1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 #include <net/xfrm.h> 34 35 #include "ixgbevf.h" 36 37 const char ixgbevf_driver_name[] = "ixgbevf"; 38 static const char ixgbevf_driver_string[] = 39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 40 41 #define DRV_VERSION "4.1.0-k" 42 const char ixgbevf_driver_version[] = DRV_VERSION; 43 static char ixgbevf_copyright[] = 44 "Copyright (c) 2009 - 2018 Intel Corporation."; 45 46 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 47 [board_82599_vf] = &ixgbevf_82599_vf_info, 48 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 49 [board_X540_vf] = &ixgbevf_X540_vf_info, 50 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 51 [board_X550_vf] = &ixgbevf_X550_vf_info, 52 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 53 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 54 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 55 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 56 }; 57 58 /* ixgbevf_pci_tbl - PCI Device ID Table 59 * 60 * Wildcard entries (PCI_ANY_ID) should come last 61 * Last entry must be all 0s 62 * 63 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 64 * Class, Class Mask, private data (not used) } 65 */ 66 static const struct pci_device_id ixgbevf_pci_tbl[] = { 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 74 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 75 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 76 /* required last entry */ 77 {0, } 78 }; 79 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 80 81 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 82 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 83 MODULE_LICENSE("GPL v2"); 84 MODULE_VERSION(DRV_VERSION); 85 86 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 87 static int debug = -1; 88 module_param(debug, int, 0); 89 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 90 91 static struct workqueue_struct *ixgbevf_wq; 92 93 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 94 { 95 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 96 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 97 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 98 queue_work(ixgbevf_wq, &adapter->service_task); 99 } 100 101 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 102 { 103 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 104 105 /* flush memory to make sure state is correct before next watchdog */ 106 smp_mb__before_atomic(); 107 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 108 } 109 110 /* forward decls */ 111 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 112 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 113 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 114 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 115 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 116 struct ixgbevf_rx_buffer *old_buff); 117 118 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 119 { 120 struct ixgbevf_adapter *adapter = hw->back; 121 122 if (!hw->hw_addr) 123 return; 124 hw->hw_addr = NULL; 125 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 126 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 127 ixgbevf_service_event_schedule(adapter); 128 } 129 130 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 131 { 132 u32 value; 133 134 /* The following check not only optimizes a bit by not 135 * performing a read on the status register when the 136 * register just read was a status register read that 137 * returned IXGBE_FAILED_READ_REG. It also blocks any 138 * potential recursion. 139 */ 140 if (reg == IXGBE_VFSTATUS) { 141 ixgbevf_remove_adapter(hw); 142 return; 143 } 144 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 145 if (value == IXGBE_FAILED_READ_REG) 146 ixgbevf_remove_adapter(hw); 147 } 148 149 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 150 { 151 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 152 u32 value; 153 154 if (IXGBE_REMOVED(reg_addr)) 155 return IXGBE_FAILED_READ_REG; 156 value = readl(reg_addr + reg); 157 if (unlikely(value == IXGBE_FAILED_READ_REG)) 158 ixgbevf_check_remove(hw, reg); 159 return value; 160 } 161 162 /** 163 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 164 * @adapter: pointer to adapter struct 165 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 166 * @queue: queue to map the corresponding interrupt to 167 * @msix_vector: the vector to map to the corresponding queue 168 **/ 169 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 170 u8 queue, u8 msix_vector) 171 { 172 u32 ivar, index; 173 struct ixgbe_hw *hw = &adapter->hw; 174 175 if (direction == -1) { 176 /* other causes */ 177 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 178 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 179 ivar &= ~0xFF; 180 ivar |= msix_vector; 181 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 182 } else { 183 /* Tx or Rx causes */ 184 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 185 index = ((16 * (queue & 1)) + (8 * direction)); 186 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 187 ivar &= ~(0xFF << index); 188 ivar |= (msix_vector << index); 189 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 190 } 191 } 192 193 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 194 { 195 return ring->stats.packets; 196 } 197 198 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 199 { 200 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 201 struct ixgbe_hw *hw = &adapter->hw; 202 203 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 204 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 205 206 if (head != tail) 207 return (head < tail) ? 208 tail - head : (tail + ring->count - head); 209 210 return 0; 211 } 212 213 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 214 { 215 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 216 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 217 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 218 219 clear_check_for_tx_hang(tx_ring); 220 221 /* Check for a hung queue, but be thorough. This verifies 222 * that a transmit has been completed since the previous 223 * check AND there is at least one packet pending. The 224 * ARMED bit is set to indicate a potential hang. 225 */ 226 if ((tx_done_old == tx_done) && tx_pending) { 227 /* make sure it is true for two checks in a row */ 228 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 229 &tx_ring->state); 230 } 231 /* reset the countdown */ 232 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 233 234 /* update completed stats and continue */ 235 tx_ring->tx_stats.tx_done_old = tx_done; 236 237 return false; 238 } 239 240 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 241 { 242 /* Do the reset outside of interrupt context */ 243 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 244 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 245 ixgbevf_service_event_schedule(adapter); 246 } 247 } 248 249 /** 250 * ixgbevf_tx_timeout - Respond to a Tx Hang 251 * @netdev: network interface device structure 252 **/ 253 static void ixgbevf_tx_timeout(struct net_device *netdev) 254 { 255 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 256 257 ixgbevf_tx_timeout_reset(adapter); 258 } 259 260 /** 261 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 262 * @q_vector: board private structure 263 * @tx_ring: tx ring to clean 264 * @napi_budget: Used to determine if we are in netpoll 265 **/ 266 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 267 struct ixgbevf_ring *tx_ring, int napi_budget) 268 { 269 struct ixgbevf_adapter *adapter = q_vector->adapter; 270 struct ixgbevf_tx_buffer *tx_buffer; 271 union ixgbe_adv_tx_desc *tx_desc; 272 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; 273 unsigned int budget = tx_ring->count / 2; 274 unsigned int i = tx_ring->next_to_clean; 275 276 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 277 return true; 278 279 tx_buffer = &tx_ring->tx_buffer_info[i]; 280 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 281 i -= tx_ring->count; 282 283 do { 284 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 285 286 /* if next_to_watch is not set then there is no work pending */ 287 if (!eop_desc) 288 break; 289 290 /* prevent any other reads prior to eop_desc */ 291 smp_rmb(); 292 293 /* if DD is not set pending work has not been completed */ 294 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 295 break; 296 297 /* clear next_to_watch to prevent false hangs */ 298 tx_buffer->next_to_watch = NULL; 299 300 /* update the statistics for this packet */ 301 total_bytes += tx_buffer->bytecount; 302 total_packets += tx_buffer->gso_segs; 303 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) 304 total_ipsec++; 305 306 /* free the skb */ 307 if (ring_is_xdp(tx_ring)) 308 page_frag_free(tx_buffer->data); 309 else 310 napi_consume_skb(tx_buffer->skb, napi_budget); 311 312 /* unmap skb header data */ 313 dma_unmap_single(tx_ring->dev, 314 dma_unmap_addr(tx_buffer, dma), 315 dma_unmap_len(tx_buffer, len), 316 DMA_TO_DEVICE); 317 318 /* clear tx_buffer data */ 319 dma_unmap_len_set(tx_buffer, len, 0); 320 321 /* unmap remaining buffers */ 322 while (tx_desc != eop_desc) { 323 tx_buffer++; 324 tx_desc++; 325 i++; 326 if (unlikely(!i)) { 327 i -= tx_ring->count; 328 tx_buffer = tx_ring->tx_buffer_info; 329 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 330 } 331 332 /* unmap any remaining paged data */ 333 if (dma_unmap_len(tx_buffer, len)) { 334 dma_unmap_page(tx_ring->dev, 335 dma_unmap_addr(tx_buffer, dma), 336 dma_unmap_len(tx_buffer, len), 337 DMA_TO_DEVICE); 338 dma_unmap_len_set(tx_buffer, len, 0); 339 } 340 } 341 342 /* move us one more past the eop_desc for start of next pkt */ 343 tx_buffer++; 344 tx_desc++; 345 i++; 346 if (unlikely(!i)) { 347 i -= tx_ring->count; 348 tx_buffer = tx_ring->tx_buffer_info; 349 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 350 } 351 352 /* issue prefetch for next Tx descriptor */ 353 prefetch(tx_desc); 354 355 /* update budget accounting */ 356 budget--; 357 } while (likely(budget)); 358 359 i += tx_ring->count; 360 tx_ring->next_to_clean = i; 361 u64_stats_update_begin(&tx_ring->syncp); 362 tx_ring->stats.bytes += total_bytes; 363 tx_ring->stats.packets += total_packets; 364 u64_stats_update_end(&tx_ring->syncp); 365 q_vector->tx.total_bytes += total_bytes; 366 q_vector->tx.total_packets += total_packets; 367 adapter->tx_ipsec += total_ipsec; 368 369 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 370 struct ixgbe_hw *hw = &adapter->hw; 371 union ixgbe_adv_tx_desc *eop_desc; 372 373 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 374 375 pr_err("Detected Tx Unit Hang%s\n" 376 " Tx Queue <%d>\n" 377 " TDH, TDT <%x>, <%x>\n" 378 " next_to_use <%x>\n" 379 " next_to_clean <%x>\n" 380 "tx_buffer_info[next_to_clean]\n" 381 " next_to_watch <%p>\n" 382 " eop_desc->wb.status <%x>\n" 383 " time_stamp <%lx>\n" 384 " jiffies <%lx>\n", 385 ring_is_xdp(tx_ring) ? " XDP" : "", 386 tx_ring->queue_index, 387 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 388 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 389 tx_ring->next_to_use, i, 390 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 391 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 392 393 if (!ring_is_xdp(tx_ring)) 394 netif_stop_subqueue(tx_ring->netdev, 395 tx_ring->queue_index); 396 397 /* schedule immediate reset if we believe we hung */ 398 ixgbevf_tx_timeout_reset(adapter); 399 400 return true; 401 } 402 403 if (ring_is_xdp(tx_ring)) 404 return !!budget; 405 406 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 407 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 408 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 409 /* Make sure that anybody stopping the queue after this 410 * sees the new next_to_clean. 411 */ 412 smp_mb(); 413 414 if (__netif_subqueue_stopped(tx_ring->netdev, 415 tx_ring->queue_index) && 416 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 417 netif_wake_subqueue(tx_ring->netdev, 418 tx_ring->queue_index); 419 ++tx_ring->tx_stats.restart_queue; 420 } 421 } 422 423 return !!budget; 424 } 425 426 /** 427 * ixgbevf_rx_skb - Helper function to determine proper Rx method 428 * @q_vector: structure containing interrupt and ring information 429 * @skb: packet to send up 430 **/ 431 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 432 struct sk_buff *skb) 433 { 434 napi_gro_receive(&q_vector->napi, skb); 435 } 436 437 #define IXGBE_RSS_L4_TYPES_MASK \ 438 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 439 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 440 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 441 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 442 443 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 444 union ixgbe_adv_rx_desc *rx_desc, 445 struct sk_buff *skb) 446 { 447 u16 rss_type; 448 449 if (!(ring->netdev->features & NETIF_F_RXHASH)) 450 return; 451 452 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 453 IXGBE_RXDADV_RSSTYPE_MASK; 454 455 if (!rss_type) 456 return; 457 458 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 459 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 460 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 461 } 462 463 /** 464 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 465 * @ring: structure containig ring specific data 466 * @rx_desc: current Rx descriptor being processed 467 * @skb: skb currently being received and modified 468 **/ 469 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 470 union ixgbe_adv_rx_desc *rx_desc, 471 struct sk_buff *skb) 472 { 473 skb_checksum_none_assert(skb); 474 475 /* Rx csum disabled */ 476 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 477 return; 478 479 /* if IP and error */ 480 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 481 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 482 ring->rx_stats.csum_err++; 483 return; 484 } 485 486 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 487 return; 488 489 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 490 ring->rx_stats.csum_err++; 491 return; 492 } 493 494 /* It must be a TCP or UDP packet with a valid checksum */ 495 skb->ip_summed = CHECKSUM_UNNECESSARY; 496 } 497 498 /** 499 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 500 * @rx_ring: rx descriptor ring packet is being transacted on 501 * @rx_desc: pointer to the EOP Rx descriptor 502 * @skb: pointer to current skb being populated 503 * 504 * This function checks the ring, descriptor, and packet information in 505 * order to populate the checksum, VLAN, protocol, and other fields within 506 * the skb. 507 **/ 508 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 509 union ixgbe_adv_rx_desc *rx_desc, 510 struct sk_buff *skb) 511 { 512 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 513 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 514 515 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 516 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 517 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 518 519 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 520 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 521 } 522 523 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) 524 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); 525 526 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 527 } 528 529 static 530 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 531 const unsigned int size) 532 { 533 struct ixgbevf_rx_buffer *rx_buffer; 534 535 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 536 prefetchw(rx_buffer->page); 537 538 /* we are reusing so sync this buffer for CPU use */ 539 dma_sync_single_range_for_cpu(rx_ring->dev, 540 rx_buffer->dma, 541 rx_buffer->page_offset, 542 size, 543 DMA_FROM_DEVICE); 544 545 rx_buffer->pagecnt_bias--; 546 547 return rx_buffer; 548 } 549 550 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 551 struct ixgbevf_rx_buffer *rx_buffer, 552 struct sk_buff *skb) 553 { 554 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 555 /* hand second half of page back to the ring */ 556 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 557 } else { 558 if (IS_ERR(skb)) 559 /* We are not reusing the buffer so unmap it and free 560 * any references we are holding to it 561 */ 562 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 563 ixgbevf_rx_pg_size(rx_ring), 564 DMA_FROM_DEVICE, 565 IXGBEVF_RX_DMA_ATTR); 566 __page_frag_cache_drain(rx_buffer->page, 567 rx_buffer->pagecnt_bias); 568 } 569 570 /* clear contents of rx_buffer */ 571 rx_buffer->page = NULL; 572 } 573 574 /** 575 * ixgbevf_is_non_eop - process handling of non-EOP buffers 576 * @rx_ring: Rx ring being processed 577 * @rx_desc: Rx descriptor for current buffer 578 * 579 * This function updates next to clean. If the buffer is an EOP buffer 580 * this function exits returning false, otherwise it will place the 581 * sk_buff in the next buffer to be chained and return true indicating 582 * that this is in fact a non-EOP buffer. 