xref: /openbmc/linux/drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /******************************************************************************
5  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
6 ******************************************************************************/
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/types.h>
11 #include <linux/bitops.h>
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/netdevice.h>
15 #include <linux/vmalloc.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/tcp.h>
20 #include <linux/sctp.h>
21 #include <linux/ipv6.h>
22 #include <linux/slab.h>
23 #include <net/checksum.h>
24 #include <net/ip6_checksum.h>
25 #include <linux/ethtool.h>
26 #include <linux/if.h>
27 #include <linux/if_vlan.h>
28 #include <linux/prefetch.h>
29 #include <net/mpls.h>
30 #include <linux/bpf.h>
31 #include <linux/bpf_trace.h>
32 #include <linux/atomic.h>
33 
34 #include "ixgbevf.h"
35 
36 const char ixgbevf_driver_name[] = "ixgbevf";
37 static const char ixgbevf_driver_string[] =
38 	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
39 
40 #define DRV_VERSION "4.1.0-k"
41 const char ixgbevf_driver_version[] = DRV_VERSION;
42 static char ixgbevf_copyright[] =
43 	"Copyright (c) 2009 - 2018 Intel Corporation.";
44 
45 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
46 	[board_82599_vf]	= &ixgbevf_82599_vf_info,
47 	[board_82599_vf_hv]	= &ixgbevf_82599_vf_hv_info,
48 	[board_X540_vf]		= &ixgbevf_X540_vf_info,
49 	[board_X540_vf_hv]	= &ixgbevf_X540_vf_hv_info,
50 	[board_X550_vf]		= &ixgbevf_X550_vf_info,
51 	[board_X550_vf_hv]	= &ixgbevf_X550_vf_hv_info,
52 	[board_X550EM_x_vf]	= &ixgbevf_X550EM_x_vf_info,
53 	[board_X550EM_x_vf_hv]	= &ixgbevf_X550EM_x_vf_hv_info,
54 	[board_x550em_a_vf]	= &ixgbevf_x550em_a_vf_info,
55 };
56 
57 /* ixgbevf_pci_tbl - PCI Device ID Table
58  *
59  * Wildcard entries (PCI_ANY_ID) should come last
60  * Last entry must be all 0s
61  *
62  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
63  *   Class, Class Mask, private data (not used) }
64  */
65 static const struct pci_device_id ixgbevf_pci_tbl[] = {
66 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
67 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
68 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
69 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
70 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
71 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
72 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
73 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
74 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
75 	/* required last entry */
76 	{0, }
77 };
78 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
79 
80 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
81 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
82 MODULE_LICENSE("GPL v2");
83 MODULE_VERSION(DRV_VERSION);
84 
85 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
86 static int debug = -1;
87 module_param(debug, int, 0);
88 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
89 
90 static struct workqueue_struct *ixgbevf_wq;
91 
92 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
93 {
94 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
95 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
96 	    !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
97 		queue_work(ixgbevf_wq, &adapter->service_task);
98 }
99 
100 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
101 {
102 	BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
103 
104 	/* flush memory to make sure state is correct before next watchdog */
105 	smp_mb__before_atomic();
106 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
107 }
108 
109 /* forward decls */
110 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
111 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
112 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
113 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer);
114 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
115 				  struct ixgbevf_rx_buffer *old_buff);
116 
117 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
118 {
119 	struct ixgbevf_adapter *adapter = hw->back;
120 
121 	if (!hw->hw_addr)
122 		return;
123 	hw->hw_addr = NULL;
124 	dev_err(&adapter->pdev->dev, "Adapter removed\n");
125 	if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
126 		ixgbevf_service_event_schedule(adapter);
127 }
128 
129 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
130 {
131 	u32 value;
132 
133 	/* The following check not only optimizes a bit by not
134 	 * performing a read on the status register when the
135 	 * register just read was a status register read that
136 	 * returned IXGBE_FAILED_READ_REG. It also blocks any
137 	 * potential recursion.
138 	 */
139 	if (reg == IXGBE_VFSTATUS) {
140 		ixgbevf_remove_adapter(hw);
141 		return;
142 	}
143 	value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
144 	if (value == IXGBE_FAILED_READ_REG)
145 		ixgbevf_remove_adapter(hw);
146 }
147 
148 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
149 {
150 	u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr);
151 	u32 value;
152 
153 	if (IXGBE_REMOVED(reg_addr))
154 		return IXGBE_FAILED_READ_REG;
155 	value = readl(reg_addr + reg);
156 	if (unlikely(value == IXGBE_FAILED_READ_REG))
157 		ixgbevf_check_remove(hw, reg);
158 	return value;
159 }
160 
161 /**
162  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
163  * @adapter: pointer to adapter struct
164  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
165  * @queue: queue to map the corresponding interrupt to
166  * @msix_vector: the vector to map to the corresponding queue
167  **/
168 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
169 			     u8 queue, u8 msix_vector)
170 {
171 	u32 ivar, index;
172 	struct ixgbe_hw *hw = &adapter->hw;
173 
174 	if (direction == -1) {
175 		/* other causes */
176 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
177 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
178 		ivar &= ~0xFF;
179 		ivar |= msix_vector;
180 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
181 	} else {
182 		/* Tx or Rx causes */
183 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
184 		index = ((16 * (queue & 1)) + (8 * direction));
185 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
186 		ivar &= ~(0xFF << index);
187 		ivar |= (msix_vector << index);
188 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
189 	}
190 }
191 
192 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
193 {
194 	return ring->stats.packets;
195 }
196 
197 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
198 {
199 	struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
200 	struct ixgbe_hw *hw = &adapter->hw;
201 
202 	u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
203 	u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
204 
205 	if (head != tail)
206 		return (head < tail) ?
207 			tail - head : (tail + ring->count - head);
208 
209 	return 0;
210 }
211 
212 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
213 {
214 	u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
215 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
216 	u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
217 
218 	clear_check_for_tx_hang(tx_ring);
219 
220 	/* Check for a hung queue, but be thorough. This verifies
221 	 * that a transmit has been completed since the previous
222 	 * check AND there is at least one packet pending. The
223 	 * ARMED bit is set to indicate a potential hang.
224 	 */
225 	if ((tx_done_old == tx_done) && tx_pending) {
226 		/* make sure it is true for two checks in a row */
227 		return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
228 					&tx_ring->state);
229 	}
230 	/* reset the countdown */
231 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
232 
233 	/* update completed stats and continue */
234 	tx_ring->tx_stats.tx_done_old = tx_done;
235 
236 	return false;
237 }
238 
239 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
240 {
241 	/* Do the reset outside of interrupt context */
242 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
243 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
244 		ixgbevf_service_event_schedule(adapter);
245 	}
246 }
247 
248 /**
249  * ixgbevf_tx_timeout - Respond to a Tx Hang
250  * @netdev: network interface device structure
251  **/
252 static void ixgbevf_tx_timeout(struct net_device *netdev)
253 {
254 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
255 
256 	ixgbevf_tx_timeout_reset(adapter);
257 }
258 
259 /**
260  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
261  * @q_vector: board private structure
262  * @tx_ring: tx ring to clean
263  * @napi_budget: Used to determine if we are in netpoll
264  **/
265 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
266 				 struct ixgbevf_ring *tx_ring, int napi_budget)
267 {
268 	struct ixgbevf_adapter *adapter = q_vector->adapter;
269 	struct ixgbevf_tx_buffer *tx_buffer;
270 	union ixgbe_adv_tx_desc *tx_desc;
271 	unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0;
272 	unsigned int budget = tx_ring->count / 2;
273 	unsigned int i = tx_ring->next_to_clean;
274 
275 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
276 		return true;
277 
278 	tx_buffer = &tx_ring->tx_buffer_info[i];
279 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
280 	i -= tx_ring->count;
281 
282 	do {
283 		union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
284 
285 		/* if next_to_watch is not set then there is no work pending */
286 		if (!eop_desc)
287 			break;
288 
289 		/* prevent any other reads prior to eop_desc */
290 		smp_rmb();
291 
292 		/* if DD is not set pending work has not been completed */
293 		if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
294 			break;
295 
296 		/* clear next_to_watch to prevent false hangs */
297 		tx_buffer->next_to_watch = NULL;
298 
299 		/* update the statistics for this packet */
300 		total_bytes += tx_buffer->bytecount;
301 		total_packets += tx_buffer->gso_segs;
302 		if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC)
303 			total_ipsec++;
304 
305 		/* free the skb */
306 		if (ring_is_xdp(tx_ring))
307 			page_frag_free(tx_buffer->data);
308 		else
309 			napi_consume_skb(tx_buffer->skb, napi_budget);
310 
311 		/* unmap skb header data */
312 		dma_unmap_single(tx_ring->dev,
313 				 dma_unmap_addr(tx_buffer, dma),
314 				 dma_unmap_len(tx_buffer, len),
315 				 DMA_TO_DEVICE);
316 
317 		/* clear tx_buffer data */
318 		dma_unmap_len_set(tx_buffer, len, 0);
319 
320 		/* unmap remaining buffers */
321 		while (tx_desc != eop_desc) {
322 			tx_buffer++;
323 			tx_desc++;
324 			i++;
325 			if (unlikely(!i)) {
326 				i -= tx_ring->count;
327 				tx_buffer = tx_ring->tx_buffer_info;
328 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
329 			}
330 
331 			/* unmap any remaining paged data */
332 			if (dma_unmap_len(tx_buffer, len)) {
333 				dma_unmap_page(tx_ring->dev,
334 					       dma_unmap_addr(tx_buffer, dma),
335 					       dma_unmap_len(tx_buffer, len),
336 					       DMA_TO_DEVICE);
337 				dma_unmap_len_set(tx_buffer, len, 0);
338 			}
339 		}
340 
341 		/* move us one more past the eop_desc for start of next pkt */
342 		tx_buffer++;
343 		tx_desc++;
344 		i++;
345 		if (unlikely(!i)) {
346 			i -= tx_ring->count;
347 			tx_buffer = tx_ring->tx_buffer_info;
348 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
349 		}
350 
351 		/* issue prefetch for next Tx descriptor */
352 		prefetch(tx_desc);
353 
354 		/* update budget accounting */
355 		budget--;
356 	} while (likely(budget));
357 
358 	i += tx_ring->count;
359 	tx_ring->next_to_clean = i;
360 	u64_stats_update_begin(&tx_ring->syncp);
361 	tx_ring->stats.bytes += total_bytes;
362 	tx_ring->stats.packets += total_packets;
363 	u64_stats_update_end(&tx_ring->syncp);
364 	q_vector->tx.total_bytes += total_bytes;
365 	q_vector->tx.total_packets += total_packets;
366 	adapter->tx_ipsec += total_ipsec;
367 
368 	if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
369 		struct ixgbe_hw *hw = &adapter->hw;
370 		union ixgbe_adv_tx_desc *eop_desc;
371 
372 		eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
373 
374 		pr_err("Detected Tx Unit Hang%s\n"
375 		       "  Tx Queue             <%d>\n"
376 		       "  TDH, TDT             <%x>, <%x>\n"
377 		       "  next_to_use          <%x>\n"
378 		       "  next_to_clean        <%x>\n"
379 		       "tx_buffer_info[next_to_clean]\n"
380 		       "  next_to_watch        <%p>\n"
381 		       "  eop_desc->wb.status  <%x>\n"
382 		       "  time_stamp           <%lx>\n"
383 		       "  jiffies              <%lx>\n",
384 		       ring_is_xdp(tx_ring) ? " XDP" : "",
385 		       tx_ring->queue_index,
386 		       IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
387 		       IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
388 		       tx_ring->next_to_use, i,
389 		       eop_desc, (eop_desc ? eop_desc->wb.status : 0),
390 		       tx_ring->tx_buffer_info[i].time_stamp, jiffies);
391 
392 		if (!ring_is_xdp(tx_ring))
393 			netif_stop_subqueue(tx_ring->netdev,
394 					    tx_ring->queue_index);
395 
396 		/* schedule immediate reset if we believe we hung */
397 		ixgbevf_tx_timeout_reset(adapter);
398 
399 		return true;
400 	}
401 
402 	if (ring_is_xdp(tx_ring))
403 		return !!budget;
404 
405 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
406 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
407 		     (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
408 		/* Make sure that anybody stopping the queue after this
409 		 * sees the new next_to_clean.
410 		 */
411 		smp_mb();
412 
413 		if (__netif_subqueue_stopped(tx_ring->netdev,
414 					     tx_ring->queue_index) &&
415 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
416 			netif_wake_subqueue(tx_ring->netdev,
417 					    tx_ring->queue_index);
418 			++tx_ring->tx_stats.restart_queue;
419 		}
420 	}
421 
422 	return !!budget;
423 }
424 
425 /**
426  * ixgbevf_rx_skb - Helper function to determine proper Rx method
427  * @q_vector: structure containing interrupt and ring information
428  * @skb: packet to send up
429  **/
430 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
431 			   struct sk_buff *skb)
432 {
433 	napi_gro_receive(&q_vector->napi, skb);
434 }
435 
436 #define IXGBE_RSS_L4_TYPES_MASK \
437 	((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
438 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
439 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
440 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
441 
442 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
443 				   union ixgbe_adv_rx_desc *rx_desc,
444 				   struct sk_buff *skb)
445 {
446 	u16 rss_type;
447 
448 	if (!(ring->netdev->features & NETIF_F_RXHASH))
449 		return;
450 
451 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
452 		   IXGBE_RXDADV_RSSTYPE_MASK;
453 
454 	if (!rss_type)
455 		return;
456 
457 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
458 		     (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
459 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
460 }
461 
462 /**
463  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
464  * @ring: structure containig ring specific data
465  * @rx_desc: current Rx descriptor being processed
466  * @skb: skb currently being received and modified
467  **/
468 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
469 				       union ixgbe_adv_rx_desc *rx_desc,
470 				       struct sk_buff *skb)
471 {
472 	skb_checksum_none_assert(skb);
473 
474 	/* Rx csum disabled */
475 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
476 		return;
477 
478 	/* if IP and error */
479 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
480 	    ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
481 		ring->rx_stats.csum_err++;
482 		return;
483 	}
484 
485 	if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
486 		return;
487 
488 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
489 		ring->rx_stats.csum_err++;
490 		return;
491 	}
492 
493 	/* It must be a TCP or UDP packet with a valid checksum */
494 	skb->ip_summed = CHECKSUM_UNNECESSARY;
495 }
496 
497 /**
498  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
499  * @rx_ring: rx descriptor ring packet is being transacted on
500  * @rx_desc: pointer to the EOP Rx descriptor
501  * @skb: pointer to current skb being populated
502  *
503  * This function checks the ring, descriptor, and packet information in
504  * order to populate the checksum, VLAN, protocol, and other fields within
505  * the skb.
506  **/
507 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
508 				       union ixgbe_adv_rx_desc *rx_desc,
509 				       struct sk_buff *skb)
510 {
511 	ixgbevf_rx_hash(rx_ring, rx_desc, skb);
512 	ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
513 
514 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
515 		u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
516 		unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
517 
518 		if (test_bit(vid & VLAN_VID_MASK, active_vlans))
519 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
520 	}
521 
522 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP))
523 		ixgbevf_ipsec_rx(rx_ring, rx_desc, skb);
524 
525 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
526 }
527 
528 static
529 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring,
530 						const unsigned int size)
531 {
532 	struct ixgbevf_rx_buffer *rx_buffer;
533 
534 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
535 	prefetchw(rx_buffer->page);
536 
537 	/* we are reusing so sync this buffer for CPU use */
538 	dma_sync_single_range_for_cpu(rx_ring->dev,
539 				      rx_buffer->dma,
540 				      rx_buffer->page_offset,
541 				      size,
542 				      DMA_FROM_DEVICE);
543 
544 	rx_buffer->pagecnt_bias--;
545 
546 	return rx_buffer;
547 }
548 
549 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring,
550 				  struct ixgbevf_rx_buffer *rx_buffer,
551 				  struct sk_buff *skb)
552 {
553 	if (ixgbevf_can_reuse_rx_page(rx_buffer)) {
554 		/* hand second half of page back to the ring */
555 		ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
556 	} else {
557 		if (IS_ERR(skb))
558 			/* We are not reusing the buffer so unmap it and free
559 			 * any references we are holding to it
560 			 */
561 			dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
562 					     ixgbevf_rx_pg_size(rx_ring),
563 					     DMA_FROM_DEVICE,
564 					     IXGBEVF_RX_DMA_ATTR);
565 		__page_frag_cache_drain(rx_buffer->page,
566 					rx_buffer->pagecnt_bias);
567 	}
568 
569 	/* clear contents of rx_buffer */
570 	rx_buffer->page = NULL;
571 }
572 
573 /**
574  * ixgbevf_is_non_eop - process handling of non-EOP buffers
575  * @rx_ring: Rx ring being processed
576  * @rx_desc: Rx descriptor for current buffer
577  *
578  * This function updates next to clean.  If the buffer is an EOP buffer
579  * this function exits returning false, otherwise it will place the
580  * sk_buff in the next buffer to be chained and return true indicating
581  * that this is in fact a non-EOP buffer.
582  **/
583 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
584 			       union ixgbe_adv_rx_desc *rx_desc)
585 {
586 	u32 ntc = rx_ring->next_to_clean + 1;
587 
588 	/* fetch, update, and store next to clean */
589 	ntc = (ntc < rx_ring->count) ? ntc : 0;
590 	rx_ring->next_to_clean = ntc;
591 
592 	prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
593 
594 	if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
595 		return false;
596 
597 	return true;
598 }
599 
600 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring)
601 {
602 	return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0;
603 }
604 
605 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
606 				      struct ixgbevf_rx_buffer *bi)
607 {
608 	struct page *page = bi->page;
609 	dma_addr_t dma;
610 
611 	/* since we are recycling buffers we should seldom need to alloc */
612 	if (likely(page))
613 		return true;
614 
615 	/* alloc new page for storage */
616 	page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring));
617 	if (unlikely(!page)) {
618 		rx_ring->rx_stats.alloc_rx_page_failed++;
619 		return false;
620 	}
621 
622 	/* map page for use */
623 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
624 				 ixgbevf_rx_pg_size(rx_ring),
625 				 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR);
626 
627 	/* if mapping failed free memory back to system since
628 	 * there isn't much point in holding memory we can't use
629 	 */
630 	if (dma_mapping_error(rx_ring->dev, dma)) {
631 		__free_pages(page, ixgbevf_rx_pg_order(rx_ring));
632 
633 		rx_ring->rx_stats.alloc_rx_page_failed++;
634 		return false;
635 	}
636 
637 	bi->dma = dma;
638 	bi->page = page;
639 	bi->page_offset = ixgbevf_rx_offset(rx_ring);
640 	bi->pagecnt_bias = 1;
641 	rx_ring->rx_stats.alloc_rx_page++;
642 
643 	return true;
644 }
645 
646 /**
647  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
648  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
649  * @cleaned_count: number of buffers to replace
650  **/
651 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
652 				     u16 cleaned_count)
653 {
654 	union ixgbe_adv_rx_desc *rx_desc;
655 	struct ixgbevf_rx_buffer *bi;
656 	unsigned int i = rx_ring->next_to_use;
657 
658 	/* nothing to do or no valid netdev defined */
659 	if (!cleaned_count || !rx_ring->netdev)
660 		return;
661 
662 	rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
663 	bi = &rx_ring->rx_buffer_info[i];
664 	i -= rx_ring->count;
665 
666 	do {
667 		if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
668 			break;
669 
670 		/* sync the buffer for use by the device */
671 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
672 						 bi->page_offset,
673 						 ixgbevf_rx_bufsz(rx_ring),
674 						 DMA_FROM_DEVICE);
675 
676 		/* Refresh the desc even if pkt_addr didn't change
677 		 * because each write-back erases this info.
