1 /******************************************************************************* 2 3 Intel 82599 Virtual Function driver 4 Copyright(c) 1999 - 2015 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, see <http://www.gnu.org/licenses/>. 17 18 The full GNU General Public License is included in this distribution in 19 the file called "COPYING". 20 21 Contact Information: 22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 25 *******************************************************************************/ 26 27 /****************************************************************************** 28 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 29 ******************************************************************************/ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/types.h> 34 #include <linux/bitops.h> 35 #include <linux/module.h> 36 #include <linux/pci.h> 37 #include <linux/netdevice.h> 38 #include <linux/vmalloc.h> 39 #include <linux/string.h> 40 #include <linux/in.h> 41 #include <linux/ip.h> 42 #include <linux/tcp.h> 43 #include <linux/sctp.h> 44 #include <linux/ipv6.h> 45 #include <linux/slab.h> 46 #include <net/checksum.h> 47 #include <net/ip6_checksum.h> 48 #include <linux/ethtool.h> 49 #include <linux/if.h> 50 #include <linux/if_vlan.h> 51 #include <linux/prefetch.h> 52 #include <net/mpls.h> 53 54 #include "ixgbevf.h" 55 56 const char ixgbevf_driver_name[] = "ixgbevf"; 57 static const char ixgbevf_driver_string[] = 58 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 59 60 #define DRV_VERSION "4.1.0-k" 61 const char ixgbevf_driver_version[] = DRV_VERSION; 62 static char ixgbevf_copyright[] = 63 "Copyright (c) 2009 - 2015 Intel Corporation."; 64 65 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 66 [board_82599_vf] = &ixgbevf_82599_vf_info, 67 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 68 [board_X540_vf] = &ixgbevf_X540_vf_info, 69 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 70 [board_X550_vf] = &ixgbevf_X550_vf_info, 71 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 72 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 73 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 74 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 75 }; 76 77 /* ixgbevf_pci_tbl - PCI Device ID Table 78 * 79 * Wildcard entries (PCI_ANY_ID) should come last 80 * Last entry must be all 0s 81 * 82 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 83 * Class, Class Mask, private data (not used) } 84 */ 85 static const struct pci_device_id ixgbevf_pci_tbl[] = { 86 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 87 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 88 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 89 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 90 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 91 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 92 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 93 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 94 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 95 /* required last entry */ 96 {0, } 97 }; 98 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 99 100 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 101 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 102 MODULE_LICENSE("GPL"); 103 MODULE_VERSION(DRV_VERSION); 104 105 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 106 static int debug = -1; 107 module_param(debug, int, 0); 108 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 109 110 static struct workqueue_struct *ixgbevf_wq; 111 112 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 113 { 114 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 115 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 116 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 117 queue_work(ixgbevf_wq, &adapter->service_task); 118 } 119 120 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 121 { 122 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 123 124 /* flush memory to make sure state is correct before next watchdog */ 125 smp_mb__before_atomic(); 126 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 127 } 128 129 /* forward decls */ 130 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 131 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 132 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 133 134 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 135 { 136 struct ixgbevf_adapter *adapter = hw->back; 137 138 if (!hw->hw_addr) 139 return; 140 hw->hw_addr = NULL; 141 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 142 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 143 ixgbevf_service_event_schedule(adapter); 144 } 145 146 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 147 { 148 u32 value; 149 150 /* The following check not only optimizes a bit by not 151 * performing a read on the status register when the 152 * register just read was a status register read that 153 * returned IXGBE_FAILED_READ_REG. It also blocks any 154 * potential recursion. 155 */ 156 if (reg == IXGBE_VFSTATUS) { 157 ixgbevf_remove_adapter(hw); 158 return; 159 } 160 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 161 if (value == IXGBE_FAILED_READ_REG) 162 ixgbevf_remove_adapter(hw); 163 } 164 165 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 166 { 167 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 168 u32 value; 169 170 if (IXGBE_REMOVED(reg_addr)) 171 return IXGBE_FAILED_READ_REG; 172 value = readl(reg_addr + reg); 173 if (unlikely(value == IXGBE_FAILED_READ_REG)) 174 ixgbevf_check_remove(hw, reg); 175 return value; 176 } 177 178 /** 179 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 180 * @adapter: pointer to adapter struct 181 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 182 * @queue: queue to map the corresponding interrupt to 183 * @msix_vector: the vector to map to the corresponding queue 184 **/ 185 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 186 u8 queue, u8 msix_vector) 187 { 188 u32 ivar, index; 189 struct ixgbe_hw *hw = &adapter->hw; 190 191 if (direction == -1) { 192 /* other causes */ 193 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 194 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 195 ivar &= ~0xFF; 196 ivar |= msix_vector; 197 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 198 } else { 199 /* Tx or Rx causes */ 200 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 201 index = ((16 * (queue & 1)) + (8 * direction)); 202 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 203 ivar &= ~(0xFF << index); 204 ivar |= (msix_vector << index); 205 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 206 } 207 } 208 209 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 210 { 211 return ring->stats.packets; 212 } 213 214 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 215 { 216 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 217 struct ixgbe_hw *hw = &adapter->hw; 218 219 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 220 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 221 222 if (head != tail) 223 return (head < tail) ? 224 tail - head : (tail + ring->count - head); 225 226 return 0; 227 } 228 229 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 230 { 231 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 232 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 233 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 234 235 clear_check_for_tx_hang(tx_ring); 236 237 /* Check for a hung queue, but be thorough. This verifies 238 * that a transmit has been completed since the previous 239 * check AND there is at least one packet pending. The 240 * ARMED bit is set to indicate a potential hang. 241 */ 242 if ((tx_done_old == tx_done) && tx_pending) { 243 /* make sure it is true for two checks in a row */ 244 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 245 &tx_ring->state); 246 } 247 /* reset the countdown */ 248 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 249 250 /* update completed stats and continue */ 251 tx_ring->tx_stats.tx_done_old = tx_done; 252 253 return false; 254 } 255 256 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 257 { 258 /* Do the reset outside of interrupt context */ 259 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 260 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 261 ixgbevf_service_event_schedule(adapter); 262 } 263 } 264 265 /** 266 * ixgbevf_tx_timeout - Respond to a Tx Hang 267 * @netdev: network interface device structure 268 **/ 269 static void ixgbevf_tx_timeout(struct net_device *netdev) 270 { 271 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 272 273 ixgbevf_tx_timeout_reset(adapter); 274 } 275 276 /** 277 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 278 * @q_vector: board private structure 279 * @tx_ring: tx ring to clean 280 * @napi_budget: Used to determine if we are in netpoll 281 **/ 282 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 283 struct ixgbevf_ring *tx_ring, int napi_budget) 284 { 285 struct ixgbevf_adapter *adapter = q_vector->adapter; 286 struct ixgbevf_tx_buffer *tx_buffer; 287 union ixgbe_adv_tx_desc *tx_desc; 288 unsigned int total_bytes = 0, total_packets = 0; 289 unsigned int budget = tx_ring->count / 2; 290 unsigned int i = tx_ring->next_to_clean; 291 292 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 293 return true; 294 295 tx_buffer = &tx_ring->tx_buffer_info[i]; 296 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 297 i -= tx_ring->count; 298 299 do { 300 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 301 302 /* if next_to_watch is not set then there is no work pending */ 303 if (!eop_desc) 304 break; 305 306 /* prevent any other reads prior to eop_desc */ 307 smp_rmb(); 308 309 /* if DD is not set pending work has not been completed */ 310 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 311 break; 312 313 /* clear next_to_watch to prevent false hangs */ 314 tx_buffer->next_to_watch = NULL; 315 316 /* update the statistics for this packet */ 317 total_bytes += tx_buffer->bytecount; 318 total_packets += tx_buffer->gso_segs; 319 320 /* free the skb */ 321 napi_consume_skb(tx_buffer->skb, napi_budget); 322 323 /* unmap skb header data */ 324 dma_unmap_single(tx_ring->dev, 325 dma_unmap_addr(tx_buffer, dma), 326 dma_unmap_len(tx_buffer, len), 327 DMA_TO_DEVICE); 328 329 /* clear tx_buffer data */ 330 dma_unmap_len_set(tx_buffer, len, 0); 331 332 /* unmap remaining buffers */ 333 while (tx_desc != eop_desc) { 334 tx_buffer++; 335 tx_desc++; 336 i++; 337 if (unlikely(!i)) { 338 i -= tx_ring->count; 339 tx_buffer = tx_ring->tx_buffer_info; 340 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 341 } 342 343 /* unmap any remaining paged data */ 344 if (dma_unmap_len(tx_buffer, len)) { 345 dma_unmap_page(tx_ring->dev, 346 dma_unmap_addr(tx_buffer, dma), 347 dma_unmap_len(tx_buffer, len), 348 DMA_TO_DEVICE); 349 dma_unmap_len_set(tx_buffer, len, 0); 350 } 351 } 352 353 /* move us one more past the eop_desc for start of next pkt */ 354 tx_buffer++; 355 tx_desc++; 356 i++; 357 if (unlikely(!i)) { 358 i -= tx_ring->count; 359 tx_buffer = tx_ring->tx_buffer_info; 360 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 361 } 362 363 /* issue prefetch for next Tx descriptor */ 364 prefetch(tx_desc); 365 366 /* update budget accounting */ 367 budget--; 368 } while (likely(budget)); 369 370 i += tx_ring->count; 371 tx_ring->next_to_clean = i; 372 u64_stats_update_begin(&tx_ring->syncp); 373 tx_ring->stats.bytes += total_bytes; 374 tx_ring->stats.packets += total_packets; 375 u64_stats_update_end(&tx_ring->syncp); 376 q_vector->tx.total_bytes += total_bytes; 377 q_vector->tx.total_packets += total_packets; 378 379 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 380 struct ixgbe_hw *hw = &adapter->hw; 381 union ixgbe_adv_tx_desc *eop_desc; 382 383 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 384 385 pr_err("Detected Tx Unit Hang\n" 386 " Tx Queue <%d>\n" 387 " TDH, TDT <%x>, <%x>\n" 388 " next_to_use <%x>\n" 389 " next_to_clean <%x>\n" 390 "tx_buffer_info[next_to_clean]\n" 391 " next_to_watch <%p>\n" 392 " eop_desc->wb.status <%x>\n" 393 " time_stamp <%lx>\n" 394 " jiffies <%lx>\n", 395 tx_ring->queue_index, 396 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 397 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 398 tx_ring->next_to_use, i, 399 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 400 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 401 402 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 403 404 /* schedule immediate reset if we believe we hung */ 405 ixgbevf_tx_timeout_reset(adapter); 406 407 return true; 408 } 409 410 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 411 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 412 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 413 /* Make sure that anybody stopping the queue after this 414 * sees the new next_to_clean. 415 */ 416 smp_mb(); 417 418 if (__netif_subqueue_stopped(tx_ring->netdev, 419 tx_ring->queue_index) && 420 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 421 netif_wake_subqueue(tx_ring->netdev, 422 tx_ring->queue_index); 423 ++tx_ring->tx_stats.restart_queue; 424 } 425 } 426 427 return !!budget; 428 } 429 430 /** 431 * ixgbevf_rx_skb - Helper function to determine proper Rx method 432 * @q_vector: structure containing interrupt and ring information 433 * @skb: packet to send up 434 **/ 435 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 436 struct sk_buff *skb) 437 { 438 napi_gro_receive(&q_vector->napi, skb); 439 } 440 441 #define IXGBE_RSS_L4_TYPES_MASK \ 442 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 443 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 444 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 445 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 446 447 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 448 union ixgbe_adv_rx_desc *rx_desc, 449 struct sk_buff *skb) 450 { 451 u16 rss_type; 452 453 if (!(ring->netdev->features & NETIF_F_RXHASH)) 454 return; 455 456 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 457 IXGBE_RXDADV_RSSTYPE_MASK; 458 459 if (!rss_type) 460 return; 461 462 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 463 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 464 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 465 } 466 467 /** 468 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 469 * @ring: structure containig ring specific data 470 * @rx_desc: current Rx descriptor being processed 471 * @skb: skb currently being received and modified 472 **/ 473 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 474 union ixgbe_adv_rx_desc *rx_desc, 475 struct sk_buff *skb) 476 { 477 skb_checksum_none_assert(skb); 478 479 /* Rx csum disabled */ 480 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 481 return; 482 483 /* if IP and error */ 484 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 485 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 486 ring->rx_stats.csum_err++; 487 return; 488 } 489 490 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 491 return; 492 493 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 494 ring->rx_stats.csum_err++; 495 return; 496 } 497 498 /* It must be a TCP or UDP packet with a valid checksum */ 499 skb->ip_summed = CHECKSUM_UNNECESSARY; 500 } 501 502 /** 503 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 504 * @rx_ring: rx descriptor ring packet is being transacted on 505 * @rx_desc: pointer to the EOP Rx descriptor 506 * @skb: pointer to current skb being populated 507 * 508 * This function checks the ring, descriptor, and packet information in 509 * order to populate the checksum, VLAN, protocol, and other fields within 510 * the skb. 511 **/ 512 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 513 union ixgbe_adv_rx_desc *rx_desc, 514 struct sk_buff *skb) 515 { 516 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 517 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 518 519 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 520 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 521 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 522 523 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 524 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 525 } 526 527 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 528 } 529 530 /** 531 * ixgbevf_is_non_eop - process handling of non-EOP buffers 532 * @rx_ring: Rx ring being processed 533 * @rx_desc: Rx descriptor for current buffer 534 * 535 * This function updates next to clean. If the buffer is an EOP buffer 536 * this function exits returning false, otherwise it will place the 537 * sk_buff in the next buffer to be chained and return true indicating 538 * that this is in fact a non-EOP buffer. 