583 **/ 584 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 585 union ixgbe_adv_rx_desc *rx_desc) 586 { 587 u32 ntc = rx_ring->next_to_clean + 1; 588 589 /* fetch, update, and store next to clean */ 590 ntc = (ntc < rx_ring->count) ? ntc : 0; 591 rx_ring->next_to_clean = ntc; 592 593 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 594 595 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 596 return false; 597 598 return true; 599 } 600 601 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 602 { 603 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 604 } 605 606 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 607 struct ixgbevf_rx_buffer *bi) 608 { 609 struct page *page = bi->page; 610 dma_addr_t dma; 611 612 /* since we are recycling buffers we should seldom need to alloc */ 613 if (likely(page)) 614 return true; 615 616 /* alloc new page for storage */ 617 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 618 if (unlikely(!page)) { 619 rx_ring->rx_stats.alloc_rx_page_failed++; 620 return false; 621 } 622 623 /* map page for use */ 624 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 625 ixgbevf_rx_pg_size(rx_ring), 626 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 627 628 /* if mapping failed free memory back to system since 629 * there isn't much point in holding memory we can't use 630 */ 631 if (dma_mapping_error(rx_ring->dev, dma)) { 632 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 633 634 rx_ring->rx_stats.alloc_rx_page_failed++; 635 return false; 636 } 637 638 bi->dma = dma; 639 bi->page = page; 640 bi->page_offset = ixgbevf_rx_offset(rx_ring); 641 bi->pagecnt_bias = 1; 642 rx_ring->rx_stats.alloc_rx_page++; 643 644 return true; 645 } 646 647 /** 648 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 649 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 650 * @cleaned_count: number of buffers to replace 651 **/ 652 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 653 u16 cleaned_count) 654 { 655 union ixgbe_adv_rx_desc *rx_desc; 656 struct ixgbevf_rx_buffer *bi; 657 unsigned int i = rx_ring->next_to_use; 658 659 /* nothing to do or no valid netdev defined */ 660 if (!cleaned_count || !rx_ring->netdev) 661 return; 662 663 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 664 bi = &rx_ring->rx_buffer_info[i]; 665 i -= rx_ring->count; 666 667 do { 668 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 669 break; 670 671 /* sync the buffer for use by the device */ 672 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 673 bi->page_offset, 674 ixgbevf_rx_bufsz(rx_ring), 675 DMA_FROM_DEVICE); 676 677 /* Refresh the desc even if pkt_addr didn't change 678 * because each write-back erases this info. 679 */ 680 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 681 682 rx_desc++; 683 bi++; 684 i++; 685 if (unlikely(!i)) { 686 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 687 bi = rx_ring->rx_buffer_info; 688 i -= rx_ring->count; 689 } 690 691 /* clear the length for the next_to_use descriptor */ 692 rx_desc->wb.upper.length = 0; 693 694 cleaned_count--; 695 } while (cleaned_count); 696 697 i += rx_ring->count; 698 699 if (rx_ring->next_to_use != i) { 700 /* record the next descriptor to use */ 701 rx_ring->next_to_use = i; 702 703 /* update next to alloc since we have filled the ring */ 704 rx_ring->next_to_alloc = i; 705 706 /* Force memory writes to complete before letting h/w 707 * know there are new descriptors to fetch. (Only 708 * applicable for weak-ordered memory model archs, 709 * such as IA-64). 710 */ 711 wmb(); 712 ixgbevf_write_tail(rx_ring, i); 713 } 714 } 715 716 /** 717 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 718 * @rx_ring: rx descriptor ring packet is being transacted on 719 * @rx_desc: pointer to the EOP Rx descriptor 720 * @skb: pointer to current skb being fixed 721 * 722 * Check for corrupted packet headers caused by senders on the local L2 723 * embedded NIC switch not setting up their Tx Descriptors right. These 724 * should be very rare. 725 * 726 * Also address the case where we are pulling data in on pages only 727 * and as such no data is present in the skb header. 728 * 729 * In addition if skb is not at least 60 bytes we need to pad it so that 730 * it is large enough to qualify as a valid Ethernet frame. 731 * 732 * Returns true if an error was encountered and skb was freed. 733 **/ 734 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 735 union ixgbe_adv_rx_desc *rx_desc, 736 struct sk_buff *skb) 737 { 738 /* XDP packets use error pointer so abort at this point */ 739 if (IS_ERR(skb)) 740 return true; 741 742 /* verify that the packet does not have any known errors */ 743 if (unlikely(ixgbevf_test_staterr(rx_desc, 744 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 745 struct net_device *netdev = rx_ring->netdev; 746 747 if (!(netdev->features & NETIF_F_RXALL)) { 748 dev_kfree_skb_any(skb); 749 return true; 750 } 751 } 752 753 /* if eth_skb_pad returns an error the skb was freed */ 754 if (eth_skb_pad(skb)) 755 return true; 756 757 return false; 758 } 759 760 /** 761 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 762 * @rx_ring: rx descriptor ring to store buffers on 763 * @old_buff: donor buffer to have page reused 764 * 765 * Synchronizes page for reuse by the adapter 766 **/ 767 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 768 struct ixgbevf_rx_buffer *old_buff) 769 { 770 struct ixgbevf_rx_buffer *new_buff; 771 u16 nta = rx_ring->next_to_alloc; 772 773 new_buff = &rx_ring->rx_buffer_info[nta]; 774 775 /* update, and store next to alloc */ 776 nta++; 777 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 778 779 /* transfer page from old buffer to new buffer */ 780 new_buff->page = old_buff->page; 781 new_buff->dma = old_buff->dma; 782 new_buff->page_offset = old_buff->page_offset; 783 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 784 } 785 786 static inline bool ixgbevf_page_is_reserved(struct page *page) 787 { 788 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 789 } 790 791 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 792 { 793 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 794 struct page *page = rx_buffer->page; 795 796 /* avoid re-using remote pages */ 797 if (unlikely(ixgbevf_page_is_reserved(page))) 798 return false; 799 800 #if (PAGE_SIZE < 8192) 801 /* if we are only owner of page we can reuse it */ 802 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 803 return false; 804 #else 805 #define IXGBEVF_LAST_OFFSET \ 806 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 807 808 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 809 return false; 810 811 #endif 812 813 /* If we have drained the page fragment pool we need to update 814 * the pagecnt_bias and page count so that we fully restock the 815 * number of references the driver holds. 816 */ 817 if (unlikely(!pagecnt_bias)) { 818 page_ref_add(page, USHRT_MAX); 819 rx_buffer->pagecnt_bias = USHRT_MAX; 820 } 821 822 return true; 823 } 824 825 /** 826 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 827 * @rx_ring: rx descriptor ring to transact packets on 828 * @rx_buffer: buffer containing page to add 829 * @skb: sk_buff to place the data into 830 * @size: size of buffer to be added 831 * 832 * This function will add the data contained in rx_buffer->page to the skb. 833 **/ 834 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 835 struct ixgbevf_rx_buffer *rx_buffer, 836 struct sk_buff *skb, 837 unsigned int size) 838 { 839 #if (PAGE_SIZE < 8192) 840 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 841 #else 842 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 843 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 844 SKB_DATA_ALIGN(size); 845 #endif 846 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 847 rx_buffer->page_offset, size, truesize); 848 #if (PAGE_SIZE < 8192) 849 rx_buffer->page_offset ^= truesize; 850 #else 851 rx_buffer->page_offset += truesize; 852 #endif 853 } 854 855 static 856 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 857 struct ixgbevf_rx_buffer *rx_buffer, 858 struct xdp_buff *xdp, 859 union ixgbe_adv_rx_desc *rx_desc) 860 { 861 unsigned int size = xdp->data_end - xdp->data; 862 #if (PAGE_SIZE < 8192) 863 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 864 #else 865 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 866 xdp->data_hard_start); 867 #endif 868 unsigned int headlen; 869 struct sk_buff *skb; 870 871 /* prefetch first cache line of first page */ 872 prefetch(xdp->data); 873 #if L1_CACHE_BYTES < 128 874 prefetch(xdp->data + L1_CACHE_BYTES); 875 #endif 876 /* Note, we get here by enabling legacy-rx via: 877 * 878 * ethtool --set-priv-flags <dev> legacy-rx on 879 * 880 * In this mode, we currently get 0 extra XDP headroom as 881 * opposed to having legacy-rx off, where we process XDP 882 * packets going to stack via ixgbevf_build_skb(). 883 * 884 * For ixgbevf_construct_skb() mode it means that the 885 * xdp->data_meta will always point to xdp->data, since 886 * the helper cannot expand the head. Should this ever 887 * changed in future for legacy-rx mode on, then lets also 888 * add xdp->data_meta handling here. 889 */ 890 891 /* allocate a skb to store the frags */ 892 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 893 if (unlikely(!skb)) 894 return NULL; 895 896 /* Determine available headroom for copy */ 897 headlen = size; 898 if (headlen > IXGBEVF_RX_HDR_SIZE) 899 headlen = eth_get_headlen(skb->dev, xdp->data, 900 IXGBEVF_RX_HDR_SIZE); 901 902 /* align pull length to size of long to optimize memcpy performance */ 903 memcpy(__skb_put(skb, headlen), xdp->data, 904 ALIGN(headlen, sizeof(long))); 905 906 /* update all of the pointers */ 907 size -= headlen; 908 if (size) { 909 skb_add_rx_frag(skb, 0, rx_buffer->page, 910 (xdp->data + headlen) - 911 page_address(rx_buffer->page), 912 size, truesize); 913 #if (PAGE_SIZE < 8192) 914 rx_buffer->page_offset ^= truesize; 915 #else 916 rx_buffer->page_offset += truesize; 917 #endif 918 } else { 919 rx_buffer->pagecnt_bias++; 920 } 921 922 return skb; 923 } 924 925 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 926 u32 qmask) 927 { 928 struct ixgbe_hw *hw = &adapter->hw; 929 930 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 931 } 932 933 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 934 struct ixgbevf_rx_buffer *rx_buffer, 935 struct xdp_buff *xdp, 936 union ixgbe_adv_rx_desc *rx_desc) 937 { 938 unsigned int metasize = xdp->data - xdp->data_meta; 939 #if (PAGE_SIZE < 8192) 940 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 941 #else 942 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 943 SKB_DATA_ALIGN(xdp->data_end - 944 xdp->data_hard_start); 945 #endif 946 struct sk_buff *skb; 947 948 /* Prefetch first cache line of first page. If xdp->data_meta 949 * is unused, this points to xdp->data, otherwise, we likely 950 * have a consumer accessing first few bytes of meta data, 951 * and then actual data. 952 */ 953 prefetch(xdp->data_meta); 954 #if L1_CACHE_BYTES < 128 955 prefetch(xdp->data_meta + L1_CACHE_BYTES); 956 #endif 957 958 /* build an skb around the page buffer */ 959 skb = build_skb(xdp->data_hard_start, truesize); 960 if (unlikely(!skb)) 961 return NULL; 962 963 /* update pointers within the skb to store the data */ 964 skb_reserve(skb, xdp->data - xdp->data_hard_start); 965 __skb_put(skb, xdp->data_end - xdp->data); 966 if (metasize) 967 skb_metadata_set(skb, metasize); 968 969 /* update buffer offset */ 970 #if (PAGE_SIZE < 8192) 971 rx_buffer->page_offset ^= truesize; 972 #else 973 rx_buffer->page_offset += truesize; 974 #endif 975 976 return skb; 977 } 978 979 #define IXGBEVF_XDP_PASS 0 980 #define IXGBEVF_XDP_CONSUMED 1 981 #define IXGBEVF_XDP_TX 2 982 983 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 984 struct xdp_buff *xdp) 985 { 986 struct ixgbevf_tx_buffer *tx_buffer; 987 union ixgbe_adv_tx_desc *tx_desc; 988 u32 len, cmd_type; 989 dma_addr_t dma; 990 u16 i; 991 992 len = xdp->data_end - xdp->data; 993 994 if (unlikely(!ixgbevf_desc_unused(ring))) 995 return IXGBEVF_XDP_CONSUMED; 996 997 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 998 if (dma_mapping_error(ring->dev, dma)) 999 return IXGBEVF_XDP_CONSUMED; 1000 1001 /* record the location of the first descriptor for this packet */ 1002 i = ring->next_to_use; 1003 tx_buffer = &ring->tx_buffer_info[i]; 1004 1005 dma_unmap_len_set(tx_buffer, len, len); 1006 dma_unmap_addr_set(tx_buffer, dma, dma); 1007 tx_buffer->data = xdp->data; 1008 tx_buffer->bytecount = len; 1009 tx_buffer->gso_segs = 1; 1010 tx_buffer->protocol = 0; 1011 1012 /* Populate minimal context descriptor that will provide for the 1013 * fact that we are expected to process Ethernet frames. 1014 */ 1015 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1016 struct ixgbe_adv_tx_context_desc *context_desc; 1017 1018 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1019 1020 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1021 context_desc->vlan_macip_lens = 1022 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1023 context_desc->fceof_saidx = 0; 1024 context_desc->type_tucmd_mlhl = 1025 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1026 IXGBE_ADVTXD_DTYP_CTXT); 1027 context_desc->mss_l4len_idx = 0; 1028 1029 i = 1; 1030 } 1031 1032 /* put descriptor type bits */ 1033 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1034 IXGBE_ADVTXD_DCMD_DEXT | 1035 IXGBE_ADVTXD_DCMD_IFCS; 1036 cmd_type |= len | IXGBE_TXD_CMD; 1037 1038 tx_desc = IXGBEVF_TX_DESC(ring, i); 1039 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1040 1041 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1042 tx_desc->read.olinfo_status = 1043 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1044 IXGBE_ADVTXD_CC); 1045 1046 /* Avoid any potential race with cleanup */ 1047 smp_wmb(); 1048 1049 /* set next_to_watch value indicating a packet is present */ 1050 i++; 1051 if (i == ring->count) 1052 i = 0; 1053 1054 tx_buffer->next_to_watch = tx_desc; 1055 ring->next_to_use = i; 1056 1057 return IXGBEVF_XDP_TX; 1058 } 1059 1060 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1061 struct ixgbevf_ring *rx_ring, 1062 struct xdp_buff *xdp) 1063 { 1064 int result = IXGBEVF_XDP_PASS; 1065 struct ixgbevf_ring *xdp_ring; 1066 struct bpf_prog *xdp_prog; 1067 u32 act; 1068 1069 rcu_read_lock(); 1070 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1071 1072 if (!xdp_prog) 1073 goto xdp_out; 1074 1075 act = bpf_prog_run_xdp(xdp_prog, xdp); 1076 switch (act) { 1077 case XDP_PASS: 1078 break; 1079 case XDP_TX: 1080 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1081 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1082 break; 1083 default: 1084 bpf_warn_invalid_xdp_action(act); 1085 /* fallthrough */ 1086 case XDP_ABORTED: 1087 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1088 /* fallthrough -- handle aborts by dropping packet */ 1089 case XDP_DROP: 1090 result = IXGBEVF_XDP_CONSUMED; 1091 break; 1092 } 1093 xdp_out: 1094 rcu_read_unlock(); 1095 return ERR_PTR(-result); 1096 } 1097 1098 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1099 struct ixgbevf_rx_buffer *rx_buffer, 1100 unsigned int size) 1101 { 1102 #if (PAGE_SIZE < 8192) 1103 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 1104 1105 rx_buffer->page_offset ^= truesize; 1106 #else 1107 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 1108 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 1109 SKB_DATA_ALIGN(size); 1110 1111 rx_buffer->page_offset += truesize; 1112 #endif 1113 } 1114 1115 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1116 struct ixgbevf_ring *rx_ring, 1117 int budget) 1118 { 1119 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1120 struct ixgbevf_adapter *adapter = q_vector->adapter; 1121 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1122 struct sk_buff *skb = rx_ring->skb; 1123 bool xdp_xmit = false; 1124 struct xdp_buff xdp; 1125 1126 xdp.rxq = &rx_ring->xdp_rxq; 1127 1128 while (likely(total_rx_packets < budget)) { 1129 struct ixgbevf_rx_buffer *rx_buffer; 1130 union ixgbe_adv_rx_desc *rx_desc; 1131 unsigned int size; 1132 1133 /* return some buffers to hardware, one at a time is too slow */ 1134 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1135 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1136 cleaned_count = 0; 1137 } 1138 1139 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1140 size = le16_to_cpu(rx_desc->wb.upper.length); 1141 if (!size) 1142 break; 1143 1144 /* This memory barrier is needed to keep us from reading 1145 * any other fields out of the rx_desc until we know the 1146 * RXD_STAT_DD bit is set 1147 */ 1148 rmb(); 1149 1150 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1151 1152 /* retrieve a buffer from the ring */ 1153 if (!skb) { 1154 xdp.data = page_address(rx_buffer->page) + 1155 rx_buffer->page_offset; 1156 xdp.data_meta = xdp.data; 1157 xdp.data_hard_start = xdp.data - 1158 ixgbevf_rx_offset(rx_ring); 1159 xdp.data_end = xdp.data + size; 1160 1161 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1162 } 1163 1164 if (IS_ERR(skb)) { 1165 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1166 xdp_xmit = true; 1167 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1168 size); 1169 } else { 1170 rx_buffer->pagecnt_bias++; 1171 } 1172 total_rx_packets++; 1173 total_rx_bytes += size; 1174 } else if (skb) { 1175 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1176 } else if (ring_uses_build_skb(rx_ring)) { 1177 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1178 &xdp, rx_desc); 1179 } else { 1180 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1181 &xdp, rx_desc); 1182 } 1183 1184 /* exit if we failed to retrieve a buffer */ 1185 if (!skb) { 1186 rx_ring->rx_stats.alloc_rx_buff_failed++; 1187 rx_buffer->pagecnt_bias++; 1188 break; 1189 } 1190 1191 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1192 cleaned_count++; 1193 1194 /* fetch next buffer in frame if non-eop */ 1195 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1196 continue; 1197 1198 /* verify the packet layout is correct */ 1199 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1200 skb = NULL; 1201 continue; 1202 } 1203 1204 /* probably a little skewed due to removing CRC */ 1205 total_rx_bytes += skb->len; 1206 1207 /* Workaround hardware that can't do proper VEPA multicast 1208 * source pruning. 1209 */ 1210 if ((skb->pkt_type == PACKET_BROADCAST || 1211 skb->pkt_type == PACKET_MULTICAST) && 1212 ether_addr_equal(rx_ring->netdev->dev_addr, 1213 eth_hdr(skb)->h_source)) { 1214 dev_kfree_skb_irq(skb); 1215 continue; 1216 } 1217 1218 /* populate checksum, VLAN, and protocol */ 1219 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1220 1221 ixgbevf_rx_skb(q_vector, skb); 1222 1223 /* reset skb pointer */ 1224 skb = NULL; 1225 1226 /* update budget accounting */ 1227 total_rx_packets++; 1228 } 1229 1230 /* place incomplete frames back on ring for completion */ 1231 rx_ring->skb = skb; 1232 1233 if (xdp_xmit) { 1234 struct ixgbevf_ring *xdp_ring = 1235 adapter->xdp_ring[rx_ring->queue_index]; 1236 1237 /* Force memory writes to complete before letting h/w 1238 * know there are new descriptors to fetch. 