1 /******************************************************************************* 2 3 Intel 82599 Virtual Function driver 4 Copyright(c) 1999 - 2015 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, see <http://www.gnu.org/licenses/>. 17 18 The full GNU General Public License is included in this distribution in 19 the file called "COPYING". 20 21 Contact Information: 22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 25 *******************************************************************************/ 26 27 /****************************************************************************** 28 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 29 ******************************************************************************/ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/types.h> 34 #include <linux/bitops.h> 35 #include <linux/module.h> 36 #include <linux/pci.h> 37 #include <linux/netdevice.h> 38 #include <linux/vmalloc.h> 39 #include <linux/string.h> 40 #include <linux/in.h> 41 #include <linux/ip.h> 42 #include <linux/tcp.h> 43 #include <linux/sctp.h> 44 #include <linux/ipv6.h> 45 #include <linux/slab.h> 46 #include <net/checksum.h> 47 #include <net/ip6_checksum.h> 48 #include <linux/ethtool.h> 49 #include <linux/if.h> 50 #include <linux/if_vlan.h> 51 #include <linux/prefetch.h> 52 53 #include "ixgbevf.h" 54 55 const char ixgbevf_driver_name[] = "ixgbevf"; 56 static const char ixgbevf_driver_string[] = 57 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 58 59 #define DRV_VERSION "3.2.2-k" 60 const char ixgbevf_driver_version[] = DRV_VERSION; 61 static char ixgbevf_copyright[] = 62 "Copyright (c) 2009 - 2015 Intel Corporation."; 63 64 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 65 [board_82599_vf] = &ixgbevf_82599_vf_info, 66 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 67 [board_X540_vf] = &ixgbevf_X540_vf_info, 68 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 69 [board_X550_vf] = &ixgbevf_X550_vf_info, 70 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 71 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 72 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 73 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 74 }; 75 76 /* ixgbevf_pci_tbl - PCI Device ID Table 77 * 78 * Wildcard entries (PCI_ANY_ID) should come last 79 * Last entry must be all 0s 80 * 81 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 82 * Class, Class Mask, private data (not used) } 83 */ 84 static const struct pci_device_id ixgbevf_pci_tbl[] = { 85 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 86 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 87 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 88 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 89 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 90 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 91 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 92 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 93 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 94 /* required last entry */ 95 {0, } 96 }; 97 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 98 99 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 100 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 101 MODULE_LICENSE("GPL"); 102 MODULE_VERSION(DRV_VERSION); 103 104 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 105 static int debug = -1; 106 module_param(debug, int, 0); 107 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 108 109 static struct workqueue_struct *ixgbevf_wq; 110 111 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 112 { 113 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 114 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 115 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 116 queue_work(ixgbevf_wq, &adapter->service_task); 117 } 118 119 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 120 { 121 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 122 123 /* flush memory to make sure state is correct before next watchdog */ 124 smp_mb__before_atomic(); 125 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 126 } 127 128 /* forward decls */ 129 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 130 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 131 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 132 133 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 134 { 135 struct ixgbevf_adapter *adapter = hw->back; 136 137 if (!hw->hw_addr) 138 return; 139 hw->hw_addr = NULL; 140 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 141 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 142 ixgbevf_service_event_schedule(adapter); 143 } 144 145 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 146 { 147 u32 value; 148 149 /* The following check not only optimizes a bit by not 150 * performing a read on the status register when the 151 * register just read was a status register read that 152 * returned IXGBE_FAILED_READ_REG. It also blocks any 153 * potential recursion. 154 */ 155 if (reg == IXGBE_VFSTATUS) { 156 ixgbevf_remove_adapter(hw); 157 return; 158 } 159 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 160 if (value == IXGBE_FAILED_READ_REG) 161 ixgbevf_remove_adapter(hw); 162 } 163 164 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 165 { 166 u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr); 167 u32 value; 168 169 if (IXGBE_REMOVED(reg_addr)) 170 return IXGBE_FAILED_READ_REG; 171 value = readl(reg_addr + reg); 172 if (unlikely(value == IXGBE_FAILED_READ_REG)) 173 ixgbevf_check_remove(hw, reg); 174 return value; 175 } 176 177 /** 178 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 179 * @adapter: pointer to adapter struct 180 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 181 * @queue: queue to map the corresponding interrupt to 182 * @msix_vector: the vector to map to the corresponding queue 183 **/ 184 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 185 u8 queue, u8 msix_vector) 186 { 187 u32 ivar, index; 188 struct ixgbe_hw *hw = &adapter->hw; 189 190 if (direction == -1) { 191 /* other causes */ 192 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 193 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 194 ivar &= ~0xFF; 195 ivar |= msix_vector; 196 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 197 } else { 198 /* Tx or Rx causes */ 199 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 200 index = ((16 * (queue & 1)) + (8 * direction)); 201 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 202 ivar &= ~(0xFF << index); 203 ivar |= (msix_vector << index); 204 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 205 } 206 } 207 208 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring, 209 struct ixgbevf_tx_buffer *tx_buffer) 210 { 211 if (tx_buffer->skb) { 212 dev_kfree_skb_any(tx_buffer->skb); 213 if (dma_unmap_len(tx_buffer, len)) 214 dma_unmap_single(tx_ring->dev, 215 dma_unmap_addr(tx_buffer, dma), 216 dma_unmap_len(tx_buffer, len), 217 DMA_TO_DEVICE); 218 } else if (dma_unmap_len(tx_buffer, len)) { 219 dma_unmap_page(tx_ring->dev, 220 dma_unmap_addr(tx_buffer, dma), 221 dma_unmap_len(tx_buffer, len), 222 DMA_TO_DEVICE); 223 } 224 tx_buffer->next_to_watch = NULL; 225 tx_buffer->skb = NULL; 226 dma_unmap_len_set(tx_buffer, len, 0); 227 /* tx_buffer must be completely set up in the transmit path */ 228 } 229 230 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 231 { 232 return ring->stats.packets; 233 } 234 235 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 236 { 237 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 238 struct ixgbe_hw *hw = &adapter->hw; 239 240 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 241 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 242 243 if (head != tail) 244 return (head < tail) ? 245 tail - head : (tail + ring->count - head); 246 247 return 0; 248 } 249 250 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 251 { 252 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 253 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 254 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 255 256 clear_check_for_tx_hang(tx_ring); 257 258 /* Check for a hung queue, but be thorough. This verifies 259 * that a transmit has been completed since the previous 260 * check AND there is at least one packet pending. The 261 * ARMED bit is set to indicate a potential hang. 262 */ 263 if ((tx_done_old == tx_done) && tx_pending) { 264 /* make sure it is true for two checks in a row */ 265 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 266 &tx_ring->state); 267 } 268 /* reset the countdown */ 269 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 270 271 /* update completed stats and continue */ 272 tx_ring->tx_stats.tx_done_old = tx_done; 273 274 return false; 275 } 276 277 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 278 { 279 /* Do the reset outside of interrupt context */ 280 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 281 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 282 ixgbevf_service_event_schedule(adapter); 283 } 284 } 285 286 /** 287 * ixgbevf_tx_timeout - Respond to a Tx Hang 288 * @netdev: network interface device structure 289 **/ 290 static void ixgbevf_tx_timeout(struct net_device *netdev) 291 { 292 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 293 294 ixgbevf_tx_timeout_reset(adapter); 295 } 296 297 /** 298 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 299 * @q_vector: board private structure 300 * @tx_ring: tx ring to clean 301 * @napi_budget: Used to determine if we are in netpoll 302 **/ 303 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 304 struct ixgbevf_ring *tx_ring, int napi_budget) 305 { 306 struct ixgbevf_adapter *adapter = q_vector->adapter; 307 struct ixgbevf_tx_buffer *tx_buffer; 308 union ixgbe_adv_tx_desc *tx_desc; 309 unsigned int total_bytes = 0, total_packets = 0; 310 unsigned int budget = tx_ring->count / 2; 311 unsigned int i = tx_ring->next_to_clean; 312 313 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 314 return true; 315 316 tx_buffer = &tx_ring->tx_buffer_info[i]; 317 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 318 i -= tx_ring->count; 319 320 do { 321 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 322 323 /* if next_to_watch is not set then there is no work pending */ 324 if (!eop_desc) 325 break; 326 327 /* prevent any other reads prior to eop_desc */ 328 read_barrier_depends(); 329 330 /* if DD is not set pending work has not been completed */ 331 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 332 break; 333 334 /* clear next_to_watch to prevent false hangs */ 335 tx_buffer->next_to_watch = NULL; 336 337 /* update the statistics for this packet */ 338 total_bytes += tx_buffer->bytecount; 339 total_packets += tx_buffer->gso_segs; 340 341 /* free the skb */ 342 napi_consume_skb(tx_buffer->skb, napi_budget); 343 344 /* unmap skb header data */ 345 dma_unmap_single(tx_ring->dev, 346 dma_unmap_addr(tx_buffer, dma), 347 dma_unmap_len(tx_buffer, len), 348 DMA_TO_DEVICE); 349 350 /* clear tx_buffer data */ 351 tx_buffer->skb = NULL; 352 dma_unmap_len_set(tx_buffer, len, 0); 353 354 /* unmap remaining buffers */ 355 while (tx_desc != eop_desc) { 356 tx_buffer++; 357 tx_desc++; 358 i++; 359 if (unlikely(!i)) { 360 i -= tx_ring->count; 361 tx_buffer = tx_ring->tx_buffer_info; 362 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 363 } 364 365 /* unmap any remaining paged data */ 366 if (dma_unmap_len(tx_buffer, len)) { 367 dma_unmap_page(tx_ring->dev, 368 dma_unmap_addr(tx_buffer, dma), 369 dma_unmap_len(tx_buffer, len), 370 DMA_TO_DEVICE); 371 dma_unmap_len_set(tx_buffer, len, 0); 372 } 373 } 374 375 /* move us one more past the eop_desc for start of next pkt */ 376 tx_buffer++; 377 tx_desc++; 378 i++; 379 if (unlikely(!i)) { 380 i -= tx_ring->count; 381 tx_buffer = tx_ring->tx_buffer_info; 382 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 383 } 384 385 /* issue prefetch for next Tx descriptor */ 386 prefetch(tx_desc); 387 388 /* update budget accounting */ 389 budget--; 390 } while (likely(budget)); 391 392 i += tx_ring->count; 393 tx_ring->next_to_clean = i; 394 u64_stats_update_begin(&tx_ring->syncp); 395 tx_ring->stats.bytes += total_bytes; 396 tx_ring->stats.packets += total_packets; 397 u64_stats_update_end(&tx_ring->syncp); 398 q_vector->tx.total_bytes += total_bytes; 399 q_vector->tx.total_packets += total_packets; 400 401 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 402 struct ixgbe_hw *hw = &adapter->hw; 403 union ixgbe_adv_tx_desc *eop_desc; 404 405 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 406 407 pr_err("Detected Tx Unit Hang\n" 408 " Tx Queue <%d>\n" 409 " TDH, TDT <%x>, <%x>\n" 410 " next_to_use <%x>\n" 411 " next_to_clean <%x>\n" 412 "tx_buffer_info[next_to_clean]\n" 413 " next_to_watch <%p>\n" 414 " eop_desc->wb.status <%x>\n" 415 " time_stamp <%lx>\n" 416 " jiffies <%lx>\n", 417 tx_ring->queue_index, 418 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 419 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 420 tx_ring->next_to_use, i, 421 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 422 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 423 424 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 425 426 /* schedule immediate reset if we believe we hung */ 427 ixgbevf_tx_timeout_reset(adapter); 428 429 return true; 430 } 431 432 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 433 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 434 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 435 /* Make sure that anybody stopping the queue after this 436 * sees the new next_to_clean. 437 */ 438 smp_mb(); 439 440 if (__netif_subqueue_stopped(tx_ring->netdev, 441 tx_ring->queue_index) && 442 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 443 netif_wake_subqueue(tx_ring->netdev, 444 tx_ring->queue_index); 445 ++tx_ring->tx_stats.restart_queue; 446 } 447 } 448 449 return !!budget; 450 } 451 452 /** 453 * ixgbevf_rx_skb - Helper function to determine proper Rx method 454 * @q_vector: structure containing interrupt and ring information 455 * @skb: packet to send up 456 **/ 457 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 458 struct sk_buff *skb) 459 { 460 #ifdef CONFIG_NET_RX_BUSY_POLL 461 skb_mark_napi_id(skb, &q_vector->napi); 462 463 if (ixgbevf_qv_busy_polling(q_vector)) { 464 netif_receive_skb(skb); 465 /* exit early if we busy polled */ 466 return; 467 } 468 #endif /* CONFIG_NET_RX_BUSY_POLL */ 469 470 napi_gro_receive(&q_vector->napi, skb); 471 } 472 473 #define IXGBE_RSS_L4_TYPES_MASK \ 474 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 475 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 476 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 477 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 478 479 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 480 union ixgbe_adv_rx_desc *rx_desc, 481 struct sk_buff *skb) 482 { 483 u16 rss_type; 484 485 if (!