = 0; 2974 adapter->num_rx_queues = 0; 2975 2976 ixgbevf_free_q_vectors(adapter); 2977 ixgbevf_reset_interrupt_capability(adapter); 2978 } 2979 2980 /** 2981 * ixgbevf_sw_init - Initialize general software structures 2982 * @adapter: board private structure to initialize 2983 * 2984 * ixgbevf_sw_init initializes the Adapter private data structure. 2985 * Fields are initialized based on PCI device information and 2986 * OS network device settings (MTU size). 2987 **/ 2988 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 2989 { 2990 struct ixgbe_hw *hw = &adapter->hw; 2991 struct pci_dev *pdev = adapter->pdev; 2992 struct net_device *netdev = adapter->netdev; 2993 int err; 2994 2995 /* PCI config space info */ 2996 hw->vendor_id = pdev->vendor; 2997 hw->device_id = pdev->device; 2998 hw->revision_id = pdev->revision; 2999 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3000 hw->subsystem_device_id = pdev->subsystem_device; 3001 3002 hw->mbx.ops.init_params(hw); 3003 3004 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3005 err = ixgbevf_init_rss_key(adapter); 3006 if (err) 3007 goto out; 3008 } 3009 3010 /* assume legacy case in which PF would only give VF 2 queues */ 3011 hw->mac.max_tx_queues = 2; 3012 hw->mac.max_rx_queues = 2; 3013 3014 /* lock to protect mailbox accesses */ 3015 spin_lock_init(&adapter->mbx_lock); 3016 3017 err = hw->mac.ops.reset_hw(hw); 3018 if (err) { 3019 dev_info(&pdev->dev, 3020 "PF still in reset state. Is the PF interface up?\n"); 3021 } else { 3022 err = hw->mac.ops.init_hw(hw); 3023 if (err) { 3024 pr_err("init_shared_code failed: %d\n", err); 3025 goto out; 3026 } 3027 ixgbevf_negotiate_api(adapter); 3028 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3029 if (err) 3030 dev_info(&pdev->dev, "Error reading MAC address\n"); 3031 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3032 dev_info(&pdev->dev, 3033 "MAC address not assigned by administrator.\n"); 3034 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 3035 } 3036 3037 if (!is_valid_ether_addr(netdev->dev_addr)) { 3038 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3039 eth_hw_addr_random(netdev); 3040 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3041 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3042 } 3043 3044 /* Enable dynamic interrupt throttling rates */ 3045 adapter->rx_itr_setting = 1; 3046 adapter->tx_itr_setting = 1; 3047 3048 /* set default ring sizes */ 3049 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3050 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3051 3052 set_bit(__IXGBEVF_DOWN, &adapter->state); 3053 return 0; 3054 3055 out: 3056 return err; 3057 } 3058 3059 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3060 { \ 3061 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3062 if (current_counter < last_counter) \ 3063 counter += 0x100000000LL; \ 3064 last_counter = current_counter; \ 3065 counter &= 0xFFFFFFFF00000000LL; \ 3066 counter |= current_counter; \ 3067 } 3068 3069 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3070 { \ 3071 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3072 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3073 u64 current_counter = (current_counter_msb << 32) | \ 3074 current_counter_lsb; \ 3075 if (current_counter < last_counter) \ 3076 counter += 0x1000000000LL; \ 3077 last_counter = current_counter; \ 3078 counter &= 0xFFFFFFF000000000LL; \ 3079 counter |= current_counter; \ 3080 } 3081 /** 3082 * ixgbevf_update_stats - Update the board statistics counters. 3083 * @adapter: board private structure 3084 **/ 3085 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3086 { 3087 struct ixgbe_hw *hw = &adapter->hw; 3088 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3089 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3090 int i; 3091 3092 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3093 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3094 return; 3095 3096 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3097 adapter->stats.vfgprc); 3098 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3099 adapter->stats.vfgptc); 3100 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3101 adapter->stats.last_vfgorc, 3102 adapter->stats.vfgorc); 3103 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3104 adapter->stats.last_vfgotc, 3105 adapter->stats.vfgotc); 3106 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3107 adapter->stats.vfmprc); 3108 3109 for (i = 0; i < adapter->num_rx_queues; i++) { 3110 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3111 3112 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3113 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3114 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3115 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3116 } 3117 3118 adapter->hw_csum_rx_error = hw_csum_rx_error; 3119 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3120 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3121 adapter->alloc_rx_page = alloc_rx_page; 3122 } 3123 3124 /** 3125 * ixgbevf_service_timer - Timer Call-back 3126 * @t: pointer to timer_list struct 3127 **/ 3128 static void ixgbevf_service_timer(struct timer_list *t) 3129 { 3130 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3131 service_timer); 3132 3133 /* Reset the timer */ 3134 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3135 3136 ixgbevf_service_event_schedule(adapter); 3137 } 3138 3139 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3140 { 3141 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3142 return; 3143 3144 rtnl_lock(); 3145 /* If we're already down or resetting, just bail */ 3146 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3147 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3148 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3149 rtnl_unlock(); 3150 return; 3151 } 3152 3153 adapter->tx_timeout_count++; 3154 3155 ixgbevf_reinit_locked(adapter); 3156 rtnl_unlock(); 3157 } 3158 3159 /** 3160 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3161 * @adapter: pointer to the device adapter structure 3162 * 3163 * This function serves two purposes. First it strobes the interrupt lines 3164 * in order to make certain interrupts are occurring. Secondly it sets the 3165 * bits needed to check for TX hangs. As a result we should immediately 3166 * determine if a hang has occurred. 