1239 */ 1240 wmb(); 1241 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1242 } 1243 1244 u64_stats_update_begin(&rx_ring->syncp); 1245 rx_ring->stats.packets += total_rx_packets; 1246 rx_ring->stats.bytes += total_rx_bytes; 1247 u64_stats_update_end(&rx_ring->syncp); 1248 q_vector->rx.total_packets += total_rx_packets; 1249 q_vector->rx.total_bytes += total_rx_bytes; 1250 1251 return total_rx_packets; 1252 } 1253 1254 /** 1255 * ixgbevf_poll - NAPI polling calback 1256 * @napi: napi struct with our devices info in it 1257 * @budget: amount of work driver is allowed to do this pass, in packets 1258 * 1259 * This function will clean more than one or more rings associated with a 1260 * q_vector. 1261 **/ 1262 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1263 { 1264 struct ixgbevf_q_vector *q_vector = 1265 container_of(napi, struct ixgbevf_q_vector, napi); 1266 struct ixgbevf_adapter *adapter = q_vector->adapter; 1267 struct ixgbevf_ring *ring; 1268 int per_ring_budget, work_done = 0; 1269 bool clean_complete = true; 1270 1271 ixgbevf_for_each_ring(ring, q_vector->tx) { 1272 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1273 clean_complete = false; 1274 } 1275 1276 if (budget <= 0) 1277 return budget; 1278 1279 /* attempt to distribute budget to each queue fairly, but don't allow 1280 * the budget to go below 1 because we'll exit polling 1281 */ 1282 if (q_vector->rx.count > 1) 1283 per_ring_budget = max(budget/q_vector->rx.count, 1); 1284 else 1285 per_ring_budget = budget; 1286 1287 ixgbevf_for_each_ring(ring, q_vector->rx) { 1288 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1289 per_ring_budget); 1290 work_done += cleaned; 1291 if (cleaned >= per_ring_budget) 1292 clean_complete = false; 1293 } 1294 1295 /* If all work not completed, return budget and keep polling */ 1296 if (!clean_complete) 1297 return budget; 1298 1299 /* Exit the polling mode, but don't re-enable interrupts if stack might 1300 * poll us due to busy-polling 1301 */ 1302 if (likely(napi_complete_done(napi, work_done))) { 1303 if (adapter->rx_itr_setting == 1) 1304 ixgbevf_set_itr(q_vector); 1305 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1306 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1307 ixgbevf_irq_enable_queues(adapter, 1308 BIT(q_vector->v_idx)); 1309 } 1310 1311 return min(work_done, budget - 1); 1312 } 1313 1314 /** 1315 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1316 * @q_vector: structure containing interrupt and ring information 1317 **/ 1318 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1319 { 1320 struct ixgbevf_adapter *adapter = q_vector->adapter; 1321 struct ixgbe_hw *hw = &adapter->hw; 1322 int v_idx = q_vector->v_idx; 1323 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1324 1325 /* set the WDIS bit to not clear the timer bits and cause an 1326 * immediate assertion of the interrupt 1327 */ 1328 itr_reg |= IXGBE_EITR_CNT_WDIS; 1329 1330 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1331 } 1332 1333 /** 1334 * ixgbevf_configure_msix - Configure MSI-X hardware 1335 * @adapter: board private structure 1336 * 1337 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1338 * interrupts. 1339 **/ 1340 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1341 { 1342 struct ixgbevf_q_vector *q_vector; 1343 int q_vectors, v_idx; 1344 1345 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1346 adapter->eims_enable_mask = 0; 1347 1348 /* Populate the IVAR table and set the ITR values to the 1349 * corresponding register. 1350 */ 1351 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1352 struct ixgbevf_ring *ring; 1353 1354 q_vector = adapter->q_vector[v_idx]; 1355 1356 ixgbevf_for_each_ring(ring, q_vector->rx) 1357 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1358 1359 ixgbevf_for_each_ring(ring, q_vector->tx) 1360 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1361 1362 if (q_vector->tx.ring && !q_vector->rx.ring) { 1363 /* Tx only vector */ 1364 if (adapter->tx_itr_setting == 1) 1365 q_vector->itr = IXGBE_12K_ITR; 1366 else 1367 q_vector->itr = adapter->tx_itr_setting; 1368 } else { 1369 /* Rx or Rx/Tx vector */ 1370 if (adapter->rx_itr_setting == 1) 1371 q_vector->itr = IXGBE_20K_ITR; 1372 else 1373 q_vector->itr = adapter->rx_itr_setting; 1374 } 1375 1376 /* add q_vector eims value to global eims_enable_mask */ 1377 adapter->eims_enable_mask |= BIT(v_idx); 1378 1379 ixgbevf_write_eitr(q_vector); 1380 } 1381 1382 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1383 /* setup eims_other and add value to global eims_enable_mask */ 1384 adapter->eims_other = BIT(v_idx); 1385 adapter->eims_enable_mask |= adapter->eims_other; 1386 } 1387 1388 enum latency_range { 1389 lowest_latency = 0, 1390 low_latency = 1, 1391 bulk_latency = 2, 1392 latency_invalid = 255 1393 }; 1394 1395 /** 1396 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1397 * @q_vector: structure containing interrupt and ring information 1398 * @ring_container: structure containing ring performance data 1399 * 1400 * Stores a new ITR value based on packets and byte 1401 * counts during the last interrupt. The advantage of per interrupt 1402 * computation is faster updates and more accurate ITR for the current 1403 * traffic pattern. Constants in this function were computed 1404 * based on theoretical maximum wire speed and thresholds were set based 1405 * on testing data as well as attempting to minimize response time 1406 * while increasing bulk throughput. 1407 **/ 1408 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1409 struct ixgbevf_ring_container *ring_container) 1410 { 1411 int bytes = ring_container->total_bytes; 1412 int packets = ring_container->total_packets; 1413 u32 timepassed_us; 1414 u64 bytes_perint; 1415 u8 itr_setting = ring_container->itr; 1416 1417 if (packets == 0) 1418 return; 1419 1420 /* simple throttle rate management 1421 * 0-20MB/s lowest (100000 ints/s) 1422 * 20-100MB/s low (20000 ints/s) 1423 * 100-1249MB/s bulk (12000 ints/s) 1424 */ 1425 /* what was last interrupt timeslice? */ 1426 timepassed_us = q_vector->itr >> 2; 1427 if (timepassed_us == 0) 1428 return; 1429 1430 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1431 1432 switch (itr_setting) { 1433 case lowest_latency: 1434 if (bytes_perint > 10) 1435 itr_setting = low_latency; 1436 break; 1437 case low_latency: 1438 if (bytes_perint > 20) 1439 itr_setting = bulk_latency; 1440 else if (bytes_perint <= 10) 1441 itr_setting = lowest_latency; 1442 break; 1443 case bulk_latency: 1444 if (bytes_perint <= 20) 1445 itr_setting = low_latency; 1446 break; 1447 } 1448 1449 /* clear work counters since we have the values we need */ 1450 ring_container->total_bytes = 0; 1451 ring_container->total_packets = 0; 1452 1453 /* write updated itr to ring container */ 1454 ring_container->itr = itr_setting; 1455 } 1456 1457 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1458 { 1459 u32 new_itr = q_vector->itr; 1460 u8 current_itr; 1461 1462 ixgbevf_update_itr(q_vector, &q_vector->tx); 1463 ixgbevf_update_itr(q_vector, &q_vector->rx); 1464 1465 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1466 1467 switch (current_itr) { 1468 /* counts and packets in update_itr are dependent on these numbers */ 1469 case lowest_latency: 1470 new_itr = IXGBE_100K_ITR; 1471 break; 1472 case low_latency: 1473 new_itr = IXGBE_20K_ITR; 1474 break; 1475 case bulk_latency: 1476 new_itr = IXGBE_12K_ITR; 1477 break; 1478 default: 1479 break; 1480 } 1481 1482 if (new_itr != q_vector->itr) { 1483 /* do an exponential smoothing */ 1484 new_itr = (10 * new_itr * q_vector->itr) / 1485 ((9 * new_itr) + q_vector->itr); 1486 1487 /* save the algorithm value here */ 1488 q_vector->itr = new_itr; 1489 1490 ixgbevf_write_eitr(q_vector); 1491 } 1492 } 1493 1494 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1495 { 1496 struct ixgbevf_adapter *adapter = data; 1497 struct ixgbe_hw *hw = &adapter->hw; 1498 1499 hw->mac.get_link_status = 1; 1500 1501 ixgbevf_service_event_schedule(adapter); 1502 1503 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1504 1505 return IRQ_HANDLED; 1506 } 1507 1508 /** 1509 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1510 * @irq: unused 1511 * @data: pointer to our q_vector struct for this interrupt vector 1512 **/ 1513 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1514 { 1515 struct ixgbevf_q_vector *q_vector = data; 1516 1517 /* EIAM disabled interrupts (on this vector) for us */ 1518 if (q_vector->rx.ring || q_vector->tx.ring) 1519 napi_schedule_irqoff(&q_vector->napi); 1520 1521 return IRQ_HANDLED; 1522 } 1523 1524 /** 1525 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1526 * @adapter: board private structure 1527 * 1528 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1529 * interrupts from the kernel. 1530 **/ 1531 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1532 { 1533 struct net_device *netdev = adapter->netdev; 1534 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1535 unsigned int ri = 0, ti = 0; 1536 int vector, err; 1537 1538 for (vector = 0; vector < q_vectors; vector++) { 1539 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1540 struct msix_entry *entry = &adapter->msix_entries[vector]; 1541 1542 if (q_vector->tx.ring && q_vector->rx.ring) { 1543 snprintf(q_vector->name, sizeof(q_vector->name), 1544 "%s-TxRx-%u", netdev->name, ri++); 1545 ti++; 1546 } else if (q_vector->rx.ring) { 1547 snprintf(q_vector->name, sizeof(q_vector->name), 1548 "%s-rx-%u", netdev->name, ri++); 1549 } else if (q_vector->tx.ring) { 1550 snprintf(q_vector->name, sizeof(q_vector->name), 1551 "%s-tx-%u", netdev->name, ti++); 1552 } else { 1553 /* skip this unused q_vector */ 1554 continue; 1555 } 1556 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1557 q_vector->name, q_vector); 1558 if (err) { 1559 hw_dbg(&adapter->hw, 1560 "request_irq failed for MSIX interrupt Error: %d\n", 1561 err); 1562 goto free_queue_irqs; 1563 } 1564 } 1565 1566 err = request_irq(adapter->msix_entries[vector].vector, 1567 &ixgbevf_msix_other, 0, netdev->name, adapter); 1568 if (err) { 1569 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1570 err); 1571 goto free_queue_irqs; 1572 } 1573 1574 return 0; 1575 1576 free_queue_irqs: 1577 while (vector) { 1578 vector--; 1579 free_irq(adapter->msix_entries[vector].vector, 1580 adapter->q_vector[vector]); 1581 } 1582 /* This failure is non-recoverable - it indicates the system is 1583 * out of MSIX vector resources and the VF driver cannot run 1584 * without them. Set the number of msix vectors to zero 1585 * indicating that not enough can be allocated. The error 1586 * will be returned to the user indicating device open failed. 1587 * Any further attempts to force the driver to open will also 1588 * fail. The only way to recover is to unload the driver and 1589 * reload it again. If the system has recovered some MSIX 1590 * vectors then it may succeed. 1591 */ 1592 adapter->num_msix_vectors = 0; 1593 return err; 1594 } 1595 1596 /** 1597 * ixgbevf_request_irq - initialize interrupts 1598 * @adapter: board private structure 1599 * 1600 * Attempts to configure interrupts using the best available 1601 * capabilities of the hardware and kernel. 1602 **/ 1603 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1604 { 1605 int err = ixgbevf_request_msix_irqs(adapter); 1606 1607 if (err) 1608 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1609 1610 return err; 1611 } 1612 1613 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1614 { 1615 int i, q_vectors; 1616 1617 if (!adapter->msix_entries) 1618 return; 1619 1620 q_vectors = adapter->num_msix_vectors; 1621 i = q_vectors - 1; 1622 1623 free_irq(adapter->msix_entries[i].vector, adapter); 1624 i--; 1625 1626 for (; i >= 0; i--) { 1627 /* free only the irqs that were actually requested */ 1628 if (!adapter->q_vector[i]->rx.ring && 1629 !adapter->q_vector[i]->tx.ring) 1630 continue; 1631 1632 free_irq(adapter->msix_entries[i].vector, 1633 adapter->q_vector[i]); 1634 } 1635 } 1636 1637 /** 1638 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1639 * @adapter: board private structure 1640 **/ 1641 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1642 { 1643 struct ixgbe_hw *hw = &adapter->hw; 1644 int i; 1645 1646 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1647 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1648 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1649 1650 IXGBE_WRITE_FLUSH(hw); 1651 1652 for (i = 0; i < adapter->num_msix_vectors; i++) 1653 synchronize_irq(adapter->msix_entries[i].vector); 1654 } 1655 1656 /** 1657 * ixgbevf_irq_enable - Enable default interrupt generation settings 1658 * @adapter: board private structure 1659 **/ 1660 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1661 { 1662 struct ixgbe_hw *hw = &adapter->hw; 1663 1664 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1665 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1666 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1667 } 1668 1669 /** 1670 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1671 * @adapter: board private structure 1672 * @ring: structure containing ring specific data 1673 * 1674 * Configure the Tx descriptor ring after a reset. 1675 **/ 1676 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1677 struct ixgbevf_ring *ring) 1678 { 1679 struct ixgbe_hw *hw = &adapter->hw; 1680 u64 tdba = ring->dma; 1681 int wait_loop = 10; 1682 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1683 u8 reg_idx = ring->reg_idx; 1684 1685 /* disable queue to avoid issues while updating state */ 1686 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1687 IXGBE_WRITE_FLUSH(hw); 1688 1689 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1690 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1691 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1692 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1693 1694 /* disable head writeback */ 1695 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1696 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1697 1698 /* enable relaxed ordering */ 1699 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1700 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1701 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1702 1703 /* reset head and tail pointers */ 1704 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1705 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1706 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1707 1708 /* reset ntu and ntc to place SW in sync with hardwdare */ 1709 ring->next_to_clean = 0; 1710 ring->next_to_use = 0; 1711 1712 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1713 * to or less than the number of on chip descriptors, which is 1714 * currently 40. 1715 */ 1716 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1717 1718 /* Setting PTHRESH to 32 both improves performance */ 1719 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1720 32; /* PTHRESH = 32 */ 1721 1722 /* reinitialize tx_buffer_info */ 1723 memset(ring->tx_buffer_info, 0, 1724 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1725 1726 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1727 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1728 1729 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1730 1731 /* poll to verify queue is enabled */ 1732 do { 1733 usleep_range(1000, 2000); 1734 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1735 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1736 if (!wait_loop) 1737 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1738 } 1739 1740 /** 1741 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1742 * @adapter: board private structure 1743 * 1744 * Configure the Tx unit of the MAC after a reset. 1745 **/ 1746 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1747 { 1748 u32 i; 1749 1750 /* Setup the HW Tx Head and Tail descriptor pointers */ 1751 for (i = 0; i < adapter->num_tx_queues; i++) 1752 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1753 for (i = 0; i < adapter->num_xdp_queues; i++) 1754 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1755 } 1756 1757 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1758 1759 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1760 struct ixgbevf_ring *ring, int index) 1761 { 1762 struct ixgbe_hw *hw = &adapter->hw; 1763 u32 srrctl; 1764 1765 srrctl = IXGBE_SRRCTL_DROP_EN; 1766 1767 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1768 if (ring_uses_large_buffer(ring)) 1769 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1770 else 1771 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1772 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1773 1774 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1775 } 1776 1777 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1778 { 1779 struct ixgbe_hw *hw = &adapter->hw; 1780 1781 /* PSRTYPE must be initialized in 82599 */ 1782 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1783 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1784 IXGBE_PSRTYPE_L2HDR; 1785 1786 if (adapter->num_rx_queues > 1) 1787 psrtype |= BIT(29); 1788 1789 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1790 } 1791 1792 #define IXGBEVF_MAX_RX_DESC_POLL 10 1793 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1794 struct ixgbevf_ring *ring) 1795 { 1796 struct ixgbe_hw *hw = &adapter->hw; 1797 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1798 u32 rxdctl; 1799 u8 reg_idx = ring->reg_idx; 1800 1801 if (IXGBE_REMOVED(hw->hw_addr)) 1802 return; 1803 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1804 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1805 1806 /* write value back with RXDCTL.ENABLE bit cleared */ 1807 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1808 1809 /* the hardware may take up to 100us to really disable the Rx queue */ 1810 do { 1811 udelay(10); 1812 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1813 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1814 1815 if (!wait_loop) 1816 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1817 reg_idx); 1818 } 1819 1820 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1821 struct ixgbevf_ring *ring) 1822 { 1823 struct ixgbe_hw *hw = &adapter->hw; 1824 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1825 u32 rxdctl; 1826 u8 reg_idx = ring->reg_idx; 1827 1828 if (IXGBE_REMOVED(hw->hw_addr)) 1829 return; 1830 do { 1831 usleep_range(1000, 2000); 1832 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1833 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1834 1835 if (!wait_loop) 1836 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1837 reg_idx); 1838 } 1839 1840 /** 1841 * ixgbevf_init_rss_key - Initialize adapter RSS key 1842 * @adapter: device handle 1843 * 1844 * Allocates and initializes the RSS key if it is not allocated. 