(ring->netdev->features & NETIF_F_RXHASH)) 486 return; 487 488 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 489 IXGBE_RXDADV_RSSTYPE_MASK; 490 491 if (!rss_type) 492 return; 493 494 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 495 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 496 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 497 } 498 499 /** 500 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 501 * @ring: structure containig ring specific data 502 * @rx_desc: current Rx descriptor being processed 503 * @skb: skb currently being received and modified 504 **/ 505 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 506 union ixgbe_adv_rx_desc *rx_desc, 507 struct sk_buff *skb) 508 { 509 skb_checksum_none_assert(skb); 510 511 /* Rx csum disabled */ 512 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 513 return; 514 515 /* if IP and error */ 516 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 517 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 518 ring->rx_stats.csum_err++; 519 return; 520 } 521 522 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 523 return; 524 525 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 526 ring->rx_stats.csum_err++; 527 return; 528 } 529 530 /* It must be a TCP or UDP packet with a valid checksum */ 531 skb->ip_summed = CHECKSUM_UNNECESSARY; 532 } 533 534 /** 535 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 536 * @rx_ring: rx descriptor ring packet is being transacted on 537 * @rx_desc: pointer to the EOP Rx descriptor 538 * @skb: pointer to current skb being populated 539 * 540 * This function checks the ring, descriptor, and packet information in 541 * order to populate the checksum, VLAN, protocol, and other fields within 542 * the skb. 543 **/ 544 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 545 union ixgbe_adv_rx_desc *rx_desc, 546 struct sk_buff *skb) 547 { 548 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 549 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 550 551 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 552 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 553 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 554 555 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 556 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 557 } 558 559 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 560 } 561 562 /** 563 * ixgbevf_is_non_eop - process handling of non-EOP buffers 564 * @rx_ring: Rx ring being processed 565 * @rx_desc: Rx descriptor for current buffer 566 * @skb: current socket buffer containing buffer in progress 567 * 568 * This function updates next to clean. If the buffer is an EOP buffer 569 * this function exits returning false, otherwise it will place the 570 * sk_buff in the next buffer to be chained and return true indicating 571 * that this is in fact a non-EOP buffer. 572 **/ 573 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 574 union ixgbe_adv_rx_desc *rx_desc) 575 { 576 u32 ntc = rx_ring->next_to_clean + 1; 577 578 /* fetch, update, and store next to clean */ 579 ntc = (ntc < rx_ring->count) ? ntc : 0; 580 rx_ring->next_to_clean = ntc; 581 582 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 583 584 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 585 return false; 586 587 return true; 588 } 589 590 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 591 struct ixgbevf_rx_buffer *bi) 592 { 593 struct page *page = bi->page; 594 dma_addr_t dma = bi->dma; 595 596 /* since we are recycling buffers we should seldom need to alloc */ 597 if (likely(page)) 598 return true; 599 600 /* alloc new page for storage */ 601 page = dev_alloc_page(); 602 if (unlikely(!page)) { 603 rx_ring->rx_stats.alloc_rx_page_failed++; 604 return false; 605 } 606 607 /* map page for use */ 608 dma = dma_map_page(rx_ring->dev, page, 0, 609 PAGE_SIZE, DMA_FROM_DEVICE); 610 611 /* if mapping failed free memory back to system since 612 * there isn't much point in holding memory we can't use 613 */ 614 if (dma_mapping_error(rx_ring->dev, dma)) { 615 __free_page(page); 616 617 rx_ring->rx_stats.alloc_rx_buff_failed++; 618 return false; 619 } 620 621 bi->dma = dma; 622 bi->page = page; 623 bi->page_offset = 0; 624 625 return true; 626 } 627 628 /** 629 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 630 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 631 * @cleaned_count: number of buffers to replace 632 **/ 633 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 634 u16 cleaned_count) 635 { 636 union ixgbe_adv_rx_desc *rx_desc; 637 struct ixgbevf_rx_buffer *bi; 638 unsigned int i = rx_ring->next_to_use; 639 640 /* nothing to do or no valid netdev defined */ 641 if (!cleaned_count || !rx_ring->netdev) 642 return; 643 644 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 645 bi = &rx_ring->rx_buffer_info[i]; 646 i -= rx_ring->count; 647 648 do { 649 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 650 break; 651 652 /* Refresh the desc even if pkt_addr didn't change 653 * because each write-back erases this info. 654 */ 655 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 656 657 rx_desc++; 658 bi++; 659 i++; 660 if (unlikely(!i)) { 661 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 662 bi = rx_ring->rx_buffer_info; 663 i -= rx_ring->count; 664 } 665 666 /* clear the hdr_addr for the next_to_use descriptor */ 667 rx_desc->read.hdr_addr = 0; 668 669 cleaned_count--; 670 } while (cleaned_count); 671 672 i += rx_ring->count; 673 674 if (rx_ring->next_to_use != i) { 675 /* record the next descriptor to use */ 676 rx_ring->next_to_use = i; 677 678 /* update next to alloc since we have filled the ring */ 679 rx_ring->next_to_alloc = i; 680 681 /* Force memory writes to complete before letting h/w 682 * know there are new descriptors to fetch. (Only 683 * applicable for weak-ordered memory model archs, 684 * such as IA-64). 685 */ 686 wmb(); 687 ixgbevf_write_tail(rx_ring, i); 688 } 689 } 690 691 /** 692 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 693 * @rx_ring: rx descriptor ring packet is being transacted on 694 * @rx_desc: pointer to the EOP Rx descriptor 695 * @skb: pointer to current skb being fixed 696 * 697 * Check for corrupted packet headers caused by senders on the local L2 698 * embedded NIC switch not setting up their Tx Descriptors right. These 699 * should be very rare. 700 * 701 * Also address the case where we are pulling data in on pages only 702 * and as such no data is present in the skb header. 703 * 704 * In addition if skb is not at least 60 bytes we need to pad it so that 705 * it is large enough to qualify as a valid Ethernet frame. 706 * 707 * Returns true if an error was encountered and skb was freed. 708 **/ 709 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 710 union ixgbe_adv_rx_desc *rx_desc, 711 struct sk_buff *skb) 712 { 713 /* verify that the packet does not have any known errors */ 714 if (unlikely(ixgbevf_test_staterr(rx_desc, 715 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 716 struct net_device *netdev = rx_ring->netdev; 717 718 if (!(netdev->features & NETIF_F_RXALL)) { 719 dev_kfree_skb_any(skb); 720 return true; 721 } 722 } 723 724 /* if eth_skb_pad returns an error the skb was freed */ 725 if (eth_skb_pad(skb)) 726 return true; 727 728 return false; 729 } 730 731 /** 732 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 733 * @rx_ring: rx descriptor ring to store buffers on 734 * @old_buff: donor buffer to have page reused 735 * 736 * Synchronizes page for reuse by the adapter 737 **/ 738 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 739 struct ixgbevf_rx_buffer *old_buff) 740 { 741 struct ixgbevf_rx_buffer *new_buff; 742 u16 nta = rx_ring->next_to_alloc; 743 744 new_buff = &rx_ring->rx_buffer_info[nta]; 745 746 /* update, and store next to alloc */ 747 nta++; 748 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 749 750 /* transfer page from old buffer to new buffer */ 751 new_buff->page = old_buff->page; 752 new_buff->dma = old_buff->dma; 753 new_buff->page_offset = old_buff->page_offset; 754 755 /* sync the buffer for use by the device */ 756 dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma, 757 new_buff->page_offset, 758 IXGBEVF_RX_BUFSZ, 759 DMA_FROM_DEVICE); 760 } 761 762 static inline bool ixgbevf_page_is_reserved(struct page *page) 763 { 764 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 765 } 766 767 /** 768 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 769 * @rx_ring: rx descriptor ring to transact packets on 770 * @rx_buffer: buffer containing page to add 771 * @rx_desc: descriptor containing length of buffer written by hardware 772 * @skb: sk_buff to place the data into 773 * 774 * This function will add the data contained in rx_buffer->page to the skb. 775 * This is done either through a direct copy if the data in the buffer is 776 * less than the skb header size, otherwise it will just attach the page as 777 * a frag to the skb. 778 * 779 * The function will then update the page offset if necessary and return 780 * true if the buffer can be reused by the adapter. 781 **/ 782 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 783 struct ixgbevf_rx_buffer *rx_buffer, 784 union ixgbe_adv_rx_desc *rx_desc, 785 struct sk_buff *skb) 786 { 787 struct page *page = rx_buffer->page; 788 unsigned char *va = page_address(page) + rx_buffer->page_offset; 789 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 790 #if (PAGE_SIZE < 8192) 791 unsigned int truesize = IXGBEVF_RX_BUFSZ; 792 #else 793 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 794 #endif 795 unsigned int pull_len; 796 797 if (unlikely(skb_is_nonlinear(skb))) 798 goto add_tail_frag; 799 800 if (likely(size <= IXGBEVF_RX_HDR_SIZE)) { 801 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 802 803 /* page is not reserved, we can reuse buffer as is */ 804 if (likely(!ixgbevf_page_is_reserved(page))) 805 return true; 806 807 /* this page cannot be reused so discard it */ 808 put_page(page); 809 return false; 810 } 811 812 /* we need the header to contain the greater of either ETH_HLEN or 813 * 60 bytes if the skb->len is less than 60 for skb_pad. 814 */ 815 pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE); 816 817 /* align pull length to size of long to optimize memcpy performance */ 818 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 819 820 /* update all of the pointers */ 821 va += pull_len; 822 size -= pull_len; 823 824 add_tail_frag: 825 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 826 (unsigned long)va & ~PAGE_MASK, size, truesize); 827 828 /* avoid re-using remote pages */ 829 if (unlikely(ixgbevf_page_is_reserved(page))) 830 return false; 831 832 #if (PAGE_SIZE < 8192) 833 /* if we are only owner of page we can reuse it */ 834 if (unlikely(page_count(page) != 1)) 835 return false; 836 837 /* flip page offset to other buffer */ 838 rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ; 839 840 #else 841 /* move offset up to the next cache line */ 842 rx_buffer->page_offset += truesize; 843 844 if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ)) 845 return false; 846 847 #endif 848 /* Even if we own the page, we are not allowed to use atomic_set() 849 * This would break get_page_unless_zero() users. 850 */ 851 page_ref_inc(page); 852 853 return true; 854 } 855 856 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring, 857 union ixgbe_adv_rx_desc *rx_desc, 858 struct sk_buff *skb) 859 { 860 struct ixgbevf_rx_buffer *rx_buffer; 861 struct page *page; 862 863 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 864 page = rx_buffer->page; 865 prefetchw(page); 866 867 if (likely(!skb)) { 868 void *page_addr = page_address(page) + 869 rx_buffer->page_offset; 870 871 /* prefetch first cache line of first page */ 872 prefetch(page_addr); 873 #if L1_CACHE_BYTES < 128 874 prefetch(page_addr + L1_CACHE_BYTES); 875 #endif 876 877 /* allocate a skb to store the frags */ 878 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 879 IXGBEVF_RX_HDR_SIZE); 880 if (unlikely(!skb)) { 881 rx_ring->rx_stats.alloc_rx_buff_failed++; 882 return NULL; 883 } 884 885 /* we will be copying header into skb->data in 886 * pskb_may_pull so it is in our interest to prefetch 887 * it now to avoid a possible cache miss 888 */ 889 prefetchw(skb->data); 890 } 891 892 /* we are reusing so sync this buffer for CPU use */ 893 dma_sync_single_range_for_cpu(rx_ring->dev, 894 rx_buffer->dma, 895 rx_buffer->page_offset, 896 IXGBEVF_RX_BUFSZ, 897 DMA_FROM_DEVICE); 898 899 /* pull page into skb */ 900 if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { 901 /* hand second half of page back to the ring */ 902 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 903 } else { 904 /* we are not reusing the buffer so unmap it */ 905 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 906 PAGE_SIZE, DMA_FROM_DEVICE); 907 } 908 909 /* clear contents of buffer_info */ 910 rx_buffer->dma = 0; 911 rx_buffer->page = NULL; 912 913 return skb; 914 } 915 916 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 917 u32 qmask) 918 { 919 struct ixgbe_hw *hw = &adapter->hw; 920 921 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 922 } 923 924 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 925 struct ixgbevf_ring *rx_ring, 926 int budget) 927 { 928 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 929 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 930 struct sk_buff *skb = rx_ring->skb; 931 932 while (likely(total_rx_packets < budget)) { 933 union ixgbe_adv_rx_desc *rx_desc; 934 935 /* return some buffers to hardware, one at a time is too slow */ 936 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 937 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 938 cleaned_count = 0; 939 } 940 941 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 942 943 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD)) 944 break; 945 946 /* This memory barrier is needed to keep us from reading 947 * any other fields out of the rx_desc until we know the 948 * RXD_STAT_DD bit is set 949 */ 950 rmb(); 951 952 /* retrieve a buffer from the ring */ 953 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb); 954 955 /* exit if we failed to retrieve a buffer */ 956 if (!skb) 957 break; 958 959 cleaned_count++; 960 961 /* fetch next buffer in frame if non-eop */ 962 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 963 continue; 964 965 /* verify the packet layout is correct */ 966 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 967 skb = NULL; 968 continue; 969 } 970 971 /* probably a little skewed due to removing CRC */ 972 total_rx_bytes += skb->len; 973 974 /* Workaround hardware that can't do proper VEPA multicast 975 * source pruning. 976 */ 977 if ((skb->pkt_type == PACKET_BROADCAST || 978 skb->pkt_type == PACKET_MULTICAST) && 979 ether_addr_equal(rx_ring->netdev->dev_addr, 980 eth_hdr(skb)->h_source)) { 981 dev_kfree_skb_irq(skb); 982 continue; 983 } 984 985 /* populate checksum, VLAN, and protocol */ 986 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 987 988 ixgbevf_rx_skb(q_vector, skb); 989 990 /* reset skb pointer */ 991 skb = NULL; 992 993 /* update budget accounting */ 994 total_rx_packets++; 995 } 996 997 /* place incomplete frames back on ring for completion */ 998 rx_ring->skb = skb; 999 1000 u64_stats_update_begin(&rx_ring->syncp); 1001 rx_ring->stats.packets += total_rx_packets; 1002 rx_ring->stats.bytes += total_rx_bytes; 1003 u64_stats_update_end(&rx_ring->syncp); 1004 q_vector->rx.total_packets += total_rx_packets; 1005 q_vector->rx.total_bytes += total_rx_bytes; 1006 1007 return total_rx_packets; 1008 } 1009 1010 /** 1011 * ixgbevf_poll - NAPI polling calback 1012 * @napi: napi struct with our devices info in it 1013 * @budget: amount of work driver is allowed to do this pass, in packets 1014 * 1015 * This function will clean more than one or more rings associated with a 1016 * q_vector. 1017 **/ 1018 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1019 { 1020 struct ixgbevf_q_vector *q_vector = 1021 container_of(napi, struct ixgbevf_q_vector, napi); 1022 struct ixgbevf_adapter *adapter = q_vector->adapter; 1023 struct ixgbevf_ring *ring; 1024 int per_ring_budget, work_done = 0; 1025 bool clean_complete = true; 1026 1027 ixgbevf_for_each_ring(ring, q_vector->tx) { 1028 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1029 clean_complete = false; 1030 } 1031 1032 if (budget <= 0) 1033 return budget; 1034 #ifdef CONFIG_NET_RX_BUSY_POLL 1035 if (!ixgbevf_qv_lock_napi(q_vector)) 1036 return budget; 1037 #endif 1038 1039 /* attempt to distribute budget to each queue fairly, but don't allow 1040 * the budget to go below 1 because we'll exit polling 1041 */ 1042 if (q_vector->rx.count > 1) 1043 per_ring_budget = max(budget/q_vector->rx.count, 1); 1044 else 1045 per_ring_budget = budget; 1046 1047 ixgbevf_for_each_ring(ring, q_vector->rx) { 1048 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1049 per_ring_budget); 1050 work_done += cleaned; 1051 if (cleaned >= per_ring_budget) 1052 clean_complete = false; 1053 } 1054 1055 #ifdef CONFIG_NET_RX_BUSY_POLL 1056 ixgbevf_qv_unlock_napi(q_vector); 1057 #endif 1058 1059 /* If all work not completed, return budget and keep polling */ 1060 if (!clean_complete) 1061 return budget; 1062 /* all work done, exit the polling mode */ 1063 napi_complete_done(napi, work_done); 1064 if (adapter->rx_itr_setting == 1) 1065 ixgbevf_set_itr(q_vector); 1066 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1067 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1068 ixgbevf_irq_enable_queues(adapter, 1069 BIT(q_vector->v_idx)); 1070 1071 return 0; 1072 } 1073 1074 /** 1075 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1076 * @q_vector: structure containing interrupt and ring information 1077 **/ 1078 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1079 { 1080 struct ixgbevf_adapter *adapter = q_vector->adapter; 1081 struct ixgbe_hw *hw = &adapter->hw; 1082 int v_idx = q_vector->v_idx; 1083 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1084 1085 /* set the WDIS bit to not clear the timer bits and cause an 1086 * immediate assertion of the interrupt 1087 */ 1088 itr_reg |= IXGBE_EITR_CNT_WDIS; 1089 1090 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1091 } 1092 1093 #ifdef CONFIG_NET_RX_BUSY_POLL 1094 /* must be called with local_bh_disable()d */ 1095 static int ixgbevf_busy_poll_recv(struct napi_struct *napi) 1096 { 1097 struct ixgbevf_q_vector *q_vector = 1098 container_of(napi, struct ixgbevf_q_vector, napi); 1099 struct ixgbevf_adapter *adapter = q_vector->adapter; 1100 struct ixgbevf_ring *ring; 1101 int found = 0; 1102 1103 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 1104 return LL_FLUSH_FAILED; 1105 1106 if (!ixgbevf_qv_lock_poll(q_vector)) 1107 return LL_FLUSH_BUSY; 1108 1109 ixgbevf_for_each_ring(ring, q_vector->rx) { 1110 found = ixgbevf_clean_rx_irq(q_vector, ring, 4); 1111 #ifdef BP_EXTENDED_STATS 1112 if (found) 1113 ring->stats.cleaned += found; 1114 else 1115 ring->stats.misses++; 1116 #endif 1117 if (found) 1118 break; 1119 } 1120 1121 ixgbevf_qv_unlock_poll(q_vector); 1122 1123 return found; 1124 } 1125 #endif /* CONFIG_NET_RX_BUSY_POLL */ 1126 1127 /** 1128 * ixgbevf_configure_msix - Configure MSI-X hardware 1129 * @adapter: board private structure 1130 * 1131 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1132 * interrupts. 