1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 34 #include "ixgbevf.h" 35 36 const char ixgbevf_driver_name[] = "ixgbevf"; 37 static const char ixgbevf_driver_string[] = 38 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 39 40 #define DRV_VERSION "4.1.0-k" 41 const char ixgbevf_driver_version[] = DRV_VERSION; 42 static char ixgbevf_copyright[] = 43 "Copyright (c) 2009 - 2018 Intel Corporation."; 44 45 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 46 [board_82599_vf] = &ixgbevf_82599_vf_info, 47 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 48 [board_X540_vf] = &ixgbevf_X540_vf_info, 49 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 50 [board_X550_vf] = &ixgbevf_X550_vf_info, 51 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 52 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 53 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 54 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 55 }; 56 57 /* ixgbevf_pci_tbl - PCI Device ID Table 58 * 59 * Wildcard entries (PCI_ANY_ID) should come last 60 * Last entry must be all 0s 61 * 62 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 63 * Class, Class Mask, private data (not used) } 64 */ 65 static const struct pci_device_id ixgbevf_pci_tbl[] = { 66 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 74 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 75 /* required last entry */ 76 {0, } 77 }; 78 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 79 80 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 81 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 82 MODULE_LICENSE("GPL v2"); 83 MODULE_VERSION(DRV_VERSION); 84 85 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 86 static int debug = -1; 87 module_param(debug, int, 0); 88 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 89 90 static struct workqueue_struct *ixgbevf_wq; 91 92 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 93 { 94 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 95 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 96 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 97 queue_work(ixgbevf_wq, &adapter->service_task); 98 } 99 100 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 101 { 102 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 103 104 /* flush memory to make sure state is correct before next watchdog */ 105 smp_mb__before_atomic(); 106 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 107 } 108 109 /* forward decls */ 110 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 111 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 112 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 113 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 114 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 115 struct ixgbevf_rx_buffer *old_buff); 116 117 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 118 { 119 struct ixgbevf_adapter *adapter = hw->back; 120 121 if (!hw->hw_addr) 122 return; 123 hw->hw_addr = NULL; 124 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 125 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 126 ixgbevf_service_event_schedule(adapter); 127 } 128 129 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 130 { 131 u32 value; 132 133 /* The following check not only optimizes a bit by not 134 * performing a read on the status register when the 135 * register just read was a status register read that 136 * returned IXGBE_FAILED_READ_REG. It also blocks any 137 * potential recursion. 138 */ 139 if (reg == IXGBE_VFSTATUS) { 140 ixgbevf_remove_adapter(hw); 141 return; 142 } 143 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 144 if (value == IXGBE_FAILED_READ_REG) 145 ixgbevf_remove_adapter(hw); 146 } 147 148 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 149 { 150 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 151 u32 value; 152 153 if (IXGBE_REMOVED(reg_addr)) 154 return IXGBE_FAILED_READ_REG; 155 value = readl(reg_addr + reg); 156 if (unlikely(value == IXGBE_FAILED_READ_REG)) 157 ixgbevf_check_remove(hw, reg); 158 return value; 159 } 160 161 /** 162 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 163 * @adapter: pointer to adapter struct 164 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 165 * @queue: queue to map the corresponding interrupt to 166 * @msix_vector: the vector to map to the corresponding queue 167 **/ 168 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 169 u8 queue, u8 msix_vector) 170 { 171 u32 ivar, index; 172 struct ixgbe_hw *hw = &adapter->hw; 173 174 if (direction == -1) { 175 /* other causes */ 176 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 177 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 178 ivar &= ~0xFF; 179 ivar |= msix_vector; 180 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 181 } else { 182 /* Tx or Rx causes */ 183 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 184 index = ((16 * (queue & 1)) + (8 * direction)); 185 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 186 ivar &= ~(0xFF << index); 187 ivar |= (msix_vector << index); 188 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 189 } 190 } 191 192 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 193 { 194 return ring->stats.packets; 195 } 196 197 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 198 { 199 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 200 struct ixgbe_hw *hw = &adapter->hw; 201 202 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 203 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 204 205 if (head != tail) 206 return (head < tail) ? 207 tail - head : (tail + ring->count - head); 208 209 return 0; 210 } 211 212 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 213 { 214 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 215 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 216 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 217 218 clear_check_for_tx_hang(tx_ring); 219 220 /* Check for a hung queue, but be thorough. This verifies 221 * that a transmit has been completed since the previous 222 * check AND there is at least one packet pending. The 223 * ARMED bit is set to indicate a potential hang. 224 */ 225 if ((tx_done_old == tx_done) && tx_pending) { 226 /* make sure it is true for two checks in a row */ 227 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 228 &tx_ring->state); 229 } 230 /* reset the countdown */ 231 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 232 233 /* update completed stats and continue */ 234 tx_ring->tx_stats.tx_done_old = tx_done; 235 236 return false; 237 } 238 239 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 240 { 241 /* Do the reset outside of interrupt context */ 242 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 243 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 244 ixgbevf_service_event_schedule(adapter); 245 } 246 } 247 248 /** 249 * ixgbevf_tx_timeout - Respond to a Tx Hang 250 * @netdev: network interface device structure 251 **/ 252 static void ixgbevf_tx_timeout(struct net_device *netdev) 253 { 254 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 255 256 ixgbevf_tx_timeout_reset(adapter); 257 } 258 259 /** 260 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 261 * @q_vector: board private structure 262 * @tx_ring: tx ring to clean 263 * @napi_budget: Used to determine if we are in netpoll 264 **/ 265 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 266 struct ixgbevf_ring *tx_ring, int napi_budget) 267 { 268 struct ixgbevf_adapter *adapter = q_vector->adapter; 269 struct ixgbevf_tx_buffer *tx_buffer; 270 union ixgbe_adv_tx_desc *tx_desc; 271 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; 272 unsigned int budget = tx_ring->count / 2; 273 unsigned int i = tx_ring->next_to_clean; 274 275 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 276 return true; 277 278 tx_buffer = &tx_ring->tx_buffer_info[i]; 279 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 280 i -= tx_ring->count; 281 282 do { 283 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 284 285 /* if next_to_watch is not set then there is no work pending */ 286 if (!eop_desc) 287 break; 288 289 /* prevent any other reads prior to eop_desc */ 290 smp_rmb(); 291 292 /* if DD is not set pending work has not been completed */ 293 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 294 break; 295 296 /* clear next_to_watch to prevent false hangs */ 297 tx_buffer->next_to_watch = NULL; 298 299 /* update the statistics for this packet */ 300 total_bytes += tx_buffer->bytecount; 301 total_packets += tx_buffer->gso_segs; 302 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) 303 total_ipsec++; 304 305 /* free the skb */ 306 if (ring_is_xdp(tx_ring)) 307 page_frag_free(tx_buffer->data); 308 else 309 napi_consume_skb(tx_buffer->skb, napi_budget); 310 311 /* unmap skb header data */ 312 dma_unmap_single(tx_ring->dev, 313 dma_unmap_addr(tx_buffer, dma), 314 dma_unmap_len(tx_buffer, len), 315 DMA_TO_DEVICE); 316 317 /* clear tx_buffer data */ 318 dma_unmap_len_set(tx_buffer, len, 0); 319 320 /* unmap remaining buffers */ 321 while (tx_desc != eop_desc) { 322 tx_buffer++; 323 tx_desc++; 324 i++; 325 if (unlikely(!i)) { 326 i -= tx_ring->count; 327 tx_buffer = tx_ring->tx_buffer_info; 328 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 329 } 330 331 /* unmap any remaining paged data */ 332 if (dma_unmap_len(tx_buffer, len)) { 333 dma_unmap_page(tx_ring->dev, 334 dma_unmap_addr(tx_buffer, dma), 335 dma_unmap_len(tx_buffer, len), 336 DMA_TO_DEVICE); 337 dma_unmap_len_set(tx_buffer, len, 0); 338 } 339 } 340 341 /* move us one more past the eop_desc for start of next pkt */ 342 tx_buffer++; 343 tx_desc++; 344 i++; 345 if (unlikely(!i)) { 346 i -= tx_ring->count; 347 tx_buffer = tx_ring->tx_buffer_info; 348 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 349 } 350 351 /* issue prefetch for next Tx descriptor */ 352 prefetch(tx_desc); 353 354 /* update budget accounting */ 355 budget--; 356 } while (likely(budget)); 357 358 i += tx_ring->count; 359 tx_ring->next_to_clean = i; 360 u64_stats_update_begin(&tx_ring->syncp); 361 tx_ring->stats.bytes += total_bytes; 362 tx_ring->stats.packets += total_packets; 363 u64_stats_update_end(&tx_ring->syncp); 364 q_vector->tx.total_bytes += total_bytes; 365 q_vector->tx.total_packets += total_packets; 366 adapter->tx_ipsec += total_ipsec; 367 368 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 369 struct ixgbe_hw *hw = &adapter->hw; 370 union ixgbe_adv_tx_desc *eop_desc; 371 372 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 373 374 pr_err("Detected Tx Unit Hang%s\n" 375 " Tx Queue <%d>\n" 376 " TDH, TDT <%x>, <%x>\n" 377 " next_to_use <%x>\n" 378 " next_to_clean <%x>\n" 379 "tx_buffer_info[next_to_clean]\n" 380 " next_to_watch <%p>\n" 381 " eop_desc->wb.status <%x>\n" 382 " time_stamp <%lx>\n" 383 " jiffies <%lx>\n", 384 ring_is_xdp(tx_ring) ? " XDP" : "", 385 tx_ring->queue_index, 386 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 387 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 388 tx_ring->next_to_use, i, 389 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 390 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 391 392 if (!ring_is_xdp(tx_ring)) 393 netif_stop_subqueue(tx_ring->netdev, 394 tx_ring->queue_index); 395 396 /* schedule immediate reset if we believe we hung */ 397 ixgbevf_tx_timeout_reset(adapter); 398 399 return true; 400 } 401 402 if (ring_is_xdp(tx_ring)) 403 return !!budget; 404 405 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 406 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 407 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 408 /* Make sure that anybody stopping the queue after this 409 * sees the new next_to_clean. 410 */ 411 smp_mb(); 412 413 if (__netif_subqueue_stopped(tx_ring->netdev, 414 tx_ring->queue_index) && 415 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 416 netif_wake_subqueue(tx_ring->netdev, 417 tx_ring->queue_index); 418 ++tx_ring->tx_stats.restart_queue; 419 } 420 } 421 422 return !!budget; 423 } 424 425 /** 426 * ixgbevf_rx_skb - Helper function to determine proper Rx method 427 * @q_vector: structure containing interrupt and ring information 428 * @skb: packet to send up 429 **/ 430 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 431 struct sk_buff *skb) 432 { 433 napi_gro_receive(&q_vector->napi, skb); 434 } 435 436 #define IXGBE_RSS_L4_TYPES_MASK \ 437 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 438 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 439 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 440 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 441 442 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 443 union ixgbe_adv_rx_desc *rx_desc, 444 struct sk_buff *skb) 445 { 446 u16 rss_type; 447 448 if (!(ring->netdev->features & NETIF_F_RXHASH)) 449 return; 450 451 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 452 IXGBE_RXDADV_RSSTYPE_MASK; 453 454 if (!rss_type) 455 return; 456 457 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 458 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 459 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 460 } 461 462 /** 463 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 464 * @ring: structure containig ring specific data 465 * @rx_desc: current Rx descriptor being processed 466 * @skb: skb currently being received and modified 467 **/ 468 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 469 union ixgbe_adv_rx_desc *rx_desc, 470 struct sk_buff *skb) 471 { 472 skb_checksum_none_assert(skb); 473 474 /* Rx csum disabled */ 475 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 476 return; 477 478 /* if IP and error */ 479 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 480 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 481 ring->rx_stats.csum_err++; 482 return; 483 } 484 485 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 486 return; 487 488 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 489 ring->rx_stats.csum_err++; 490 return; 491 } 492 493 /* It must be a TCP or UDP packet with a valid checksum */ 494 skb->ip_summed = CHECKSUM_UNNECESSARY; 495 } 496 497 /** 498 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 499 * @rx_ring: rx descriptor ring packet is being transacted on 500 * @rx_desc: pointer to the EOP Rx descriptor 501 * @skb: pointer to current skb being populated 502 * 503 * This function checks the ring, descriptor, and packet information in 504 * order to populate the checksum, VLAN, protocol, and other fields within 505 * the skb. 506 **/ 507 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 508 union ixgbe_adv_rx_desc *rx_desc, 509 struct sk_buff *skb) 510 { 511 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 512 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 513 514 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 515 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 516 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 517 518 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 519 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 520 } 521 522 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) 523 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); 524 525 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 526 } 527 528 static 529 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 530 const unsigned int size) 531 { 532 struct ixgbevf_rx_buffer *rx_buffer; 533 534 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 535 prefetchw(rx_buffer->page); 536 537 /* we are reusing so sync this buffer for CPU use */ 538 dma_sync_single_range_for_cpu(rx_ring->dev, 539 rx_buffer->dma, 540 rx_buffer->page_offset, 541 size, 542 DMA_FROM_DEVICE); 543 544 rx_buffer->pagecnt_bias--; 545 546 return rx_buffer; 547 } 548 549 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 550 struct ixgbevf_rx_buffer *rx_buffer, 551 struct sk_buff *skb) 552 { 553 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 554 /* hand second half of page back to the ring */ 555 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 556 } else { 557 if (IS_ERR(skb)) 558 /* We are not reusing the buffer so unmap it and free 559 * any references we are holding to it 560 */ 561 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 562 ixgbevf_rx_pg_size(rx_ring), 563 DMA_FROM_DEVICE, 564 IXGBEVF_RX_DMA_ATTR); 565 __page_frag_cache_drain(rx_buffer->page, 566 rx_buffer->pagecnt_bias); 567 } 568 569 /* clear contents of rx_buffer */ 570 rx_buffer->page = NULL; 571 } 572 573 /** 574 * ixgbevf_is_non_eop - process handling of non-EOP buffers 575 * @rx_ring: Rx ring being processed 576 * @rx_desc: Rx descriptor for current buffer 577 * 578 * This function updates next to clean. If the buffer is an EOP buffer 579 * this function exits returning false, otherwise it will place the 580 * sk_buff in the next buffer to be chained and return true indicating 581 * that this is in fact a non-EOP buffer. 