1845 **/ 1846 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1847 { 1848 u32 *rss_key; 1849 1850 if (!adapter->rss_key) { 1851 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1852 if (unlikely(!rss_key)) 1853 return -ENOMEM; 1854 1855 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1856 adapter->rss_key = rss_key; 1857 } 1858 1859 return 0; 1860 } 1861 1862 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1863 { 1864 struct ixgbe_hw *hw = &adapter->hw; 1865 u32 vfmrqc = 0, vfreta = 0; 1866 u16 rss_i = adapter->num_rx_queues; 1867 u8 i, j; 1868 1869 /* Fill out hash function seeds */ 1870 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1871 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1872 1873 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1874 if (j == rss_i) 1875 j = 0; 1876 1877 adapter->rss_indir_tbl[i] = j; 1878 1879 vfreta |= j << (i & 0x3) * 8; 1880 if ((i & 3) == 3) { 1881 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1882 vfreta = 0; 1883 } 1884 } 1885 1886 /* Perform hash on these packet types */ 1887 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1888 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1889 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1890 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1891 1892 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1893 1894 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1895 } 1896 1897 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1898 struct ixgbevf_ring *ring) 1899 { 1900 struct ixgbe_hw *hw = &adapter->hw; 1901 union ixgbe_adv_rx_desc *rx_desc; 1902 u64 rdba = ring->dma; 1903 u32 rxdctl; 1904 u8 reg_idx = ring->reg_idx; 1905 1906 /* disable queue to avoid issues while updating state */ 1907 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1908 ixgbevf_disable_rx_queue(adapter, ring); 1909 1910 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1911 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1912 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1913 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1914 1915 #ifndef CONFIG_SPARC 1916 /* enable relaxed ordering */ 1917 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1918 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1919 #else 1920 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1921 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1922 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1923 #endif 1924 1925 /* reset head and tail pointers */ 1926 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1927 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1928 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1929 1930 /* initialize rx_buffer_info */ 1931 memset(ring->rx_buffer_info, 0, 1932 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1933 1934 /* initialize Rx descriptor 0 */ 1935 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1936 rx_desc->wb.upper.length = 0; 1937 1938 /* reset ntu and ntc to place SW in sync with hardwdare */ 1939 ring->next_to_clean = 0; 1940 ring->next_to_use = 0; 1941 ring->next_to_alloc = 0; 1942 1943 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1944 1945 /* RXDCTL.RLPML does not work on 82599 */ 1946 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1947 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1948 IXGBE_RXDCTL_RLPML_EN); 1949 1950 #if (PAGE_SIZE < 8192) 1951 /* Limit the maximum frame size so we don't overrun the skb */ 1952 if (ring_uses_build_skb(ring) && 1953 !ring_uses_large_buffer(ring)) 1954 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1955 IXGBE_RXDCTL_RLPML_EN; 1956 #endif 1957 } 1958 1959 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1960 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1961 1962 ixgbevf_rx_desc_queue_enable(adapter, ring); 1963 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1964 } 1965 1966 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1967 struct ixgbevf_ring *rx_ring) 1968 { 1969 struct net_device *netdev = adapter->netdev; 1970 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1971 1972 /* set build_skb and buffer size flags */ 1973 clear_ring_build_skb_enabled(rx_ring); 1974 clear_ring_uses_large_buffer(rx_ring); 1975 1976 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1977 return; 1978 1979 set_ring_build_skb_enabled(rx_ring); 1980 1981 if (PAGE_SIZE < 8192) { 1982 if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB) 1983 return; 1984 1985 set_ring_uses_large_buffer(rx_ring); 1986 } 1987 } 1988 1989 /** 1990 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1991 * @adapter: board private structure 1992 * 1993 * Configure the Rx unit of the MAC after a reset. 1994 **/ 1995 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 1996 { 1997 struct ixgbe_hw *hw = &adapter->hw; 1998 struct net_device *netdev = adapter->netdev; 1999 int i, ret; 2000 2001 ixgbevf_setup_psrtype(adapter); 2002 if (hw->mac.type >= ixgbe_mac_X550_vf) 2003 ixgbevf_setup_vfmrqc(adapter); 2004 2005 spin_lock_bh(&adapter->mbx_lock); 2006 /* notify the PF of our intent to use this size of frame */ 2007 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 2008 spin_unlock_bh(&adapter->mbx_lock); 2009 if (ret) 2010 dev_err(&adapter->pdev->dev, 2011 "Failed to set MTU at %d\n", netdev->mtu); 2012 2013 /* Setup the HW Rx Head and Tail Descriptor Pointers and 2014 * the Base and Length of the Rx Descriptor Ring 2015 */ 2016 for (i = 0; i < adapter->num_rx_queues; i++) { 2017 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2018 2019 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2020 ixgbevf_configure_rx_ring(adapter, rx_ring); 2021 } 2022 } 2023 2024 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2025 __be16 proto, u16 vid) 2026 { 2027 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2028 struct ixgbe_hw *hw = &adapter->hw; 2029 int err; 2030 2031 spin_lock_bh(&adapter->mbx_lock); 2032 2033 /* add VID to filter table */ 2034 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2035 2036 spin_unlock_bh(&adapter->mbx_lock); 2037 2038 /* translate error return types so error makes sense */ 2039 if (err == IXGBE_ERR_MBX) 2040 return -EIO; 2041 2042 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2043 return -EACCES; 2044 2045 set_bit(vid, adapter->active_vlans); 2046 2047 return err; 2048 } 2049 2050 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2051 __be16 proto, u16 vid) 2052 { 2053 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2054 struct ixgbe_hw *hw = &adapter->hw; 2055 int err; 2056 2057 spin_lock_bh(&adapter->mbx_lock); 2058 2059 /* remove VID from filter table */ 2060 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2061 2062 spin_unlock_bh(&adapter->mbx_lock); 2063 2064 clear_bit(vid, adapter->active_vlans); 2065 2066 return err; 2067 } 2068 2069 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2070 { 2071 u16 vid; 2072 2073 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2074 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2075 htons(ETH_P_8021Q), vid); 2076 } 2077 2078 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2079 { 2080 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2081 struct ixgbe_hw *hw = &adapter->hw; 2082 int count = 0; 2083 2084 if ((netdev_uc_count(netdev)) > 10) { 2085 pr_err("Too many unicast filters - No Space\n"); 2086 return -ENOSPC; 2087 } 2088 2089 if (!netdev_uc_empty(netdev)) { 2090 struct netdev_hw_addr *ha; 2091 2092 netdev_for_each_uc_addr(ha, netdev) { 2093 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2094 udelay(200); 2095 } 2096 } else { 2097 /* If the list is empty then send message to PF driver to 2098 * clear all MAC VLANs on this VF. 2099 */ 2100 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2101 } 2102 2103 return count; 2104 } 2105 2106 /** 2107 * ixgbevf_set_rx_mode - Multicast and unicast set 2108 * @netdev: network interface device structure 2109 * 2110 * The set_rx_method entry point is called whenever the multicast address 2111 * list, unicast address list or the network interface flags are updated. 2112 * This routine is responsible for configuring the hardware for proper 2113 * multicast mode and configuring requested unicast filters. 2114 **/ 2115 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2116 { 2117 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2118 struct ixgbe_hw *hw = &adapter->hw; 2119 unsigned int flags = netdev->flags; 2120 int xcast_mode; 2121 2122 /* request the most inclusive mode we need */ 2123 if (flags & IFF_PROMISC) 2124 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2125 else if (flags & IFF_ALLMULTI) 2126 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2127 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2128 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2129 else 2130 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2131 2132 spin_lock_bh(&adapter->mbx_lock); 2133 2134 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2135 2136 /* reprogram multicast list */ 2137 hw->mac.ops.update_mc_addr_list(hw, netdev); 2138 2139 ixgbevf_write_uc_addr_list(netdev); 2140 2141 spin_unlock_bh(&adapter->mbx_lock); 2142 } 2143 2144 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2145 { 2146 int q_idx; 2147 struct ixgbevf_q_vector *q_vector; 2148 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2149 2150 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2151 q_vector = adapter->q_vector[q_idx]; 2152 napi_enable(&q_vector->napi); 2153 } 2154 } 2155 2156 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2157 { 2158 int q_idx; 2159 struct ixgbevf_q_vector *q_vector; 2160 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2161 2162 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2163 q_vector = adapter->q_vector[q_idx]; 2164 napi_disable(&q_vector->napi); 2165 } 2166 } 2167 2168 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2169 { 2170 struct ixgbe_hw *hw = &adapter->hw; 2171 unsigned int def_q = 0; 2172 unsigned int num_tcs = 0; 2173 unsigned int num_rx_queues = adapter->num_rx_queues; 2174 unsigned int num_tx_queues = adapter->num_tx_queues; 2175 int err; 2176 2177 spin_lock_bh(&adapter->mbx_lock); 2178 2179 /* fetch queue configuration from the PF */ 2180 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2181 2182 spin_unlock_bh(&adapter->mbx_lock); 2183 2184 if (err) 2185 return err; 2186 2187 if (num_tcs > 1) { 2188 /* we need only one Tx queue */ 2189 num_tx_queues = 1; 2190 2191 /* update default Tx ring register index */ 2192 adapter->tx_ring[0]->reg_idx = def_q; 2193 2194 /* we need as many queues as traffic classes */ 2195 num_rx_queues = num_tcs; 2196 } 2197 2198 /* if we have a bad config abort request queue reset */ 2199 if ((adapter->num_rx_queues != num_rx_queues) || 2200 (adapter->num_tx_queues != num_tx_queues)) { 2201 /* force mailbox timeout to prevent further messages */ 2202 hw->mbx.timeout = 0; 2203 2204 /* wait for watchdog to come around and bail us out */ 2205 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2206 } 2207 2208 return 0; 2209 } 2210 2211 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2212 { 2213 ixgbevf_configure_dcb(adapter); 2214 2215 ixgbevf_set_rx_mode(adapter->netdev); 2216 2217 ixgbevf_restore_vlan(adapter); 2218 ixgbevf_ipsec_restore(adapter); 2219 2220 ixgbevf_configure_tx(adapter); 2221 ixgbevf_configure_rx(adapter); 2222 } 2223 2224 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2225 { 2226 /* Only save pre-reset stats if there are some */ 2227 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2228 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2229 adapter->stats.base_vfgprc; 2230 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2231 adapter->stats.base_vfgptc; 2232 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2233 adapter->stats.base_vfgorc; 2234 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2235 adapter->stats.base_vfgotc; 2236 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2237 adapter->stats.base_vfmprc; 2238 } 2239 } 2240 2241 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2242 { 2243 struct ixgbe_hw *hw = &adapter->hw; 2244 2245 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2246 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2247 adapter->stats.last_vfgorc |= 2248 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2249 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2250 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2251 adapter->stats.last_vfgotc |= 2252 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2253 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2254 2255 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2256 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2257 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2258 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2259 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2260 } 2261 2262 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2263 { 2264 struct ixgbe_hw *hw = &adapter->hw; 2265 static const int api[] = { 2266 ixgbe_mbox_api_14, 2267 ixgbe_mbox_api_13, 2268 ixgbe_mbox_api_12, 2269 ixgbe_mbox_api_11, 2270 ixgbe_mbox_api_10, 2271 ixgbe_mbox_api_unknown 2272 }; 2273 int err, idx = 0; 2274 2275 spin_lock_bh(&adapter->mbx_lock); 2276 2277 while (api[idx] != ixgbe_mbox_api_unknown) { 2278 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2279 if (!err) 2280 break; 2281 idx++; 2282 } 2283 2284 spin_unlock_bh(&adapter->mbx_lock); 2285 } 2286 2287 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2288 { 2289 struct net_device *netdev = adapter->netdev; 2290 struct ixgbe_hw *hw = &adapter->hw; 2291 2292 ixgbevf_configure_msix(adapter); 2293 2294 spin_lock_bh(&adapter->mbx_lock); 2295 2296 if (is_valid_ether_addr(hw->mac.addr)) 2297 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2298 else 2299 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2300 2301 spin_unlock_bh(&adapter->mbx_lock); 2302 2303 smp_mb__before_atomic(); 2304 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2305 ixgbevf_napi_enable_all(adapter); 2306 2307 /* clear any pending interrupts, may auto mask */ 2308 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2309 ixgbevf_irq_enable(adapter); 2310 2311 /* enable transmits */ 2312 netif_tx_start_all_queues(netdev); 2313 2314 ixgbevf_save_reset_stats(adapter); 2315 ixgbevf_init_last_counter_stats(adapter); 2316 2317 hw->mac.get_link_status = 1; 2318 mod_timer(&adapter->service_timer, jiffies); 2319 } 2320 2321 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2322 { 2323 ixgbevf_configure(adapter); 2324 2325 ixgbevf_up_complete(adapter); 2326 } 2327 2328 /** 2329 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2330 * @rx_ring: ring to free buffers from 2331 **/ 2332 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2333 { 2334 u16 i = rx_ring->next_to_clean; 2335 2336 /* Free Rx ring sk_buff */ 2337 if (rx_ring->skb) { 2338 dev_kfree_skb(rx_ring->skb); 2339 rx_ring->skb = NULL; 2340 } 2341 2342 /* Free all the Rx ring pages */ 2343 while (i != rx_ring->next_to_alloc) { 2344 struct ixgbevf_rx_buffer *rx_buffer; 2345 2346 rx_buffer = &rx_ring->rx_buffer_info[i]; 2347 2348 /* Invalidate cache lines that may have been written to by 2349 * device so that we avoid corrupting memory. 