1133 **/ 1134 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1135 { 1136 struct ixgbevf_q_vector *q_vector; 1137 int q_vectors, v_idx; 1138 1139 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1140 adapter->eims_enable_mask = 0; 1141 1142 /* Populate the IVAR table and set the ITR values to the 1143 * corresponding register. 1144 */ 1145 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1146 struct ixgbevf_ring *ring; 1147 1148 q_vector = adapter->q_vector[v_idx]; 1149 1150 ixgbevf_for_each_ring(ring, q_vector->rx) 1151 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1152 1153 ixgbevf_for_each_ring(ring, q_vector->tx) 1154 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1155 1156 if (q_vector->tx.ring && !q_vector->rx.ring) { 1157 /* Tx only vector */ 1158 if (adapter->tx_itr_setting == 1) 1159 q_vector->itr = IXGBE_12K_ITR; 1160 else 1161 q_vector->itr = adapter->tx_itr_setting; 1162 } else { 1163 /* Rx or Rx/Tx vector */ 1164 if (adapter->rx_itr_setting == 1) 1165 q_vector->itr = IXGBE_20K_ITR; 1166 else 1167 q_vector->itr = adapter->rx_itr_setting; 1168 } 1169 1170 /* add q_vector eims value to global eims_enable_mask */ 1171 adapter->eims_enable_mask |= BIT(v_idx); 1172 1173 ixgbevf_write_eitr(q_vector); 1174 } 1175 1176 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1177 /* setup eims_other and add value to global eims_enable_mask */ 1178 adapter->eims_other = BIT(v_idx); 1179 adapter->eims_enable_mask |= adapter->eims_other; 1180 } 1181 1182 enum latency_range { 1183 lowest_latency = 0, 1184 low_latency = 1, 1185 bulk_latency = 2, 1186 latency_invalid = 255 1187 }; 1188 1189 /** 1190 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1191 * @q_vector: structure containing interrupt and ring information 1192 * @ring_container: structure containing ring performance data 1193 * 1194 * Stores a new ITR value based on packets and byte 1195 * counts during the last interrupt. The advantage of per interrupt 1196 * computation is faster updates and more accurate ITR for the current 1197 * traffic pattern. Constants in this function were computed 1198 * based on theoretical maximum wire speed and thresholds were set based 1199 * on testing data as well as attempting to minimize response time 1200 * while increasing bulk throughput. 1201 **/ 1202 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1203 struct ixgbevf_ring_container *ring_container) 1204 { 1205 int bytes = ring_container->total_bytes; 1206 int packets = ring_container->total_packets; 1207 u32 timepassed_us; 1208 u64 bytes_perint; 1209 u8 itr_setting = ring_container->itr; 1210 1211 if (packets == 0) 1212 return; 1213 1214 /* simple throttle rate management 1215 * 0-20MB/s lowest (100000 ints/s) 1216 * 20-100MB/s low (20000 ints/s) 1217 * 100-1249MB/s bulk (12000 ints/s) 1218 */ 1219 /* what was last interrupt timeslice? */ 1220 timepassed_us = q_vector->itr >> 2; 1221 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1222 1223 switch (itr_setting) { 1224 case lowest_latency: 1225 if (bytes_perint > 10) 1226 itr_setting = low_latency; 1227 break; 1228 case low_latency: 1229 if (bytes_perint > 20) 1230 itr_setting = bulk_latency; 1231 else if (bytes_perint <= 10) 1232 itr_setting = lowest_latency; 1233 break; 1234 case bulk_latency: 1235 if (bytes_perint <= 20) 1236 itr_setting = low_latency; 1237 break; 1238 } 1239 1240 /* clear work counters since we have the values we need */ 1241 ring_container->total_bytes = 0; 1242 ring_container->total_packets = 0; 1243 1244 /* write updated itr to ring container */ 1245 ring_container->itr = itr_setting; 1246 } 1247 1248 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1249 { 1250 u32 new_itr = q_vector->itr; 1251 u8 current_itr; 1252 1253 ixgbevf_update_itr(q_vector, &q_vector->tx); 1254 ixgbevf_update_itr(q_vector, &q_vector->rx); 1255 1256 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1257 1258 switch (current_itr) { 1259 /* counts and packets in update_itr are dependent on these numbers */ 1260 case lowest_latency: 1261 new_itr = IXGBE_100K_ITR; 1262 break; 1263 case low_latency: 1264 new_itr = IXGBE_20K_ITR; 1265 break; 1266 case bulk_latency: 1267 new_itr = IXGBE_12K_ITR; 1268 break; 1269 default: 1270 break; 1271 } 1272 1273 if (new_itr != q_vector->itr) { 1274 /* do an exponential smoothing */ 1275 new_itr = (10 * new_itr * q_vector->itr) / 1276 ((9 * new_itr) + q_vector->itr); 1277 1278 /* save the algorithm value here */ 1279 q_vector->itr = new_itr; 1280 1281 ixgbevf_write_eitr(q_vector); 1282 } 1283 } 1284 1285 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1286 { 1287 struct ixgbevf_adapter *adapter = data; 1288 struct ixgbe_hw *hw = &adapter->hw; 1289 1290 hw->mac.get_link_status = 1; 1291 1292 ixgbevf_service_event_schedule(adapter); 1293 1294 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1295 1296 return IRQ_HANDLED; 1297 } 1298 1299 /** 1300 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1301 * @irq: unused 1302 * @data: pointer to our q_vector struct for this interrupt vector 1303 **/ 1304 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1305 { 1306 struct ixgbevf_q_vector *q_vector = data; 1307 1308 /* EIAM disabled interrupts (on this vector) for us */ 1309 if (q_vector->rx.ring || q_vector->tx.ring) 1310 napi_schedule_irqoff(&q_vector->napi); 1311 1312 return IRQ_HANDLED; 1313 } 1314 1315 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx, 1316 int r_idx) 1317 { 1318 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx]; 1319 1320 a->rx_ring[r_idx]->next = q_vector->rx.ring; 1321 q_vector->rx.ring = a->rx_ring[r_idx]; 1322 q_vector->rx.count++; 1323 } 1324 1325 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx, 1326 int t_idx) 1327 { 1328 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx]; 1329 1330 a->tx_ring[t_idx]->next = q_vector->tx.ring; 1331 q_vector->tx.ring = a->tx_ring[t_idx]; 1332 q_vector->tx.count++; 1333 } 1334 1335 /** 1336 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors 1337 * @adapter: board private structure to initialize 1338 * 1339 * This function maps descriptor rings to the queue-specific vectors 1340 * we were allotted through the MSI-X enabling code. Ideally, we'd have 1341 * one vector per ring/queue, but on a constrained vector budget, we 1342 * group the rings as "efficiently" as possible. You would add new 1343 * mapping configurations in here. 1344 **/ 1345 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter) 1346 { 1347 int q_vectors; 1348 int v_start = 0; 1349 int rxr_idx = 0, txr_idx = 0; 1350 int rxr_remaining = adapter->num_rx_queues; 1351 int txr_remaining = adapter->num_tx_queues; 1352 int i, j; 1353 int rqpv, tqpv; 1354 1355 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1356 1357 /* The ideal configuration... 1358 * We have enough vectors to map one per queue. 1359 */ 1360 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) { 1361 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++) 1362 map_vector_to_rxq(adapter, v_start, rxr_idx); 1363 1364 for (; txr_idx < txr_remaining; v_start++, txr_idx++) 1365 map_vector_to_txq(adapter, v_start, txr_idx); 1366 return 0; 1367 } 1368 1369 /* If we don't have enough vectors for a 1-to-1 1370 * mapping, we'll have to group them so there are 1371 * multiple queues per vector. 1372 */ 1373 /* Re-adjusting *qpv takes care of the remainder. */ 1374 for (i = v_start; i < q_vectors; i++) { 1375 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i); 1376 for (j = 0; j < rqpv; j++) { 1377 map_vector_to_rxq(adapter, i, rxr_idx); 1378 rxr_idx++; 1379 rxr_remaining--; 1380 } 1381 } 1382 for (i = v_start; i < q_vectors; i++) { 1383 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i); 1384 for (j = 0; j < tqpv; j++) { 1385 map_vector_to_txq(adapter, i, txr_idx); 1386 txr_idx++; 1387 txr_remaining--; 1388 } 1389 } 1390 1391 return 0; 1392 } 1393 1394 /** 1395 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1396 * @adapter: board private structure 1397 * 1398 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1399 * interrupts from the kernel. 1400 **/ 1401 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1402 { 1403 struct net_device *netdev = adapter->netdev; 1404 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1405 int vector, err; 1406 int ri = 0, ti = 0; 1407 1408 for (vector = 0; vector < q_vectors; vector++) { 1409 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1410 struct msix_entry *entry = &adapter->msix_entries[vector]; 1411 1412 if (q_vector->tx.ring && q_vector->rx.ring) { 1413 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1414 "%s-%s-%d", netdev->name, "TxRx", ri++); 1415 ti++; 1416 } else if (q_vector->rx.ring) { 1417 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1418 "%s-%s-%d", netdev->name, "rx", ri++); 1419 } else if (q_vector->tx.ring) { 1420 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1421 "%s-%s-%d", netdev->name, "tx", ti++); 1422 } else { 1423 /* skip this unused q_vector */ 1424 continue; 1425 } 1426 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1427 q_vector->name, q_vector); 1428 if (err) { 1429 hw_dbg(&adapter->hw, 1430 "request_irq failed for MSIX interrupt Error: %d\n", 1431 err); 1432 goto free_queue_irqs; 1433 } 1434 } 1435 1436 err = request_irq(adapter->msix_entries[vector].vector, 1437 &ixgbevf_msix_other, 0, netdev->name, adapter); 1438 if (err) { 1439 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1440 err); 1441 goto free_queue_irqs; 1442 } 1443 1444 return 0; 1445 1446 free_queue_irqs: 1447 while (vector) { 1448 vector--; 1449 free_irq(adapter->msix_entries[vector].vector, 1450 adapter->q_vector[vector]); 1451 } 1452 /* This failure is non-recoverable - it indicates the system is 1453 * out of MSIX vector resources and the VF driver cannot run 1454 * without them. Set the number of msix vectors to zero 1455 * indicating that not enough can be allocated. The error 1456 * will be returned to the user indicating device open failed. 1457 * Any further attempts to force the driver to open will also 1458 * fail. The only way to recover is to unload the driver and 1459 * reload it again. If the system has recovered some MSIX 1460 * vectors then it may succeed. 1461 */ 1462 adapter->num_msix_vectors = 0; 1463 return err; 1464 } 1465 1466 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter) 1467 { 1468 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1469 1470 for (i = 0; i < q_vectors; i++) { 1471 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i]; 1472 1473 q_vector->rx.ring = NULL; 1474 q_vector->tx.ring = NULL; 1475 q_vector->rx.count = 0; 1476 q_vector->tx.count = 0; 1477 } 1478 } 1479 1480 /** 1481 * ixgbevf_request_irq - initialize interrupts 1482 * @adapter: board private structure 1483 * 1484 * Attempts to configure interrupts using the best available 1485 * capabilities of the hardware and kernel. 1486 **/ 1487 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1488 { 1489 int err = ixgbevf_request_msix_irqs(adapter); 1490 1491 if (err) 1492 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1493 1494 return err; 1495 } 1496 1497 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1498 { 1499 int i, q_vectors; 1500 1501 if (!adapter->msix_entries) 1502 return; 1503 1504 q_vectors = adapter->num_msix_vectors; 1505 i = q_vectors - 1; 1506 1507 free_irq(adapter->msix_entries[i].vector, adapter); 1508 i--; 1509 1510 for (; i >= 0; i--) { 1511 /* free only the irqs that were actually requested */ 1512 if (!adapter->q_vector[i]->rx.ring && 1513 !adapter->q_vector[i]->tx.ring) 1514 continue; 1515 1516 free_irq(adapter->msix_entries[i].vector, 1517 adapter->q_vector[i]); 1518 } 1519 1520 ixgbevf_reset_q_vectors(adapter); 1521 } 1522 1523 /** 1524 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1525 * @adapter: board private structure 1526 **/ 1527 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1528 { 1529 struct ixgbe_hw *hw = &adapter->hw; 1530 int i; 1531 1532 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1533 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1534 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1535 1536 IXGBE_WRITE_FLUSH(hw); 1537 1538 for (i = 0; i < adapter->num_msix_vectors; i++) 1539 synchronize_irq(adapter->msix_entries[i].vector); 1540 } 1541 1542 /** 1543 * ixgbevf_irq_enable - Enable default interrupt generation settings 1544 * @adapter: board private structure 1545 **/ 1546 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1547 { 1548 struct ixgbe_hw *hw = &adapter->hw; 1549 1550 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1551 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1552 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1553 } 1554 1555 /** 1556 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1557 * @adapter: board private structure 1558 * @ring: structure containing ring specific data 1559 * 1560 * Configure the Tx descriptor ring after a reset. 1561 **/ 1562 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1563 struct ixgbevf_ring *ring) 1564 { 1565 struct ixgbe_hw *hw = &adapter->hw; 1566 u64 tdba = ring->dma; 1567 int wait_loop = 10; 1568 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1569 u8 reg_idx = ring->reg_idx; 1570 1571 /* disable queue to avoid issues while updating state */ 1572 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1573 IXGBE_WRITE_FLUSH(hw); 1574 1575 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1576 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1577 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1578 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1579 1580 /* disable head writeback */ 1581 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1582 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1583 1584 /* enable relaxed ordering */ 1585 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1586 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1587 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1588 1589 /* reset head and tail pointers */ 1590 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1591 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1592 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1593 1594 /* reset ntu and ntc to place SW in sync with hardwdare */ 1595 ring->next_to_clean = 0; 1596 ring->next_to_use = 0; 1597 1598 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1599 * to or less than the number of on chip descriptors, which is 1600 * currently 40. 