539 **/ 540 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 541 union ixgbe_adv_rx_desc *rx_desc) 542 { 543 u32 ntc = rx_ring->next_to_clean + 1; 544 545 /* fetch, update, and store next to clean */ 546 ntc = (ntc < rx_ring->count) ? ntc : 0; 547 rx_ring->next_to_clean = ntc; 548 549 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 550 551 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 552 return false; 553 554 return true; 555 } 556 557 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 558 struct ixgbevf_rx_buffer *bi) 559 { 560 struct page *page = bi->page; 561 dma_addr_t dma = bi->dma; 562 563 /* since we are recycling buffers we should seldom need to alloc */ 564 if (likely(page)) 565 return true; 566 567 /* alloc new page for storage */ 568 page = dev_alloc_page(); 569 if (unlikely(!page)) { 570 rx_ring->rx_stats.alloc_rx_page_failed++; 571 return false; 572 } 573 574 /* map page for use */ 575 dma = dma_map_page_attrs(rx_ring->dev, page, 0, PAGE_SIZE, 576 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 577 578 /* if mapping failed free memory back to system since 579 * there isn't much point in holding memory we can't use 580 */ 581 if (dma_mapping_error(rx_ring->dev, dma)) { 582 __free_page(page); 583 584 rx_ring->rx_stats.alloc_rx_page_failed++; 585 return false; 586 } 587 588 bi->dma = dma; 589 bi->page = page; 590 bi->page_offset = 0; 591 bi->pagecnt_bias = 1; 592 rx_ring->rx_stats.alloc_rx_page++; 593 594 return true; 595 } 596 597 /** 598 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 599 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 600 * @cleaned_count: number of buffers to replace 601 **/ 602 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 603 u16 cleaned_count) 604 { 605 union ixgbe_adv_rx_desc *rx_desc; 606 struct ixgbevf_rx_buffer *bi; 607 unsigned int i = rx_ring->next_to_use; 608 609 /* nothing to do or no valid netdev defined */ 610 if (!cleaned_count || !rx_ring->netdev) 611 return; 612 613 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 614 bi = &rx_ring->rx_buffer_info[i]; 615 i -= rx_ring->count; 616 617 do { 618 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 619 break; 620 621 /* sync the buffer for use by the device */ 622 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 623 bi->page_offset, 624 IXGBEVF_RX_BUFSZ, 625 DMA_FROM_DEVICE); 626 627 /* Refresh the desc even if pkt_addr didn't change 628 * because each write-back erases this info. 629 */ 630 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 631 632 rx_desc++; 633 bi++; 634 i++; 635 if (unlikely(!i)) { 636 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 637 bi = rx_ring->rx_buffer_info; 638 i -= rx_ring->count; 639 } 640 641 /* clear the length for the next_to_use descriptor */ 642 rx_desc->wb.upper.length = 0; 643 644 cleaned_count--; 645 } while (cleaned_count); 646 647 i += rx_ring->count; 648 649 if (rx_ring->next_to_use != i) { 650 /* record the next descriptor to use */ 651 rx_ring->next_to_use = i; 652 653 /* update next to alloc since we have filled the ring */ 654 rx_ring->next_to_alloc = i; 655 656 /* Force memory writes to complete before letting h/w 657 * know there are new descriptors to fetch. (Only 658 * applicable for weak-ordered memory model archs, 659 * such as IA-64). 660 */ 661 wmb(); 662 ixgbevf_write_tail(rx_ring, i); 663 } 664 } 665 666 /** 667 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 668 * @rx_ring: rx descriptor ring packet is being transacted on 669 * @rx_desc: pointer to the EOP Rx descriptor 670 * @skb: pointer to current skb being fixed 671 * 672 * Check for corrupted packet headers caused by senders on the local L2 673 * embedded NIC switch not setting up their Tx Descriptors right. These 674 * should be very rare. 675 * 676 * Also address the case where we are pulling data in on pages only 677 * and as such no data is present in the skb header. 678 * 679 * In addition if skb is not at least 60 bytes we need to pad it so that 680 * it is large enough to qualify as a valid Ethernet frame. 681 * 682 * Returns true if an error was encountered and skb was freed. 683 **/ 684 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 685 union ixgbe_adv_rx_desc *rx_desc, 686 struct sk_buff *skb) 687 { 688 /* verify that the packet does not have any known errors */ 689 if (unlikely(ixgbevf_test_staterr(rx_desc, 690 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 691 struct net_device *netdev = rx_ring->netdev; 692 693 if (!(netdev->features & NETIF_F_RXALL)) { 694 dev_kfree_skb_any(skb); 695 return true; 696 } 697 } 698 699 /* if eth_skb_pad returns an error the skb was freed */ 700 if (eth_skb_pad(skb)) 701 return true; 702 703 return false; 704 } 705 706 /** 707 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 708 * @rx_ring: rx descriptor ring to store buffers on 709 * @old_buff: donor buffer to have page reused 710 * 711 * Synchronizes page for reuse by the adapter 712 **/ 713 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 714 struct ixgbevf_rx_buffer *old_buff) 715 { 716 struct ixgbevf_rx_buffer *new_buff; 717 u16 nta = rx_ring->next_to_alloc; 718 719 new_buff = &rx_ring->rx_buffer_info[nta]; 720 721 /* update, and store next to alloc */ 722 nta++; 723 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 724 725 /* transfer page from old buffer to new buffer */ 726 new_buff->page = old_buff->page; 727 new_buff->dma = old_buff->dma; 728 new_buff->page_offset = old_buff->page_offset; 729 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 730 } 731 732 static inline bool ixgbevf_page_is_reserved(struct page *page) 733 { 734 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 735 } 736 737 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer, 738 struct page *page, 739 const unsigned int truesize) 740 { 741 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias--; 742 743 /* avoid re-using remote pages */ 744 if (unlikely(ixgbevf_page_is_reserved(page))) 745 return false; 746 747 #if (PAGE_SIZE < 8192) 748 /* if we are only owner of page we can reuse it */ 749 if (unlikely(page_ref_count(page) != pagecnt_bias)) 750 return false; 751 752 /* flip page offset to other buffer */ 753 rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ; 754 755 #else 756 /* move offset up to the next cache line */ 757 rx_buffer->page_offset += truesize; 758 759 if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ)) 760 return false; 761 762 #endif 763 764 /* If we have drained the page fragment pool we need to update 765 * the pagecnt_bias and page count so that we fully restock the 766 * number of references the driver holds. 767 */ 768 if (unlikely(pagecnt_bias == 1)) { 769 page_ref_add(page, USHRT_MAX); 770 rx_buffer->pagecnt_bias = USHRT_MAX; 771 } 772 773 return true; 774 } 775 776 /** 777 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 778 * @rx_ring: rx descriptor ring to transact packets on 779 * @rx_buffer: buffer containing page to add 780 * @rx_desc: descriptor containing length of buffer written by hardware 781 * @skb: sk_buff to place the data into 782 * 783 * This function will add the data contained in rx_buffer->page to the skb. 784 * This is done either through a direct copy if the data in the buffer is 785 * less than the skb header size, otherwise it will just attach the page as 786 * a frag to the skb. 787 * 788 * The function will then update the page offset if necessary and return 789 * true if the buffer can be reused by the adapter. 790 **/ 791 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 792 struct ixgbevf_rx_buffer *rx_buffer, 793 u16 size, 794 union ixgbe_adv_rx_desc *rx_desc, 795 struct sk_buff *skb) 796 { 797 struct page *page = rx_buffer->page; 798 unsigned char *va = page_address(page) + rx_buffer->page_offset; 799 #if (PAGE_SIZE < 8192) 800 unsigned int truesize = IXGBEVF_RX_BUFSZ; 801 #else 802 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 803 #endif 804 unsigned int pull_len; 805 806 if (unlikely(skb_is_nonlinear(skb))) 807 goto add_tail_frag; 808 809 if (likely(size <= IXGBEVF_RX_HDR_SIZE)) { 810 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 811 812 /* page is not reserved, we can reuse buffer as is */ 813 if (likely(!ixgbevf_page_is_reserved(page))) 814 return true; 815 816 /* this page cannot be reused so discard it */ 817 return false; 818 } 819 820 /* we need the header to contain the greater of either ETH_HLEN or 821 * 60 bytes if the skb->len is less than 60 for skb_pad. 822 */ 823 pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE); 824 825 /* align pull length to size of long to optimize memcpy performance */ 826 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 827 828 /* update all of the pointers */ 829 va += pull_len; 830 size -= pull_len; 831 832 add_tail_frag: 833 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 834 (unsigned long)va & ~PAGE_MASK, size, truesize); 835 836 return ixgbevf_can_reuse_rx_page(rx_buffer, page, truesize); 837 } 838 839 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring, 840 union ixgbe_adv_rx_desc *rx_desc, 841 struct sk_buff *skb) 842 { 843 struct ixgbevf_rx_buffer *rx_buffer; 844 struct page *page; 845 u16 size = le16_to_cpu(rx_desc->wb.upper.length); 846 847 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 848 page = rx_buffer->page; 849 prefetchw(page); 850 851 /* we are reusing so sync this buffer for CPU use */ 852 dma_sync_single_range_for_cpu(rx_ring->dev, 853 rx_buffer->dma, 854 rx_buffer->page_offset, 855 size, 856 DMA_FROM_DEVICE); 857 858 if (likely(!skb)) { 859 void *page_addr = page_address(page) + 860 rx_buffer->page_offset; 861 862 /* prefetch first cache line of first page */ 863 prefetch(page_addr); 864 #if L1_CACHE_BYTES < 128 865 prefetch(page_addr + L1_CACHE_BYTES); 866 #endif 867 868 /* allocate a skb to store the frags */ 869 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 870 IXGBEVF_RX_HDR_SIZE); 871 if (unlikely(!skb)) { 872 rx_ring->rx_stats.alloc_rx_buff_failed++; 873 return NULL; 874 } 875 876 /* we will be copying header into skb->data in 877 * pskb_may_pull so it is in our interest to prefetch 878 * it now to avoid a possible cache miss 879 */ 880 prefetchw(skb->data); 881 } 882 883 /* pull page into skb */ 884 if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, size, rx_desc, skb)) { 885 /* hand second half of page back to the ring */ 886 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 887 } else { 888 /* We are not reusing the buffer so unmap it and free 889 * any references we are holding to it 890 */ 891 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 892 PAGE_SIZE, DMA_FROM_DEVICE, 893 IXGBEVF_RX_DMA_ATTR); 894 __page_frag_cache_drain(page, rx_buffer->pagecnt_bias); 895 } 896 897 /* clear contents of buffer_info */ 898 rx_buffer->dma = 0; 899 rx_buffer->page = NULL; 900 901 return skb; 902 } 903 904 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 905 u32 qmask) 906 { 907 struct ixgbe_hw *hw = &adapter->hw; 908 909 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 910 } 911 912 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 913 struct ixgbevf_ring *rx_ring, 914 int budget) 915 { 916 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 917 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 918 struct sk_buff *skb = rx_ring->skb; 919 920 while (likely(total_rx_packets < budget)) { 921 union ixgbe_adv_rx_desc *rx_desc; 922 923 /* return some buffers to hardware, one at a time is too slow */ 924 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 925 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 926 cleaned_count = 0; 927 } 928 929 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 930 931 if (!rx_desc->wb.upper.length) 932 break; 933 934 /* This memory barrier is needed to keep us from reading 935 * any other fields out of the rx_desc until we know the 936 * RXD_STAT_DD bit is set 937 */ 938 rmb(); 939 940 /* retrieve a buffer from the ring */ 941 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb); 942 943 /* exit if we failed to retrieve a buffer */ 944 if (!skb) { 945 rx_ring->rx_stats.alloc_rx_buff_failed++; 946 break; 947 } 948 949 cleaned_count++; 950 951 /* fetch next buffer in frame if non-eop */ 952 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 953 continue; 954 955 /* verify the packet layout is correct */ 956 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 957 skb = NULL; 958 continue; 959 } 960 961 /* probably a little skewed due to removing CRC */ 962 total_rx_bytes += skb->len; 963 964 /* Workaround hardware that can't do proper VEPA multicast 965 * source pruning. 966 */ 967 if ((skb->pkt_type == PACKET_BROADCAST || 968 skb->pkt_type == PACKET_MULTICAST) && 969 ether_addr_equal(rx_ring->netdev->dev_addr, 970 eth_hdr(skb)->h_source)) { 971 dev_kfree_skb_irq(skb); 972 continue; 973 } 974 975 /* populate checksum, VLAN, and protocol */ 976 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 977 978 ixgbevf_rx_skb(q_vector, skb); 979 980 /* reset skb pointer */ 981 skb = NULL; 982 983 /* update budget accounting */ 984 total_rx_packets++; 985 } 986 987 /* place incomplete frames back on ring for completion */ 988 rx_ring->skb = skb; 989 990 u64_stats_update_begin(&rx_ring->syncp); 991 rx_ring->stats.packets += total_rx_packets; 992 rx_ring->stats.bytes += total_rx_bytes; 993 u64_stats_update_end(&rx_ring->syncp); 994 q_vector->rx.total_packets += total_rx_packets; 995 q_vector->rx.total_bytes += total_rx_bytes; 996 997 return total_rx_packets; 998 } 999 1000 /** 1001 * ixgbevf_poll - NAPI polling calback 1002 * @napi: napi struct with our devices info in it 1003 * @budget: amount of work driver is allowed to do this pass, in packets 1004 * 1005 * This function will clean more than one or more rings associated with a 1006 * q_vector. 1007 **/ 1008 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1009 { 1010 struct ixgbevf_q_vector *q_vector = 1011 container_of(napi, struct ixgbevf_q_vector, napi); 1012 struct ixgbevf_adapter *adapter = q_vector->adapter; 1013 struct ixgbevf_ring *ring; 1014 int per_ring_budget, work_done = 0; 1015 bool clean_complete = true; 1016 1017 ixgbevf_for_each_ring(ring, q_vector->tx) { 1018 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1019 clean_complete = false; 1020 } 1021 1022 if (budget <= 0) 1023 return budget; 1024 1025 /* attempt to distribute budget to each queue fairly, but don't allow 1026 * the budget to go below 1 because we'll exit polling 1027 */ 1028 if (q_vector->rx.count > 1) 1029 per_ring_budget = max(budget/q_vector->rx.count, 1); 1030 else 1031 per_ring_budget = budget; 1032 1033 ixgbevf_for_each_ring(ring, q_vector->rx) { 1034 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1035 per_ring_budget); 1036 work_done += cleaned; 1037 if (cleaned >= per_ring_budget) 1038 clean_complete = false; 1039 } 1040 1041 /* If all work not completed, return budget and keep polling */ 1042 if (!clean_complete) 1043 return budget; 1044 /* all work done, exit the polling mode */ 1045 napi_complete_done(napi, work_done); 1046 if (adapter->rx_itr_setting == 1) 1047 ixgbevf_set_itr(q_vector); 1048 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1049 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1050 ixgbevf_irq_enable_queues(adapter, 1051 BIT(q_vector->v_idx)); 1052 1053 return 0; 1054 } 1055 1056 /** 1057 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1058 * @q_vector: structure containing interrupt and ring information 1059 **/ 1060 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1061 { 1062 struct ixgbevf_adapter *adapter = q_vector->adapter; 1063 struct ixgbe_hw *hw = &adapter->hw; 1064 int v_idx = q_vector->v_idx; 1065 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1066 1067 /* set the WDIS bit to not clear the timer bits and cause an 1068 * immediate assertion of the interrupt 1069 */ 1070 itr_reg |= IXGBE_EITR_CNT_WDIS; 1071 1072 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1073 } 1074 1075 /** 1076 * ixgbevf_configure_msix - Configure MSI-X hardware 1077 * @adapter: board private structure 1078 * 1079 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1080 * interrupts. 1081 **/ 1082 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1083 { 1084 struct ixgbevf_q_vector *q_vector; 1085 int q_vectors, v_idx; 1086 1087 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1088 adapter->eims_enable_mask = 0; 1089 1090 /* Populate the IVAR table and set the ITR values to the 1091 * corresponding register. 