678 		 */
679 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
680 
681 		rx_desc++;
682 		bi++;
683 		i++;
684 		if (unlikely(!i)) {
685 			rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
686 			bi = rx_ring->rx_buffer_info;
687 			i -= rx_ring->count;
688 		}
689 
690 		/* clear the length for the next_to_use descriptor */
691 		rx_desc->wb.upper.length = 0;
692 
693 		cleaned_count--;
694 	} while (cleaned_count);
695 
696 	i += rx_ring->count;
697 
698 	if (rx_ring->next_to_use != i) {
699 		/* record the next descriptor to use */
700 		rx_ring->next_to_use = i;
701 
702 		/* update next to alloc since we have filled the ring */
703 		rx_ring->next_to_alloc = i;
704 
705 		/* Force memory writes to complete before letting h/w
706 		 * know there are new descriptors to fetch.  (Only
707 		 * applicable for weak-ordered memory model archs,
708 		 * such as IA-64).
709 		 */
710 		wmb();
711 		ixgbevf_write_tail(rx_ring, i);
712 	}
713 }
714 
715 /**
716  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
717  * @rx_ring: rx descriptor ring packet is being transacted on
718  * @rx_desc: pointer to the EOP Rx descriptor
719  * @skb: pointer to current skb being fixed
720  *
721  * Check for corrupted packet headers caused by senders on the local L2
722  * embedded NIC switch not setting up their Tx Descriptors right.  These
723  * should be very rare.
724  *
725  * Also address the case where we are pulling data in on pages only
726  * and as such no data is present in the skb header.
727  *
728  * In addition if skb is not at least 60 bytes we need to pad it so that
729  * it is large enough to qualify as a valid Ethernet frame.
730  *
731  * Returns true if an error was encountered and skb was freed.
732  **/
733 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
734 				    union ixgbe_adv_rx_desc *rx_desc,
735 				    struct sk_buff *skb)
736 {
737 	/* XDP packets use error pointer so abort at this point */
738 	if (IS_ERR(skb))
739 		return true;
740 
741 	/* verify that the packet does not have any known errors */
742 	if (unlikely(ixgbevf_test_staterr(rx_desc,
743 					  IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
744 		struct net_device *netdev = rx_ring->netdev;
745 
746 		if (!(netdev->features & NETIF_F_RXALL)) {
747 			dev_kfree_skb_any(skb);
748 			return true;
749 		}
750 	}
751 
752 	/* if eth_skb_pad returns an error the skb was freed */
753 	if (eth_skb_pad(skb))
754 		return true;
755 
756 	return false;
757 }
758 
759 /**
760  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
761  * @rx_ring: rx descriptor ring to store buffers on
762  * @old_buff: donor buffer to have page reused
763  *
764  * Synchronizes page for reuse by the adapter
765  **/
766 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
767 				  struct ixgbevf_rx_buffer *old_buff)
768 {
769 	struct ixgbevf_rx_buffer *new_buff;
770 	u16 nta = rx_ring->next_to_alloc;
771 
772 	new_buff = &rx_ring->rx_buffer_info[nta];
773 
774 	/* update, and store next to alloc */
775 	nta++;
776 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
777 
778 	/* transfer page from old buffer to new buffer */
779 	new_buff->page = old_buff->page;
780 	new_buff->dma = old_buff->dma;
781 	new_buff->page_offset = old_buff->page_offset;
782 	new_buff->pagecnt_bias = old_buff->pagecnt_bias;
783 }
784 
785 static inline bool ixgbevf_page_is_reserved(struct page *page)
786 {
787 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
788 }
789 
790 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer)
791 {
792 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
793 	struct page *page = rx_buffer->page;
794 
795 	/* avoid re-using remote pages */
796 	if (unlikely(ixgbevf_page_is_reserved(page)))
797 		return false;
798 
799 #if (PAGE_SIZE < 8192)
800 	/* if we are only owner of page we can reuse it */
801 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
802 		return false;
803 #else
804 #define IXGBEVF_LAST_OFFSET \
805 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048)
806 
807 	if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET)
808 		return false;
809 
810 #endif
811 
812 	/* If we have drained the page fragment pool we need to update
813 	 * the pagecnt_bias and page count so that we fully restock the
814 	 * number of references the driver holds.
815 	 */
816 	if (unlikely(!pagecnt_bias)) {
817 		page_ref_add(page, USHRT_MAX);
818 		rx_buffer->pagecnt_bias = USHRT_MAX;
819 	}
820 
821 	return true;
822 }
823 
824 /**
825  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
826  * @rx_ring: rx descriptor ring to transact packets on
827  * @rx_buffer: buffer containing page to add
828  * @skb: sk_buff to place the data into
829  * @size: size of buffer to be added
830  *
831  * This function will add the data contained in rx_buffer->page to the skb.
832  **/
833 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
834 				struct ixgbevf_rx_buffer *rx_buffer,
835 				struct sk_buff *skb,
836 				unsigned int size)
837 {
838 #if (PAGE_SIZE < 8192)
839 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
840 #else
841 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
842 				SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
843 				SKB_DATA_ALIGN(size);
844 #endif
845 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
846 			rx_buffer->page_offset, size, truesize);
847 #if (PAGE_SIZE < 8192)
848 	rx_buffer->page_offset ^= truesize;
849 #else
850 	rx_buffer->page_offset += truesize;
851 #endif
852 }
853 
854 static
855 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring,
856 				      struct ixgbevf_rx_buffer *rx_buffer,
857 				      struct xdp_buff *xdp,
858 				      union ixgbe_adv_rx_desc *rx_desc)
859 {
860 	unsigned int size = xdp->data_end - xdp->data;
861 #if (PAGE_SIZE < 8192)
862 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
863 #else
864 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
865 					       xdp->data_hard_start);
866 #endif
867 	unsigned int headlen;
868 	struct sk_buff *skb;
869 
870 	/* prefetch first cache line of first page */
871 	prefetch(xdp->data);
872 #if L1_CACHE_BYTES < 128
873 	prefetch(xdp->data + L1_CACHE_BYTES);
874 #endif
875 	/* Note, we get here by enabling legacy-rx via:
876 	 *
877 	 *    ethtool --set-priv-flags <dev> legacy-rx on
878 	 *
879 	 * In this mode, we currently get 0 extra XDP headroom as
880 	 * opposed to having legacy-rx off, where we process XDP
881 	 * packets going to stack via ixgbevf_build_skb().
882 	 *
883 	 * For ixgbevf_construct_skb() mode it means that the
884 	 * xdp->data_meta will always point to xdp->data, since
885 	 * the helper cannot expand the head. Should this ever
886 	 * changed in future for legacy-rx mode on, then lets also
887 	 * add xdp->data_meta handling here.
888 	 */
889 
890 	/* allocate a skb to store the frags */
891 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE);
892 	if (unlikely(!skb))
893 		return NULL;
894 
895 	/* Determine available headroom for copy */
896 	headlen = size;
897 	if (headlen > IXGBEVF_RX_HDR_SIZE)
898 		headlen = eth_get_headlen(xdp->data, IXGBEVF_RX_HDR_SIZE);
899 
900 	/* align pull length to size of long to optimize memcpy performance */
901 	memcpy(__skb_put(skb, headlen), xdp->data,
902 	       ALIGN(headlen, sizeof(long)));
903 
904 	/* update all of the pointers */
905 	size -= headlen;
906 	if (size) {
907 		skb_add_rx_frag(skb, 0, rx_buffer->page,
908 				(xdp->data + headlen) -
909 					page_address(rx_buffer->page),
910 				size, truesize);
911 #if (PAGE_SIZE < 8192)
912 		rx_buffer->page_offset ^= truesize;
913 #else
914 		rx_buffer->page_offset += truesize;
915 #endif
916 	} else {
917 		rx_buffer->pagecnt_bias++;
918 	}
919 
920 	return skb;
921 }
922 
923 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
924 					     u32 qmask)
925 {
926 	struct ixgbe_hw *hw = &adapter->hw;
927 
928 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
929 }
930 
931 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring,
932 					 struct ixgbevf_rx_buffer *rx_buffer,
933 					 struct xdp_buff *xdp,
934 					 union ixgbe_adv_rx_desc *rx_desc)
935 {
936 	unsigned int metasize = xdp->data - xdp->data_meta;
937 #if (PAGE_SIZE < 8192)
938 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
939 #else
940 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
941 				SKB_DATA_ALIGN(xdp->data_end -
942 					       xdp->data_hard_start);
943 #endif
944 	struct sk_buff *skb;
945 
946 	/* Prefetch first cache line of first page. If xdp->data_meta
947 	 * is unused, this points to xdp->data, otherwise, we likely
948 	 * have a consumer accessing first few bytes of meta data,
949 	 * and then actual data.
950 	 */
951 	prefetch(xdp->data_meta);
952 #if L1_CACHE_BYTES < 128
953 	prefetch(xdp->data_meta + L1_CACHE_BYTES);
954 #endif
955 
956 	/* build an skb around the page buffer */
957 	skb = build_skb(xdp->data_hard_start, truesize);
958 	if (unlikely(!skb))
959 		return NULL;
960 
961 	/* update pointers within the skb to store the data */
962 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
963 	__skb_put(skb, xdp->data_end - xdp->data);
964 	if (metasize)
965 		skb_metadata_set(skb, metasize);
966 
967 	/* update buffer offset */
968 #if (PAGE_SIZE < 8192)
969 	rx_buffer->page_offset ^= truesize;
970 #else
971 	rx_buffer->page_offset += truesize;
972 #endif
973 
974 	return skb;
975 }
976 
977 #define IXGBEVF_XDP_PASS 0
978 #define IXGBEVF_XDP_CONSUMED 1
979 #define IXGBEVF_XDP_TX 2
980 
981 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring,
982 				 struct xdp_buff *xdp)
983 {
984 	struct ixgbevf_tx_buffer *tx_buffer;
985 	union ixgbe_adv_tx_desc *tx_desc;
986 	u32 len, cmd_type;
987 	dma_addr_t dma;
988 	u16 i;
989 
990 	len = xdp->data_end - xdp->data;
991 
992 	if (unlikely(!ixgbevf_desc_unused(ring)))
993 		return IXGBEVF_XDP_CONSUMED;
994 
995 	dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE);
996 	if (dma_mapping_error(ring->dev, dma))
997 		return IXGBEVF_XDP_CONSUMED;
998 
999 	/* record the location of the first descriptor for this packet */
1000 	i = ring->next_to_use;
1001 	tx_buffer = &ring->tx_buffer_info[i];
1002 
1003 	dma_unmap_len_set(tx_buffer, len, len);
1004 	dma_unmap_addr_set(tx_buffer, dma, dma);
1005 	tx_buffer->data = xdp->data;
1006 	tx_buffer->bytecount = len;
1007 	tx_buffer->gso_segs = 1;
1008 	tx_buffer->protocol = 0;
1009 
1010 	/* Populate minimal context descriptor that will provide for the
1011 	 * fact that we are expected to process Ethernet frames.
1012 	 */
1013 	if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) {
1014 		struct ixgbe_adv_tx_context_desc *context_desc;
1015 
1016 		set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1017 
1018 		context_desc = IXGBEVF_TX_CTXTDESC(ring, 0);
1019 		context_desc->vlan_macip_lens	=
1020 			cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT);
1021 		context_desc->fceof_saidx	= 0;
1022 		context_desc->type_tucmd_mlhl	=
1023 			cpu_to_le32(IXGBE_TXD_CMD_DEXT |
1024 				    IXGBE_ADVTXD_DTYP_CTXT);
1025 		context_desc->mss_l4len_idx	= 0;
1026 
1027 		i = 1;
1028 	}
1029 
1030 	/* put descriptor type bits */
1031 	cmd_type = IXGBE_ADVTXD_DTYP_DATA |
1032 		   IXGBE_ADVTXD_DCMD_DEXT |
1033 		   IXGBE_ADVTXD_DCMD_IFCS;
1034 	cmd_type |= len | IXGBE_TXD_CMD;
1035 
1036 	tx_desc = IXGBEVF_TX_DESC(ring, i);
1037 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
1038 
1039 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1040 	tx_desc->read.olinfo_status =
1041 			cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) |
1042 				    IXGBE_ADVTXD_CC);
1043 
1044 	/* Avoid any potential race with cleanup */
1045 	smp_wmb();
1046 
1047 	/* set next_to_watch value indicating a packet is present */
1048 	i++;
1049 	if (i == ring->count)
1050 		i = 0;
1051 
1052 	tx_buffer->next_to_watch = tx_desc;
1053 	ring->next_to_use = i;
1054 
1055 	return IXGBEVF_XDP_TX;
1056 }
1057 
1058 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter,
1059 				       struct ixgbevf_ring  *rx_ring,
1060 				       struct xdp_buff *xdp)
1061 {
1062 	int result = IXGBEVF_XDP_PASS;
1063 	struct ixgbevf_ring *xdp_ring;
1064 	struct bpf_prog *xdp_prog;
1065 	u32 act;
1066 
1067 	rcu_read_lock();
1068 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1069 
1070 	if (!xdp_prog)
1071 		goto xdp_out;
1072 
1073 	act = bpf_prog_run_xdp(xdp_prog, xdp);
1074 	switch (act) {
1075 	case XDP_PASS:
1076 		break;
1077 	case XDP_TX:
1078 		xdp_ring = adapter->xdp_ring[rx_ring->queue_index];
1079 		result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp);
1080 		break;
1081 	default:
1082 		bpf_warn_invalid_xdp_action(act);
1083 		/* fallthrough */
1084 	case XDP_ABORTED:
1085 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
1086 		/* fallthrough -- handle aborts by dropping packet */
1087 	case XDP_DROP:
1088 		result = IXGBEVF_XDP_CONSUMED;
1089 		break;
1090 	}
1091 xdp_out:
1092 	rcu_read_unlock();
1093 	return ERR_PTR(-result);
1094 }
1095 
1096 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring,
1097 				   struct ixgbevf_rx_buffer *rx_buffer,
1098 				   unsigned int size)
1099 {
1100 #if (PAGE_SIZE < 8192)
1101 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
1102 
1103 	rx_buffer->page_offset ^= truesize;
1104 #else
1105 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1106 				SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
1107 				SKB_DATA_ALIGN(size);
1108 
1109 	rx_buffer->page_offset += truesize;
1110 #endif
1111 }
1112 
1113 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
1114 				struct ixgbevf_ring *rx_ring,
1115 				int budget)
1116 {
1117 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1118 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1119 	u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
1120 	struct sk_buff *skb = rx_ring->skb;
1121 	bool xdp_xmit = false;
1122 	struct xdp_buff xdp;
1123 
1124 	xdp.rxq = &rx_ring->xdp_rxq;
1125 
1126 	while (likely(total_rx_packets < budget)) {
1127 		struct ixgbevf_rx_buffer *rx_buffer;
1128 		union ixgbe_adv_rx_desc *rx_desc;
1129 		unsigned int size;
1130 
1131 		/* return some buffers to hardware, one at a time is too slow */
1132 		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
1133 			ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
1134 			cleaned_count = 0;
1135 		}
1136 
1137 		rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1138 		size = le16_to_cpu(rx_desc->wb.upper.length);
1139 		if (!size)
1140 			break;
1141 
1142 		/* This memory barrier is needed to keep us from reading
1143 		 * any other fields out of the rx_desc until we know the
1144 		 * RXD_STAT_DD bit is set
1145 		 */
1146 		rmb();
1147 
1148 		rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size);
1149 
1150 		/* retrieve a buffer from the ring */
1151 		if (!skb) {
1152 			xdp.data = page_address(rx_buffer->page) +
1153 				   rx_buffer->page_offset;
1154 			xdp.data_meta = xdp.data;
1155 			xdp.data_hard_start = xdp.data -
1156 					      ixgbevf_rx_offset(rx_ring);
1157 			xdp.data_end = xdp.data + size;
1158 
1159 			skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp);
1160 		}
1161 
1162 		if (IS_ERR(skb)) {
1163 			if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) {
1164 				xdp_xmit = true;
1165 				ixgbevf_rx_buffer_flip(rx_ring, rx_buffer,
1166 						       size);
1167 			} else {
1168 				rx_buffer->pagecnt_bias++;
1169 			}
1170 			total_rx_packets++;
1171 			total_rx_bytes += size;
1172 		} else if (skb) {
1173 			ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1174 		} else if (ring_uses_build_skb(rx_ring)) {
1175 			skb = ixgbevf_build_skb(rx_ring, rx_buffer,
1176 						&xdp, rx_desc);
1177 		} else {
1178 			skb = ixgbevf_construct_skb(rx_ring, rx_buffer,
1179 						    &xdp, rx_desc);
1180 		}
1181 
1182 		/* exit if we failed to retrieve a buffer */
1183 		if (!skb) {
1184 			rx_ring->rx_stats.alloc_rx_buff_failed++;
1185 			rx_buffer->pagecnt_bias++;
1186 			break;
1187 		}
1188 
1189 		ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb);
1190 		cleaned_count++;
1191 
1192 		/* fetch next buffer in frame if non-eop */
1193 		if (ixgbevf_is_non_eop(rx_ring, rx_desc))
1194 			continue;
1195 
1196 		/* verify the packet layout is correct */
1197 		if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
1198 			skb = NULL;
1199 			continue;
1200 		}
1201 
1202 		/* probably a little skewed due to removing CRC */
1203 		total_rx_bytes += skb->len;
1204 
1205 		/* Workaround hardware that can't do proper VEPA multicast
1206 		 * source pruning.
1207 		 */
1208 		if ((skb->pkt_type == PACKET_BROADCAST ||
1209 		     skb->pkt_type == PACKET_MULTICAST) &&
1210 		    ether_addr_equal(rx_ring->netdev->dev_addr,
1211 				     eth_hdr(skb)->h_source)) {
1212 			dev_kfree_skb_irq(skb);
1213 			continue;
1214 		}
1215 
1216 		/* populate checksum, VLAN, and protocol */
1217 		ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
1218 
1219 		ixgbevf_rx_skb(q_vector, skb);
1220 
1221 		/* reset skb pointer */
1222 		skb = NULL;
1223 
1224 		/* update budget accounting */
1225 		total_rx_packets++;
1226 	}
1227 
1228 	/* place incomplete frames back on ring for completion */
1229 	rx_ring->skb = skb;
1230 
1231 	if (xdp_xmit) {
1232 		struct ixgbevf_ring *xdp_ring =
1233 			adapter->xdp_ring[rx_ring->queue_index];
1234 
1235 		/* Force memory writes to complete before letting h/w
1236 		 * know there are new descriptors to fetch.
1237 		 */
1238 		wmb();
1239 		ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use);
1240 	}
1241 
1242 	u64_stats_update_begin(&rx_ring->syncp);
1243 	rx_ring->stats.packets += total_rx_packets;
1244 	rx_ring->stats.bytes += total_rx_bytes;
1245 	u64_stats_update_end(&rx_ring->syncp);
1246 	q_vector->rx.total_packets += total_rx_packets;
1247 	q_vector->rx.total_bytes += total_rx_bytes;
1248 
1249 	return total_rx_packets;
1250 }
1251 
1252 /**
1253  * ixgbevf_poll - NAPI polling calback
1254  * @napi: napi struct with our devices info in it
1255  * @budget: amount of work driver is allowed to do this pass, in packets
1256  *
1257  * This function will clean more than one or more rings associated with a
1258  * q_vector.