3167 **/ 3168 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3169 { 3170 struct ixgbe_hw *hw = &adapter->hw; 3171 u32 eics = 0; 3172 int i; 3173 3174 /* If we're down or resetting, just bail */ 3175 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3176 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3177 return; 3178 3179 /* Force detection of hung controller */ 3180 if (netif_carrier_ok(adapter->netdev)) { 3181 for (i = 0; i < adapter->num_tx_queues; i++) 3182 set_check_for_tx_hang(adapter->tx_ring[i]); 3183 for (i = 0; i < adapter->num_xdp_queues; i++) 3184 set_check_for_tx_hang(adapter->xdp_ring[i]); 3185 } 3186 3187 /* get one bit for every active Tx/Rx interrupt vector */ 3188 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3189 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3190 3191 if (qv->rx.ring || qv->tx.ring) 3192 eics |= BIT(i); 3193 } 3194 3195 /* Cause software interrupt to ensure rings are cleaned */ 3196 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3197 } 3198 3199 /** 3200 * ixgbevf_watchdog_update_link - update the link status 3201 * @adapter: pointer to the device adapter structure 3202 **/ 3203 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3204 { 3205 struct ixgbe_hw *hw = &adapter->hw; 3206 u32 link_speed = adapter->link_speed; 3207 bool link_up = adapter->link_up; 3208 s32 err; 3209 3210 spin_lock_bh(&adapter->mbx_lock); 3211 3212 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3213 3214 spin_unlock_bh(&adapter->mbx_lock); 3215 3216 /* if check for link returns error we will need to reset */ 3217 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3218 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3219 link_up = false; 3220 } 3221 3222 adapter->link_up = link_up; 3223 adapter->link_speed = link_speed; 3224 } 3225 3226 /** 3227 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3228 * print link up message 3229 * @adapter: pointer to the device adapter structure 3230 **/ 3231 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3232 { 3233 struct net_device *netdev = adapter->netdev; 3234 3235 /* only continue if link was previously down */ 3236 if (netif_carrier_ok(netdev)) 3237 return; 3238 3239 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3240 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3241 "10 Gbps" : 3242 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3243 "1 Gbps" : 3244 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3245 "100 Mbps" : 3246 "unknown speed"); 3247 3248 netif_carrier_on(netdev); 3249 } 3250 3251 /** 3252 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3253 * print link down message 3254 * @adapter: pointer to the adapter structure 3255 **/ 3256 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3257 { 3258 struct net_device *netdev = adapter->netdev; 3259 3260 adapter->link_speed = 0; 3261 3262 /* only continue if link was up previously */ 3263 if (!netif_carrier_ok(netdev)) 3264 return; 3265 3266 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3267 3268 netif_carrier_off(netdev); 3269 } 3270 3271 /** 3272 * ixgbevf_watchdog_subtask - worker thread to bring link up 3273 * @adapter: board private structure 3274 **/ 3275 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3276 { 3277 /* if interface is down do nothing */ 3278 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3279 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3280 return; 3281 3282 ixgbevf_watchdog_update_link(adapter); 3283 3284 if (adapter->link_up) 3285 ixgbevf_watchdog_link_is_up(adapter); 3286 else 3287 ixgbevf_watchdog_link_is_down(adapter); 3288 3289 ixgbevf_update_stats(adapter); 3290 } 3291 3292 /** 3293 * ixgbevf_service_task - manages and runs subtasks 3294 * @work: pointer to work_struct containing our data 3295 **/ 3296 static void ixgbevf_service_task(struct work_struct *work) 3297 { 3298 struct ixgbevf_adapter *adapter = container_of(work, 3299 struct ixgbevf_adapter, 3300 service_task); 3301 struct ixgbe_hw *hw = &adapter->hw; 3302 3303 if (IXGBE_REMOVED(hw->hw_addr)) { 3304 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3305 rtnl_lock(); 3306 ixgbevf_down(adapter); 3307 rtnl_unlock(); 3308 } 3309 return; 3310 } 3311 3312 ixgbevf_queue_reset_subtask(adapter); 3313 ixgbevf_reset_subtask(adapter); 3314 ixgbevf_watchdog_subtask(adapter); 3315 ixgbevf_check_hang_subtask(adapter); 3316 3317 ixgbevf_service_event_complete(adapter); 3318 } 3319 3320 /** 3321 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3322 * @tx_ring: Tx descriptor ring for a specific queue 3323 * 3324 * Free all transmit software resources 3325 **/ 3326 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3327 { 3328 ixgbevf_clean_tx_ring(tx_ring); 3329 3330 vfree(tx_ring->tx_buffer_info); 3331 tx_ring->tx_buffer_info = NULL; 3332 3333 /* if not set, then don't free */ 3334 if (!tx_ring->desc) 3335 return; 3336 3337 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3338 tx_ring->dma); 3339 3340 tx_ring->desc = NULL; 3341 } 3342 3343 /** 3344 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3345 * @adapter: board private structure 3346 * 3347 * Free all transmit software resources 3348 **/ 3349 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3350 { 3351 int i; 3352 3353 for (i = 0; i < adapter->num_tx_queues; i++) 3354 if (adapter->tx_ring[i]->desc) 3355 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3356 for (i = 0; i < adapter->num_xdp_queues; i++) 3357 if (adapter->xdp_ring[i]->desc) 3358 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3359 } 3360 3361 /** 3362 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3363 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3364 * 3365 * Return 0 on success, negative on failure 3366 **/ 3367 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3368 { 3369 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3370 int size; 3371 3372 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3373 tx_ring->tx_buffer_info = vmalloc(size); 3374 if (!tx_ring->tx_buffer_info) 3375 goto err; 3376 3377 u64_stats_init(&tx_ring->syncp); 3378 3379 /* round up to nearest 4K */ 3380 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3381 tx_ring->size = ALIGN(tx_ring->size, 4096); 3382 3383 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3384 &tx_ring->dma, GFP_KERNEL); 3385 if (!tx_ring->desc) 3386 goto err; 3387 3388 return 0; 3389 3390 err: 3391 vfree(tx_ring->tx_buffer_info); 3392 tx_ring->tx_buffer_info = NULL; 3393 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3394 return -ENOMEM; 3395 } 3396 3397 /** 3398 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3399 * @adapter: board private structure 3400 * 3401 * If this function returns with an error, then it's possible one or 3402 * more of the rings is populated (while the rest are not). It is the 3403 * callers duty to clean those orphaned rings. 3404 * 3405 * Return 0 on success, negative on failure 3406 **/ 3407 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3408 { 3409 int i, j = 0, err = 0; 3410 3411 for (i = 0; i < adapter->num_tx_queues; i++) { 3412 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3413 if (!err) 3414 continue; 3415 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3416 goto err_setup_tx; 3417 } 3418 3419 for (j = 0; j < adapter->num_xdp_queues; j++) { 3420 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3421 if (!err) 3422 continue; 3423 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3424 goto err_setup_tx; 3425 } 3426 3427 return 0; 3428 err_setup_tx: 3429 /* rewind the index freeing the rings as we go */ 3430 while (j--) 3431 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3432 while (i--) 3433 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3434 3435 return err; 3436 } 3437 3438 /** 3439 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3440 * @adapter: board private structure 3441 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3442 * 3443 * Returns 0 on success, negative on failure 