1092 */ 1093 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1094 struct ixgbevf_ring *ring; 1095 1096 q_vector = adapter->q_vector[v_idx]; 1097 1098 ixgbevf_for_each_ring(ring, q_vector->rx) 1099 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1100 1101 ixgbevf_for_each_ring(ring, q_vector->tx) 1102 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1103 1104 if (q_vector->tx.ring && !q_vector->rx.ring) { 1105 /* Tx only vector */ 1106 if (adapter->tx_itr_setting == 1) 1107 q_vector->itr = IXGBE_12K_ITR; 1108 else 1109 q_vector->itr = adapter->tx_itr_setting; 1110 } else { 1111 /* Rx or Rx/Tx vector */ 1112 if (adapter->rx_itr_setting == 1) 1113 q_vector->itr = IXGBE_20K_ITR; 1114 else 1115 q_vector->itr = adapter->rx_itr_setting; 1116 } 1117 1118 /* add q_vector eims value to global eims_enable_mask */ 1119 adapter->eims_enable_mask |= BIT(v_idx); 1120 1121 ixgbevf_write_eitr(q_vector); 1122 } 1123 1124 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1125 /* setup eims_other and add value to global eims_enable_mask */ 1126 adapter->eims_other = BIT(v_idx); 1127 adapter->eims_enable_mask |= adapter->eims_other; 1128 } 1129 1130 enum latency_range { 1131 lowest_latency = 0, 1132 low_latency = 1, 1133 bulk_latency = 2, 1134 latency_invalid = 255 1135 }; 1136 1137 /** 1138 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1139 * @q_vector: structure containing interrupt and ring information 1140 * @ring_container: structure containing ring performance data 1141 * 1142 * Stores a new ITR value based on packets and byte 1143 * counts during the last interrupt. The advantage of per interrupt 1144 * computation is faster updates and more accurate ITR for the current 1145 * traffic pattern. Constants in this function were computed 1146 * based on theoretical maximum wire speed and thresholds were set based 1147 * on testing data as well as attempting to minimize response time 1148 * while increasing bulk throughput. 1149 **/ 1150 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1151 struct ixgbevf_ring_container *ring_container) 1152 { 1153 int bytes = ring_container->total_bytes; 1154 int packets = ring_container->total_packets; 1155 u32 timepassed_us; 1156 u64 bytes_perint; 1157 u8 itr_setting = ring_container->itr; 1158 1159 if (packets == 0) 1160 return; 1161 1162 /* simple throttle rate management 1163 * 0-20MB/s lowest (100000 ints/s) 1164 * 20-100MB/s low (20000 ints/s) 1165 * 100-1249MB/s bulk (12000 ints/s) 1166 */ 1167 /* what was last interrupt timeslice? */ 1168 timepassed_us = q_vector->itr >> 2; 1169 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1170 1171 switch (itr_setting) { 1172 case lowest_latency: 1173 if (bytes_perint > 10) 1174 itr_setting = low_latency; 1175 break; 1176 case low_latency: 1177 if (bytes_perint > 20) 1178 itr_setting = bulk_latency; 1179 else if (bytes_perint <= 10) 1180 itr_setting = lowest_latency; 1181 break; 1182 case bulk_latency: 1183 if (bytes_perint <= 20) 1184 itr_setting = low_latency; 1185 break; 1186 } 1187 1188 /* clear work counters since we have the values we need */ 1189 ring_container->total_bytes = 0; 1190 ring_container->total_packets = 0; 1191 1192 /* write updated itr to ring container */ 1193 ring_container->itr = itr_setting; 1194 } 1195 1196 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1197 { 1198 u32 new_itr = q_vector->itr; 1199 u8 current_itr; 1200 1201 ixgbevf_update_itr(q_vector, &q_vector->tx); 1202 ixgbevf_update_itr(q_vector, &q_vector->rx); 1203 1204 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1205 1206 switch (current_itr) { 1207 /* counts and packets in update_itr are dependent on these numbers */ 1208 case lowest_latency: 1209 new_itr = IXGBE_100K_ITR; 1210 break; 1211 case low_latency: 1212 new_itr = IXGBE_20K_ITR; 1213 break; 1214 case bulk_latency: 1215 new_itr = IXGBE_12K_ITR; 1216 break; 1217 default: 1218 break; 1219 } 1220 1221 if (new_itr != q_vector->itr) { 1222 /* do an exponential smoothing */ 1223 new_itr = (10 * new_itr * q_vector->itr) / 1224 ((9 * new_itr) + q_vector->itr); 1225 1226 /* save the algorithm value here */ 1227 q_vector->itr = new_itr; 1228 1229 ixgbevf_write_eitr(q_vector); 1230 } 1231 } 1232 1233 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1234 { 1235 struct ixgbevf_adapter *adapter = data; 1236 struct ixgbe_hw *hw = &adapter->hw; 1237 1238 hw->mac.get_link_status = 1; 1239 1240 ixgbevf_service_event_schedule(adapter); 1241 1242 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1243 1244 return IRQ_HANDLED; 1245 } 1246 1247 /** 1248 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1249 * @irq: unused 1250 * @data: pointer to our q_vector struct for this interrupt vector 1251 **/ 1252 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1253 { 1254 struct ixgbevf_q_vector *q_vector = data; 1255 1256 /* EIAM disabled interrupts (on this vector) for us */ 1257 if (q_vector->rx.ring || q_vector->tx.ring) 1258 napi_schedule_irqoff(&q_vector->napi); 1259 1260 return IRQ_HANDLED; 1261 } 1262 1263 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx, 1264 int r_idx) 1265 { 1266 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx]; 1267 1268 a->rx_ring[r_idx]->next = q_vector->rx.ring; 1269 q_vector->rx.ring = a->rx_ring[r_idx]; 1270 q_vector->rx.count++; 1271 } 1272 1273 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx, 1274 int t_idx) 1275 { 1276 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx]; 1277 1278 a->tx_ring[t_idx]->next = q_vector->tx.ring; 1279 q_vector->tx.ring = a->tx_ring[t_idx]; 1280 q_vector->tx.count++; 1281 } 1282 1283 /** 1284 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors 1285 * @adapter: board private structure to initialize 1286 * 1287 * This function maps descriptor rings to the queue-specific vectors 1288 * we were allotted through the MSI-X enabling code. Ideally, we'd have 1289 * one vector per ring/queue, but on a constrained vector budget, we 1290 * group the rings as "efficiently" as possible. You would add new 1291 * mapping configurations in here. 1292 **/ 1293 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter) 1294 { 1295 int q_vectors; 1296 int v_start = 0; 1297 int rxr_idx = 0, txr_idx = 0; 1298 int rxr_remaining = adapter->num_rx_queues; 1299 int txr_remaining = adapter->num_tx_queues; 1300 int i, j; 1301 int rqpv, tqpv; 1302 1303 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1304 1305 /* The ideal configuration... 1306 * We have enough vectors to map one per queue. 1307 */ 1308 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) { 1309 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++) 1310 map_vector_to_rxq(adapter, v_start, rxr_idx); 1311 1312 for (; txr_idx < txr_remaining; v_start++, txr_idx++) 1313 map_vector_to_txq(adapter, v_start, txr_idx); 1314 return 0; 1315 } 1316 1317 /* If we don't have enough vectors for a 1-to-1 1318 * mapping, we'll have to group them so there are 1319 * multiple queues per vector. 1320 */ 1321 /* Re-adjusting *qpv takes care of the remainder. */ 1322 for (i = v_start; i < q_vectors; i++) { 1323 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i); 1324 for (j = 0; j < rqpv; j++) { 1325 map_vector_to_rxq(adapter, i, rxr_idx); 1326 rxr_idx++; 1327 rxr_remaining--; 1328 } 1329 } 1330 for (i = v_start; i < q_vectors; i++) { 1331 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i); 1332 for (j = 0; j < tqpv; j++) { 1333 map_vector_to_txq(adapter, i, txr_idx); 1334 txr_idx++; 1335 txr_remaining--; 1336 } 1337 } 1338 1339 return 0; 1340 } 1341 1342 /** 1343 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1344 * @adapter: board private structure 1345 * 1346 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1347 * interrupts from the kernel. 1348 **/ 1349 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1350 { 1351 struct net_device *netdev = adapter->netdev; 1352 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1353 unsigned int ri = 0, ti = 0; 1354 int vector, err; 1355 1356 for (vector = 0; vector < q_vectors; vector++) { 1357 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1358 struct msix_entry *entry = &adapter->msix_entries[vector]; 1359 1360 if (q_vector->tx.ring && q_vector->rx.ring) { 1361 snprintf(q_vector->name, sizeof(q_vector->name), 1362 "%s-TxRx-%u", netdev->name, ri++); 1363 ti++; 1364 } else if (q_vector->rx.ring) { 1365 snprintf(q_vector->name, sizeof(q_vector->name), 1366 "%s-rx-%u", netdev->name, ri++); 1367 } else if (q_vector->tx.ring) { 1368 snprintf(q_vector->name, sizeof(q_vector->name), 1369 "%s-tx-%u", netdev->name, ti++); 1370 } else { 1371 /* skip this unused q_vector */ 1372 continue; 1373 } 1374 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1375 q_vector->name, q_vector); 1376 if (err) { 1377 hw_dbg(&adapter->hw, 1378 "request_irq failed for MSIX interrupt Error: %d\n", 1379 err); 1380 goto free_queue_irqs; 1381 } 1382 } 1383 1384 err = request_irq(adapter->msix_entries[vector].vector, 1385 &ixgbevf_msix_other, 0, netdev->name, adapter); 1386 if (err) { 1387 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1388 err); 1389 goto free_queue_irqs; 1390 } 1391 1392 return 0; 1393 1394 free_queue_irqs: 1395 while (vector) { 1396 vector--; 1397 free_irq(adapter->msix_entries[vector].vector, 1398 adapter->q_vector[vector]); 1399 } 1400 /* This failure is non-recoverable - it indicates the system is 1401 * out of MSIX vector resources and the VF driver cannot run 1402 * without them. Set the number of msix vectors to zero 1403 * indicating that not enough can be allocated. The error 1404 * will be returned to the user indicating device open failed. 1405 * Any further attempts to force the driver to open will also 1406 * fail. The only way to recover is to unload the driver and 1407 * reload it again. If the system has recovered some MSIX 1408 * vectors then it may succeed. 1409 */ 1410 adapter->num_msix_vectors = 0; 1411 return err; 1412 } 1413 1414 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter) 1415 { 1416 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1417 1418 for (i = 0; i < q_vectors; i++) { 1419 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i]; 1420 1421 q_vector->rx.ring = NULL; 1422 q_vector->tx.ring = NULL; 1423 q_vector->rx.count = 0; 1424 q_vector->tx.count = 0; 1425 } 1426 } 1427 1428 /** 1429 * ixgbevf_request_irq - initialize interrupts 1430 * @adapter: board private structure 1431 * 1432 * Attempts to configure interrupts using the best available 1433 * capabilities of the hardware and kernel. 1434 **/ 1435 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1436 { 1437 int err = ixgbevf_request_msix_irqs(adapter); 1438 1439 if (err) 1440 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1441 1442 return err; 1443 } 1444 1445 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1446 { 1447 int i, q_vectors; 1448 1449 if (!adapter->msix_entries) 1450 return; 1451 1452 q_vectors = adapter->num_msix_vectors; 1453 i = q_vectors - 1; 1454 1455 free_irq(adapter->msix_entries[i].vector, adapter); 1456 i--; 1457 1458 for (; i >= 0; i--) { 1459 /* free only the irqs that were actually requested */ 1460 if (!adapter->q_vector[i]->rx.ring && 1461 !adapter->q_vector[i]->tx.ring) 1462 continue; 1463 1464 free_irq(adapter->msix_entries[i].vector, 1465 adapter->q_vector[i]); 1466 } 1467 1468 ixgbevf_reset_q_vectors(adapter); 1469 } 1470 1471 /** 1472 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1473 * @adapter: board private structure 1474 **/ 1475 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1476 { 1477 struct ixgbe_hw *hw = &adapter->hw; 1478 int i; 1479 1480 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1481 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1482 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1483 1484 IXGBE_WRITE_FLUSH(hw); 1485 1486 for (i = 0; i < adapter->num_msix_vectors; i++) 1487 synchronize_irq(adapter->msix_entries[i].vector); 1488 } 1489 1490 /** 1491 * ixgbevf_irq_enable - Enable default interrupt generation settings 1492 * @adapter: board private structure 1493 **/ 1494 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1495 { 1496 struct ixgbe_hw *hw = &adapter->hw; 1497 1498 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1499 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1500 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1501 } 1502 1503 /** 1504 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1505 * @adapter: board private structure 1506 * @ring: structure containing ring specific data 1507 * 1508 * Configure the Tx descriptor ring after a reset. 1509 **/ 1510 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1511 struct ixgbevf_ring *ring) 1512 { 1513 struct ixgbe_hw *hw = &adapter->hw; 1514 u64 tdba = ring->dma; 1515 int wait_loop = 10; 1516 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1517 u8 reg_idx = ring->reg_idx; 1518 1519 /* disable queue to avoid issues while updating state */ 1520 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1521 IXGBE_WRITE_FLUSH(hw); 1522 1523 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1524 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1525 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1526 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1527 1528 /* disable head writeback */ 1529 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1530 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1531 1532 /* enable relaxed ordering */ 1533 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1534 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1535 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1536 1537 /* reset head and tail pointers */ 1538 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1539 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1540 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1541 1542 /* reset ntu and ntc to place SW in sync with hardwdare */ 1543 ring->next_to_clean = 0; 1544 ring->next_to_use = 0; 1545 1546 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1547 * to or less than the number of on chip descriptors, which is 1548 * currently 40. 1549 */ 1550 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1551 1552 /* Setting PTHRESH to 32 both improves performance */ 1553 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1554 32; /* PTHRESH = 32 */ 1555 1556 /* reinitialize tx_buffer_info */ 1557 memset(ring->tx_buffer_info, 0, 1558 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1559 1560 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1561 1562 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1563 1564 /* poll to verify queue is enabled */ 1565 do { 1566 usleep_range(1000, 2000); 1567 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1568 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1569 if (!wait_loop) 1570 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1571 } 1572 1573 /** 1574 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1575 * @adapter: board private structure 1576 * 1577 * Configure the Tx unit of the MAC after a reset. 1578 **/ 1579 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1580 { 1581 u32 i; 1582 1583 /* Setup the HW Tx Head and Tail descriptor pointers */ 1584 for (i = 0; i < adapter->num_tx_queues; i++) 1585 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1586 } 1587 1588 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1589 1590 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index) 1591 { 1592 struct ixgbe_hw *hw = &adapter->hw; 1593 u32 srrctl; 1594 1595 srrctl = IXGBE_SRRCTL_DROP_EN; 1596 1597 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1598 srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1599 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1600 1601 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1602 } 1603 1604 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1605 { 1606 struct ixgbe_hw *hw = &adapter->hw; 1607 1608 /* PSRTYPE must be initialized in 82599 */ 1609 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1610 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1611 IXGBE_PSRTYPE_L2HDR; 1612 1613 if (adapter->num_rx_queues > 1) 1614 psrtype |= BIT(29); 1615 1616 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1617 } 1618 1619 #define IXGBEVF_MAX_RX_DESC_POLL 10 1620 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1621 struct ixgbevf_ring *ring) 1622 { 1623 struct ixgbe_hw *hw = &adapter->hw; 1624 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1625 u32 rxdctl; 1626 u8 reg_idx = ring->reg_idx; 1627 1628 if (IXGBE_REMOVED(hw->hw_addr)) 1629 return; 1630 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1631 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1632 1633 /* write value back with RXDCTL.ENABLE bit cleared */ 1634 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1635 1636 /* the hardware may take up to 100us to really disable the Rx queue */ 1637 do { 1638 udelay(10); 1639 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1640 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1641 1642 if (!wait_loop) 1643 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1644 reg_idx); 1645 } 1646 1647 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1648 struct ixgbevf_ring *ring) 1649 { 1650 struct ixgbe_hw *hw = &adapter->hw; 1651 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1652 u32 rxdctl; 1653 u8 reg_idx = ring->reg_idx; 1654 1655 if (IXGBE_REMOVED(hw->hw_addr)) 1656 return; 1657 do { 1658 usleep_range(1000, 2000); 1659 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1660 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1661 1662 if (!wait_loop) 1663 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1664 reg_idx); 1665 } 1666 1667 /** 1668 * ixgbevf_init_rss_key - Initialize adapter RSS key 1669 * @adapter: device handle 1670 * 1671 * Allocates and initializes the RSS key if it is not allocated. 