582 **/ 583 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 584 union ixgbe_adv_rx_desc *rx_desc) 585 { 586 u32 ntc = rx_ring->next_to_clean + 1; 587 588 /* fetch, update, and store next to clean */ 589 ntc = (ntc < rx_ring->count) ? ntc : 0; 590 rx_ring->next_to_clean = ntc; 591 592 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 593 594 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 595 return false; 596 597 return true; 598 } 599 600 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 601 { 602 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 603 } 604 605 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 606 struct ixgbevf_rx_buffer *bi) 607 { 608 struct page *page = bi->page; 609 dma_addr_t dma; 610 611 /* since we are recycling buffers we should seldom need to alloc */ 612 if (likely(page)) 613 return true; 614 615 /* alloc new page for storage */ 616 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 617 if (unlikely(!page)) { 618 rx_ring->rx_stats.alloc_rx_page_failed++; 619 return false; 620 } 621 622 /* map page for use */ 623 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 624 ixgbevf_rx_pg_size(rx_ring), 625 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 626 627 /* if mapping failed free memory back to system since 628 * there isn't much point in holding memory we can't use 629 */ 630 if (dma_mapping_error(rx_ring->dev, dma)) { 631 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 632 633 rx_ring->rx_stats.alloc_rx_page_failed++; 634 return false; 635 } 636 637 bi->dma = dma; 638 bi->page = page; 639 bi->page_offset = ixgbevf_rx_offset(rx_ring); 640 bi->pagecnt_bias = 1; 641 rx_ring->rx_stats.alloc_rx_page++; 642 643 return true; 644 } 645 646 /** 647 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 648 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 649 * @cleaned_count: number of buffers to replace 650 **/ 651 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 652 u16 cleaned_count) 653 { 654 union ixgbe_adv_rx_desc *rx_desc; 655 struct ixgbevf_rx_buffer *bi; 656 unsigned int i = rx_ring->next_to_use; 657 658 /* nothing to do or no valid netdev defined */ 659 if (!cleaned_count || !rx_ring->netdev) 660 return; 661 662 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 663 bi = &rx_ring->rx_buffer_info[i]; 664 i -= rx_ring->count; 665 666 do { 667 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 668 break; 669 670 /* sync the buffer for use by the device */ 671 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 672 bi->page_offset, 673 ixgbevf_rx_bufsz(rx_ring), 674 DMA_FROM_DEVICE); 675 676 /* Refresh the desc even if pkt_addr didn't change 677 * because each write-back erases this info. 678 */ 679 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 680 681 rx_desc++; 682 bi++; 683 i++; 684 if (unlikely(!i)) { 685 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 686 bi = rx_ring->rx_buffer_info; 687 i -= rx_ring->count; 688 } 689 690 /* clear the length for the next_to_use descriptor */ 691 rx_desc->wb.upper.length = 0; 692 693 cleaned_count--; 694 } while (cleaned_count); 695 696 i += rx_ring->count; 697 698 if (rx_ring->next_to_use != i) { 699 /* record the next descriptor to use */ 700 rx_ring->next_to_use = i; 701 702 /* update next to alloc since we have filled the ring */ 703 rx_ring->next_to_alloc = i; 704 705 /* Force memory writes to complete before letting h/w 706 * know there are new descriptors to fetch. (Only 707 * applicable for weak-ordered memory model archs, 708 * such as IA-64). 709 */ 710 wmb(); 711 ixgbevf_write_tail(rx_ring, i); 712 } 713 } 714 715 /** 716 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 717 * @rx_ring: rx descriptor ring packet is being transacted on 718 * @rx_desc: pointer to the EOP Rx descriptor 719 * @skb: pointer to current skb being fixed 720 * 721 * Check for corrupted packet headers caused by senders on the local L2 722 * embedded NIC switch not setting up their Tx Descriptors right. These 723 * should be very rare. 724 * 725 * Also address the case where we are pulling data in on pages only 726 * and as such no data is present in the skb header. 727 * 728 * In addition if skb is not at least 60 bytes we need to pad it so that 729 * it is large enough to qualify as a valid Ethernet frame. 730 * 731 * Returns true if an error was encountered and skb was freed. 732 **/ 733 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 734 union ixgbe_adv_rx_desc *rx_desc, 735 struct sk_buff *skb) 736 { 737 /* XDP packets use error pointer so abort at this point */ 738 if (IS_ERR(skb)) 739 return true; 740 741 /* verify that the packet does not have any known errors */ 742 if (unlikely(ixgbevf_test_staterr(rx_desc, 743 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 744 struct net_device *netdev = rx_ring->netdev; 745 746 if (!(netdev->features & NETIF_F_RXALL)) { 747 dev_kfree_skb_any(skb); 748 return true; 749 } 750 } 751 752 /* if eth_skb_pad returns an error the skb was freed */ 753 if (eth_skb_pad(skb)) 754 return true; 755 756 return false; 757 } 758 759 /** 760 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 761 * @rx_ring: rx descriptor ring to store buffers on 762 * @old_buff: donor buffer to have page reused 763 * 764 * Synchronizes page for reuse by the adapter 765 **/ 766 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 767 struct ixgbevf_rx_buffer *old_buff) 768 { 769 struct ixgbevf_rx_buffer *new_buff; 770 u16 nta = rx_ring->next_to_alloc; 771 772 new_buff = &rx_ring->rx_buffer_info[nta]; 773 774 /* update, and store next to alloc */ 775 nta++; 776 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 777 778 /* transfer page from old buffer to new buffer */ 779 new_buff->page = old_buff->page; 780 new_buff->dma = old_buff->dma; 781 new_buff->page_offset = old_buff->page_offset; 782 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 783 } 784 785 static inline bool ixgbevf_page_is_reserved(struct page *page) 786 { 787 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 788 } 789 790 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 791 { 792 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 793 struct page *page = rx_buffer->page; 794 795 /* avoid re-using remote pages */ 796 if (unlikely(ixgbevf_page_is_reserved(page))) 797 return false; 798 799 #if (PAGE_SIZE < 8192) 800 /* if we are only owner of page we can reuse it */ 801 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 802 return false; 803 #else 804 #define IXGBEVF_LAST_OFFSET \ 805 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 806 807 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 808 return false; 809 810 #endif 811 812 /* If we have drained the page fragment pool we need to update 813 * the pagecnt_bias and page count so that we fully restock the 814 * number of references the driver holds. 815 */ 816 if (unlikely(!pagecnt_bias)) { 817 page_ref_add(page, USHRT_MAX); 818 rx_buffer->pagecnt_bias = USHRT_MAX; 819 } 820 821 return true; 822 } 823 824 /** 825 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 826 * @rx_ring: rx descriptor ring to transact packets on 827 * @rx_buffer: buffer containing page to add 828 * @skb: sk_buff to place the data into 829 * @size: size of buffer to be added 830 * 831 * This function will add the data contained in rx_buffer->page to the skb. 832 **/ 833 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 834 struct ixgbevf_rx_buffer *rx_buffer, 835 struct sk_buff *skb, 836 unsigned int size) 837 { 838 #if (PAGE_SIZE < 8192) 839 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 840 #else 841 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 842 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 843 SKB_DATA_ALIGN(size); 844 #endif 845 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 846 rx_buffer->page_offset, size, truesize); 847 #if (PAGE_SIZE < 8192) 848 rx_buffer->page_offset ^= truesize; 849 #else 850 rx_buffer->page_offset += truesize; 851 #endif 852 } 853 854 static 855 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 856 struct ixgbevf_rx_buffer *rx_buffer, 857 struct xdp_buff *xdp, 858 union ixgbe_adv_rx_desc *rx_desc) 859 { 860 unsigned int size = xdp->data_end - xdp->data; 861 #if (PAGE_SIZE < 8192) 862 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 863 #else 864 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 865 xdp->data_hard_start); 866 #endif 867 unsigned int headlen; 868 struct sk_buff *skb; 869 870 /* prefetch first cache line of first page */ 871 prefetch(xdp->data); 872 #if L1_CACHE_BYTES < 128 873 prefetch(xdp->data + L1_CACHE_BYTES); 874 #endif 875 /* Note, we get here by enabling legacy-rx via: 876 * 877 * ethtool --set-priv-flags <dev> legacy-rx on 878 * 879 * In this mode, we currently get 0 extra XDP headroom as 880 * opposed to having legacy-rx off, where we process XDP 881 * packets going to stack via ixgbevf_build_skb(). 882 * 883 * For ixgbevf_construct_skb() mode it means that the 884 * xdp->data_meta will always point to xdp->data, since 885 * the helper cannot expand the head. Should this ever 886 * changed in future for legacy-rx mode on, then lets also 887 * add xdp->data_meta handling here. 888 */ 889 890 /* allocate a skb to store the frags */ 891 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 892 if (unlikely(!skb)) 893 return NULL; 894 895 /* Determine available headroom for copy */ 896 headlen = size; 897 if (headlen > IXGBEVF_RX_HDR_SIZE) 898 headlen = eth_get_headlen(xdp->data, IXGBEVF_RX_HDR_SIZE); 899 900 /* align pull length to size of long to optimize memcpy performance */ 901 memcpy(__skb_put(skb, headlen), xdp->data, 902 ALIGN(headlen, sizeof(long))); 903 904 /* update all of the pointers */ 905 size -= headlen; 906 if (size) { 907 skb_add_rx_frag(skb, 0, rx_buffer->page, 908 (xdp->data + headlen) - 909 page_address(rx_buffer->page), 910 size, truesize); 911 #if (PAGE_SIZE < 8192) 912 rx_buffer->page_offset ^= truesize; 913 #else 914 rx_buffer->page_offset += truesize; 915 #endif 916 } else { 917 rx_buffer->pagecnt_bias++; 918 } 919 920 return skb; 921 } 922 923 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 924 u32 qmask) 925 { 926 struct ixgbe_hw *hw = &adapter->hw; 927 928 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 929 } 930 931 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 932 struct ixgbevf_rx_buffer *rx_buffer, 933 struct xdp_buff *xdp, 934 union ixgbe_adv_rx_desc *rx_desc) 935 { 936 unsigned int metasize = xdp->data - xdp->data_meta; 937 #if (PAGE_SIZE < 8192) 938 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 939 #else 940 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 941 SKB_DATA_ALIGN(xdp->data_end - 942 xdp->data_hard_start); 943 #endif 944 struct sk_buff *skb; 945 946 /* Prefetch first cache line of first page. If xdp->data_meta 947 * is unused, this points to xdp->data, otherwise, we likely 948 * have a consumer accessing first few bytes of meta data, 949 * and then actual data. 950 */ 951 prefetch(xdp->data_meta); 952 #if L1_CACHE_BYTES < 128 953 prefetch(xdp->data_meta + L1_CACHE_BYTES); 954 #endif 955 956 /* build an skb around the page buffer */ 957 skb = build_skb(xdp->data_hard_start, truesize); 958 if (unlikely(!skb)) 959 return NULL; 960 961 /* update pointers within the skb to store the data */ 962 skb_reserve(skb, xdp->data - xdp->data_hard_start); 963 __skb_put(skb, xdp->data_end - xdp->data); 964 if (metasize) 965 skb_metadata_set(skb, metasize); 966 967 /* update buffer offset */ 968 #if (PAGE_SIZE < 8192) 969 rx_buffer->page_offset ^= truesize; 970 #else 971 rx_buffer->page_offset += truesize; 972 #endif 973 974 return skb; 975 } 976 977 #define IXGBEVF_XDP_PASS 0 978 #define IXGBEVF_XDP_CONSUMED 1 979 #define IXGBEVF_XDP_TX 2 980 981 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 982 struct xdp_buff *xdp) 983 { 984 struct ixgbevf_tx_buffer *tx_buffer; 985 union ixgbe_adv_tx_desc *tx_desc; 986 u32 len, cmd_type; 987 dma_addr_t dma; 988 u16 i; 989 990 len = xdp->data_end - xdp->data; 991 992 if (unlikely(!ixgbevf_desc_unused(ring))) 993 return IXGBEVF_XDP_CONSUMED; 994 995 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 996 if (dma_mapping_error(ring->dev, dma)) 997 return IXGBEVF_XDP_CONSUMED; 998 999 /* record the location of the first descriptor for this packet */ 1000 i = ring->next_to_use; 1001 tx_buffer = &ring->tx_buffer_info[i]; 1002 1003 dma_unmap_len_set(tx_buffer, len, len); 1004 dma_unmap_addr_set(tx_buffer, dma, dma); 1005 tx_buffer->data = xdp->data; 1006 tx_buffer->bytecount = len; 1007 tx_buffer->gso_segs = 1; 1008 tx_buffer->protocol = 0; 1009 1010 /* Populate minimal context descriptor that will provide for the 1011 * fact that we are expected to process Ethernet frames. 1012 */ 1013 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1014 struct ixgbe_adv_tx_context_desc *context_desc; 1015 1016 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1017 1018 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1019 context_desc->vlan_macip_lens = 1020 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1021 context_desc->fceof_saidx = 0; 1022 context_desc->type_tucmd_mlhl = 1023 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1024 IXGBE_ADVTXD_DTYP_CTXT); 1025 context_desc->mss_l4len_idx = 0; 1026 1027 i = 1; 1028 } 1029 1030 /* put descriptor type bits */ 1031 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1032 IXGBE_ADVTXD_DCMD_DEXT | 1033 IXGBE_ADVTXD_DCMD_IFCS; 1034 cmd_type |= len | IXGBE_TXD_CMD; 1035 1036 tx_desc = IXGBEVF_TX_DESC(ring, i); 1037 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1038 1039 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1040 tx_desc->read.olinfo_status = 1041 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1042 IXGBE_ADVTXD_CC); 1043 1044 /* Avoid any potential race with cleanup */ 1045 smp_wmb(); 1046 1047 /* set next_to_watch value indicating a packet is present */ 1048 i++; 1049 if (i == ring->count) 1050 i = 0; 1051 1052 tx_buffer->next_to_watch = tx_desc; 1053 ring->next_to_use = i; 1054 1055 return IXGBEVF_XDP_TX; 1056 } 1057 1058 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1059 struct ixgbevf_ring *rx_ring, 1060 struct xdp_buff *xdp) 1061 { 1062 int result = IXGBEVF_XDP_PASS; 1063 struct ixgbevf_ring *xdp_ring; 1064 struct bpf_prog *xdp_prog; 1065 u32 act; 1066 1067 rcu_read_lock(); 1068 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1069 1070 if (!xdp_prog) 1071 goto xdp_out; 1072 1073 act = bpf_prog_run_xdp(xdp_prog, xdp); 1074 switch (act) { 1075 case XDP_PASS: 1076 break; 1077 case XDP_TX: 1078 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1079 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1080 break; 1081 default: 1082 bpf_warn_invalid_xdp_action(act); 1083 /* fallthrough */ 1084 case XDP_ABORTED: 1085 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1086 /* fallthrough -- handle aborts by dropping packet */ 1087 case XDP_DROP: 1088 result = IXGBEVF_XDP_CONSUMED; 1089 break; 1090 } 1091 xdp_out: 1092 rcu_read_unlock(); 1093 return ERR_PTR(-result); 1094 } 1095 1096 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1097 struct ixgbevf_rx_buffer *rx_buffer, 1098 unsigned int size) 1099 { 1100 #if (PAGE_SIZE < 8192) 1101 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 1102 1103 rx_buffer->page_offset ^= truesize; 1104 #else 1105 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 1106 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 1107 SKB_DATA_ALIGN(size); 1108 1109 rx_buffer->page_offset += truesize; 1110 #endif 1111 } 1112 1113 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1114 struct ixgbevf_ring *rx_ring, 1115 int budget) 1116 { 1117 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1118 struct ixgbevf_adapter *adapter = q_vector->adapter; 1119 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1120 struct sk_buff *skb = rx_ring->skb; 1121 bool xdp_xmit = false; 1122 struct xdp_buff xdp; 1123 1124 xdp.rxq = &rx_ring->xdp_rxq; 1125 1126 while (likely(total_rx_packets < budget)) { 1127 struct ixgbevf_rx_buffer *rx_buffer; 1128 union ixgbe_adv_rx_desc *rx_desc; 1129 unsigned int size; 1130 1131 /* return some buffers to hardware, one at a time is too slow */ 1132 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1133 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1134 cleaned_count = 0; 1135 } 1136 1137 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1138 size = le16_to_cpu(rx_desc->wb.upper.length); 1139 if (!size) 1140 break; 1141 1142 /* This memory barrier is needed to keep us from reading 1143 * any other fields out of the rx_desc until we know the 1144 * RXD_STAT_DD bit is set 1145 */ 1146 rmb(); 1147 1148 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1149 1150 /* retrieve a buffer from the ring */ 1151 if (!skb) { 1152 xdp.data = page_address(rx_buffer->page) + 1153 rx_buffer->page_offset; 1154 xdp.data_meta = xdp.data; 1155 xdp.data_hard_start = xdp.data - 1156 ixgbevf_rx_offset(rx_ring); 1157 xdp.data_end = xdp.data + size; 1158 1159 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1160 } 1161 1162 if (IS_ERR(skb)) { 1163 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1164 xdp_xmit = true; 1165 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1166 size); 1167 } else { 1168 rx_buffer->pagecnt_bias++; 1169 } 1170 total_rx_packets++; 1171 total_rx_bytes += size; 1172 } else if (skb) { 1173 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1174 } else if (ring_uses_build_skb(rx_ring)) { 1175 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1176 &xdp, rx_desc); 1177 } else { 1178 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1179 &xdp, rx_desc); 1180 } 1181 1182 /* exit if we failed to retrieve a buffer */ 1183 if (!skb) { 1184 rx_ring->rx_stats.alloc_rx_buff_failed++; 1185 rx_buffer->pagecnt_bias++; 1186 break; 1187 } 1188 1189 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1190 cleaned_count++; 1191 1192 /* fetch next buffer in frame if non-eop */ 1193 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1194 continue; 1195 1196 /* verify the packet layout is correct */ 1197 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1198 skb = NULL; 1199 continue; 1200 } 1201 1202 /* probably a little skewed due to removing CRC */ 1203 total_rx_bytes += skb->len; 1204 1205 /* Workaround hardware that can't do proper VEPA multicast 1206 * source pruning. 1207 */ 1208 if ((skb->pkt_type == PACKET_BROADCAST || 1209 skb->pkt_type == PACKET_MULTICAST) && 1210 ether_addr_equal(rx_ring->netdev->dev_addr, 1211 eth_hdr(skb)->h_source)) { 1212 dev_kfree_skb_irq(skb); 1213 continue; 1214 } 1215 1216 /* populate checksum, VLAN, and protocol */ 1217 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1218 1219 ixgbevf_rx_skb(q_vector, skb); 1220 1221 /* reset skb pointer */ 1222 skb = NULL; 1223 1224 /* update budget accounting */ 1225 total_rx_packets++; 1226 } 1227 1228 /* place incomplete frames back on ring for completion */ 1229 rx_ring->skb = skb; 1230 1231 if (xdp_xmit) { 1232 struct ixgbevf_ring *xdp_ring = 1233 adapter->xdp_ring[rx_ring->queue_index]; 1234 1235 /* Force memory writes to complete before letting h/w 1236 * know there are new descriptors to fetch. 1237 */ 1238 wmb(); 1239 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1240 } 1241 1242 u64_stats_update_begin(&rx_ring->syncp); 1243 rx_ring->stats.packets += total_rx_packets; 1244 rx_ring->stats.bytes += total_rx_bytes; 1245 u64_stats_update_end(&rx_ring->syncp); 1246 q_vector->rx.total_packets += total_rx_packets; 1247 q_vector->rx.total_bytes += total_rx_bytes; 1248 1249 return total_rx_packets; 1250 } 1251 1252 /** 1253 * ixgbevf_poll - NAPI polling calback 1254 * @napi: napi struct with our devices info in it 1255 * @budget: amount of work driver is allowed to do this pass, in packets 1256 * 1257 * This function will clean more than one or more rings associated with a 1258 * q_vector. 