2350 */ 2351 dma_sync_single_range_for_cpu(rx_ring->dev, 2352 rx_buffer->dma, 2353 rx_buffer->page_offset, 2354 ixgbevf_rx_bufsz(rx_ring), 2355 DMA_FROM_DEVICE); 2356 2357 /* free resources associated with mapping */ 2358 dma_unmap_page_attrs(rx_ring->dev, 2359 rx_buffer->dma, 2360 ixgbevf_rx_pg_size(rx_ring), 2361 DMA_FROM_DEVICE, 2362 IXGBEVF_RX_DMA_ATTR); 2363 2364 __page_frag_cache_drain(rx_buffer->page, 2365 rx_buffer->pagecnt_bias); 2366 2367 i++; 2368 if (i == rx_ring->count) 2369 i = 0; 2370 } 2371 2372 rx_ring->next_to_alloc = 0; 2373 rx_ring->next_to_clean = 0; 2374 rx_ring->next_to_use = 0; 2375 } 2376 2377 /** 2378 * ixgbevf_clean_tx_ring - Free Tx Buffers 2379 * @tx_ring: ring to be cleaned 2380 **/ 2381 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2382 { 2383 u16 i = tx_ring->next_to_clean; 2384 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2385 2386 while (i != tx_ring->next_to_use) { 2387 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2388 2389 /* Free all the Tx ring sk_buffs */ 2390 if (ring_is_xdp(tx_ring)) 2391 page_frag_free(tx_buffer->data); 2392 else 2393 dev_kfree_skb_any(tx_buffer->skb); 2394 2395 /* unmap skb header data */ 2396 dma_unmap_single(tx_ring->dev, 2397 dma_unmap_addr(tx_buffer, dma), 2398 dma_unmap_len(tx_buffer, len), 2399 DMA_TO_DEVICE); 2400 2401 /* check for eop_desc to determine the end of the packet */ 2402 eop_desc = tx_buffer->next_to_watch; 2403 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2404 2405 /* unmap remaining buffers */ 2406 while (tx_desc != eop_desc) { 2407 tx_buffer++; 2408 tx_desc++; 2409 i++; 2410 if (unlikely(i == tx_ring->count)) { 2411 i = 0; 2412 tx_buffer = tx_ring->tx_buffer_info; 2413 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2414 } 2415 2416 /* unmap any remaining paged data */ 2417 if (dma_unmap_len(tx_buffer, len)) 2418 dma_unmap_page(tx_ring->dev, 2419 dma_unmap_addr(tx_buffer, dma), 2420 dma_unmap_len(tx_buffer, len), 2421 DMA_TO_DEVICE); 2422 } 2423 2424 /* move us one more past the eop_desc for start of next pkt */ 2425 tx_buffer++; 2426 i++; 2427 if (unlikely(i == tx_ring->count)) { 2428 i = 0; 2429 tx_buffer = tx_ring->tx_buffer_info; 2430 } 2431 } 2432 2433 /* reset next_to_use and next_to_clean */ 2434 tx_ring->next_to_use = 0; 2435 tx_ring->next_to_clean = 0; 2436 2437 } 2438 2439 /** 2440 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2441 * @adapter: board private structure 2442 **/ 2443 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2444 { 2445 int i; 2446 2447 for (i = 0; i < adapter->num_rx_queues; i++) 2448 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2449 } 2450 2451 /** 2452 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2453 * @adapter: board private structure 2454 **/ 2455 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2456 { 2457 int i; 2458 2459 for (i = 0; i < adapter->num_tx_queues; i++) 2460 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2461 for (i = 0; i < adapter->num_xdp_queues; i++) 2462 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2463 } 2464 2465 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2466 { 2467 struct net_device *netdev = adapter->netdev; 2468 struct ixgbe_hw *hw = &adapter->hw; 2469 int i; 2470 2471 /* signal that we are down to the interrupt handler */ 2472 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2473 return; /* do nothing if already down */ 2474 2475 /* disable all enabled Rx queues */ 2476 for (i = 0; i < adapter->num_rx_queues; i++) 2477 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2478 2479 usleep_range(10000, 20000); 2480 2481 netif_tx_stop_all_queues(netdev); 2482 2483 /* call carrier off first to avoid false dev_watchdog timeouts */ 2484 netif_carrier_off(netdev); 2485 netif_tx_disable(netdev); 2486 2487 ixgbevf_irq_disable(adapter); 2488 2489 ixgbevf_napi_disable_all(adapter); 2490 2491 del_timer_sync(&adapter->service_timer); 2492 2493 /* disable transmits in the hardware now that interrupts are off */ 2494 for (i = 0; i < adapter->num_tx_queues; i++) { 2495 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2496 2497 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2498 IXGBE_TXDCTL_SWFLSH); 2499 } 2500 2501 for (i = 0; i < adapter->num_xdp_queues; i++) { 2502 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2503 2504 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2505 IXGBE_TXDCTL_SWFLSH); 2506 } 2507 2508 if (!pci_channel_offline(adapter->pdev)) 2509 ixgbevf_reset(adapter); 2510 2511 ixgbevf_clean_all_tx_rings(adapter); 2512 ixgbevf_clean_all_rx_rings(adapter); 2513 } 2514 2515 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2516 { 2517 WARN_ON(in_interrupt()); 2518 2519 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2520 msleep(1); 2521 2522 ixgbevf_down(adapter); 2523 pci_set_master(adapter->pdev); 2524 ixgbevf_up(adapter); 2525 2526 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2527 } 2528 2529 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2530 { 2531 struct ixgbe_hw *hw = &adapter->hw; 2532 struct net_device *netdev = adapter->netdev; 2533 2534 if (hw->mac.ops.reset_hw(hw)) { 2535 hw_dbg(hw, "PF still resetting\n"); 2536 } else { 2537 hw->mac.ops.init_hw(hw); 2538 ixgbevf_negotiate_api(adapter); 2539 } 2540 2541 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2542 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2543 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2544 } 2545 2546 adapter->last_reset = jiffies; 2547 } 2548 2549 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2550 int vectors) 2551 { 2552 int vector_threshold; 2553 2554 /* We'll want at least 2 (vector_threshold): 2555 * 1) TxQ[0] + RxQ[0] handler 2556 * 2) Other (Link Status Change, etc.) 2557 */ 2558 vector_threshold = MIN_MSIX_COUNT; 2559 2560 /* The more we get, the more we will assign to Tx/Rx Cleanup 2561 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2562 * Right now, we simply care about how many we'll get; we'll 2563 * set them up later while requesting irq's. 2564 */ 2565 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2566 vector_threshold, vectors); 2567 2568 if (vectors < 0) { 2569 dev_err(&adapter->pdev->dev, 2570 "Unable to allocate MSI-X interrupts\n"); 2571 kfree(adapter->msix_entries); 2572 adapter->msix_entries = NULL; 2573 return vectors; 2574 } 2575 2576 /* Adjust for only the vectors we'll use, which is minimum 2577 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2578 * vectors we were allocated. 2579 */ 2580 adapter->num_msix_vectors = vectors; 2581 2582 return 0; 2583 } 2584 2585 /** 2586 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2587 * @adapter: board private structure to initialize 2588 * 2589 * This is the top level queue allocation routine. The order here is very 2590 * important, starting with the "most" number of features turned on at once, 2591 * and ending with the smallest set of features. This way large combinations 2592 * can be allocated if they're turned on, and smaller combinations are the 2593 * fallthrough conditions. 2594 * 2595 **/ 2596 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2597 { 2598 struct ixgbe_hw *hw = &adapter->hw; 2599 unsigned int def_q = 0; 2600 unsigned int num_tcs = 0; 2601 int err; 2602 2603 /* Start with base case */ 2604 adapter->num_rx_queues = 1; 2605 adapter->num_tx_queues = 1; 2606 adapter->num_xdp_queues = 0; 2607 2608 spin_lock_bh(&adapter->mbx_lock); 2609 2610 /* fetch queue configuration from the PF */ 2611 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2612 2613 spin_unlock_bh(&adapter->mbx_lock); 2614 2615 if (err) 2616 return; 2617 2618 /* we need as many queues as traffic classes */ 2619 if (num_tcs > 1) { 2620 adapter->num_rx_queues = num_tcs; 2621 } else { 2622 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2623 2624 switch (hw->api_version) { 2625 case ixgbe_mbox_api_11: 2626 case ixgbe_mbox_api_12: 2627 case ixgbe_mbox_api_13: 2628 case ixgbe_mbox_api_14: 2629 if (adapter->xdp_prog && 2630 hw->mac.max_tx_queues == rss) 2631 rss = rss > 3 ? 2 : 1; 2632 2633 adapter->num_rx_queues = rss; 2634 adapter->num_tx_queues = rss; 2635 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2636 default: 2637 break; 2638 } 2639 } 2640 } 2641 2642 /** 2643 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2644 * @adapter: board private structure to initialize 2645 * 2646 * Attempt to configure the interrupts using the best available 2647 * capabilities of the hardware and the kernel. 2648 **/ 2649 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2650 { 2651 int vector, v_budget; 2652 2653 /* It's easy to be greedy for MSI-X vectors, but it really 2654 * doesn't do us much good if we have a lot more vectors 2655 * than CPU's. So let's be conservative and only ask for 2656 * (roughly) the same number of vectors as there are CPU's. 2657 * The default is to use pairs of vectors. 2658 */ 2659 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2660 v_budget = min_t(int, v_budget, num_online_cpus()); 2661 v_budget += NON_Q_VECTORS; 2662 2663 adapter->msix_entries = kcalloc(v_budget, 2664 sizeof(struct msix_entry), GFP_KERNEL); 2665 if (!adapter->msix_entries) 2666 return -ENOMEM; 2667 2668 for (vector = 0; vector < v_budget; vector++) 2669 adapter->msix_entries[vector].entry = vector; 2670 2671 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2672 * does not support any other modes, so we will simply fail here. Note 2673 * that we clean up the msix_entries pointer else-where. 2674 */ 2675 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2676 } 2677 2678 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2679 struct ixgbevf_ring_container *head) 2680 { 2681 ring->next = head->ring; 2682 head->ring = ring; 2683 head->count++; 2684 } 2685 2686 /** 2687 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2688 * @adapter: board private structure to initialize 2689 * @v_idx: index of vector in adapter struct 2690 * @txr_count: number of Tx rings for q vector 2691 * @txr_idx: index of first Tx ring to assign 2692 * @xdp_count: total number of XDP rings to allocate 2693 * @xdp_idx: index of first XDP ring to allocate 2694 * @rxr_count: number of Rx rings for q vector 2695 * @rxr_idx: index of first Rx ring to assign 2696 * 2697 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2698 **/ 2699 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2700 int txr_count, int txr_idx, 2701 int xdp_count, int xdp_idx, 2702 int rxr_count, int rxr_idx) 2703 { 2704 struct ixgbevf_q_vector *q_vector; 2705 int reg_idx = txr_idx + xdp_idx; 2706 struct ixgbevf_ring *ring; 2707 int ring_count, size; 2708 2709 ring_count = txr_count + xdp_count + rxr_count; 2710 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2711 2712 /* allocate q_vector and rings */ 2713 q_vector = kzalloc(size, GFP_KERNEL); 2714 if (!q_vector) 2715 return -ENOMEM; 2716 2717 /* initialize NAPI */ 2718 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64); 2719 2720 /* tie q_vector and adapter together */ 2721 adapter->q_vector[v_idx] = q_vector; 2722 q_vector->adapter = adapter; 2723 q_vector->v_idx = v_idx; 2724 2725 /* initialize pointer to rings */ 2726 ring = q_vector->ring; 2727 2728 while (txr_count) { 2729 /* assign generic ring traits */ 2730 ring->dev = &adapter->pdev->dev; 2731 ring->netdev = adapter->netdev; 2732 2733 /* configure backlink on ring */ 2734 ring->q_vector = q_vector; 2735 2736 /* update q_vector Tx values */ 2737 ixgbevf_add_ring(ring, &q_vector->tx); 2738 2739 /* apply Tx specific ring traits */ 2740 ring->count = adapter->tx_ring_count; 2741 ring->queue_index = txr_idx; 2742 ring->reg_idx = reg_idx; 2743 2744 /* assign ring to adapter */ 2745 adapter->tx_ring[txr_idx] = ring; 2746 2747 /* update count and index */ 2748 txr_count--; 2749 txr_idx++; 2750 reg_idx++; 2751 2752 /* push pointer to next ring */ 2753 ring++; 2754 } 2755 2756 while (xdp_count) { 2757 /* assign generic ring traits */ 2758 ring->dev = &adapter->pdev->dev; 2759 ring->netdev = adapter->netdev; 2760 2761 /* configure backlink on ring */ 2762 ring->q_vector = q_vector; 2763 2764 /* update q_vector Tx values */ 2765 ixgbevf_add_ring(ring, &q_vector->tx); 2766 2767 /* apply Tx specific ring traits */ 2768 ring->count = adapter->tx_ring_count; 2769 ring->queue_index = xdp_idx; 2770 ring->reg_idx = reg_idx; 2771 set_ring_xdp(ring); 2772 2773 /* assign ring to adapter */ 2774 adapter->xdp_ring[xdp_idx] = ring; 2775 2776 /* update count and index */ 2777 xdp_count--; 2778 xdp_idx++; 2779 reg_idx++; 2780 2781 /* push pointer to next ring */ 2782 ring++; 2783 } 2784 2785 while (rxr_count) { 2786 /* assign generic ring traits */ 2787 ring->dev = &adapter->pdev->dev; 2788 ring->netdev = adapter->netdev; 2789 2790 /* configure backlink on ring */ 2791 ring->q_vector = q_vector; 2792 2793 /* update q_vector Rx values */ 2794 ixgbevf_add_ring(ring, &q_vector->rx); 2795 2796 /* apply Rx specific ring traits */ 2797 ring->count = adapter->rx_ring_count; 2798 ring->queue_index = rxr_idx; 2799 ring->reg_idx = rxr_idx; 2800 2801 /* assign ring to adapter */ 2802 adapter->rx_ring[rxr_idx] = ring; 2803 2804 /* update count and index */ 2805 rxr_count--; 2806 rxr_idx++; 2807 2808 /* push pointer to next ring */ 2809 ring++; 2810 } 2811 2812 return 0; 2813 } 2814 2815 /** 2816 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2817 * @adapter: board private structure to initialize 2818 * @v_idx: index of vector in adapter struct 2819 * 2820 * This function frees the memory allocated to the q_vector. In addition if 2821 * NAPI is enabled it will delete any references to the NAPI struct prior 2822 * to freeing the q_vector. 2823 **/ 2824 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2825 { 2826 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2827 struct ixgbevf_ring *ring; 2828 2829 ixgbevf_for_each_ring(ring, q_vector->tx) { 2830 if (ring_is_xdp(ring)) 2831 adapter->xdp_ring[ring->queue_index] = NULL; 2832 else 2833 adapter->tx_ring[ring->queue_index] = NULL; 2834 } 2835 2836 ixgbevf_for_each_ring(ring, q_vector->rx) 2837 adapter->rx_ring[ring->queue_index] = NULL; 2838 2839 adapter->q_vector[v_idx] = NULL; 2840 netif_napi_del(&q_vector->napi); 2841 2842 /* ixgbevf_get_stats() might access the rings on this vector, 2843 * we must wait a grace period before freeing it. 2844 */ 2845 kfree_rcu(q_vector, rcu); 2846 } 2847 2848 /** 2849 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2850 * @adapter: board private structure to initialize 2851 * 2852 * We allocate one q_vector per queue interrupt. If allocation fails we 2853 * return -ENOMEM. 2854 **/ 2855 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2856 { 2857 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2858 int rxr_remaining = adapter->num_rx_queues; 2859 int txr_remaining = adapter->num_tx_queues; 2860 int xdp_remaining = adapter->num_xdp_queues; 2861 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2862 int err; 2863 2864 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2865 for (; rxr_remaining; v_idx++, q_vectors--) { 2866 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2867 2868 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2869 0, 0, 0, 0, rqpv, rxr_idx); 2870 if (err) 2871 goto err_out; 2872 2873 /* update counts and index */ 2874 rxr_remaining -= rqpv; 2875 rxr_idx += rqpv; 2876 } 2877 } 2878 2879 for (; q_vectors; v_idx++, q_vectors--) { 2880 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2881 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2882 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2883 2884 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2885 tqpv, txr_idx, 2886 xqpv, xdp_idx, 2887 rqpv, rxr_idx); 2888 2889 if (err) 2890 goto err_out; 2891 2892 /* update counts and index */ 2893 rxr_remaining -= rqpv; 2894 rxr_idx += rqpv; 2895 txr_remaining -= tqpv; 2896 txr_idx += tqpv; 2897 xdp_remaining -= xqpv; 2898 xdp_idx += xqpv; 2899 } 2900 2901 return 0; 2902 2903 err_out: 2904 while (v_idx) { 2905 v_idx--; 2906 ixgbevf_free_q_vector(adapter, v_idx); 2907 } 2908 2909 return -ENOMEM; 2910 } 2911 2912 /** 2913 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2914 * @adapter: board private structure to initialize 2915 * 2916 * This function frees the memory allocated to the q_vectors. In addition if 2917 * NAPI is enabled it will delete any references to the NAPI struct prior 2918 * to freeing the q_vector. 2919 **/ 2920 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2921 { 2922 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2923 2924 while (q_vectors) { 2925 q_vectors--; 2926 ixgbevf_free_q_vector(adapter, q_vectors); 2927 } 2928 } 2929 2930 /** 2931 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2932 * @adapter: board private structure 2933 * 2934 **/ 2935 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2936 { 2937 if (!adapter->msix_entries) 2938 return; 2939 2940 pci_disable_msix(adapter->pdev); 2941 kfree(adapter->msix_entries); 2942 adapter->msix_entries = NULL; 2943 } 2944 2945 /** 2946 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2947 * @adapter: board private structure to initialize 2948 * 2949 **/ 2950 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2951 { 2952 int err; 2953 2954 /* Number of supported queues */ 2955 ixgbevf_set_num_queues(adapter); 2956 2957 err = ixgbevf_set_interrupt_capability(adapter); 2958 if (err) { 2959 hw_dbg(&adapter->hw, 2960 "Unable to setup interrupt capabilities\n"); 2961 goto err_set_interrupt; 2962 } 2963 2964 err = ixgbevf_alloc_q_vectors(adapter); 2965 if (err) { 2966 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2967 goto err_alloc_q_vectors; 2968 } 2969 2970 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2971 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2972 adapter->num_rx_queues, adapter->num_tx_queues, 2973 adapter->num_xdp_queues); 2974 2975 set_bit(__IXGBEVF_DOWN, &adapter->state); 2976 2977 return 0; 2978 err_alloc_q_vectors: 2979 ixgbevf_reset_interrupt_capability(adapter); 2980 err_set_interrupt: 2981 return err; 2982 } 2983 2984 /** 2985 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2986 * @adapter: board private structure to clear interrupt scheme on 2987 * 2988 * We go through and clear interrupt specific resources and reset the structure 2989 * to pre-load conditions 2990 **/ 2991 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2992 { 2993 adapter->num_tx_queues = 0; 2994 adapter->num_xdp_queues = 0; 2995 adapter->num_rx_queues = 0; 2996 2997 ixgbevf_free_q_vectors(adapter); 2998 ixgbevf_reset_interrupt_capability(adapter); 2999 } 3000 3001 /** 3002 * ixgbevf_sw_init - Initialize general software structures 3003 * @adapter: board private structure to initialize 3004 * 3005 * ixgbevf_sw_init initializes the Adapter private data structure. 3006 * Fields are initialized based on PCI device information and 3007 * OS network device settings (MTU size). 3008 **/ 3009 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 3010 { 3011 struct ixgbe_hw *hw = &adapter->hw; 3012 struct pci_dev *pdev = adapter->pdev; 3013 struct net_device *netdev = adapter->netdev; 3014 int err; 3015 3016 /* PCI config space info */ 3017 hw->vendor_id = pdev->vendor; 3018 hw->device_id = pdev->device; 3019 hw->revision_id = pdev->revision; 3020 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3021 hw->subsystem_device_id = pdev->subsystem_device; 3022 3023 hw->mbx.ops.init_params(hw); 3024 3025 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3026 err = ixgbevf_init_rss_key(adapter); 3027 if (err) 3028 goto out; 3029 } 3030 3031 /* assume legacy case in which PF would only give VF 2 queues */ 3032 hw->mac.max_tx_queues = 2; 3033 hw->mac.max_rx_queues = 2; 3034 3035 /* lock to protect mailbox accesses */ 3036 spin_lock_init(&adapter->mbx_lock); 3037 3038 err = hw->mac.ops.reset_hw(hw); 3039 if (err) { 3040 dev_info(&pdev->dev, 3041 "PF still in reset state. Is the PF interface up?\n"); 3042 } else { 3043 err = hw->mac.ops.init_hw(hw); 3044 if (err) { 3045 pr_err("init_shared_code failed: %d\n", err); 3046 goto out; 3047 } 3048 ixgbevf_negotiate_api(adapter); 3049 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3050 if (err) 3051 dev_info(&pdev->dev, "Error reading MAC address\n"); 3052 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3053 dev_info(&pdev->dev, 3054 "MAC address not assigned by administrator.