1672 **/ 1673 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1674 { 1675 u32 *rss_key; 1676 1677 if (!adapter->rss_key) { 1678 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1679 if (unlikely(!rss_key)) 1680 return -ENOMEM; 1681 1682 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1683 adapter->rss_key = rss_key; 1684 } 1685 1686 return 0; 1687 } 1688 1689 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1690 { 1691 struct ixgbe_hw *hw = &adapter->hw; 1692 u32 vfmrqc = 0, vfreta = 0; 1693 u16 rss_i = adapter->num_rx_queues; 1694 u8 i, j; 1695 1696 /* Fill out hash function seeds */ 1697 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1698 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1699 1700 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1701 if (j == rss_i) 1702 j = 0; 1703 1704 adapter->rss_indir_tbl[i] = j; 1705 1706 vfreta |= j << (i & 0x3) * 8; 1707 if ((i & 3) == 3) { 1708 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1709 vfreta = 0; 1710 } 1711 } 1712 1713 /* Perform hash on these packet types */ 1714 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1715 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1716 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1717 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1718 1719 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1720 1721 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1722 } 1723 1724 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1725 struct ixgbevf_ring *ring) 1726 { 1727 struct ixgbe_hw *hw = &adapter->hw; 1728 union ixgbe_adv_rx_desc *rx_desc; 1729 u64 rdba = ring->dma; 1730 u32 rxdctl; 1731 u8 reg_idx = ring->reg_idx; 1732 1733 /* disable queue to avoid issues while updating state */ 1734 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1735 ixgbevf_disable_rx_queue(adapter, ring); 1736 1737 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1738 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1739 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1740 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1741 1742 #ifndef CONFIG_SPARC 1743 /* enable relaxed ordering */ 1744 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1745 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1746 #else 1747 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1748 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1749 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1750 #endif 1751 1752 /* reset head and tail pointers */ 1753 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1754 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1755 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1756 1757 /* initialize rx_buffer_info */ 1758 memset(ring->rx_buffer_info, 0, 1759 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1760 1761 /* initialize Rx descriptor 0 */ 1762 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1763 rx_desc->wb.upper.length = 0; 1764 1765 /* reset ntu and ntc to place SW in sync with hardwdare */ 1766 ring->next_to_clean = 0; 1767 ring->next_to_use = 0; 1768 ring->next_to_alloc = 0; 1769 1770 ixgbevf_configure_srrctl(adapter, reg_idx); 1771 1772 /* allow any size packet since we can handle overflow */ 1773 rxdctl &= ~IXGBE_RXDCTL_RLPML_EN; 1774 1775 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1776 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1777 1778 ixgbevf_rx_desc_queue_enable(adapter, ring); 1779 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1780 } 1781 1782 /** 1783 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1784 * @adapter: board private structure 1785 * 1786 * Configure the Rx unit of the MAC after a reset. 1787 **/ 1788 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 1789 { 1790 struct ixgbe_hw *hw = &adapter->hw; 1791 struct net_device *netdev = adapter->netdev; 1792 int i, ret; 1793 1794 ixgbevf_setup_psrtype(adapter); 1795 if (hw->mac.type >= ixgbe_mac_X550_vf) 1796 ixgbevf_setup_vfmrqc(adapter); 1797 1798 spin_lock_bh(&adapter->mbx_lock); 1799 /* notify the PF of our intent to use this size of frame */ 1800 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 1801 spin_unlock_bh(&adapter->mbx_lock); 1802 if (ret) 1803 dev_err(&adapter->pdev->dev, 1804 "Failed to set MTU at %d\n", netdev->mtu); 1805 1806 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1807 * the Base and Length of the Rx Descriptor Ring 1808 */ 1809 for (i = 0; i < adapter->num_rx_queues; i++) 1810 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]); 1811 } 1812 1813 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 1814 __be16 proto, u16 vid) 1815 { 1816 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1817 struct ixgbe_hw *hw = &adapter->hw; 1818 int err; 1819 1820 spin_lock_bh(&adapter->mbx_lock); 1821 1822 /* add VID to filter table */ 1823 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 1824 1825 spin_unlock_bh(&adapter->mbx_lock); 1826 1827 /* translate error return types so error makes sense */ 1828 if (err == IXGBE_ERR_MBX) 1829 return -EIO; 1830 1831 if (err == IXGBE_ERR_INVALID_ARGUMENT) 1832 return -EACCES; 1833 1834 set_bit(vid, adapter->active_vlans); 1835 1836 return err; 1837 } 1838 1839 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 1840 __be16 proto, u16 vid) 1841 { 1842 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1843 struct ixgbe_hw *hw = &adapter->hw; 1844 int err; 1845 1846 spin_lock_bh(&adapter->mbx_lock); 1847 1848 /* remove VID from filter table */ 1849 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 1850 1851 spin_unlock_bh(&adapter->mbx_lock); 1852 1853 clear_bit(vid, adapter->active_vlans); 1854 1855 return err; 1856 } 1857 1858 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 1859 { 1860 u16 vid; 1861 1862 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 1863 ixgbevf_vlan_rx_add_vid(adapter->netdev, 1864 htons(ETH_P_8021Q), vid); 1865 } 1866 1867 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 1868 { 1869 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1870 struct ixgbe_hw *hw = &adapter->hw; 1871 int count = 0; 1872 1873 if ((netdev_uc_count(netdev)) > 10) { 1874 pr_err("Too many unicast filters - No Space\n"); 1875 return -ENOSPC; 1876 } 1877 1878 if (!netdev_uc_empty(netdev)) { 1879 struct netdev_hw_addr *ha; 1880 1881 netdev_for_each_uc_addr(ha, netdev) { 1882 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 1883 udelay(200); 1884 } 1885 } else { 1886 /* If the list is empty then send message to PF driver to 1887 * clear all MAC VLANs on this VF. 1888 */ 1889 hw->mac.ops.set_uc_addr(hw, 0, NULL); 1890 } 1891 1892 return count; 1893 } 1894 1895 /** 1896 * ixgbevf_set_rx_mode - Multicast and unicast set 1897 * @netdev: network interface device structure 1898 * 1899 * The set_rx_method entry point is called whenever the multicast address 1900 * list, unicast address list or the network interface flags are updated. 1901 * This routine is responsible for configuring the hardware for proper 1902 * multicast mode and configuring requested unicast filters. 1903 **/ 1904 static void ixgbevf_set_rx_mode(struct net_device *netdev) 1905 { 1906 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1907 struct ixgbe_hw *hw = &adapter->hw; 1908 unsigned int flags = netdev->flags; 1909 int xcast_mode; 1910 1911 /* request the most inclusive mode we need */ 1912 if (flags & IFF_PROMISC) 1913 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 1914 else if (flags & IFF_ALLMULTI) 1915 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 1916 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 1917 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 1918 else 1919 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 1920 1921 spin_lock_bh(&adapter->mbx_lock); 1922 1923 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 1924 1925 /* reprogram multicast list */ 1926 hw->mac.ops.update_mc_addr_list(hw, netdev); 1927 1928 ixgbevf_write_uc_addr_list(netdev); 1929 1930 spin_unlock_bh(&adapter->mbx_lock); 1931 } 1932 1933 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 1934 { 1935 int q_idx; 1936 struct ixgbevf_q_vector *q_vector; 1937 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1938 1939 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1940 q_vector = adapter->q_vector[q_idx]; 1941 napi_enable(&q_vector->napi); 1942 } 1943 } 1944 1945 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 1946 { 1947 int q_idx; 1948 struct ixgbevf_q_vector *q_vector; 1949 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1950 1951 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1952 q_vector = adapter->q_vector[q_idx]; 1953 napi_disable(&q_vector->napi); 1954 } 1955 } 1956 1957 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 1958 { 1959 struct ixgbe_hw *hw = &adapter->hw; 1960 unsigned int def_q = 0; 1961 unsigned int num_tcs = 0; 1962 unsigned int num_rx_queues = adapter->num_rx_queues; 1963 unsigned int num_tx_queues = adapter->num_tx_queues; 1964 int err; 1965 1966 spin_lock_bh(&adapter->mbx_lock); 1967 1968 /* fetch queue configuration from the PF */ 1969 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 1970 1971 spin_unlock_bh(&adapter->mbx_lock); 1972 1973 if (err) 1974 return err; 1975 1976 if (num_tcs > 1) { 1977 /* we need only one Tx queue */ 1978 num_tx_queues = 1; 1979 1980 /* update default Tx ring register index */ 1981 adapter->tx_ring[0]->reg_idx = def_q; 1982 1983 /* we need as many queues as traffic classes */ 1984 num_rx_queues = num_tcs; 1985 } 1986 1987 /* if we have a bad config abort request queue reset */ 1988 if ((adapter->num_rx_queues != num_rx_queues) || 1989 (adapter->num_tx_queues != num_tx_queues)) { 1990 /* force mailbox timeout to prevent further messages */ 1991 hw->mbx.timeout = 0; 1992 1993 /* wait for watchdog to come around and bail us out */ 1994 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 1995 } 1996 1997 return 0; 1998 } 1999 2000 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2001 { 2002 ixgbevf_configure_dcb(adapter); 2003 2004 ixgbevf_set_rx_mode(adapter->netdev); 2005 2006 ixgbevf_restore_vlan(adapter); 2007 2008 ixgbevf_configure_tx(adapter); 2009 ixgbevf_configure_rx(adapter); 2010 } 2011 2012 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2013 { 2014 /* Only save pre-reset stats if there are some */ 2015 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2016 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2017 adapter->stats.base_vfgprc; 2018 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2019 adapter->stats.base_vfgptc; 2020 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2021 adapter->stats.base_vfgorc; 2022 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2023 adapter->stats.base_vfgotc; 2024 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2025 adapter->stats.base_vfmprc; 2026 } 2027 } 2028 2029 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2030 { 2031 struct ixgbe_hw *hw = &adapter->hw; 2032 2033 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2034 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2035 adapter->stats.last_vfgorc |= 2036 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2037 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2038 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2039 adapter->stats.last_vfgotc |= 2040 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2041 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2042 2043 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2044 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2045 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2046 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2047 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2048 } 2049 2050 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2051 { 2052 struct ixgbe_hw *hw = &adapter->hw; 2053 int api[] = { ixgbe_mbox_api_13, 2054 ixgbe_mbox_api_12, 2055 ixgbe_mbox_api_11, 2056 ixgbe_mbox_api_10, 2057 ixgbe_mbox_api_unknown }; 2058 int err, idx = 0; 2059 2060 spin_lock_bh(&adapter->mbx_lock); 2061 2062 while (api[idx] != ixgbe_mbox_api_unknown) { 2063 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2064 if (!err) 2065 break; 2066 idx++; 2067 } 2068 2069 spin_unlock_bh(&adapter->mbx_lock); 2070 } 2071 2072 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2073 { 2074 struct net_device *netdev = adapter->netdev; 2075 struct ixgbe_hw *hw = &adapter->hw; 2076 2077 ixgbevf_configure_msix(adapter); 2078 2079 spin_lock_bh(&adapter->mbx_lock); 2080 2081 if (is_valid_ether_addr(hw->mac.addr)) 2082 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2083 else 2084 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2085 2086 spin_unlock_bh(&adapter->mbx_lock); 2087 2088 smp_mb__before_atomic(); 2089 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2090 ixgbevf_napi_enable_all(adapter); 2091 2092 /* clear any pending interrupts, may auto mask */ 2093 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2094 ixgbevf_irq_enable(adapter); 2095 2096 /* enable transmits */ 2097 netif_tx_start_all_queues(netdev); 2098 2099 ixgbevf_save_reset_stats(adapter); 2100 ixgbevf_init_last_counter_stats(adapter); 2101 2102 hw->mac.get_link_status = 1; 2103 mod_timer(&adapter->service_timer, jiffies); 2104 } 2105 2106 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2107 { 2108 ixgbevf_configure(adapter); 2109 2110 ixgbevf_up_complete(adapter); 2111 } 2112 2113 /** 2114 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2115 * @rx_ring: ring to free buffers from 2116 **/ 2117 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2118 { 2119 u16 i = rx_ring->next_to_clean; 2120 2121 /* Free Rx ring sk_buff */ 2122 if (rx_ring->skb) { 2123 dev_kfree_skb(rx_ring->skb); 2124 rx_ring->skb = NULL; 2125 } 2126 2127 /* Free all the Rx ring pages */ 2128 while (i != rx_ring->next_to_alloc) { 2129 struct ixgbevf_rx_buffer *rx_buffer; 2130 2131 rx_buffer = &rx_ring->rx_buffer_info[i]; 2132 2133 /* Invalidate cache lines that may have been written to by 2134 * device so that we avoid corrupting memory. 