1259 **/ 1260 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1261 { 1262 struct ixgbevf_q_vector *q_vector = 1263 container_of(napi, struct ixgbevf_q_vector, napi); 1264 struct ixgbevf_adapter *adapter = q_vector->adapter; 1265 struct ixgbevf_ring *ring; 1266 int per_ring_budget, work_done = 0; 1267 bool clean_complete = true; 1268 1269 ixgbevf_for_each_ring(ring, q_vector->tx) { 1270 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1271 clean_complete = false; 1272 } 1273 1274 if (budget <= 0) 1275 return budget; 1276 1277 /* attempt to distribute budget to each queue fairly, but don't allow 1278 * the budget to go below 1 because we'll exit polling 1279 */ 1280 if (q_vector->rx.count > 1) 1281 per_ring_budget = max(budget/q_vector->rx.count, 1); 1282 else 1283 per_ring_budget = budget; 1284 1285 ixgbevf_for_each_ring(ring, q_vector->rx) { 1286 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1287 per_ring_budget); 1288 work_done += cleaned; 1289 if (cleaned >= per_ring_budget) 1290 clean_complete = false; 1291 } 1292 1293 /* If all work not completed, return budget and keep polling */ 1294 if (!clean_complete) 1295 return budget; 1296 /* all work done, exit the polling mode */ 1297 napi_complete_done(napi, work_done); 1298 if (adapter->rx_itr_setting == 1) 1299 ixgbevf_set_itr(q_vector); 1300 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1301 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1302 ixgbevf_irq_enable_queues(adapter, 1303 BIT(q_vector->v_idx)); 1304 1305 return 0; 1306 } 1307 1308 /** 1309 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1310 * @q_vector: structure containing interrupt and ring information 1311 **/ 1312 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1313 { 1314 struct ixgbevf_adapter *adapter = q_vector->adapter; 1315 struct ixgbe_hw *hw = &adapter->hw; 1316 int v_idx = q_vector->v_idx; 1317 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1318 1319 /* set the WDIS bit to not clear the timer bits and cause an 1320 * immediate assertion of the interrupt 1321 */ 1322 itr_reg |= IXGBE_EITR_CNT_WDIS; 1323 1324 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1325 } 1326 1327 /** 1328 * ixgbevf_configure_msix - Configure MSI-X hardware 1329 * @adapter: board private structure 1330 * 1331 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1332 * interrupts. 1333 **/ 1334 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1335 { 1336 struct ixgbevf_q_vector *q_vector; 1337 int q_vectors, v_idx; 1338 1339 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1340 adapter->eims_enable_mask = 0; 1341 1342 /* Populate the IVAR table and set the ITR values to the 1343 * corresponding register. 1344 */ 1345 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1346 struct ixgbevf_ring *ring; 1347 1348 q_vector = adapter->q_vector[v_idx]; 1349 1350 ixgbevf_for_each_ring(ring, q_vector->rx) 1351 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1352 1353 ixgbevf_for_each_ring(ring, q_vector->tx) 1354 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1355 1356 if (q_vector->tx.ring && !q_vector->rx.ring) { 1357 /* Tx only vector */ 1358 if (adapter->tx_itr_setting == 1) 1359 q_vector->itr = IXGBE_12K_ITR; 1360 else 1361 q_vector->itr = adapter->tx_itr_setting; 1362 } else { 1363 /* Rx or Rx/Tx vector */ 1364 if (adapter->rx_itr_setting == 1) 1365 q_vector->itr = IXGBE_20K_ITR; 1366 else 1367 q_vector->itr = adapter->rx_itr_setting; 1368 } 1369 1370 /* add q_vector eims value to global eims_enable_mask */ 1371 adapter->eims_enable_mask |= BIT(v_idx); 1372 1373 ixgbevf_write_eitr(q_vector); 1374 } 1375 1376 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1377 /* setup eims_other and add value to global eims_enable_mask */ 1378 adapter->eims_other = BIT(v_idx); 1379 adapter->eims_enable_mask |= adapter->eims_other; 1380 } 1381 1382 enum latency_range { 1383 lowest_latency = 0, 1384 low_latency = 1, 1385 bulk_latency = 2, 1386 latency_invalid = 255 1387 }; 1388 1389 /** 1390 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1391 * @q_vector: structure containing interrupt and ring information 1392 * @ring_container: structure containing ring performance data 1393 * 1394 * Stores a new ITR value based on packets and byte 1395 * counts during the last interrupt. The advantage of per interrupt 1396 * computation is faster updates and more accurate ITR for the current 1397 * traffic pattern. Constants in this function were computed 1398 * based on theoretical maximum wire speed and thresholds were set based 1399 * on testing data as well as attempting to minimize response time 1400 * while increasing bulk throughput. 1401 **/ 1402 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1403 struct ixgbevf_ring_container *ring_container) 1404 { 1405 int bytes = ring_container->total_bytes; 1406 int packets = ring_container->total_packets; 1407 u32 timepassed_us; 1408 u64 bytes_perint; 1409 u8 itr_setting = ring_container->itr; 1410 1411 if (packets == 0) 1412 return; 1413 1414 /* simple throttle rate management 1415 * 0-20MB/s lowest (100000 ints/s) 1416 * 20-100MB/s low (20000 ints/s) 1417 * 100-1249MB/s bulk (12000 ints/s) 1418 */ 1419 /* what was last interrupt timeslice? */ 1420 timepassed_us = q_vector->itr >> 2; 1421 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1422 1423 switch (itr_setting) { 1424 case lowest_latency: 1425 if (bytes_perint > 10) 1426 itr_setting = low_latency; 1427 break; 1428 case low_latency: 1429 if (bytes_perint > 20) 1430 itr_setting = bulk_latency; 1431 else if (bytes_perint <= 10) 1432 itr_setting = lowest_latency; 1433 break; 1434 case bulk_latency: 1435 if (bytes_perint <= 20) 1436 itr_setting = low_latency; 1437 break; 1438 } 1439 1440 /* clear work counters since we have the values we need */ 1441 ring_container->total_bytes = 0; 1442 ring_container->total_packets = 0; 1443 1444 /* write updated itr to ring container */ 1445 ring_container->itr = itr_setting; 1446 } 1447 1448 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1449 { 1450 u32 new_itr = q_vector->itr; 1451 u8 current_itr; 1452 1453 ixgbevf_update_itr(q_vector, &q_vector->tx); 1454 ixgbevf_update_itr(q_vector, &q_vector->rx); 1455 1456 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1457 1458 switch (current_itr) { 1459 /* counts and packets in update_itr are dependent on these numbers */ 1460 case lowest_latency: 1461 new_itr = IXGBE_100K_ITR; 1462 break; 1463 case low_latency: 1464 new_itr = IXGBE_20K_ITR; 1465 break; 1466 case bulk_latency: 1467 new_itr = IXGBE_12K_ITR; 1468 break; 1469 default: 1470 break; 1471 } 1472 1473 if (new_itr != q_vector->itr) { 1474 /* do an exponential smoothing */ 1475 new_itr = (10 * new_itr * q_vector->itr) / 1476 ((9 * new_itr) + q_vector->itr); 1477 1478 /* save the algorithm value here */ 1479 q_vector->itr = new_itr; 1480 1481 ixgbevf_write_eitr(q_vector); 1482 } 1483 } 1484 1485 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1486 { 1487 struct ixgbevf_adapter *adapter = data; 1488 struct ixgbe_hw *hw = &adapter->hw; 1489 1490 hw->mac.get_link_status = 1; 1491 1492 ixgbevf_service_event_schedule(adapter); 1493 1494 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1495 1496 return IRQ_HANDLED; 1497 } 1498 1499 /** 1500 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1501 * @irq: unused 1502 * @data: pointer to our q_vector struct for this interrupt vector 1503 **/ 1504 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1505 { 1506 struct ixgbevf_q_vector *q_vector = data; 1507 1508 /* EIAM disabled interrupts (on this vector) for us */ 1509 if (q_vector->rx.ring || q_vector->tx.ring) 1510 napi_schedule_irqoff(&q_vector->napi); 1511 1512 return IRQ_HANDLED; 1513 } 1514 1515 /** 1516 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1517 * @adapter: board private structure 1518 * 1519 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1520 * interrupts from the kernel. 1521 **/ 1522 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1523 { 1524 struct net_device *netdev = adapter->netdev; 1525 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1526 unsigned int ri = 0, ti = 0; 1527 int vector, err; 1528 1529 for (vector = 0; vector < q_vectors; vector++) { 1530 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1531 struct msix_entry *entry = &adapter->msix_entries[vector]; 1532 1533 if (q_vector->tx.ring && q_vector->rx.ring) { 1534 snprintf(q_vector->name, sizeof(q_vector->name), 1535 "%s-TxRx-%u", netdev->name, ri++); 1536 ti++; 1537 } else if (q_vector->rx.ring) { 1538 snprintf(q_vector->name, sizeof(q_vector->name), 1539 "%s-rx-%u", netdev->name, ri++); 1540 } else if (q_vector->tx.ring) { 1541 snprintf(q_vector->name, sizeof(q_vector->name), 1542 "%s-tx-%u", netdev->name, ti++); 1543 } else { 1544 /* skip this unused q_vector */ 1545 continue; 1546 } 1547 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1548 q_vector->name, q_vector); 1549 if (err) { 1550 hw_dbg(&adapter->hw, 1551 "request_irq failed for MSIX interrupt Error: %d\n", 1552 err); 1553 goto free_queue_irqs; 1554 } 1555 } 1556 1557 err = request_irq(adapter->msix_entries[vector].vector, 1558 &ixgbevf_msix_other, 0, netdev->name, adapter); 1559 if (err) { 1560 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1561 err); 1562 goto free_queue_irqs; 1563 } 1564 1565 return 0; 1566 1567 free_queue_irqs: 1568 while (vector) { 1569 vector--; 1570 free_irq(adapter->msix_entries[vector].vector, 1571 adapter->q_vector[vector]); 1572 } 1573 /* This failure is non-recoverable - it indicates the system is 1574 * out of MSIX vector resources and the VF driver cannot run 1575 * without them. Set the number of msix vectors to zero 1576 * indicating that not enough can be allocated. The error 1577 * will be returned to the user indicating device open failed. 1578 * Any further attempts to force the driver to open will also 1579 * fail. The only way to recover is to unload the driver and 1580 * reload it again. If the system has recovered some MSIX 1581 * vectors then it may succeed. 1582 */ 1583 adapter->num_msix_vectors = 0; 1584 return err; 1585 } 1586 1587 /** 1588 * ixgbevf_request_irq - initialize interrupts 1589 * @adapter: board private structure 1590 * 1591 * Attempts to configure interrupts using the best available 1592 * capabilities of the hardware and kernel. 1593 **/ 1594 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1595 { 1596 int err = ixgbevf_request_msix_irqs(adapter); 1597 1598 if (err) 1599 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1600 1601 return err; 1602 } 1603 1604 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1605 { 1606 int i, q_vectors; 1607 1608 if (!adapter->msix_entries) 1609 return; 1610 1611 q_vectors = adapter->num_msix_vectors; 1612 i = q_vectors - 1; 1613 1614 free_irq(adapter->msix_entries[i].vector, adapter); 1615 i--; 1616 1617 for (; i >= 0; i--) { 1618 /* free only the irqs that were actually requested */ 1619 if (!adapter->q_vector[i]->rx.ring && 1620 !adapter->q_vector[i]->tx.ring) 1621 continue; 1622 1623 free_irq(adapter->msix_entries[i].vector, 1624 adapter->q_vector[i]); 1625 } 1626 } 1627 1628 /** 1629 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1630 * @adapter: board private structure 1631 **/ 1632 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1633 { 1634 struct ixgbe_hw *hw = &adapter->hw; 1635 int i; 1636 1637 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1638 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1639 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1640 1641 IXGBE_WRITE_FLUSH(hw); 1642 1643 for (i = 0; i < adapter->num_msix_vectors; i++) 1644 synchronize_irq(adapter->msix_entries[i].vector); 1645 } 1646 1647 /** 1648 * ixgbevf_irq_enable - Enable default interrupt generation settings 1649 * @adapter: board private structure 1650 **/ 1651 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1652 { 1653 struct ixgbe_hw *hw = &adapter->hw; 1654 1655 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1656 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1657 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1658 } 1659 1660 /** 1661 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1662 * @adapter: board private structure 1663 * @ring: structure containing ring specific data 1664 * 1665 * Configure the Tx descriptor ring after a reset. 1666 **/ 1667 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1668 struct ixgbevf_ring *ring) 1669 { 1670 struct ixgbe_hw *hw = &adapter->hw; 1671 u64 tdba = ring->dma; 1672 int wait_loop = 10; 1673 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1674 u8 reg_idx = ring->reg_idx; 1675 1676 /* disable queue to avoid issues while updating state */ 1677 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1678 IXGBE_WRITE_FLUSH(hw); 1679 1680 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1681 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1682 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1683 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1684 1685 /* disable head writeback */ 1686 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1687 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1688 1689 /* enable relaxed ordering */ 1690 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1691 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1692 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1693 1694 /* reset head and tail pointers */ 1695 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1696 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1697 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1698 1699 /* reset ntu and ntc to place SW in sync with hardwdare */ 1700 ring->next_to_clean = 0; 1701 ring->next_to_use = 0; 1702 1703 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1704 * to or less than the number of on chip descriptors, which is 1705 * currently 40. 1706 */ 1707 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1708 1709 /* Setting PTHRESH to 32 both improves performance */ 1710 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1711 32; /* PTHRESH = 32 */ 1712 1713 /* reinitialize tx_buffer_info */ 1714 memset(ring->tx_buffer_info, 0, 1715 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1716 1717 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1718 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1719 1720 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1721 1722 /* poll to verify queue is enabled */ 1723 do { 1724 usleep_range(1000, 2000); 1725 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1726 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1727 if (!wait_loop) 1728 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1729 } 1730 1731 /** 1732 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1733 * @adapter: board private structure 1734 * 1735 * Configure the Tx unit of the MAC after a reset. 1736 **/ 1737 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1738 { 1739 u32 i; 1740 1741 /* Setup the HW Tx Head and Tail descriptor pointers */ 1742 for (i = 0; i < adapter->num_tx_queues; i++) 1743 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1744 for (i = 0; i < adapter->num_xdp_queues; i++) 1745 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1746 } 1747 1748 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1749 1750 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1751 struct ixgbevf_ring *ring, int index) 1752 { 1753 struct ixgbe_hw *hw = &adapter->hw; 1754 u32 srrctl; 1755 1756 srrctl = IXGBE_SRRCTL_DROP_EN; 1757 1758 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1759 if (ring_uses_large_buffer(ring)) 1760 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1761 else 1762 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1763 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1764 1765 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1766 } 1767 1768 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1769 { 1770 struct ixgbe_hw *hw = &adapter->hw; 1771 1772 /* PSRTYPE must be initialized in 82599 */ 1773 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1774 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1775 IXGBE_PSRTYPE_L2HDR; 1776 1777 if (adapter->num_rx_queues > 1) 1778 psrtype |= BIT(29); 1779 1780 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1781 } 1782 1783 #define IXGBEVF_MAX_RX_DESC_POLL 10 1784 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1785 struct ixgbevf_ring *ring) 1786 { 1787 struct ixgbe_hw *hw = &adapter->hw; 1788 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1789 u32 rxdctl; 1790 u8 reg_idx = ring->reg_idx; 1791 1792 if (IXGBE_REMOVED(hw->hw_addr)) 1793 return; 1794 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1795 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1796 1797 /* write value back with RXDCTL.ENABLE bit cleared */ 1798 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1799 1800 /* the hardware may take up to 100us to really disable the Rx queue */ 1801 do { 1802 udelay(10); 1803 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1804 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1805 1806 if (!wait_loop) 1807 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1808 reg_idx); 1809 } 1810 1811 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1812 struct ixgbevf_ring *ring) 1813 { 1814 struct ixgbe_hw *hw = &adapter->hw; 1815 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1816 u32 rxdctl; 1817 u8 reg_idx = ring->reg_idx; 1818 1819 if (IXGBE_REMOVED(hw->hw_addr)) 1820 return; 1821 do { 1822 usleep_range(1000, 2000); 1823 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1824 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1825 1826 if (!wait_loop) 1827 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1828 reg_idx); 1829 } 1830 1831 /** 1832 * ixgbevf_init_rss_key - Initialize adapter RSS key 1833 * @adapter: device handle 1834 * 1835 * Allocates and initializes the RSS key if it is not allocated. 