1601 */ 1602 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1603 1604 /* Setting PTHRESH to 32 both improves performance */ 1605 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1606 32; /* PTHRESH = 32 */ 1607 1608 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1609 1610 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1611 1612 /* poll to verify queue is enabled */ 1613 do { 1614 usleep_range(1000, 2000); 1615 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1616 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1617 if (!wait_loop) 1618 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1619 } 1620 1621 /** 1622 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1623 * @adapter: board private structure 1624 * 1625 * Configure the Tx unit of the MAC after a reset. 1626 **/ 1627 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1628 { 1629 u32 i; 1630 1631 /* Setup the HW Tx Head and Tail descriptor pointers */ 1632 for (i = 0; i < adapter->num_tx_queues; i++) 1633 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1634 } 1635 1636 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1637 1638 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index) 1639 { 1640 struct ixgbe_hw *hw = &adapter->hw; 1641 u32 srrctl; 1642 1643 srrctl = IXGBE_SRRCTL_DROP_EN; 1644 1645 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1646 srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1647 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1648 1649 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1650 } 1651 1652 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1653 { 1654 struct ixgbe_hw *hw = &adapter->hw; 1655 1656 /* PSRTYPE must be initialized in 82599 */ 1657 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1658 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1659 IXGBE_PSRTYPE_L2HDR; 1660 1661 if (adapter->num_rx_queues > 1) 1662 psrtype |= BIT(29); 1663 1664 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1665 } 1666 1667 #define IXGBEVF_MAX_RX_DESC_POLL 10 1668 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1669 struct ixgbevf_ring *ring) 1670 { 1671 struct ixgbe_hw *hw = &adapter->hw; 1672 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1673 u32 rxdctl; 1674 u8 reg_idx = ring->reg_idx; 1675 1676 if (IXGBE_REMOVED(hw->hw_addr)) 1677 return; 1678 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1679 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1680 1681 /* write value back with RXDCTL.ENABLE bit cleared */ 1682 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1683 1684 /* the hardware may take up to 100us to really disable the Rx queue */ 1685 do { 1686 udelay(10); 1687 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1688 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1689 1690 if (!wait_loop) 1691 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1692 reg_idx); 1693 } 1694 1695 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1696 struct ixgbevf_ring *ring) 1697 { 1698 struct ixgbe_hw *hw = &adapter->hw; 1699 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1700 u32 rxdctl; 1701 u8 reg_idx = ring->reg_idx; 1702 1703 if (IXGBE_REMOVED(hw->hw_addr)) 1704 return; 1705 do { 1706 usleep_range(1000, 2000); 1707 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1708 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1709 1710 if (!wait_loop) 1711 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1712 reg_idx); 1713 } 1714 1715 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1716 { 1717 struct ixgbe_hw *hw = &adapter->hw; 1718 u32 vfmrqc = 0, vfreta = 0; 1719 u16 rss_i = adapter->num_rx_queues; 1720 u8 i, j; 1721 1722 /* Fill out hash function seeds */ 1723 netdev_rss_key_fill(adapter->rss_key, sizeof(adapter->rss_key)); 1724 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1725 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), adapter->rss_key[i]); 1726 1727 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1728 if (j == rss_i) 1729 j = 0; 1730 1731 adapter->rss_indir_tbl[i] = j; 1732 1733 vfreta |= j << (i & 0x3) * 8; 1734 if ((i & 3) == 3) { 1735 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1736 vfreta = 0; 1737 } 1738 } 1739 1740 /* Perform hash on these packet types */ 1741 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1742 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1743 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1744 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1745 1746 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1747 1748 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1749 } 1750 1751 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1752 struct ixgbevf_ring *ring) 1753 { 1754 struct ixgbe_hw *hw = &adapter->hw; 1755 u64 rdba = ring->dma; 1756 u32 rxdctl; 1757 u8 reg_idx = ring->reg_idx; 1758 1759 /* disable queue to avoid issues while updating state */ 1760 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1761 ixgbevf_disable_rx_queue(adapter, ring); 1762 1763 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1764 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1765 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1766 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1767 1768 #ifndef CONFIG_SPARC 1769 /* enable relaxed ordering */ 1770 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1771 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1772 #else 1773 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1774 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1775 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1776 #endif 1777 1778 /* reset head and tail pointers */ 1779 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1780 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1781 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1782 1783 /* reset ntu and ntc to place SW in sync with hardwdare */ 1784 ring->next_to_clean = 0; 1785 ring->next_to_use = 0; 1786 ring->next_to_alloc = 0; 1787 1788 ixgbevf_configure_srrctl(adapter, reg_idx); 1789 1790 /* allow any size packet since we can handle overflow */ 1791 rxdctl &= ~IXGBE_RXDCTL_RLPML_EN; 1792 1793 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1794 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1795 1796 ixgbevf_rx_desc_queue_enable(adapter, ring); 1797 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1798 } 1799 1800 /** 1801 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1802 * @adapter: board private structure 1803 * 1804 * Configure the Rx unit of the MAC after a reset. 1805 **/ 1806 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 1807 { 1808 struct ixgbe_hw *hw = &adapter->hw; 1809 struct net_device *netdev = adapter->netdev; 1810 int i, ret; 1811 1812 ixgbevf_setup_psrtype(adapter); 1813 if (hw->mac.type >= ixgbe_mac_X550_vf) 1814 ixgbevf_setup_vfmrqc(adapter); 1815 1816 spin_lock_bh(&adapter->mbx_lock); 1817 /* notify the PF of our intent to use this size of frame */ 1818 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 1819 spin_unlock_bh(&adapter->mbx_lock); 1820 if (ret) 1821 dev_err(&adapter->pdev->dev, 1822 "Failed to set MTU at %d\n", netdev->mtu); 1823 1824 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1825 * the Base and Length of the Rx Descriptor Ring 1826 */ 1827 for (i = 0; i < adapter->num_rx_queues; i++) 1828 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]); 1829 } 1830 1831 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 1832 __be16 proto, u16 vid) 1833 { 1834 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1835 struct ixgbe_hw *hw = &adapter->hw; 1836 int err; 1837 1838 spin_lock_bh(&adapter->mbx_lock); 1839 1840 /* add VID to filter table */ 1841 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 1842 1843 spin_unlock_bh(&adapter->mbx_lock); 1844 1845 /* translate error return types so error makes sense */ 1846 if (err == IXGBE_ERR_MBX) 1847 return -EIO; 1848 1849 if (err == IXGBE_ERR_INVALID_ARGUMENT) 1850 return -EACCES; 1851 1852 set_bit(vid, adapter->active_vlans); 1853 1854 return err; 1855 } 1856 1857 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 1858 __be16 proto, u16 vid) 1859 { 1860 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1861 struct ixgbe_hw *hw = &adapter->hw; 1862 int err; 1863 1864 spin_lock_bh(&adapter->mbx_lock); 1865 1866 /* remove VID from filter table */ 1867 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 1868 1869 spin_unlock_bh(&adapter->mbx_lock); 1870 1871 clear_bit(vid, adapter->active_vlans); 1872 1873 return err; 1874 } 1875 1876 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 1877 { 1878 u16 vid; 1879 1880 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 1881 ixgbevf_vlan_rx_add_vid(adapter->netdev, 1882 htons(ETH_P_8021Q), vid); 1883 } 1884 1885 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 1886 { 1887 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1888 struct ixgbe_hw *hw = &adapter->hw; 1889 int count = 0; 1890 1891 if ((netdev_uc_count(netdev)) > 10) { 1892 pr_err("Too many unicast filters - No Space\n"); 1893 return -ENOSPC; 1894 } 1895 1896 if (!netdev_uc_empty(netdev)) { 1897 struct netdev_hw_addr *ha; 1898 1899 netdev_for_each_uc_addr(ha, netdev) { 1900 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 1901 udelay(200); 1902 } 1903 } else { 1904 /* If the list is empty then send message to PF driver to 1905 * clear all MAC VLANs on this VF. 1906 */ 1907 hw->mac.ops.set_uc_addr(hw, 0, NULL); 1908 } 1909 1910 return count; 1911 } 1912 1913 /** 1914 * ixgbevf_set_rx_mode - Multicast and unicast set 1915 * @netdev: network interface device structure 1916 * 1917 * The set_rx_method entry point is called whenever the multicast address 1918 * list, unicast address list or the network interface flags are updated. 1919 * This routine is responsible for configuring the hardware for proper 1920 * multicast mode and configuring requested unicast filters. 1921 **/ 1922 static void ixgbevf_set_rx_mode(struct net_device *netdev) 1923 { 1924 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1925 struct ixgbe_hw *hw = &adapter->hw; 1926 unsigned int flags = netdev->flags; 1927 int xcast_mode; 1928 1929 xcast_mode = (flags & IFF_ALLMULTI) ? IXGBEVF_XCAST_MODE_ALLMULTI : 1930 (flags & (IFF_BROADCAST | IFF_MULTICAST)) ? 1931 IXGBEVF_XCAST_MODE_MULTI : IXGBEVF_XCAST_MODE_NONE; 1932 1933 spin_lock_bh(&adapter->mbx_lock); 1934 1935 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 1936 1937 /* reprogram multicast list */ 1938 hw->mac.ops.update_mc_addr_list(hw, netdev); 1939 1940 ixgbevf_write_uc_addr_list(netdev); 1941 1942 spin_unlock_bh(&adapter->mbx_lock); 1943 } 1944 1945 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 1946 { 1947 int q_idx; 1948 struct ixgbevf_q_vector *q_vector; 1949 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1950 1951 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1952 q_vector = adapter->q_vector[q_idx]; 1953 #ifdef CONFIG_NET_RX_BUSY_POLL 1954 ixgbevf_qv_init_lock(adapter->q_vector[q_idx]); 1955 #endif 1956 napi_enable(&q_vector->napi); 1957 } 1958 } 1959 1960 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 1961 { 1962 int q_idx; 1963 struct ixgbevf_q_vector *q_vector; 1964 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1965 1966 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1967 q_vector = adapter->q_vector[q_idx]; 1968 napi_disable(&q_vector->napi); 1969 #ifdef CONFIG_NET_RX_BUSY_POLL 1970 while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) { 1971 pr_info("QV %d locked\n", q_idx); 1972 usleep_range(1000, 20000); 1973 } 1974 #endif /* CONFIG_NET_RX_BUSY_POLL */ 1975 } 1976 } 1977 1978 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 1979 { 1980 struct ixgbe_hw *hw = &adapter->hw; 1981 unsigned int def_q = 0; 1982 unsigned int num_tcs = 0; 1983 unsigned int num_rx_queues = adapter->num_rx_queues; 1984 unsigned int num_tx_queues = adapter->num_tx_queues; 1985 int err; 1986 1987 spin_lock_bh(&adapter->mbx_lock); 1988 1989 /* fetch queue configuration from the PF */ 1990 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 1991 1992 spin_unlock_bh(&adapter->mbx_lock); 1993 1994 if (err) 1995 return err; 1996 1997 if (num_tcs > 1) { 1998 /* we need only one Tx queue */ 1999 num_tx_queues = 1; 2000 2001 /* update default Tx ring register index */ 2002 adapter->tx_ring[0]->reg_idx = def_q; 2003 2004 /* we need as many queues as traffic classes */ 2005 num_rx_queues = num_tcs; 2006 } 2007 2008 /* if we have a bad config abort request queue reset */ 2009 if ((adapter->num_rx_queues != num_rx_queues) || 2010 (adapter->num_tx_queues != num_tx_queues)) { 2011 /* force mailbox timeout to prevent further messages */ 2012 hw->mbx.timeout = 0; 2013 2014 /* wait for watchdog to come around and bail us out */ 2015 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2016 } 2017 2018 return 0; 2019 } 2020 2021 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2022 { 2023 ixgbevf_configure_dcb(adapter); 2024 2025 ixgbevf_set_rx_mode(adapter->netdev); 2026 2027 ixgbevf_restore_vlan(adapter); 2028 2029 ixgbevf_configure_tx(adapter); 2030 ixgbevf_configure_rx(adapter); 2031 } 2032 2033 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2034 { 2035 /* Only save pre-reset stats if there are some */ 2036 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2037 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2038 adapter->stats.base_vfgprc; 2039 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2040 adapter->stats.base_vfgptc; 2041 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2042 adapter->stats.base_vfgorc; 2043 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2044 adapter->stats.base_vfgotc; 2045 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2046 adapter->stats.base_vfmprc; 2047 } 2048 } 2049 2050 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2051 { 2052 struct ixgbe_hw *hw = &adapter->hw; 2053 2054 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2055 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2056 adapter->stats.last_vfgorc |= 2057 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2058 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2059 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2060 adapter->stats.last_vfgotc |= 2061 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2062 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2063 2064 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2065 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2066 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2067 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2068 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2069 } 2070 2071 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2072 { 2073 struct ixgbe_hw *hw = &adapter->hw; 2074 int api[] = { ixgbe_mbox_api_12, 2075 ixgbe_mbox_api_11, 2076 ixgbe_mbox_api_10, 2077 ixgbe_mbox_api_unknown }; 2078 int err, idx = 0; 2079 2080 spin_lock_bh(&adapter->mbx_lock); 2081 2082 while (api[idx] != ixgbe_mbox_api_unknown) { 2083 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2084 if (!err) 2085 break; 2086 idx++; 2087 } 2088 2089 spin_unlock_bh(&adapter->mbx_lock); 2090 } 2091 2092 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2093 { 2094 struct net_device *netdev = adapter->netdev; 2095 struct ixgbe_hw *hw = &adapter->hw; 2096 2097 ixgbevf_configure_msix(adapter); 2098 2099 spin_lock_bh(&adapter->mbx_lock); 2100 2101 if (is_valid_ether_addr(hw->mac.addr)) 2102 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2103 else 2104 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2105 2106 spin_unlock_bh(&adapter->mbx_lock); 2107 2108 smp_mb__before_atomic(); 2109 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2110 ixgbevf_napi_enable_all(adapter); 2111 2112 /* clear any pending interrupts, may auto mask */ 2113 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2114 ixgbevf_irq_enable(adapter); 2115 2116 /* enable transmits */ 2117 netif_tx_start_all_queues(netdev); 2118 2119 ixgbevf_save_reset_stats(adapter); 2120 ixgbevf_init_last_counter_stats(adapter); 2121 2122 hw->mac.get_link_status = 1; 2123 mod_timer(&adapter->service_timer, jiffies); 2124 } 2125 2126 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2127 { 2128 ixgbevf_configure(adapter); 2129 2130 ixgbevf_up_complete(adapter); 2131 } 2132 2133 /** 2134 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2135 * @rx_ring: ring to free buffers from 2136 **/ 2137 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2138 { 2139 struct device *dev = rx_ring->dev; 2140 unsigned long size; 2141 unsigned int i; 2142 2143 /* Free Rx ring sk_buff */ 2144 if (rx_ring->skb) { 2145 dev_kfree_skb(rx_ring->skb); 2146 rx_ring->skb = NULL; 2147 } 2148 2149 /* ring already