2135 */ 2136 dma_sync_single_range_for_cpu(rx_ring->dev, 2137 rx_buffer->dma, 2138 rx_buffer->page_offset, 2139 IXGBEVF_RX_BUFSZ, 2140 DMA_FROM_DEVICE); 2141 2142 /* free resources associated with mapping */ 2143 dma_unmap_page_attrs(rx_ring->dev, 2144 rx_buffer->dma, 2145 PAGE_SIZE, 2146 DMA_FROM_DEVICE, 2147 IXGBEVF_RX_DMA_ATTR); 2148 2149 __page_frag_cache_drain(rx_buffer->page, 2150 rx_buffer->pagecnt_bias); 2151 2152 i++; 2153 if (i == rx_ring->count) 2154 i = 0; 2155 } 2156 2157 rx_ring->next_to_alloc = 0; 2158 rx_ring->next_to_clean = 0; 2159 rx_ring->next_to_use = 0; 2160 } 2161 2162 /** 2163 * ixgbevf_clean_tx_ring - Free Tx Buffers 2164 * @tx_ring: ring to be cleaned 2165 **/ 2166 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2167 { 2168 u16 i = tx_ring->next_to_clean; 2169 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2170 2171 while (i != tx_ring->next_to_use) { 2172 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2173 2174 /* Free all the Tx ring sk_buffs */ 2175 dev_kfree_skb_any(tx_buffer->skb); 2176 2177 /* unmap skb header data */ 2178 dma_unmap_single(tx_ring->dev, 2179 dma_unmap_addr(tx_buffer, dma), 2180 dma_unmap_len(tx_buffer, len), 2181 DMA_TO_DEVICE); 2182 2183 /* check for eop_desc to determine the end of the packet */ 2184 eop_desc = tx_buffer->next_to_watch; 2185 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2186 2187 /* unmap remaining buffers */ 2188 while (tx_desc != eop_desc) { 2189 tx_buffer++; 2190 tx_desc++; 2191 i++; 2192 if (unlikely(i == tx_ring->count)) { 2193 i = 0; 2194 tx_buffer = tx_ring->tx_buffer_info; 2195 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2196 } 2197 2198 /* unmap any remaining paged data */ 2199 if (dma_unmap_len(tx_buffer, len)) 2200 dma_unmap_page(tx_ring->dev, 2201 dma_unmap_addr(tx_buffer, dma), 2202 dma_unmap_len(tx_buffer, len), 2203 DMA_TO_DEVICE); 2204 } 2205 2206 /* move us one more past the eop_desc for start of next pkt */ 2207 tx_buffer++; 2208 i++; 2209 if (unlikely(i == tx_ring->count)) { 2210 i = 0; 2211 tx_buffer = tx_ring->tx_buffer_info; 2212 } 2213 } 2214 2215 /* reset next_to_use and next_to_clean */ 2216 tx_ring->next_to_use = 0; 2217 tx_ring->next_to_clean = 0; 2218 2219 } 2220 2221 /** 2222 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2223 * @adapter: board private structure 2224 **/ 2225 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2226 { 2227 int i; 2228 2229 for (i = 0; i < adapter->num_rx_queues; i++) 2230 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2231 } 2232 2233 /** 2234 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2235 * @adapter: board private structure 2236 **/ 2237 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2238 { 2239 int i; 2240 2241 for (i = 0; i < adapter->num_tx_queues; i++) 2242 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2243 } 2244 2245 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2246 { 2247 struct net_device *netdev = adapter->netdev; 2248 struct ixgbe_hw *hw = &adapter->hw; 2249 int i; 2250 2251 /* signal that we are down to the interrupt handler */ 2252 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2253 return; /* do nothing if already down */ 2254 2255 /* disable all enabled Rx queues */ 2256 for (i = 0; i < adapter->num_rx_queues; i++) 2257 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2258 2259 usleep_range(10000, 20000); 2260 2261 netif_tx_stop_all_queues(netdev); 2262 2263 /* call carrier off first to avoid false dev_watchdog timeouts */ 2264 netif_carrier_off(netdev); 2265 netif_tx_disable(netdev); 2266 2267 ixgbevf_irq_disable(adapter); 2268 2269 ixgbevf_napi_disable_all(adapter); 2270 2271 del_timer_sync(&adapter->service_timer); 2272 2273 /* disable transmits in the hardware now that interrupts are off */ 2274 for (i = 0; i < adapter->num_tx_queues; i++) { 2275 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2276 2277 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2278 IXGBE_TXDCTL_SWFLSH); 2279 } 2280 2281 if (!pci_channel_offline(adapter->pdev)) 2282 ixgbevf_reset(adapter); 2283 2284 ixgbevf_clean_all_tx_rings(adapter); 2285 ixgbevf_clean_all_rx_rings(adapter); 2286 } 2287 2288 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2289 { 2290 WARN_ON(in_interrupt()); 2291 2292 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2293 msleep(1); 2294 2295 ixgbevf_down(adapter); 2296 ixgbevf_up(adapter); 2297 2298 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2299 } 2300 2301 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2302 { 2303 struct ixgbe_hw *hw = &adapter->hw; 2304 struct net_device *netdev = adapter->netdev; 2305 2306 if (hw->mac.ops.reset_hw(hw)) { 2307 hw_dbg(hw, "PF still resetting\n"); 2308 } else { 2309 hw->mac.ops.init_hw(hw); 2310 ixgbevf_negotiate_api(adapter); 2311 } 2312 2313 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2314 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2315 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2316 } 2317 2318 adapter->last_reset = jiffies; 2319 } 2320 2321 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2322 int vectors) 2323 { 2324 int vector_threshold; 2325 2326 /* We'll want at least 2 (vector_threshold): 2327 * 1) TxQ[0] + RxQ[0] handler 2328 * 2) Other (Link Status Change, etc.) 2329 */ 2330 vector_threshold = MIN_MSIX_COUNT; 2331 2332 /* The more we get, the more we will assign to Tx/Rx Cleanup 2333 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2334 * Right now, we simply care about how many we'll get; we'll 2335 * set them up later while requesting irq's. 2336 */ 2337 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2338 vector_threshold, vectors); 2339 2340 if (vectors < 0) { 2341 dev_err(&adapter->pdev->dev, 2342 "Unable to allocate MSI-X interrupts\n"); 2343 kfree(adapter->msix_entries); 2344 adapter->msix_entries = NULL; 2345 return vectors; 2346 } 2347 2348 /* Adjust for only the vectors we'll use, which is minimum 2349 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2350 * vectors we were allocated. 2351 */ 2352 adapter->num_msix_vectors = vectors; 2353 2354 return 0; 2355 } 2356 2357 /** 2358 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2359 * @adapter: board private structure to initialize 2360 * 2361 * This is the top level queue allocation routine. The order here is very 2362 * important, starting with the "most" number of features turned on at once, 2363 * and ending with the smallest set of features. This way large combinations 2364 * can be allocated if they're turned on, and smaller combinations are the 2365 * fallthrough conditions. 2366 * 2367 **/ 2368 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2369 { 2370 struct ixgbe_hw *hw = &adapter->hw; 2371 unsigned int def_q = 0; 2372 unsigned int num_tcs = 0; 2373 int err; 2374 2375 /* Start with base case */ 2376 adapter->num_rx_queues = 1; 2377 adapter->num_tx_queues = 1; 2378 2379 spin_lock_bh(&adapter->mbx_lock); 2380 2381 /* fetch queue configuration from the PF */ 2382 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2383 2384 spin_unlock_bh(&adapter->mbx_lock); 2385 2386 if (err) 2387 return; 2388 2389 /* we need as many queues as traffic classes */ 2390 if (num_tcs > 1) { 2391 adapter->num_rx_queues = num_tcs; 2392 } else { 2393 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2394 2395 switch (hw->api_version) { 2396 case ixgbe_mbox_api_11: 2397 case ixgbe_mbox_api_12: 2398 case ixgbe_mbox_api_13: 2399 adapter->num_rx_queues = rss; 2400 adapter->num_tx_queues = rss; 2401 default: 2402 break; 2403 } 2404 } 2405 } 2406 2407 /** 2408 * ixgbevf_alloc_queues - Allocate memory for all rings 2409 * @adapter: board private structure to initialize 2410 * 2411 * We allocate one ring per queue at run-time since we don't know the 2412 * number of queues at compile-time. The polling_netdev array is 2413 * intended for Multiqueue, but should work fine with a single queue. 2414 **/ 2415 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter) 2416 { 2417 struct ixgbevf_ring *ring; 2418 int rx = 0, tx = 0; 2419 2420 for (; tx < adapter->num_tx_queues; tx++) { 2421 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 2422 if (!ring) 2423 goto err_allocation; 2424 2425 ring->dev = &adapter->pdev->dev; 2426 ring->netdev = adapter->netdev; 2427 ring->count = adapter->tx_ring_count; 2428 ring->queue_index = tx; 2429 ring->reg_idx = tx; 2430 2431 adapter->tx_ring[tx] = ring; 2432 } 2433 2434 for (; rx < adapter->num_rx_queues; rx++) { 2435 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 2436 if (!ring) 2437 goto err_allocation; 2438 2439 ring->dev = &adapter->pdev->dev; 2440 ring->netdev = adapter->netdev; 2441 2442 ring->count = adapter->rx_ring_count; 2443 ring->queue_index = rx; 2444 ring->reg_idx = rx; 2445 2446 adapter->rx_ring[rx] = ring; 2447 } 2448 2449 return 0; 2450 2451 err_allocation: 2452 while (tx) { 2453 kfree(adapter->tx_ring[--tx]); 2454 adapter->tx_ring[tx] = NULL; 2455 } 2456 2457 while (rx) { 2458 kfree(adapter->rx_ring[--rx]); 2459 adapter->rx_ring[rx] = NULL; 2460 } 2461 return -ENOMEM; 2462 } 2463 2464 /** 2465 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2466 * @adapter: board private structure to initialize 2467 * 2468 * Attempt to configure the interrupts using the best available 2469 * capabilities of the hardware and the kernel. 2470 **/ 2471 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2472 { 2473 struct net_device *netdev = adapter->netdev; 2474 int err; 2475 int vector, v_budget; 2476 2477 /* It's easy to be greedy for MSI-X vectors, but it really 2478 * doesn't do us much good if we have a lot more vectors 2479 * than CPU's. So let's be conservative and only ask for 2480 * (roughly) the same number of vectors as there are CPU's. 2481 * The default is to use pairs of vectors. 2482 */ 2483 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2484 v_budget = min_t(int, v_budget, num_online_cpus()); 2485 v_budget += NON_Q_VECTORS; 2486 2487 /* A failure in MSI-X entry allocation isn't fatal, but it does 2488 * mean we disable MSI-X capabilities of the adapter. 2489 */ 2490 adapter->msix_entries = kcalloc(v_budget, 2491 sizeof(struct msix_entry), GFP_KERNEL); 2492 if (!adapter->msix_entries) 2493 return -ENOMEM; 2494 2495 for (vector = 0; vector < v_budget; vector++) 2496 adapter->msix_entries[vector].entry = vector; 2497 2498 err = ixgbevf_acquire_msix_vectors(adapter, v_budget); 2499 if (err) 2500 return err; 2501 2502 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 2503 if (err) 2504 return err; 2505 2506 return netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 2507 } 2508 2509 /** 2510 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2511 * @adapter: board private structure to initialize 2512 * 2513 * We allocate one q_vector per queue interrupt. If allocation fails we 2514 * return -ENOMEM. 2515 **/ 2516 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2517 { 2518 int q_idx, num_q_vectors; 2519 struct ixgbevf_q_vector *q_vector; 2520 2521 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2522 2523 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 2524 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL); 2525 if (!q_vector) 2526 goto err_out; 2527 q_vector->adapter = adapter; 2528 q_vector->v_idx = q_idx; 2529 netif_napi_add(adapter->netdev, &q_vector->napi, 2530 ixgbevf_poll, 64); 2531 adapter->q_vector[q_idx] = q_vector; 2532 } 2533 2534 return 0; 2535 2536 err_out: 2537 while (q_idx) { 2538 q_idx--; 2539 q_vector = adapter->q_vector[q_idx]; 2540 #ifdef CONFIG_NET_RX_BUSY_POLL 2541 napi_hash_del(&q_vector->napi); 2542 #endif 2543 netif_napi_del(&q_vector->napi); 2544 kfree(q_vector); 2545 adapter->q_vector[q_idx] = NULL; 2546 } 2547 return -ENOMEM; 2548 } 2549 2550 /** 2551 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2552 * @adapter: board private structure to initialize 2553 * 2554 * This function frees the memory allocated to the q_vectors. In addition if 2555 * NAPI is enabled it will delete any references to the NAPI struct prior 2556 * to freeing the q_vector. 2557 **/ 2558 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2559 { 2560 int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2561 2562 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 2563 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx]; 2564 2565 adapter->q_vector[q_idx] = NULL; 2566 #ifdef CONFIG_NET_RX_BUSY_POLL 2567 napi_hash_del(&q_vector->napi); 2568 #endif 2569 netif_napi_del(&q_vector->napi); 2570 kfree(q_vector); 2571 } 2572 } 2573 2574 /** 2575 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2576 * @adapter: board private structure 2577 * 2578 **/ 2579 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2580 { 2581 if (!adapter->msix_entries) 2582 return; 2583 2584 pci_disable_msix(adapter->pdev); 2585 kfree(adapter->msix_entries); 2586 adapter->msix_entries = NULL; 2587 } 2588 2589 /** 2590 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2591 * @adapter: board private structure to initialize 2592 * 2593 **/ 2594 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2595 { 2596 int err; 2597 2598 /* Number of supported queues */ 2599 ixgbevf_set_num_queues(adapter); 2600 2601 err = ixgbevf_set_interrupt_capability(adapter); 2602 if (err) { 2603 hw_dbg(&adapter->hw, 2604 "Unable to setup interrupt capabilities\n"); 2605 goto err_set_interrupt; 2606 } 2607 2608 err = ixgbevf_alloc_q_vectors(adapter); 2609 if (err) { 2610 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2611 goto err_alloc_q_vectors; 2612 } 2613 2614 err = ixgbevf_alloc_queues(adapter); 2615 if (err) { 2616 pr_err("Unable to allocate memory for queues\n"); 2617 goto err_alloc_queues; 2618 } 2619 2620 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n", 2621 (adapter->num_rx_queues > 1) ? "Enabled" : 2622 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues); 2623 2624 set_bit(__IXGBEVF_DOWN, &adapter->state); 2625 2626 return 0; 2627 err_alloc_queues: 2628 ixgbevf_free_q_vectors(adapter); 2629 err_alloc_q_vectors: 2630 ixgbevf_reset_interrupt_capability(adapter); 2631 err_set_interrupt: 2632 return err; 2633 } 2634 2635 /** 2636 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2637 * @adapter: board private structure to clear interrupt scheme on 2638 * 2639 * We go through and clear interrupt specific resources and reset the structure 2640 * to pre-load conditions 2641 **/ 2642 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2643 { 2644 int i; 2645 2646 for (i = 0; i < adapter->num_tx_queues; i++) { 2647 kfree(adapter->tx_ring[i]); 2648 adapter->tx_ring[i] = NULL; 2649 } 2650 for (i = 0; i < adapter->num_rx_queues; i++) { 2651 kfree(adapter->rx_ring[i]); 2652 adapter->rx_ring[i] = NULL; 2653 } 2654 2655 adapter->num_tx_queues = 0; 2656 adapter->num_rx_queues = 0; 2657 2658 ixgbevf_free_q_vectors(adapter); 2659 ixgbevf_reset_interrupt_capability(adapter); 2660 } 2661 2662 /** 2663 * ixgbevf_sw_init - Initialize general software structures 2664 * @adapter: board private structure to initialize 2665 * 2666 * ixgbevf_sw_init initializes the Adapter private data structure. 2667 * Fields are initialized based on PCI device information and 2668 * OS network device settings (MTU size). 2669 **/ 2670 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 2671 { 2672 struct ixgbe_hw *hw = &adapter->hw; 2673 struct pci_dev *pdev = adapter->pdev; 2674 struct net_device *netdev = adapter->netdev; 2675 int err; 2676 2677 /* PCI config space info */ 2678 hw->vendor_id = pdev->vendor; 2679 hw->device_id = pdev->device; 2680 hw->revision_id = pdev->revision; 2681 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2682 hw->subsystem_device_id = pdev->subsystem_device; 2683 2684 hw->mbx.ops.init_params(hw); 2685 2686 if (hw->mac.type >= ixgbe_mac_X550_vf) { 2687 err = ixgbevf_init_rss_key(adapter); 2688 if (err) 2689 goto out; 2690 } 2691 2692 /* assume legacy case in which PF would only give VF 2 queues */ 2693 hw->mac.max_tx_queues = 2; 2694 hw->mac.max_rx_queues = 2; 2695 2696 /* lock to protect mailbox accesses */ 2697 spin_lock_init(&adapter->mbx_lock); 2698 2699 err = hw->mac.ops.reset_hw(hw); 2700 if (err) { 2701 dev_info(&pdev->dev, 2702 "PF still in reset state. Is the PF interface up?\n"); 2703 } else { 2704 err = hw->mac.ops.init_hw(hw); 2705 if (err) { 2706 pr_err("init_shared_code failed: %d\n", err); 2707 goto out; 2708 } 2709 ixgbevf_negotiate_api(adapter); 2710 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 2711 if (err) 2712 dev_info(&pdev->dev, "Error reading MAC address\n"); 2713 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 2714 dev_info(&pdev->dev, 2715 "MAC address not assigned by administrator.\n"); 2716 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 2717 } 2718 2719 if (!is_valid_ether_addr(netdev->dev_addr)) { 2720 dev_info(&pdev->dev, "Assigning random MAC address\n"); 2721 eth_hw_addr_random(netdev); 2722 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 2723 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 2724 } 2725 2726 /* Enable dynamic interrupt throttling rates */ 2727 adapter->rx_itr_setting = 1; 2728 adapter->tx_itr_setting = 1; 2729 2730 /* set default ring sizes */ 2731 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 2732 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 2733 2734 set_bit(__IXGBEVF_DOWN, &adapter->state); 2735 return 0; 2736 2737 out: 2738 return err; 2739 } 2740 2741 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 2742 { \ 2743 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 2744 if (current_counter < last_counter) \ 2745 counter += 0x100000000LL; \ 2746 last_counter = current_counter; \ 2747 counter &= 0xFFFFFFFF00000000LL; \ 2748 counter |= current_counter; \ 2749 } 2750 2751 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 2752 { \ 2753 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 2754 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 2755 u64 current_counter = (current_counter_msb << 32) | \ 2756 current_counter_lsb; \ 2757 if (current_counter < last_counter) \ 2758 counter += 0x1000000000LL; \ 2759 last_counter = current_counter; \ 2760 counter &= 0xFFFFFFF000000000LL; \ 2761 counter |= current_counter; \ 2762 } 2763 /** 2764 * ixgbevf_update_stats - Update the board statistics counters. 