\n"); 3055 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 3056 } 3057 3058 if (!is_valid_ether_addr(netdev->dev_addr)) { 3059 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3060 eth_hw_addr_random(netdev); 3061 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3062 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3063 } 3064 3065 /* Enable dynamic interrupt throttling rates */ 3066 adapter->rx_itr_setting = 1; 3067 adapter->tx_itr_setting = 1; 3068 3069 /* set default ring sizes */ 3070 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3071 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3072 3073 set_bit(__IXGBEVF_DOWN, &adapter->state); 3074 return 0; 3075 3076 out: 3077 return err; 3078 } 3079 3080 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3081 { \ 3082 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3083 if (current_counter < last_counter) \ 3084 counter += 0x100000000LL; \ 3085 last_counter = current_counter; \ 3086 counter &= 0xFFFFFFFF00000000LL; \ 3087 counter |= current_counter; \ 3088 } 3089 3090 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3091 { \ 3092 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3093 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3094 u64 current_counter = (current_counter_msb << 32) | \ 3095 current_counter_lsb; \ 3096 if (current_counter < last_counter) \ 3097 counter += 0x1000000000LL; \ 3098 last_counter = current_counter; \ 3099 counter &= 0xFFFFFFF000000000LL; \ 3100 counter |= current_counter; \ 3101 } 3102 /** 3103 * ixgbevf_update_stats - Update the board statistics counters. 3104 * @adapter: board private structure 3105 **/ 3106 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3107 { 3108 struct ixgbe_hw *hw = &adapter->hw; 3109 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3110 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3111 int i; 3112 3113 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3114 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3115 return; 3116 3117 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3118 adapter->stats.vfgprc); 3119 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3120 adapter->stats.vfgptc); 3121 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3122 adapter->stats.last_vfgorc, 3123 adapter->stats.vfgorc); 3124 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3125 adapter->stats.last_vfgotc, 3126 adapter->stats.vfgotc); 3127 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3128 adapter->stats.vfmprc); 3129 3130 for (i = 0; i < adapter->num_rx_queues; i++) { 3131 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3132 3133 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3134 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3135 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3136 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3137 } 3138 3139 adapter->hw_csum_rx_error = hw_csum_rx_error; 3140 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3141 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3142 adapter->alloc_rx_page = alloc_rx_page; 3143 } 3144 3145 /** 3146 * ixgbevf_service_timer - Timer Call-back 3147 * @t: pointer to timer_list struct 3148 **/ 3149 static void ixgbevf_service_timer(struct timer_list *t) 3150 { 3151 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3152 service_timer); 3153 3154 /* Reset the timer */ 3155 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3156 3157 ixgbevf_service_event_schedule(adapter); 3158 } 3159 3160 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3161 { 3162 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3163 return; 3164 3165 rtnl_lock(); 3166 /* If we're already down or resetting, just bail */ 3167 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3168 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3169 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3170 rtnl_unlock(); 3171 return; 3172 } 3173 3174 adapter->tx_timeout_count++; 3175 3176 ixgbevf_reinit_locked(adapter); 3177 rtnl_unlock(); 3178 } 3179 3180 /** 3181 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3182 * @adapter: pointer to the device adapter structure 3183 * 3184 * This function serves two purposes. First it strobes the interrupt lines 3185 * in order to make certain interrupts are occurring. Secondly it sets the 3186 * bits needed to check for TX hangs. As a result we should immediately 3187 * determine if a hang has occurred. 3188 **/ 3189 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3190 { 3191 struct ixgbe_hw *hw = &adapter->hw; 3192 u32 eics = 0; 3193 int i; 3194 3195 /* If we're down or resetting, just bail */ 3196 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3197 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3198 return; 3199 3200 /* Force detection of hung controller */ 3201 if (netif_carrier_ok(adapter->netdev)) { 3202 for (i = 0; i < adapter->num_tx_queues; i++) 3203 set_check_for_tx_hang(adapter->tx_ring[i]); 3204 for (i = 0; i < adapter->num_xdp_queues; i++) 3205 set_check_for_tx_hang(adapter->xdp_ring[i]); 3206 } 3207 3208 /* get one bit for every active Tx/Rx interrupt vector */ 3209 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3210 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3211 3212 if (qv->rx.ring || qv->tx.ring) 3213 eics |= BIT(i); 3214 } 3215 3216 /* Cause software interrupt to ensure rings are cleaned */ 3217 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3218 } 3219 3220 /** 3221 * ixgbevf_watchdog_update_link - update the link status 3222 * @adapter: pointer to the device adapter structure 3223 **/ 3224 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3225 { 3226 struct ixgbe_hw *hw = &adapter->hw; 3227 u32 link_speed = adapter->link_speed; 3228 bool link_up = adapter->link_up; 3229 s32 err; 3230 3231 spin_lock_bh(&adapter->mbx_lock); 3232 3233 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3234 3235 spin_unlock_bh(&adapter->mbx_lock); 3236 3237 /* if check for link returns error we will need to reset */ 3238 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3239 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3240 link_up = false; 3241 } 3242 3243 adapter->link_up = link_up; 3244 adapter->link_speed = link_speed; 3245 } 3246 3247 /** 3248 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3249 * print link up message 3250 * @adapter: pointer to the device adapter structure 3251 **/ 3252 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3253 { 3254 struct net_device *netdev = adapter->netdev; 3255 3256 /* only continue if link was previously down */ 3257 if (netif_carrier_ok(netdev)) 3258 return; 3259 3260 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3261 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3262 "10 Gbps" : 3263 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3264 "1 Gbps" : 3265 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3266 "100 Mbps" : 3267 "unknown speed"); 3268 3269 netif_carrier_on(netdev); 3270 } 3271 3272 /** 3273 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3274 * print link down message 3275 * @adapter: pointer to the adapter structure 3276 **/ 3277 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3278 { 3279 struct net_device *netdev = adapter->netdev; 3280 3281 adapter->link_speed = 0; 3282 3283 /* only continue if link was up previously */ 3284 if (!netif_carrier_ok(netdev)) 3285 return; 3286 3287 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3288 3289 netif_carrier_off(netdev); 3290 } 3291 3292 /** 3293 * ixgbevf_watchdog_subtask - worker thread to bring link up 3294 * @adapter: board private structure 3295 **/ 3296 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3297 { 3298 /* if interface is down do nothing */ 3299 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3300 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3301 return; 3302 3303 ixgbevf_watchdog_update_link(adapter); 3304 3305 if (adapter->link_up) 3306 ixgbevf_watchdog_link_is_up(adapter); 3307 else 3308 ixgbevf_watchdog_link_is_down(adapter); 3309 3310 ixgbevf_update_stats(adapter); 3311 } 3312 3313 /** 3314 * ixgbevf_service_task - manages and runs subtasks 3315 * @work: pointer to work_struct containing our data 3316 **/ 3317 static void ixgbevf_service_task(struct work_struct *work) 3318 { 3319 struct ixgbevf_adapter *adapter = container_of(work, 3320 struct ixgbevf_adapter, 3321 service_task); 3322 struct ixgbe_hw *hw = &adapter->hw; 3323 3324 if (IXGBE_REMOVED(hw->hw_addr)) { 3325 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3326 rtnl_lock(); 3327 ixgbevf_down(adapter); 3328 rtnl_unlock(); 3329 } 3330 return; 3331 } 3332 3333 ixgbevf_queue_reset_subtask(adapter); 3334 ixgbevf_reset_subtask(adapter); 3335 ixgbevf_watchdog_subtask(adapter); 3336 ixgbevf_check_hang_subtask(adapter); 3337 3338 ixgbevf_service_event_complete(adapter); 3339 } 3340 3341 /** 3342 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3343 * @tx_ring: Tx descriptor ring for a specific queue 3344 * 3345 * Free all transmit software resources 3346 **/ 3347 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3348 { 3349 ixgbevf_clean_tx_ring(tx_ring); 3350 3351 vfree(tx_ring->tx_buffer_info); 3352 tx_ring->tx_buffer_info = NULL; 3353 3354 /* if not set, then don't free */ 3355 if (!tx_ring->desc) 3356 return; 3357 3358 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3359 tx_ring->dma); 3360 3361 tx_ring->desc = NULL; 3362 } 3363 3364 /** 3365 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3366 * @adapter: board private structure 3367 * 3368 * Free all transmit software resources 3369 **/ 3370 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3371 { 3372 int i; 3373 3374 for (i = 0; i < adapter->num_tx_queues; i++) 3375 if (adapter->tx_ring[i]->desc) 3376 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3377 for (i = 0; i < adapter->num_xdp_queues; i++) 3378 if (adapter->xdp_ring[i]->desc) 3379 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3380 } 3381 3382 /** 3383 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3384 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3385 * 3386 * Return 0 on success, negative on failure 3387 **/ 3388 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3389 { 3390 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3391 int size; 3392 3393 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3394 tx_ring->tx_buffer_info = vmalloc(size); 3395 if (!tx_ring->tx_buffer_info) 3396 goto err; 3397 3398 u64_stats_init(&tx_ring->syncp); 3399 3400 /* round up to nearest 4K */ 3401 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3402 tx_ring->size = ALIGN(tx_ring->size, 4096); 3403 3404 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3405 &tx_ring->dma, GFP_KERNEL); 3406 if (!tx_ring->desc) 3407 goto err; 3408 3409 return 0; 3410 3411 err: 3412 vfree(tx_ring->tx_buffer_info); 3413 tx_ring->tx_buffer_info = NULL; 3414 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3415 return -ENOMEM; 3416 } 3417 3418 /** 3419 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3420 * @adapter: board private structure 3421 * 3422 * If this function returns with an error, then it's possible one or 3423 * more of the rings is populated (while the rest are not). It is the 3424 * callers duty to clean those orphaned rings. 3425 * 3426 * Return 0 on success, negative on failure 3427 **/ 3428 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3429 { 3430 int i, j = 0, err = 0; 3431 3432 for (i = 0; i < adapter->num_tx_queues; i++) { 3433 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3434 if (!err) 3435 continue; 3436 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3437 goto err_setup_tx; 3438 } 3439 3440 for (j = 0; j < adapter->num_xdp_queues; j++) { 3441 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3442 if (!err) 3443 continue; 3444 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3445 goto err_setup_tx; 3446 } 3447 3448 return 0; 3449 err_setup_tx: 3450 /* rewind the index freeing the rings as we go */ 3451 while (j--) 3452 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3453 while (i--) 3454 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3455 3456 return err; 3457 } 3458 3459 /** 3460 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3461 * @adapter: board private structure 3462 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3463 * 3464 * Returns 0 on success, negative on failure 3465 **/ 3466 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3467 struct ixgbevf_ring *rx_ring) 3468 { 3469 int size; 3470 3471 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3472 rx_ring->rx_buffer_info = vmalloc(size); 3473 if (!rx_ring->rx_buffer_info) 3474 goto err; 3475 3476 u64_stats_init(&rx_ring->syncp); 3477 3478 /* Round up to nearest 4K */ 3479 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3480 rx_ring->size = ALIGN(rx_ring->size, 4096); 3481 3482 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3483 &rx_ring->dma, GFP_KERNEL); 3484 3485 if (!rx_ring->desc) 3486 goto err; 3487 3488 /* XDP RX-queue info */ 3489 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3490 rx_ring->queue_index) < 0) 3491 goto err; 3492 3493 rx_ring->xdp_prog = adapter->xdp_prog; 3494 3495 return 0; 3496 err: 3497 vfree(rx_ring->rx_buffer_info); 3498 rx_ring->rx_buffer_info = NULL; 3499 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3500 return -ENOMEM; 3501 } 3502 3503 /** 3504 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3505 * @adapter: board private structure 3506 * 3507 * If this function returns with an error, then it's possible one or 3508 * more of the rings is populated (while the rest are not). It is the 3509 * callers duty to clean those orphaned rings. 3510 * 3511 * Return 0 on success, negative on failure 3512 **/ 3513 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3514 { 3515 int i, err = 0; 3516 3517 for (i = 0; i < adapter->num_rx_queues; i++) { 3518 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3519 if (!err) 3520 continue; 3521 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3522 goto err_setup_rx; 3523 } 3524 3525 return 0; 3526 err_setup_rx: 3527 /* rewind the index freeing the rings as we go */ 3528 while (i--) 3529 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3530 return err; 3531 } 3532 3533 /** 3534 * ixgbevf_free_rx_resources - Free Rx Resources 3535 * @rx_ring: ring to clean the resources from 3536 * 3537 * Free all receive software resources 3538 **/ 3539 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3540 { 3541 ixgbevf_clean_rx_ring(rx_ring); 3542 3543 rx_ring->xdp_prog = NULL; 3544 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3545 vfree(rx_ring->rx_buffer_info); 3546 rx_ring->rx_buffer_info = NULL; 3547 3548 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3549 rx_ring->dma); 3550 3551 rx_ring->desc = NULL; 3552 } 3553 3554 /** 3555 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3556 * @adapter: board private structure 3557 * 3558 * Free all receive software resources 3559 **/ 3560 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3561 { 3562 int i; 3563 3564 for (i = 0; i < adapter->num_rx_queues; i++) 3565 if (adapter->rx_ring[i]->desc) 3566 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3567 } 3568 3569 /** 3570 * ixgbevf_open - Called when a network interface is made active 3571 * @netdev: network interface device structure 3572 * 3573 * Returns 0 on success, negative value on failure 3574 * 3575 * The open entry point is called when a network interface is made 3576 * active by the system (IFF_UP). At this point all resources needed 3577 * for transmit and receive operations are allocated, the interrupt 3578 * handler is registered with the OS, the watchdog timer is started, 3579 * and the stack is notified that the interface is ready. 3580 **/ 3581 int ixgbevf_open(struct net_device *netdev) 3582 { 3583 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3584 struct ixgbe_hw *hw = &adapter->hw; 3585 int err; 3586 3587 /* A previous failure to open the device because of a lack of 3588 * available MSIX vector resources may have reset the number 3589 * of msix vectors variable to zero. The only way to recover 3590 * is to unload/reload the driver and hope that the system has 3591 * been able to recover some MSIX vector resources. 3592 */ 3593 if (!adapter->num_msix_vectors) 3594 return -ENOMEM; 3595 3596 if (hw->adapter_stopped) { 3597 ixgbevf_reset(adapter); 3598 /* if adapter is still stopped then PF isn't up and 3599 * the VF can't start. 3600 */ 3601 if (hw->adapter_stopped) { 3602 err = IXGBE_ERR_MBX; 3603 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3604 goto err_setup_reset; 3605 } 3606 } 3607 3608 /* disallow open during test */ 3609 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3610 return -EBUSY; 3611 3612 netif_carrier_off(netdev); 3613 3614 /* allocate transmit descriptors */ 3615 err = ixgbevf_setup_all_tx_resources(adapter); 3616 if (err) 3617 goto err_setup_tx; 3618 3619 /* allocate receive descriptors */ 3620 err = ixgbevf_setup_all_rx_resources(adapter); 3621 if (err) 3622 goto err_setup_rx; 3623 3624 ixgbevf_configure(adapter); 3625 3626 err = ixgbevf_request_irq(adapter); 3627 if (err) 3628 goto err_req_irq; 3629 3630 /* Notify the stack of the actual queue counts. */ 3631 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3632 if (err) 3633 goto err_set_queues; 3634 3635 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3636 if (err) 3637 goto err_set_queues; 3638 3639 ixgbevf_up_complete(adapter); 3640 3641 return 0; 3642 3643 err_set_queues: 3644 ixgbevf_free_irq(adapter); 3645 err_req_irq: 3646 ixgbevf_free_all_rx_resources(adapter); 3647 err_setup_rx: 3648 ixgbevf_free_all_tx_resources(adapter); 3649 err_setup_tx: 3650 ixgbevf_reset(adapter); 3651 err_setup_reset: 3652 3653 return err; 3654 } 3655 3656 /** 3657 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3658 * @adapter: the private adapter struct 3659 * 3660 * This function should contain the necessary work common to both suspending 3661 * and closing of the device. 3662 */ 3663 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3664 { 3665 ixgbevf_down(adapter); 3666 ixgbevf_free_irq(adapter); 3667 ixgbevf_free_all_tx_resources(adapter); 3668 ixgbevf_free_all_rx_resources(adapter); 3669 } 3670 3671 /** 3672 * ixgbevf_close - Disables a network interface 3673 * @netdev: network interface device structure 3674 * 3675 * Returns 0, this is not allowed to fail 3676 * 3677 * The close entry point is called when an interface is de-activated 3678 * by the OS. The hardware is still under the drivers control, but 3679 * needs to be disabled. A global MAC reset is issued to stop the 3680 * hardware, and all transmit and receive resources are freed. 