1836 **/ 1837 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1838 { 1839 u32 *rss_key; 1840 1841 if (!adapter->rss_key) { 1842 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1843 if (unlikely(!rss_key)) 1844 return -ENOMEM; 1845 1846 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1847 adapter->rss_key = rss_key; 1848 } 1849 1850 return 0; 1851 } 1852 1853 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1854 { 1855 struct ixgbe_hw *hw = &adapter->hw; 1856 u32 vfmrqc = 0, vfreta = 0; 1857 u16 rss_i = adapter->num_rx_queues; 1858 u8 i, j; 1859 1860 /* Fill out hash function seeds */ 1861 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1862 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1863 1864 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1865 if (j == rss_i) 1866 j = 0; 1867 1868 adapter->rss_indir_tbl[i] = j; 1869 1870 vfreta |= j << (i & 0x3) * 8; 1871 if ((i & 3) == 3) { 1872 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1873 vfreta = 0; 1874 } 1875 } 1876 1877 /* Perform hash on these packet types */ 1878 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1879 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1880 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1881 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1882 1883 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1884 1885 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1886 } 1887 1888 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1889 struct ixgbevf_ring *ring) 1890 { 1891 struct ixgbe_hw *hw = &adapter->hw; 1892 union ixgbe_adv_rx_desc *rx_desc; 1893 u64 rdba = ring->dma; 1894 u32 rxdctl; 1895 u8 reg_idx = ring->reg_idx; 1896 1897 /* disable queue to avoid issues while updating state */ 1898 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1899 ixgbevf_disable_rx_queue(adapter, ring); 1900 1901 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1902 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1903 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1904 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1905 1906 #ifndef CONFIG_SPARC 1907 /* enable relaxed ordering */ 1908 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1909 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1910 #else 1911 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1912 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1913 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1914 #endif 1915 1916 /* reset head and tail pointers */ 1917 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1918 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1919 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1920 1921 /* initialize rx_buffer_info */ 1922 memset(ring->rx_buffer_info, 0, 1923 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1924 1925 /* initialize Rx descriptor 0 */ 1926 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1927 rx_desc->wb.upper.length = 0; 1928 1929 /* reset ntu and ntc to place SW in sync with hardwdare */ 1930 ring->next_to_clean = 0; 1931 ring->next_to_use = 0; 1932 ring->next_to_alloc = 0; 1933 1934 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1935 1936 /* RXDCTL.RLPML does not work on 82599 */ 1937 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1938 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1939 IXGBE_RXDCTL_RLPML_EN); 1940 1941 #if (PAGE_SIZE < 8192) 1942 /* Limit the maximum frame size so we don't overrun the skb */ 1943 if (ring_uses_build_skb(ring) && 1944 !ring_uses_large_buffer(ring)) 1945 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1946 IXGBE_RXDCTL_RLPML_EN; 1947 #endif 1948 } 1949 1950 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1951 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1952 1953 ixgbevf_rx_desc_queue_enable(adapter, ring); 1954 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1955 } 1956 1957 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1958 struct ixgbevf_ring *rx_ring) 1959 { 1960 struct net_device *netdev = adapter->netdev; 1961 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1962 1963 /* set build_skb and buffer size flags */ 1964 clear_ring_build_skb_enabled(rx_ring); 1965 clear_ring_uses_large_buffer(rx_ring); 1966 1967 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1968 return; 1969 1970 set_ring_build_skb_enabled(rx_ring); 1971 1972 if (PAGE_SIZE < 8192) { 1973 if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB) 1974 return; 1975 1976 set_ring_uses_large_buffer(rx_ring); 1977 } 1978 } 1979 1980 /** 1981 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1982 * @adapter: board private structure 1983 * 1984 * Configure the Rx unit of the MAC after a reset. 1985 **/ 1986 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 1987 { 1988 struct ixgbe_hw *hw = &adapter->hw; 1989 struct net_device *netdev = adapter->netdev; 1990 int i, ret; 1991 1992 ixgbevf_setup_psrtype(adapter); 1993 if (hw->mac.type >= ixgbe_mac_X550_vf) 1994 ixgbevf_setup_vfmrqc(adapter); 1995 1996 spin_lock_bh(&adapter->mbx_lock); 1997 /* notify the PF of our intent to use this size of frame */ 1998 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 1999 spin_unlock_bh(&adapter->mbx_lock); 2000 if (ret) 2001 dev_err(&adapter->pdev->dev, 2002 "Failed to set MTU at %d\n", netdev->mtu); 2003 2004 /* Setup the HW Rx Head and Tail Descriptor Pointers and 2005 * the Base and Length of the Rx Descriptor Ring 2006 */ 2007 for (i = 0; i < adapter->num_rx_queues; i++) { 2008 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2009 2010 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2011 ixgbevf_configure_rx_ring(adapter, rx_ring); 2012 } 2013 } 2014 2015 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2016 __be16 proto, u16 vid) 2017 { 2018 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2019 struct ixgbe_hw *hw = &adapter->hw; 2020 int err; 2021 2022 spin_lock_bh(&adapter->mbx_lock); 2023 2024 /* add VID to filter table */ 2025 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2026 2027 spin_unlock_bh(&adapter->mbx_lock); 2028 2029 /* translate error return types so error makes sense */ 2030 if (err == IXGBE_ERR_MBX) 2031 return -EIO; 2032 2033 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2034 return -EACCES; 2035 2036 set_bit(vid, adapter->active_vlans); 2037 2038 return err; 2039 } 2040 2041 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2042 __be16 proto, u16 vid) 2043 { 2044 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2045 struct ixgbe_hw *hw = &adapter->hw; 2046 int err; 2047 2048 spin_lock_bh(&adapter->mbx_lock); 2049 2050 /* remove VID from filter table */ 2051 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2052 2053 spin_unlock_bh(&adapter->mbx_lock); 2054 2055 clear_bit(vid, adapter->active_vlans); 2056 2057 return err; 2058 } 2059 2060 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2061 { 2062 u16 vid; 2063 2064 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2065 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2066 htons(ETH_P_8021Q), vid); 2067 } 2068 2069 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2070 { 2071 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2072 struct ixgbe_hw *hw = &adapter->hw; 2073 int count = 0; 2074 2075 if ((netdev_uc_count(netdev)) > 10) { 2076 pr_err("Too many unicast filters - No Space\n"); 2077 return -ENOSPC; 2078 } 2079 2080 if (!netdev_uc_empty(netdev)) { 2081 struct netdev_hw_addr *ha; 2082 2083 netdev_for_each_uc_addr(ha, netdev) { 2084 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2085 udelay(200); 2086 } 2087 } else { 2088 /* If the list is empty then send message to PF driver to 2089 * clear all MAC VLANs on this VF. 2090 */ 2091 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2092 } 2093 2094 return count; 2095 } 2096 2097 /** 2098 * ixgbevf_set_rx_mode - Multicast and unicast set 2099 * @netdev: network interface device structure 2100 * 2101 * The set_rx_method entry point is called whenever the multicast address 2102 * list, unicast address list or the network interface flags are updated. 2103 * This routine is responsible for configuring the hardware for proper 2104 * multicast mode and configuring requested unicast filters. 2105 **/ 2106 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2107 { 2108 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2109 struct ixgbe_hw *hw = &adapter->hw; 2110 unsigned int flags = netdev->flags; 2111 int xcast_mode; 2112 2113 /* request the most inclusive mode we need */ 2114 if (flags & IFF_PROMISC) 2115 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2116 else if (flags & IFF_ALLMULTI) 2117 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2118 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2119 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2120 else 2121 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2122 2123 spin_lock_bh(&adapter->mbx_lock); 2124 2125 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2126 2127 /* reprogram multicast list */ 2128 hw->mac.ops.update_mc_addr_list(hw, netdev); 2129 2130 ixgbevf_write_uc_addr_list(netdev); 2131 2132 spin_unlock_bh(&adapter->mbx_lock); 2133 } 2134 2135 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2136 { 2137 int q_idx; 2138 struct ixgbevf_q_vector *q_vector; 2139 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2140 2141 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2142 q_vector = adapter->q_vector[q_idx]; 2143 napi_enable(&q_vector->napi); 2144 } 2145 } 2146 2147 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2148 { 2149 int q_idx; 2150 struct ixgbevf_q_vector *q_vector; 2151 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2152 2153 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2154 q_vector = adapter->q_vector[q_idx]; 2155 napi_disable(&q_vector->napi); 2156 } 2157 } 2158 2159 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2160 { 2161 struct ixgbe_hw *hw = &adapter->hw; 2162 unsigned int def_q = 0; 2163 unsigned int num_tcs = 0; 2164 unsigned int num_rx_queues = adapter->num_rx_queues; 2165 unsigned int num_tx_queues = adapter->num_tx_queues; 2166 int err; 2167 2168 spin_lock_bh(&adapter->mbx_lock); 2169 2170 /* fetch queue configuration from the PF */ 2171 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2172 2173 spin_unlock_bh(&adapter->mbx_lock); 2174 2175 if (err) 2176 return err; 2177 2178 if (num_tcs > 1) { 2179 /* we need only one Tx queue */ 2180 num_tx_queues = 1; 2181 2182 /* update default Tx ring register index */ 2183 adapter->tx_ring[0]->reg_idx = def_q; 2184 2185 /* we need as many queues as traffic classes */ 2186 num_rx_queues = num_tcs; 2187 } 2188 2189 /* if we have a bad config abort request queue reset */ 2190 if ((adapter->num_rx_queues != num_rx_queues) || 2191 (adapter->num_tx_queues != num_tx_queues)) { 2192 /* force mailbox timeout to prevent further messages */ 2193 hw->mbx.timeout = 0; 2194 2195 /* wait for watchdog to come around and bail us out */ 2196 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2197 } 2198 2199 return 0; 2200 } 2201 2202 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2203 { 2204 ixgbevf_configure_dcb(adapter); 2205 2206 ixgbevf_set_rx_mode(adapter->netdev); 2207 2208 ixgbevf_restore_vlan(adapter); 2209 ixgbevf_ipsec_restore(adapter); 2210 2211 ixgbevf_configure_tx(adapter); 2212 ixgbevf_configure_rx(adapter); 2213 } 2214 2215 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2216 { 2217 /* Only save pre-reset stats if there are some */ 2218 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2219 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2220 adapter->stats.base_vfgprc; 2221 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2222 adapter->stats.base_vfgptc; 2223 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2224 adapter->stats.base_vfgorc; 2225 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2226 adapter->stats.base_vfgotc; 2227 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2228 adapter->stats.base_vfmprc; 2229 } 2230 } 2231 2232 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2233 { 2234 struct ixgbe_hw *hw = &adapter->hw; 2235 2236 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2237 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2238 adapter->stats.last_vfgorc |= 2239 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2240 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2241 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2242 adapter->stats.last_vfgotc |= 2243 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2244 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2245 2246 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2247 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2248 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2249 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2250 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2251 } 2252 2253 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2254 { 2255 struct ixgbe_hw *hw = &adapter->hw; 2256 int api[] = { ixgbe_mbox_api_14, 2257 ixgbe_mbox_api_13, 2258 ixgbe_mbox_api_12, 2259 ixgbe_mbox_api_11, 2260 ixgbe_mbox_api_10, 2261 ixgbe_mbox_api_unknown }; 2262 int err, idx = 0; 2263 2264 spin_lock_bh(&adapter->mbx_lock); 2265 2266 while (api[idx] != ixgbe_mbox_api_unknown) { 2267 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2268 if (!err) 2269 break; 2270 idx++; 2271 } 2272 2273 spin_unlock_bh(&adapter->mbx_lock); 2274 } 2275 2276 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2277 { 2278 struct net_device *netdev = adapter->netdev; 2279 struct ixgbe_hw *hw = &adapter->hw; 2280 2281 ixgbevf_configure_msix(adapter); 2282 2283 spin_lock_bh(&adapter->mbx_lock); 2284 2285 if (is_valid_ether_addr(hw->mac.addr)) 2286 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2287 else 2288 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2289 2290 spin_unlock_bh(&adapter->mbx_lock); 2291 2292 smp_mb__before_atomic(); 2293 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2294 ixgbevf_napi_enable_all(adapter); 2295 2296 /* clear any pending interrupts, may auto mask */ 2297 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2298 ixgbevf_irq_enable(adapter); 2299 2300 /* enable transmits */ 2301 netif_tx_start_all_queues(netdev); 2302 2303 ixgbevf_save_reset_stats(adapter); 2304 ixgbevf_init_last_counter_stats(adapter); 2305 2306 hw->mac.get_link_status = 1; 2307 mod_timer(&adapter->service_timer, jiffies); 2308 } 2309 2310 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2311 { 2312 ixgbevf_configure(adapter); 2313 2314 ixgbevf_up_complete(adapter); 2315 } 2316 2317 /** 2318 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2319 * @rx_ring: ring to free buffers from 2320 **/ 2321 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2322 { 2323 u16 i = rx_ring->next_to_clean; 2324 2325 /* Free Rx ring sk_buff */ 2326 if (rx_ring->skb) { 2327 dev_kfree_skb(rx_ring->skb); 2328 rx_ring->skb = NULL; 2329 } 2330 2331 /* Free all the Rx ring pages */ 2332 while (i != rx_ring->next_to_alloc) { 2333 struct ixgbevf_rx_buffer *rx_buffer; 2334 2335 rx_buffer = &rx_ring->rx_buffer_info[i]; 2336 2337 /* Invalidate cache lines that may have been written to by 2338 * device so that we avoid corrupting memory. 2339 */ 2340 dma_sync_single_range_for_cpu(rx_ring->dev, 2341 rx_buffer->dma, 2342 rx_buffer->page_offset, 2343 ixgbevf_rx_bufsz(rx_ring), 2344 DMA_FROM_DEVICE); 2345 2346 /* free resources associated with mapping */ 2347 dma_unmap_page_attrs(rx_ring->dev, 2348 rx_buffer->dma, 2349 ixgbevf_rx_pg_size(rx_ring), 2350 DMA_FROM_DEVICE, 2351 IXGBEVF_RX_DMA_ATTR); 2352 2353 __page_frag_cache_drain(rx_buffer->page, 2354 rx_buffer->pagecnt_bias); 2355 2356 i++; 2357 if (i == rx_ring->count) 2358 i = 0; 2359 } 2360 2361 rx_ring->next_to_alloc = 0; 2362 rx_ring->next_to_clean = 0; 2363 rx_ring->next_to_use = 0; 2364 } 2365 2366 /** 2367 * ixgbevf_clean_tx_ring - Free Tx Buffers 2368 * @tx_ring: ring to be cleaned 2369 **/ 2370 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2371 { 2372 u16 i = tx_ring->next_to_clean; 2373 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2374 2375 while (i != tx_ring->next_to_use) { 2376 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2377 2378 /* Free all the Tx ring sk_buffs */ 2379 if (ring_is_xdp(tx_ring)) 2380 page_frag_free(tx_buffer->data); 2381 else 2382 dev_kfree_skb_any(tx_buffer->skb); 2383 2384 /* unmap skb header data */ 2385 dma_unmap_single(tx_ring->dev, 2386 dma_unmap_addr(tx_buffer, dma), 2387 dma_unmap_len(tx_buffer, len), 2388 DMA_TO_DEVICE); 2389 2390 /* check for eop_desc to determine the end of the packet */ 2391 eop_desc = tx_buffer->next_to_watch; 2392 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2393 2394 /* unmap remaining buffers */ 2395 while (tx_desc != eop_desc) { 2396 tx_buffer++; 2397 tx_desc++; 2398 i++; 2399 if (unlikely(i == tx_ring->count)) { 2400 i = 0; 2401 tx_buffer = tx_ring->tx_buffer_info; 2402 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2403 } 2404 2405 /* unmap any remaining paged data */ 2406 if (dma_unmap_len(tx_buffer, len)) 2407 dma_unmap_page(tx_ring->dev, 2408 dma_unmap_addr(tx_buffer, dma), 2409 dma_unmap_len(tx_buffer, len), 2410 DMA_TO_DEVICE); 2411 } 2412 2413 /* move us one more past the eop_desc for start of next pkt */ 2414 tx_buffer++; 2415 i++; 2416 if (unlikely(i == tx_ring->count)) { 2417 i = 0; 2418 tx_buffer = tx_ring->tx_buffer_info; 2419 } 2420 } 2421 2422 /* reset next_to_use and next_to_clean */ 2423 tx_ring->next_to_use = 0; 2424 tx_ring->next_to_clean = 0; 2425 2426 } 2427 2428 /** 2429 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2430 * @adapter: board private structure 2431 **/ 2432 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2433 { 2434 int i; 2435 2436 for (i = 0; i < adapter->num_rx_queues; i++) 2437 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2438 } 2439 2440 /** 2441 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2442 * @adapter: board private structure 2443 **/ 2444 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2445 { 2446 int i; 2447 2448 for (i = 0; i < adapter->num_tx_queues; i++) 2449 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2450 for (i = 0; i < adapter->num_xdp_queues; i++) 