2765 * @adapter: board private structure 2766 **/ 2767 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 2768 { 2769 struct ixgbe_hw *hw = &adapter->hw; 2770 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 2771 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 2772 int i; 2773 2774 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2775 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2776 return; 2777 2778 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 2779 adapter->stats.vfgprc); 2780 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 2781 adapter->stats.vfgptc); 2782 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 2783 adapter->stats.last_vfgorc, 2784 adapter->stats.vfgorc); 2785 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 2786 adapter->stats.last_vfgotc, 2787 adapter->stats.vfgotc); 2788 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 2789 adapter->stats.vfmprc); 2790 2791 for (i = 0; i < adapter->num_rx_queues; i++) { 2792 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2793 2794 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 2795 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 2796 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 2797 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 2798 } 2799 2800 adapter->hw_csum_rx_error = hw_csum_rx_error; 2801 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 2802 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 2803 adapter->alloc_rx_page = alloc_rx_page; 2804 } 2805 2806 /** 2807 * ixgbevf_service_timer - Timer Call-back 2808 * @t: pointer to timer_list struct 2809 **/ 2810 static void ixgbevf_service_timer(struct timer_list *t) 2811 { 2812 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 2813 service_timer); 2814 2815 /* Reset the timer */ 2816 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 2817 2818 ixgbevf_service_event_schedule(adapter); 2819 } 2820 2821 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 2822 { 2823 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 2824 return; 2825 2826 /* If we're already down or resetting, just bail */ 2827 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2828 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 2829 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2830 return; 2831 2832 adapter->tx_timeout_count++; 2833 2834 rtnl_lock(); 2835 ixgbevf_reinit_locked(adapter); 2836 rtnl_unlock(); 2837 } 2838 2839 /** 2840 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 2841 * @adapter: pointer to the device adapter structure 2842 * 2843 * This function serves two purposes. First it strobes the interrupt lines 2844 * in order to make certain interrupts are occurring. Secondly it sets the 2845 * bits needed to check for TX hangs. As a result we should immediately 2846 * determine if a hang has occurred. 2847 **/ 2848 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 2849 { 2850 struct ixgbe_hw *hw = &adapter->hw; 2851 u32 eics = 0; 2852 int i; 2853 2854 /* If we're down or resetting, just bail */ 2855 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2856 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2857 return; 2858 2859 /* Force detection of hung controller */ 2860 if (netif_carrier_ok(adapter->netdev)) { 2861 for (i = 0; i < adapter->num_tx_queues; i++) 2862 set_check_for_tx_hang(adapter->tx_ring[i]); 2863 } 2864 2865 /* get one bit for every active Tx/Rx interrupt vector */ 2866 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 2867 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 2868 2869 if (qv->rx.ring || qv->tx.ring) 2870 eics |= BIT(i); 2871 } 2872 2873 /* Cause software interrupt to ensure rings are cleaned */ 2874 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 2875 } 2876 2877 /** 2878 * ixgbevf_watchdog_update_link - update the link status 2879 * @adapter: pointer to the device adapter structure 2880 **/ 2881 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 2882 { 2883 struct ixgbe_hw *hw = &adapter->hw; 2884 u32 link_speed = adapter->link_speed; 2885 bool link_up = adapter->link_up; 2886 s32 err; 2887 2888 spin_lock_bh(&adapter->mbx_lock); 2889 2890 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 2891 2892 spin_unlock_bh(&adapter->mbx_lock); 2893 2894 /* if check for link returns error we will need to reset */ 2895 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 2896 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 2897 link_up = false; 2898 } 2899 2900 adapter->link_up = link_up; 2901 adapter->link_speed = link_speed; 2902 } 2903 2904 /** 2905 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 2906 * print link up message 2907 * @adapter: pointer to the device adapter structure 2908 **/ 2909 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 2910 { 2911 struct net_device *netdev = adapter->netdev; 2912 2913 /* only continue if link was previously down */ 2914 if (netif_carrier_ok(netdev)) 2915 return; 2916 2917 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 2918 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 2919 "10 Gbps" : 2920 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 2921 "1 Gbps" : 2922 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 2923 "100 Mbps" : 2924 "unknown speed"); 2925 2926 netif_carrier_on(netdev); 2927 } 2928 2929 /** 2930 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 2931 * print link down message 2932 * @adapter: pointer to the adapter structure 2933 **/ 2934 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 2935 { 2936 struct net_device *netdev = adapter->netdev; 2937 2938 adapter->link_speed = 0; 2939 2940 /* only continue if link was up previously */ 2941 if (!netif_carrier_ok(netdev)) 2942 return; 2943 2944 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 2945 2946 netif_carrier_off(netdev); 2947 } 2948 2949 /** 2950 * ixgbevf_watchdog_subtask - worker thread to bring link up 2951 * @adapter: board private structure 2952 **/ 2953 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 2954 { 2955 /* if interface is down do nothing */ 2956 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2957 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2958 return; 2959 2960 ixgbevf_watchdog_update_link(adapter); 2961 2962 if (adapter->link_up) 2963 ixgbevf_watchdog_link_is_up(adapter); 2964 else 2965 ixgbevf_watchdog_link_is_down(adapter); 2966 2967 ixgbevf_update_stats(adapter); 2968 } 2969 2970 /** 2971 * ixgbevf_service_task - manages and runs subtasks 2972 * @work: pointer to work_struct containing our data 2973 **/ 2974 static void ixgbevf_service_task(struct work_struct *work) 2975 { 2976 struct ixgbevf_adapter *adapter = container_of(work, 2977 struct ixgbevf_adapter, 2978 service_task); 2979 struct ixgbe_hw *hw = &adapter->hw; 2980 2981 if (IXGBE_REMOVED(hw->hw_addr)) { 2982 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 2983 rtnl_lock(); 2984 ixgbevf_down(adapter); 2985 rtnl_unlock(); 2986 } 2987 return; 2988 } 2989 2990 ixgbevf_queue_reset_subtask(adapter); 2991 ixgbevf_reset_subtask(adapter); 2992 ixgbevf_watchdog_subtask(adapter); 2993 ixgbevf_check_hang_subtask(adapter); 2994 2995 ixgbevf_service_event_complete(adapter); 2996 } 2997 2998 /** 2999 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3000 * @tx_ring: Tx descriptor ring for a specific queue 3001 * 3002 * Free all transmit software resources 3003 **/ 3004 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3005 { 3006 ixgbevf_clean_tx_ring(tx_ring); 3007 3008 vfree(tx_ring->tx_buffer_info); 3009 tx_ring->tx_buffer_info = NULL; 3010 3011 /* if not set, then don't free */ 3012 if (!tx_ring->desc) 3013 return; 3014 3015 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3016 tx_ring->dma); 3017 3018 tx_ring->desc = NULL; 3019 } 3020 3021 /** 3022 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3023 * @adapter: board private structure 3024 * 3025 * Free all transmit software resources 3026 **/ 3027 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3028 { 3029 int i; 3030 3031 for (i = 0; i < adapter->num_tx_queues; i++) 3032 if (adapter->tx_ring[i]->desc) 3033 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3034 } 3035 3036 /** 3037 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3038 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3039 * 3040 * Return 0 on success, negative on failure 3041 **/ 3042 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3043 { 3044 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3045 int size; 3046 3047 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3048 tx_ring->tx_buffer_info = vmalloc(size); 3049 if (!tx_ring->tx_buffer_info) 3050 goto err; 3051 3052 u64_stats_init(&tx_ring->syncp); 3053 3054 /* round up to nearest 4K */ 3055 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3056 tx_ring->size = ALIGN(tx_ring->size, 4096); 3057 3058 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3059 &tx_ring->dma, GFP_KERNEL); 3060 if (!tx_ring->desc) 3061 goto err; 3062 3063 return 0; 3064 3065 err: 3066 vfree(tx_ring->tx_buffer_info); 3067 tx_ring->tx_buffer_info = NULL; 3068 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3069 return -ENOMEM; 3070 } 3071 3072 /** 3073 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3074 * @adapter: board private structure 3075 * 3076 * If this function returns with an error, then it's possible one or 3077 * more of the rings is populated (while the rest are not). It is the 3078 * callers duty to clean those orphaned rings. 3079 * 3080 * Return 0 on success, negative on failure 3081 **/ 3082 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3083 { 3084 int i, err = 0; 3085 3086 for (i = 0; i < adapter->num_tx_queues; i++) { 3087 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3088 if (!err) 3089 continue; 3090 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3091 break; 3092 } 3093 3094 return err; 3095 } 3096 3097 /** 3098 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3099 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3100 * 3101 * Returns 0 on success, negative on failure 3102 **/ 3103 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring) 3104 { 3105 int size; 3106 3107 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3108 rx_ring->rx_buffer_info = vmalloc(size); 3109 if (!rx_ring->rx_buffer_info) 3110 goto err; 3111 3112 u64_stats_init(&rx_ring->syncp); 3113 3114 /* Round up to nearest 4K */ 3115 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3116 rx_ring->size = ALIGN(rx_ring->size, 4096); 3117 3118 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3119 &rx_ring->dma, GFP_KERNEL); 3120 3121 if (!rx_ring->desc) 3122 goto err; 3123 3124 return 0; 3125 err: 3126 vfree(rx_ring->rx_buffer_info); 3127 rx_ring->rx_buffer_info = NULL; 3128 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3129 return -ENOMEM; 3130 } 3131 3132 /** 3133 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3134 * @adapter: board private structure 3135 * 3136 * If this function returns with an error, then it's possible one or 3137 * more of the rings is populated (while the rest are not). It is the 3138 * callers duty to clean those orphaned rings. 3139 * 3140 * Return 0 on success, negative on failure 3141 **/ 3142 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3143 { 3144 int i, err = 0; 3145 3146 for (i = 0; i < adapter->num_rx_queues; i++) { 3147 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]); 3148 if (!err) 3149 continue; 3150 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3151 break; 3152 } 3153 return err; 3154 } 3155 3156 /** 3157 * ixgbevf_free_rx_resources - Free Rx Resources 3158 * @rx_ring: ring to clean the resources from 3159 * 3160 * Free all receive software resources 3161 **/ 3162 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3163 { 3164 ixgbevf_clean_rx_ring(rx_ring); 3165 3166 vfree(rx_ring->rx_buffer_info); 3167 rx_ring->rx_buffer_info = NULL; 3168 3169 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3170 rx_ring->dma); 3171 3172 rx_ring->desc = NULL; 3173 } 3174 3175 /** 3176 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3177 * @adapter: board private structure 3178 * 3179 * Free all receive software resources 3180 **/ 3181 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3182 { 3183 int i; 3184 3185 for (i = 0; i < adapter->num_rx_queues; i++) 3186 if (adapter->rx_ring[i]->desc) 3187 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3188 } 3189 3190 /** 3191 * ixgbevf_open - Called when a network interface is made active 3192 * @netdev: network interface device structure 3193 * 3194 * Returns 0 on success, negative value on failure 3195 * 3196 * The open entry point is called when a network interface is made 3197 * active by the system (IFF_UP). At this point all resources needed 3198 * for transmit and receive operations are allocated, the interrupt 3199 * handler is registered with the OS, the watchdog timer is started, 3200 * and the stack is notified that the interface is ready. 3201 **/ 3202 int ixgbevf_open(struct net_device *netdev) 3203 { 3204 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3205 struct ixgbe_hw *hw = &adapter->hw; 3206 int err; 3207 3208 /* A previous failure to open the device because of a lack of 3209 * available MSIX vector resources may have reset the number 3210 * of msix vectors variable to zero. The only way to recover 3211 * is to unload/reload the driver and hope that the system has 3212 * been able to recover some MSIX vector resources. 3213 */ 3214 if (!adapter->num_msix_vectors) 3215 return -ENOMEM; 3216 3217 if (hw->adapter_stopped) { 3218 ixgbevf_reset(adapter); 3219 /* if adapter is still stopped then PF isn't up and 3220 * the VF can't start. 3221 */ 3222 if (hw->adapter_stopped) { 3223 err = IXGBE_ERR_MBX; 3224 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3225 goto err_setup_reset; 3226 } 3227 } 3228 3229 /* disallow open during test */ 3230 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3231 return -EBUSY; 3232 3233 netif_carrier_off(netdev); 3234 3235 /* allocate transmit descriptors */ 3236 err = ixgbevf_setup_all_tx_resources(adapter); 3237 if (err) 3238 goto err_setup_tx; 3239 3240 /* allocate receive descriptors */ 3241 err = ixgbevf_setup_all_rx_resources(adapter); 3242 if (err) 3243 goto err_setup_rx; 3244 3245 ixgbevf_configure(adapter); 3246 3247 /* Map the Tx/Rx rings to the vectors we were allotted. 3248 * if request_irq will be called in this function map_rings 3249 * must be called *before* up_complete 3250 */ 3251 ixgbevf_map_rings_to_vectors(adapter); 3252 3253 err = ixgbevf_request_irq(adapter); 3254 if (err) 3255 goto err_req_irq; 3256 3257 ixgbevf_up_complete(adapter); 3258 3259 return 0; 3260 3261 err_req_irq: 3262 ixgbevf_down(adapter); 3263 err_setup_rx: 3264 ixgbevf_free_all_rx_resources(adapter); 3265 err_setup_tx: 3266 ixgbevf_free_all_tx_resources(adapter); 3267 ixgbevf_reset(adapter); 3268 3269 err_setup_reset: 3270 3271 return err; 3272 } 3273 3274 /** 3275 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3276 * @adapter: the private adapter struct 3277 * 3278 * This function should contain the necessary work common to both suspending 3279 * and closing of the device. 3280 */ 3281 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3282 { 3283 ixgbevf_down(adapter); 3284 ixgbevf_free_irq(adapter); 3285 ixgbevf_free_all_tx_resources(adapter); 3286 ixgbevf_free_all_rx_resources(adapter); 3287 } 3288 3289 /** 3290 * ixgbevf_close - Disables a network interface 3291 * @netdev: network interface device structure 3292 * 3293 * Returns 0, this is not allowed to fail 3294 * 3295 * The close entry point is called when an interface is de-activated 3296 * by the OS. The hardware is still under the drivers control, but 3297 * needs to be disabled. A global MAC reset is issued to stop the 3298 * hardware, and all transmit and receive resources are freed. 3299 **/ 3300 int ixgbevf_close(struct net_device *netdev) 3301 { 3302 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3303 3304 if (netif_device_present(netdev)) 3305 ixgbevf_close_suspend(adapter); 3306 3307 return 0; 3308 } 3309 3310 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3311 { 3312 struct net_device *dev = adapter->netdev; 3313 3314 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3315 &adapter->state)) 3316 return; 3317 3318 /* if interface is down do nothing */ 3319 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3320 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3321 return; 3322 3323 /* Hardware has to reinitialize queues and interrupts to 3324 * match packet buffer alignment. Unfortunately, the 3325 * hardware is not flexible enough to do this dynamically. 