1259  **/
1260 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1261 {
1262 	struct ixgbevf_q_vector *q_vector =
1263 		container_of(napi, struct ixgbevf_q_vector, napi);
1264 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1265 	struct ixgbevf_ring *ring;
1266 	int per_ring_budget, work_done = 0;
1267 	bool clean_complete = true;
1268 
1269 	ixgbevf_for_each_ring(ring, q_vector->tx) {
1270 		if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1271 			clean_complete = false;
1272 	}
1273 
1274 	if (budget <= 0)
1275 		return budget;
1276 
1277 	/* attempt to distribute budget to each queue fairly, but don't allow
1278 	 * the budget to go below 1 because we'll exit polling
1279 	 */
1280 	if (q_vector->rx.count > 1)
1281 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1282 	else
1283 		per_ring_budget = budget;
1284 
1285 	ixgbevf_for_each_ring(ring, q_vector->rx) {
1286 		int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1287 						   per_ring_budget);
1288 		work_done += cleaned;
1289 		if (cleaned >= per_ring_budget)
1290 			clean_complete = false;
1291 	}
1292 
1293 	/* If all work not completed, return budget and keep polling */
1294 	if (!clean_complete)
1295 		return budget;
1296 
1297 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1298 	 * poll us due to busy-polling
1299 	 */
1300 	if (likely(napi_complete_done(napi, work_done))) {
1301 		if (adapter->rx_itr_setting == 1)
1302 			ixgbevf_set_itr(q_vector);
1303 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1304 		    !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1305 			ixgbevf_irq_enable_queues(adapter,
1306 						  BIT(q_vector->v_idx));
1307 	}
1308 
1309 	return min(work_done, budget - 1);
1310 }
1311 
1312 /**
1313  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1314  * @q_vector: structure containing interrupt and ring information
1315  **/
1316 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1317 {
1318 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1319 	struct ixgbe_hw *hw = &adapter->hw;
1320 	int v_idx = q_vector->v_idx;
1321 	u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1322 
1323 	/* set the WDIS bit to not clear the timer bits and cause an
1324 	 * immediate assertion of the interrupt
1325 	 */
1326 	itr_reg |= IXGBE_EITR_CNT_WDIS;
1327 
1328 	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1329 }
1330 
1331 /**
1332  * ixgbevf_configure_msix - Configure MSI-X hardware
1333  * @adapter: board private structure
1334  *
1335  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1336  * interrupts.
1337  **/
1338 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1339 {
1340 	struct ixgbevf_q_vector *q_vector;
1341 	int q_vectors, v_idx;
1342 
1343 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1344 	adapter->eims_enable_mask = 0;
1345 
1346 	/* Populate the IVAR table and set the ITR values to the
1347 	 * corresponding register.
1348 	 */
1349 	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1350 		struct ixgbevf_ring *ring;
1351 
1352 		q_vector = adapter->q_vector[v_idx];
1353 
1354 		ixgbevf_for_each_ring(ring, q_vector->rx)
1355 			ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1356 
1357 		ixgbevf_for_each_ring(ring, q_vector->tx)
1358 			ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1359 
1360 		if (q_vector->tx.ring && !q_vector->rx.ring) {
1361 			/* Tx only vector */
1362 			if (adapter->tx_itr_setting == 1)
1363 				q_vector->itr = IXGBE_12K_ITR;
1364 			else
1365 				q_vector->itr = adapter->tx_itr_setting;
1366 		} else {
1367 			/* Rx or Rx/Tx vector */
1368 			if (adapter->rx_itr_setting == 1)
1369 				q_vector->itr = IXGBE_20K_ITR;
1370 			else
1371 				q_vector->itr = adapter->rx_itr_setting;
1372 		}
1373 
1374 		/* add q_vector eims value to global eims_enable_mask */
1375 		adapter->eims_enable_mask |= BIT(v_idx);
1376 
1377 		ixgbevf_write_eitr(q_vector);
1378 	}
1379 
1380 	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1381 	/* setup eims_other and add value to global eims_enable_mask */
1382 	adapter->eims_other = BIT(v_idx);
1383 	adapter->eims_enable_mask |= adapter->eims_other;
1384 }
1385 
1386 enum latency_range {
1387 	lowest_latency = 0,
1388 	low_latency = 1,
1389 	bulk_latency = 2,
1390 	latency_invalid = 255
1391 };
1392 
1393 /**
1394  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1395  * @q_vector: structure containing interrupt and ring information
1396  * @ring_container: structure containing ring performance data
1397  *
1398  * Stores a new ITR value based on packets and byte
1399  * counts during the last interrupt.  The advantage of per interrupt
1400  * computation is faster updates and more accurate ITR for the current
1401  * traffic pattern.  Constants in this function were computed
1402  * based on theoretical maximum wire speed and thresholds were set based
1403  * on testing data as well as attempting to minimize response time
1404  * while increasing bulk throughput.
1405  **/
1406 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1407 			       struct ixgbevf_ring_container *ring_container)
1408 {
1409 	int bytes = ring_container->total_bytes;
1410 	int packets = ring_container->total_packets;
1411 	u32 timepassed_us;
1412 	u64 bytes_perint;
1413 	u8 itr_setting = ring_container->itr;
1414 
1415 	if (packets == 0)
1416 		return;
1417 
1418 	/* simple throttle rate management
1419 	 *    0-20MB/s lowest (100000 ints/s)
1420 	 *   20-100MB/s low   (20000 ints/s)
1421 	 *  100-1249MB/s bulk (12000 ints/s)
1422 	 */
1423 	/* what was last interrupt timeslice? */
1424 	timepassed_us = q_vector->itr >> 2;
1425 	bytes_perint = bytes / timepassed_us; /* bytes/usec */
1426 
1427 	switch (itr_setting) {
1428 	case lowest_latency:
1429 		if (bytes_perint > 10)
1430 			itr_setting = low_latency;
1431 		break;
1432 	case low_latency:
1433 		if (bytes_perint > 20)
1434 			itr_setting = bulk_latency;
1435 		else if (bytes_perint <= 10)
1436 			itr_setting = lowest_latency;
1437 		break;
1438 	case bulk_latency:
1439 		if (bytes_perint <= 20)
1440 			itr_setting = low_latency;
1441 		break;
1442 	}
1443 
1444 	/* clear work counters since we have the values we need */
1445 	ring_container->total_bytes = 0;
1446 	ring_container->total_packets = 0;
1447 
1448 	/* write updated itr to ring container */
1449 	ring_container->itr = itr_setting;
1450 }
1451 
1452 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1453 {
1454 	u32 new_itr = q_vector->itr;
1455 	u8 current_itr;
1456 
1457 	ixgbevf_update_itr(q_vector, &q_vector->tx);
1458 	ixgbevf_update_itr(q_vector, &q_vector->rx);
1459 
1460 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1461 
1462 	switch (current_itr) {
1463 	/* counts and packets in update_itr are dependent on these numbers */
1464 	case lowest_latency:
1465 		new_itr = IXGBE_100K_ITR;
1466 		break;
1467 	case low_latency:
1468 		new_itr = IXGBE_20K_ITR;
1469 		break;
1470 	case bulk_latency:
1471 		new_itr = IXGBE_12K_ITR;
1472 		break;
1473 	default:
1474 		break;
1475 	}
1476 
1477 	if (new_itr != q_vector->itr) {
1478 		/* do an exponential smoothing */
1479 		new_itr = (10 * new_itr * q_vector->itr) /
1480 			  ((9 * new_itr) + q_vector->itr);
1481 
1482 		/* save the algorithm value here */
1483 		q_vector->itr = new_itr;
1484 
1485 		ixgbevf_write_eitr(q_vector);
1486 	}
1487 }
1488 
1489 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1490 {
1491 	struct ixgbevf_adapter *adapter = data;
1492 	struct ixgbe_hw *hw = &adapter->hw;
1493 
1494 	hw->mac.get_link_status = 1;
1495 
1496 	ixgbevf_service_event_schedule(adapter);
1497 
1498 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1499 
1500 	return IRQ_HANDLED;
1501 }
1502 
1503 /**
1504  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1505  * @irq: unused
1506  * @data: pointer to our q_vector struct for this interrupt vector
1507  **/
1508 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1509 {
1510 	struct ixgbevf_q_vector *q_vector = data;
1511 
1512 	/* EIAM disabled interrupts (on this vector) for us */
1513 	if (q_vector->rx.ring || q_vector->tx.ring)
1514 		napi_schedule_irqoff(&q_vector->napi);
1515 
1516 	return IRQ_HANDLED;
1517 }
1518 
1519 /**
1520  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1521  * @adapter: board private structure
1522  *
1523  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1524  * interrupts from the kernel.
1525  **/
1526 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1527 {
1528 	struct net_device *netdev = adapter->netdev;
1529 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1530 	unsigned int ri = 0, ti = 0;
1531 	int vector, err;
1532 
1533 	for (vector = 0; vector < q_vectors; vector++) {
1534 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1535 		struct msix_entry *entry = &adapter->msix_entries[vector];
1536 
1537 		if (q_vector->tx.ring && q_vector->rx.ring) {
1538 			snprintf(q_vector->name, sizeof(q_vector->name),
1539 				 "%s-TxRx-%u", netdev->name, ri++);
1540 			ti++;
1541 		} else if (q_vector->rx.ring) {
1542 			snprintf(q_vector->name, sizeof(q_vector->name),
1543 				 "%s-rx-%u", netdev->name, ri++);
1544 		} else if (q_vector->tx.ring) {
1545 			snprintf(q_vector->name, sizeof(q_vector->name),
1546 				 "%s-tx-%u", netdev->name, ti++);
1547 		} else {
1548 			/* skip this unused q_vector */
1549 			continue;
1550 		}
1551 		err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1552 				  q_vector->name, q_vector);
1553 		if (err) {
1554 			hw_dbg(&adapter->hw,
1555 			       "request_irq failed for MSIX interrupt Error: %d\n",
1556 			       err);
1557 			goto free_queue_irqs;
1558 		}
1559 	}
1560 
1561 	err = request_irq(adapter->msix_entries[vector].vector,
1562 			  &ixgbevf_msix_other, 0, netdev->name, adapter);
1563 	if (err) {
1564 		hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1565 		       err);
1566 		goto free_queue_irqs;
1567 	}
1568 
1569 	return 0;
1570 
1571 free_queue_irqs:
1572 	while (vector) {
1573 		vector--;
1574 		free_irq(adapter->msix_entries[vector].vector,
1575 			 adapter->q_vector[vector]);
1576 	}
1577 	/* This failure is non-recoverable - it indicates the system is
1578 	 * out of MSIX vector resources and the VF driver cannot run
1579 	 * without them.  Set the number of msix vectors to zero
1580 	 * indicating that not enough can be allocated.  The error
1581 	 * will be returned to the user indicating device open failed.
1582 	 * Any further attempts to force the driver to open will also
1583 	 * fail.  The only way to recover is to unload the driver and
1584 	 * reload it again.  If the system has recovered some MSIX
1585 	 * vectors then it may succeed.
1586 	 */
1587 	adapter->num_msix_vectors = 0;
1588 	return err;
1589 }
1590 
1591 /**
1592  * ixgbevf_request_irq - initialize interrupts
1593  * @adapter: board private structure
1594  *
1595  * Attempts to configure interrupts using the best available
1596  * capabilities of the hardware and kernel.
1597  **/
1598 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1599 {
1600 	int err = ixgbevf_request_msix_irqs(adapter);
1601 
1602 	if (err)
1603 		hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1604 
1605 	return err;
1606 }
1607 
1608 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1609 {
1610 	int i, q_vectors;
1611 
1612 	if (!adapter->msix_entries)
1613 		return;
1614 
1615 	q_vectors = adapter->num_msix_vectors;
1616 	i = q_vectors - 1;
1617 
1618 	free_irq(adapter->msix_entries[i].vector, adapter);
1619 	i--;
1620 
1621 	for (; i >= 0; i--) {
1622 		/* free only the irqs that were actually requested */
1623 		if (!adapter->q_vector[i]->rx.ring &&
1624 		    !adapter->q_vector[i]->tx.ring)
1625 			continue;
1626 
1627 		free_irq(adapter->msix_entries[i].vector,
1628 			 adapter->q_vector[i]);
1629 	}
1630 }
1631 
1632 /**
1633  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1634  * @adapter: board private structure
1635  **/
1636 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1637 {
1638 	struct ixgbe_hw *hw = &adapter->hw;
1639 	int i;
1640 
1641 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1642 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1643 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1644 
1645 	IXGBE_WRITE_FLUSH(hw);
1646 
1647 	for (i = 0; i < adapter->num_msix_vectors; i++)
1648 		synchronize_irq(adapter->msix_entries[i].vector);
1649 }
1650 
1651 /**
1652  * ixgbevf_irq_enable - Enable default interrupt generation settings
1653  * @adapter: board private structure
1654  **/
1655 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1656 {
1657 	struct ixgbe_hw *hw = &adapter->hw;
1658 
1659 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1660 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1661 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1662 }
1663 
1664 /**
1665  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1666  * @adapter: board private structure
1667  * @ring: structure containing ring specific data
1668  *
1669  * Configure the Tx descriptor ring after a reset.
1670  **/
1671 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1672 				      struct ixgbevf_ring *ring)
1673 {
1674 	struct ixgbe_hw *hw = &adapter->hw;
1675 	u64 tdba = ring->dma;
1676 	int wait_loop = 10;
1677 	u32 txdctl = IXGBE_TXDCTL_ENABLE;
1678 	u8 reg_idx = ring->reg_idx;
1679 
1680 	/* disable queue to avoid issues while updating state */
1681 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1682 	IXGBE_WRITE_FLUSH(hw);
1683 
1684 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1685 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1686 	IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1687 			ring->count * sizeof(union ixgbe_adv_tx_desc));
1688 
1689 	/* disable head writeback */
1690 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1691 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1692 
1693 	/* enable relaxed ordering */
1694 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1695 			(IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1696 			 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1697 
1698 	/* reset head and tail pointers */
1699 	IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1700 	IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1701 	ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1702 
1703 	/* reset ntu and ntc to place SW in sync with hardwdare */
1704 	ring->next_to_clean = 0;
1705 	ring->next_to_use = 0;
1706 
1707 	/* In order to avoid issues WTHRESH + PTHRESH should always be equal
1708 	 * to or less than the number of on chip descriptors, which is
1709 	 * currently 40.
1710 	 */
1711 	txdctl |= (8 << 16);    /* WTHRESH = 8 */
1712 
1713 	/* Setting PTHRESH to 32 both improves performance */
1714 	txdctl |= (1u << 8) |    /* HTHRESH = 1 */
1715 		   32;           /* PTHRESH = 32 */
1716 
1717 	/* reinitialize tx_buffer_info */
1718 	memset(ring->tx_buffer_info, 0,
1719 	       sizeof(struct ixgbevf_tx_buffer) * ring->count);
1720 
1721 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1722 	clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1723 
1724 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1725 
1726 	/* poll to verify queue is enabled */
1727 	do {
1728 		usleep_range(1000, 2000);
1729 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1730 	}  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1731 	if (!wait_loop)
1732 		hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1733 }
1734 
1735 /**
1736  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1737  * @adapter: board private structure
1738  *
1739  * Configure the Tx unit of the MAC after a reset.
1740  **/
1741 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1742 {
1743 	u32 i;
1744 
1745 	/* Setup the HW Tx Head and Tail descriptor pointers */
1746 	for (i = 0; i < adapter->num_tx_queues; i++)
1747 		ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1748 	for (i = 0; i < adapter->num_xdp_queues; i++)
1749 		ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]);
1750 }
1751 
1752 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1753 
1754 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter,
1755 				     struct ixgbevf_ring *ring, int index)
1756 {
1757 	struct ixgbe_hw *hw = &adapter->hw;
1758 	u32 srrctl;
1759 
1760 	srrctl = IXGBE_SRRCTL_DROP_EN;
1761 
1762 	srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1763 	if (ring_uses_large_buffer(ring))
1764 		srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1765 	else
1766 		srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1767 	srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1768 
1769 	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1770 }
1771 
1772 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1773 {
1774 	struct ixgbe_hw *hw = &adapter->hw;
1775 
1776 	/* PSRTYPE must be initialized in 82599 */
1777 	u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1778 		      IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1779 		      IXGBE_PSRTYPE_L2HDR;
1780 
1781 	if (adapter->num_rx_queues > 1)
1782 		psrtype |= BIT(29);
1783 
1784 	IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1785 }
1786 
1787 #define IXGBEVF_MAX_RX_DESC_POLL 10
1788 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1789 				     struct ixgbevf_ring *ring)
1790 {
1791 	struct ixgbe_hw *hw = &adapter->hw;
1792 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1793 	u32 rxdctl;
1794 	u8 reg_idx = ring->reg_idx;
1795 
1796 	if (IXGBE_REMOVED(hw->hw_addr))
1797 		return;
1798 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1799 	rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1800 
1801 	/* write value back with RXDCTL.ENABLE bit cleared */
1802 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1803 
1804 	/* the hardware may take up to 100us to really disable the Rx queue */
1805 	do {
1806 		udelay(10);
1807 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1808 	} while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1809 
1810 	if (!wait_loop)
1811 		pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1812 		       reg_idx);
1813 }
1814 
1815 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1816 					 struct ixgbevf_ring *ring)
1817 {
1818 	struct ixgbe_hw *hw = &adapter->hw;
1819 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1820 	u32 rxdctl;
1821 	u8 reg_idx = ring->reg_idx;
1822 
1823 	if (IXGBE_REMOVED(hw->hw_addr))
1824 		return;
1825 	do {
1826 		usleep_range(1000, 2000);
1827 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1828 	} while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1829 
1830 	if (!wait_loop)
1831 		pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1832 		       reg_idx);
1833 }
1834 
1835 /**
1836  * ixgbevf_init_rss_key - Initialize adapter RSS key
1837  * @adapter: device handle
1838  *
1839  * Allocates and initializes the RSS key if it is not allocated.