2451 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2452 } 2453 2454 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2455 { 2456 struct net_device *netdev = adapter->netdev; 2457 struct ixgbe_hw *hw = &adapter->hw; 2458 int i; 2459 2460 /* signal that we are down to the interrupt handler */ 2461 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2462 return; /* do nothing if already down */ 2463 2464 /* disable all enabled Rx queues */ 2465 for (i = 0; i < adapter->num_rx_queues; i++) 2466 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2467 2468 usleep_range(10000, 20000); 2469 2470 netif_tx_stop_all_queues(netdev); 2471 2472 /* call carrier off first to avoid false dev_watchdog timeouts */ 2473 netif_carrier_off(netdev); 2474 netif_tx_disable(netdev); 2475 2476 ixgbevf_irq_disable(adapter); 2477 2478 ixgbevf_napi_disable_all(adapter); 2479 2480 del_timer_sync(&adapter->service_timer); 2481 2482 /* disable transmits in the hardware now that interrupts are off */ 2483 for (i = 0; i < adapter->num_tx_queues; i++) { 2484 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2485 2486 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2487 IXGBE_TXDCTL_SWFLSH); 2488 } 2489 2490 for (i = 0; i < adapter->num_xdp_queues; i++) { 2491 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2492 2493 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2494 IXGBE_TXDCTL_SWFLSH); 2495 } 2496 2497 if (!pci_channel_offline(adapter->pdev)) 2498 ixgbevf_reset(adapter); 2499 2500 ixgbevf_clean_all_tx_rings(adapter); 2501 ixgbevf_clean_all_rx_rings(adapter); 2502 } 2503 2504 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2505 { 2506 WARN_ON(in_interrupt()); 2507 2508 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2509 msleep(1); 2510 2511 ixgbevf_down(adapter); 2512 ixgbevf_up(adapter); 2513 2514 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2515 } 2516 2517 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2518 { 2519 struct ixgbe_hw *hw = &adapter->hw; 2520 struct net_device *netdev = adapter->netdev; 2521 2522 if (hw->mac.ops.reset_hw(hw)) { 2523 hw_dbg(hw, "PF still resetting\n"); 2524 } else { 2525 hw->mac.ops.init_hw(hw); 2526 ixgbevf_negotiate_api(adapter); 2527 } 2528 2529 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2530 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2531 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2532 } 2533 2534 adapter->last_reset = jiffies; 2535 } 2536 2537 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2538 int vectors) 2539 { 2540 int vector_threshold; 2541 2542 /* We'll want at least 2 (vector_threshold): 2543 * 1) TxQ[0] + RxQ[0] handler 2544 * 2) Other (Link Status Change, etc.) 2545 */ 2546 vector_threshold = MIN_MSIX_COUNT; 2547 2548 /* The more we get, the more we will assign to Tx/Rx Cleanup 2549 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2550 * Right now, we simply care about how many we'll get; we'll 2551 * set them up later while requesting irq's. 2552 */ 2553 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2554 vector_threshold, vectors); 2555 2556 if (vectors < 0) { 2557 dev_err(&adapter->pdev->dev, 2558 "Unable to allocate MSI-X interrupts\n"); 2559 kfree(adapter->msix_entries); 2560 adapter->msix_entries = NULL; 2561 return vectors; 2562 } 2563 2564 /* Adjust for only the vectors we'll use, which is minimum 2565 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2566 * vectors we were allocated. 2567 */ 2568 adapter->num_msix_vectors = vectors; 2569 2570 return 0; 2571 } 2572 2573 /** 2574 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2575 * @adapter: board private structure to initialize 2576 * 2577 * This is the top level queue allocation routine. The order here is very 2578 * important, starting with the "most" number of features turned on at once, 2579 * and ending with the smallest set of features. This way large combinations 2580 * can be allocated if they're turned on, and smaller combinations are the 2581 * fallthrough conditions. 2582 * 2583 **/ 2584 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2585 { 2586 struct ixgbe_hw *hw = &adapter->hw; 2587 unsigned int def_q = 0; 2588 unsigned int num_tcs = 0; 2589 int err; 2590 2591 /* Start with base case */ 2592 adapter->num_rx_queues = 1; 2593 adapter->num_tx_queues = 1; 2594 adapter->num_xdp_queues = 0; 2595 2596 spin_lock_bh(&adapter->mbx_lock); 2597 2598 /* fetch queue configuration from the PF */ 2599 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2600 2601 spin_unlock_bh(&adapter->mbx_lock); 2602 2603 if (err) 2604 return; 2605 2606 /* we need as many queues as traffic classes */ 2607 if (num_tcs > 1) { 2608 adapter->num_rx_queues = num_tcs; 2609 } else { 2610 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2611 2612 switch (hw->api_version) { 2613 case ixgbe_mbox_api_11: 2614 case ixgbe_mbox_api_12: 2615 case ixgbe_mbox_api_13: 2616 case ixgbe_mbox_api_14: 2617 if (adapter->xdp_prog && 2618 hw->mac.max_tx_queues == rss) 2619 rss = rss > 3 ? 2 : 1; 2620 2621 adapter->num_rx_queues = rss; 2622 adapter->num_tx_queues = rss; 2623 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2624 default: 2625 break; 2626 } 2627 } 2628 } 2629 2630 /** 2631 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2632 * @adapter: board private structure to initialize 2633 * 2634 * Attempt to configure the interrupts using the best available 2635 * capabilities of the hardware and the kernel. 2636 **/ 2637 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2638 { 2639 int vector, v_budget; 2640 2641 /* It's easy to be greedy for MSI-X vectors, but it really 2642 * doesn't do us much good if we have a lot more vectors 2643 * than CPU's. So let's be conservative and only ask for 2644 * (roughly) the same number of vectors as there are CPU's. 2645 * The default is to use pairs of vectors. 2646 */ 2647 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2648 v_budget = min_t(int, v_budget, num_online_cpus()); 2649 v_budget += NON_Q_VECTORS; 2650 2651 adapter->msix_entries = kcalloc(v_budget, 2652 sizeof(struct msix_entry), GFP_KERNEL); 2653 if (!adapter->msix_entries) 2654 return -ENOMEM; 2655 2656 for (vector = 0; vector < v_budget; vector++) 2657 adapter->msix_entries[vector].entry = vector; 2658 2659 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2660 * does not support any other modes, so we will simply fail here. Note 2661 * that we clean up the msix_entries pointer else-where. 2662 */ 2663 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2664 } 2665 2666 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2667 struct ixgbevf_ring_container *head) 2668 { 2669 ring->next = head->ring; 2670 head->ring = ring; 2671 head->count++; 2672 } 2673 2674 /** 2675 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2676 * @adapter: board private structure to initialize 2677 * @v_idx: index of vector in adapter struct 2678 * @txr_count: number of Tx rings for q vector 2679 * @txr_idx: index of first Tx ring to assign 2680 * @xdp_count: total number of XDP rings to allocate 2681 * @xdp_idx: index of first XDP ring to allocate 2682 * @rxr_count: number of Rx rings for q vector 2683 * @rxr_idx: index of first Rx ring to assign 2684 * 2685 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2686 **/ 2687 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2688 int txr_count, int txr_idx, 2689 int xdp_count, int xdp_idx, 2690 int rxr_count, int rxr_idx) 2691 { 2692 struct ixgbevf_q_vector *q_vector; 2693 int reg_idx = txr_idx + xdp_idx; 2694 struct ixgbevf_ring *ring; 2695 int ring_count, size; 2696 2697 ring_count = txr_count + xdp_count + rxr_count; 2698 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2699 2700 /* allocate q_vector and rings */ 2701 q_vector = kzalloc(size, GFP_KERNEL); 2702 if (!q_vector) 2703 return -ENOMEM; 2704 2705 /* initialize NAPI */ 2706 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64); 2707 2708 /* tie q_vector and adapter together */ 2709 adapter->q_vector[v_idx] = q_vector; 2710 q_vector->adapter = adapter; 2711 q_vector->v_idx = v_idx; 2712 2713 /* initialize pointer to rings */ 2714 ring = q_vector->ring; 2715 2716 while (txr_count) { 2717 /* assign generic ring traits */ 2718 ring->dev = &adapter->pdev->dev; 2719 ring->netdev = adapter->netdev; 2720 2721 /* configure backlink on ring */ 2722 ring->q_vector = q_vector; 2723 2724 /* update q_vector Tx values */ 2725 ixgbevf_add_ring(ring, &q_vector->tx); 2726 2727 /* apply Tx specific ring traits */ 2728 ring->count = adapter->tx_ring_count; 2729 ring->queue_index = txr_idx; 2730 ring->reg_idx = reg_idx; 2731 2732 /* assign ring to adapter */ 2733 adapter->tx_ring[txr_idx] = ring; 2734 2735 /* update count and index */ 2736 txr_count--; 2737 txr_idx++; 2738 reg_idx++; 2739 2740 /* push pointer to next ring */ 2741 ring++; 2742 } 2743 2744 while (xdp_count) { 2745 /* assign generic ring traits */ 2746 ring->dev = &adapter->pdev->dev; 2747 ring->netdev = adapter->netdev; 2748 2749 /* configure backlink on ring */ 2750 ring->q_vector = q_vector; 2751 2752 /* update q_vector Tx values */ 2753 ixgbevf_add_ring(ring, &q_vector->tx); 2754 2755 /* apply Tx specific ring traits */ 2756 ring->count = adapter->tx_ring_count; 2757 ring->queue_index = xdp_idx; 2758 ring->reg_idx = reg_idx; 2759 set_ring_xdp(ring); 2760 2761 /* assign ring to adapter */ 2762 adapter->xdp_ring[xdp_idx] = ring; 2763 2764 /* update count and index */ 2765 xdp_count--; 2766 xdp_idx++; 2767 reg_idx++; 2768 2769 /* push pointer to next ring */ 2770 ring++; 2771 } 2772 2773 while (rxr_count) { 2774 /* assign generic ring traits */ 2775 ring->dev = &adapter->pdev->dev; 2776 ring->netdev = adapter->netdev; 2777 2778 /* configure backlink on ring */ 2779 ring->q_vector = q_vector; 2780 2781 /* update q_vector Rx values */ 2782 ixgbevf_add_ring(ring, &q_vector->rx); 2783 2784 /* apply Rx specific ring traits */ 2785 ring->count = adapter->rx_ring_count; 2786 ring->queue_index = rxr_idx; 2787 ring->reg_idx = rxr_idx; 2788 2789 /* assign ring to adapter */ 2790 adapter->rx_ring[rxr_idx] = ring; 2791 2792 /* update count and index */ 2793 rxr_count--; 2794 rxr_idx++; 2795 2796 /* push pointer to next ring */ 2797 ring++; 2798 } 2799 2800 return 0; 2801 } 2802 2803 /** 2804 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2805 * @adapter: board private structure to initialize 2806 * @v_idx: index of vector in adapter struct 2807 * 2808 * This function frees the memory allocated to the q_vector. In addition if 2809 * NAPI is enabled it will delete any references to the NAPI struct prior 2810 * to freeing the q_vector. 2811 **/ 2812 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2813 { 2814 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2815 struct ixgbevf_ring *ring; 2816 2817 ixgbevf_for_each_ring(ring, q_vector->tx) { 2818 if (ring_is_xdp(ring)) 2819 adapter->xdp_ring[ring->queue_index] = NULL; 2820 else 2821 adapter->tx_ring[ring->queue_index] = NULL; 2822 } 2823 2824 ixgbevf_for_each_ring(ring, q_vector->rx) 2825 adapter->rx_ring[ring->queue_index] = NULL; 2826 2827 adapter->q_vector[v_idx] = NULL; 2828 netif_napi_del(&q_vector->napi); 2829 2830 /* ixgbevf_get_stats() might access the rings on this vector, 2831 * we must wait a grace period before freeing it. 2832 */ 2833 kfree_rcu(q_vector, rcu); 2834 } 2835 2836 /** 2837 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2838 * @adapter: board private structure to initialize 2839 * 2840 * We allocate one q_vector per queue interrupt. If allocation fails we 2841 * return -ENOMEM. 2842 **/ 2843 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2844 { 2845 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2846 int rxr_remaining = adapter->num_rx_queues; 2847 int txr_remaining = adapter->num_tx_queues; 2848 int xdp_remaining = adapter->num_xdp_queues; 2849 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2850 int err; 2851 2852 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2853 for (; rxr_remaining; v_idx++, q_vectors--) { 2854 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2855 2856 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2857 0, 0, 0, 0, rqpv, rxr_idx); 2858 if (err) 2859 goto err_out; 2860 2861 /* update counts and index */ 2862 rxr_remaining -= rqpv; 2863 rxr_idx += rqpv; 2864 } 2865 } 2866 2867 for (; q_vectors; v_idx++, q_vectors--) { 2868 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2869 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2870 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2871 2872 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2873 tqpv, txr_idx, 2874 xqpv, xdp_idx, 2875 rqpv, rxr_idx); 2876 2877 if (err) 2878 goto err_out; 2879 2880 /* update counts and index */ 2881 rxr_remaining -= rqpv; 2882 rxr_idx += rqpv; 2883 txr_remaining -= tqpv; 2884 txr_idx += tqpv; 2885 xdp_remaining -= xqpv; 2886 xdp_idx += xqpv; 2887 } 2888 2889 return 0; 2890 2891 err_out: 2892 while (v_idx) { 2893 v_idx--; 2894 ixgbevf_free_q_vector(adapter, v_idx); 2895 } 2896 2897 return -ENOMEM; 2898 } 2899 2900 /** 2901 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2902 * @adapter: board private structure to initialize 2903 * 2904 * This function frees the memory allocated to the q_vectors. In addition if 2905 * NAPI is enabled it will delete any references to the NAPI struct prior 2906 * to freeing the q_vector. 2907 **/ 2908 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2909 { 2910 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2911 2912 while (q_vectors) { 2913 q_vectors--; 2914 ixgbevf_free_q_vector(adapter, q_vectors); 2915 } 2916 } 2917 2918 /** 2919 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2920 * @adapter: board private structure 2921 * 2922 **/ 2923 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2924 { 2925 if (!adapter->msix_entries) 2926 return; 2927 2928 pci_disable_msix(adapter->pdev); 2929 kfree(adapter->msix_entries); 2930 adapter->msix_entries = NULL; 2931 } 2932 2933 /** 2934 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2935 * @adapter: board private structure to initialize 2936 * 2937 **/ 2938 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2939 { 2940 int err; 2941 2942 /* Number of supported queues */ 2943 ixgbevf_set_num_queues(adapter); 2944 2945 err = ixgbevf_set_interrupt_capability(adapter); 2946 if (err) { 2947 hw_dbg(&adapter->hw, 2948 "Unable to setup interrupt capabilities\n"); 2949 goto err_set_interrupt; 2950 } 2951 2952 err = ixgbevf_alloc_q_vectors(adapter); 2953 if (err) { 2954 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2955 goto err_alloc_q_vectors; 2956 } 2957 2958 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2959 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2960 adapter->num_rx_queues, adapter->num_tx_queues, 2961 adapter->num_xdp_queues); 2962 2963 set_bit(__IXGBEVF_DOWN, &adapter->state); 2964 2965 return 0; 2966 err_alloc_q_vectors: 2967 ixgbevf_reset_interrupt_capability(adapter); 2968 err_set_interrupt: 2969 return err; 2970 } 2971 2972 /** 2973 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2974 * @adapter: board private structure to clear interrupt scheme on 2975 * 2976 * We go through and clear interrupt specific resources and reset the structure 2977 * to pre-load conditions 2978 **/ 2979 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2980 { 2981 adapter->num_tx_queues = 0; 2982 adapter->num_xdp_queues = 0; 2983 adapter->num_rx_queues = 0; 2984 2985 ixgbevf_free_q_vectors(adapter); 2986 ixgbevf_reset_interrupt_capability(adapter); 2987 } 2988 2989 /** 2990 * ixgbevf_sw_init - Initialize general software structures 2991 * @adapter: board private structure to initialize 2992 * 2993 * ixgbevf_sw_init initializes the Adapter private data structure. 2994 * Fields are initialized based on PCI device information and 2995 * OS network device settings (MTU size). 2996 **/ 2997 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 2998 { 2999 struct ixgbe_hw *hw = &adapter->hw; 3000 struct pci_dev *pdev = adapter->pdev; 3001 struct net_device *netdev = adapter->netdev; 3002 int err; 3003 3004 /* PCI config space info */ 3005 hw->vendor_id = pdev->vendor; 3006 hw->device_id = pdev->device; 3007 hw->revision_id = pdev->revision; 3008 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3009 hw->subsystem_device_id = pdev->subsystem_device; 3010 3011 hw->mbx.ops.init_params(hw); 3012 3013 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3014 err = ixgbevf_init_rss_key(adapter); 3015 if (err) 3016 goto out; 3017 } 3018 3019 /* assume legacy case in which PF would only give VF 2 queues */ 3020 hw->mac.max_tx_queues = 2; 3021 hw->mac.max_rx_queues = 2; 3022 3023 /* lock to protect mailbox accesses */ 3024 spin_lock_init(&adapter->mbx_lock); 3025 3026 err = hw->mac.ops.reset_hw(hw); 3027 if (err) { 3028 dev_info(&pdev->dev, 3029 "PF still in reset state. Is the PF interface up?\n"); 3030 } else { 3031 err = hw->mac.ops.init_hw(hw); 3032 if (err) { 3033 pr_err("init_shared_code failed: %d\n", err); 3034 goto out; 3035 } 3036 ixgbevf_negotiate_api(adapter); 3037 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3038 if (err) 3039 dev_info(&pdev->dev, "Error reading MAC address\n"); 3040 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3041 dev_info(&pdev->dev, 3042 "MAC address not assigned by administrator.\n"); 3043 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 3044 } 3045 3046 if (!is_valid_ether_addr(netdev->dev_addr)) { 3047 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3048 eth_hw_addr_random(netdev); 3049 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3050 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3051 } 3052 3053 /* Enable dynamic interrupt throttling rates */ 3054 adapter->rx_itr_setting = 1; 3055 adapter->tx_itr_setting = 1; 3056 3057 /* set default ring sizes */ 3058 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3059 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3060 3061 set_bit(__IXGBEVF_DOWN, &adapter->state); 3062 return 0; 3063 3064 out: 3065 return err; 3066 } 3067 3068 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3069 { \ 3070 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3071 if (current_counter < last_counter) \ 3072 counter += 0x100000000LL; \ 3073 last_counter = current_counter; \ 3074 counter &= 0xFFFFFFFF00000000LL; \ 3075 counter |= current_counter; \ 3076 } 3077 3078 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3079 { \ 3080 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3081 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3082 u64 current_counter = (current_counter_msb << 32) | \ 3083 current_counter_lsb; \ 3084 if (current_counter < last_counter) \ 3085 counter += 0x1000000000LL; \ 3086 last_counter = current_counter; \ 3087 counter &= 0xFFFFFFF000000000LL; \ 3088 counter |= current_counter; \ 3089 } 3090 /** 3091 * ixgbevf_update_stats - Update the board statistics counters. 