3444 **/ 3445 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3446 struct ixgbevf_ring *rx_ring) 3447 { 3448 int size; 3449 3450 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3451 rx_ring->rx_buffer_info = vmalloc(size); 3452 if (!rx_ring->rx_buffer_info) 3453 goto err; 3454 3455 u64_stats_init(&rx_ring->syncp); 3456 3457 /* Round up to nearest 4K */ 3458 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3459 rx_ring->size = ALIGN(rx_ring->size, 4096); 3460 3461 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3462 &rx_ring->dma, GFP_KERNEL); 3463 3464 if (!rx_ring->desc) 3465 goto err; 3466 3467 /* XDP RX-queue info */ 3468 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3469 rx_ring->queue_index) < 0) 3470 goto err; 3471 3472 rx_ring->xdp_prog = adapter->xdp_prog; 3473 3474 return 0; 3475 err: 3476 vfree(rx_ring->rx_buffer_info); 3477 rx_ring->rx_buffer_info = NULL; 3478 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3479 return -ENOMEM; 3480 } 3481 3482 /** 3483 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3484 * @adapter: board private structure 3485 * 3486 * If this function returns with an error, then it's possible one or 3487 * more of the rings is populated (while the rest are not). It is the 3488 * callers duty to clean those orphaned rings. 3489 * 3490 * Return 0 on success, negative on failure 3491 **/ 3492 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3493 { 3494 int i, err = 0; 3495 3496 for (i = 0; i < adapter->num_rx_queues; i++) { 3497 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3498 if (!err) 3499 continue; 3500 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3501 goto err_setup_rx; 3502 } 3503 3504 return 0; 3505 err_setup_rx: 3506 /* rewind the index freeing the rings as we go */ 3507 while (i--) 3508 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3509 return err; 3510 } 3511 3512 /** 3513 * ixgbevf_free_rx_resources - Free Rx Resources 3514 * @rx_ring: ring to clean the resources from 3515 * 3516 * Free all receive software resources 3517 **/ 3518 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3519 { 3520 ixgbevf_clean_rx_ring(rx_ring); 3521 3522 rx_ring->xdp_prog = NULL; 3523 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3524 vfree(rx_ring->rx_buffer_info); 3525 rx_ring->rx_buffer_info = NULL; 3526 3527 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3528 rx_ring->dma); 3529 3530 rx_ring->desc = NULL; 3531 } 3532 3533 /** 3534 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3535 * @adapter: board private structure 3536 * 3537 * Free all receive software resources 3538 **/ 3539 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3540 { 3541 int i; 3542 3543 for (i = 0; i < adapter->num_rx_queues; i++) 3544 if (adapter->rx_ring[i]->desc) 3545 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3546 } 3547 3548 /** 3549 * ixgbevf_open - Called when a network interface is made active 3550 * @netdev: network interface device structure 3551 * 3552 * Returns 0 on success, negative value on failure 3553 * 3554 * The open entry point is called when a network interface is made 3555 * active by the system (IFF_UP). At this point all resources needed 3556 * for transmit and receive operations are allocated, the interrupt 3557 * handler is registered with the OS, the watchdog timer is started, 3558 * and the stack is notified that the interface is ready. 3559 **/ 3560 int ixgbevf_open(struct net_device *netdev) 3561 { 3562 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3563 struct ixgbe_hw *hw = &adapter->hw; 3564 int err; 3565 3566 /* A previous failure to open the device because of a lack of 3567 * available MSIX vector resources may have reset the number 3568 * of msix vectors variable to zero. The only way to recover 3569 * is to unload/reload the driver and hope that the system has 3570 * been able to recover some MSIX vector resources. 3571 */ 3572 if (!adapter->num_msix_vectors) 3573 return -ENOMEM; 3574 3575 if (hw->adapter_stopped) { 3576 ixgbevf_reset(adapter); 3577 /* if adapter is still stopped then PF isn't up and 3578 * the VF can't start. 3579 */ 3580 if (hw->adapter_stopped) { 3581 err = IXGBE_ERR_MBX; 3582 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3583 goto err_setup_reset; 3584 } 3585 } 3586 3587 /* disallow open during test */ 3588 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3589 return -EBUSY; 3590 3591 netif_carrier_off(netdev); 3592 3593 /* allocate transmit descriptors */ 3594 err = ixgbevf_setup_all_tx_resources(adapter); 3595 if (err) 3596 goto err_setup_tx; 3597 3598 /* allocate receive descriptors */ 3599 err = ixgbevf_setup_all_rx_resources(adapter); 3600 if (err) 3601 goto err_setup_rx; 3602 3603 ixgbevf_configure(adapter); 3604 3605 err = ixgbevf_request_irq(adapter); 3606 if (err) 3607 goto err_req_irq; 3608 3609 /* Notify the stack of the actual queue counts. */ 3610 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3611 if (err) 3612 goto err_set_queues; 3613 3614 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3615 if (err) 3616 goto err_set_queues; 3617 3618 ixgbevf_up_complete(adapter); 3619 3620 return 0; 3621 3622 err_set_queues: 3623 ixgbevf_free_irq(adapter); 3624 err_req_irq: 3625 ixgbevf_free_all_rx_resources(adapter); 3626 err_setup_rx: 3627 ixgbevf_free_all_tx_resources(adapter); 3628 err_setup_tx: 3629 ixgbevf_reset(adapter); 3630 err_setup_reset: 3631 3632 return err; 3633 } 3634 3635 /** 3636 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3637 * @adapter: the private adapter struct 3638 * 3639 * This function should contain the necessary work common to both suspending 3640 * and closing of the device. 3641 */ 3642 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3643 { 3644 ixgbevf_down(adapter); 3645 ixgbevf_free_irq(adapter); 3646 ixgbevf_free_all_tx_resources(adapter); 3647 ixgbevf_free_all_rx_resources(adapter); 3648 } 3649 3650 /** 3651 * ixgbevf_close - Disables a network interface 3652 * @netdev: network interface device structure 3653 * 3654 * Returns 0, this is not allowed to fail 3655 * 3656 * The close entry point is called when an interface is de-activated 3657 * by the OS. The hardware is still under the drivers control, but 3658 * needs to be disabled. A global MAC reset is issued to stop the 3659 * hardware, and all transmit and receive resources are freed. 3660 **/ 3661 int ixgbevf_close(struct net_device *netdev) 3662 { 3663 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3664 3665 if (netif_device_present(netdev)) 3666 ixgbevf_close_suspend(adapter); 3667 3668 return 0; 3669 } 3670 3671 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3672 { 3673 struct net_device *dev = adapter->netdev; 3674 3675 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3676 &adapter->state)) 3677 return; 3678 3679 /* if interface is down do nothing */ 3680 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3681 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3682 return; 3683 3684 /* Hardware has to reinitialize queues and interrupts to 3685 * match packet buffer alignment. Unfortunately, the 3686 * hardware is not flexible enough to do this dynamically. 