3681 **/ 3682 int ixgbevf_close(struct net_device *netdev) 3683 { 3684 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3685 3686 if (netif_device_present(netdev)) 3687 ixgbevf_close_suspend(adapter); 3688 3689 return 0; 3690 } 3691 3692 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3693 { 3694 struct net_device *dev = adapter->netdev; 3695 3696 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3697 &adapter->state)) 3698 return; 3699 3700 /* if interface is down do nothing */ 3701 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3702 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3703 return; 3704 3705 /* Hardware has to reinitialize queues and interrupts to 3706 * match packet buffer alignment. Unfortunately, the 3707 * hardware is not flexible enough to do this dynamically. 3708 */ 3709 rtnl_lock(); 3710 3711 if (netif_running(dev)) 3712 ixgbevf_close(dev); 3713 3714 ixgbevf_clear_interrupt_scheme(adapter); 3715 ixgbevf_init_interrupt_scheme(adapter); 3716 3717 if (netif_running(dev)) 3718 ixgbevf_open(dev); 3719 3720 rtnl_unlock(); 3721 } 3722 3723 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3724 u32 vlan_macip_lens, u32 fceof_saidx, 3725 u32 type_tucmd, u32 mss_l4len_idx) 3726 { 3727 struct ixgbe_adv_tx_context_desc *context_desc; 3728 u16 i = tx_ring->next_to_use; 3729 3730 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3731 3732 i++; 3733 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3734 3735 /* set bits to identify this as an advanced context descriptor */ 3736 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3737 3738 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3739 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); 3740 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3741 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3742 } 3743 3744 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3745 struct ixgbevf_tx_buffer *first, 3746 u8 *hdr_len, 3747 struct ixgbevf_ipsec_tx_data *itd) 3748 { 3749 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3750 struct sk_buff *skb = first->skb; 3751 union { 3752 struct iphdr *v4; 3753 struct ipv6hdr *v6; 3754 unsigned char *hdr; 3755 } ip; 3756 union { 3757 struct tcphdr *tcp; 3758 unsigned char *hdr; 3759 } l4; 3760 u32 paylen, l4_offset; 3761 u32 fceof_saidx = 0; 3762 int err; 3763 3764 if (skb->ip_summed != CHECKSUM_PARTIAL) 3765 return 0; 3766 3767 if (!skb_is_gso(skb)) 3768 return 0; 3769 3770 err = skb_cow_head(skb, 0); 3771 if (err < 0) 3772 return err; 3773 3774 if (eth_p_mpls(first->protocol)) 3775 ip.hdr = skb_inner_network_header(skb); 3776 else 3777 ip.hdr = skb_network_header(skb); 3778 l4.hdr = skb_checksum_start(skb); 3779 3780 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3781 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3782 3783 /* initialize outer IP header fields */ 3784 if (ip.v4->version == 4) { 3785 unsigned char *csum_start = skb_checksum_start(skb); 3786 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3787 int len = csum_start - trans_start; 3788 3789 /* IP header will have to cancel out any data that 3790 * is not a part of the outer IP header, so set to 3791 * a reverse csum if needed, else init check to 0. 3792 */ 3793 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? 3794 csum_fold(csum_partial(trans_start, 3795 len, 0)) : 0; 3796 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3797 3798 ip.v4->tot_len = 0; 3799 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3800 IXGBE_TX_FLAGS_CSUM | 3801 IXGBE_TX_FLAGS_IPV4; 3802 } else { 3803 ip.v6->payload_len = 0; 3804 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3805 IXGBE_TX_FLAGS_CSUM; 3806 } 3807 3808 /* determine offset of inner transport header */ 3809 l4_offset = l4.hdr - skb->data; 3810 3811 /* compute length of segmentation header */ 3812 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3813 3814 /* remove payload length from inner checksum */ 3815 paylen = skb->len - l4_offset; 3816 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3817 3818 /* update gso size and bytecount with header size */ 3819 first->gso_segs = skb_shinfo(skb)->gso_segs; 3820 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3821 3822 /* mss_l4len_id: use 1 as index for TSO */ 3823 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3824 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3825 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3826 3827 fceof_saidx |= itd->pfsa; 3828 type_tucmd |= itd->flags | itd->trailer_len; 3829 3830 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3831 vlan_macip_lens = l4.hdr - ip.hdr; 3832 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3833 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3834 3835 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 3836 mss_l4len_idx); 3837 3838 return 1; 3839 } 3840 3841 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) 3842 { 3843 unsigned int offset = 0; 3844 3845 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 3846 3847 return offset == skb_checksum_start_offset(skb); 3848 } 3849 3850 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3851 struct ixgbevf_tx_buffer *first, 3852 struct ixgbevf_ipsec_tx_data *itd) 3853 { 3854 struct sk_buff *skb = first->skb; 3855 u32 vlan_macip_lens = 0; 3856 u32 fceof_saidx = 0; 3857 u32 type_tucmd = 0; 3858 3859 if (skb->ip_summed != CHECKSUM_PARTIAL) 3860 goto no_csum; 3861 3862 switch (skb->csum_offset) { 3863 case offsetof(struct tcphdr, check): 3864 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3865 /* fall through */ 3866 case offsetof(struct udphdr, check): 3867 break; 3868 case offsetof(struct sctphdr, checksum): 3869 /* validate that this is actually an SCTP request */ 3870 if (((first->protocol == htons(ETH_P_IP)) && 3871 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 3872 ((first->protocol == htons(ETH_P_IPV6)) && 3873 ixgbevf_ipv6_csum_is_sctp(skb))) { 3874 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3875 break; 3876 } 3877 /* fall through */ 3878 default: 3879 skb_checksum_help(skb); 3880 goto no_csum; 3881 } 3882 3883 if (first->protocol == htons(ETH_P_IP)) 3884 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3885 3886 /* update TX checksum flag */ 3887 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3888 vlan_macip_lens = skb_checksum_start_offset(skb) - 3889 skb_network_offset(skb); 3890 no_csum: 3891 /* vlan_macip_lens: MACLEN, VLAN tag */ 3892 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3893 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3894 3895 fceof_saidx |= itd->pfsa; 3896 type_tucmd |= itd->flags | itd->trailer_len; 3897 3898 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3899 fceof_saidx, type_tucmd, 0); 3900 } 3901 3902 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3903 { 3904 /* set type for advanced descriptor with frame checksum insertion */ 3905 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3906 IXGBE_ADVTXD_DCMD_IFCS | 3907 IXGBE_ADVTXD_DCMD_DEXT); 3908 3909 /* set HW VLAN bit if VLAN is present */ 3910 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3911 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3912 3913 /* set segmentation enable bits for TSO/FSO */ 3914 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3915 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3916 3917 return cmd_type; 3918 } 3919 3920 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3921 u32 tx_flags, unsigned int paylen) 3922 { 3923 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3924 3925 /* enable L4 checksum for TSO and TX checksum offload */ 3926 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3927 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3928 3929 /* enble IPv4 checksum for TSO */ 3930 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3931 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3932 3933 /* enable IPsec */ 3934 if (tx_flags & IXGBE_TX_FLAGS_IPSEC) 3935 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); 3936 3937 /* use index 1 context for TSO/FSO/FCOE/IPSEC */ 3938 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) 3939 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3940 3941 /* Check Context must be set if Tx switch is enabled, which it 3942 * always is for case where virtual functions are running 3943 */ 3944 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3945 3946 tx_desc->read.olinfo_status = olinfo_status; 3947 } 3948 3949 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3950 struct ixgbevf_tx_buffer *first, 3951 const u8 hdr_len) 3952 { 3953 struct sk_buff *skb = first->skb; 3954 struct ixgbevf_tx_buffer *tx_buffer; 3955 union ixgbe_adv_tx_desc *tx_desc; 3956 skb_frag_t *frag; 3957 dma_addr_t dma; 3958 unsigned int data_len, size; 3959 u32 tx_flags = first->tx_flags; 3960 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3961 u16 i = tx_ring->next_to_use; 3962 3963 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3964 3965 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3966 3967 size = skb_headlen(skb); 3968 data_len = skb->data_len; 3969 3970 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3971 3972 tx_buffer = first; 3973 3974 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3975 if (dma_mapping_error(tx_ring->dev, dma)) 3976 goto dma_error; 3977 3978 /* record length, and DMA address */ 3979 dma_unmap_len_set(tx_buffer, len, size); 3980 dma_unmap_addr_set(tx_buffer, dma, dma); 3981 3982 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3983 3984 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3985 tx_desc->read.cmd_type_len = 3986 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3987 3988 i++; 3989 tx_desc++; 3990 if (i == tx_ring->count) { 3991 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3992 i = 0; 3993 } 3994 tx_desc->read.olinfo_status = 0; 3995 3996 dma += IXGBE_MAX_DATA_PER_TXD; 3997 size -= IXGBE_MAX_DATA_PER_TXD; 3998 3999 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4000 } 4001 4002 if (likely(!data_len)) 4003 break; 4004 4005 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 4006 4007 i++; 4008 tx_desc++; 4009 if (i == tx_ring->count) { 4010 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4011 i = 0; 4012 } 4013 tx_desc->read.olinfo_status = 0; 4014 4015 size = skb_frag_size(frag); 4016 data_len -= size; 4017 4018 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 4019 DMA_TO_DEVICE); 4020 4021 tx_buffer = &tx_ring->tx_buffer_info[i]; 4022 } 4023 4024 /* write last descriptor with RS and EOP bits */ 4025 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 4026 tx_desc->read.cmd_type_len = cmd_type; 4027 4028 /* set the timestamp */ 4029 first->time_stamp = jiffies; 4030 4031 skb_tx_timestamp(skb); 4032 4033 /* Force memory writes to complete before letting h/w know there 4034 * are new descriptors to fetch. (Only applicable for weak-ordered 4035 * memory model archs, such as IA-64). 4036 * 4037 * We also need this memory barrier (wmb) to make certain all of the 4038 * status bits have been updated before next_to_watch is written. 4039 */ 4040 wmb(); 4041 4042 /* set next_to_watch value indicating a packet is present */ 4043 first->next_to_watch = tx_desc; 4044 4045 i++; 4046 if (i == tx_ring->count) 4047 i = 0; 4048 4049 tx_ring->next_to_use = i; 4050 4051 /* notify HW of packet */ 4052 ixgbevf_write_tail(tx_ring, i); 4053 4054 return; 4055 dma_error: 4056 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4057 tx_buffer = &tx_ring->tx_buffer_info[i]; 4058 4059 /* clear dma mappings for failed tx_buffer_info map */ 4060 while (tx_buffer != first) { 4061 if (dma_unmap_len(tx_buffer, len)) 4062 dma_unmap_page(tx_ring->dev, 4063 dma_unmap_addr(tx_buffer, dma), 4064 dma_unmap_len(tx_buffer, len), 4065 DMA_TO_DEVICE); 4066 dma_unmap_len_set(tx_buffer, len, 0); 4067 4068 if (i-- == 0) 4069 i += tx_ring->count; 4070 tx_buffer = &tx_ring->tx_buffer_info[i]; 4071 } 4072 4073 if (dma_unmap_len(tx_buffer, len)) 4074 dma_unmap_single(tx_ring->dev, 4075 dma_unmap_addr(tx_buffer, dma), 4076 dma_unmap_len(tx_buffer, len), 4077 DMA_TO_DEVICE); 4078 dma_unmap_len_set(tx_buffer, len, 0); 4079 4080 dev_kfree_skb_any(tx_buffer->skb); 4081 tx_buffer->skb = NULL; 4082 4083 tx_ring->next_to_use = i; 4084 } 4085 4086 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4087 { 4088 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4089 /* Herbert's original patch had: 4090 * smp_mb__after_netif_stop_queue(); 4091 * but since that doesn't exist yet, just open code it. 4092 */ 4093 smp_mb(); 4094 4095 /* We need to check again in a case another CPU has just 4096 * made room available. 4097 */ 4098 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4099 return -EBUSY; 4100 4101 /* A reprieve! - use start_queue because it doesn't call schedule */ 4102 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4103 ++tx_ring->tx_stats.restart_queue; 4104 4105 return 0; 4106 } 4107 4108 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4109 { 4110 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4111 return 0; 4112 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4113 } 4114 4115 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4116 struct ixgbevf_ring *tx_ring) 4117 { 4118 struct ixgbevf_tx_buffer *first; 4119 int tso; 4120 u32 tx_flags = 0; 4121 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4122 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; 4123 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4124 unsigned short f; 4125 #endif 4126 u8 hdr_len = 0; 4127 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4128 4129 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4130 dev_kfree_skb_any(skb); 4131 return NETDEV_TX_OK; 4132 } 4133 4134 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4135 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4136 * + 2 desc gap to keep tail from touching head, 4137 * + 1 desc for context descriptor, 4138 * otherwise try next time 4139 */ 4140 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4141 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 4142 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 4143 4144 count += TXD_USE_COUNT(skb_frag_size(frag)); 4145 } 4146 #else 4147 count += skb_shinfo(skb)->nr_frags; 4148 #endif 4149 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4150 tx_ring->tx_stats.tx_busy++; 4151 return NETDEV_TX_BUSY; 4152 } 4153 4154 /* record the location of the first descriptor for this packet */ 4155 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4156 first->skb = skb; 4157 first->bytecount = skb->len; 4158 first->gso_segs = 1; 4159 4160 if (skb_vlan_tag_present(skb)) { 4161 tx_flags |= skb_vlan_tag_get(skb); 4162 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4163 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4164 } 4165 4166 /* record initial flags and protocol */ 4167 first->tx_flags = tx_flags; 4168 first->protocol = vlan_get_protocol(skb); 4169 4170 #ifdef CONFIG_IXGBEVF_IPSEC 4171 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) 4172 goto out_drop; 4173 #endif 4174 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); 4175 if (tso < 0) 4176 goto out_drop; 4177 else if (!tso) 4178 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); 4179 4180 ixgbevf_tx_map(tx_ring, first, hdr_len); 4181 4182 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4183 4184 return NETDEV_TX_OK; 4185 4186 out_drop: 4187 dev_kfree_skb_any(first->skb); 4188 first->skb = NULL; 4189 4190 return NETDEV_TX_OK; 4191 } 4192 4193 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4194 { 4195 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4196 struct ixgbevf_ring *tx_ring; 4197 4198 if (skb->len <= 0) { 4199 dev_kfree_skb_any(skb); 4200 return NETDEV_TX_OK; 4201 } 4202 4203 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4204 * in order to meet this minimum size requirement. 