3092 * @adapter: board private structure 3093 **/ 3094 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3095 { 3096 struct ixgbe_hw *hw = &adapter->hw; 3097 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3098 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3099 int i; 3100 3101 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3102 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3103 return; 3104 3105 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3106 adapter->stats.vfgprc); 3107 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3108 adapter->stats.vfgptc); 3109 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3110 adapter->stats.last_vfgorc, 3111 adapter->stats.vfgorc); 3112 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3113 adapter->stats.last_vfgotc, 3114 adapter->stats.vfgotc); 3115 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3116 adapter->stats.vfmprc); 3117 3118 for (i = 0; i < adapter->num_rx_queues; i++) { 3119 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3120 3121 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3122 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3123 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3124 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3125 } 3126 3127 adapter->hw_csum_rx_error = hw_csum_rx_error; 3128 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3129 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3130 adapter->alloc_rx_page = alloc_rx_page; 3131 } 3132 3133 /** 3134 * ixgbevf_service_timer - Timer Call-back 3135 * @t: pointer to timer_list struct 3136 **/ 3137 static void ixgbevf_service_timer(struct timer_list *t) 3138 { 3139 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3140 service_timer); 3141 3142 /* Reset the timer */ 3143 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3144 3145 ixgbevf_service_event_schedule(adapter); 3146 } 3147 3148 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3149 { 3150 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3151 return; 3152 3153 rtnl_lock(); 3154 /* If we're already down or resetting, just bail */ 3155 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3156 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3157 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3158 rtnl_unlock(); 3159 return; 3160 } 3161 3162 adapter->tx_timeout_count++; 3163 3164 ixgbevf_reinit_locked(adapter); 3165 rtnl_unlock(); 3166 } 3167 3168 /** 3169 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3170 * @adapter: pointer to the device adapter structure 3171 * 3172 * This function serves two purposes. First it strobes the interrupt lines 3173 * in order to make certain interrupts are occurring. Secondly it sets the 3174 * bits needed to check for TX hangs. As a result we should immediately 3175 * determine if a hang has occurred. 3176 **/ 3177 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3178 { 3179 struct ixgbe_hw *hw = &adapter->hw; 3180 u32 eics = 0; 3181 int i; 3182 3183 /* If we're down or resetting, just bail */ 3184 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3185 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3186 return; 3187 3188 /* Force detection of hung controller */ 3189 if (netif_carrier_ok(adapter->netdev)) { 3190 for (i = 0; i < adapter->num_tx_queues; i++) 3191 set_check_for_tx_hang(adapter->tx_ring[i]); 3192 for (i = 0; i < adapter->num_xdp_queues; i++) 3193 set_check_for_tx_hang(adapter->xdp_ring[i]); 3194 } 3195 3196 /* get one bit for every active Tx/Rx interrupt vector */ 3197 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3198 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3199 3200 if (qv->rx.ring || qv->tx.ring) 3201 eics |= BIT(i); 3202 } 3203 3204 /* Cause software interrupt to ensure rings are cleaned */ 3205 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3206 } 3207 3208 /** 3209 * ixgbevf_watchdog_update_link - update the link status 3210 * @adapter: pointer to the device adapter structure 3211 **/ 3212 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3213 { 3214 struct ixgbe_hw *hw = &adapter->hw; 3215 u32 link_speed = adapter->link_speed; 3216 bool link_up = adapter->link_up; 3217 s32 err; 3218 3219 spin_lock_bh(&adapter->mbx_lock); 3220 3221 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3222 3223 spin_unlock_bh(&adapter->mbx_lock); 3224 3225 /* if check for link returns error we will need to reset */ 3226 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3227 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3228 link_up = false; 3229 } 3230 3231 adapter->link_up = link_up; 3232 adapter->link_speed = link_speed; 3233 } 3234 3235 /** 3236 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3237 * print link up message 3238 * @adapter: pointer to the device adapter structure 3239 **/ 3240 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3241 { 3242 struct net_device *netdev = adapter->netdev; 3243 3244 /* only continue if link was previously down */ 3245 if (netif_carrier_ok(netdev)) 3246 return; 3247 3248 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3249 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3250 "10 Gbps" : 3251 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3252 "1 Gbps" : 3253 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3254 "100 Mbps" : 3255 "unknown speed"); 3256 3257 netif_carrier_on(netdev); 3258 } 3259 3260 /** 3261 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3262 * print link down message 3263 * @adapter: pointer to the adapter structure 3264 **/ 3265 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3266 { 3267 struct net_device *netdev = adapter->netdev; 3268 3269 adapter->link_speed = 0; 3270 3271 /* only continue if link was up previously */ 3272 if (!netif_carrier_ok(netdev)) 3273 return; 3274 3275 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3276 3277 netif_carrier_off(netdev); 3278 } 3279 3280 /** 3281 * ixgbevf_watchdog_subtask - worker thread to bring link up 3282 * @adapter: board private structure 3283 **/ 3284 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3285 { 3286 /* if interface is down do nothing */ 3287 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3288 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3289 return; 3290 3291 ixgbevf_watchdog_update_link(adapter); 3292 3293 if (adapter->link_up) 3294 ixgbevf_watchdog_link_is_up(adapter); 3295 else 3296 ixgbevf_watchdog_link_is_down(adapter); 3297 3298 ixgbevf_update_stats(adapter); 3299 } 3300 3301 /** 3302 * ixgbevf_service_task - manages and runs subtasks 3303 * @work: pointer to work_struct containing our data 3304 **/ 3305 static void ixgbevf_service_task(struct work_struct *work) 3306 { 3307 struct ixgbevf_adapter *adapter = container_of(work, 3308 struct ixgbevf_adapter, 3309 service_task); 3310 struct ixgbe_hw *hw = &adapter->hw; 3311 3312 if (IXGBE_REMOVED(hw->hw_addr)) { 3313 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3314 rtnl_lock(); 3315 ixgbevf_down(adapter); 3316 rtnl_unlock(); 3317 } 3318 return; 3319 } 3320 3321 ixgbevf_queue_reset_subtask(adapter); 3322 ixgbevf_reset_subtask(adapter); 3323 ixgbevf_watchdog_subtask(adapter); 3324 ixgbevf_check_hang_subtask(adapter); 3325 3326 ixgbevf_service_event_complete(adapter); 3327 } 3328 3329 /** 3330 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3331 * @tx_ring: Tx descriptor ring for a specific queue 3332 * 3333 * Free all transmit software resources 3334 **/ 3335 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3336 { 3337 ixgbevf_clean_tx_ring(tx_ring); 3338 3339 vfree(tx_ring->tx_buffer_info); 3340 tx_ring->tx_buffer_info = NULL; 3341 3342 /* if not set, then don't free */ 3343 if (!tx_ring->desc) 3344 return; 3345 3346 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3347 tx_ring->dma); 3348 3349 tx_ring->desc = NULL; 3350 } 3351 3352 /** 3353 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3354 * @adapter: board private structure 3355 * 3356 * Free all transmit software resources 3357 **/ 3358 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3359 { 3360 int i; 3361 3362 for (i = 0; i < adapter->num_tx_queues; i++) 3363 if (adapter->tx_ring[i]->desc) 3364 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3365 for (i = 0; i < adapter->num_xdp_queues; i++) 3366 if (adapter->xdp_ring[i]->desc) 3367 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3368 } 3369 3370 /** 3371 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3372 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3373 * 3374 * Return 0 on success, negative on failure 3375 **/ 3376 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3377 { 3378 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3379 int size; 3380 3381 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3382 tx_ring->tx_buffer_info = vmalloc(size); 3383 if (!tx_ring->tx_buffer_info) 3384 goto err; 3385 3386 u64_stats_init(&tx_ring->syncp); 3387 3388 /* round up to nearest 4K */ 3389 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3390 tx_ring->size = ALIGN(tx_ring->size, 4096); 3391 3392 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3393 &tx_ring->dma, GFP_KERNEL); 3394 if (!tx_ring->desc) 3395 goto err; 3396 3397 return 0; 3398 3399 err: 3400 vfree(tx_ring->tx_buffer_info); 3401 tx_ring->tx_buffer_info = NULL; 3402 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3403 return -ENOMEM; 3404 } 3405 3406 /** 3407 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3408 * @adapter: board private structure 3409 * 3410 * If this function returns with an error, then it's possible one or 3411 * more of the rings is populated (while the rest are not). It is the 3412 * callers duty to clean those orphaned rings. 3413 * 3414 * Return 0 on success, negative on failure 3415 **/ 3416 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3417 { 3418 int i, j = 0, err = 0; 3419 3420 for (i = 0; i < adapter->num_tx_queues; i++) { 3421 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3422 if (!err) 3423 continue; 3424 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3425 goto err_setup_tx; 3426 } 3427 3428 for (j = 0; j < adapter->num_xdp_queues; j++) { 3429 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3430 if (!err) 3431 continue; 3432 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3433 goto err_setup_tx; 3434 } 3435 3436 return 0; 3437 err_setup_tx: 3438 /* rewind the index freeing the rings as we go */ 3439 while (j--) 3440 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3441 while (i--) 3442 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3443 3444 return err; 3445 } 3446 3447 /** 3448 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3449 * @adapter: board private structure 3450 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3451 * 3452 * Returns 0 on success, negative on failure 3453 **/ 3454 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3455 struct ixgbevf_ring *rx_ring) 3456 { 3457 int size; 3458 3459 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3460 rx_ring->rx_buffer_info = vmalloc(size); 3461 if (!rx_ring->rx_buffer_info) 3462 goto err; 3463 3464 u64_stats_init(&rx_ring->syncp); 3465 3466 /* Round up to nearest 4K */ 3467 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3468 rx_ring->size = ALIGN(rx_ring->size, 4096); 3469 3470 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3471 &rx_ring->dma, GFP_KERNEL); 3472 3473 if (!rx_ring->desc) 3474 goto err; 3475 3476 /* XDP RX-queue info */ 3477 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3478 rx_ring->queue_index) < 0) 3479 goto err; 3480 3481 rx_ring->xdp_prog = adapter->xdp_prog; 3482 3483 return 0; 3484 err: 3485 vfree(rx_ring->rx_buffer_info); 3486 rx_ring->rx_buffer_info = NULL; 3487 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3488 return -ENOMEM; 3489 } 3490 3491 /** 3492 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3493 * @adapter: board private structure 3494 * 3495 * If this function returns with an error, then it's possible one or 3496 * more of the rings is populated (while the rest are not). It is the 3497 * callers duty to clean those orphaned rings. 3498 * 3499 * Return 0 on success, negative on failure 3500 **/ 3501 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3502 { 3503 int i, err = 0; 3504 3505 for (i = 0; i < adapter->num_rx_queues; i++) { 3506 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3507 if (!err) 3508 continue; 3509 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3510 goto err_setup_rx; 3511 } 3512 3513 return 0; 3514 err_setup_rx: 3515 /* rewind the index freeing the rings as we go */ 3516 while (i--) 3517 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3518 return err; 3519 } 3520 3521 /** 3522 * ixgbevf_free_rx_resources - Free Rx Resources 3523 * @rx_ring: ring to clean the resources from 3524 * 3525 * Free all receive software resources 3526 **/ 3527 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3528 { 3529 ixgbevf_clean_rx_ring(rx_ring); 3530 3531 rx_ring->xdp_prog = NULL; 3532 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3533 vfree(rx_ring->rx_buffer_info); 3534 rx_ring->rx_buffer_info = NULL; 3535 3536 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3537 rx_ring->dma); 3538 3539 rx_ring->desc = NULL; 3540 } 3541 3542 /** 3543 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3544 * @adapter: board private structure 3545 * 3546 * Free all receive software resources 3547 **/ 3548 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3549 { 3550 int i; 3551 3552 for (i = 0; i < adapter->num_rx_queues; i++) 3553 if (adapter->rx_ring[i]->desc) 3554 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3555 } 3556 3557 /** 3558 * ixgbevf_open - Called when a network interface is made active 3559 * @netdev: network interface device structure 3560 * 3561 * Returns 0 on success, negative value on failure 3562 * 3563 * The open entry point is called when a network interface is made 3564 * active by the system (IFF_UP). At this point all resources needed 3565 * for transmit and receive operations are allocated, the interrupt 3566 * handler is registered with the OS, the watchdog timer is started, 3567 * and the stack is notified that the interface is ready. 3568 **/ 3569 int ixgbevf_open(struct net_device *netdev) 3570 { 3571 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3572 struct ixgbe_hw *hw = &adapter->hw; 3573 int err; 3574 3575 /* A previous failure to open the device because of a lack of 3576 * available MSIX vector resources may have reset the number 3577 * of msix vectors variable to zero. The only way to recover 3578 * is to unload/reload the driver and hope that the system has 3579 * been able to recover some MSIX vector resources. 3580 */ 3581 if (!adapter->num_msix_vectors) 3582 return -ENOMEM; 3583 3584 if (hw->adapter_stopped) { 3585 ixgbevf_reset(adapter); 3586 /* if adapter is still stopped then PF isn't up and 3587 * the VF can't start. 3588 */ 3589 if (hw->adapter_stopped) { 3590 err = IXGBE_ERR_MBX; 3591 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3592 goto err_setup_reset; 3593 } 3594 } 3595 3596 /* disallow open during test */ 3597 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3598 return -EBUSY; 3599 3600 netif_carrier_off(netdev); 3601 3602 /* allocate transmit descriptors */ 3603 err = ixgbevf_setup_all_tx_resources(adapter); 3604 if (err) 3605 goto err_setup_tx; 3606 3607 /* allocate receive descriptors */ 3608 err = ixgbevf_setup_all_rx_resources(adapter); 3609 if (err) 3610 goto err_setup_rx; 3611 3612 ixgbevf_configure(adapter); 3613 3614 err = ixgbevf_request_irq(adapter); 3615 if (err) 3616 goto err_req_irq; 3617 3618 /* Notify the stack of the actual queue counts. */ 3619 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3620 if (err) 3621 goto err_set_queues; 3622 3623 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3624 if (err) 3625 goto err_set_queues; 3626 3627 ixgbevf_up_complete(adapter); 3628 3629 return 0; 3630 3631 err_set_queues: 3632 ixgbevf_free_irq(adapter); 3633 err_req_irq: 3634 ixgbevf_free_all_rx_resources(adapter); 3635 err_setup_rx: 3636 ixgbevf_free_all_tx_resources(adapter); 3637 err_setup_tx: 3638 ixgbevf_reset(adapter); 3639 err_setup_reset: 3640 3641 return err; 3642 } 3643 3644 /** 3645 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3646 * @adapter: the private adapter struct 3647 * 3648 * This function should contain the necessary work common to both suspending 3649 * and closing of the device. 3650 */ 3651 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3652 { 3653 ixgbevf_down(adapter); 3654 ixgbevf_free_irq(adapter); 3655 ixgbevf_free_all_tx_resources(adapter); 3656 ixgbevf_free_all_rx_resources(adapter); 3657 } 3658 3659 /** 3660 * ixgbevf_close - Disables a network interface 3661 * @netdev: network interface device structure 3662 * 3663 * Returns 0, this is not allowed to fail 3664 * 3665 * The close entry point is called when an interface is de-activated 3666 * by the OS. The hardware is still under the drivers control, but 3667 * needs to be disabled. A global MAC reset is issued to stop the 3668 * hardware, and all transmit and receive resources are freed. 3669 **/ 3670 int ixgbevf_close(struct net_device *netdev) 3671 { 3672 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3673 3674 if (netif_device_present(netdev)) 3675 ixgbevf_close_suspend(adapter); 3676 3677 return 0; 3678 } 3679 3680 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3681 { 3682 struct net_device *dev = adapter->netdev; 3683 3684 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3685 &adapter->state)) 3686 return; 3687 3688 /* if interface is down do nothing */ 3689 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3690 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3691 return; 3692 3693 /* Hardware has to reinitialize queues and interrupts to 3694 * match packet buffer alignment. Unfortunately, the 3695 * hardware is not flexible enough to do this dynamically. 