3687 */ 3688 rtnl_lock(); 3689 3690 if (netif_running(dev)) 3691 ixgbevf_close(dev); 3692 3693 ixgbevf_clear_interrupt_scheme(adapter); 3694 ixgbevf_init_interrupt_scheme(adapter); 3695 3696 if (netif_running(dev)) 3697 ixgbevf_open(dev); 3698 3699 rtnl_unlock(); 3700 } 3701 3702 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3703 u32 vlan_macip_lens, u32 type_tucmd, 3704 u32 mss_l4len_idx) 3705 { 3706 struct ixgbe_adv_tx_context_desc *context_desc; 3707 u16 i = tx_ring->next_to_use; 3708 3709 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3710 3711 i++; 3712 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3713 3714 /* set bits to identify this as an advanced context descriptor */ 3715 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3716 3717 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3718 context_desc->seqnum_seed = 0; 3719 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3720 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3721 } 3722 3723 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3724 struct ixgbevf_tx_buffer *first, 3725 u8 *hdr_len) 3726 { 3727 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3728 struct sk_buff *skb = first->skb; 3729 union { 3730 struct iphdr *v4; 3731 struct ipv6hdr *v6; 3732 unsigned char *hdr; 3733 } ip; 3734 union { 3735 struct tcphdr *tcp; 3736 unsigned char *hdr; 3737 } l4; 3738 u32 paylen, l4_offset; 3739 int err; 3740 3741 if (skb->ip_summed != CHECKSUM_PARTIAL) 3742 return 0; 3743 3744 if (!skb_is_gso(skb)) 3745 return 0; 3746 3747 err = skb_cow_head(skb, 0); 3748 if (err < 0) 3749 return err; 3750 3751 if (eth_p_mpls(first->protocol)) 3752 ip.hdr = skb_inner_network_header(skb); 3753 else 3754 ip.hdr = skb_network_header(skb); 3755 l4.hdr = skb_checksum_start(skb); 3756 3757 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3758 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3759 3760 /* initialize outer IP header fields */ 3761 if (ip.v4->version == 4) { 3762 unsigned char *csum_start = skb_checksum_start(skb); 3763 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3764 3765 /* IP header will have to cancel out any data that 3766 * is not a part of the outer IP header 3767 */ 3768 ip.v4->check = csum_fold(csum_partial(trans_start, 3769 csum_start - trans_start, 3770 0)); 3771 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3772 3773 ip.v4->tot_len = 0; 3774 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3775 IXGBE_TX_FLAGS_CSUM | 3776 IXGBE_TX_FLAGS_IPV4; 3777 } else { 3778 ip.v6->payload_len = 0; 3779 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3780 IXGBE_TX_FLAGS_CSUM; 3781 } 3782 3783 /* determine offset of inner transport header */ 3784 l4_offset = l4.hdr - skb->data; 3785 3786 /* compute length of segmentation header */ 3787 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3788 3789 /* remove payload length from inner checksum */ 3790 paylen = skb->len - l4_offset; 3791 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3792 3793 /* update gso size and bytecount with header size */ 3794 first->gso_segs = skb_shinfo(skb)->gso_segs; 3795 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3796 3797 /* mss_l4len_id: use 1 as index for TSO */ 3798 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3799 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3800 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3801 3802 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3803 vlan_macip_lens = l4.hdr - ip.hdr; 3804 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3805 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3806 3807 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3808 type_tucmd, mss_l4len_idx); 3809 3810 return 1; 3811 } 3812 3813 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) 3814 { 3815 unsigned int offset = 0; 3816 3817 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 3818 3819 return offset == skb_checksum_start_offset(skb); 3820 } 3821 3822 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3823 struct ixgbevf_tx_buffer *first) 3824 { 3825 struct sk_buff *skb = first->skb; 3826 u32 vlan_macip_lens = 0; 3827 u32 type_tucmd = 0; 3828 3829 if (skb->ip_summed != CHECKSUM_PARTIAL) 3830 goto no_csum; 3831 3832 switch (skb->csum_offset) { 3833 case offsetof(struct tcphdr, check): 3834 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3835 /* fall through */ 3836 case offsetof(struct udphdr, check): 3837 break; 3838 case offsetof(struct sctphdr, checksum): 3839 /* validate that this is actually an SCTP request */ 3840 if (((first->protocol == htons(ETH_P_IP)) && 3841 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 3842 ((first->protocol == htons(ETH_P_IPV6)) && 3843 ixgbevf_ipv6_csum_is_sctp(skb))) { 3844 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3845 break; 3846 } 3847 /* fall through */ 3848 default: 3849 skb_checksum_help(skb); 3850 goto no_csum; 3851 } 3852 /* update TX checksum flag */ 3853 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3854 vlan_macip_lens = skb_checksum_start_offset(skb) - 3855 skb_network_offset(skb); 3856 no_csum: 3857 /* vlan_macip_lens: MACLEN, VLAN tag */ 3858 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3859 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3860 3861 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0); 3862 } 3863 3864 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3865 { 3866 /* set type for advanced descriptor with frame checksum insertion */ 3867 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3868 IXGBE_ADVTXD_DCMD_IFCS | 3869 IXGBE_ADVTXD_DCMD_DEXT); 3870 3871 /* set HW VLAN bit if VLAN is present */ 3872 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3873 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3874 3875 /* set segmentation enable bits for TSO/FSO */ 3876 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3877 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3878 3879 return cmd_type; 3880 } 3881 3882 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3883 u32 tx_flags, unsigned int paylen) 3884 { 3885 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3886 3887 /* enable L4 checksum for TSO and TX checksum offload */ 3888 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3889 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3890 3891 /* enble IPv4 checksum for TSO */ 3892 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3893 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3894 3895 /* use index 1 context for TSO/FSO/FCOE */ 3896 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3897 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3898 3899 /* Check Context must be set if Tx switch is enabled, which it 3900 * always is for case where virtual functions are running 3901 */ 3902 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3903 3904 tx_desc->read.olinfo_status = olinfo_status; 3905 } 3906 3907 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3908 struct ixgbevf_tx_buffer *first, 3909 const u8 hdr_len) 3910 { 3911 struct sk_buff *skb = first->skb; 3912 struct ixgbevf_tx_buffer *tx_buffer; 3913 union ixgbe_adv_tx_desc *tx_desc; 3914 struct skb_frag_struct *frag; 3915 dma_addr_t dma; 