cleared, nothing to do */ 2150 if (!rx_ring->rx_buffer_info) 2151 return; 2152 2153 /* Free all the Rx ring pages */ 2154 for (i = 0; i < rx_ring->count; i++) { 2155 struct ixgbevf_rx_buffer *rx_buffer; 2156 2157 rx_buffer = &rx_ring->rx_buffer_info[i]; 2158 if (rx_buffer->dma) 2159 dma_unmap_page(dev, rx_buffer->dma, 2160 PAGE_SIZE, DMA_FROM_DEVICE); 2161 rx_buffer->dma = 0; 2162 if (rx_buffer->page) 2163 __free_page(rx_buffer->page); 2164 rx_buffer->page = NULL; 2165 } 2166 2167 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 2168 memset(rx_ring->rx_buffer_info, 0, size); 2169 2170 /* Zero out the descriptor ring */ 2171 memset(rx_ring->desc, 0, rx_ring->size); 2172 } 2173 2174 /** 2175 * ixgbevf_clean_tx_ring - Free Tx Buffers 2176 * @tx_ring: ring to be cleaned 2177 **/ 2178 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2179 { 2180 struct ixgbevf_tx_buffer *tx_buffer_info; 2181 unsigned long size; 2182 unsigned int i; 2183 2184 if (!tx_ring->tx_buffer_info) 2185 return; 2186 2187 /* Free all the Tx ring sk_buffs */ 2188 for (i = 0; i < tx_ring->count; i++) { 2189 tx_buffer_info = &tx_ring->tx_buffer_info[i]; 2190 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); 2191 } 2192 2193 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 2194 memset(tx_ring->tx_buffer_info, 0, size); 2195 2196 memset(tx_ring->desc, 0, tx_ring->size); 2197 } 2198 2199 /** 2200 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2201 * @adapter: board private structure 2202 **/ 2203 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2204 { 2205 int i; 2206 2207 for (i = 0; i < adapter->num_rx_queues; i++) 2208 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2209 } 2210 2211 /** 2212 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2213 * @adapter: board private structure 2214 **/ 2215 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2216 { 2217 int i; 2218 2219 for (i = 0; i < adapter->num_tx_queues; i++) 2220 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2221 } 2222 2223 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2224 { 2225 struct net_device *netdev = adapter->netdev; 2226 struct ixgbe_hw *hw = &adapter->hw; 2227 int i; 2228 2229 /* signal that we are down to the interrupt handler */ 2230 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2231 return; /* do nothing if already down */ 2232 2233 /* disable all enabled Rx queues */ 2234 for (i = 0; i < adapter->num_rx_queues; i++) 2235 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2236 2237 usleep_range(10000, 20000); 2238 2239 netif_tx_stop_all_queues(netdev); 2240 2241 /* call carrier off first to avoid false dev_watchdog timeouts */ 2242 netif_carrier_off(netdev); 2243 netif_tx_disable(netdev); 2244 2245 ixgbevf_irq_disable(adapter); 2246 2247 ixgbevf_napi_disable_all(adapter); 2248 2249 del_timer_sync(&adapter->service_timer); 2250 2251 /* disable transmits in the hardware now that interrupts are off */ 2252 for (i = 0; i < adapter->num_tx_queues; i++) { 2253 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2254 2255 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2256 IXGBE_TXDCTL_SWFLSH); 2257 } 2258 2259 if (!pci_channel_offline(adapter->pdev)) 2260 ixgbevf_reset(adapter); 2261 2262 ixgbevf_clean_all_tx_rings(adapter); 2263 ixgbevf_clean_all_rx_rings(adapter); 2264 } 2265 2266 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2267 { 2268 WARN_ON(in_interrupt()); 2269 2270 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2271 msleep(1); 2272 2273 ixgbevf_down(adapter); 2274 ixgbevf_up(adapter); 2275 2276 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2277 } 2278 2279 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2280 { 2281 struct ixgbe_hw *hw = &adapter->hw; 2282 struct net_device *netdev = adapter->netdev; 2283 2284 if (hw->mac.ops.reset_hw(hw)) { 2285 hw_dbg(hw, "PF still resetting\n"); 2286 } else { 2287 hw->mac.ops.init_hw(hw); 2288 ixgbevf_negotiate_api(adapter); 2289 } 2290 2291 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2292 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2293 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2294 } 2295 2296 adapter->last_reset = jiffies; 2297 } 2298 2299 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2300 int vectors) 2301 { 2302 int vector_threshold; 2303 2304 /* We'll want at least 2 (vector_threshold): 2305 * 1) TxQ[0] + RxQ[0] handler 2306 * 2) Other (Link Status Change, etc.) 2307 */ 2308 vector_threshold = MIN_MSIX_COUNT; 2309 2310 /* The more we get, the more we will assign to Tx/Rx Cleanup 2311 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2312 * Right now, we simply care about how many we'll get; we'll 2313 * set them up later while requesting irq's. 2314 */ 2315 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2316 vector_threshold, vectors); 2317 2318 if (vectors < 0) { 2319 dev_err(&adapter->pdev->dev, 2320 "Unable to allocate MSI-X interrupts\n"); 2321 kfree(adapter->msix_entries); 2322 adapter->msix_entries = NULL; 2323 return vectors; 2324 } 2325 2326 /* Adjust for only the vectors we'll use, which is minimum 2327 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2328 * vectors we were allocated. 2329 */ 2330 adapter->num_msix_vectors = vectors; 2331 2332 return 0; 2333 } 2334 2335 /** 2336 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2337 * @adapter: board private structure to initialize 2338 * 2339 * This is the top level queue allocation routine. The order here is very 2340 * important, starting with the "most" number of features turned on at once, 2341 * and ending with the smallest set of features. This way large combinations 2342 * can be allocated if they're turned on, and smaller combinations are the 2343 * fallthrough conditions. 2344 * 2345 **/ 2346 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2347 { 2348 struct ixgbe_hw *hw = &adapter->hw; 2349 unsigned int def_q = 0; 2350 unsigned int num_tcs = 0; 2351 int err; 2352 2353 /* Start with base case */ 2354 adapter->num_rx_queues = 1; 2355 adapter->num_tx_queues = 1; 2356 2357 spin_lock_bh(&adapter->mbx_lock); 2358 2359 /* fetch queue configuration from the PF */ 2360 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2361 2362 spin_unlock_bh(&adapter->mbx_lock); 2363 2364 if (err) 2365 return; 2366 2367 /* we need as many queues as traffic classes */ 2368 if (num_tcs > 1) { 2369 adapter->num_rx_queues = num_tcs; 2370 } else { 2371 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2372 2373 switch (hw->api_version) { 2374 case ixgbe_mbox_api_11: 2375 case ixgbe_mbox_api_12: 2376 adapter->num_rx_queues = rss; 2377 adapter->num_tx_queues = rss; 2378 default: 2379 break; 2380 } 2381 } 2382 } 2383 2384 /** 2385 * ixgbevf_alloc_queues - Allocate memory for all rings 2386 * @adapter: board private structure to initialize 2387 * 2388 * We allocate one ring per queue at run-time since we don't know the 2389 * number of queues at compile-time. The polling_netdev array is 2390 * intended for Multiqueue, but should work fine with a single queue. 2391 **/ 2392 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter) 2393 { 2394 struct ixgbevf_ring *ring; 2395 int rx = 0, tx = 0; 2396 2397 for (; tx < adapter->num_tx_queues; tx++) { 2398 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 2399 if (!ring) 2400 goto err_allocation; 2401 2402 ring->dev = &adapter->pdev->dev; 2403 ring->netdev = adapter->netdev; 2404 ring->count = adapter->tx_ring_count; 2405 ring->queue_index = tx; 2406 ring->reg_idx = tx; 2407 2408 adapter->tx_ring[tx] = ring; 2409 } 2410 2411 for (; rx < adapter->num_rx_queues; rx++) { 2412 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 2413 if (!ring) 2414 goto err_allocation; 2415 2416 ring->dev = &adapter->pdev->dev; 2417 ring->netdev = adapter->netdev; 2418 2419 ring->count = adapter->rx_ring_count; 2420 ring->queue_index = rx; 2421 ring->reg_idx = rx; 2422 2423 adapter->rx_ring[rx] = ring; 2424 } 2425 2426 return 0; 2427 2428 err_allocation: 2429 while (tx) { 2430 kfree(adapter->tx_ring[--tx]); 2431 adapter->tx_ring[tx] = NULL; 2432 } 2433 2434 while (rx) { 2435 kfree(adapter->rx_ring[--rx]); 2436 adapter->rx_ring[rx] = NULL; 2437 } 2438 return -ENOMEM; 2439 } 2440 2441 /** 2442 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2443 * @adapter: board private structure to initialize 2444 * 2445 * Attempt to configure the interrupts using the best available 2446 * capabilities of the hardware and the kernel. 2447 **/ 2448 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2449 { 2450 struct net_device *netdev = adapter->netdev; 2451 int err; 2452 int vector, v_budget; 2453 2454 /* It's easy to be greedy for MSI-X vectors, but it really 2455 * doesn't do us much good if we have a lot more vectors 2456 * than CPU's. So let's be conservative and only ask for 2457 * (roughly) the same number of vectors as there are CPU's. 2458 * The default is to use pairs of vectors. 2459 */ 2460 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2461 v_budget = min_t(int, v_budget, num_online_cpus()); 2462 v_budget += NON_Q_VECTORS; 2463 2464 /* A failure in MSI-X entry allocation isn't fatal, but it does 2465 * mean we disable MSI-X capabilities of the adapter. 2466 */ 2467 adapter->msix_entries = kcalloc(v_budget, 2468 sizeof(struct msix_entry), GFP_KERNEL); 2469 if (!adapter->msix_entries) 2470 return -ENOMEM; 2471 2472 for (vector = 0; vector < v_budget; vector++) 2473 adapter->msix_entries[vector].entry = vector; 2474 2475 err = ixgbevf_acquire_msix_vectors(adapter, v_budget); 2476 if (err) 2477 return err; 2478 2479 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 2480 if (err) 2481 return err; 2482 2483 return netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 2484 } 2485 2486 /** 2487 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2488 * @adapter: board private structure to initialize 2489 * 2490 * We allocate one q_vector per queue interrupt. If allocation fails we 2491 * return -ENOMEM. 2492 **/ 2493 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2494 { 2495 int q_idx, num_q_vectors; 2496 struct ixgbevf_q_vector *q_vector; 2497 2498 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2499 2500 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 2501 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL); 2502 if (!q_vector) 2503 goto err_out; 2504 q_vector->adapter = adapter; 2505 q_vector->v_idx = q_idx; 2506 netif_napi_add(adapter->netdev, &q_vector->napi, 2507 ixgbevf_poll, 64); 2508 adapter->q_vector[q_idx] = q_vector; 2509 } 2510 2511 return 0; 2512 2513 err_out: 2514 while (q_idx) { 2515 q_idx--; 2516 q_vector = adapter->q_vector[q_idx]; 2517 #ifdef CONFIG_NET_RX_BUSY_POLL 2518 napi_hash_del(&q_vector->napi); 2519 #endif 2520 netif_napi_del(&q_vector->napi); 2521 kfree(q_vector); 2522 adapter->q_vector[q_idx] = NULL; 2523 } 2524 return -ENOMEM; 2525 } 2526 2527 /** 2528 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2529 * @adapter: board private structure to initialize 2530 * 2531 * This function frees the memory allocated to the q_vectors. In addition if 2532 * NAPI is enabled it will delete any references to the NAPI struct prior 2533 * to freeing the q_vector. 2534 **/ 2535 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2536 { 2537 int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2538 2539 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 2540 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx]; 2541 2542 adapter->q_vector[q_idx] = NULL; 2543 #ifdef CONFIG_NET_RX_BUSY_POLL 2544 napi_hash_del(&q_vector->napi); 2545 #endif 2546 netif_napi_del(&q_vector->napi); 2547 kfree(q_vector); 2548 } 2549 } 2550 2551 /** 2552 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2553 * @adapter: board private structure 2554 * 2555 **/ 2556 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2557 { 2558 if (!adapter->msix_entries) 2559 return; 2560 2561 pci_disable_msix(adapter->pdev); 2562 kfree(adapter->msix_entries); 2563 adapter->msix_entries = NULL; 2564 } 2565 2566 /** 2567 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2568 * @adapter: board private structure to initialize 2569 * 2570 **/ 2571 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2572 { 2573 int err; 2574 2575 /* Number of supported queues */ 2576 ixgbevf_set_num_queues(adapter); 2577 2578 err = ixgbevf_set_interrupt_capability(adapter); 2579 if (err) { 2580 hw_dbg(&adapter->hw, 2581 "Unable to setup interrupt capabilities\n"); 2582 goto err_set_interrupt; 2583 } 2584 2585 err = ixgbevf_alloc_q_vectors(adapter); 2586 if (err) { 2587 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2588 goto err_alloc_q_vectors; 2589 } 2590 2591 err = ixgbevf_alloc_queues(adapter); 2592 if (err) { 2593 pr_err("Unable to allocate memory for queues\n"); 2594 goto err_alloc_queues; 2595 } 2596 2597 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n", 2598 (adapter->num_rx_queues > 1) ? "Enabled" : 2599 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues); 2600 2601 set_bit(__IXGBEVF_DOWN, &adapter->state); 2602 2603 return 0; 2604 err_alloc_queues: 2605 ixgbevf_free_q_vectors(adapter); 2606 err_alloc_q_vectors: 2607 ixgbevf_reset_interrupt_capability(adapter); 2608 err_set_interrupt: 2609 return err; 2610 } 2611 2612 /** 2613 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2614 * @adapter: board private structure to clear interrupt scheme on 2615 * 2616 * We go through and clear interrupt specific resources and reset the structure 2617 * to pre-load conditions 2618 **/ 2619 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2620 { 2621 int i; 2622 2623 for (i = 0; i < adapter->num_tx_queues; i++) { 2624 kfree(adapter->tx_ring[i]); 2625 adapter->tx_ring[i] = NULL; 2626 } 2627 for (i = 0; i < adapter->num_rx_queues; i++) { 2628 kfree(adapter->rx_ring[i]); 2629 adapter->rx_ring[i] = NULL; 2630 } 2631 2632 adapter->num_tx_queues = 0; 2633 adapter->num_rx_queues = 0; 2634 2635 ixgbevf_free_q_vectors(adapter); 2636 ixgbevf_reset_interrupt_capability(adapter); 2637 } 2638 2639 /** 2640 * ixgbevf_sw_init - Initialize general software structures 2641 * @adapter: board private structure to initialize 2642 * 2643 * ixgbevf_sw_init initializes the Adapter private data structure. 2644 * Fields are initialized based on PCI device information and 2645 * OS network device settings (MTU size). 2646 **/ 2647 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 2648 { 2649 struct ixgbe_hw *hw = &adapter->hw; 2650 struct pci_dev *pdev = adapter->pdev; 2651 struct net_device *netdev = adapter->netdev; 2652 int err; 2653 2654 /* PCI config space info */ 2655 hw->vendor_id = pdev->vendor; 2656 hw->device_id = pdev->device; 2657 hw->revision_id = pdev->revision; 2658 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2659 hw->subsystem_device_id = pdev->subsystem_device; 2660 2661 hw->mbx.ops.init_params(hw); 2662 2663 /* assume legacy case in which PF would only give VF 2 queues */ 2664 hw->mac.max_tx_queues = 2; 2665 hw->mac.max_rx_queues = 2; 2666 2667 /* lock to protect mailbox accesses */ 2668 spin_lock_init(&adapter->mbx_lock); 2669 2670 err = hw->mac.ops.reset_hw(hw); 2671 if (err) { 2672 dev_info(&pdev->dev, 2673 "PF still in reset state. Is the PF interface up?\n"); 2674 } else { 2675 err = hw->mac.ops.init_hw(hw); 2676 if (err) { 2677 pr_err("init_shared_code failed: %d\n", err); 2678 goto out; 2679 } 2680 ixgbevf_negotiate_api(adapter); 2681 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 2682 if (err) 2683 dev_info(&pdev->dev, "Error reading MAC address\n"); 2684 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 2685 dev_info(&pdev->dev, 2686 "MAC address not assigned by administrator.