1840  **/
1841 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter)
1842 {
1843 	u32 *rss_key;
1844 
1845 	if (!adapter->rss_key) {
1846 		rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL);
1847 		if (unlikely(!rss_key))
1848 			return -ENOMEM;
1849 
1850 		netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE);
1851 		adapter->rss_key = rss_key;
1852 	}
1853 
1854 	return 0;
1855 }
1856 
1857 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1858 {
1859 	struct ixgbe_hw *hw = &adapter->hw;
1860 	u32 vfmrqc = 0, vfreta = 0;
1861 	u16 rss_i = adapter->num_rx_queues;
1862 	u8 i, j;
1863 
1864 	/* Fill out hash function seeds */
1865 	for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1866 		IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i));
1867 
1868 	for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1869 		if (j == rss_i)
1870 			j = 0;
1871 
1872 		adapter->rss_indir_tbl[i] = j;
1873 
1874 		vfreta |= j << (i & 0x3) * 8;
1875 		if ((i & 3) == 3) {
1876 			IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1877 			vfreta = 0;
1878 		}
1879 	}
1880 
1881 	/* Perform hash on these packet types */
1882 	vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1883 		IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1884 		IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1885 		IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1886 
1887 	vfmrqc |= IXGBE_VFMRQC_RSSEN;
1888 
1889 	IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1890 }
1891 
1892 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1893 				      struct ixgbevf_ring *ring)
1894 {
1895 	struct ixgbe_hw *hw = &adapter->hw;
1896 	union ixgbe_adv_rx_desc *rx_desc;
1897 	u64 rdba = ring->dma;
1898 	u32 rxdctl;
1899 	u8 reg_idx = ring->reg_idx;
1900 
1901 	/* disable queue to avoid issues while updating state */
1902 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1903 	ixgbevf_disable_rx_queue(adapter, ring);
1904 
1905 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1906 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1907 	IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1908 			ring->count * sizeof(union ixgbe_adv_rx_desc));
1909 
1910 #ifndef CONFIG_SPARC
1911 	/* enable relaxed ordering */
1912 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1913 			IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1914 #else
1915 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1916 			IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1917 			IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1918 #endif
1919 
1920 	/* reset head and tail pointers */
1921 	IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1922 	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1923 	ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1924 
1925 	/* initialize rx_buffer_info */
1926 	memset(ring->rx_buffer_info, 0,
1927 	       sizeof(struct ixgbevf_rx_buffer) * ring->count);
1928 
1929 	/* initialize Rx descriptor 0 */
1930 	rx_desc = IXGBEVF_RX_DESC(ring, 0);
1931 	rx_desc->wb.upper.length = 0;
1932 
1933 	/* reset ntu and ntc to place SW in sync with hardwdare */
1934 	ring->next_to_clean = 0;
1935 	ring->next_to_use = 0;
1936 	ring->next_to_alloc = 0;
1937 
1938 	ixgbevf_configure_srrctl(adapter, ring, reg_idx);
1939 
1940 	/* RXDCTL.RLPML does not work on 82599 */
1941 	if (adapter->hw.mac.type != ixgbe_mac_82599_vf) {
1942 		rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK |
1943 			    IXGBE_RXDCTL_RLPML_EN);
1944 
1945 #if (PAGE_SIZE < 8192)
1946 		/* Limit the maximum frame size so we don't overrun the skb */
1947 		if (ring_uses_build_skb(ring) &&
1948 		    !ring_uses_large_buffer(ring))
1949 			rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB |
1950 				  IXGBE_RXDCTL_RLPML_EN;
1951 #endif
1952 	}
1953 
1954 	rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1955 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1956 
1957 	ixgbevf_rx_desc_queue_enable(adapter, ring);
1958 	ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1959 }
1960 
1961 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter,
1962 				      struct ixgbevf_ring *rx_ring)
1963 {
1964 	struct net_device *netdev = adapter->netdev;
1965 	unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1966 
1967 	/* set build_skb and buffer size flags */
1968 	clear_ring_build_skb_enabled(rx_ring);
1969 	clear_ring_uses_large_buffer(rx_ring);
1970 
1971 	if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX)
1972 		return;
1973 
1974 	set_ring_build_skb_enabled(rx_ring);
1975 
1976 	if (PAGE_SIZE < 8192) {
1977 		if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB)
1978 			return;
1979 
1980 		set_ring_uses_large_buffer(rx_ring);
1981 	}
1982 }
1983 
1984 /**
1985  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1986  * @adapter: board private structure
1987  *
1988  * Configure the Rx unit of the MAC after a reset.
1989  **/
1990 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1991 {
1992 	struct ixgbe_hw *hw = &adapter->hw;
1993 	struct net_device *netdev = adapter->netdev;
1994 	int i, ret;
1995 
1996 	ixgbevf_setup_psrtype(adapter);
1997 	if (hw->mac.type >= ixgbe_mac_X550_vf)
1998 		ixgbevf_setup_vfmrqc(adapter);
1999 
2000 	spin_lock_bh(&adapter->mbx_lock);
2001 	/* notify the PF of our intent to use this size of frame */
2002 	ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
2003 	spin_unlock_bh(&adapter->mbx_lock);
2004 	if (ret)
2005 		dev_err(&adapter->pdev->dev,
2006 			"Failed to set MTU at %d\n", netdev->mtu);
2007 
2008 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
2009 	 * the Base and Length of the Rx Descriptor Ring
2010 	 */
2011 	for (i = 0; i < adapter->num_rx_queues; i++) {
2012 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
2013 
2014 		ixgbevf_set_rx_buffer_len(adapter, rx_ring);
2015 		ixgbevf_configure_rx_ring(adapter, rx_ring);
2016 	}
2017 }
2018 
2019 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
2020 				   __be16 proto, u16 vid)
2021 {
2022 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2023 	struct ixgbe_hw *hw = &adapter->hw;
2024 	int err;
2025 
2026 	spin_lock_bh(&adapter->mbx_lock);
2027 
2028 	/* add VID to filter table */
2029 	err = hw->mac.ops.set_vfta(hw, vid, 0, true);
2030 
2031 	spin_unlock_bh(&adapter->mbx_lock);
2032 
2033 	/* translate error return types so error makes sense */
2034 	if (err == IXGBE_ERR_MBX)
2035 		return -EIO;
2036 
2037 	if (err == IXGBE_ERR_INVALID_ARGUMENT)
2038 		return -EACCES;
2039 
2040 	set_bit(vid, adapter->active_vlans);
2041 
2042 	return err;
2043 }
2044 
2045 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
2046 				    __be16 proto, u16 vid)
2047 {
2048 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2049 	struct ixgbe_hw *hw = &adapter->hw;
2050 	int err;
2051 
2052 	spin_lock_bh(&adapter->mbx_lock);
2053 
2054 	/* remove VID from filter table */
2055 	err = hw->mac.ops.set_vfta(hw, vid, 0, false);
2056 
2057 	spin_unlock_bh(&adapter->mbx_lock);
2058 
2059 	clear_bit(vid, adapter->active_vlans);
2060 
2061 	return err;
2062 }
2063 
2064 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
2065 {
2066 	u16 vid;
2067 
2068 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2069 		ixgbevf_vlan_rx_add_vid(adapter->netdev,
2070 					htons(ETH_P_8021Q), vid);
2071 }
2072 
2073 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
2074 {
2075 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2076 	struct ixgbe_hw *hw = &adapter->hw;
2077 	int count = 0;
2078 
2079 	if ((netdev_uc_count(netdev)) > 10) {
2080 		pr_err("Too many unicast filters - No Space\n");
2081 		return -ENOSPC;
2082 	}
2083 
2084 	if (!netdev_uc_empty(netdev)) {
2085 		struct netdev_hw_addr *ha;
2086 
2087 		netdev_for_each_uc_addr(ha, netdev) {
2088 			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
2089 			udelay(200);
2090 		}
2091 	} else {
2092 		/* If the list is empty then send message to PF driver to
2093 		 * clear all MAC VLANs on this VF.
2094 		 */
2095 		hw->mac.ops.set_uc_addr(hw, 0, NULL);
2096 	}
2097 
2098 	return count;
2099 }
2100 
2101 /**
2102  * ixgbevf_set_rx_mode - Multicast and unicast set
2103  * @netdev: network interface device structure
2104  *
2105  * The set_rx_method entry point is called whenever the multicast address
2106  * list, unicast address list or the network interface flags are updated.
2107  * This routine is responsible for configuring the hardware for proper
2108  * multicast mode and configuring requested unicast filters.
2109  **/
2110 static void ixgbevf_set_rx_mode(struct net_device *netdev)
2111 {
2112 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2113 	struct ixgbe_hw *hw = &adapter->hw;
2114 	unsigned int flags = netdev->flags;
2115 	int xcast_mode;
2116 
2117 	/* request the most inclusive mode we need */
2118 	if (flags & IFF_PROMISC)
2119 		xcast_mode = IXGBEVF_XCAST_MODE_PROMISC;
2120 	else if (flags & IFF_ALLMULTI)
2121 		xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI;
2122 	else if (flags & (IFF_BROADCAST | IFF_MULTICAST))
2123 		xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
2124 	else
2125 		xcast_mode = IXGBEVF_XCAST_MODE_NONE;
2126 
2127 	spin_lock_bh(&adapter->mbx_lock);
2128 
2129 	hw->mac.ops.update_xcast_mode(hw, xcast_mode);
2130 
2131 	/* reprogram multicast list */
2132 	hw->mac.ops.update_mc_addr_list(hw, netdev);
2133 
2134 	ixgbevf_write_uc_addr_list(netdev);
2135 
2136 	spin_unlock_bh(&adapter->mbx_lock);
2137 }
2138 
2139 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
2140 {
2141 	int q_idx;
2142 	struct ixgbevf_q_vector *q_vector;
2143 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2144 
2145 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2146 		q_vector = adapter->q_vector[q_idx];
2147 		napi_enable(&q_vector->napi);
2148 	}
2149 }
2150 
2151 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
2152 {
2153 	int q_idx;
2154 	struct ixgbevf_q_vector *q_vector;
2155 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2156 
2157 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2158 		q_vector = adapter->q_vector[q_idx];
2159 		napi_disable(&q_vector->napi);
2160 	}
2161 }
2162 
2163 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
2164 {
2165 	struct ixgbe_hw *hw = &adapter->hw;
2166 	unsigned int def_q = 0;
2167 	unsigned int num_tcs = 0;
2168 	unsigned int num_rx_queues = adapter->num_rx_queues;
2169 	unsigned int num_tx_queues = adapter->num_tx_queues;
2170 	int err;
2171 
2172 	spin_lock_bh(&adapter->mbx_lock);
2173 
2174 	/* fetch queue configuration from the PF */
2175 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2176 
2177 	spin_unlock_bh(&adapter->mbx_lock);
2178 
2179 	if (err)
2180 		return err;
2181 
2182 	if (num_tcs > 1) {
2183 		/* we need only one Tx queue */
2184 		num_tx_queues = 1;
2185 
2186 		/* update default Tx ring register index */
2187 		adapter->tx_ring[0]->reg_idx = def_q;
2188 
2189 		/* we need as many queues as traffic classes */
2190 		num_rx_queues = num_tcs;
2191 	}
2192 
2193 	/* if we have a bad config abort request queue reset */
2194 	if ((adapter->num_rx_queues != num_rx_queues) ||
2195 	    (adapter->num_tx_queues != num_tx_queues)) {
2196 		/* force mailbox timeout to prevent further messages */
2197 		hw->mbx.timeout = 0;
2198 
2199 		/* wait for watchdog to come around and bail us out */
2200 		set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
2201 	}
2202 
2203 	return 0;
2204 }
2205 
2206 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2207 {
2208 	ixgbevf_configure_dcb(adapter);
2209 
2210 	ixgbevf_set_rx_mode(adapter->netdev);
2211 
2212 	ixgbevf_restore_vlan(adapter);
2213 	ixgbevf_ipsec_restore(adapter);
2214 
2215 	ixgbevf_configure_tx(adapter);
2216 	ixgbevf_configure_rx(adapter);
2217 }
2218 
2219 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2220 {
2221 	/* Only save pre-reset stats if there are some */
2222 	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2223 		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2224 			adapter->stats.base_vfgprc;
2225 		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2226 			adapter->stats.base_vfgptc;
2227 		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2228 			adapter->stats.base_vfgorc;
2229 		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2230 			adapter->stats.base_vfgotc;
2231 		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2232 			adapter->stats.base_vfmprc;
2233 	}
2234 }
2235 
2236 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2237 {
2238 	struct ixgbe_hw *hw = &adapter->hw;
2239 
2240 	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2241 	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2242 	adapter->stats.last_vfgorc |=
2243 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2244 	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2245 	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2246 	adapter->stats.last_vfgotc |=
2247 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2248 	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2249 
2250 	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2251 	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2252 	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2253 	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2254 	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2255 }
2256 
2257 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2258 {
2259 	struct ixgbe_hw *hw = &adapter->hw;
2260 	int api[] = { ixgbe_mbox_api_14,
2261 		      ixgbe_mbox_api_13,
2262 		      ixgbe_mbox_api_12,
2263 		      ixgbe_mbox_api_11,
2264 		      ixgbe_mbox_api_10,
2265 		      ixgbe_mbox_api_unknown };
2266 	int err, idx = 0;
2267 
2268 	spin_lock_bh(&adapter->mbx_lock);
2269 
2270 	while (api[idx] != ixgbe_mbox_api_unknown) {
2271 		err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2272 		if (!err)
2273 			break;
2274 		idx++;
2275 	}
2276 
2277 	spin_unlock_bh(&adapter->mbx_lock);
2278 }
2279 
2280 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2281 {
2282 	struct net_device *netdev = adapter->netdev;
2283 	struct ixgbe_hw *hw = &adapter->hw;
2284 
2285 	ixgbevf_configure_msix(adapter);
2286 
2287 	spin_lock_bh(&adapter->mbx_lock);
2288 
2289 	if (is_valid_ether_addr(hw->mac.addr))
2290 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2291 	else
2292 		hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2293 
2294 	spin_unlock_bh(&adapter->mbx_lock);
2295 
2296 	smp_mb__before_atomic();
2297 	clear_bit(__IXGBEVF_DOWN, &adapter->state);
2298 	ixgbevf_napi_enable_all(adapter);
2299 
2300 	/* clear any pending interrupts, may auto mask */
2301 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2302 	ixgbevf_irq_enable(adapter);
2303 
2304 	/* enable transmits */
2305 	netif_tx_start_all_queues(netdev);
2306 
2307 	ixgbevf_save_reset_stats(adapter);
2308 	ixgbevf_init_last_counter_stats(adapter);
2309 
2310 	hw->mac.get_link_status = 1;
2311 	mod_timer(&adapter->service_timer, jiffies);
2312 }
2313 
2314 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2315 {
2316 	ixgbevf_configure(adapter);
2317 
2318 	ixgbevf_up_complete(adapter);
2319 }
2320 
2321 /**
2322  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2323  * @rx_ring: ring to free buffers from
2324  **/
2325 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2326 {
2327 	u16 i = rx_ring->next_to_clean;
2328 
2329 	/* Free Rx ring sk_buff */
2330 	if (rx_ring->skb) {
2331 		dev_kfree_skb(rx_ring->skb);
2332 		rx_ring->skb = NULL;
2333 	}
2334 
2335 	/* Free all the Rx ring pages */
2336 	while (i != rx_ring->next_to_alloc) {
2337 		struct ixgbevf_rx_buffer *rx_buffer;
2338 
2339 		rx_buffer = &rx_ring->rx_buffer_info[i];
2340 
2341 		/* Invalidate cache lines that may have been written to by
2342 		 * device so that we avoid corrupting memory.
2343 		 */
2344 		dma_sync_single_range_for_cpu(rx_ring->dev,
2345 					      rx_buffer->dma,
2346 					      rx_buffer->page_offset,
2347 					      ixgbevf_rx_bufsz(rx_ring),
2348 					      DMA_FROM_DEVICE);
2349 
2350 		/* free resources associated with mapping */
2351 		dma_unmap_page_attrs(rx_ring->dev,
2352 				     rx_buffer->dma,
2353 				     ixgbevf_rx_pg_size(rx_ring),
2354 				     DMA_FROM_DEVICE,
2355 				     IXGBEVF_RX_DMA_ATTR);
2356 
2357 		__page_frag_cache_drain(rx_buffer->page,
2358 					rx_buffer->pagecnt_bias);
2359 
2360 		i++;
2361 		if (i == rx_ring->count)
2362 			i = 0;
2363 	}
2364 
2365 	rx_ring->next_to_alloc = 0;
2366 	rx_ring->next_to_clean = 0;
2367 	rx_ring->next_to_use = 0;
2368 }
2369 
2370 /**
2371  * ixgbevf_clean_tx_ring - Free Tx Buffers
2372  * @tx_ring: ring to be cleaned
2373  **/
2374 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2375 {
2376 	u16 i = tx_ring->next_to_clean;
2377 	struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
2378 
2379 	while (i != tx_ring->next_to_use) {
2380 		union ixgbe_adv_tx_desc *eop_desc, *tx_desc;
2381 
2382 		/* Free all the Tx ring sk_buffs */
2383 		if (ring_is_xdp(tx_ring))
2384 			page_frag_free(tx_buffer->data);
2385 		else
2386 			dev_kfree_skb_any(tx_buffer->skb);
2387 
2388 		/* unmap skb header data */
2389 		dma_unmap_single(tx_ring->dev,
2390 				 dma_unmap_addr(tx_buffer, dma),
2391 				 dma_unmap_len(tx_buffer, len),
2392 				 DMA_TO_DEVICE);
2393 
2394 		/* check for eop_desc to determine the end of the packet */
2395 		eop_desc = tx_buffer->next_to_watch;
2396 		tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2397 
2398 		/* unmap remaining buffers */
2399 		while (tx_desc != eop_desc) {
2400 			tx_buffer++;
2401 			tx_desc++;
2402 			i++;
2403 			if (unlikely(i == tx_ring->count)) {
2404 				i = 0;
2405 				tx_buffer = tx_ring->tx_buffer_info;
2406 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
2407 			}
2408 
2409 			/* unmap any remaining paged data */
2410 			if (dma_unmap_len(tx_buffer, len))
2411 				dma_unmap_page(tx_ring->dev,
2412 					       dma_unmap_addr(tx_buffer, dma),
2413 					       dma_unmap_len(tx_buffer, len),
2414 					       DMA_TO_DEVICE);
2415 		}
2416 
2417 		/* move us one more past the eop_desc for start of next pkt */
2418 		tx_buffer++;
2419 		i++;
2420 		if (unlikely(i == tx_ring->count)) {
2421 			i = 0;
2422 			tx_buffer = tx_ring->tx_buffer_info;
2423 		}
2424 	}
2425 
2426 	/* reset next_to_use and next_to_clean */
2427 	tx_ring->next_to_use = 0;
2428 	tx_ring->next_to_clean = 0;
2429 
2430 }
2431 
2432 /**
2433  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2434  * @adapter: board private structure
2435  **/
2436 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2437 {
2438 	int i;
2439 
2440 	for (i = 0; i < adapter->num_rx_queues; i++)
2441 		ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2442 }
2443 
2444 /**
2445  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2446  * @adapter: board private structure
2447  **/
2448 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2449 {
2450 	int i;
2451 
2452 	for (i = 0; i < adapter->num_tx_queues; i++)
2453 		ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2454 	for (i = 0; i < adapter->num_xdp_queues; i++)
2455 		ixgbevf_clean_tx_ring(adapter->xdp_ring[i]);
2456 }
2457 
2458 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2459 {
2460 	struct net_device *netdev = adapter->netdev;
2461 	struct ixgbe_hw *hw = &adapter->hw;
2462 	int i;
2463 
2464 	/* signal that we are down to the interrupt handler */
2465 	if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2466 		return; /* do nothing if already down */
2467 
2468 	/* disable all enabled Rx queues */
2469 	for (i = 0; i < adapter->num_rx_queues; i++)
2470 		ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2471 
2472 	usleep_range(10000, 20000);
2473 
2474 	netif_tx_stop_all_queues(netdev);
2475 
2476 	/* call carrier off first to avoid false dev_watchdog timeouts */
2477 	netif_carrier_off(netdev);
2478 	netif_tx_disable(netdev);
2479 
2480 	ixgbevf_irq_disable(adapter);
2481 
2482 	ixgbevf_napi_disable_all(adapter);
2483 
2484 	del_timer_sync(&adapter->service_timer);
2485 
2486 	/* disable transmits in the hardware now that interrupts are off */
2487 	for (i = 0; i < adapter->num_tx_queues; i++) {
2488 		u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2489 
2490 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2491 				IXGBE_TXDCTL_SWFLSH);
2492 	}
2493 
2494 	for (i = 0; i < adapter->num_xdp_queues; i++) {
2495 		u8 reg_idx = adapter->xdp_ring[i]->reg_idx;
2496 
2497 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2498 				IXGBE_TXDCTL_SWFLSH);
2499 	}
2500 
2501 	if (!pci_channel_offline(adapter->pdev))
2502 		ixgbevf_reset(adapter);
2503 
2504 	ixgbevf_clean_all_tx_rings(adapter);
2505 	ixgbevf_clean_all_rx_rings(adapter);
2506 }
2507 
2508 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2509 {
2510 	WARN_ON(in_interrupt());
2511 
2512 	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2513 		msleep(1);
2514 
2515 	ixgbevf_down(adapter);
2516 	ixgbevf_up(adapter);
2517 
2518 	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2519 }
2520 
2521 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2522 {
2523 	struct ixgbe_hw *hw = &adapter->hw;
2524 	struct net_device *netdev = adapter->netdev;
2525 
2526 	if (hw->mac.ops.reset_hw(hw)) {
2527 		hw_dbg(hw, "PF still resetting\n");
2528 	} else {
2529 		hw->mac.ops.init_hw(hw);
2530 		ixgbevf_negotiate_api(adapter);
2531 	}
2532 
2533 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2534 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2535 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2536 	}
2537 
2538 	adapter->last_reset = jiffies;
2539 }
2540 
2541 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2542 					int vectors)
2543 {
2544 	int vector_threshold;
2545 
2546 	/* We'll want at least 2 (vector_threshold):
2547 	 * 1) TxQ[0] + RxQ[0] handler
2548 	 * 2) Other (Link Status Change, etc.)