3326 */ 3327 rtnl_lock(); 3328 3329 if (netif_running(dev)) 3330 ixgbevf_close(dev); 3331 3332 ixgbevf_clear_interrupt_scheme(adapter); 3333 ixgbevf_init_interrupt_scheme(adapter); 3334 3335 if (netif_running(dev)) 3336 ixgbevf_open(dev); 3337 3338 rtnl_unlock(); 3339 } 3340 3341 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3342 u32 vlan_macip_lens, u32 type_tucmd, 3343 u32 mss_l4len_idx) 3344 { 3345 struct ixgbe_adv_tx_context_desc *context_desc; 3346 u16 i = tx_ring->next_to_use; 3347 3348 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3349 3350 i++; 3351 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3352 3353 /* set bits to identify this as an advanced context descriptor */ 3354 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3355 3356 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3357 context_desc->seqnum_seed = 0; 3358 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3359 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3360 } 3361 3362 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3363 struct ixgbevf_tx_buffer *first, 3364 u8 *hdr_len) 3365 { 3366 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3367 struct sk_buff *skb = first->skb; 3368 union { 3369 struct iphdr *v4; 3370 struct ipv6hdr *v6; 3371 unsigned char *hdr; 3372 } ip; 3373 union { 3374 struct tcphdr *tcp; 3375 unsigned char *hdr; 3376 } l4; 3377 u32 paylen, l4_offset; 3378 int err; 3379 3380 if (skb->ip_summed != CHECKSUM_PARTIAL) 3381 return 0; 3382 3383 if (!skb_is_gso(skb)) 3384 return 0; 3385 3386 err = skb_cow_head(skb, 0); 3387 if (err < 0) 3388 return err; 3389 3390 if (eth_p_mpls(first->protocol)) 3391 ip.hdr = skb_inner_network_header(skb); 3392 else 3393 ip.hdr = skb_network_header(skb); 3394 l4.hdr = skb_checksum_start(skb); 3395 3396 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3397 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3398 3399 /* initialize outer IP header fields */ 3400 if (ip.v4->version == 4) { 3401 unsigned char *csum_start = skb_checksum_start(skb); 3402 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3403 3404 /* IP header will have to cancel out any data that 3405 * is not a part of the outer IP header 3406 */ 3407 ip.v4->check = csum_fold(csum_partial(trans_start, 3408 csum_start - trans_start, 3409 0)); 3410 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3411 3412 ip.v4->tot_len = 0; 3413 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3414 IXGBE_TX_FLAGS_CSUM | 3415 IXGBE_TX_FLAGS_IPV4; 3416 } else { 3417 ip.v6->payload_len = 0; 3418 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3419 IXGBE_TX_FLAGS_CSUM; 3420 } 3421 3422 /* determine offset of inner transport header */ 3423 l4_offset = l4.hdr - skb->data; 3424 3425 /* compute length of segmentation header */ 3426 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3427 3428 /* remove payload length from inner checksum */ 3429 paylen = skb->len - l4_offset; 3430 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3431 3432 /* update gso size and bytecount with header size */ 3433 first->gso_segs = skb_shinfo(skb)->gso_segs; 3434 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3435 3436 /* mss_l4len_id: use 1 as index for TSO */ 3437 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3438 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3439 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3440 3441 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3442 vlan_macip_lens = l4.hdr - ip.hdr; 3443 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3444 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3445 3446 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3447 type_tucmd, mss_l4len_idx); 3448 3449 return 1; 3450 } 3451 3452 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) 3453 { 3454 unsigned int offset = 0; 3455 3456 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 3457 3458 return offset == skb_checksum_start_offset(skb); 3459 } 3460 3461 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3462 struct ixgbevf_tx_buffer *first) 3463 { 3464 struct sk_buff *skb = first->skb; 3465 u32 vlan_macip_lens = 0; 3466 u32 type_tucmd = 0; 3467 3468 if (skb->ip_summed != CHECKSUM_PARTIAL) 3469 goto no_csum; 3470 3471 switch (skb->csum_offset) { 3472 case offsetof(struct tcphdr, check): 3473 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3474 /* fall through */ 3475 case offsetof(struct udphdr, check): 3476 break; 3477 case offsetof(struct sctphdr, checksum): 3478 /* validate that this is actually an SCTP request */ 3479 if (((first->protocol == htons(ETH_P_IP)) && 3480 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 3481 ((first->protocol == htons(ETH_P_IPV6)) && 3482 ixgbevf_ipv6_csum_is_sctp(skb))) { 3483 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3484 break; 3485 } 3486 /* fall through */ 3487 default: 3488 skb_checksum_help(skb); 3489 goto no_csum; 3490 } 3491 /* update TX checksum flag */ 3492 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3493 vlan_macip_lens = skb_checksum_start_offset(skb) - 3494 skb_network_offset(skb); 3495 no_csum: 3496 /* vlan_macip_lens: MACLEN, VLAN tag */ 3497 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3498 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3499 3500 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0); 3501 } 3502 3503 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3504 { 3505 /* set type for advanced descriptor with frame checksum insertion */ 3506 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3507 IXGBE_ADVTXD_DCMD_IFCS | 3508 IXGBE_ADVTXD_DCMD_DEXT); 3509 3510 /* set HW VLAN bit if VLAN is present */ 3511 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3512 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3513 3514 /* set segmentation enable bits for TSO/FSO */ 3515 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3516 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3517 3518 return cmd_type; 3519 } 3520 3521 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3522 u32 tx_flags, unsigned int paylen) 3523 { 3524 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3525 3526 /* enable L4 checksum for TSO and TX checksum offload */ 3527 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3528 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3529 3530 /* enble IPv4 checksum for TSO */ 3531 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3532 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3533 3534 /* use index 1 context for TSO/FSO/FCOE */ 3535 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3536 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3537 3538 /* Check Context must be set if Tx switch is enabled, which it 3539 * always is for case where virtual functions are running 3540 */ 3541 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3542 3543 tx_desc->read.olinfo_status = olinfo_status; 3544 } 3545 3546 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3547 struct ixgbevf_tx_buffer *first, 3548 const u8 hdr_len) 3549 { 3550 struct sk_buff *skb = first->skb; 3551 struct ixgbevf_tx_buffer *tx_buffer; 3552 union ixgbe_adv_tx_desc *tx_desc; 3553 struct skb_frag_struct *frag; 3554 dma_addr_t dma; 3555 unsigned int data_len, size; 3556 u32 tx_flags = first->tx_flags; 3557 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3558 u16 i = tx_ring->next_to_use; 3559 3560 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3561 3562 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3563 3564 size = skb_headlen(skb); 3565 data_len = skb->data_len; 3566 3567 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3568 3569 tx_buffer = first; 3570 3571 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3572 if (dma_mapping_error(tx_ring->dev, dma)) 3573 goto dma_error; 3574 3575 /* record length, and DMA address */ 3576 dma_unmap_len_set(tx_buffer, len, size); 3577 dma_unmap_addr_set(tx_buffer, dma, dma); 3578 3579 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3580 3581 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3582 tx_desc->read.cmd_type_len = 3583 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3584 3585 i++; 3586 tx_desc++; 3587 if (i == tx_ring->count) { 3588 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3589 i = 0; 3590 } 3591 tx_desc->read.olinfo_status = 0; 3592 3593 dma += IXGBE_MAX_DATA_PER_TXD; 3594 size -= IXGBE_MAX_DATA_PER_TXD; 3595 3596 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3597 } 3598 3599 if (likely(!data_len)) 3600 break; 3601 3602 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 3603 3604 i++; 3605 tx_desc++; 3606 if (i == tx_ring->count) { 3607 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3608 i = 0; 3609 } 3610 tx_desc->read.olinfo_status = 0; 3611 3612 size = skb_frag_size(frag); 3613 data_len -= size; 3614 3615 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3616 DMA_TO_DEVICE); 3617 3618 tx_buffer = &tx_ring->tx_buffer_info[i]; 3619 } 3620 3621 /* write last descriptor with RS and EOP bits */ 3622 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 3623 tx_desc->read.cmd_type_len = cmd_type; 3624 3625 /* set the timestamp */ 3626 first->time_stamp = jiffies; 3627 3628 /* Force memory writes to complete before letting h/w know there 3629 * are new descriptors to fetch. (Only applicable for weak-ordered 3630 * memory model archs, such as IA-64). 3631 * 3632 * We also need this memory barrier (wmb) to make certain all of the 3633 * status bits have been updated before next_to_watch is written. 3634 */ 3635 wmb(); 3636 3637 /* set next_to_watch value indicating a packet is present */ 3638 first->next_to_watch = tx_desc; 3639 3640 i++; 3641 if (i == tx_ring->count) 3642 i = 0; 3643 3644 tx_ring->next_to_use = i; 3645 3646 /* notify HW of packet */ 3647 ixgbevf_write_tail(tx_ring, i); 3648 3649 return; 3650 dma_error: 3651 dev_err(tx_ring->dev, "TX DMA map failed\n"); 3652 tx_buffer = &tx_ring->tx_buffer_info[i]; 3653 3654 /* clear dma mappings for failed tx_buffer_info map */ 3655 while (tx_buffer != first) { 3656 if (dma_unmap_len(tx_buffer, len)) 3657 dma_unmap_page(tx_ring->dev, 3658 dma_unmap_addr(tx_buffer, dma), 3659 dma_unmap_len(tx_buffer, len), 3660 DMA_TO_DEVICE); 3661 dma_unmap_len_set(tx_buffer, len, 0); 3662 3663 if (i-- == 0) 3664 i += tx_ring->count; 3665 tx_buffer = &tx_ring->tx_buffer_info[i]; 3666 } 3667 3668 if (dma_unmap_len(tx_buffer, len)) 3669 dma_unmap_single(tx_ring->dev, 3670 dma_unmap_addr(tx_buffer, dma), 3671 dma_unmap_len(tx_buffer, len), 3672 DMA_TO_DEVICE); 3673 dma_unmap_len_set(tx_buffer, len, 0); 3674 3675 dev_kfree_skb_any(tx_buffer->skb); 3676 tx_buffer->skb = NULL; 3677 3678 tx_ring->next_to_use = i; 3679 } 3680 3681 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 3682 { 3683 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3684 /* Herbert's original patch had: 3685 * smp_mb__after_netif_stop_queue(); 3686 * but since that doesn't exist yet, just open code it. 3687 */ 3688 smp_mb(); 3689 3690 /* We need to check again in a case another CPU has just 3691 * made room available. 3692 */ 3693 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 3694 return -EBUSY; 3695 3696 /* A reprieve! - use start_queue because it doesn't call schedule */ 3697 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3698 ++tx_ring->tx_stats.restart_queue; 3699 3700 return 0; 3701 } 3702 3703 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 3704 { 3705 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 3706 return 0; 3707 return __ixgbevf_maybe_stop_tx(tx_ring, size); 3708 } 3709 3710 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3711 { 3712 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3713 struct ixgbevf_tx_buffer *first; 3714 struct ixgbevf_ring *tx_ring; 3715 int tso; 3716 u32 tx_flags = 0; 3717 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 3718 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 3719 unsigned short f; 3720 #endif 3721 u8 hdr_len = 0; 3722 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 3723 3724 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 3725 dev_kfree_skb_any(skb); 3726 return NETDEV_TX_OK; 3727 } 3728 3729 tx_ring = adapter->tx_ring[skb->queue_mapping]; 3730 3731 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 3732 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 3733 * + 2 desc gap to keep tail from touching head, 3734 * + 1 desc for context descriptor, 3735 * otherwise try next time 3736 */ 3737 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 3738 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 3739 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 3740 #else 3741 count += skb_shinfo(skb)->nr_frags; 3742 #endif 3743 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 3744 tx_ring->tx_stats.tx_busy++; 3745 return NETDEV_TX_BUSY; 3746 } 3747 3748 /* record the location of the first descriptor for this packet */ 3749 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 3750 first->skb = skb; 3751 first->bytecount = skb->len; 3752 first->gso_segs = 1; 3753 3754 if (skb_vlan_tag_present(skb)) { 3755 tx_flags |= skb_vlan_tag_get(skb); 3756 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 3757 tx_flags |= IXGBE_TX_FLAGS_VLAN; 3758 } 3759 3760 /* record initial flags and protocol */ 3761 first->tx_flags = tx_flags; 3762 first->protocol = vlan_get_protocol(skb); 3763 3764 tso = ixgbevf_tso(tx_ring, first, &hdr_len); 3765 if (tso < 0) 3766 goto out_drop; 3767 else if (!tso) 3768 ixgbevf_tx_csum(tx_ring, first); 3769 3770 ixgbevf_tx_map(tx_ring, first, hdr_len); 3771 3772 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 3773 3774 return NETDEV_TX_OK; 3775 3776 out_drop: 3777 dev_kfree_skb_any(first->skb); 3778 first->skb = NULL; 3779 3780 return NETDEV_TX_OK; 3781 } 3782 3783 /** 3784 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 3785 * @netdev: network interface device structure 3786 * @p: pointer to an address structure 3787 * 3788 * Returns 0 on success, negative on failure 3789 **/ 3790 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 3791 { 3792 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3793 struct ixgbe_hw *hw = &adapter->hw; 3794 struct sockaddr *addr = p; 3795 int err; 3796 3797 if (!is_valid_ether_addr(addr->sa_data)) 3798 return -EADDRNOTAVAIL; 3799 3800 spin_lock_bh(&adapter->mbx_lock); 3801 3802 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 3803 3804 spin_unlock_bh(&adapter->mbx_lock); 3805 3806 if (err) 3807 return -EPERM; 3808 3809 ether_addr_copy(hw->mac.addr, addr->sa_data); 3810 ether_addr_copy(netdev->dev_addr, addr->sa_data); 3811 3812 return 0; 3813 } 3814 3815 /** 3816 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 3817 * @netdev: network interface device structure 3818 * @new_mtu: new value for maximum frame size 3819 * 3820 * Returns 0 on success, negative on failure 3821 **/ 3822 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 3823 { 3824 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3825 struct ixgbe_hw *hw = &adapter->hw; 3826 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3827 int ret; 3828 3829 spin_lock_bh(&adapter->mbx_lock); 3830 /* notify the PF of our intent to use this size of frame */ 3831 ret = hw->mac.ops.set_rlpml(hw, max_frame); 3832 spin_unlock_bh(&adapter->mbx_lock); 3833 if (ret) 3834 return -EINVAL; 3835 3836 hw_dbg(hw, "changing MTU from %d to %d\n", 3837 netdev->mtu, new_mtu); 3838 3839 /* must set new MTU before calling down or up */ 3840 netdev->mtu = new_mtu; 3841 3842 return 0; 3843 } 3844 3845 #ifdef CONFIG_NET_POLL_CONTROLLER 3846 /* Polling 'interrupt' - used by things like netconsole to send skbs 3847 * without having to re-enable interrupts. It's not called while 3848 * the interrupt routine is executing. 