3916 unsigned int data_len, size; 3917 u32 tx_flags = first->tx_flags; 3918 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3919 u16 i = tx_ring->next_to_use; 3920 3921 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3922 3923 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3924 3925 size = skb_headlen(skb); 3926 data_len = skb->data_len; 3927 3928 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3929 3930 tx_buffer = first; 3931 3932 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3933 if (dma_mapping_error(tx_ring->dev, dma)) 3934 goto dma_error; 3935 3936 /* record length, and DMA address */ 3937 dma_unmap_len_set(tx_buffer, len, size); 3938 dma_unmap_addr_set(tx_buffer, dma, dma); 3939 3940 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3941 3942 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3943 tx_desc->read.cmd_type_len = 3944 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3945 3946 i++; 3947 tx_desc++; 3948 if (i == tx_ring->count) { 3949 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3950 i = 0; 3951 } 3952 tx_desc->read.olinfo_status = 0; 3953 3954 dma += IXGBE_MAX_DATA_PER_TXD; 3955 size -= IXGBE_MAX_DATA_PER_TXD; 3956 3957 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3958 } 3959 3960 if (likely(!data_len)) 3961 break; 3962 3963 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 3964 3965 i++; 3966 tx_desc++; 3967 if (i == tx_ring->count) { 3968 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3969 i = 0; 3970 } 3971 tx_desc->read.olinfo_status = 0; 3972 3973 size = skb_frag_size(frag); 3974 data_len -= size; 3975 3976 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3977 DMA_TO_DEVICE); 3978 3979 tx_buffer = &tx_ring->tx_buffer_info[i]; 3980 } 3981 3982 /* write last descriptor with RS and EOP bits */ 3983 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 3984 tx_desc->read.cmd_type_len = cmd_type; 3985 3986 /* set the timestamp */ 3987 first->time_stamp = jiffies; 3988 3989 /* Force memory writes to complete before letting h/w know there 3990 * are new descriptors to fetch. (Only applicable for weak-ordered 3991 * memory model archs, such as IA-64). 3992 * 3993 * We also need this memory barrier (wmb) to make certain all of the 3994 * status bits have been updated before next_to_watch is written. 3995 */ 3996 wmb(); 3997 3998 /* set next_to_watch value indicating a packet is present */ 3999 first->next_to_watch = tx_desc; 4000 4001 i++; 4002 if (i == tx_ring->count) 4003 i = 0; 4004 4005 tx_ring->next_to_use = i; 4006 4007 /* notify HW of packet */ 4008 ixgbevf_write_tail(tx_ring, i); 4009 4010 return; 4011 dma_error: 4012 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4013 tx_buffer = &tx_ring->tx_buffer_info[i]; 4014 4015 /* clear dma mappings for failed tx_buffer_info map */ 4016 while (tx_buffer != first) { 4017 if (dma_unmap_len(tx_buffer, len)) 4018 dma_unmap_page(tx_ring->dev, 4019 dma_unmap_addr(tx_buffer, dma), 4020 dma_unmap_len(tx_buffer, len), 4021 DMA_TO_DEVICE); 4022 dma_unmap_len_set(tx_buffer, len, 0); 4023 4024 if (i-- == 0) 4025 i += tx_ring->count; 4026 tx_buffer = &tx_ring->tx_buffer_info[i]; 4027 } 4028 4029 if (dma_unmap_len(tx_buffer, len)) 4030 dma_unmap_single(tx_ring->dev, 4031 dma_unmap_addr(tx_buffer, dma), 4032 dma_unmap_len(tx_buffer, len), 4033 DMA_TO_DEVICE); 4034 dma_unmap_len_set(tx_buffer, len, 0); 4035 4036 dev_kfree_skb_any(tx_buffer->skb); 4037 tx_buffer->skb = NULL; 4038 4039 tx_ring->next_to_use = i; 4040 } 4041 4042 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4043 { 4044 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4045 /* Herbert's original patch had: 4046 * smp_mb__after_netif_stop_queue(); 4047 * but since that doesn't exist yet, just open code it. 4048 */ 4049 smp_mb(); 4050 4051 /* We need to check again in a case another CPU has just 4052 * made room available. 4053 */ 4054 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4055 return -EBUSY; 4056 4057 /* A reprieve! - use start_queue because it doesn't call schedule */ 4058 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4059 ++tx_ring->tx_stats.restart_queue; 4060 4061 return 0; 4062 } 4063 4064 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4065 { 4066 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4067 return 0; 4068 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4069 } 4070 4071 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4072 struct ixgbevf_ring *tx_ring) 4073 { 4074 struct ixgbevf_tx_buffer *first; 4075 int tso; 4076 u32 tx_flags = 0; 4077 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4078 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4079 unsigned short f; 4080 #endif 4081 u8 hdr_len = 0; 4082 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4083 4084 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4085 dev_kfree_skb_any(skb); 4086 return NETDEV_TX_OK; 4087 } 4088 4089 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4090 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4091 * + 2 desc gap to keep tail from touching head, 4092 * + 1 desc for context descriptor, 4093 * otherwise try next time 4094 */ 4095 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4096 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 4097 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 4098 #else 4099 count += skb_shinfo(skb)->nr_frags; 4100 #endif 4101 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4102 tx_ring->tx_stats.tx_busy++; 4103 return NETDEV_TX_BUSY; 4104 } 4105 4106 /* record the location of the first descriptor for this packet */ 4107 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4108 first->skb = skb; 4109 first->bytecount = skb->len; 4110 first->gso_segs = 1; 4111 4112 if (skb_vlan_tag_present(skb)) { 4113 tx_flags |= skb_vlan_tag_get(skb); 4114 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4115 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4116 } 4117 4118 /* record initial flags and protocol */ 4119 first->tx_flags = tx_flags; 4120 first->protocol = vlan_get_protocol(skb); 4121 4122 tso = ixgbevf_tso(tx_ring, first, &hdr_len); 4123 if (tso < 0) 4124 goto out_drop; 4125 else if (!tso) 4126 ixgbevf_tx_csum(tx_ring, first); 4127 4128 ixgbevf_tx_map(tx_ring, first, hdr_len); 4129 4130 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4131 4132 return NETDEV_TX_OK; 4133 4134 out_drop: 4135 dev_kfree_skb_any(first->skb); 4136 first->skb = NULL; 4137 4138 return NETDEV_TX_OK; 4139 } 4140 4141 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4142 { 4143 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4144 struct ixgbevf_ring *tx_ring; 4145 4146 if (skb->len <= 0) { 4147 dev_kfree_skb_any(skb); 4148 return NETDEV_TX_OK; 4149 } 4150 4151 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4152 * in order to meet this minimum size requirement. 