2549 	 */
2550 	vector_threshold = MIN_MSIX_COUNT;
2551 
2552 	/* The more we get, the more we will assign to Tx/Rx Cleanup
2553 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2554 	 * Right now, we simply care about how many we'll get; we'll
2555 	 * set them up later while requesting irq's.
2556 	 */
2557 	vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2558 					vector_threshold, vectors);
2559 
2560 	if (vectors < 0) {
2561 		dev_err(&adapter->pdev->dev,
2562 			"Unable to allocate MSI-X interrupts\n");
2563 		kfree(adapter->msix_entries);
2564 		adapter->msix_entries = NULL;
2565 		return vectors;
2566 	}
2567 
2568 	/* Adjust for only the vectors we'll use, which is minimum
2569 	 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2570 	 * vectors we were allocated.
2571 	 */
2572 	adapter->num_msix_vectors = vectors;
2573 
2574 	return 0;
2575 }
2576 
2577 /**
2578  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2579  * @adapter: board private structure to initialize
2580  *
2581  * This is the top level queue allocation routine.  The order here is very
2582  * important, starting with the "most" number of features turned on at once,
2583  * and ending with the smallest set of features.  This way large combinations
2584  * can be allocated if they're turned on, and smaller combinations are the
2585  * fallthrough conditions.
2586  *
2587  **/
2588 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2589 {
2590 	struct ixgbe_hw *hw = &adapter->hw;
2591 	unsigned int def_q = 0;
2592 	unsigned int num_tcs = 0;
2593 	int err;
2594 
2595 	/* Start with base case */
2596 	adapter->num_rx_queues = 1;
2597 	adapter->num_tx_queues = 1;
2598 	adapter->num_xdp_queues = 0;
2599 
2600 	spin_lock_bh(&adapter->mbx_lock);
2601 
2602 	/* fetch queue configuration from the PF */
2603 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2604 
2605 	spin_unlock_bh(&adapter->mbx_lock);
2606 
2607 	if (err)
2608 		return;
2609 
2610 	/* we need as many queues as traffic classes */
2611 	if (num_tcs > 1) {
2612 		adapter->num_rx_queues = num_tcs;
2613 	} else {
2614 		u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2615 
2616 		switch (hw->api_version) {
2617 		case ixgbe_mbox_api_11:
2618 		case ixgbe_mbox_api_12:
2619 		case ixgbe_mbox_api_13:
2620 		case ixgbe_mbox_api_14:
2621 			if (adapter->xdp_prog &&
2622 			    hw->mac.max_tx_queues == rss)
2623 				rss = rss > 3 ? 2 : 1;
2624 
2625 			adapter->num_rx_queues = rss;
2626 			adapter->num_tx_queues = rss;
2627 			adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0;
2628 		default:
2629 			break;
2630 		}
2631 	}
2632 }
2633 
2634 /**
2635  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2636  * @adapter: board private structure to initialize
2637  *
2638  * Attempt to configure the interrupts using the best available
2639  * capabilities of the hardware and the kernel.
2640  **/
2641 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2642 {
2643 	int vector, v_budget;
2644 
2645 	/* It's easy to be greedy for MSI-X vectors, but it really
2646 	 * doesn't do us much good if we have a lot more vectors
2647 	 * than CPU's.  So let's be conservative and only ask for
2648 	 * (roughly) the same number of vectors as there are CPU's.
2649 	 * The default is to use pairs of vectors.
2650 	 */
2651 	v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2652 	v_budget = min_t(int, v_budget, num_online_cpus());
2653 	v_budget += NON_Q_VECTORS;
2654 
2655 	adapter->msix_entries = kcalloc(v_budget,
2656 					sizeof(struct msix_entry), GFP_KERNEL);
2657 	if (!adapter->msix_entries)
2658 		return -ENOMEM;
2659 
2660 	for (vector = 0; vector < v_budget; vector++)
2661 		adapter->msix_entries[vector].entry = vector;
2662 
2663 	/* A failure in MSI-X entry allocation isn't fatal, but the VF driver
2664 	 * does not support any other modes, so we will simply fail here. Note
2665 	 * that we clean up the msix_entries pointer else-where.
2666 	 */
2667 	return ixgbevf_acquire_msix_vectors(adapter, v_budget);
2668 }
2669 
2670 static void ixgbevf_add_ring(struct ixgbevf_ring *ring,
2671 			     struct ixgbevf_ring_container *head)
2672 {
2673 	ring->next = head->ring;
2674 	head->ring = ring;
2675 	head->count++;
2676 }
2677 
2678 /**
2679  * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector
2680  * @adapter: board private structure to initialize
2681  * @v_idx: index of vector in adapter struct
2682  * @txr_count: number of Tx rings for q vector
2683  * @txr_idx: index of first Tx ring to assign
2684  * @xdp_count: total number of XDP rings to allocate
2685  * @xdp_idx: index of first XDP ring to allocate
2686  * @rxr_count: number of Rx rings for q vector
2687  * @rxr_idx: index of first Rx ring to assign
2688  *
2689  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
2690  **/
2691 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx,
2692 				  int txr_count, int txr_idx,
2693 				  int xdp_count, int xdp_idx,
2694 				  int rxr_count, int rxr_idx)
2695 {
2696 	struct ixgbevf_q_vector *q_vector;
2697 	int reg_idx = txr_idx + xdp_idx;
2698 	struct ixgbevf_ring *ring;
2699 	int ring_count, size;
2700 
2701 	ring_count = txr_count + xdp_count + rxr_count;
2702 	size = sizeof(*q_vector) + (sizeof(*ring) * ring_count);
2703 
2704 	/* allocate q_vector and rings */
2705 	q_vector = kzalloc(size, GFP_KERNEL);
2706 	if (!q_vector)
2707 		return -ENOMEM;
2708 
2709 	/* initialize NAPI */
2710 	netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64);
2711 
2712 	/* tie q_vector and adapter together */
2713 	adapter->q_vector[v_idx] = q_vector;
2714 	q_vector->adapter = adapter;
2715 	q_vector->v_idx = v_idx;
2716 
2717 	/* initialize pointer to rings */
2718 	ring = q_vector->ring;
2719 
2720 	while (txr_count) {
2721 		/* assign generic ring traits */
2722 		ring->dev = &adapter->pdev->dev;
2723 		ring->netdev = adapter->netdev;
2724 
2725 		/* configure backlink on ring */
2726 		ring->q_vector = q_vector;
2727 
2728 		/* update q_vector Tx values */
2729 		ixgbevf_add_ring(ring, &q_vector->tx);
2730 
2731 		/* apply Tx specific ring traits */
2732 		ring->count = adapter->tx_ring_count;
2733 		ring->queue_index = txr_idx;
2734 		ring->reg_idx = reg_idx;
2735 
2736 		/* assign ring to adapter */
2737 		 adapter->tx_ring[txr_idx] = ring;
2738 
2739 		/* update count and index */
2740 		txr_count--;
2741 		txr_idx++;
2742 		reg_idx++;
2743 
2744 		/* push pointer to next ring */
2745 		ring++;
2746 	}
2747 
2748 	while (xdp_count) {
2749 		/* assign generic ring traits */
2750 		ring->dev = &adapter->pdev->dev;
2751 		ring->netdev = adapter->netdev;
2752 
2753 		/* configure backlink on ring */
2754 		ring->q_vector = q_vector;
2755 
2756 		/* update q_vector Tx values */
2757 		ixgbevf_add_ring(ring, &q_vector->tx);
2758 
2759 		/* apply Tx specific ring traits */
2760 		ring->count = adapter->tx_ring_count;
2761 		ring->queue_index = xdp_idx;
2762 		ring->reg_idx = reg_idx;
2763 		set_ring_xdp(ring);
2764 
2765 		/* assign ring to adapter */
2766 		adapter->xdp_ring[xdp_idx] = ring;
2767 
2768 		/* update count and index */
2769 		xdp_count--;
2770 		xdp_idx++;
2771 		reg_idx++;
2772 
2773 		/* push pointer to next ring */
2774 		ring++;
2775 	}
2776 
2777 	while (rxr_count) {
2778 		/* assign generic ring traits */
2779 		ring->dev = &adapter->pdev->dev;
2780 		ring->netdev = adapter->netdev;
2781 
2782 		/* configure backlink on ring */
2783 		ring->q_vector = q_vector;
2784 
2785 		/* update q_vector Rx values */
2786 		ixgbevf_add_ring(ring, &q_vector->rx);
2787 
2788 		/* apply Rx specific ring traits */
2789 		ring->count = adapter->rx_ring_count;
2790 		ring->queue_index = rxr_idx;
2791 		ring->reg_idx = rxr_idx;
2792 
2793 		/* assign ring to adapter */
2794 		adapter->rx_ring[rxr_idx] = ring;
2795 
2796 		/* update count and index */
2797 		rxr_count--;
2798 		rxr_idx++;
2799 
2800 		/* push pointer to next ring */
2801 		ring++;
2802 	}
2803 
2804 	return 0;
2805 }
2806 
2807 /**
2808  * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector
2809  * @adapter: board private structure to initialize
2810  * @v_idx: index of vector in adapter struct
2811  *
2812  * This function frees the memory allocated to the q_vector.  In addition if
2813  * NAPI is enabled it will delete any references to the NAPI struct prior
2814  * to freeing the q_vector.
2815  **/
2816 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx)
2817 {
2818 	struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx];
2819 	struct ixgbevf_ring *ring;
2820 
2821 	ixgbevf_for_each_ring(ring, q_vector->tx) {
2822 		if (ring_is_xdp(ring))
2823 			adapter->xdp_ring[ring->queue_index] = NULL;
2824 		else
2825 			adapter->tx_ring[ring->queue_index] = NULL;
2826 	}
2827 
2828 	ixgbevf_for_each_ring(ring, q_vector->rx)
2829 		adapter->rx_ring[ring->queue_index] = NULL;
2830 
2831 	adapter->q_vector[v_idx] = NULL;
2832 	netif_napi_del(&q_vector->napi);
2833 
2834 	/* ixgbevf_get_stats() might access the rings on this vector,
2835 	 * we must wait a grace period before freeing it.
2836 	 */
2837 	kfree_rcu(q_vector, rcu);
2838 }
2839 
2840 /**
2841  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2842  * @adapter: board private structure to initialize
2843  *
2844  * We allocate one q_vector per queue interrupt.  If allocation fails we
2845  * return -ENOMEM.
2846  **/
2847 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2848 {
2849 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2850 	int rxr_remaining = adapter->num_rx_queues;
2851 	int txr_remaining = adapter->num_tx_queues;
2852 	int xdp_remaining = adapter->num_xdp_queues;
2853 	int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0;
2854 	int err;
2855 
2856 	if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) {
2857 		for (; rxr_remaining; v_idx++, q_vectors--) {
2858 			int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2859 
2860 			err = ixgbevf_alloc_q_vector(adapter, v_idx,
2861 						     0, 0, 0, 0, rqpv, rxr_idx);
2862 			if (err)
2863 				goto err_out;
2864 
2865 			/* update counts and index */
2866 			rxr_remaining -= rqpv;
2867 			rxr_idx += rqpv;
2868 		}
2869 	}
2870 
2871 	for (; q_vectors; v_idx++, q_vectors--) {
2872 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2873 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors);
2874 		int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors);
2875 
2876 		err = ixgbevf_alloc_q_vector(adapter, v_idx,
2877 					     tqpv, txr_idx,
2878 					     xqpv, xdp_idx,
2879 					     rqpv, rxr_idx);
2880 
2881 		if (err)
2882 			goto err_out;
2883 
2884 		/* update counts and index */
2885 		rxr_remaining -= rqpv;
2886 		rxr_idx += rqpv;
2887 		txr_remaining -= tqpv;
2888 		txr_idx += tqpv;
2889 		xdp_remaining -= xqpv;
2890 		xdp_idx += xqpv;
2891 	}
2892 
2893 	return 0;
2894 
2895 err_out:
2896 	while (v_idx) {
2897 		v_idx--;
2898 		ixgbevf_free_q_vector(adapter, v_idx);
2899 	}
2900 
2901 	return -ENOMEM;
2902 }
2903 
2904 /**
2905  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2906  * @adapter: board private structure to initialize
2907  *
2908  * This function frees the memory allocated to the q_vectors.  In addition if
2909  * NAPI is enabled it will delete any references to the NAPI struct prior
2910  * to freeing the q_vector.
2911  **/
2912 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2913 {
2914 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2915 
2916 	while (q_vectors) {
2917 		q_vectors--;
2918 		ixgbevf_free_q_vector(adapter, q_vectors);
2919 	}
2920 }
2921 
2922 /**
2923  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2924  * @adapter: board private structure
2925  *
2926  **/
2927 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2928 {
2929 	if (!adapter->msix_entries)
2930 		return;
2931 
2932 	pci_disable_msix(adapter->pdev);
2933 	kfree(adapter->msix_entries);
2934 	adapter->msix_entries = NULL;
2935 }
2936 
2937 /**
2938  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2939  * @adapter: board private structure to initialize
2940  *
2941  **/
2942 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2943 {
2944 	int err;
2945 
2946 	/* Number of supported queues */
2947 	ixgbevf_set_num_queues(adapter);
2948 
2949 	err = ixgbevf_set_interrupt_capability(adapter);
2950 	if (err) {
2951 		hw_dbg(&adapter->hw,
2952 		       "Unable to setup interrupt capabilities\n");
2953 		goto err_set_interrupt;
2954 	}
2955 
2956 	err = ixgbevf_alloc_q_vectors(adapter);
2957 	if (err) {
2958 		hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2959 		goto err_alloc_q_vectors;
2960 	}
2961 
2962 	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n",
2963 	       (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled",
2964 	       adapter->num_rx_queues, adapter->num_tx_queues,
2965 	       adapter->num_xdp_queues);
2966 
2967 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2968 
2969 	return 0;
2970 err_alloc_q_vectors:
2971 	ixgbevf_reset_interrupt_capability(adapter);
2972 err_set_interrupt:
2973 	return err;
2974 }
2975 
2976 /**
2977  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2978  * @adapter: board private structure to clear interrupt scheme on
2979  *
2980  * We go through and clear interrupt specific resources and reset the structure
2981  * to pre-load conditions
2982  **/
2983 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2984 {
2985 	adapter->num_tx_queues = 0;
2986 	adapter->num_xdp_queues = 0;
2987 	adapter->num_rx_queues = 0;
2988 
2989 	ixgbevf_free_q_vectors(adapter);
2990 	ixgbevf_reset_interrupt_capability(adapter);
2991 }
2992 
2993 /**
2994  * ixgbevf_sw_init - Initialize general software structures
2995  * @adapter: board private structure to initialize
2996  *
2997  * ixgbevf_sw_init initializes the Adapter private data structure.
2998  * Fields are initialized based on PCI device information and
2999  * OS network device settings (MTU size).
3000  **/
3001 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
3002 {
3003 	struct ixgbe_hw *hw = &adapter->hw;
3004 	struct pci_dev *pdev = adapter->pdev;
3005 	struct net_device *netdev = adapter->netdev;
3006 	int err;
3007 
3008 	/* PCI config space info */
3009 	hw->vendor_id = pdev->vendor;
3010 	hw->device_id = pdev->device;
3011 	hw->revision_id = pdev->revision;
3012 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3013 	hw->subsystem_device_id = pdev->subsystem_device;
3014 
3015 	hw->mbx.ops.init_params(hw);
3016 
3017 	if (hw->mac.type >= ixgbe_mac_X550_vf) {
3018 		err = ixgbevf_init_rss_key(adapter);
3019 		if (err)
3020 			goto out;
3021 	}
3022 
3023 	/* assume legacy case in which PF would only give VF 2 queues */
3024 	hw->mac.max_tx_queues = 2;
3025 	hw->mac.max_rx_queues = 2;
3026 
3027 	/* lock to protect mailbox accesses */
3028 	spin_lock_init(&adapter->mbx_lock);
3029 
3030 	err = hw->mac.ops.reset_hw(hw);
3031 	if (err) {
3032 		dev_info(&pdev->dev,
3033 			 "PF still in reset state.  Is the PF interface up?\n");
3034 	} else {
3035 		err = hw->mac.ops.init_hw(hw);
3036 		if (err) {
3037 			pr_err("init_shared_code failed: %d\n", err);
3038 			goto out;
3039 		}
3040 		ixgbevf_negotiate_api(adapter);
3041 		err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
3042 		if (err)
3043 			dev_info(&pdev->dev, "Error reading MAC address\n");
3044 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
3045 			dev_info(&pdev->dev,
3046 				 "MAC address not assigned by administrator.\n");
3047 		ether_addr_copy(netdev->dev_addr, hw->mac.addr);
3048 	}
3049 
3050 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3051 		dev_info(&pdev->dev, "Assigning random MAC address\n");
3052 		eth_hw_addr_random(netdev);
3053 		ether_addr_copy(hw->mac.addr, netdev->dev_addr);
3054 		ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
3055 	}
3056 
3057 	/* Enable dynamic interrupt throttling rates */
3058 	adapter->rx_itr_setting = 1;
3059 	adapter->tx_itr_setting = 1;
3060 
3061 	/* set default ring sizes */
3062 	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
3063 	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
3064 
3065 	set_bit(__IXGBEVF_DOWN, &adapter->state);
3066 	return 0;
3067 
3068 out:
3069 	return err;
3070 }
3071 
3072 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
3073 	{							\
3074 		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
3075 		if (current_counter < last_counter)		\
3076 			counter += 0x100000000LL;		\
3077 		last_counter = current_counter;			\
3078 		counter &= 0xFFFFFFFF00000000LL;		\
3079 		counter |= current_counter;			\
3080 	}
3081 
3082 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
3083 	{								 \
3084 		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
3085 		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
3086 		u64 current_counter = (current_counter_msb << 32) |	 \
3087 			current_counter_lsb;				 \
3088 		if (current_counter < last_counter)			 \
3089 			counter += 0x1000000000LL;			 \
3090 		last_counter = current_counter;				 \
3091 		counter &= 0xFFFFFFF000000000LL;			 \
3092 		counter |= current_counter;				 \
3093 	}
3094 /**
3095  * ixgbevf_update_stats - Update the board statistics counters.