3849 */ 3850 static void ixgbevf_netpoll(struct net_device *netdev) 3851 { 3852 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3853 int i; 3854 3855 /* if interface is down do nothing */ 3856 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 3857 return; 3858 for (i = 0; i < adapter->num_rx_queues; i++) 3859 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]); 3860 } 3861 #endif /* CONFIG_NET_POLL_CONTROLLER */ 3862 3863 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state) 3864 { 3865 struct net_device *netdev = pci_get_drvdata(pdev); 3866 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3867 #ifdef CONFIG_PM 3868 int retval = 0; 3869 #endif 3870 3871 rtnl_lock(); 3872 netif_device_detach(netdev); 3873 3874 if (netif_running(netdev)) 3875 ixgbevf_close_suspend(adapter); 3876 3877 ixgbevf_clear_interrupt_scheme(adapter); 3878 rtnl_unlock(); 3879 3880 #ifdef CONFIG_PM 3881 retval = pci_save_state(pdev); 3882 if (retval) 3883 return retval; 3884 3885 #endif 3886 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 3887 pci_disable_device(pdev); 3888 3889 return 0; 3890 } 3891 3892 #ifdef CONFIG_PM 3893 static int ixgbevf_resume(struct pci_dev *pdev) 3894 { 3895 struct net_device *netdev = pci_get_drvdata(pdev); 3896 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3897 u32 err; 3898 3899 pci_restore_state(pdev); 3900 /* pci_restore_state clears dev->state_saved so call 3901 * pci_save_state to restore it. 3902 */ 3903 pci_save_state(pdev); 3904 3905 err = pci_enable_device_mem(pdev); 3906 if (err) { 3907 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 3908 return err; 3909 } 3910 3911 adapter->hw.hw_addr = adapter->io_addr; 3912 smp_mb__before_atomic(); 3913 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 3914 pci_set_master(pdev); 3915 3916 ixgbevf_reset(adapter); 3917 3918 rtnl_lock(); 3919 err = ixgbevf_init_interrupt_scheme(adapter); 3920 rtnl_unlock(); 3921 if (err) { 3922 dev_err(&pdev->dev, "Cannot initialize interrupts\n"); 3923 return err; 3924 } 3925 3926 if (netif_running(netdev)) { 3927 err = ixgbevf_open(netdev); 3928 if (err) 3929 return err; 3930 } 3931 3932 netif_device_attach(netdev); 3933 3934 return err; 3935 } 3936 3937 #endif /* CONFIG_PM */ 3938 static void ixgbevf_shutdown(struct pci_dev *pdev) 3939 { 3940 ixgbevf_suspend(pdev, PMSG_SUSPEND); 3941 } 3942 3943 static void ixgbevf_get_stats(struct net_device *netdev, 3944 struct rtnl_link_stats64 *stats) 3945 { 3946 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3947 unsigned int start; 3948 u64 bytes, packets; 3949 const struct ixgbevf_ring *ring; 3950 int i; 3951 3952 ixgbevf_update_stats(adapter); 3953 3954 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 3955 3956 for (i = 0; i < adapter->num_rx_queues; i++) { 3957 ring = adapter->rx_ring[i]; 3958 do { 3959 start = u64_stats_fetch_begin_irq(&ring->syncp); 3960 bytes = ring->stats.bytes; 3961 packets = ring->stats.packets; 3962 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3963 stats->rx_bytes += bytes; 3964 stats->rx_packets += packets; 3965 } 3966 3967 for (i = 0; i < adapter->num_tx_queues; i++) { 3968 ring = adapter->tx_ring[i]; 3969 do { 3970 start = u64_stats_fetch_begin_irq(&ring->syncp); 3971 bytes = ring->stats.bytes; 3972 packets = ring->stats.packets; 3973 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3974 stats->tx_bytes += bytes; 3975 stats->tx_packets += packets; 3976 } 3977 } 3978 3979 #define IXGBEVF_MAX_MAC_HDR_LEN 127 3980 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 3981 3982 static netdev_features_t 3983 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 3984 netdev_features_t features) 3985 { 3986 unsigned int network_hdr_len, mac_hdr_len; 3987 3988 /* Make certain the headers can be described by a context descriptor */ 3989 mac_hdr_len = skb_network_header(skb) - skb->data; 3990 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 3991 return features & ~(NETIF_F_HW_CSUM | 3992 NETIF_F_SCTP_CRC | 3993 NETIF_F_HW_VLAN_CTAG_TX | 3994 NETIF_F_TSO | 3995 NETIF_F_TSO6); 3996 3997 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 3998 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 3999 return features & ~(NETIF_F_HW_CSUM | 4000 NETIF_F_SCTP_CRC | 4001 NETIF_F_TSO | 4002 NETIF_F_TSO6); 4003 4004 /* We can only support IPV4 TSO in tunnels if we can mangle the 4005 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4006 */ 4007 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4008 features &= ~NETIF_F_TSO; 4009 4010 return features; 4011 } 4012 4013 static const struct net_device_ops ixgbevf_netdev_ops = { 4014 .ndo_open = ixgbevf_open, 4015 .ndo_stop = ixgbevf_close, 4016 .ndo_start_xmit = ixgbevf_xmit_frame, 4017 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4018 .ndo_get_stats64 = ixgbevf_get_stats, 4019 .ndo_validate_addr = eth_validate_addr, 4020 .ndo_set_mac_address = ixgbevf_set_mac, 4021 .ndo_change_mtu = ixgbevf_change_mtu, 4022 .ndo_tx_timeout = ixgbevf_tx_timeout, 4023 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4024 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4025 #ifdef CONFIG_NET_POLL_CONTROLLER 4026 .ndo_poll_controller = ixgbevf_netpoll, 4027 #endif 4028 .ndo_features_check = ixgbevf_features_check, 4029 }; 4030 4031 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4032 { 4033 dev->netdev_ops = &ixgbevf_netdev_ops; 4034 ixgbevf_set_ethtool_ops(dev); 4035 dev->watchdog_timeo = 5 * HZ; 4036 } 4037 4038 /** 4039 * ixgbevf_probe - Device Initialization Routine 4040 * @pdev: PCI device information struct 4041 * @ent: entry in ixgbevf_pci_tbl 4042 * 4043 * Returns 0 on success, negative on failure 4044 * 4045 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4046 * The OS initialization, configuring of the adapter private structure, 4047 * and a hardware reset occur. 4048 **/ 4049 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4050 { 4051 struct net_device *netdev; 4052 struct ixgbevf_adapter *adapter = NULL; 4053 struct ixgbe_hw *hw = NULL; 4054 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4055 int err, pci_using_dac; 4056 bool disable_dev = false; 4057 4058 err = pci_enable_device(pdev); 4059 if (err) 4060 return err; 4061 4062 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 4063 pci_using_dac = 1; 4064 } else { 4065 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4066 if (err) { 4067 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4068 goto err_dma; 4069 } 4070 pci_using_dac = 0; 4071 } 4072 4073 err = pci_request_regions(pdev, ixgbevf_driver_name); 4074 if (err) { 4075 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4076 goto err_pci_reg; 4077 } 4078 4079 pci_set_master(pdev); 4080 4081 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4082 MAX_TX_QUEUES); 4083 if (!netdev) { 4084 err = -ENOMEM; 4085 goto err_alloc_etherdev; 4086 } 4087 4088 SET_NETDEV_DEV(netdev, &pdev->dev); 4089 4090 adapter = netdev_priv(netdev); 4091 4092 adapter->netdev = netdev; 4093 adapter->pdev = pdev; 4094 hw = &adapter->hw; 4095 hw->back = adapter; 4096 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4097 4098 /* call save state here in standalone driver because it relies on 4099 * adapter struct to exist, and needs to call netdev_priv 4100 */ 4101 pci_save_state(pdev); 4102 4103 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4104 pci_resource_len(pdev, 0)); 4105 adapter->io_addr = hw->hw_addr; 4106 if (!hw->hw_addr) { 4107 err = -EIO; 4108 goto err_ioremap; 4109 } 4110 4111 ixgbevf_assign_netdev_ops(netdev); 4112 4113 /* Setup HW API */ 4114 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4115 hw->mac.type = ii->mac; 4116 4117 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4118 sizeof(struct ixgbe_mbx_operations)); 4119 4120 /* setup the private structure */ 4121 err = ixgbevf_sw_init(adapter); 4122 if (err) 4123 goto err_sw_init; 4124 4125 /* The HW MAC address was set and/or determined in sw_init */ 4126 if (!is_valid_ether_addr(netdev->dev_addr)) { 4127 pr_err("invalid MAC address\n"); 4128 err = -EIO; 4129 goto err_sw_init; 4130 } 4131 4132 netdev->hw_features = NETIF_F_SG | 4133 NETIF_F_TSO | 4134 NETIF_F_TSO6 | 4135 NETIF_F_RXCSUM | 4136 NETIF_F_HW_CSUM | 4137 NETIF_F_SCTP_CRC; 4138 4139 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4140 NETIF_F_GSO_GRE_CSUM | \ 4141 NETIF_F_GSO_IPXIP4 | \ 4142 NETIF_F_GSO_IPXIP6 | \ 4143 NETIF_F_GSO_UDP_TUNNEL | \ 4144 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4145 4146 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4147 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4148 IXGBEVF_GSO_PARTIAL_FEATURES; 4149 4150 netdev->features = netdev->hw_features; 4151 4152 if (pci_using_dac) 4153 netdev->features |= NETIF_F_HIGHDMA; 4154 4155 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4156 netdev->mpls_features |= NETIF_F_SG | 4157 NETIF_F_TSO | 4158 NETIF_F_TSO6 | 4159 NETIF_F_HW_CSUM; 4160 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4161 netdev->hw_enc_features |= netdev->vlan_features; 4162 4163 /* set this bit last since it cannot be part of vlan_features */ 4164 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4165 NETIF_F_HW_VLAN_CTAG_RX | 4166 NETIF_F_HW_VLAN_CTAG_TX; 4167 4168 netdev->priv_flags |= IFF_UNICAST_FLT; 4169 4170 /* MTU range: 68 - 1504 or 9710 */ 4171 netdev->min_mtu = ETH_MIN_MTU; 4172 switch (adapter->hw.api_version) { 4173 case ixgbe_mbox_api_11: 4174 case ixgbe_mbox_api_12: 4175 case ixgbe_mbox_api_13: 4176 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4177 (ETH_HLEN + ETH_FCS_LEN); 4178 break; 4179 default: 4180 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4181 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4182 (ETH_HLEN + ETH_FCS_LEN); 4183 else 4184 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4185 break; 4186 } 4187 4188 if (IXGBE_REMOVED(hw->hw_addr)) { 4189 err = -EIO; 4190 goto err_sw_init; 4191 } 4192 4193 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4194 4195 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4196 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4197 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4198 4199 err = ixgbevf_init_interrupt_scheme(adapter); 4200 if (err) 4201 goto err_sw_init; 4202 4203 strcpy(netdev->name, "eth%d"); 4204 4205 err = register_netdev(netdev); 4206 if (err) 4207 goto err_register; 4208 4209 pci_set_drvdata(pdev, netdev); 4210 netif_carrier_off(netdev); 4211 4212 ixgbevf_init_last_counter_stats(adapter); 4213 4214 /* print the VF info */ 4215 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4216 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4217 4218 switch (hw->mac.type) { 4219 case ixgbe_mac_X550_vf: 4220 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4221 break; 4222 case ixgbe_mac_X540_vf: 4223 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4224 break; 4225 case ixgbe_mac_82599_vf: 4226 default: 4227 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4228 break; 4229 } 4230 4231 return 0; 4232 4233 err_register: 4234 ixgbevf_clear_interrupt_scheme(adapter); 4235 err_sw_init: 4236 ixgbevf_reset_interrupt_capability(adapter); 4237 iounmap(adapter->io_addr); 4238 kfree(adapter->rss_key); 4239 err_ioremap: 4240 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4241 free_netdev(netdev); 4242 err_alloc_etherdev: 4243 pci_release_regions(pdev); 4244 err_pci_reg: 4245 err_dma: 4246 if (!adapter || disable_dev) 4247 pci_disable_device(pdev); 4248 return err; 4249 } 4250 4251 /** 4252 * ixgbevf_remove - Device Removal Routine 4253 * @pdev: PCI device information struct 4254 * 4255 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4256 * that it should release a PCI device. The could be caused by a 4257 * Hot-Plug event, or because the driver is going to be removed from 4258 * memory. 4259 **/ 4260 static void ixgbevf_remove(struct pci_dev *pdev) 4261 { 4262 struct net_device *netdev = pci_get_drvdata(pdev); 4263 struct ixgbevf_adapter *adapter; 4264 bool disable_dev; 4265 4266 if (!netdev) 4267 return; 4268 4269 adapter = netdev_priv(netdev); 4270 4271 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4272 cancel_work_sync(&adapter->service_task); 4273 4274 if (netdev->reg_state == NETREG_REGISTERED) 4275 unregister_netdev(netdev); 4276 4277 ixgbevf_clear_interrupt_scheme(adapter); 4278 ixgbevf_reset_interrupt_capability(adapter); 4279 4280 iounmap(adapter->io_addr); 4281 pci_release_regions(pdev); 4282 4283 hw_dbg(&adapter->hw, "Remove complete\n"); 4284 4285 kfree(adapter->rss_key); 4286 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4287 free_netdev(netdev); 4288 4289 if (disable_dev) 4290 pci_disable_device(pdev); 4291 } 4292 4293 /** 4294 * ixgbevf_io_error_detected - called when PCI error is detected 4295 * @pdev: Pointer to PCI device 4296 * @state: The current pci connection state 4297 * 4298 * This function is called after a PCI bus error affecting 4299 * this device has been detected. 4300 **/ 4301 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4302 pci_channel_state_t state) 4303 { 4304 struct net_device *netdev = pci_get_drvdata(pdev); 4305 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4306 4307 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4308 return PCI_ERS_RESULT_DISCONNECT; 4309 4310 rtnl_lock(); 4311 netif_device_detach(netdev); 4312 4313 if (state == pci_channel_io_perm_failure) { 4314 rtnl_unlock(); 4315 return PCI_ERS_RESULT_DISCONNECT; 4316 } 4317 4318 if (netif_running(netdev)) 4319 ixgbevf_close_suspend(adapter); 4320 4321 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4322 pci_disable_device(pdev); 4323 rtnl_unlock(); 4324 4325 /* Request a slot slot reset. */ 4326 return PCI_ERS_RESULT_NEED_RESET; 4327 } 4328 4329 /** 4330 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4331 * @pdev: Pointer to PCI device 4332 * 4333 * Restart the card from scratch, as if from a cold-boot. Implementation 4334 * resembles the first-half of the ixgbevf_resume routine. 4335 **/ 4336 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4337 { 4338 struct net_device *netdev = pci_get_drvdata(pdev); 4339 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4340 4341 if (pci_enable_device_mem(pdev)) { 4342 dev_err(&pdev->dev, 4343 "Cannot re-enable PCI device after reset.\n"); 4344 return PCI_ERS_RESULT_DISCONNECT; 4345 } 4346 4347 adapter->hw.hw_addr = adapter->io_addr; 4348 smp_mb__before_atomic(); 4349 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4350 pci_set_master(pdev); 4351 4352 ixgbevf_reset(adapter); 4353 4354 return PCI_ERS_RESULT_RECOVERED; 4355 } 4356 4357 /** 4358 * ixgbevf_io_resume - called when traffic can start flowing again. 4359 * @pdev: Pointer to PCI device 4360 * 4361 * This callback is called when the error recovery driver tells us that 4362 * its OK to resume normal operation. Implementation resembles the 4363 * second-half of the ixgbevf_resume routine. 4364 **/ 4365 static void ixgbevf_io_resume(struct pci_dev *pdev) 4366 { 4367 struct net_device *netdev = pci_get_drvdata(pdev); 4368 4369 rtnl_lock(); 4370 if (netif_running(netdev)) 4371 ixgbevf_open(netdev); 4372 4373 netif_device_attach(netdev); 4374 rtnl_unlock(); 4375 } 4376 4377 /* PCI Error Recovery (ERS) */ 4378 static const struct pci_error_handlers ixgbevf_err_handler = { 4379 .error_detected = ixgbevf_io_error_detected, 4380 .slot_reset = ixgbevf_io_slot_reset, 4381 .resume = ixgbevf_io_resume, 4382 }; 4383 4384 static struct pci_driver ixgbevf_driver = { 4385 .name = ixgbevf_driver_name, 4386 .id_table = ixgbevf_pci_tbl, 4387 .probe = ixgbevf_probe, 4388 .remove = ixgbevf_remove, 4389 #ifdef CONFIG_PM 4390 /* Power Management Hooks */ 4391 .suspend = ixgbevf_suspend, 4392 .resume = ixgbevf_resume, 4393 #endif 4394 .shutdown = ixgbevf_shutdown, 4395 .err_handler = &ixgbevf_err_handler 4396 }; 4397 4398 /** 4399 * ixgbevf_init_module - Driver Registration Routine 4400 * 4401 * ixgbevf_init_module is the first routine called when the driver is 4402 * loaded. All it does is register with the PCI subsystem. 4403 **/ 4404 static int __init ixgbevf_init_module(void) 4405 { 4406 pr_info("%s - version %s\n", ixgbevf_driver_string, 4407 ixgbevf_driver_version); 4408 4409 pr_info("%s\n", ixgbevf_copyright); 4410 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4411 if (!ixgbevf_wq) { 4412 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4413 return -ENOMEM; 4414 } 4415 4416 return pci_register_driver(&ixgbevf_driver); 4417 } 4418 4419 module_init(ixgbevf_init_module); 4420 4421 /** 4422 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4423 * 4424 * ixgbevf_exit_module is called just before the driver is removed 4425 * from memory. 4426 **/ 4427 static void __exit ixgbevf_exit_module(void) 4428 { 4429 pci_unregister_driver(&ixgbevf_driver); 4430 if (ixgbevf_wq) { 4431 destroy_workqueue(ixgbevf_wq); 4432 ixgbevf_wq = NULL; 4433 } 4434 } 4435 4436 #ifdef DEBUG 4437 /** 4438 * ixgbevf_get_hw_dev_name - return device name string 4439 * used by hardware layer to print debugging information 4440 * @hw: pointer to private hardware struct 4441 **/ 4442 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4443 { 4444 struct ixgbevf_adapter *adapter = hw->back; 4445 4446 return adapter->netdev->name; 4447 } 4448 4449 #endif 4450 module_exit(ixgbevf_exit_module); 4451 4452 /* ixgbevf_main.c */ 4453