4153 */ 4154 if (skb->len < 17) { 4155 if (skb_padto(skb, 17)) 4156 return NETDEV_TX_OK; 4157 skb->len = 17; 4158 } 4159 4160 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4161 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4162 } 4163 4164 /** 4165 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4166 * @netdev: network interface device structure 4167 * @p: pointer to an address structure 4168 * 4169 * Returns 0 on success, negative on failure 4170 **/ 4171 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4172 { 4173 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4174 struct ixgbe_hw *hw = &adapter->hw; 4175 struct sockaddr *addr = p; 4176 int err; 4177 4178 if (!is_valid_ether_addr(addr->sa_data)) 4179 return -EADDRNOTAVAIL; 4180 4181 spin_lock_bh(&adapter->mbx_lock); 4182 4183 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4184 4185 spin_unlock_bh(&adapter->mbx_lock); 4186 4187 if (err) 4188 return -EPERM; 4189 4190 ether_addr_copy(hw->mac.addr, addr->sa_data); 4191 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4192 ether_addr_copy(netdev->dev_addr, addr->sa_data); 4193 4194 return 0; 4195 } 4196 4197 /** 4198 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4199 * @netdev: network interface device structure 4200 * @new_mtu: new value for maximum frame size 4201 * 4202 * Returns 0 on success, negative on failure 4203 **/ 4204 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4205 { 4206 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4207 struct ixgbe_hw *hw = &adapter->hw; 4208 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4209 int ret; 4210 4211 /* prevent MTU being changed to a size unsupported by XDP */ 4212 if (adapter->xdp_prog) { 4213 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4214 return -EPERM; 4215 } 4216 4217 spin_lock_bh(&adapter->mbx_lock); 4218 /* notify the PF of our intent to use this size of frame */ 4219 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4220 spin_unlock_bh(&adapter->mbx_lock); 4221 if (ret) 4222 return -EINVAL; 4223 4224 hw_dbg(hw, "changing MTU from %d to %d\n", 4225 netdev->mtu, new_mtu); 4226 4227 /* must set new MTU before calling down or up */ 4228 netdev->mtu = new_mtu; 4229 4230 if (netif_running(netdev)) 4231 ixgbevf_reinit_locked(adapter); 4232 4233 return 0; 4234 } 4235 4236 #ifdef CONFIG_NET_POLL_CONTROLLER 4237 /* Polling 'interrupt' - used by things like netconsole to send skbs 4238 * without having to re-enable interrupts. It's not called while 4239 * the interrupt routine is executing. 4240 */ 4241 static void ixgbevf_netpoll(struct net_device *netdev) 4242 { 4243 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4244 int i; 4245 4246 /* if interface is down do nothing */ 4247 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 4248 return; 4249 for (i = 0; i < adapter->num_rx_queues; i++) 4250 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]); 4251 } 4252 #endif /* CONFIG_NET_POLL_CONTROLLER */ 4253 4254 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state) 4255 { 4256 struct net_device *netdev = pci_get_drvdata(pdev); 4257 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4258 #ifdef CONFIG_PM 4259 int retval = 0; 4260 #endif 4261 4262 rtnl_lock(); 4263 netif_device_detach(netdev); 4264 4265 if (netif_running(netdev)) 4266 ixgbevf_close_suspend(adapter); 4267 4268 ixgbevf_clear_interrupt_scheme(adapter); 4269 rtnl_unlock(); 4270 4271 #ifdef CONFIG_PM 4272 retval = pci_save_state(pdev); 4273 if (retval) 4274 return retval; 4275 4276 #endif 4277 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4278 pci_disable_device(pdev); 4279 4280 return 0; 4281 } 4282 4283 #ifdef CONFIG_PM 4284 static int ixgbevf_resume(struct pci_dev *pdev) 4285 { 4286 struct net_device *netdev = pci_get_drvdata(pdev); 4287 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4288 u32 err; 4289 4290 pci_restore_state(pdev); 4291 /* pci_restore_state clears dev->state_saved so call 4292 * pci_save_state to restore it. 4293 */ 4294 pci_save_state(pdev); 4295 4296 err = pci_enable_device_mem(pdev); 4297 if (err) { 4298 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 4299 return err; 4300 } 4301 4302 adapter->hw.hw_addr = adapter->io_addr; 4303 smp_mb__before_atomic(); 4304 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4305 pci_set_master(pdev); 4306 4307 ixgbevf_reset(adapter); 4308 4309 rtnl_lock(); 4310 err = ixgbevf_init_interrupt_scheme(adapter); 4311 if (!err && netif_running(netdev)) 4312 err = ixgbevf_open(netdev); 4313 rtnl_unlock(); 4314 if (err) 4315 return err; 4316 4317 netif_device_attach(netdev); 4318 4319 return err; 4320 } 4321 4322 #endif /* CONFIG_PM */ 4323 static void ixgbevf_shutdown(struct pci_dev *pdev) 4324 { 4325 ixgbevf_suspend(pdev, PMSG_SUSPEND); 4326 } 4327 4328 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4329 const struct ixgbevf_ring *ring) 4330 { 4331 u64 bytes, packets; 4332 unsigned int start; 4333 4334 if (ring) { 4335 do { 4336 start = u64_stats_fetch_begin_irq(&ring->syncp); 4337 bytes = ring->stats.bytes; 4338 packets = ring->stats.packets; 4339 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4340 stats->tx_bytes += bytes; 4341 stats->tx_packets += packets; 4342 } 4343 } 4344 4345 static void ixgbevf_get_stats(struct net_device *netdev, 4346 struct rtnl_link_stats64 *stats) 4347 { 4348 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4349 unsigned int start; 4350 u64 bytes, packets; 4351 const struct ixgbevf_ring *ring; 4352 int i; 4353 4354 ixgbevf_update_stats(adapter); 4355 4356 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4357 4358 rcu_read_lock(); 4359 for (i = 0; i < adapter->num_rx_queues; i++) { 4360 ring = adapter->rx_ring[i]; 4361 do { 4362 start = u64_stats_fetch_begin_irq(&ring->syncp); 4363 bytes = ring->stats.bytes; 4364 packets = ring->stats.packets; 4365 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4366 stats->rx_bytes += bytes; 4367 stats->rx_packets += packets; 4368 } 4369 4370 for (i = 0; i < adapter->num_tx_queues; i++) { 4371 ring = adapter->tx_ring[i]; 4372 ixgbevf_get_tx_ring_stats(stats, ring); 4373 } 4374 4375 for (i = 0; i < adapter->num_xdp_queues; i++) { 4376 ring = adapter->xdp_ring[i]; 4377 ixgbevf_get_tx_ring_stats(stats, ring); 4378 } 4379 rcu_read_unlock(); 4380 } 4381 4382 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4383 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4384 4385 static netdev_features_t 4386 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4387 netdev_features_t features) 4388 { 4389 unsigned int network_hdr_len, mac_hdr_len; 4390 4391 /* Make certain the headers can be described by a context descriptor */ 4392 mac_hdr_len = skb_network_header(skb) - skb->data; 4393 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4394 return features & ~(NETIF_F_HW_CSUM | 4395 NETIF_F_SCTP_CRC | 4396 NETIF_F_HW_VLAN_CTAG_TX | 4397 NETIF_F_TSO | 4398 NETIF_F_TSO6); 4399 4400 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4401 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4402 return features & ~(NETIF_F_HW_CSUM | 4403 NETIF_F_SCTP_CRC | 4404 NETIF_F_TSO | 4405 NETIF_F_TSO6); 4406 4407 /* We can only support IPV4 TSO in tunnels if we can mangle the 4408 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4409 */ 4410 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4411 features &= ~NETIF_F_TSO; 4412 4413 return features; 4414 } 4415 4416 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4417 { 4418 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4419 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4420 struct bpf_prog *old_prog; 4421 4422 /* verify ixgbevf ring attributes are sufficient for XDP */ 4423 for (i = 0; i < adapter->num_rx_queues; i++) { 4424 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4425 4426 if (frame_size > ixgbevf_rx_bufsz(ring)) 4427 return -EINVAL; 4428 } 4429 4430 old_prog = xchg(&adapter->xdp_prog, prog); 4431 4432 /* If transitioning XDP modes reconfigure rings */ 4433 if (!!prog != !!old_prog) { 4434 /* Hardware has to reinitialize queues and interrupts to 4435 * match packet buffer alignment. Unfortunately, the 4436 * hardware is not flexible enough to do this dynamically. 