3096  * @adapter: board private structure
3097  **/
3098 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
3099 {
3100 	struct ixgbe_hw *hw = &adapter->hw;
3101 	u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0;
3102 	u64 alloc_rx_page = 0, hw_csum_rx_error = 0;
3103 	int i;
3104 
3105 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3106 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3107 		return;
3108 
3109 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
3110 				adapter->stats.vfgprc);
3111 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
3112 				adapter->stats.vfgptc);
3113 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
3114 				adapter->stats.last_vfgorc,
3115 				adapter->stats.vfgorc);
3116 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
3117 				adapter->stats.last_vfgotc,
3118 				adapter->stats.vfgotc);
3119 	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
3120 				adapter->stats.vfmprc);
3121 
3122 	for (i = 0;  i  < adapter->num_rx_queues;  i++) {
3123 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
3124 
3125 		hw_csum_rx_error += rx_ring->rx_stats.csum_err;
3126 		alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed;
3127 		alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
3128 		alloc_rx_page += rx_ring->rx_stats.alloc_rx_page;
3129 	}
3130 
3131 	adapter->hw_csum_rx_error = hw_csum_rx_error;
3132 	adapter->alloc_rx_page_failed = alloc_rx_page_failed;
3133 	adapter->alloc_rx_buff_failed = alloc_rx_buff_failed;
3134 	adapter->alloc_rx_page = alloc_rx_page;
3135 }
3136 
3137 /**
3138  * ixgbevf_service_timer - Timer Call-back
3139  * @t: pointer to timer_list struct
3140  **/
3141 static void ixgbevf_service_timer(struct timer_list *t)
3142 {
3143 	struct ixgbevf_adapter *adapter = from_timer(adapter, t,
3144 						     service_timer);
3145 
3146 	/* Reset the timer */
3147 	mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
3148 
3149 	ixgbevf_service_event_schedule(adapter);
3150 }
3151 
3152 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
3153 {
3154 	if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
3155 		return;
3156 
3157 	rtnl_lock();
3158 	/* If we're already down or resetting, just bail */
3159 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3160 	    test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
3161 	    test_bit(__IXGBEVF_RESETTING, &adapter->state)) {
3162 		rtnl_unlock();
3163 		return;
3164 	}
3165 
3166 	adapter->tx_timeout_count++;
3167 
3168 	ixgbevf_reinit_locked(adapter);
3169 	rtnl_unlock();
3170 }
3171 
3172 /**
3173  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
3174  * @adapter: pointer to the device adapter structure
3175  *
3176  * This function serves two purposes.  First it strobes the interrupt lines
3177  * in order to make certain interrupts are occurring.  Secondly it sets the
3178  * bits needed to check for TX hangs.  As a result we should immediately
3179  * determine if a hang has occurred.
3180  **/
3181 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
3182 {
3183 	struct ixgbe_hw *hw = &adapter->hw;
3184 	u32 eics = 0;
3185 	int i;
3186 
3187 	/* If we're down or resetting, just bail */
3188 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3189 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3190 		return;
3191 
3192 	/* Force detection of hung controller */
3193 	if (netif_carrier_ok(adapter->netdev)) {
3194 		for (i = 0; i < adapter->num_tx_queues; i++)
3195 			set_check_for_tx_hang(adapter->tx_ring[i]);
3196 		for (i = 0; i < adapter->num_xdp_queues; i++)
3197 			set_check_for_tx_hang(adapter->xdp_ring[i]);
3198 	}
3199 
3200 	/* get one bit for every active Tx/Rx interrupt vector */
3201 	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
3202 		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
3203 
3204 		if (qv->rx.ring || qv->tx.ring)
3205 			eics |= BIT(i);
3206 	}
3207 
3208 	/* Cause software interrupt to ensure rings are cleaned */
3209 	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
3210 }
3211 
3212 /**
3213  * ixgbevf_watchdog_update_link - update the link status
3214  * @adapter: pointer to the device adapter structure
3215  **/
3216 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
3217 {
3218 	struct ixgbe_hw *hw = &adapter->hw;
3219 	u32 link_speed = adapter->link_speed;
3220 	bool link_up = adapter->link_up;
3221 	s32 err;
3222 
3223 	spin_lock_bh(&adapter->mbx_lock);
3224 
3225 	err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
3226 
3227 	spin_unlock_bh(&adapter->mbx_lock);
3228 
3229 	/* if check for link returns error we will need to reset */
3230 	if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
3231 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
3232 		link_up = false;
3233 	}
3234 
3235 	adapter->link_up = link_up;
3236 	adapter->link_speed = link_speed;
3237 }
3238 
3239 /**
3240  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
3241  *				 print link up message
3242  * @adapter: pointer to the device adapter structure
3243  **/
3244 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
3245 {
3246 	struct net_device *netdev = adapter->netdev;
3247 
3248 	/* only continue if link was previously down */
3249 	if (netif_carrier_ok(netdev))
3250 		return;
3251 
3252 	dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
3253 		 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
3254 		 "10 Gbps" :
3255 		 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
3256 		 "1 Gbps" :
3257 		 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
3258 		 "100 Mbps" :
3259 		 "unknown speed");
3260 
3261 	netif_carrier_on(netdev);
3262 }
3263 
3264 /**
3265  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
3266  *				   print link down message
3267  * @adapter: pointer to the adapter structure
3268  **/
3269 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
3270 {
3271 	struct net_device *netdev = adapter->netdev;
3272 
3273 	adapter->link_speed = 0;
3274 
3275 	/* only continue if link was up previously */
3276 	if (!netif_carrier_ok(netdev))
3277 		return;
3278 
3279 	dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
3280 
3281 	netif_carrier_off(netdev);
3282 }
3283 
3284 /**
3285  * ixgbevf_watchdog_subtask - worker thread to bring link up
3286  * @adapter: board private structure
3287  **/
3288 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
3289 {
3290 	/* if interface is down do nothing */
3291 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3292 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3293 		return;
3294 
3295 	ixgbevf_watchdog_update_link(adapter);
3296 
3297 	if (adapter->link_up)
3298 		ixgbevf_watchdog_link_is_up(adapter);
3299 	else
3300 		ixgbevf_watchdog_link_is_down(adapter);
3301 
3302 	ixgbevf_update_stats(adapter);
3303 }
3304 
3305 /**
3306  * ixgbevf_service_task - manages and runs subtasks
3307  * @work: pointer to work_struct containing our data
3308  **/
3309 static void ixgbevf_service_task(struct work_struct *work)
3310 {
3311 	struct ixgbevf_adapter *adapter = container_of(work,
3312 						       struct ixgbevf_adapter,
3313 						       service_task);
3314 	struct ixgbe_hw *hw = &adapter->hw;
3315 
3316 	if (IXGBE_REMOVED(hw->hw_addr)) {
3317 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
3318 			rtnl_lock();
3319 			ixgbevf_down(adapter);
3320 			rtnl_unlock();
3321 		}
3322 		return;
3323 	}
3324 
3325 	ixgbevf_queue_reset_subtask(adapter);
3326 	ixgbevf_reset_subtask(adapter);
3327 	ixgbevf_watchdog_subtask(adapter);
3328 	ixgbevf_check_hang_subtask(adapter);
3329 
3330 	ixgbevf_service_event_complete(adapter);
3331 }
3332 
3333 /**
3334  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
3335  * @tx_ring: Tx descriptor ring for a specific queue
3336  *
3337  * Free all transmit software resources
3338  **/
3339 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
3340 {
3341 	ixgbevf_clean_tx_ring(tx_ring);
3342 
3343 	vfree(tx_ring->tx_buffer_info);
3344 	tx_ring->tx_buffer_info = NULL;
3345 
3346 	/* if not set, then don't free */
3347 	if (!tx_ring->desc)
3348 		return;
3349 
3350 	dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
3351 			  tx_ring->dma);
3352 
3353 	tx_ring->desc = NULL;
3354 }
3355 
3356 /**
3357  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
3358  * @adapter: board private structure
3359  *
3360  * Free all transmit software resources
3361  **/
3362 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
3363 {
3364 	int i;
3365 
3366 	for (i = 0; i < adapter->num_tx_queues; i++)
3367 		if (adapter->tx_ring[i]->desc)
3368 			ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3369 	for (i = 0; i < adapter->num_xdp_queues; i++)
3370 		if (adapter->xdp_ring[i]->desc)
3371 			ixgbevf_free_tx_resources(adapter->xdp_ring[i]);
3372 }
3373 
3374 /**
3375  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
3376  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
3377  *
3378  * Return 0 on success, negative on failure
3379  **/
3380 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
3381 {
3382 	struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
3383 	int size;
3384 
3385 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
3386 	tx_ring->tx_buffer_info = vmalloc(size);
3387 	if (!tx_ring->tx_buffer_info)
3388 		goto err;
3389 
3390 	u64_stats_init(&tx_ring->syncp);
3391 
3392 	/* round up to nearest 4K */
3393 	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
3394 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3395 
3396 	tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3397 					   &tx_ring->dma, GFP_KERNEL);
3398 	if (!tx_ring->desc)
3399 		goto err;
3400 
3401 	return 0;
3402 
3403 err:
3404 	vfree(tx_ring->tx_buffer_info);
3405 	tx_ring->tx_buffer_info = NULL;
3406 	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3407 	return -ENOMEM;
3408 }
3409 
3410 /**
3411  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3412  * @adapter: board private structure
3413  *
3414  * If this function returns with an error, then it's possible one or
3415  * more of the rings is populated (while the rest are not).  It is the
3416  * callers duty to clean those orphaned rings.
3417  *
3418  * Return 0 on success, negative on failure
3419  **/
3420 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3421 {
3422 	int i, j = 0, err = 0;
3423 
3424 	for (i = 0; i < adapter->num_tx_queues; i++) {
3425 		err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3426 		if (!err)
3427 			continue;
3428 		hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3429 		goto err_setup_tx;
3430 	}
3431 
3432 	for (j = 0; j < adapter->num_xdp_queues; j++) {
3433 		err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]);
3434 		if (!err)
3435 			continue;
3436 		hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j);
3437 		goto err_setup_tx;
3438 	}
3439 
3440 	return 0;
3441 err_setup_tx:
3442 	/* rewind the index freeing the rings as we go */
3443 	while (j--)
3444 		ixgbevf_free_tx_resources(adapter->xdp_ring[j]);
3445 	while (i--)
3446 		ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3447 
3448 	return err;
3449 }
3450 
3451 /**
3452  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3453  * @adapter: board private structure
3454  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3455  *
3456  * Returns 0 on success, negative on failure
3457  **/
3458 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
3459 			       struct ixgbevf_ring *rx_ring)
3460 {
3461 	int size;
3462 
3463 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3464 	rx_ring->rx_buffer_info = vmalloc(size);
3465 	if (!rx_ring->rx_buffer_info)
3466 		goto err;
3467 
3468 	u64_stats_init(&rx_ring->syncp);
3469 
3470 	/* Round up to nearest 4K */
3471 	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3472 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3473 
3474 	rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3475 					   &rx_ring->dma, GFP_KERNEL);
3476 
3477 	if (!rx_ring->desc)
3478 		goto err;
3479 
3480 	/* XDP RX-queue info */
3481 	if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev,
3482 			     rx_ring->queue_index) < 0)
3483 		goto err;
3484 
3485 	rx_ring->xdp_prog = adapter->xdp_prog;
3486 
3487 	return 0;
3488 err:
3489 	vfree(rx_ring->rx_buffer_info);
3490 	rx_ring->rx_buffer_info = NULL;
3491 	dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3492 	return -ENOMEM;
3493 }
3494 
3495 /**
3496  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3497  * @adapter: board private structure
3498  *
3499  * If this function returns with an error, then it's possible one or
3500  * more of the rings is populated (while the rest are not).  It is the
3501  * callers duty to clean those orphaned rings.
3502  *
3503  * Return 0 on success, negative on failure
3504  **/
3505 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3506 {
3507 	int i, err = 0;
3508 
3509 	for (i = 0; i < adapter->num_rx_queues; i++) {
3510 		err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]);
3511 		if (!err)
3512 			continue;
3513 		hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3514 		goto err_setup_rx;
3515 	}
3516 
3517 	return 0;
3518 err_setup_rx:
3519 	/* rewind the index freeing the rings as we go */
3520 	while (i--)
3521 		ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3522 	return err;
3523 }
3524 
3525 /**
3526  * ixgbevf_free_rx_resources - Free Rx Resources
3527  * @rx_ring: ring to clean the resources from
3528  *
3529  * Free all receive software resources
3530  **/
3531 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3532 {
3533 	ixgbevf_clean_rx_ring(rx_ring);
3534 
3535 	rx_ring->xdp_prog = NULL;
3536 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
3537 	vfree(rx_ring->rx_buffer_info);
3538 	rx_ring->rx_buffer_info = NULL;
3539 
3540 	dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3541 			  rx_ring->dma);
3542 
3543 	rx_ring->desc = NULL;
3544 }
3545 
3546 /**
3547  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3548  * @adapter: board private structure
3549  *
3550  * Free all receive software resources
3551  **/
3552 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3553 {
3554 	int i;
3555 
3556 	for (i = 0; i < adapter->num_rx_queues; i++)
3557 		if (adapter->rx_ring[i]->desc)
3558 			ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3559 }
3560 
3561 /**
3562  * ixgbevf_open - Called when a network interface is made active
3563  * @netdev: network interface device structure
3564  *
3565  * Returns 0 on success, negative value on failure
3566  *
3567  * The open entry point is called when a network interface is made
3568  * active by the system (IFF_UP).  At this point all resources needed
3569  * for transmit and receive operations are allocated, the interrupt
3570  * handler is registered with the OS, the watchdog timer is started,
3571  * and the stack is notified that the interface is ready.
3572  **/
3573 int ixgbevf_open(struct net_device *netdev)
3574 {
3575 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3576 	struct ixgbe_hw *hw = &adapter->hw;
3577 	int err;
3578 
3579 	/* A previous failure to open the device because of a lack of
3580 	 * available MSIX vector resources may have reset the number
3581 	 * of msix vectors variable to zero.  The only way to recover
3582 	 * is to unload/reload the driver and hope that the system has
3583 	 * been able to recover some MSIX vector resources.
3584 	 */
3585 	if (!adapter->num_msix_vectors)
3586 		return -ENOMEM;
3587 
3588 	if (hw->adapter_stopped) {
3589 		ixgbevf_reset(adapter);
3590 		/* if adapter is still stopped then PF isn't up and
3591 		 * the VF can't start.
3592 		 */
3593 		if (hw->adapter_stopped) {
3594 			err = IXGBE_ERR_MBX;
3595 			pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3596 			goto err_setup_reset;
3597 		}
3598 	}
3599 
3600 	/* disallow open during test */
3601 	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3602 		return -EBUSY;
3603 
3604 	netif_carrier_off(netdev);
3605 
3606 	/* allocate transmit descriptors */
3607 	err = ixgbevf_setup_all_tx_resources(adapter);
3608 	if (err)
3609 		goto err_setup_tx;
3610 
3611 	/* allocate receive descriptors */
3612 	err = ixgbevf_setup_all_rx_resources(adapter);
3613 	if (err)
3614 		goto err_setup_rx;
3615 
3616 	ixgbevf_configure(adapter);
3617 
3618 	err = ixgbevf_request_irq(adapter);
3619 	if (err)
3620 		goto err_req_irq;
3621 
3622 	/* Notify the stack of the actual queue counts. */
3623 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3624 	if (err)
3625 		goto err_set_queues;
3626 
3627 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3628 	if (err)
3629 		goto err_set_queues;
3630 
3631 	ixgbevf_up_complete(adapter);
3632 
3633 	return 0;
3634 
3635 err_set_queues:
3636 	ixgbevf_free_irq(adapter);
3637 err_req_irq:
3638 	ixgbevf_free_all_rx_resources(adapter);
3639 err_setup_rx:
3640 	ixgbevf_free_all_tx_resources(adapter);
3641 err_setup_tx:
3642 	ixgbevf_reset(adapter);
3643 err_setup_reset:
3644 
3645 	return err;
3646 }
3647 
3648 /**
3649  * ixgbevf_close_suspend - actions necessary to both suspend and close flows
3650  * @adapter: the private adapter struct
3651  *
3652  * This function should contain the necessary work common to both suspending
3653  * and closing of the device.
3654  */
3655 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter)
3656 {
3657 	ixgbevf_down(adapter);
3658 	ixgbevf_free_irq(adapter);
3659 	ixgbevf_free_all_tx_resources(adapter);
3660 	ixgbevf_free_all_rx_resources(adapter);
3661 }
3662 
3663 /**
3664  * ixgbevf_close - Disables a network interface
3665  * @netdev: network interface device structure
3666  *
3667  * Returns 0, this is not allowed to fail
3668  *
3669  * The close entry point is called when an interface is de-activated
3670  * by the OS.  The hardware is still under the drivers control, but
3671  * needs to be disabled.  A global MAC reset is issued to stop the
3672  * hardware, and all transmit and receive resources are freed.
3673  **/
3674 int ixgbevf_close(struct net_device *netdev)
3675 {
3676 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3677 
3678 	if (netif_device_present(netdev))
3679 		ixgbevf_close_suspend(adapter);
3680 
3681 	return 0;
3682 }
3683 
3684 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3685 {
3686 	struct net_device *dev = adapter->netdev;
3687 
3688 	if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3689 				&adapter->state))
3690 		return;
3691 
3692 	/* if interface is down do nothing */
3693 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3694 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3695 		return;
3696 
3697 	/* Hardware has to reinitialize queues and interrupts to
3698 	 * match packet buffer alignment. Unfortunately, the
3699 	 * hardware is not flexible enough to do this dynamically.