\n"); 2687 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 2688 } 2689 2690 if (!is_valid_ether_addr(netdev->dev_addr)) { 2691 dev_info(&pdev->dev, "Assigning random MAC address\n"); 2692 eth_hw_addr_random(netdev); 2693 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 2694 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 2695 } 2696 2697 /* Enable dynamic interrupt throttling rates */ 2698 adapter->rx_itr_setting = 1; 2699 adapter->tx_itr_setting = 1; 2700 2701 /* set default ring sizes */ 2702 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 2703 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 2704 2705 set_bit(__IXGBEVF_DOWN, &adapter->state); 2706 return 0; 2707 2708 out: 2709 return err; 2710 } 2711 2712 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 2713 { \ 2714 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 2715 if (current_counter < last_counter) \ 2716 counter += 0x100000000LL; \ 2717 last_counter = current_counter; \ 2718 counter &= 0xFFFFFFFF00000000LL; \ 2719 counter |= current_counter; \ 2720 } 2721 2722 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 2723 { \ 2724 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 2725 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 2726 u64 current_counter = (current_counter_msb << 32) | \ 2727 current_counter_lsb; \ 2728 if (current_counter < last_counter) \ 2729 counter += 0x1000000000LL; \ 2730 last_counter = current_counter; \ 2731 counter &= 0xFFFFFFF000000000LL; \ 2732 counter |= current_counter; \ 2733 } 2734 /** 2735 * ixgbevf_update_stats - Update the board statistics counters. 2736 * @adapter: board private structure 2737 **/ 2738 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 2739 { 2740 struct ixgbe_hw *hw = &adapter->hw; 2741 int i; 2742 2743 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2744 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2745 return; 2746 2747 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 2748 adapter->stats.vfgprc); 2749 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 2750 adapter->stats.vfgptc); 2751 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 2752 adapter->stats.last_vfgorc, 2753 adapter->stats.vfgorc); 2754 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 2755 adapter->stats.last_vfgotc, 2756 adapter->stats.vfgotc); 2757 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 2758 adapter->stats.vfmprc); 2759 2760 for (i = 0; i < adapter->num_rx_queues; i++) { 2761 adapter->hw_csum_rx_error += 2762 adapter->rx_ring[i]->hw_csum_rx_error; 2763 adapter->rx_ring[i]->hw_csum_rx_error = 0; 2764 } 2765 } 2766 2767 /** 2768 * ixgbevf_service_timer - Timer Call-back 2769 * @data: pointer to adapter cast into an unsigned long 2770 **/ 2771 static void ixgbevf_service_timer(unsigned long data) 2772 { 2773 struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data; 2774 2775 /* Reset the timer */ 2776 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 2777 2778 ixgbevf_service_event_schedule(adapter); 2779 } 2780 2781 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 2782 { 2783 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 2784 return; 2785 2786 /* If we're already down or resetting, just bail */ 2787 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2788 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 2789 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2790 return; 2791 2792 adapter->tx_timeout_count++; 2793 2794 rtnl_lock(); 2795 ixgbevf_reinit_locked(adapter); 2796 rtnl_unlock(); 2797 } 2798 2799 /** 2800 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 2801 * @adapter: pointer to the device adapter structure 2802 * 2803 * This function serves two purposes. First it strobes the interrupt lines 2804 * in order to make certain interrupts are occurring. Secondly it sets the 2805 * bits needed to check for TX hangs. As a result we should immediately 2806 * determine if a hang has occurred. 2807 **/ 2808 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 2809 { 2810 struct ixgbe_hw *hw = &adapter->hw; 2811 u32 eics = 0; 2812 int i; 2813 2814 /* If we're down or resetting, just bail */ 2815 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2816 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2817 return; 2818 2819 /* Force detection of hung controller */ 2820 if (netif_carrier_ok(adapter->netdev)) { 2821 for (i = 0; i < adapter->num_tx_queues; i++) 2822 set_check_for_tx_hang(adapter->tx_ring[i]); 2823 } 2824 2825 /* get one bit for every active Tx/Rx interrupt vector */ 2826 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 2827 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 2828 2829 if (qv->rx.ring || qv->tx.ring) 2830 eics |= BIT(i); 2831 } 2832 2833 /* Cause software interrupt to ensure rings are cleaned */ 2834 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 2835 } 2836 2837 /** 2838 * ixgbevf_watchdog_update_link - update the link status 2839 * @adapter: pointer to the device adapter structure 2840 **/ 2841 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 2842 { 2843 struct ixgbe_hw *hw = &adapter->hw; 2844 u32 link_speed = adapter->link_speed; 2845 bool link_up = adapter->link_up; 2846 s32 err; 2847 2848 spin_lock_bh(&adapter->mbx_lock); 2849 2850 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 2851 2852 spin_unlock_bh(&adapter->mbx_lock); 2853 2854 /* if check for link returns error we will need to reset */ 2855 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 2856 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 2857 link_up = false; 2858 } 2859 2860 adapter->link_up = link_up; 2861 adapter->link_speed = link_speed; 2862 } 2863 2864 /** 2865 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 2866 * print link up message 2867 * @adapter: pointer to the device adapter structure 2868 **/ 2869 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 2870 { 2871 struct net_device *netdev = adapter->netdev; 2872 2873 /* only continue if link was previously down */ 2874 if (netif_carrier_ok(netdev)) 2875 return; 2876 2877 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 2878 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 2879 "10 Gbps" : 2880 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 2881 "1 Gbps" : 2882 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 2883 "100 Mbps" : 2884 "unknown speed"); 2885 2886 netif_carrier_on(netdev); 2887 } 2888 2889 /** 2890 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 2891 * print link down message 2892 * @adapter: pointer to the adapter structure 2893 **/ 2894 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 2895 { 2896 struct net_device *netdev = adapter->netdev; 2897 2898 adapter->link_speed = 0; 2899 2900 /* only continue if link was up previously */ 2901 if (!netif_carrier_ok(netdev)) 2902 return; 2903 2904 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 2905 2906 netif_carrier_off(netdev); 2907 } 2908 2909 /** 2910 * ixgbevf_watchdog_subtask - worker thread to bring link up 2911 * @work: pointer to work_struct containing our data 2912 **/ 2913 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 2914 { 2915 /* if interface is down do nothing */ 2916 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2917 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2918 return; 2919 2920 ixgbevf_watchdog_update_link(adapter); 2921 2922 if (adapter->link_up) 2923 ixgbevf_watchdog_link_is_up(adapter); 2924 else 2925 ixgbevf_watchdog_link_is_down(adapter); 2926 2927 ixgbevf_update_stats(adapter); 2928 } 2929 2930 /** 2931 * ixgbevf_service_task - manages and runs subtasks 2932 * @work: pointer to work_struct containing our data 2933 **/ 2934 static void ixgbevf_service_task(struct work_struct *work) 2935 { 2936 struct ixgbevf_adapter *adapter = container_of(work, 2937 struct ixgbevf_adapter, 2938 service_task); 2939 struct ixgbe_hw *hw = &adapter->hw; 2940 2941 if (IXGBE_REMOVED(hw->hw_addr)) { 2942 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 2943 rtnl_lock(); 2944 ixgbevf_down(adapter); 2945 rtnl_unlock(); 2946 } 2947 return; 2948 } 2949 2950 ixgbevf_queue_reset_subtask(adapter); 2951 ixgbevf_reset_subtask(adapter); 2952 ixgbevf_watchdog_subtask(adapter); 2953 ixgbevf_check_hang_subtask(adapter); 2954 2955 ixgbevf_service_event_complete(adapter); 2956 } 2957 2958 /** 2959 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 2960 * @tx_ring: Tx descriptor ring for a specific queue 2961 * 2962 * Free all transmit software resources 2963 **/ 2964 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 2965 { 2966 ixgbevf_clean_tx_ring(tx_ring); 2967 2968 vfree(tx_ring->tx_buffer_info); 2969 tx_ring->tx_buffer_info = NULL; 2970 2971 /* if not set, then don't free */ 2972 if (!tx_ring->desc) 2973 return; 2974 2975 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 2976 tx_ring->dma); 2977 2978 tx_ring->desc = NULL; 2979 } 2980 2981 /** 2982 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 2983 * @adapter: board private structure 2984 * 2985 * Free all transmit software resources 2986 **/ 2987 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 2988 { 2989 int i; 2990 2991 for (i = 0; i < adapter->num_tx_queues; i++) 2992 if (adapter->tx_ring[i]->desc) 2993 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 2994 } 2995 2996 /** 2997 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 2998 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 2999 * 3000 * Return 0 on success, negative on failure 3001 **/ 3002 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3003 { 3004 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3005 int size; 3006 3007 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3008 tx_ring->tx_buffer_info = vzalloc(size); 3009 if (!tx_ring->tx_buffer_info) 3010 goto err; 3011 3012 /* round up to nearest 4K */ 3013 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3014 tx_ring->size = ALIGN(tx_ring->size, 4096); 3015 3016 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3017 &tx_ring->dma, GFP_KERNEL); 3018 if (!tx_ring->desc) 3019 goto err; 3020 3021 return 0; 3022 3023 err: 3024 vfree(tx_ring->tx_buffer_info); 3025 tx_ring->tx_buffer_info = NULL; 3026 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3027 return -ENOMEM; 3028 } 3029 3030 /** 3031 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3032 * @adapter: board private structure 3033 * 3034 * If this function returns with an error, then it's possible one or 3035 * more of the rings is populated (while the rest are not). It is the 3036 * callers duty to clean those orphaned rings. 3037 * 3038 * Return 0 on success, negative on failure 3039 **/ 3040 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3041 { 3042 int i, err = 0; 3043 3044 for (i = 0; i < adapter->num_tx_queues; i++) { 3045 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3046 if (!err) 3047 continue; 3048 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3049 break; 3050 } 3051 3052 return err; 3053 } 3054 3055 /** 3056 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3057 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3058 * 3059 * Returns 0 on success, negative on failure 3060 **/ 3061 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring) 3062 { 3063 int size; 3064 3065 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3066 rx_ring->rx_buffer_info = vzalloc(size); 3067 if (!rx_ring->rx_buffer_info) 3068 goto err; 3069 3070 /* Round up to nearest 4K */ 3071 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3072 rx_ring->size = ALIGN(rx_ring->size, 4096); 3073 3074 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3075 &rx_ring->dma, GFP_KERNEL); 3076 3077 if (!rx_ring->desc) 3078 goto err; 3079 3080 return 0; 3081 err: 3082 vfree(rx_ring->rx_buffer_info); 3083 rx_ring->rx_buffer_info = NULL; 3084 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3085 return -ENOMEM; 3086 } 3087 3088 /** 3089 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3090 * @adapter: board private structure 3091 * 3092 * If this function returns with an error, then it's possible one or 3093 * more of the rings is populated (while the rest are not). It is the 3094 * callers duty to clean those orphaned rings. 3095 * 3096 * Return 0 on success, negative on failure 3097 **/ 3098 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3099 { 3100 int i, err = 0; 3101 3102 for (i = 0; i < adapter->num_rx_queues; i++) { 3103 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]); 3104 if (!err) 3105 continue; 3106 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3107 break; 3108 } 3109 return err; 3110 } 3111 3112 /** 3113 * ixgbevf_free_rx_resources - Free Rx Resources 3114 * @rx_ring: ring to clean the resources from 3115 * 3116 * Free all receive software resources 3117 **/ 3118 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3119 { 3120 ixgbevf_clean_rx_ring(rx_ring); 3121 3122 vfree(rx_ring->rx_buffer_info); 3123 rx_ring->rx_buffer_info = NULL; 3124 3125 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3126 rx_ring->dma); 3127 3128 rx_ring->desc = NULL; 3129 } 3130 3131 /** 3132 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3133 * @adapter: board private structure 3134 * 3135 * Free all receive software resources 3136 **/ 3137 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3138 { 3139 int i; 3140 3141 for (i = 0; i < adapter->num_rx_queues; i++) 3142 if (adapter->rx_ring[i]->desc) 3143 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3144 } 3145 3146 /** 3147 * ixgbevf_open - Called when a network interface is made active 3148 * @netdev: network interface device structure 3149 * 3150 * Returns 0 on success, negative value on failure 3151 * 3152 * The open entry point is called when a network interface is made 3153 * active by the system (IFF_UP). At this point all resources needed 3154 * for transmit and receive operations are allocated, the interrupt 3155 * handler is registered with the OS, the watchdog timer is started, 3156 * and the stack is notified that the interface is ready. 3157 **/ 3158 int ixgbevf_open(struct net_device *netdev) 3159 { 3160 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3161 struct ixgbe_hw *hw = &adapter->hw; 3162 int err; 3163 3164 /* A previous failure to open the device because of a lack of 3165 * available MSIX vector resources may have reset the number 3166 * of msix vectors variable to zero. The only way to recover 3167 * is to unload/reload the driver and hope that the system has 3168 * been able to recover some MSIX vector resources. 3169 */ 3170 if (!adapter->num_msix_vectors) 3171 return -ENOMEM; 3172 3173 if (hw->adapter_stopped) { 3174 ixgbevf_reset(adapter); 3175 /* if adapter is still stopped then PF isn't up and 3176 * the VF can't start. 3177 */ 3178 if (hw->adapter_stopped) { 3179 err = IXGBE_ERR_MBX; 3180 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3181 goto err_setup_reset; 3182 } 3183 } 3184 3185 /* disallow open during test */ 3186 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3187 return -EBUSY; 3188 3189 netif_carrier_off(netdev); 3190 3191 /* allocate transmit descriptors */ 3192 err = ixgbevf_setup_all_tx_resources(adapter); 3193 if (err) 3194 goto err_setup_tx; 3195 3196 /* allocate receive descriptors */ 3197 err = ixgbevf_setup_all_rx_resources(adapter); 3198 if (err) 3199 goto err_setup_rx; 3200 3201 ixgbevf_configure(adapter); 3202 3203 /* Map the Tx/Rx rings to the vectors we were allotted. 3204 * if request_irq will be called in this function map_rings 3205 * must be called *before* up_complete 3206 */ 3207 ixgbevf_map_rings_to_vectors(adapter); 3208 3209 err = ixgbevf_request_irq(adapter); 3210 if (err) 3211 goto err_req_irq; 3212 3213 ixgbevf_up_complete(adapter); 3214 3215 return 0; 3216 3217 err_req_irq: 3218 ixgbevf_down(adapter); 3219 err_setup_rx: 3220 ixgbevf_free_all_rx_resources(adapter); 3221 err_setup_tx: 3222 ixgbevf_free_all_tx_resources(adapter); 3223 ixgbevf_reset(adapter); 3224 3225 err_setup_reset: 3226 3227 return err; 3228 } 3229 3230 /** 3231 * ixgbevf_close - Disables a network interface 3232 * @netdev: network interface device structure 3233 * 3234 * Returns 0, this is not allowed to fail 3235 * 3236 * The close entry point is called when an interface is de-activated 3237 * by the OS. The hardware is still under the drivers control, but 3238 * needs to be disabled. A global MAC reset is issued to stop the 3239 * hardware, and all transmit and receive resources are freed. 3240 **/ 3241 int ixgbevf_close(struct net_device *netdev) 3242 { 3243 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3244 3245 ixgbevf_down(adapter); 3246 ixgbevf_free_irq(adapter); 3247 3248 ixgbevf_free_all_tx_resources(adapter); 3249 ixgbevf_free_all_rx_resources(adapter); 3250 3251 return 0; 3252 } 3253 3254 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3255 { 3256 struct net_device *dev = adapter->netdev; 3257 3258 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3259 &adapter->state)) 3260 return; 3261 3262 /* if interface is down do nothing */ 3263 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3264 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3265 return; 3266 3267 /* Hardware has to reinitialize queues and interrupts to 3268 * match packet buffer alignment. Unfortunately, the 3269 * hardware is not flexible enough to do this dynamically. 