4437 */ 4438 if (netif_running(dev)) 4439 ixgbevf_close(dev); 4440 4441 ixgbevf_clear_interrupt_scheme(adapter); 4442 ixgbevf_init_interrupt_scheme(adapter); 4443 4444 if (netif_running(dev)) 4445 ixgbevf_open(dev); 4446 } else { 4447 for (i = 0; i < adapter->num_rx_queues; i++) 4448 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4449 } 4450 4451 if (old_prog) 4452 bpf_prog_put(old_prog); 4453 4454 return 0; 4455 } 4456 4457 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4458 { 4459 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4460 4461 switch (xdp->command) { 4462 case XDP_SETUP_PROG: 4463 return ixgbevf_xdp_setup(dev, xdp->prog); 4464 case XDP_QUERY_PROG: 4465 xdp->prog_attached = !!(adapter->xdp_prog); 4466 xdp->prog_id = adapter->xdp_prog ? 4467 adapter->xdp_prog->aux->id : 0; 4468 return 0; 4469 default: 4470 return -EINVAL; 4471 } 4472 } 4473 4474 static const struct net_device_ops ixgbevf_netdev_ops = { 4475 .ndo_open = ixgbevf_open, 4476 .ndo_stop = ixgbevf_close, 4477 .ndo_start_xmit = ixgbevf_xmit_frame, 4478 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4479 .ndo_get_stats64 = ixgbevf_get_stats, 4480 .ndo_validate_addr = eth_validate_addr, 4481 .ndo_set_mac_address = ixgbevf_set_mac, 4482 .ndo_change_mtu = ixgbevf_change_mtu, 4483 .ndo_tx_timeout = ixgbevf_tx_timeout, 4484 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4485 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4486 #ifdef CONFIG_NET_POLL_CONTROLLER 4487 .ndo_poll_controller = ixgbevf_netpoll, 4488 #endif 4489 .ndo_features_check = ixgbevf_features_check, 4490 .ndo_bpf = ixgbevf_xdp, 4491 }; 4492 4493 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4494 { 4495 dev->netdev_ops = &ixgbevf_netdev_ops; 4496 ixgbevf_set_ethtool_ops(dev); 4497 dev->watchdog_timeo = 5 * HZ; 4498 } 4499 4500 /** 4501 * ixgbevf_probe - Device Initialization Routine 4502 * @pdev: PCI device information struct 4503 * @ent: entry in ixgbevf_pci_tbl 4504 * 4505 * Returns 0 on success, negative on failure 4506 * 4507 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4508 * The OS initialization, configuring of the adapter private structure, 4509 * and a hardware reset occur. 4510 **/ 4511 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4512 { 4513 struct net_device *netdev; 4514 struct ixgbevf_adapter *adapter = NULL; 4515 struct ixgbe_hw *hw = NULL; 4516 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4517 int err, pci_using_dac; 4518 bool disable_dev = false; 4519 4520 err = pci_enable_device(pdev); 4521 if (err) 4522 return err; 4523 4524 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 4525 pci_using_dac = 1; 4526 } else { 4527 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4528 if (err) { 4529 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4530 goto err_dma; 4531 } 4532 pci_using_dac = 0; 4533 } 4534 4535 err = pci_request_regions(pdev, ixgbevf_driver_name); 4536 if (err) { 4537 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4538 goto err_pci_reg; 4539 } 4540 4541 pci_set_master(pdev); 4542 4543 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4544 MAX_TX_QUEUES); 4545 if (!netdev) { 4546 err = -ENOMEM; 4547 goto err_alloc_etherdev; 4548 } 4549 4550 SET_NETDEV_DEV(netdev, &pdev->dev); 4551 4552 adapter = netdev_priv(netdev); 4553 4554 adapter->netdev = netdev; 4555 adapter->pdev = pdev; 4556 hw = &adapter->hw; 4557 hw->back = adapter; 4558 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4559 4560 /* call save state here in standalone driver because it relies on 4561 * adapter struct to exist, and needs to call netdev_priv 4562 */ 4563 pci_save_state(pdev); 4564 4565 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4566 pci_resource_len(pdev, 0)); 4567 adapter->io_addr = hw->hw_addr; 4568 if (!hw->hw_addr) { 4569 err = -EIO; 4570 goto err_ioremap; 4571 } 4572 4573 ixgbevf_assign_netdev_ops(netdev); 4574 4575 /* Setup HW API */ 4576 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4577 hw->mac.type = ii->mac; 4578 4579 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4580 sizeof(struct ixgbe_mbx_operations)); 4581 4582 /* setup the private structure */ 4583 err = ixgbevf_sw_init(adapter); 4584 if (err) 4585 goto err_sw_init; 4586 4587 /* The HW MAC address was set and/or determined in sw_init */ 4588 if (!is_valid_ether_addr(netdev->dev_addr)) { 4589 pr_err("invalid MAC address\n"); 4590 err = -EIO; 4591 goto err_sw_init; 4592 } 4593 4594 netdev->hw_features = NETIF_F_SG | 4595 NETIF_F_TSO | 4596 NETIF_F_TSO6 | 4597 NETIF_F_RXCSUM | 4598 NETIF_F_HW_CSUM | 4599 NETIF_F_SCTP_CRC; 4600 4601 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4602 NETIF_F_GSO_GRE_CSUM | \ 4603 NETIF_F_GSO_IPXIP4 | \ 4604 NETIF_F_GSO_IPXIP6 | \ 4605 NETIF_F_GSO_UDP_TUNNEL | \ 4606 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4607 4608 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4609 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4610 IXGBEVF_GSO_PARTIAL_FEATURES; 4611 4612 netdev->features = netdev->hw_features; 4613 4614 if (pci_using_dac) 4615 netdev->features |= NETIF_F_HIGHDMA; 4616 4617 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4618 netdev->mpls_features |= NETIF_F_SG | 4619 NETIF_F_TSO | 4620 NETIF_F_TSO6 | 4621 NETIF_F_HW_CSUM; 4622 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4623 netdev->hw_enc_features |= netdev->vlan_features; 4624 4625 /* set this bit last since it cannot be part of vlan_features */ 4626 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4627 NETIF_F_HW_VLAN_CTAG_RX | 4628 NETIF_F_HW_VLAN_CTAG_TX; 4629 4630 netdev->priv_flags |= IFF_UNICAST_FLT; 4631 4632 /* MTU range: 68 - 1504 or 9710 */ 4633 netdev->min_mtu = ETH_MIN_MTU; 4634 switch (adapter->hw.api_version) { 4635 case ixgbe_mbox_api_11: 4636 case ixgbe_mbox_api_12: 4637 case ixgbe_mbox_api_13: 4638 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4639 (ETH_HLEN + ETH_FCS_LEN); 4640 break; 4641 default: 4642 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4643 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4644 (ETH_HLEN + ETH_FCS_LEN); 4645 else 4646 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4647 break; 4648 } 4649 4650 if (IXGBE_REMOVED(hw->hw_addr)) { 4651 err = -EIO; 4652 goto err_sw_init; 4653 } 4654 4655 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4656 4657 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4658 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4659 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4660 