3700 	 */
3701 	rtnl_lock();
3702 
3703 	if (netif_running(dev))
3704 		ixgbevf_close(dev);
3705 
3706 	ixgbevf_clear_interrupt_scheme(adapter);
3707 	ixgbevf_init_interrupt_scheme(adapter);
3708 
3709 	if (netif_running(dev))
3710 		ixgbevf_open(dev);
3711 
3712 	rtnl_unlock();
3713 }
3714 
3715 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3716 				u32 vlan_macip_lens, u32 fceof_saidx,
3717 				u32 type_tucmd, u32 mss_l4len_idx)
3718 {
3719 	struct ixgbe_adv_tx_context_desc *context_desc;
3720 	u16 i = tx_ring->next_to_use;
3721 
3722 	context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3723 
3724 	i++;
3725 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3726 
3727 	/* set bits to identify this as an advanced context descriptor */
3728 	type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3729 
3730 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
3731 	context_desc->fceof_saidx	= cpu_to_le32(fceof_saidx);
3732 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
3733 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
3734 }
3735 
3736 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3737 		       struct ixgbevf_tx_buffer *first,
3738 		       u8 *hdr_len,
3739 		       struct ixgbevf_ipsec_tx_data *itd)
3740 {
3741 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3742 	struct sk_buff *skb = first->skb;
3743 	union {
3744 		struct iphdr *v4;
3745 		struct ipv6hdr *v6;
3746 		unsigned char *hdr;
3747 	} ip;
3748 	union {
3749 		struct tcphdr *tcp;
3750 		unsigned char *hdr;
3751 	} l4;
3752 	u32 paylen, l4_offset;
3753 	u32 fceof_saidx = 0;
3754 	int err;
3755 
3756 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3757 		return 0;
3758 
3759 	if (!skb_is_gso(skb))
3760 		return 0;
3761 
3762 	err = skb_cow_head(skb, 0);
3763 	if (err < 0)
3764 		return err;
3765 
3766 	if (eth_p_mpls(first->protocol))
3767 		ip.hdr = skb_inner_network_header(skb);
3768 	else
3769 		ip.hdr = skb_network_header(skb);
3770 	l4.hdr = skb_checksum_start(skb);
3771 
3772 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3773 	type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3774 
3775 	/* initialize outer IP header fields */
3776 	if (ip.v4->version == 4) {
3777 		unsigned char *csum_start = skb_checksum_start(skb);
3778 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3779 		int len = csum_start - trans_start;
3780 
3781 		/* IP header will have to cancel out any data that
3782 		 * is not a part of the outer IP header, so set to
3783 		 * a reverse csum if needed, else init check to 0.
3784 		 */
3785 		ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ?
3786 					   csum_fold(csum_partial(trans_start,
3787 								  len, 0)) : 0;
3788 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3789 
3790 		ip.v4->tot_len = 0;
3791 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3792 				   IXGBE_TX_FLAGS_CSUM |
3793 				   IXGBE_TX_FLAGS_IPV4;
3794 	} else {
3795 		ip.v6->payload_len = 0;
3796 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3797 				   IXGBE_TX_FLAGS_CSUM;
3798 	}
3799 
3800 	/* determine offset of inner transport header */
3801 	l4_offset = l4.hdr - skb->data;
3802 
3803 	/* compute length of segmentation header */
3804 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3805 
3806 	/* remove payload length from inner checksum */
3807 	paylen = skb->len - l4_offset;
3808 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
3809 
3810 	/* update gso size and bytecount with header size */
3811 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3812 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3813 
3814 	/* mss_l4len_id: use 1 as index for TSO */
3815 	mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3816 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3817 	mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3818 
3819 	fceof_saidx |= itd->pfsa;
3820 	type_tucmd |= itd->flags | itd->trailer_len;
3821 
3822 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3823 	vlan_macip_lens = l4.hdr - ip.hdr;
3824 	vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3825 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3826 
3827 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd,
3828 			    mss_l4len_idx);
3829 
3830 	return 1;
3831 }
3832 
3833 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb)
3834 {
3835 	unsigned int offset = 0;
3836 
3837 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
3838 
3839 	return offset == skb_checksum_start_offset(skb);
3840 }
3841 
3842 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3843 			    struct ixgbevf_tx_buffer *first,
3844 			    struct ixgbevf_ipsec_tx_data *itd)
3845 {
3846 	struct sk_buff *skb = first->skb;
3847 	u32 vlan_macip_lens = 0;
3848 	u32 fceof_saidx = 0;
3849 	u32 type_tucmd = 0;
3850 
3851 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3852 		goto no_csum;
3853 
3854 	switch (skb->csum_offset) {
3855 	case offsetof(struct tcphdr, check):
3856 		type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3857 		/* fall through */
3858 	case offsetof(struct udphdr, check):
3859 		break;
3860 	case offsetof(struct sctphdr, checksum):
3861 		/* validate that this is actually an SCTP request */
3862 		if (((first->protocol == htons(ETH_P_IP)) &&
3863 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
3864 		    ((first->protocol == htons(ETH_P_IPV6)) &&
3865 		     ixgbevf_ipv6_csum_is_sctp(skb))) {
3866 			type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3867 			break;
3868 		}
3869 		/* fall through */
3870 	default:
3871 		skb_checksum_help(skb);
3872 		goto no_csum;
3873 	}
3874 
3875 	if (first->protocol == htons(ETH_P_IP))
3876 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3877 
3878 	/* update TX checksum flag */
3879 	first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3880 	vlan_macip_lens = skb_checksum_start_offset(skb) -
3881 			  skb_network_offset(skb);
3882 no_csum:
3883 	/* vlan_macip_lens: MACLEN, VLAN tag */
3884 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3885 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3886 
3887 	fceof_saidx |= itd->pfsa;
3888 	type_tucmd |= itd->flags | itd->trailer_len;
3889 
3890 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3891 			    fceof_saidx, type_tucmd, 0);
3892 }
3893 
3894 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3895 {
3896 	/* set type for advanced descriptor with frame checksum insertion */
3897 	__le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3898 				      IXGBE_ADVTXD_DCMD_IFCS |
3899 				      IXGBE_ADVTXD_DCMD_DEXT);
3900 
3901 	/* set HW VLAN bit if VLAN is present */
3902 	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3903 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3904 
3905 	/* set segmentation enable bits for TSO/FSO */
3906 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3907 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3908 
3909 	return cmd_type;
3910 }
3911 
3912 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3913 				     u32 tx_flags, unsigned int paylen)
3914 {
3915 	__le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3916 
3917 	/* enable L4 checksum for TSO and TX checksum offload */
3918 	if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3919 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3920 
3921 	/* enble IPv4 checksum for TSO */
3922 	if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3923 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3924 
3925 	/* enable IPsec */
3926 	if (tx_flags & IXGBE_TX_FLAGS_IPSEC)
3927 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC);
3928 
3929 	/* use index 1 context for TSO/FSO/FCOE/IPSEC */
3930 	if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC))
3931 		olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3932 
3933 	/* Check Context must be set if Tx switch is enabled, which it
3934 	 * always is for case where virtual functions are running
3935 	 */
3936 	olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3937 
3938 	tx_desc->read.olinfo_status = olinfo_status;
3939 }
3940 
3941 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3942 			   struct ixgbevf_tx_buffer *first,
3943 			   const u8 hdr_len)
3944 {
3945 	struct sk_buff *skb = first->skb;
3946 	struct ixgbevf_tx_buffer *tx_buffer;
3947 	union ixgbe_adv_tx_desc *tx_desc;
3948 	struct skb_frag_struct *frag;
3949 	dma_addr_t dma;
3950 	unsigned int data_len, size;
3951 	u32 tx_flags = first->tx_flags;
3952 	__le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3953 	u16 i = tx_ring->next_to_use;
3954 
3955 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3956 
3957 	ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
3958 
3959 	size = skb_headlen(skb);
3960 	data_len = skb->data_len;
3961 
3962 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3963 
3964 	tx_buffer = first;
3965 
3966 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3967 		if (dma_mapping_error(tx_ring->dev, dma))
3968 			goto dma_error;
3969 
3970 		/* record length, and DMA address */
3971 		dma_unmap_len_set(tx_buffer, len, size);
3972 		dma_unmap_addr_set(tx_buffer, dma, dma);
3973 
3974 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3975 
3976 		while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3977 			tx_desc->read.cmd_type_len =
3978 				cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3979 
3980 			i++;
3981 			tx_desc++;
3982 			if (i == tx_ring->count) {
3983 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3984 				i = 0;
3985 			}
3986 			tx_desc->read.olinfo_status = 0;
3987 
3988 			dma += IXGBE_MAX_DATA_PER_TXD;
3989 			size -= IXGBE_MAX_DATA_PER_TXD;
3990 
3991 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
3992 		}
3993 
3994 		if (likely(!data_len))
3995 			break;
3996 
3997 		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3998 
3999 		i++;
4000 		tx_desc++;
4001 		if (i == tx_ring->count) {
4002 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
4003 			i = 0;
4004 		}
4005 		tx_desc->read.olinfo_status = 0;
4006 
4007 		size = skb_frag_size(frag);
4008 		data_len -= size;
4009 
4010 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
4011 				       DMA_TO_DEVICE);
4012 
4013 		tx_buffer = &tx_ring->tx_buffer_info[i];
4014 	}
4015 
4016 	/* write last descriptor with RS and EOP bits */
4017 	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
4018 	tx_desc->read.cmd_type_len = cmd_type;
4019 
4020 	/* set the timestamp */
4021 	first->time_stamp = jiffies;
4022 
4023 	skb_tx_timestamp(skb);
4024 
4025 	/* Force memory writes to complete before letting h/w know there
4026 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4027 	 * memory model archs, such as IA-64).
4028 	 *
4029 	 * We also need this memory barrier (wmb) to make certain all of the
4030 	 * status bits have been updated before next_to_watch is written.
4031 	 */
4032 	wmb();
4033 
4034 	/* set next_to_watch value indicating a packet is present */
4035 	first->next_to_watch = tx_desc;
4036 
4037 	i++;
4038 	if (i == tx_ring->count)
4039 		i = 0;
4040 
4041 	tx_ring->next_to_use = i;
4042 
4043 	/* notify HW of packet */
4044 	ixgbevf_write_tail(tx_ring, i);
4045 
4046 	return;
4047 dma_error:
4048 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4049 	tx_buffer = &tx_ring->tx_buffer_info[i];
4050 
4051 	/* clear dma mappings for failed tx_buffer_info map */
4052 	while (tx_buffer != first) {
4053 		if (dma_unmap_len(tx_buffer, len))
4054 			dma_unmap_page(tx_ring->dev,
4055 				       dma_unmap_addr(tx_buffer, dma),
4056 				       dma_unmap_len(tx_buffer, len),
4057 				       DMA_TO_DEVICE);
4058 		dma_unmap_len_set(tx_buffer, len, 0);
4059 
4060 		if (i-- == 0)
4061 			i += tx_ring->count;
4062 		tx_buffer = &tx_ring->tx_buffer_info[i];
4063 	}
4064 
4065 	if (dma_unmap_len(tx_buffer, len))
4066 		dma_unmap_single(tx_ring->dev,
4067 				 dma_unmap_addr(tx_buffer, dma),
4068 				 dma_unmap_len(tx_buffer, len),
4069 				 DMA_TO_DEVICE);
4070 	dma_unmap_len_set(tx_buffer, len, 0);
4071 
4072 	dev_kfree_skb_any(tx_buffer->skb);
4073 	tx_buffer->skb = NULL;
4074 
4075 	tx_ring->next_to_use = i;
4076 }
4077 
4078 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4079 {
4080 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
4081 	/* Herbert's original patch had:
4082 	 *  smp_mb__after_netif_stop_queue();
4083 	 * but since that doesn't exist yet, just open code it.
4084 	 */
4085 	smp_mb();
4086 
4087 	/* We need to check again in a case another CPU has just
4088 	 * made room available.
4089 	 */
4090 	if (likely(ixgbevf_desc_unused(tx_ring) < size))
4091 		return -EBUSY;
4092 
4093 	/* A reprieve! - use start_queue because it doesn't call schedule */
4094 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
4095 	++tx_ring->tx_stats.restart_queue;
4096 
4097 	return 0;
4098 }
4099 
4100 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4101 {
4102 	if (likely(ixgbevf_desc_unused(tx_ring) >= size))
4103 		return 0;
4104 	return __ixgbevf_maybe_stop_tx(tx_ring, size);
4105 }
4106 
4107 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb,
4108 				   struct ixgbevf_ring *tx_ring)
4109 {
4110 	struct ixgbevf_tx_buffer *first;
4111 	int tso;
4112 	u32 tx_flags = 0;
4113 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4114 	struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 };
4115 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4116 	unsigned short f;
4117 #endif
4118 	u8 hdr_len = 0;
4119 	u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
4120 
4121 	if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
4122 		dev_kfree_skb_any(skb);
4123 		return NETDEV_TX_OK;
4124 	}
4125 
4126 	/* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
4127 	 *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
4128 	 *       + 2 desc gap to keep tail from touching head,
4129 	 *       + 1 desc for context descriptor,
4130 	 * otherwise try next time
4131 	 */
4132 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4133 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4134 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4135 #else
4136 	count += skb_shinfo(skb)->nr_frags;
4137 #endif
4138 	if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
4139 		tx_ring->tx_stats.tx_busy++;
4140 		return NETDEV_TX_BUSY;
4141 	}
4142 
4143 	/* record the location of the first descriptor for this packet */
4144 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4145 	first->skb = skb;
4146 	first->bytecount = skb->len;
4147 	first->gso_segs = 1;
4148 
4149 	if (skb_vlan_tag_present(skb)) {
4150 		tx_flags |= skb_vlan_tag_get(skb);
4151 		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
4152 		tx_flags |= IXGBE_TX_FLAGS_VLAN;
4153 	}
4154 
4155 	/* record initial flags and protocol */
4156 	first->tx_flags = tx_flags;
4157 	first->protocol = vlan_get_protocol(skb);
4158 
4159 #ifdef CONFIG_IXGBEVF_IPSEC
4160 	if (secpath_exists(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx))
4161 		goto out_drop;
4162 #endif
4163 	tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx);
4164 	if (tso < 0)
4165 		goto out_drop;
4166 	else if (!tso)
4167 		ixgbevf_tx_csum(tx_ring, first, &ipsec_tx);
4168 
4169 	ixgbevf_tx_map(tx_ring, first, hdr_len);
4170 
4171 	ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
4172 
4173 	return NETDEV_TX_OK;
4174 
4175 out_drop:
4176 	dev_kfree_skb_any(first->skb);
4177 	first->skb = NULL;
4178 
4179 	return NETDEV_TX_OK;
4180 }
4181 
4182 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4183 {
4184 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4185 	struct ixgbevf_ring *tx_ring;
4186 
4187 	if (skb->len <= 0) {
4188 		dev_kfree_skb_any(skb);
4189 		return NETDEV_TX_OK;
4190 	}
4191 
4192 	/* The minimum packet size for olinfo paylen is 17 so pad the skb
4193 	 * in order to meet this minimum size requirement.
4194 	 */
4195 	if (skb->len < 17) {
4196 		if (skb_padto(skb, 17))
4197 			return NETDEV_TX_OK;
4198 		skb->len = 17;
4199 	}
4200 
4201 	tx_ring = adapter->tx_ring[skb->queue_mapping];
4202 	return ixgbevf_xmit_frame_ring(skb, tx_ring);
4203 }
4204 
4205 /**
4206  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
4207  * @netdev: network interface device structure
4208  * @p: pointer to an address structure
4209  *
4210  * Returns 0 on success, negative on failure
4211  **/
4212 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
4213 {
4214 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4215 	struct ixgbe_hw *hw = &adapter->hw;
4216 	struct sockaddr *addr = p;
4217 	int err;
4218 
4219 	if (!is_valid_ether_addr(addr->sa_data))
4220 		return -EADDRNOTAVAIL;
4221 
4222 	spin_lock_bh(&adapter->mbx_lock);
4223 
4224 	err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
4225 
4226 	spin_unlock_bh(&adapter->mbx_lock);
4227 
4228 	if (err)
4229 		return -EPERM;
4230 
4231 	ether_addr_copy(hw->mac.addr, addr->sa_data);
4232 	ether_addr_copy(hw->mac.perm_addr, addr->sa_data);
4233 	ether_addr_copy(netdev->dev_addr, addr->sa_data);
4234 
4235 	return 0;
4236 }
4237 
4238 /**
4239  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
4240  * @netdev: network interface device structure
4241  * @new_mtu: new value for maximum frame size
4242  *
4243  * Returns 0 on success, negative on failure
4244  **/
4245 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
4246 {
4247 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4248 	struct ixgbe_hw *hw = &adapter->hw;
4249 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4250 	int ret;
4251 
4252 	/* prevent MTU being changed to a size unsupported by XDP */
4253 	if (adapter->xdp_prog) {
4254 		dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n");
4255 		return -EPERM;
4256 	}
4257 
4258 	spin_lock_bh(&adapter->mbx_lock);
4259 	/* notify the PF of our intent to use this size of frame */
4260 	ret = hw->mac.ops.set_rlpml(hw, max_frame);
4261 	spin_unlock_bh(&adapter->mbx_lock);
4262 	if (ret)
4263 		return -EINVAL;
4264 
4265 	hw_dbg(hw, "changing MTU from %d to %d\n",
4266 	       netdev->mtu, new_mtu);
4267 
4268 	/* must set new MTU before calling down or up */
4269 	netdev->mtu = new_mtu;
4270 
4271 	if (netif_running(netdev))
4272 		ixgbevf_reinit_locked(adapter);
4273 
4274 	return 0;
4275 }
4276 
4277 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
4278 {
4279 	struct net_device *netdev = pci_get_drvdata(pdev);
4280 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4281 #ifdef CONFIG_PM
4282 	int retval = 0;
4283 #endif
4284 
4285 	rtnl_lock();
4286 	netif_device_detach(netdev);
4287 
4288 	if (netif_running(netdev))
4289 		ixgbevf_close_suspend(adapter);
4290 
4291 	ixgbevf_clear_interrupt_scheme(adapter);
4292 	rtnl_unlock();
4293 
4294 #ifdef CONFIG_PM
4295 	retval = pci_save_state(pdev);
4296 	if (retval)
4297 		return retval;
4298 
4299 #endif
4300 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4301 		pci_disable_device(pdev);
4302 
4303 	return 0;
4304 }
4305 
4306 #ifdef CONFIG_PM
4307 static int ixgbevf_resume(struct pci_dev *pdev)
4308 {
4309 	struct net_device *netdev = pci_get_drvdata(pdev);
4310 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4311 	u32 err;
4312 
4313 	pci_restore_state(pdev);
4314 	/* pci_restore_state clears dev->state_saved so call
4315 	 * pci_save_state to restore it.