3270 */ 3271 if (netif_running(dev)) 3272 ixgbevf_close(dev); 3273 3274 ixgbevf_clear_interrupt_scheme(adapter); 3275 ixgbevf_init_interrupt_scheme(adapter); 3276 3277 if (netif_running(dev)) 3278 ixgbevf_open(dev); 3279 } 3280 3281 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3282 u32 vlan_macip_lens, u32 type_tucmd, 3283 u32 mss_l4len_idx) 3284 { 3285 struct ixgbe_adv_tx_context_desc *context_desc; 3286 u16 i = tx_ring->next_to_use; 3287 3288 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3289 3290 i++; 3291 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3292 3293 /* set bits to identify this as an advanced context descriptor */ 3294 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3295 3296 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3297 context_desc->seqnum_seed = 0; 3298 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3299 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3300 } 3301 3302 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3303 struct ixgbevf_tx_buffer *first, 3304 u8 *hdr_len) 3305 { 3306 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3307 struct sk_buff *skb = first->skb; 3308 union { 3309 struct iphdr *v4; 3310 struct ipv6hdr *v6; 3311 unsigned char *hdr; 3312 } ip; 3313 union { 3314 struct tcphdr *tcp; 3315 unsigned char *hdr; 3316 } l4; 3317 u32 paylen, l4_offset; 3318 int err; 3319 3320 if (skb->ip_summed != CHECKSUM_PARTIAL) 3321 return 0; 3322 3323 if (!skb_is_gso(skb)) 3324 return 0; 3325 3326 err = skb_cow_head(skb, 0); 3327 if (err < 0) 3328 return err; 3329 3330 ip.hdr = skb_network_header(skb); 3331 l4.hdr = skb_checksum_start(skb); 3332 3333 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3334 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3335 3336 /* initialize outer IP header fields */ 3337 if (ip.v4->version == 4) { 3338 unsigned char *csum_start = skb_checksum_start(skb); 3339 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3340 3341 /* IP header will have to cancel out any data that 3342 * is not a part of the outer IP header 3343 */ 3344 ip.v4->check = csum_fold(csum_partial(trans_start, 3345 csum_start - trans_start, 3346 0)); 3347 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3348 3349 ip.v4->tot_len = 0; 3350 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3351 IXGBE_TX_FLAGS_CSUM | 3352 IXGBE_TX_FLAGS_IPV4; 3353 } else { 3354 ip.v6->payload_len = 0; 3355 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3356 IXGBE_TX_FLAGS_CSUM; 3357 } 3358 3359 /* determine offset of inner transport header */ 3360 l4_offset = l4.hdr - skb->data; 3361 3362 /* compute length of segmentation header */ 3363 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3364 3365 /* remove payload length from inner checksum */ 3366 paylen = skb->len - l4_offset; 3367 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3368 3369 /* update gso size and bytecount with header size */ 3370 first->gso_segs = skb_shinfo(skb)->gso_segs; 3371 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3372 3373 /* mss_l4len_id: use 1 as index for TSO */ 3374 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3375 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3376 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3377 3378 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3379 vlan_macip_lens = l4.hdr - ip.hdr; 3380 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3381 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3382 3383 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3384 type_tucmd, mss_l4len_idx); 3385 3386 return 1; 3387 } 3388 3389 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) 3390 { 3391 unsigned int offset = 0; 3392 3393 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 3394 3395 return offset == skb_checksum_start_offset(skb); 3396 } 3397 3398 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3399 struct ixgbevf_tx_buffer *first) 3400 { 3401 struct sk_buff *skb = first->skb; 3402 u32 vlan_macip_lens = 0; 3403 u32 type_tucmd = 0; 3404 3405 if (skb->ip_summed != CHECKSUM_PARTIAL) 3406 goto no_csum; 3407 3408 switch (skb->csum_offset) { 3409 case offsetof(struct tcphdr, check): 3410 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3411 /* fall through */ 3412 case offsetof(struct udphdr, check): 3413 break; 3414 case offsetof(struct sctphdr, checksum): 3415 /* validate that this is actually an SCTP request */ 3416 if (((first->protocol == htons(ETH_P_IP)) && 3417 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 3418 ((first->protocol == htons(ETH_P_IPV6)) && 3419 ixgbevf_ipv6_csum_is_sctp(skb))) { 3420 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3421 break; 3422 } 3423 /* fall through */ 3424 default: 3425 skb_checksum_help(skb); 3426 goto no_csum; 3427 } 3428 /* update TX checksum flag */ 3429 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3430 vlan_macip_lens = skb_checksum_start_offset(skb) - 3431 skb_network_offset(skb); 3432 no_csum: 3433 /* vlan_macip_lens: MACLEN, VLAN tag */ 3434 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3435 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3436 3437 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0); 3438 } 3439 3440 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3441 { 3442 /* set type for advanced descriptor with frame checksum insertion */ 3443 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3444 IXGBE_ADVTXD_DCMD_IFCS | 3445 IXGBE_ADVTXD_DCMD_DEXT); 3446 3447 /* set HW VLAN bit if VLAN is present */ 3448 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3449 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3450 3451 /* set segmentation enable bits for TSO/FSO */ 3452 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3453 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3454 3455 return cmd_type; 3456 } 3457 3458 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3459 u32 tx_flags, unsigned int paylen) 3460 { 3461 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3462 3463 /* enable L4 checksum for TSO and TX checksum offload */ 3464 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3465 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3466 3467 /* enble IPv4 checksum for TSO */ 3468 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3469 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3470 3471 /* use index 1 context for TSO/FSO/FCOE */ 3472 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3473 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3474 3475 /* Check Context must be set if Tx switch is enabled, which it 3476 * always is for case where virtual functions are running 3477 */ 3478 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3479 3480 tx_desc->read.olinfo_status = olinfo_status; 3481 } 3482 3483 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3484 struct ixgbevf_tx_buffer *first, 3485 const u8 hdr_len) 3486 { 3487 dma_addr_t dma; 3488 struct sk_buff *skb = first->skb; 3489 struct ixgbevf_tx_buffer *tx_buffer; 3490 union ixgbe_adv_tx_desc *tx_desc; 3491 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 3492 unsigned int data_len = skb->data_len; 3493 unsigned int size = skb_headlen(skb); 3494 unsigned int paylen = skb->len - hdr_len; 3495 u32 tx_flags = first->tx_flags; 3496 __le32 cmd_type; 3497 u16 i = tx_ring->next_to_use; 3498 3499 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3500 3501 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen); 3502 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3503 3504 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3505 if (dma_mapping_error(tx_ring->dev, dma)) 3506 goto dma_error; 3507 3508 /* record length, and DMA address */ 3509 dma_unmap_len_set(first, len, size); 3510 dma_unmap_addr_set(first, dma, dma); 3511 3512 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3513 3514 for (;;) { 3515 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3516 tx_desc->read.cmd_type_len = 3517 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3518 3519 i++; 3520 tx_desc++; 3521 if (i == tx_ring->count) { 3522 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3523 i = 0; 3524 } 3525 3526 dma += IXGBE_MAX_DATA_PER_TXD; 3527 size -= IXGBE_MAX_DATA_PER_TXD; 3528 3529 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3530 tx_desc->read.olinfo_status = 0; 3531 } 3532 3533 if (likely(!data_len)) 3534 break; 3535 3536 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 3537 3538 i++; 3539 tx_desc++; 3540 if (i == tx_ring->count) { 3541 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3542 i = 0; 3543 } 3544 3545 size = skb_frag_size(frag); 3546 data_len -= size; 3547 3548 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3549 DMA_TO_DEVICE); 3550 if (dma_mapping_error(tx_ring->dev, dma)) 3551 goto dma_error; 3552 3553 tx_buffer = &tx_ring->tx_buffer_info[i]; 3554 dma_unmap_len_set(tx_buffer, len, size); 3555 dma_unmap_addr_set(tx_buffer, dma, dma); 3556 3557 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3558 tx_desc->read.olinfo_status = 0; 3559 3560 frag++; 3561 } 3562 3563 /* write last descriptor with RS and EOP bits */ 3564 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 3565 tx_desc->read.cmd_type_len = cmd_type; 3566 3567 /* set the timestamp */ 3568 first->time_stamp = jiffies; 3569 3570 /* Force memory writes to complete before letting h/w know there 3571 * are new descriptors to fetch. (Only applicable for weak-ordered 3572 * memory model archs, such as IA-64). 3573 * 3574 * We also need this memory barrier (wmb) to make certain all of the 3575 * status bits have been updated before next_to_watch is written. 3576 */ 3577 wmb(); 3578 3579 /* set next_to_watch value indicating a packet is present */ 3580 first->next_to_watch = tx_desc; 3581 3582 i++; 3583 if (i == tx_ring->count) 3584 i = 0; 3585 3586 tx_ring->next_to_use = i; 3587 3588 /* notify HW of packet */ 3589 ixgbevf_write_tail(tx_ring, i); 3590 3591 return; 3592 dma_error: 3593 dev_err(tx_ring->dev, "TX DMA map failed\n"); 3594 3595 /* clear dma mappings for failed tx_buffer_info map */ 3596 for (;;) { 3597 tx_buffer = &tx_ring->tx_buffer_info[i]; 3598 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer); 3599 if (tx_buffer == first) 3600 break; 3601 if (i == 0) 3602 i = tx_ring->count; 3603 i--; 3604 } 3605 3606 tx_ring->next_to_use = i; 3607 } 3608 3609 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 3610 { 3611 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3612 /* Herbert's original patch had: 3613 * smp_mb__after_netif_stop_queue(); 3614 * but since that doesn't exist yet, just open code it. 3615 */ 3616 smp_mb(); 3617 3618 /* We need to check again in a case another CPU has just 3619 * made room available. 3620 */ 3621 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 3622 return -EBUSY; 3623 3624 /* A reprieve! - use start_queue because it doesn't call schedule */ 3625 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3626 ++tx_ring->tx_stats.restart_queue; 3627 3628 return 0; 3629 } 3630 3631 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 3632 { 3633 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 3634 return 0; 3635 return __ixgbevf_maybe_stop_tx(tx_ring, size); 3636 } 3637 3638 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3639 { 3640 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3641 struct ixgbevf_tx_buffer *first; 3642 struct ixgbevf_ring *tx_ring; 3643 int tso; 3644 u32 tx_flags = 0; 3645 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 3646 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 3647 unsigned short f; 3648 #endif 3649 u8 hdr_len = 0; 3650 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 3651 3652 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 3653 dev_kfree_skb_any(skb); 3654 return NETDEV_TX_OK; 3655 } 3656 3657 tx_ring = adapter->tx_ring[skb->queue_mapping]; 3658 3659 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 3660 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 3661 * + 2 desc gap to keep tail from touching head, 3662 * + 1 desc for context descriptor, 3663 * otherwise try next time 3664 */ 3665 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 3666 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 3667 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 3668 #else 3669 count += skb_shinfo(skb)->nr_frags; 3670 #endif 3671 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 3672 tx_ring->tx_stats.tx_busy++; 3673 return NETDEV_TX_BUSY; 3674 } 3675 3676 /* record the location of the first descriptor for this packet */ 3677 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 3678 first->skb = skb; 3679 first->bytecount = skb->len; 3680 first->gso_segs = 1; 3681 3682 if (skb_vlan_tag_present(skb)) { 3683 tx_flags |= skb_vlan_tag_get(skb); 3684 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 3685 tx_flags |= IXGBE_TX_FLAGS_VLAN; 3686 } 3687 3688 /* record initial flags and protocol */ 3689 first->tx_flags = tx_flags; 3690 first->protocol = vlan_get_protocol(skb); 3691 3692 tso = ixgbevf_tso(tx_ring, first, &hdr_len); 3693 if (tso < 0) 3694 goto out_drop; 3695 else if (!tso) 3696 ixgbevf_tx_csum(tx_ring, first); 3697 3698 ixgbevf_tx_map(tx_ring, first, hdr_len); 3699 3700 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 3701 3702 return NETDEV_TX_OK; 3703 3704 out_drop: 3705 dev_kfree_skb_any(first->skb); 3706 first->skb = NULL; 3707 3708 return NETDEV_TX_OK; 3709 } 3710 3711 /** 3712 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 3713 * @netdev: network interface device structure 3714 * @p: pointer to an address structure 3715 * 3716 * Returns 0 on success, negative on failure 3717 **/ 3718 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 3719 { 3720 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3721 struct ixgbe_hw *hw = &adapter->hw; 3722 struct sockaddr *addr = p; 3723 int err; 3724 3725 if (!is_valid_ether_addr(addr->sa_data)) 3726 return -EADDRNOTAVAIL; 3727 3728 spin_lock_bh(&adapter->mbx_lock); 3729 3730 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 3731 3732 spin_unlock_bh(&adapter->mbx_lock); 3733 3734 if (err) 3735 return -EPERM; 3736 3737 ether_addr_copy(hw->mac.addr, addr->sa_data); 3738 ether_addr_copy(netdev->dev_addr, addr->sa_data); 3739 3740 return 0; 3741 } 3742 3743 /** 3744 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 3745 * @netdev: network interface device structure 3746 * @new_mtu: new value for maximum frame size 3747 * 3748 * Returns 0 on success, negative on failure 3749 **/ 3750 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 3751 { 3752 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3753 struct ixgbe_hw *hw = &adapter->hw; 3754 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3755 int ret; 3756 3757 spin_lock_bh(&adapter->mbx_lock); 3758 /* notify the PF of our intent to use this size of frame */ 3759 ret = hw->mac.ops.set_rlpml(hw, max_frame); 3760 spin_unlock_bh(&adapter->mbx_lock); 3761 if (ret) 3762 return -EINVAL; 3763 3764 hw_dbg(hw, "changing MTU from %d to %d\n", 3765 netdev->mtu, new_mtu); 3766 3767 /* must set new MTU before calling down or up */ 3768 netdev->mtu = new_mtu; 3769 3770 return 0; 3771 } 3772 3773 #ifdef CONFIG_NET_POLL_CONTROLLER 3774 /* Polling 'interrupt' - used by things like netconsole to send skbs 3775 * without having to re-enable interrupts. It's not called while 3776 * the interrupt routine is executing. 