3696 */ 3697 rtnl_lock(); 3698 3699 if (netif_running(dev)) 3700 ixgbevf_close(dev); 3701 3702 ixgbevf_clear_interrupt_scheme(adapter); 3703 ixgbevf_init_interrupt_scheme(adapter); 3704 3705 if (netif_running(dev)) 3706 ixgbevf_open(dev); 3707 3708 rtnl_unlock(); 3709 } 3710 3711 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3712 u32 vlan_macip_lens, u32 fceof_saidx, 3713 u32 type_tucmd, u32 mss_l4len_idx) 3714 { 3715 struct ixgbe_adv_tx_context_desc *context_desc; 3716 u16 i = tx_ring->next_to_use; 3717 3718 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3719 3720 i++; 3721 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3722 3723 /* set bits to identify this as an advanced context descriptor */ 3724 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3725 3726 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3727 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); 3728 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3729 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3730 } 3731 3732 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3733 struct ixgbevf_tx_buffer *first, 3734 u8 *hdr_len, 3735 struct ixgbevf_ipsec_tx_data *itd) 3736 { 3737 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3738 struct sk_buff *skb = first->skb; 3739 union { 3740 struct iphdr *v4; 3741 struct ipv6hdr *v6; 3742 unsigned char *hdr; 3743 } ip; 3744 union { 3745 struct tcphdr *tcp; 3746 unsigned char *hdr; 3747 } l4; 3748 u32 paylen, l4_offset; 3749 u32 fceof_saidx = 0; 3750 int err; 3751 3752 if (skb->ip_summed != CHECKSUM_PARTIAL) 3753 return 0; 3754 3755 if (!skb_is_gso(skb)) 3756 return 0; 3757 3758 err = skb_cow_head(skb, 0); 3759 if (err < 0) 3760 return err; 3761 3762 if (eth_p_mpls(first->protocol)) 3763 ip.hdr = skb_inner_network_header(skb); 3764 else 3765 ip.hdr = skb_network_header(skb); 3766 l4.hdr = skb_checksum_start(skb); 3767 3768 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3769 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3770 3771 /* initialize outer IP header fields */ 3772 if (ip.v4->version == 4) { 3773 unsigned char *csum_start = skb_checksum_start(skb); 3774 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3775 int len = csum_start - trans_start; 3776 3777 /* IP header will have to cancel out any data that 3778 * is not a part of the outer IP header, so set to 3779 * a reverse csum if needed, else init check to 0. 3780 */ 3781 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? 3782 csum_fold(csum_partial(trans_start, 3783 len, 0)) : 0; 3784 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3785 3786 ip.v4->tot_len = 0; 3787 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3788 IXGBE_TX_FLAGS_CSUM | 3789 IXGBE_TX_FLAGS_IPV4; 3790 } else { 3791 ip.v6->payload_len = 0; 3792 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3793 IXGBE_TX_FLAGS_CSUM; 3794 } 3795 3796 /* determine offset of inner transport header */ 3797 l4_offset = l4.hdr - skb->data; 3798 3799 /* compute length of segmentation header */ 3800 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3801 3802 /* remove payload length from inner checksum */ 3803 paylen = skb->len - l4_offset; 3804 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3805 3806 /* update gso size and bytecount with header size */ 3807 first->gso_segs = skb_shinfo(skb)->gso_segs; 3808 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3809 3810 /* mss_l4len_id: use 1 as index for TSO */ 3811 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3812 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3813 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3814 3815 fceof_saidx |= itd->pfsa; 3816 type_tucmd |= itd->flags | itd->trailer_len; 3817 3818 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3819 vlan_macip_lens = l4.hdr - ip.hdr; 3820 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3821 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3822 3823 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 3824 mss_l4len_idx); 3825 3826 return 1; 3827 } 3828 3829 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) 3830 { 3831 unsigned int offset = 0; 3832 3833 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 3834 3835 return offset == skb_checksum_start_offset(skb); 3836 } 3837 3838 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3839 struct ixgbevf_tx_buffer *first, 3840 struct ixgbevf_ipsec_tx_data *itd) 3841 { 3842 struct sk_buff *skb = first->skb; 3843 u32 vlan_macip_lens = 0; 3844 u32 fceof_saidx = 0; 3845 u32 type_tucmd = 0; 3846 3847 if (skb->ip_summed != CHECKSUM_PARTIAL) 3848 goto no_csum; 3849 3850 switch (skb->csum_offset) { 3851 case offsetof(struct tcphdr, check): 3852 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3853 /* fall through */ 3854 case offsetof(struct udphdr, check): 3855 break; 3856 case offsetof(struct sctphdr, checksum): 3857 /* validate that this is actually an SCTP request */ 3858 if (((first->protocol == htons(ETH_P_IP)) && 3859 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 3860 ((first->protocol == htons(ETH_P_IPV6)) && 3861 ixgbevf_ipv6_csum_is_sctp(skb))) { 3862 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3863 break; 3864 } 3865 /* fall through */ 3866 default: 3867 skb_checksum_help(skb); 3868 goto no_csum; 3869 } 3870 3871 if (first->protocol == htons(ETH_P_IP)) 3872 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3873 3874 /* update TX checksum flag */ 3875 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3876 vlan_macip_lens = skb_checksum_start_offset(skb) - 3877 skb_network_offset(skb); 3878 no_csum: 3879 /* vlan_macip_lens: MACLEN, VLAN tag */ 3880 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3881 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3882 3883 fceof_saidx |= itd->pfsa; 3884 type_tucmd |= itd->flags | itd->trailer_len; 3885 3886 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3887 fceof_saidx, type_tucmd, 0); 3888 } 3889 3890 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3891 { 3892 /* set type for advanced descriptor with frame checksum insertion */ 3893 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3894 IXGBE_ADVTXD_DCMD_IFCS | 3895 IXGBE_ADVTXD_DCMD_DEXT); 3896 3897 /* set HW VLAN bit if VLAN is present */ 3898 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3899 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3900 3901 /* set segmentation enable bits for TSO/FSO */ 3902 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3903 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3904 3905 return cmd_type; 3906 } 3907 3908 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3909 u32 tx_flags, unsigned int paylen) 3910 { 3911 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3912 3913 /* enable L4 checksum for TSO and TX checksum offload */ 3914 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3915 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3916 3917 /* enble IPv4 checksum for TSO */ 3918 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3919 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3920 3921 /* enable IPsec */ 3922 if (tx_flags & IXGBE_TX_FLAGS_IPSEC) 3923 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); 3924 3925 /* use index 1 context for TSO/FSO/FCOE/IPSEC */ 3926 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) 3927 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3928 3929 /* Check Context must be set if Tx switch is enabled, which it 3930 * always is for case where virtual functions are running 3931 */ 3932 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3933 3934 tx_desc->read.olinfo_status = olinfo_status; 3935 } 3936 3937 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3938 struct ixgbevf_tx_buffer *first, 3939 const u8 hdr_len) 3940 { 3941 struct sk_buff *skb = first->skb; 3942 struct ixgbevf_tx_buffer *tx_buffer; 3943 union ixgbe_adv_tx_desc *tx_desc; 3944 struct skb_frag_struct *frag; 3945 dma_addr_t dma; 3946 unsigned int data_len, size; 3947 u32 tx_flags = first->tx_flags; 3948 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3949 u16 i = tx_ring->next_to_use; 3950 3951 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3952 3953 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3954 3955 size = skb_headlen(skb); 3956 data_len = skb->data_len; 3957 3958 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3959 3960 tx_buffer = first; 3961 3962 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3963 if (dma_mapping_error(tx_ring->dev, dma)) 3964 goto dma_error; 3965 3966 /* record length, and DMA address */ 3967 dma_unmap_len_set(tx_buffer, len, size); 3968 dma_unmap_addr_set(tx_buffer, dma, dma); 3969 3970 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3971 3972 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3973 tx_desc->read.cmd_type_len = 3974 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3975 3976 i++; 3977 tx_desc++; 3978 if (i == tx_ring->count) { 3979 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3980 i = 0; 3981 } 3982 tx_desc->read.olinfo_status = 0; 3983 3984 dma += IXGBE_MAX_DATA_PER_TXD; 3985 size -= IXGBE_MAX_DATA_PER_TXD; 3986 3987 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3988 } 3989 3990 if (likely(!data_len)) 3991 break; 3992 3993 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 3994 3995 i++; 3996 tx_desc++; 3997 if (i == tx_ring->count) { 3998 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3999 i = 0; 4000 } 4001 tx_desc->read.olinfo_status = 0; 4002 4003 size = skb_frag_size(frag); 4004 data_len -= size; 4005 4006 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 4007 DMA_TO_DEVICE); 4008 4009 tx_buffer = &tx_ring->tx_buffer_info[i]; 4010 } 4011 4012 /* write last descriptor with RS and EOP bits */ 4013 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 4014 tx_desc->read.cmd_type_len = cmd_type; 4015 4016 /* set the timestamp */ 4017 first->time_stamp = jiffies; 4018 4019 /* Force memory writes to complete before letting h/w know there 4020 * are new descriptors to fetch. (Only applicable for weak-ordered 4021 * memory model archs, such as IA-64). 4022 * 4023 * We also need this memory barrier (wmb) to make certain all of the 4024 * status bits have been updated before next_to_watch is written. 4025 */ 4026 wmb(); 4027 4028 /* set next_to_watch value indicating a packet is present */ 4029 first->next_to_watch = tx_desc; 4030 4031 i++; 4032 if (i == tx_ring->count) 4033 i = 0; 4034 4035 tx_ring->next_to_use = i; 4036 4037 /* notify HW of packet */ 4038 ixgbevf_write_tail(tx_ring, i); 4039 4040 return; 4041 dma_error: 4042 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4043 tx_buffer = &tx_ring->tx_buffer_info[i]; 4044 4045 /* clear dma mappings for failed tx_buffer_info map */ 4046 while (tx_buffer != first) { 4047 if (dma_unmap_len(tx_buffer, len)) 4048 dma_unmap_page(tx_ring->dev, 4049 dma_unmap_addr(tx_buffer, dma), 4050 dma_unmap_len(tx_buffer, len), 4051 DMA_TO_DEVICE); 4052 dma_unmap_len_set(tx_buffer, len, 0); 4053 4054 if (i-- == 0) 4055 i += tx_ring->count; 4056 tx_buffer = &tx_ring->tx_buffer_info[i]; 4057 } 4058 4059 if (dma_unmap_len(tx_buffer, len)) 4060 dma_unmap_single(tx_ring->dev, 4061 dma_unmap_addr(tx_buffer, dma), 4062 dma_unmap_len(tx_buffer, len), 4063 DMA_TO_DEVICE); 4064 dma_unmap_len_set(tx_buffer, len, 0); 4065 4066 dev_kfree_skb_any(tx_buffer->skb); 4067 tx_buffer->skb = NULL; 4068 4069 tx_ring->next_to_use = i; 4070 } 4071 4072 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4073 { 4074 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4075 /* Herbert's original patch had: 4076 * smp_mb__after_netif_stop_queue(); 4077 * but since that doesn't exist yet, just open code it. 4078 */ 4079 smp_mb(); 4080 4081 /* We need to check again in a case another CPU has just 4082 * made room available. 4083 */ 4084 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4085 return -EBUSY; 4086 4087 /* A reprieve! - use start_queue because it doesn't call schedule */ 4088 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4089 ++tx_ring->tx_stats.restart_queue; 4090 4091 return 0; 4092 } 4093 4094 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4095 { 4096 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4097 return 0; 4098 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4099 } 4100 4101 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4102 struct ixgbevf_ring *tx_ring) 4103 { 4104 struct ixgbevf_tx_buffer *first; 4105 int tso; 4106 u32 tx_flags = 0; 4107 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4108 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; 4109 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4110 unsigned short f; 4111 #endif 4112 u8 hdr_len = 0; 4113 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4114 4115 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4116 dev_kfree_skb_any(skb); 4117 return NETDEV_TX_OK; 4118 } 4119 4120 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4121 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4122 * + 2 desc gap to keep tail from touching head, 4123 * + 1 desc for context descriptor, 4124 * otherwise try next time 4125 */ 4126 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4127 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 4128 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 4129 #else 4130 count += skb_shinfo(skb)->nr_frags; 4131 #endif 4132 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4133 tx_ring->tx_stats.tx_busy++; 4134 return NETDEV_TX_BUSY; 4135 } 4136 4137 /* record the location of the first descriptor for this packet */ 4138 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4139 first->skb = skb; 4140 first->bytecount = skb->len; 4141 first->gso_segs = 1; 4142 4143 if (skb_vlan_tag_present(skb)) { 4144 tx_flags |= skb_vlan_tag_get(skb); 4145 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4146 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4147 } 4148 4149 /* record initial flags and protocol */ 4150 first->tx_flags = tx_flags; 4151 first->protocol = vlan_get_protocol(skb); 4152 4153 #ifdef CONFIG_IXGBEVF_IPSEC 4154 if (skb->sp && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) 4155 goto out_drop; 4156 #endif 4157 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); 4158 if (tso < 0) 4159 goto out_drop; 4160 else if (!tso) 4161 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); 4162 4163 ixgbevf_tx_map(tx_ring, first, hdr_len); 4164 4165 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4166 4167 return NETDEV_TX_OK; 4168 4169 out_drop: 4170 dev_kfree_skb_any(first->skb); 4171 first->skb = NULL; 4172 4173 return NETDEV_TX_OK; 4174 } 4175 4176 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4177 { 4178 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4179 struct ixgbevf_ring *tx_ring; 4180 4181 if (skb->len <= 0) { 4182 dev_kfree_skb_any(skb); 4183 return NETDEV_TX_OK; 4184 } 4185 4186 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4187 * in order to meet this minimum size requirement. 4188 */ 4189 if (skb->len < 17) { 4190 if (skb_padto(skb, 17)) 4191 return NETDEV_TX_OK; 4192 skb->len = 17; 4193 } 4194 4195 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4196 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4197 } 4198 4199 /** 4200 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4201 * @netdev: network interface device structure 4202 * @p: pointer to an address structure 4203 * 4204 * Returns 0 on success, negative on failure 4205 **/ 4206 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4207 { 4208 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4209 struct ixgbe_hw *hw = &adapter->hw; 4210 struct sockaddr *addr = p; 4211 int err; 4212 4213 if (!is_valid_ether_addr(addr->sa_data)) 4214 return -EADDRNOTAVAIL; 4215 4216 spin_lock_bh(&adapter->mbx_lock); 4217 4218 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4219 4220 spin_unlock_bh(&adapter->mbx_lock); 4221 4222 if (err) 4223 return -EPERM; 4224 4225 ether_addr_copy(hw->mac.addr, addr->sa_data); 4226 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4227 ether_addr_copy(netdev->dev_addr, addr->sa_data); 4228 4229 return 0; 4230 } 4231 4232 /** 4233 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4234 * @netdev: network interface device structure 4235 * @new_mtu: new value for maximum frame size 4236 * 4237 * Returns 0 on success, negative on failure 4238 **/ 4239 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4240 { 4241 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4242 struct ixgbe_hw *hw = &adapter->hw; 4243 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4244 int ret; 4245 4246 /* prevent MTU being changed to a size unsupported by XDP */ 4247 if (adapter->xdp_prog) { 4248 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4249 return -EPERM; 4250 } 4251 4252 spin_lock_bh(&adapter->mbx_lock); 4253 /* notify the PF of our intent to use this size of frame */ 4254 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4255 spin_unlock_bh(&adapter->mbx_lock); 4256 if (ret) 4257 return -EINVAL; 4258 4259 hw_dbg(hw, "changing MTU from %d to %d\n", 4260 netdev->mtu, new_mtu); 4261 4262 /* must set new MTU before calling down or up */ 4263 netdev->mtu = new_mtu; 4264 4265 if (netif_running(netdev)) 4266 ixgbevf_reinit_locked(adapter); 4267 4268 return 0; 4269 } 4270 4271 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state) 4272 { 4273 struct net_device *netdev = pci_get_drvdata(pdev); 4274 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4275 #ifdef CONFIG_PM 4276 int retval = 0; 4277 #endif 4278 4279 rtnl_lock(); 4280 netif_device_detach(netdev); 4281 4282 if (netif_running(netdev)) 4283 ixgbevf_close_suspend(adapter); 4284 4285 ixgbevf_clear_interrupt_scheme(adapter); 4286 rtnl_unlock(); 4287 4288 #ifdef CONFIG_PM 4289 retval = pci_save_state(pdev); 4290 if (retval) 4291 return retval; 4292 4293 #endif 4294 