4316 	 */
4317 	pci_save_state(pdev);
4318 
4319 	err = pci_enable_device_mem(pdev);
4320 	if (err) {
4321 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
4322 		return err;
4323 	}
4324 
4325 	adapter->hw.hw_addr = adapter->io_addr;
4326 	smp_mb__before_atomic();
4327 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4328 	pci_set_master(pdev);
4329 
4330 	ixgbevf_reset(adapter);
4331 
4332 	rtnl_lock();
4333 	err = ixgbevf_init_interrupt_scheme(adapter);
4334 	if (!err && netif_running(netdev))
4335 		err = ixgbevf_open(netdev);
4336 	rtnl_unlock();
4337 	if (err)
4338 		return err;
4339 
4340 	netif_device_attach(netdev);
4341 
4342 	return err;
4343 }
4344 
4345 #endif /* CONFIG_PM */
4346 static void ixgbevf_shutdown(struct pci_dev *pdev)
4347 {
4348 	ixgbevf_suspend(pdev, PMSG_SUSPEND);
4349 }
4350 
4351 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats,
4352 				      const struct ixgbevf_ring *ring)
4353 {
4354 	u64 bytes, packets;
4355 	unsigned int start;
4356 
4357 	if (ring) {
4358 		do {
4359 			start = u64_stats_fetch_begin_irq(&ring->syncp);
4360 			bytes = ring->stats.bytes;
4361 			packets = ring->stats.packets;
4362 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4363 		stats->tx_bytes += bytes;
4364 		stats->tx_packets += packets;
4365 	}
4366 }
4367 
4368 static void ixgbevf_get_stats(struct net_device *netdev,
4369 			      struct rtnl_link_stats64 *stats)
4370 {
4371 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4372 	unsigned int start;
4373 	u64 bytes, packets;
4374 	const struct ixgbevf_ring *ring;
4375 	int i;
4376 
4377 	ixgbevf_update_stats(adapter);
4378 
4379 	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
4380 
4381 	rcu_read_lock();
4382 	for (i = 0; i < adapter->num_rx_queues; i++) {
4383 		ring = adapter->rx_ring[i];
4384 		do {
4385 			start = u64_stats_fetch_begin_irq(&ring->syncp);
4386 			bytes = ring->stats.bytes;
4387 			packets = ring->stats.packets;
4388 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4389 		stats->rx_bytes += bytes;
4390 		stats->rx_packets += packets;
4391 	}
4392 
4393 	for (i = 0; i < adapter->num_tx_queues; i++) {
4394 		ring = adapter->tx_ring[i];
4395 		ixgbevf_get_tx_ring_stats(stats, ring);
4396 	}
4397 
4398 	for (i = 0; i < adapter->num_xdp_queues; i++) {
4399 		ring = adapter->xdp_ring[i];
4400 		ixgbevf_get_tx_ring_stats(stats, ring);
4401 	}
4402 	rcu_read_unlock();
4403 }
4404 
4405 #define IXGBEVF_MAX_MAC_HDR_LEN		127
4406 #define IXGBEVF_MAX_NETWORK_HDR_LEN	511
4407 
4408 static netdev_features_t
4409 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
4410 		       netdev_features_t features)
4411 {
4412 	unsigned int network_hdr_len, mac_hdr_len;
4413 
4414 	/* Make certain the headers can be described by a context descriptor */
4415 	mac_hdr_len = skb_network_header(skb) - skb->data;
4416 	if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
4417 		return features & ~(NETIF_F_HW_CSUM |
4418 				    NETIF_F_SCTP_CRC |
4419 				    NETIF_F_HW_VLAN_CTAG_TX |
4420 				    NETIF_F_TSO |
4421 				    NETIF_F_TSO6);
4422 
4423 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4424 	if (unlikely(network_hdr_len >  IXGBEVF_MAX_NETWORK_HDR_LEN))
4425 		return features & ~(NETIF_F_HW_CSUM |
4426 				    NETIF_F_SCTP_CRC |
4427 				    NETIF_F_TSO |
4428 				    NETIF_F_TSO6);
4429 
4430 	/* We can only support IPV4 TSO in tunnels if we can mangle the
4431 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4432 	 */
4433 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4434 		features &= ~NETIF_F_TSO;
4435 
4436 	return features;
4437 }
4438 
4439 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog)
4440 {
4441 	int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4442 	struct ixgbevf_adapter *adapter = netdev_priv(dev);
4443 	struct bpf_prog *old_prog;
4444 
4445 	/* verify ixgbevf ring attributes are sufficient for XDP */
4446 	for (i = 0; i < adapter->num_rx_queues; i++) {
4447 		struct ixgbevf_ring *ring = adapter->rx_ring[i];
4448 
4449 		if (frame_size > ixgbevf_rx_bufsz(ring))
4450 			return -EINVAL;
4451 	}
4452 
4453 	old_prog = xchg(&adapter->xdp_prog, prog);
4454 
4455 	/* If transitioning XDP modes reconfigure rings */
4456 	if (!!prog != !!old_prog) {
4457 		/* Hardware has to reinitialize queues and interrupts to
4458 		 * match packet buffer alignment. Unfortunately, the
4459 		 * hardware is not flexible enough to do this dynamically.
4460 		 */
4461 		if (netif_running(dev))
4462 			ixgbevf_close(dev);
4463 
4464 		ixgbevf_clear_interrupt_scheme(adapter);
4465 		ixgbevf_init_interrupt_scheme(adapter);
4466 
4467 		if (netif_running(dev))
4468 			ixgbevf_open(dev);
4469 	} else {
4470 		for (i = 0; i < adapter->num_rx_queues; i++)
4471 			xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog);
4472 	}
4473 
4474 	if (old_prog)
4475 		bpf_prog_put(old_prog);
4476 
4477 	return 0;
4478 }
4479 
4480 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4481 {
4482 	struct ixgbevf_adapter *adapter = netdev_priv(dev);
4483 
4484 	switch (xdp->command) {
4485 	case XDP_SETUP_PROG:
4486 		return ixgbevf_xdp_setup(dev, xdp->prog);
4487 	case XDP_QUERY_PROG:
4488 		xdp->prog_id = adapter->xdp_prog ?
4489 			       adapter->xdp_prog->aux->id : 0;
4490 		return 0;
4491 	default:
4492 		return -EINVAL;
4493 	}
4494 }
4495 
4496 static const struct net_device_ops ixgbevf_netdev_ops = {
4497 	.ndo_open		= ixgbevf_open,
4498 	.ndo_stop		= ixgbevf_close,
4499 	.ndo_start_xmit		= ixgbevf_xmit_frame,
4500 	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
4501 	.ndo_get_stats64	= ixgbevf_get_stats,
4502 	.ndo_validate_addr	= eth_validate_addr,
4503 	.ndo_set_mac_address	= ixgbevf_set_mac,
4504 	.ndo_change_mtu		= ixgbevf_change_mtu,
4505 	.ndo_tx_timeout		= ixgbevf_tx_timeout,
4506 	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
4507 	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
4508 	.ndo_features_check	= ixgbevf_features_check,
4509 	.ndo_bpf		= ixgbevf_xdp,
4510 };
4511 
4512 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
4513 {
4514 	dev->netdev_ops = &ixgbevf_netdev_ops;
4515 	ixgbevf_set_ethtool_ops(dev);
4516 	dev->watchdog_timeo = 5 * HZ;
4517 }
4518 
4519 /**
4520  * ixgbevf_probe - Device Initialization Routine
4521  * @pdev: PCI device information struct
4522  * @ent: entry in ixgbevf_pci_tbl
4523  *
4524  * Returns 0 on success, negative on failure
4525  *
4526  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
4527  * The OS initialization, configuring of the adapter private structure,
4528  * and a hardware reset occur.
4529  **/
4530 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4531 {
4532 	struct net_device *netdev;
4533 	struct ixgbevf_adapter *adapter = NULL;
4534 	struct ixgbe_hw *hw = NULL;
4535 	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
4536 	int err, pci_using_dac;
4537 	bool disable_dev = false;
4538 
4539 	err = pci_enable_device(pdev);
4540 	if (err)
4541 		return err;
4542 
4543 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
4544 		pci_using_dac = 1;
4545 	} else {
4546 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4547 		if (err) {
4548 			dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4549 			goto err_dma;
4550 		}
4551 		pci_using_dac = 0;
4552 	}
4553 
4554 	err = pci_request_regions(pdev, ixgbevf_driver_name);
4555 	if (err) {
4556 		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4557 		goto err_pci_reg;
4558 	}
4559 
4560 	pci_set_master(pdev);
4561 
4562 	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4563 				   MAX_TX_QUEUES);
4564 	if (!netdev) {
4565 		err = -ENOMEM;
4566 		goto err_alloc_etherdev;
4567 	}
4568 
4569 	SET_NETDEV_DEV(netdev, &pdev->dev);
4570 
4571 	adapter = netdev_priv(netdev);
4572 
4573 	adapter->netdev = netdev;
4574 	adapter->pdev = pdev;
4575 	hw = &adapter->hw;
4576 	hw->back = adapter;
4577 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4578 
4579 	/* call save state here in standalone driver because it relies on
4580 	 * adapter struct to exist, and needs to call netdev_priv
4581 	 */
4582 	pci_save_state(pdev);
4583 
4584 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4585 			      pci_resource_len(pdev, 0));
4586 	adapter->io_addr = hw->hw_addr;
4587 	if (!hw->hw_addr) {
4588 		err = -EIO;
4589 		goto err_ioremap;
4590 	}
4591 
4592 	ixgbevf_assign_netdev_ops(netdev);
4593 
4594 	/* Setup HW API */
4595 	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4596 	hw->mac.type  = ii->mac;
4597 
4598 	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
4599 	       sizeof(struct ixgbe_mbx_operations));
4600 
4601 	/* setup the private structure */
4602 	err = ixgbevf_sw_init(adapter);
4603 	if (err)
4604 		goto err_sw_init;
4605 
4606 	/* The HW MAC address was set and/or determined in sw_init */
4607 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4608 		pr_err("invalid MAC address\n");
4609 		err = -EIO;
4610 		goto err_sw_init;
4611 	}
4612 
4613 	netdev->hw_features = NETIF_F_SG |
4614 			      NETIF_F_TSO |
4615 			      NETIF_F_TSO6 |
4616 			      NETIF_F_RXCSUM |
4617 			      NETIF_F_HW_CSUM |
4618 			      NETIF_F_SCTP_CRC;
4619 
4620 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4621 				      NETIF_F_GSO_GRE_CSUM | \
4622 				      NETIF_F_GSO_IPXIP4 | \
4623 				      NETIF_F_GSO_IPXIP6 | \
4624 				      NETIF_F_GSO_UDP_TUNNEL | \
4625 				      NETIF_F_GSO_UDP_TUNNEL_CSUM)
4626 
4627 	netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4628 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4629 			       IXGBEVF_GSO_PARTIAL_FEATURES;
4630 
4631 	netdev->features = netdev->hw_features;
4632 
4633 	if (pci_using_dac)
4634 		netdev->features |= NETIF_F_HIGHDMA;
4635 
4636 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4637 	netdev->mpls_features |= NETIF_F_SG |
4638 				 NETIF_F_TSO |
4639 				 NETIF_F_TSO6 |
4640 				 NETIF_F_HW_CSUM;
4641 	netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES;
4642 	netdev->hw_enc_features |= netdev->vlan_features;
4643 
4644 	/* set this bit last since it cannot be part of vlan_features */
4645 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4646 			    NETIF_F_HW_VLAN_CTAG_RX |
4647 			    NETIF_F_HW_VLAN_CTAG_TX;
4648 
4649 	netdev->priv_flags |= IFF_UNICAST_FLT;
4650 
4651 	/* MTU range: 68 - 1504 or 9710 */
4652 	netdev->min_mtu = ETH_MIN_MTU;
4653 	switch (adapter->hw.api_version) {
4654 	case ixgbe_mbox_api_11:
4655 	case ixgbe_mbox_api_12:
4656 	case ixgbe_mbox_api_13:
4657 	case ixgbe_mbox_api_14:
4658 		netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4659 				  (ETH_HLEN + ETH_FCS_LEN);
4660 		break;
4661 	default:
4662 		if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
4663 			netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4664 					  (ETH_HLEN + ETH_FCS_LEN);
4665 		else
4666 			netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
4667 		break;
4668 	}
4669 
4670 	if (IXGBE_REMOVED(hw->hw_addr)) {
4671 		err = -EIO;
4672 		goto err_sw_init;
4673 	}
4674 
4675 	timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0);
4676 
4677 	INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4678 	set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4679 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4680 
4681 	err = ixgbevf_init_interrupt_scheme(adapter);
4682 	if (err)
4683 		goto err_sw_init;
4684 
4685 	strcpy(netdev->name, "eth%d");
4686 
4687 	err = register_netdev(netdev);
4688 	if (err)
4689 		goto err_register;
4690 
4691 	pci_set_drvdata(pdev, netdev);
4692 	netif_carrier_off(netdev);
4693 	ixgbevf_init_ipsec_offload(adapter);
4694 
4695 	ixgbevf_init_last_counter_stats(adapter);
4696 
4697 	/* print the VF info */
4698 	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4699 	dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4700 
4701 	switch (hw->mac.type) {
4702 	case ixgbe_mac_X550_vf:
4703 		dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4704 		break;
4705 	case ixgbe_mac_X540_vf:
4706 		dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4707 		break;
4708 	case ixgbe_mac_82599_vf:
4709 	default:
4710 		dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4711 		break;
4712 	}
4713 
4714 	return 0;
4715 
4716 err_register:
4717 	ixgbevf_clear_interrupt_scheme(adapter);
4718 err_sw_init:
4719 	ixgbevf_reset_interrupt_capability(adapter);
4720 	iounmap(adapter->io_addr);
4721 	kfree(adapter->rss_key);
4722 err_ioremap:
4723 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4724 	free_netdev(netdev);
4725 err_alloc_etherdev:
4726 	pci_release_regions(pdev);
4727 err_pci_reg:
4728 err_dma:
4729 	if (!adapter || disable_dev)
4730 		pci_disable_device(pdev);
4731 	return err;
4732 }
4733 
4734 /**
4735  * ixgbevf_remove - Device Removal Routine
4736  * @pdev: PCI device information struct
4737  *
4738  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4739  * that it should release a PCI device.  The could be caused by a
4740  * Hot-Plug event, or because the driver is going to be removed from
4741  * memory.
4742  **/
4743 static void ixgbevf_remove(struct pci_dev *pdev)
4744 {
4745 	struct net_device *netdev = pci_get_drvdata(pdev);
4746 	struct ixgbevf_adapter *adapter;
4747 	bool disable_dev;
4748 
4749 	if (!netdev)
4750 		return;
4751 
4752 	adapter = netdev_priv(netdev);
4753 
4754 	set_bit(__IXGBEVF_REMOVING, &adapter->state);
4755 	cancel_work_sync(&adapter->service_task);
4756 
4757 	if (netdev->reg_state == NETREG_REGISTERED)
4758 		unregister_netdev(netdev);
4759 
4760 	ixgbevf_stop_ipsec_offload(adapter);
4761 	ixgbevf_clear_interrupt_scheme(adapter);
4762 	ixgbevf_reset_interrupt_capability(adapter);
4763 
4764 	iounmap(adapter->io_addr);
4765 	pci_release_regions(pdev);
4766 
4767 	hw_dbg(&adapter->hw, "Remove complete\n");
4768 
4769 	kfree(adapter->rss_key);
4770 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4771 	free_netdev(netdev);
4772 
4773 	if (disable_dev)
4774 		pci_disable_device(pdev);
4775 }
4776 
4777 /**
4778  * ixgbevf_io_error_detected - called when PCI error is detected
4779  * @pdev: Pointer to PCI device
4780  * @state: The current pci connection state
4781  *
4782  * This function is called after a PCI bus error affecting
4783  * this device has been detected.
4784  **/
4785 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4786 						  pci_channel_state_t state)
4787 {
4788 	struct net_device *netdev = pci_get_drvdata(pdev);
4789 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4790 
4791 	if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4792 		return PCI_ERS_RESULT_DISCONNECT;
4793 
4794 	rtnl_lock();
4795 	netif_device_detach(netdev);
4796 
4797 	if (netif_running(netdev))
4798 		ixgbevf_close_suspend(adapter);
4799 
4800 	if (state == pci_channel_io_perm_failure) {
4801 		rtnl_unlock();
4802 		return PCI_ERS_RESULT_DISCONNECT;
4803 	}
4804 
4805 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4806 		pci_disable_device(pdev);
4807 	rtnl_unlock();
4808 
4809 	/* Request a slot slot reset. */
4810 	return PCI_ERS_RESULT_NEED_RESET;
4811 }
4812 
4813 /**
4814  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4815  * @pdev: Pointer to PCI device
4816  *
4817  * Restart the card from scratch, as if from a cold-boot. Implementation
4818  * resembles the first-half of the ixgbevf_resume routine.
4819  **/
4820 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4821 {
4822 	struct net_device *netdev = pci_get_drvdata(pdev);
4823 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4824 
4825 	if (pci_enable_device_mem(pdev)) {
4826 		dev_err(&pdev->dev,
4827 			"Cannot re-enable PCI device after reset.\n");
4828 		return PCI_ERS_RESULT_DISCONNECT;
4829 	}
4830 
4831 	adapter->hw.hw_addr = adapter->io_addr;
4832 	smp_mb__before_atomic();
4833 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4834 	pci_set_master(pdev);
4835 
4836 	ixgbevf_reset(adapter);
4837 
4838 	return PCI_ERS_RESULT_RECOVERED;
4839 }
4840 
4841 /**
4842  * ixgbevf_io_resume - called when traffic can start flowing again.
4843  * @pdev: Pointer to PCI device
4844  *
4845  * This callback is called when the error recovery driver tells us that
4846  * its OK to resume normal operation. Implementation resembles the
4847  * second-half of the ixgbevf_resume routine.
4848  **/
4849 static void ixgbevf_io_resume(struct pci_dev *pdev)
4850 {
4851 	struct net_device *netdev = pci_get_drvdata(pdev);
4852 
4853 	rtnl_lock();
4854 	if (netif_running(netdev))
4855 		ixgbevf_open(netdev);
4856 
4857 	netif_device_attach(netdev);
4858 	rtnl_unlock();
4859 }
4860 
4861 /* PCI Error Recovery (ERS) */
4862 static const struct pci_error_handlers ixgbevf_err_handler = {
4863 	.error_detected = ixgbevf_io_error_detected,
4864 	.slot_reset = ixgbevf_io_slot_reset,
4865 	.resume = ixgbevf_io_resume,
4866 };
4867 
4868 static struct pci_driver ixgbevf_driver = {
4869 	.name		= ixgbevf_driver_name,
4870 	.id_table	= ixgbevf_pci_tbl,
4871 	.probe		= ixgbevf_probe,
4872 	.remove		= ixgbevf_remove,
4873 #ifdef CONFIG_PM
4874 	/* Power Management Hooks */
4875 	.suspend	= ixgbevf_suspend,
4876 	.resume		= ixgbevf_resume,
4877 #endif
4878 	.shutdown	= ixgbevf_shutdown,
4879 	.err_handler	= &ixgbevf_err_handler
4880 };
4881 
4882 /**
4883  * ixgbevf_init_module - Driver Registration Routine
4884  *
4885  * ixgbevf_init_module is the first routine called when the driver is
4886  * loaded. All it does is register with the PCI subsystem.
4887  **/
4888 static int __init ixgbevf_init_module(void)
4889 {
4890 	pr_info("%s - version %s\n", ixgbevf_driver_string,
4891 		ixgbevf_driver_version);
4892 
4893 	pr_info("%s\n", ixgbevf_copyright);
4894 	ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4895 	if (!ixgbevf_wq) {
4896 		pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4897 		return -ENOMEM;
4898 	}
4899 
4900 	return pci_register_driver(&ixgbevf_driver);
4901 }
4902 
4903 module_init(ixgbevf_init_module);
4904 
4905 /**
4906  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4907  *
4908  * ixgbevf_exit_module is called just before the driver is removed
4909  * from memory.
4910  **/
4911 static void __exit ixgbevf_exit_module(void)
4912 {
4913 	pci_unregister_driver(&ixgbevf_driver);
4914 	if (ixgbevf_wq) {
4915 		destroy_workqueue(ixgbevf_wq);
4916 		ixgbevf_wq = NULL;
4917 	}
4918 }
4919 
4920 #ifdef DEBUG
4921 /**
4922  * ixgbevf_get_hw_dev_name - return device name string
4923  * used by hardware layer to print debugging information
4924  * @hw: pointer to private hardware struct
4925  **/
4926 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4927 {
4928 	struct ixgbevf_adapter *adapter = hw->back;
4929 
4930 	return adapter->netdev->name;
4931 }
4932 
4933 #endif
4934 module_exit(ixgbevf_exit_module);
4935 
4936 /* ixgbevf_main.c */
4937