4661 err = ixgbevf_init_interrupt_scheme(adapter); 4662 if (err) 4663 goto err_sw_init; 4664 4665 strcpy(netdev->name, "eth%d"); 4666 4667 err = register_netdev(netdev); 4668 if (err) 4669 goto err_register; 4670 4671 pci_set_drvdata(pdev, netdev); 4672 netif_carrier_off(netdev); 4673 4674 ixgbevf_init_last_counter_stats(adapter); 4675 4676 /* print the VF info */ 4677 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4678 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4679 4680 switch (hw->mac.type) { 4681 case ixgbe_mac_X550_vf: 4682 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4683 break; 4684 case ixgbe_mac_X540_vf: 4685 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4686 break; 4687 case ixgbe_mac_82599_vf: 4688 default: 4689 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4690 break; 4691 } 4692 4693 return 0; 4694 4695 err_register: 4696 ixgbevf_clear_interrupt_scheme(adapter); 4697 err_sw_init: 4698 ixgbevf_reset_interrupt_capability(adapter); 4699 iounmap(adapter->io_addr); 4700 kfree(adapter->rss_key); 4701 err_ioremap: 4702 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4703 free_netdev(netdev); 4704 err_alloc_etherdev: 4705 pci_release_regions(pdev); 4706 err_pci_reg: 4707 err_dma: 4708 if (!adapter || disable_dev) 4709 pci_disable_device(pdev); 4710 return err; 4711 } 4712 4713 /** 4714 * ixgbevf_remove - Device Removal Routine 4715 * @pdev: PCI device information struct 4716 * 4717 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4718 * that it should release a PCI device. The could be caused by a 4719 * Hot-Plug event, or because the driver is going to be removed from 4720 * memory. 4721 **/ 4722 static void ixgbevf_remove(struct pci_dev *pdev) 4723 { 4724 struct net_device *netdev = pci_get_drvdata(pdev); 4725 struct ixgbevf_adapter *adapter; 4726 bool disable_dev; 4727 4728 if (!netdev) 4729 return; 4730 4731 adapter = netdev_priv(netdev); 4732 4733 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4734 cancel_work_sync(&adapter->service_task); 4735 4736 if (netdev->reg_state == NETREG_REGISTERED) 4737 unregister_netdev(netdev); 4738 4739 ixgbevf_clear_interrupt_scheme(adapter); 4740 ixgbevf_reset_interrupt_capability(adapter); 4741 4742 iounmap(adapter->io_addr); 4743 pci_release_regions(pdev); 4744 4745 hw_dbg(&adapter->hw, "Remove complete\n"); 4746 4747 kfree(adapter->rss_key); 4748 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4749 free_netdev(netdev); 4750 4751 if (disable_dev) 4752 pci_disable_device(pdev); 4753 } 4754 4755 /** 4756 * ixgbevf_io_error_detected - called when PCI error is detected 4757 * @pdev: Pointer to PCI device 4758 * @state: The current pci connection state 4759 * 4760 * This function is called after a PCI bus error affecting 4761 * this device has been detected. 4762 **/ 4763 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4764 pci_channel_state_t state) 4765 { 4766 struct net_device *netdev = pci_get_drvdata(pdev); 4767 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4768 4769 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4770 return PCI_ERS_RESULT_DISCONNECT; 4771 4772 rtnl_lock(); 4773 netif_device_detach(netdev); 4774 4775 if (netif_running(netdev)) 4776 ixgbevf_close_suspend(adapter); 4777 4778 if (state == pci_channel_io_perm_failure) { 4779 rtnl_unlock(); 4780 return PCI_ERS_RESULT_DISCONNECT; 4781 } 4782 4783 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4784 pci_disable_device(pdev); 4785 rtnl_unlock(); 4786 4787 /* Request a slot slot reset. */ 4788 return PCI_ERS_RESULT_NEED_RESET; 4789 } 4790 4791 /** 4792 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4793 * @pdev: Pointer to PCI device 4794 * 4795 * Restart the card from scratch, as if from a cold-boot. Implementation 4796 * resembles the first-half of the ixgbevf_resume routine. 4797 **/ 4798 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4799 { 4800 struct net_device *netdev = pci_get_drvdata(pdev); 4801 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4802 4803 if (pci_enable_device_mem(pdev)) { 4804 dev_err(&pdev->dev, 4805 "Cannot re-enable PCI device after reset.\n"); 4806 return PCI_ERS_RESULT_DISCONNECT; 4807 } 4808 4809 adapter->hw.hw_addr = adapter->io_addr; 4810 smp_mb__before_atomic(); 4811 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4812 pci_set_master(pdev); 4813 4814 ixgbevf_reset(adapter); 4815 4816 return PCI_ERS_RESULT_RECOVERED; 4817 } 4818 4819 /** 4820 * ixgbevf_io_resume - called when traffic can start flowing again. 4821 * @pdev: Pointer to PCI device 4822 * 4823 * This callback is called when the error recovery driver tells us that 4824 * its OK to resume normal operation. Implementation resembles the 4825 * second-half of the ixgbevf_resume routine. 4826 **/ 4827 static void ixgbevf_io_resume(struct pci_dev *pdev) 4828 { 4829 struct net_device *netdev = pci_get_drvdata(pdev); 4830 4831 rtnl_lock(); 4832 if (netif_running(netdev)) 4833 ixgbevf_open(netdev); 4834 4835 netif_device_attach(netdev); 4836 rtnl_unlock(); 4837 } 4838 4839 /* PCI Error Recovery (ERS) */ 4840 static const struct pci_error_handlers ixgbevf_err_handler = { 4841 .error_detected = ixgbevf_io_error_detected, 4842 .slot_reset = ixgbevf_io_slot_reset, 4843 .resume = ixgbevf_io_resume, 4844 }; 4845 4846 static struct pci_driver ixgbevf_driver = { 4847 .name = ixgbevf_driver_name, 4848 .id_table = ixgbevf_pci_tbl, 4849 .probe = ixgbevf_probe, 4850 .remove = ixgbevf_remove, 4851 #ifdef CONFIG_PM 4852 /* Power Management Hooks */ 4853 .suspend = ixgbevf_suspend, 4854 .resume = ixgbevf_resume, 4855 #endif 4856 .shutdown = ixgbevf_shutdown, 4857 .err_handler = &ixgbevf_err_handler 4858 }; 4859 4860 /** 4861 * ixgbevf_init_module - Driver Registration Routine 4862 * 4863 * ixgbevf_init_module is the first routine called when the driver is 4864 * loaded. All it does is register with the PCI subsystem. 4865 **/ 4866 static int __init ixgbevf_init_module(void) 4867 { 4868 pr_info("%s - version %s\n", ixgbevf_driver_string, 4869 ixgbevf_driver_version); 4870 4871 pr_info("%s\n", ixgbevf_copyright); 4872 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4873 if (!ixgbevf_wq) { 4874 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4875 return -ENOMEM; 4876 } 4877 4878 return pci_register_driver(&ixgbevf_driver); 4879 } 4880 4881 module_init(ixgbevf_init_module); 4882 4883 /** 4884 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4885 * 4886 * ixgbevf_exit_module is called just before the driver is removed 4887 * from memory. 4888 **/ 4889 static void __exit ixgbevf_exit_module(void) 4890 { 4891 pci_unregister_driver(&ixgbevf_driver); 4892 if (ixgbevf_wq) { 4893 destroy_workqueue(ixgbevf_wq); 4894 ixgbevf_wq = NULL; 4895 } 4896 } 4897 4898 #ifdef DEBUG 4899 /** 4900 * ixgbevf_get_hw_dev_name - return device name string 4901 * used by hardware layer to print debugging information 4902 * @hw: pointer to private hardware struct 4903 **/ 4904 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4905 { 4906 struct ixgbevf_adapter *adapter = hw->back; 4907 4908 return adapter->netdev->name; 4909 } 4910 4911 #endif 4912 module_exit(ixgbevf_exit_module); 4913 4914 /* ixgbevf_main.c */ 4915