3777 */ 3778 static void ixgbevf_netpoll(struct net_device *netdev) 3779 { 3780 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3781 int i; 3782 3783 /* if interface is down do nothing */ 3784 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 3785 return; 3786 for (i = 0; i < adapter->num_rx_queues; i++) 3787 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]); 3788 } 3789 #endif /* CONFIG_NET_POLL_CONTROLLER */ 3790 3791 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state) 3792 { 3793 struct net_device *netdev = pci_get_drvdata(pdev); 3794 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3795 #ifdef CONFIG_PM 3796 int retval = 0; 3797 #endif 3798 3799 netif_device_detach(netdev); 3800 3801 if (netif_running(netdev)) { 3802 rtnl_lock(); 3803 ixgbevf_down(adapter); 3804 ixgbevf_free_irq(adapter); 3805 ixgbevf_free_all_tx_resources(adapter); 3806 ixgbevf_free_all_rx_resources(adapter); 3807 ixgbevf_clear_interrupt_scheme(adapter); 3808 rtnl_unlock(); 3809 } 3810 3811 #ifdef CONFIG_PM 3812 retval = pci_save_state(pdev); 3813 if (retval) 3814 return retval; 3815 3816 #endif 3817 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 3818 pci_disable_device(pdev); 3819 3820 return 0; 3821 } 3822 3823 #ifdef CONFIG_PM 3824 static int ixgbevf_resume(struct pci_dev *pdev) 3825 { 3826 struct net_device *netdev = pci_get_drvdata(pdev); 3827 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3828 u32 err; 3829 3830 pci_restore_state(pdev); 3831 /* pci_restore_state clears dev->state_saved so call 3832 * pci_save_state to restore it. 3833 */ 3834 pci_save_state(pdev); 3835 3836 err = pci_enable_device_mem(pdev); 3837 if (err) { 3838 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 3839 return err; 3840 } 3841 smp_mb__before_atomic(); 3842 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 3843 pci_set_master(pdev); 3844 3845 ixgbevf_reset(adapter); 3846 3847 rtnl_lock(); 3848 err = ixgbevf_init_interrupt_scheme(adapter); 3849 rtnl_unlock(); 3850 if (err) { 3851 dev_err(&pdev->dev, "Cannot initialize interrupts\n"); 3852 return err; 3853 } 3854 3855 if (netif_running(netdev)) { 3856 err = ixgbevf_open(netdev); 3857 if (err) 3858 return err; 3859 } 3860 3861 netif_device_attach(netdev); 3862 3863 return err; 3864 } 3865 3866 #endif /* CONFIG_PM */ 3867 static void ixgbevf_shutdown(struct pci_dev *pdev) 3868 { 3869 ixgbevf_suspend(pdev, PMSG_SUSPEND); 3870 } 3871 3872 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev, 3873 struct rtnl_link_stats64 *stats) 3874 { 3875 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3876 unsigned int start; 3877 u64 bytes, packets; 3878 const struct ixgbevf_ring *ring; 3879 int i; 3880 3881 ixgbevf_update_stats(adapter); 3882 3883 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 3884 3885 for (i = 0; i < adapter->num_rx_queues; i++) { 3886 ring = adapter->rx_ring[i]; 3887 do { 3888 start = u64_stats_fetch_begin_irq(&ring->syncp); 3889 bytes = ring->stats.bytes; 3890 packets = ring->stats.packets; 3891 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3892 stats->rx_bytes += bytes; 3893 stats->rx_packets += packets; 3894 } 3895 3896 for (i = 0; i < adapter->num_tx_queues; i++) { 3897 ring = adapter->tx_ring[i]; 3898 do { 3899 start = u64_stats_fetch_begin_irq(&ring->syncp); 3900 bytes = ring->stats.bytes; 3901 packets = ring->stats.packets; 3902 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3903 stats->tx_bytes += bytes; 3904 stats->tx_packets += packets; 3905 } 3906 3907 return stats; 3908 } 3909 3910 #define IXGBEVF_MAX_MAC_HDR_LEN 127 3911 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 3912 3913 static netdev_features_t 3914 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 3915 netdev_features_t features) 3916 { 3917 unsigned int network_hdr_len, mac_hdr_len; 3918 3919 /* Make certain the headers can be described by a context descriptor */ 3920 mac_hdr_len = skb_network_header(skb) - skb->data; 3921 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 3922 return features & ~(NETIF_F_HW_CSUM | 3923 NETIF_F_SCTP_CRC | 3924 NETIF_F_HW_VLAN_CTAG_TX | 3925 NETIF_F_TSO | 3926 NETIF_F_TSO6); 3927 3928 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 3929 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 3930 return features & ~(NETIF_F_HW_CSUM | 3931 NETIF_F_SCTP_CRC | 3932 NETIF_F_TSO | 3933 NETIF_F_TSO6); 3934 3935 /* We can only support IPV4 TSO in tunnels if we can mangle the 3936 * inner IP ID field, so strip TSO if MANGLEID is not supported. 3937 */ 3938 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 3939 features &= ~NETIF_F_TSO; 3940 3941 return features; 3942 } 3943 3944 static const struct net_device_ops ixgbevf_netdev_ops = { 3945 .ndo_open = ixgbevf_open, 3946 .ndo_stop = ixgbevf_close, 3947 .ndo_start_xmit = ixgbevf_xmit_frame, 3948 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 3949 .ndo_get_stats64 = ixgbevf_get_stats, 3950 .ndo_validate_addr = eth_validate_addr, 3951 .ndo_set_mac_address = ixgbevf_set_mac, 3952 .ndo_change_mtu = ixgbevf_change_mtu, 3953 .ndo_tx_timeout = ixgbevf_tx_timeout, 3954 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 3955 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 3956 #ifdef CONFIG_NET_RX_BUSY_POLL 3957 .ndo_busy_poll = ixgbevf_busy_poll_recv, 3958 #endif 3959 #ifdef CONFIG_NET_POLL_CONTROLLER 3960 .ndo_poll_controller = ixgbevf_netpoll, 3961 #endif 3962 .ndo_features_check = ixgbevf_features_check, 3963 }; 3964 3965 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 3966 { 3967 dev->netdev_ops = &ixgbevf_netdev_ops; 3968 ixgbevf_set_ethtool_ops(dev); 3969 dev->watchdog_timeo = 5 * HZ; 3970 } 3971 3972 /** 3973 * ixgbevf_probe - Device Initialization Routine 3974 * @pdev: PCI device information struct 3975 * @ent: entry in ixgbevf_pci_tbl 3976 * 3977 * Returns 0 on success, negative on failure 3978 * 3979 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 3980 * The OS initialization, configuring of the adapter private structure, 3981 * and a hardware reset occur. 3982 **/ 3983 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3984 { 3985 struct net_device *netdev; 3986 struct ixgbevf_adapter *adapter = NULL; 3987 struct ixgbe_hw *hw = NULL; 3988 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 3989 int err, pci_using_dac; 3990 bool disable_dev = false; 3991 3992 err = pci_enable_device(pdev); 3993 if (err) 3994 return err; 3995 3996 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 3997 pci_using_dac = 1; 3998 } else { 3999 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4000 if (err) { 4001 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4002 goto err_dma; 4003 } 4004 pci_using_dac = 0; 4005 } 4006 4007 err = pci_request_regions(pdev, ixgbevf_driver_name); 4008 if (err) { 4009 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4010 goto err_pci_reg; 4011 } 4012 4013 pci_set_master(pdev); 4014 4015 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4016 MAX_TX_QUEUES); 4017 if (!netdev) { 4018 err = -ENOMEM; 4019 goto err_alloc_etherdev; 4020 } 4021 4022 SET_NETDEV_DEV(netdev, &pdev->dev); 4023 4024 adapter = netdev_priv(netdev); 4025 4026 adapter->netdev = netdev; 4027 adapter->pdev = pdev; 4028 hw = &adapter->hw; 4029 hw->back = adapter; 4030 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4031 4032 /* call save state here in standalone driver because it relies on 4033 * adapter struct to exist, and needs to call netdev_priv 4034 */ 4035 pci_save_state(pdev); 4036 4037 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4038 pci_resource_len(pdev, 0)); 4039 adapter->io_addr = hw->hw_addr; 4040 if (!hw->hw_addr) { 4041 err = -EIO; 4042 goto err_ioremap; 4043 } 4044 4045 ixgbevf_assign_netdev_ops(netdev); 4046 4047 /* Setup HW API */ 4048 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4049 hw->mac.type = ii->mac; 4050 4051 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4052 sizeof(struct ixgbe_mbx_operations)); 4053 4054 /* setup the private structure */ 4055 err = ixgbevf_sw_init(adapter); 4056 if (err) 4057 goto err_sw_init; 4058 4059 /* The HW MAC address was set and/or determined in sw_init */ 4060 if (!is_valid_ether_addr(netdev->dev_addr)) { 4061 pr_err("invalid MAC address\n"); 4062 err = -EIO; 4063 goto err_sw_init; 4064 } 4065 4066 netdev->hw_features = NETIF_F_SG | 4067 NETIF_F_TSO | 4068 NETIF_F_TSO6 | 4069 NETIF_F_RXCSUM | 4070 NETIF_F_HW_CSUM | 4071 NETIF_F_SCTP_CRC; 4072 4073 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4074 NETIF_F_GSO_GRE_CSUM | \ 4075 NETIF_F_GSO_IPXIP4 | \ 4076 NETIF_F_GSO_IPXIP6 | \ 4077 NETIF_F_GSO_UDP_TUNNEL | \ 4078 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4079 4080 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4081 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4082 IXGBEVF_GSO_PARTIAL_FEATURES; 4083 4084 netdev->features = netdev->hw_features; 4085 4086 if (pci_using_dac) 4087 netdev->features |= NETIF_F_HIGHDMA; 4088 4089 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4090 netdev->mpls_features |= NETIF_F_HW_CSUM; 4091 netdev->hw_enc_features |= netdev->vlan_features; 4092 4093 /* set this bit last since it cannot be part of vlan_features */ 4094 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4095 NETIF_F_HW_VLAN_CTAG_RX | 4096 NETIF_F_HW_VLAN_CTAG_TX; 4097 4098 netdev->priv_flags |= IFF_UNICAST_FLT; 4099 4100 /* MTU range: 68 - 1504 or 9710 */ 4101 netdev->min_mtu = ETH_MIN_MTU; 4102 switch (adapter->hw.api_version) { 4103 case ixgbe_mbox_api_11: 4104 case ixgbe_mbox_api_12: 4105 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4106 (ETH_HLEN + ETH_FCS_LEN); 4107 break; 4108 default: 4109 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4110 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4111 (ETH_HLEN + ETH_FCS_LEN); 4112 else 4113 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4114 break; 4115 } 4116 4117 if (IXGBE_REMOVED(hw->hw_addr)) { 4118 err = -EIO; 4119 goto err_sw_init; 4120 } 4121 4122 setup_timer(&adapter->service_timer, &ixgbevf_service_timer, 4123 (unsigned long)adapter); 4124 4125 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4126 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4127 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4128 4129 err = ixgbevf_init_interrupt_scheme(adapter); 4130 if (err) 4131 goto err_sw_init; 4132 4133 strcpy(netdev->name, "eth%d"); 4134 4135 err = register_netdev(netdev); 4136 if (err) 4137 goto err_register; 4138 4139 pci_set_drvdata(pdev, netdev); 4140 netif_carrier_off(netdev); 4141 4142 ixgbevf_init_last_counter_stats(adapter); 4143 4144 /* print the VF info */ 4145 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4146 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4147 4148 switch (hw->mac.type) { 4149 case ixgbe_mac_X550_vf: 4150 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4151 break; 4152 case ixgbe_mac_X540_vf: 4153 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4154 break; 4155 case ixgbe_mac_82599_vf: 4156 default: 4157 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4158 break; 4159 } 4160 4161 return 0; 4162 4163 err_register: 4164 ixgbevf_clear_interrupt_scheme(adapter); 4165 err_sw_init: 4166 ixgbevf_reset_interrupt_capability(adapter); 4167 iounmap(adapter->io_addr); 4168 err_ioremap: 4169 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4170 free_netdev(netdev); 4171 err_alloc_etherdev: 4172 pci_release_regions(pdev); 4173 err_pci_reg: 4174 err_dma: 4175 if (!adapter || disable_dev) 4176 pci_disable_device(pdev); 4177 return err; 4178 } 4179 4180 /** 4181 * ixgbevf_remove - Device Removal Routine 4182 * @pdev: PCI device information struct 4183 * 4184 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4185 * that it should release a PCI device. The could be caused by a 4186 * Hot-Plug event, or because the driver is going to be removed from 4187 * memory. 4188 **/ 4189 static void ixgbevf_remove(struct pci_dev *pdev) 4190 { 4191 struct net_device *netdev = pci_get_drvdata(pdev); 4192 struct ixgbevf_adapter *adapter; 4193 bool disable_dev; 4194 4195 if (!netdev) 4196 return; 4197 4198 adapter = netdev_priv(netdev); 4199 4200 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4201 cancel_work_sync(&adapter->service_task); 4202 4203 if (netdev->reg_state == NETREG_REGISTERED) 4204 unregister_netdev(netdev); 4205 4206 ixgbevf_clear_interrupt_scheme(adapter); 4207 ixgbevf_reset_interrupt_capability(adapter); 4208 4209 iounmap(adapter->io_addr); 4210 pci_release_regions(pdev); 4211 4212 hw_dbg(&adapter->hw, "Remove complete\n"); 4213 4214 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4215 free_netdev(netdev); 4216 4217 if (disable_dev) 4218 pci_disable_device(pdev); 4219 } 4220 4221 /** 4222 * ixgbevf_io_error_detected - called when PCI error is detected 4223 * @pdev: Pointer to PCI device 4224 * @state: The current pci connection state 4225 * 4226 * This function is called after a PCI bus error affecting 4227 * this device has been detected. 4228 **/ 4229 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4230 pci_channel_state_t state) 4231 { 4232 struct net_device *netdev = pci_get_drvdata(pdev); 4233 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4234 4235 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4236 return PCI_ERS_RESULT_DISCONNECT; 4237 4238 rtnl_lock(); 4239 netif_device_detach(netdev); 4240 4241 if (state == pci_channel_io_perm_failure) { 4242 rtnl_unlock(); 4243 return PCI_ERS_RESULT_DISCONNECT; 4244 } 4245 4246 if (netif_running(netdev)) 4247 ixgbevf_down(adapter); 4248 4249 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4250 pci_disable_device(pdev); 4251 rtnl_unlock(); 4252 4253 /* Request a slot slot reset. */ 4254 return PCI_ERS_RESULT_NEED_RESET; 4255 } 4256 4257 /** 4258 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4259 * @pdev: Pointer to PCI device 4260 * 4261 * Restart the card from scratch, as if from a cold-boot. Implementation 4262 * resembles the first-half of the ixgbevf_resume routine. 4263 **/ 4264 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4265 { 4266 struct net_device *netdev = pci_get_drvdata(pdev); 4267 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4268 4269 if (pci_enable_device_mem(pdev)) { 4270 dev_err(&pdev->dev, 4271 "Cannot re-enable PCI device after reset.\n"); 4272 return PCI_ERS_RESULT_DISCONNECT; 4273 } 4274 4275 smp_mb__before_atomic(); 4276 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4277 pci_set_master(pdev); 4278 4279 ixgbevf_reset(adapter); 4280 4281 return PCI_ERS_RESULT_RECOVERED; 4282 } 4283 4284 /** 4285 * ixgbevf_io_resume - called when traffic can start flowing again. 4286 * @pdev: Pointer to PCI device 4287 * 4288 * This callback is called when the error recovery driver tells us that 4289 * its OK to resume normal operation. Implementation resembles the 4290 * second-half of the ixgbevf_resume routine. 4291 **/ 4292 static void ixgbevf_io_resume(struct pci_dev *pdev) 4293 { 4294 struct net_device *netdev = pci_get_drvdata(pdev); 4295 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4296 4297 if (netif_running(netdev)) 4298 ixgbevf_up(adapter); 4299 4300 netif_device_attach(netdev); 4301 } 4302 4303 /* PCI Error Recovery (ERS) */ 4304 static const struct pci_error_handlers ixgbevf_err_handler = { 4305 .error_detected = ixgbevf_io_error_detected, 4306 .slot_reset = ixgbevf_io_slot_reset, 4307 .resume = ixgbevf_io_resume, 4308 }; 4309 4310 static struct pci_driver ixgbevf_driver = { 4311 .name = ixgbevf_driver_name, 4312 .id_table = ixgbevf_pci_tbl, 4313 .probe = ixgbevf_probe, 4314 .remove = ixgbevf_remove, 4315 #ifdef CONFIG_PM 4316 /* Power Management Hooks */ 4317 .suspend = ixgbevf_suspend, 4318 .resume = ixgbevf_resume, 4319 #endif 4320 .shutdown = ixgbevf_shutdown, 4321 .err_handler = &ixgbevf_err_handler 4322 }; 4323 4324 /** 4325 * ixgbevf_init_module - Driver Registration Routine 4326 * 4327 * ixgbevf_init_module is the first routine called when the driver is 4328 * loaded. All it does is register with the PCI subsystem. 4329 **/ 4330 static int __init ixgbevf_init_module(void) 4331 { 4332 pr_info("%s - version %s\n", ixgbevf_driver_string, 4333 ixgbevf_driver_version); 4334 4335 pr_info("%s\n", ixgbevf_copyright); 4336 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4337 if (!ixgbevf_wq) { 4338 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4339 return -ENOMEM; 4340 } 4341 4342 return pci_register_driver(&ixgbevf_driver); 4343 } 4344 4345 module_init(ixgbevf_init_module); 4346 4347 /** 4348 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4349 * 4350 * ixgbevf_exit_module is called just before the driver is removed 4351 * from memory. 4352 **/ 4353 static void __exit ixgbevf_exit_module(void) 4354 { 4355 pci_unregister_driver(&ixgbevf_driver); 4356 if (ixgbevf_wq) { 4357 destroy_workqueue(ixgbevf_wq); 4358 ixgbevf_wq = NULL; 4359 } 4360 } 4361 4362 #ifdef DEBUG 4363 /** 4364 * ixgbevf_get_hw_dev_name - return device name string 4365 * used by hardware layer to print debugging information 4366 **/ 4367 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4368 { 4369 struct ixgbevf_adapter *adapter = hw->back; 4370 4371 return adapter->netdev->name; 4372 } 4373 4374 #endif 4375 module_exit(ixgbevf_exit_module); 4376 4377 /* ixgbevf_main.c */ 4378