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4295 pci_disable_device(pdev); 4296 4297 return 0; 4298 } 4299 4300 #ifdef CONFIG_PM 4301 static int ixgbevf_resume(struct pci_dev *pdev) 4302 { 4303 struct net_device *netdev = pci_get_drvdata(pdev); 4304 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4305 u32 err; 4306 4307 pci_restore_state(pdev); 4308 /* pci_restore_state clears dev->state_saved so call 4309 * pci_save_state to restore it. 4310 */ 4311 pci_save_state(pdev); 4312 4313 err = pci_enable_device_mem(pdev); 4314 if (err) { 4315 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 4316 return err; 4317 } 4318 4319 adapter->hw.hw_addr = adapter->io_addr; 4320 smp_mb__before_atomic(); 4321 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4322 pci_set_master(pdev); 4323 4324 ixgbevf_reset(adapter); 4325 4326 rtnl_lock(); 4327 err = ixgbevf_init_interrupt_scheme(adapter); 4328 if (!err && netif_running(netdev)) 4329 err = ixgbevf_open(netdev); 4330 rtnl_unlock(); 4331 if (err) 4332 return err; 4333 4334 netif_device_attach(netdev); 4335 4336 return err; 4337 } 4338 4339 #endif /* CONFIG_PM */ 4340 static void ixgbevf_shutdown(struct pci_dev *pdev) 4341 { 4342 ixgbevf_suspend(pdev, PMSG_SUSPEND); 4343 } 4344 4345 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4346 const struct ixgbevf_ring *ring) 4347 { 4348 u64 bytes, packets; 4349 unsigned int start; 4350 4351 if (ring) { 4352 do { 4353 start = u64_stats_fetch_begin_irq(&ring->syncp); 4354 bytes = ring->stats.bytes; 4355 packets = ring->stats.packets; 4356 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4357 stats->tx_bytes += bytes; 4358 stats->tx_packets += packets; 4359 } 4360 } 4361 4362 static void ixgbevf_get_stats(struct net_device *netdev, 4363 struct rtnl_link_stats64 *stats) 4364 { 4365 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4366 unsigned int start; 4367 u64 bytes, packets; 4368 const struct ixgbevf_ring *ring; 4369 int i; 4370 4371 ixgbevf_update_stats(adapter); 4372 4373 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4374 4375 rcu_read_lock(); 4376 for (i = 0; i < adapter->num_rx_queues; i++) { 4377 ring = adapter->rx_ring[i]; 4378 do { 4379 start = u64_stats_fetch_begin_irq(&ring->syncp); 4380 bytes = ring->stats.bytes; 4381 packets = ring->stats.packets; 4382 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4383 stats->rx_bytes += bytes; 4384 stats->rx_packets += packets; 4385 } 4386 4387 for (i = 0; i < adapter->num_tx_queues; i++) { 4388 ring = adapter->tx_ring[i]; 4389 ixgbevf_get_tx_ring_stats(stats, ring); 4390 } 4391 4392 for (i = 0; i < adapter->num_xdp_queues; i++) { 4393 ring = adapter->xdp_ring[i]; 4394 ixgbevf_get_tx_ring_stats(stats, ring); 4395 } 4396 rcu_read_unlock(); 4397 } 4398 4399 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4400 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4401 4402 static netdev_features_t 4403 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4404 netdev_features_t features) 4405 { 4406 unsigned int network_hdr_len, mac_hdr_len; 4407 4408 /* Make certain the headers can be described by a context descriptor */ 4409 mac_hdr_len = skb_network_header(skb) - skb->data; 4410 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4411 return features & ~(NETIF_F_HW_CSUM | 4412 NETIF_F_SCTP_CRC | 4413 NETIF_F_HW_VLAN_CTAG_TX | 4414 NETIF_F_TSO | 4415 NETIF_F_TSO6); 4416 4417 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4418 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4419 return features & ~(NETIF_F_HW_CSUM | 4420 NETIF_F_SCTP_CRC | 4421 NETIF_F_TSO | 4422 NETIF_F_TSO6); 4423 4424 /* We can only support IPV4 TSO in tunnels if we can mangle the 4425 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4426 */ 4427 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4428 features &= ~NETIF_F_TSO; 4429 4430 return features; 4431 } 4432 4433 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4434 { 4435 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4436 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4437 struct bpf_prog *old_prog; 4438 4439 /* verify ixgbevf ring attributes are sufficient for XDP */ 4440 for (i = 0; i < adapter->num_rx_queues; i++) { 4441 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4442 4443 if (frame_size > ixgbevf_rx_bufsz(ring)) 4444 return -EINVAL; 4445 } 4446 4447 old_prog = xchg(&adapter->xdp_prog, prog); 4448 4449 /* If transitioning XDP modes reconfigure rings */ 4450 if (!!prog != !!old_prog) { 4451 /* Hardware has to reinitialize queues and interrupts to 4452 * match packet buffer alignment. Unfortunately, the 4453 * hardware is not flexible enough to do this dynamically. 4454 */ 4455 if (netif_running(dev)) 4456 ixgbevf_close(dev); 4457 4458 ixgbevf_clear_interrupt_scheme(adapter); 4459 ixgbevf_init_interrupt_scheme(adapter); 4460 4461 if (netif_running(dev)) 4462 ixgbevf_open(dev); 4463 } else { 4464 for (i = 0; i < adapter->num_rx_queues; i++) 4465 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4466 } 4467 4468 if (old_prog) 4469 bpf_prog_put(old_prog); 4470 4471 return 0; 4472 } 4473 4474 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4475 { 4476 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4477 4478 switch (xdp->command) { 4479 case XDP_SETUP_PROG: 4480 return ixgbevf_xdp_setup(dev, xdp->prog); 4481 case XDP_QUERY_PROG: 4482 xdp->prog_id = adapter->xdp_prog ? 4483 adapter->xdp_prog->aux->id : 0; 4484 return 0; 4485 default: 4486 return -EINVAL; 4487 } 4488 } 4489 4490 static const struct net_device_ops ixgbevf_netdev_ops = { 4491 .ndo_open = ixgbevf_open, 4492 .ndo_stop = ixgbevf_close, 4493 .ndo_start_xmit = ixgbevf_xmit_frame, 4494 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4495 .ndo_get_stats64 = ixgbevf_get_stats, 4496 .ndo_validate_addr = eth_validate_addr, 4497 .ndo_set_mac_address = ixgbevf_set_mac, 4498 .ndo_change_mtu = ixgbevf_change_mtu, 4499 .ndo_tx_timeout = ixgbevf_tx_timeout, 4500 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4501 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4502 .ndo_features_check = ixgbevf_features_check, 4503 .ndo_bpf = ixgbevf_xdp, 4504 }; 4505 4506 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4507 { 4508 dev->netdev_ops = &ixgbevf_netdev_ops; 4509 ixgbevf_set_ethtool_ops(dev); 4510 dev->watchdog_timeo = 5 * HZ; 4511 } 4512 4513 /** 4514 * ixgbevf_probe - Device Initialization Routine 4515 * @pdev: PCI device information struct 4516 * @ent: entry in ixgbevf_pci_tbl 4517 * 4518 * Returns 0 on success, negative on failure 4519 * 4520 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4521 * The OS initialization, configuring of the adapter private structure, 4522 * and a hardware reset occur. 4523 **/ 4524 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4525 { 4526 struct net_device *netdev; 4527 struct ixgbevf_adapter *adapter = NULL; 4528 struct ixgbe_hw *hw = NULL; 4529 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4530 int err, pci_using_dac; 4531 bool disable_dev = false; 4532 4533 err = pci_enable_device(pdev); 4534 if (err) 4535 return err; 4536 4537 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 4538 pci_using_dac = 1; 4539 } else { 4540 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4541 if (err) { 4542 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4543 goto err_dma; 4544 } 4545 pci_using_dac = 0; 4546 } 4547 4548 err = pci_request_regions(pdev, ixgbevf_driver_name); 4549 if (err) { 4550 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4551 goto err_pci_reg; 4552 } 4553 4554 pci_set_master(pdev); 4555 4556 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4557 MAX_TX_QUEUES); 4558 if (!netdev) { 4559 err = -ENOMEM; 4560 goto err_alloc_etherdev; 4561 } 4562 4563 SET_NETDEV_DEV(netdev, &pdev->dev); 4564 4565 adapter = netdev_priv(netdev); 4566 4567 adapter->netdev = netdev; 4568 adapter->pdev = pdev; 4569 hw = &adapter->hw; 4570 hw->back = adapter; 4571 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4572 4573 /* call save state here in standalone driver because it relies on 4574 * adapter struct to exist, and needs to call netdev_priv 4575 */ 4576 pci_save_state(pdev); 4577 4578 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4579 pci_resource_len(pdev, 0)); 4580 adapter->io_addr = hw->hw_addr; 4581 if (!hw->hw_addr) { 4582 err = -EIO; 4583 goto err_ioremap; 4584 } 4585 4586 ixgbevf_assign_netdev_ops(netdev); 4587 4588 /* Setup HW API */ 4589 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4590 hw->mac.type = ii->mac; 4591 4592 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4593 sizeof(struct ixgbe_mbx_operations)); 4594 4595 /* setup the private structure */ 4596 err = ixgbevf_sw_init(adapter); 4597 if (err) 4598 goto err_sw_init; 4599 4600 /* The HW MAC address was set and/or determined in sw_init */ 4601 if (!is_valid_ether_addr(netdev->dev_addr)) { 4602 pr_err("invalid MAC address\n"); 4603 err = -EIO; 4604 goto err_sw_init; 4605 } 4606 4607 netdev->hw_features = NETIF_F_SG | 4608 NETIF_F_TSO | 4609 NETIF_F_TSO6 | 4610 NETIF_F_RXCSUM | 4611 NETIF_F_HW_CSUM | 4612 NETIF_F_SCTP_CRC; 4613 4614 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4615 NETIF_F_GSO_GRE_CSUM | \ 4616 NETIF_F_GSO_IPXIP4 | \ 4617 NETIF_F_GSO_IPXIP6 | \ 4618 NETIF_F_GSO_UDP_TUNNEL | \ 4619 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4620 4621 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4622 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4623 IXGBEVF_GSO_PARTIAL_FEATURES; 4624 4625 netdev->features = netdev->hw_features; 4626 4627 if (pci_using_dac) 4628 netdev->features |= NETIF_F_HIGHDMA; 4629 4630 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4631 netdev->mpls_features |= NETIF_F_SG | 4632 NETIF_F_TSO | 4633 NETIF_F_TSO6 | 4634 NETIF_F_HW_CSUM; 4635 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4636 netdev->hw_enc_features |= netdev->vlan_features; 4637 4638 /* set this bit last since it cannot be part of vlan_features */ 4639 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4640 NETIF_F_HW_VLAN_CTAG_RX | 4641 NETIF_F_HW_VLAN_CTAG_TX; 4642 4643 netdev->priv_flags |= IFF_UNICAST_FLT; 4644 4645 /* MTU range: 68 - 1504 or 9710 */ 4646 netdev->min_mtu = ETH_MIN_MTU; 4647 switch (adapter->hw.api_version) { 4648 case ixgbe_mbox_api_11: 4649 case ixgbe_mbox_api_12: 4650 case ixgbe_mbox_api_13: 4651 case ixgbe_mbox_api_14: 4652 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4653 (ETH_HLEN + ETH_FCS_LEN); 4654 break; 4655 default: 4656 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4657 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4658 (ETH_HLEN + ETH_FCS_LEN); 4659 else 4660 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4661 break; 4662 } 4663 4664 if (IXGBE_REMOVED(hw->hw_addr)) { 4665 err = -EIO; 4666 goto err_sw_init; 4667 } 4668 4669 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4670 4671 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4672 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4673 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4674 4675 err = ixgbevf_init_interrupt_scheme(adapter); 4676 if (err) 4677 goto err_sw_init; 4678 4679 strcpy(netdev->name, "eth%d"); 4680 4681 err = register_netdev(netdev); 4682 if (err) 4683 goto err_register; 4684 4685 pci_set_drvdata(pdev, netdev); 4686 netif_carrier_off(netdev); 4687 ixgbevf_init_ipsec_offload(adapter); 4688 4689 ixgbevf_init_last_counter_stats(adapter); 4690 4691 /* print the VF info */ 4692 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4693 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4694 4695 switch (hw->mac.type) { 4696 case ixgbe_mac_X550_vf: 4697 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4698 break; 4699 case ixgbe_mac_X540_vf: 4700 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4701 break; 4702 case ixgbe_mac_82599_vf: 4703 default: 4704 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4705 break; 4706 } 4707 4708 return 0; 4709 4710 err_register: 4711 ixgbevf_clear_interrupt_scheme(adapter); 4712 err_sw_init: 4713 ixgbevf_reset_interrupt_capability(adapter); 4714 iounmap(adapter->io_addr); 4715 kfree(adapter->rss_key); 4716 err_ioremap: 4717 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4718 free_netdev(netdev); 4719 err_alloc_etherdev: 4720 pci_release_regions(pdev); 4721 err_pci_reg: 4722 err_dma: 4723 if (!adapter || disable_dev) 4724 pci_disable_device(pdev); 4725 return err; 4726 } 4727 4728 /** 4729 * ixgbevf_remove - Device Removal Routine 4730 * @pdev: PCI device information struct 4731 * 4732 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4733 * that it should release a PCI device. The could be caused by a 4734 * Hot-Plug event, or because the driver is going to be removed from 4735 * memory. 4736 **/ 4737 static void ixgbevf_remove(struct pci_dev *pdev) 4738 { 4739 struct net_device *netdev = pci_get_drvdata(pdev); 4740 struct ixgbevf_adapter *adapter; 4741 bool disable_dev; 4742 4743 if (!netdev) 4744 return; 4745 4746 adapter = netdev_priv(netdev); 4747 4748 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4749 cancel_work_sync(&adapter->service_task); 4750 4751 if (netdev->reg_state == NETREG_REGISTERED) 4752 unregister_netdev(netdev); 4753 4754 ixgbevf_stop_ipsec_offload(adapter); 4755 ixgbevf_clear_interrupt_scheme(adapter); 4756 ixgbevf_reset_interrupt_capability(adapter); 4757 4758 iounmap(adapter->io_addr); 4759 pci_release_regions(pdev); 4760 4761 hw_dbg(&adapter->hw, "Remove complete\n"); 4762 4763 kfree(adapter->rss_key); 4764 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4765 free_netdev(netdev); 4766 4767 if (disable_dev) 4768 pci_disable_device(pdev); 4769 } 4770 4771 /** 4772 * ixgbevf_io_error_detected - called when PCI error is detected 4773 * @pdev: Pointer to PCI device 4774 * @state: The current pci connection state 4775 * 4776 * This function is called after a PCI bus error affecting 4777 * this device has been detected. 4778 **/ 4779 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4780 pci_channel_state_t state) 4781 { 4782 struct net_device *netdev = pci_get_drvdata(pdev); 4783 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4784 4785 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4786 return PCI_ERS_RESULT_DISCONNECT; 4787 4788 rtnl_lock(); 4789 netif_device_detach(netdev); 4790 4791 if (netif_running(netdev)) 4792 ixgbevf_close_suspend(adapter); 4793 4794 if (state == pci_channel_io_perm_failure) { 4795 rtnl_unlock(); 4796 return PCI_ERS_RESULT_DISCONNECT; 4797 } 4798 4799 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4800 pci_disable_device(pdev); 4801 rtnl_unlock(); 4802 4803 /* Request a slot slot reset. */ 4804 return PCI_ERS_RESULT_NEED_RESET; 4805 } 4806 4807 /** 4808 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4809 * @pdev: Pointer to PCI device 4810 * 4811 * Restart the card from scratch, as if from a cold-boot. Implementation 4812 * resembles the first-half of the ixgbevf_resume routine. 4813 **/ 4814 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4815 { 4816 struct net_device *netdev = pci_get_drvdata(pdev); 4817 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4818 4819 if (pci_enable_device_mem(pdev)) { 4820 dev_err(&pdev->dev, 4821 "Cannot re-enable PCI device after reset.\n"); 4822 return PCI_ERS_RESULT_DISCONNECT; 4823 } 4824 4825 adapter->hw.hw_addr = adapter->io_addr; 4826 smp_mb__before_atomic(); 4827 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4828 pci_set_master(pdev); 4829 4830 ixgbevf_reset(adapter); 4831 4832 return PCI_ERS_RESULT_RECOVERED; 4833 } 4834 4835 /** 4836 * ixgbevf_io_resume - called when traffic can start flowing again. 4837 * @pdev: Pointer to PCI device 4838 * 4839 * This callback is called when the error recovery driver tells us that 4840 * its OK to resume normal operation. Implementation resembles the 4841 * second-half of the ixgbevf_resume routine. 4842 **/ 4843 static void ixgbevf_io_resume(struct pci_dev *pdev) 4844 { 4845 struct net_device *netdev = pci_get_drvdata(pdev); 4846 4847 rtnl_lock(); 4848 if (netif_running(netdev)) 4849 ixgbevf_open(netdev); 4850 4851 netif_device_attach(netdev); 4852 rtnl_unlock(); 4853 } 4854 4855 /* PCI Error Recovery (ERS) */ 4856 static const struct pci_error_handlers ixgbevf_err_handler = { 4857 .error_detected = ixgbevf_io_error_detected, 4858 .slot_reset = ixgbevf_io_slot_reset, 4859 .resume = ixgbevf_io_resume, 4860 }; 4861 4862 static struct pci_driver ixgbevf_driver = { 4863 .name = ixgbevf_driver_name, 4864 .id_table = ixgbevf_pci_tbl, 4865 .probe = ixgbevf_probe, 4866 .remove = ixgbevf_remove, 4867 #ifdef CONFIG_PM 4868 /* Power Management Hooks */ 4869 .suspend = ixgbevf_suspend, 4870 .resume = ixgbevf_resume, 4871 #endif 4872 .shutdown = ixgbevf_shutdown, 4873 .err_handler = &ixgbevf_err_handler 4874 }; 4875 4876 /** 4877 * ixgbevf_init_module - Driver Registration Routine 4878 * 4879 * ixgbevf_init_module is the first routine called when the driver is 4880 * loaded. All it does is register with the PCI subsystem. 4881 **/ 4882 static int __init ixgbevf_init_module(void) 4883 { 4884 pr_info("%s - version %s\n", ixgbevf_driver_string, 4885 ixgbevf_driver_version); 4886 4887 pr_info("%s\n", ixgbevf_copyright); 4888 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4889 if (!ixgbevf_wq) { 4890 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4891 return -ENOMEM; 4892 } 4893 4894 return pci_register_driver(&ixgbevf_driver); 4895 } 4896 4897 module_init(ixgbevf_init_module); 4898 4899 /** 4900 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4901 * 4902 * ixgbevf_exit_module is called just before the driver is removed 4903 * from memory. 4904 **/ 4905 static void __exit ixgbevf_exit_module(void) 4906 { 4907 pci_unregister_driver(&ixgbevf_driver); 4908 if (ixgbevf_wq) { 4909 destroy_workqueue(ixgbevf_wq); 4910 ixgbevf_wq = NULL; 4911 } 4912 } 4913 4914 #ifdef DEBUG 4915 /** 4916 * ixgbevf_get_hw_dev_name - return device name string 4917 * used by hardware layer to print debugging information 4918 * @hw: pointer to private hardware struct 4919 **/ 4920 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4921 { 4922 struct ixgbevf_adapter *adapter = hw->back; 4923 4924 return adapter->netdev->name; 4925 } 4926 4927 #endif 4928 module_exit(ixgbevf_exit_module); 4929 4930 /* ixgbevf_main.c */ 4931