4205 */ 4206 if (skb->len < 17) { 4207 if (skb_padto(skb, 17)) 4208 return NETDEV_TX_OK; 4209 skb->len = 17; 4210 } 4211 4212 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4213 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4214 } 4215 4216 /** 4217 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4218 * @netdev: network interface device structure 4219 * @p: pointer to an address structure 4220 * 4221 * Returns 0 on success, negative on failure 4222 **/ 4223 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4224 { 4225 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4226 struct ixgbe_hw *hw = &adapter->hw; 4227 struct sockaddr *addr = p; 4228 int err; 4229 4230 if (!is_valid_ether_addr(addr->sa_data)) 4231 return -EADDRNOTAVAIL; 4232 4233 spin_lock_bh(&adapter->mbx_lock); 4234 4235 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4236 4237 spin_unlock_bh(&adapter->mbx_lock); 4238 4239 if (err) 4240 return -EPERM; 4241 4242 ether_addr_copy(hw->mac.addr, addr->sa_data); 4243 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4244 ether_addr_copy(netdev->dev_addr, addr->sa_data); 4245 4246 return 0; 4247 } 4248 4249 /** 4250 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4251 * @netdev: network interface device structure 4252 * @new_mtu: new value for maximum frame size 4253 * 4254 * Returns 0 on success, negative on failure 4255 **/ 4256 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4257 { 4258 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4259 struct ixgbe_hw *hw = &adapter->hw; 4260 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4261 int ret; 4262 4263 /* prevent MTU being changed to a size unsupported by XDP */ 4264 if (adapter->xdp_prog) { 4265 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4266 return -EPERM; 4267 } 4268 4269 spin_lock_bh(&adapter->mbx_lock); 4270 /* notify the PF of our intent to use this size of frame */ 4271 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4272 spin_unlock_bh(&adapter->mbx_lock); 4273 if (ret) 4274 return -EINVAL; 4275 4276 hw_dbg(hw, "changing MTU from %d to %d\n", 4277 netdev->mtu, new_mtu); 4278 4279 /* must set new MTU before calling down or up */ 4280 netdev->mtu = new_mtu; 4281 4282 if (netif_running(netdev)) 4283 ixgbevf_reinit_locked(adapter); 4284 4285 return 0; 4286 } 4287 4288 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state) 4289 { 4290 struct net_device *netdev = pci_get_drvdata(pdev); 4291 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4292 #ifdef CONFIG_PM 4293 int retval = 0; 4294 #endif 4295 4296 rtnl_lock(); 4297 netif_device_detach(netdev); 4298 4299 if (netif_running(netdev)) 4300 ixgbevf_close_suspend(adapter); 4301 4302 ixgbevf_clear_interrupt_scheme(adapter); 4303 rtnl_unlock(); 4304 4305 #ifdef CONFIG_PM 4306 retval = pci_save_state(pdev); 4307 if (retval) 4308 return retval; 4309 4310 #endif 4311 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4312 pci_disable_device(pdev); 4313 4314 return 0; 4315 } 4316 4317 #ifdef CONFIG_PM 4318 static int ixgbevf_resume(struct pci_dev *pdev) 4319 { 4320 struct net_device *netdev = pci_get_drvdata(pdev); 4321 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4322 u32 err; 4323 4324 pci_restore_state(pdev); 4325 /* pci_restore_state clears dev->state_saved so call 4326 * pci_save_state to restore it. 4327 */ 4328 pci_save_state(pdev); 4329 4330 err = pci_enable_device_mem(pdev); 4331 if (err) { 4332 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 4333 return err; 4334 } 4335 4336 adapter->hw.hw_addr = adapter->io_addr; 4337 smp_mb__before_atomic(); 4338 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4339 pci_set_master(pdev); 4340 4341 ixgbevf_reset(adapter); 4342 4343 rtnl_lock(); 4344 err = ixgbevf_init_interrupt_scheme(adapter); 4345 if (!err && netif_running(netdev)) 4346 err = ixgbevf_open(netdev); 4347 rtnl_unlock(); 4348 if (err) 4349 return err; 4350 4351 netif_device_attach(netdev); 4352 4353 return err; 4354 } 4355 4356 #endif /* CONFIG_PM */ 4357 static void ixgbevf_shutdown(struct pci_dev *pdev) 4358 { 4359 ixgbevf_suspend(pdev, PMSG_SUSPEND); 4360 } 4361 4362 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4363 const struct ixgbevf_ring *ring) 4364 { 4365 u64 bytes, packets; 4366 unsigned int start; 4367 4368 if (ring) { 4369 do { 4370 start = u64_stats_fetch_begin_irq(&ring->syncp); 4371 bytes = ring->stats.bytes; 4372 packets = ring->stats.packets; 4373 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4374 stats->tx_bytes += bytes; 4375 stats->tx_packets += packets; 4376 } 4377 } 4378 4379 static void ixgbevf_get_stats(struct net_device *netdev, 4380 struct rtnl_link_stats64 *stats) 4381 { 4382 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4383 unsigned int start; 4384 u64 bytes, packets; 4385 const struct ixgbevf_ring *ring; 4386 int i; 4387 4388 ixgbevf_update_stats(adapter); 4389 4390 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4391 4392 rcu_read_lock(); 4393 for (i = 0; i < adapter->num_rx_queues; i++) { 4394 ring = adapter->rx_ring[i]; 4395 do { 4396 start = u64_stats_fetch_begin_irq(&ring->syncp); 4397 bytes = ring->stats.bytes; 4398 packets = ring->stats.packets; 4399 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4400 stats->rx_bytes += bytes; 4401 stats->rx_packets += packets; 4402 } 4403 4404 for (i = 0; i < adapter->num_tx_queues; i++) { 4405 ring = adapter->tx_ring[i]; 4406 ixgbevf_get_tx_ring_stats(stats, ring); 4407 } 4408 4409 for (i = 0; i < adapter->num_xdp_queues; i++) { 4410 ring = adapter->xdp_ring[i]; 4411 ixgbevf_get_tx_ring_stats(stats, ring); 4412 } 4413 rcu_read_unlock(); 4414 } 4415 4416 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4417 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4418 4419 static netdev_features_t 4420 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4421 netdev_features_t features) 4422 { 4423 unsigned int network_hdr_len, mac_hdr_len; 4424 4425 /* Make certain the headers can be described by a context descriptor */ 4426 mac_hdr_len = skb_network_header(skb) - skb->data; 4427 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4428 return features & ~(NETIF_F_HW_CSUM | 4429 NETIF_F_SCTP_CRC | 4430 NETIF_F_HW_VLAN_CTAG_TX | 4431 NETIF_F_TSO | 4432 NETIF_F_TSO6); 4433 4434 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4435 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4436 return features & ~(NETIF_F_HW_CSUM | 4437 NETIF_F_SCTP_CRC | 4438 NETIF_F_TSO | 4439 NETIF_F_TSO6); 4440 4441 /* We can only support IPV4 TSO in tunnels if we can mangle the 4442 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4443 */ 4444 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4445 features &= ~NETIF_F_TSO; 4446 4447 return features; 4448 } 4449 4450 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4451 { 4452 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4453 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4454 struct bpf_prog *old_prog; 4455 4456 /* verify ixgbevf ring attributes are sufficient for XDP */ 4457 for (i = 0; i < adapter->num_rx_queues; i++) { 4458 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4459 4460 if (frame_size > ixgbevf_rx_bufsz(ring)) 4461 return -EINVAL; 4462 } 4463 4464 old_prog = xchg(&adapter->xdp_prog, prog); 4465 4466 /* If transitioning XDP modes reconfigure rings */ 4467 if (!!prog != !!old_prog) { 4468 /* Hardware has to reinitialize queues and interrupts to 4469 * match packet buffer alignment. Unfortunately, the 4470 * hardware is not flexible enough to do this dynamically. 4471 */ 4472 if (netif_running(dev)) 4473 ixgbevf_close(dev); 4474 4475 ixgbevf_clear_interrupt_scheme(adapter); 4476 ixgbevf_init_interrupt_scheme(adapter); 4477 4478 if (netif_running(dev)) 4479 ixgbevf_open(dev); 4480 } else { 4481 for (i = 0; i < adapter->num_rx_queues; i++) 4482 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4483 } 4484 4485 if (old_prog) 4486 bpf_prog_put(old_prog); 4487 4488 return 0; 4489 } 4490 4491 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4492 { 4493 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4494 4495 switch (xdp->command) { 4496 case XDP_SETUP_PROG: 4497 return ixgbevf_xdp_setup(dev, xdp->prog); 4498 case XDP_QUERY_PROG: 4499 xdp->prog_id = adapter->xdp_prog ? 4500 adapter->xdp_prog->aux->id : 0; 4501 return 0; 4502 default: 4503 return -EINVAL; 4504 } 4505 } 4506 4507 static const struct net_device_ops ixgbevf_netdev_ops = { 4508 .ndo_open = ixgbevf_open, 4509 .ndo_stop = ixgbevf_close, 4510 .ndo_start_xmit = ixgbevf_xmit_frame, 4511 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4512 .ndo_get_stats64 = ixgbevf_get_stats, 4513 .ndo_validate_addr = eth_validate_addr, 4514 .ndo_set_mac_address = ixgbevf_set_mac, 4515 .ndo_change_mtu = ixgbevf_change_mtu, 4516 .ndo_tx_timeout = ixgbevf_tx_timeout, 4517 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4518 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4519 .ndo_features_check = ixgbevf_features_check, 4520 .ndo_bpf = ixgbevf_xdp, 4521 }; 4522 4523 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4524 { 4525 dev->netdev_ops = &ixgbevf_netdev_ops; 4526 ixgbevf_set_ethtool_ops(dev); 4527 dev->watchdog_timeo = 5 * HZ; 4528 } 4529 4530 /** 4531 * ixgbevf_probe - Device Initialization Routine 4532 * @pdev: PCI device information struct 4533 * @ent: entry in ixgbevf_pci_tbl 4534 * 4535 * Returns 0 on success, negative on failure 4536 * 4537 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4538 * The OS initialization, configuring of the adapter private structure, 4539 * and a hardware reset occur. 4540 **/ 4541 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4542 { 4543 struct net_device *netdev; 4544 struct ixgbevf_adapter *adapter = NULL; 4545 struct ixgbe_hw *hw = NULL; 4546 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4547 int err, pci_using_dac; 4548 bool disable_dev = false; 4549 4550 err = pci_enable_device(pdev); 4551 if (err) 4552 return err; 4553 4554 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 4555 pci_using_dac = 1; 4556 } else { 4557 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4558 if (err) { 4559 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4560 goto err_dma; 4561 } 4562 pci_using_dac = 0; 4563 } 4564 4565 err = pci_request_regions(pdev, ixgbevf_driver_name); 4566 if (err) { 4567 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4568 goto err_pci_reg; 4569 } 4570 4571 pci_set_master(pdev); 4572 4573 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4574 MAX_TX_QUEUES); 4575 if (!netdev) { 4576 err = -ENOMEM; 4577 goto err_alloc_etherdev; 4578 } 4579 4580 SET_NETDEV_DEV(netdev, &pdev->dev); 4581 4582 adapter = netdev_priv(netdev); 4583 4584 adapter->netdev = netdev; 4585 adapter->pdev = pdev; 4586 hw = &adapter->hw; 4587 hw->back = adapter; 4588 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4589 4590 /* call save state here in standalone driver because it relies on 4591 * adapter struct to exist, and needs to call netdev_priv 4592 */ 4593 pci_save_state(pdev); 4594 4595 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4596 pci_resource_len(pdev, 0)); 4597 adapter->io_addr = hw->hw_addr; 4598 if (!hw->hw_addr) { 4599 err = -EIO; 4600 goto err_ioremap; 4601 } 4602 4603 ixgbevf_assign_netdev_ops(netdev); 4604 4605 /* Setup HW API */ 4606 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4607 hw->mac.type = ii->mac; 4608 4609 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4610 sizeof(struct ixgbe_mbx_operations)); 4611 4612 /* setup the private structure */ 4613 err = ixgbevf_sw_init(adapter); 4614 if (err) 4615 goto err_sw_init; 4616 4617 /* The HW MAC address was set and/or determined in sw_init */ 4618 if (!is_valid_ether_addr(netdev->dev_addr)) { 4619 pr_err("invalid MAC address\n"); 4620 err = -EIO; 4621 goto err_sw_init; 4622 } 4623 4624 netdev->hw_features = NETIF_F_SG | 4625 NETIF_F_TSO | 4626 NETIF_F_TSO6 | 4627 NETIF_F_RXCSUM | 4628 NETIF_F_HW_CSUM | 4629 NETIF_F_SCTP_CRC; 4630 4631 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4632 NETIF_F_GSO_GRE_CSUM | \ 4633 NETIF_F_GSO_IPXIP4 | \ 4634 NETIF_F_GSO_IPXIP6 | \ 4635 NETIF_F_GSO_UDP_TUNNEL | \ 4636 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4637 4638 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4639 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4640 IXGBEVF_GSO_PARTIAL_FEATURES; 4641 4642 netdev->features = netdev->hw_features; 4643 4644 if (pci_using_dac) 4645 netdev->features |= NETIF_F_HIGHDMA; 4646 4647 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4648 netdev->mpls_features |= NETIF_F_SG | 4649 NETIF_F_TSO | 4650 NETIF_F_TSO6 | 4651 NETIF_F_HW_CSUM; 4652 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4653 netdev->hw_enc_features |= netdev->vlan_features; 4654 4655 /* set this bit last since it cannot be part of vlan_features */ 4656 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4657 NETIF_F_HW_VLAN_CTAG_RX | 4658 NETIF_F_HW_VLAN_CTAG_TX; 4659 4660 netdev->priv_flags |= IFF_UNICAST_FLT; 4661 4662 /* MTU range: 68 - 1504 or 9710 */ 4663 netdev->min_mtu = ETH_MIN_MTU; 4664 switch (adapter->hw.api_version) { 4665 case ixgbe_mbox_api_11: 4666 case ixgbe_mbox_api_12: 4667 case ixgbe_mbox_api_13: 4668 case ixgbe_mbox_api_14: 4669 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4670 (ETH_HLEN + ETH_FCS_LEN); 4671 break; 4672 default: 4673 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4674 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4675 (ETH_HLEN + ETH_FCS_LEN); 4676 else 4677 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4678 break; 4679 } 4680 4681 if (IXGBE_REMOVED(hw->hw_addr)) { 4682 err = -EIO; 4683 goto err_sw_init; 4684 } 4685 4686 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4687 4688 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4689 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4690 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4691 4692 err = ixgbevf_init_interrupt_scheme(adapter); 4693 if (err) 4694 goto err_sw_init; 4695 4696 strcpy(netdev->name, "eth%d"); 4697 4698 err = register_netdev(netdev); 4699 if (err) 4700 goto err_register; 4701 4702 pci_set_drvdata(pdev, netdev); 4703 netif_carrier_off(netdev); 4704 ixgbevf_init_ipsec_offload(adapter); 4705 4706 ixgbevf_init_last_counter_stats(adapter); 4707 4708 /* print the VF info */ 4709 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4710 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4711 4712 switch (hw->mac.type) { 4713 case ixgbe_mac_X550_vf: 4714 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4715 break; 4716 case ixgbe_mac_X540_vf: 4717 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4718 break; 4719 case ixgbe_mac_82599_vf: 4720 default: 4721 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4722 break; 4723 } 4724 4725 return 0; 4726 4727 err_register: 4728 ixgbevf_clear_interrupt_scheme(adapter); 4729 err_sw_init: 4730 ixgbevf_reset_interrupt_capability(adapter); 4731 iounmap(adapter->io_addr); 4732 kfree(adapter->rss_key); 4733 err_ioremap: 4734 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4735 free_netdev(netdev); 4736 err_alloc_etherdev: 4737 pci_release_regions(pdev); 4738 err_pci_reg: 4739 err_dma: 4740 if (!adapter || disable_dev) 4741 pci_disable_device(pdev); 4742 return err; 4743 } 4744 4745 /** 4746 * ixgbevf_remove - Device Removal Routine 4747 * @pdev: PCI device information struct 4748 * 4749 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4750 * that it should release a PCI device. The could be caused by a 4751 * Hot-Plug event, or because the driver is going to be removed from 4752 * memory. 4753 **/ 4754 static void ixgbevf_remove(struct pci_dev *pdev) 4755 { 4756 struct net_device *netdev = pci_get_drvdata(pdev); 4757 struct ixgbevf_adapter *adapter; 4758 bool disable_dev; 4759 4760 if (!netdev) 4761 return; 4762 4763 adapter = netdev_priv(netdev); 4764 4765 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4766 cancel_work_sync(&adapter->service_task); 4767 4768 if (netdev->reg_state == NETREG_REGISTERED) 4769 unregister_netdev(netdev); 4770 4771 ixgbevf_stop_ipsec_offload(adapter); 4772 ixgbevf_clear_interrupt_scheme(adapter); 4773 ixgbevf_reset_interrupt_capability(adapter); 4774 4775 iounmap(adapter->io_addr); 4776 pci_release_regions(pdev); 4777 4778 hw_dbg(&adapter->hw, "Remove complete\n"); 4779 4780 kfree(adapter->rss_key); 4781 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4782 free_netdev(netdev); 4783 4784 if (disable_dev) 4785 pci_disable_device(pdev); 4786 } 4787 4788 /** 4789 * ixgbevf_io_error_detected - called when PCI error is detected 4790 * @pdev: Pointer to PCI device 4791 * @state: The current pci connection state 4792 * 4793 * This function is called after a PCI bus error affecting 4794 * this device has been detected. 4795 **/ 4796 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4797 pci_channel_state_t state) 4798 { 4799 struct net_device *netdev = pci_get_drvdata(pdev); 4800 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4801 4802 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4803 return PCI_ERS_RESULT_DISCONNECT; 4804 4805 rtnl_lock(); 4806 netif_device_detach(netdev); 4807 4808 if (netif_running(netdev)) 4809 ixgbevf_close_suspend(adapter); 4810 4811 if (state == pci_channel_io_perm_failure) { 4812 rtnl_unlock(); 4813 return PCI_ERS_RESULT_DISCONNECT; 4814 } 4815 4816 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4817 pci_disable_device(pdev); 4818 rtnl_unlock(); 4819 4820 /* Request a slot slot reset. */ 4821 return PCI_ERS_RESULT_NEED_RESET; 4822 } 4823 4824 /** 4825 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4826 * @pdev: Pointer to PCI device 4827 * 4828 * Restart the card from scratch, as if from a cold-boot. Implementation 4829 * resembles the first-half of the ixgbevf_resume routine. 4830 **/ 4831 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4832 { 4833 struct net_device *netdev = pci_get_drvdata(pdev); 4834 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4835 4836 if (pci_enable_device_mem(pdev)) { 4837 dev_err(&pdev->dev, 4838 "Cannot re-enable PCI device after reset.\n"); 4839 return PCI_ERS_RESULT_DISCONNECT; 4840 } 4841 4842 adapter->hw.hw_addr = adapter->io_addr; 4843 smp_mb__before_atomic(); 4844 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4845 pci_set_master(pdev); 4846 4847 ixgbevf_reset(adapter); 4848 4849 return PCI_ERS_RESULT_RECOVERED; 4850 } 4851 4852 /** 4853 * ixgbevf_io_resume - called when traffic can start flowing again. 4854 * @pdev: Pointer to PCI device 4855 * 4856 * This callback is called when the error recovery driver tells us that 4857 * its OK to resume normal operation. Implementation resembles the 4858 * second-half of the ixgbevf_resume routine. 4859 **/ 4860 static void ixgbevf_io_resume(struct pci_dev *pdev) 4861 { 4862 struct net_device *netdev = pci_get_drvdata(pdev); 4863 4864 rtnl_lock(); 4865 if (netif_running(netdev)) 4866 ixgbevf_open(netdev); 4867 4868 netif_device_attach(netdev); 4869 rtnl_unlock(); 4870 } 4871 4872 /* PCI Error Recovery (ERS) */ 4873 static const struct pci_error_handlers ixgbevf_err_handler = { 4874 .error_detected = ixgbevf_io_error_detected, 4875 .slot_reset = ixgbevf_io_slot_reset, 4876 .resume = ixgbevf_io_resume, 4877 }; 4878 4879 static struct pci_driver ixgbevf_driver = { 4880 .name = ixgbevf_driver_name, 4881 .id_table = ixgbevf_pci_tbl, 4882 .probe = ixgbevf_probe, 4883 .remove = ixgbevf_remove, 4884 #ifdef CONFIG_PM 4885 /* Power Management Hooks */ 4886 .suspend = ixgbevf_suspend, 4887 .resume = ixgbevf_resume, 4888 #endif 4889 .shutdown = ixgbevf_shutdown, 4890 .err_handler = &ixgbevf_err_handler 4891 }; 4892 4893 /** 4894 * ixgbevf_init_module - Driver Registration Routine 4895 * 4896 * ixgbevf_init_module is the first routine called when the driver is 4897 * loaded. All it does is register with the PCI subsystem. 4898 **/ 4899 static int __init ixgbevf_init_module(void) 4900 { 4901 pr_info("%s - version %s\n", ixgbevf_driver_string, 4902 ixgbevf_driver_version); 4903 4904 pr_info("%s\n", ixgbevf_copyright); 4905 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4906 if (!ixgbevf_wq) { 4907 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4908 return -ENOMEM; 4909 } 4910 4911 return pci_register_driver(&ixgbevf_driver); 4912 } 4913 4914 module_init(ixgbevf_init_module); 4915 4916 /** 4917 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4918 * 4919 * ixgbevf_exit_module is called just before the driver is removed 4920 * from memory. 4921 **/ 4922 static void __exit ixgbevf_exit_module(void) 4923 { 4924 pci_unregister_driver(&ixgbevf_driver); 4925 if (ixgbevf_wq) { 4926 destroy_workqueue(ixgbevf_wq); 4927 ixgbevf_wq = NULL; 4928 } 4929 } 4930 4931 #ifdef DEBUG 4932 /** 4933 * ixgbevf_get_hw_dev_name - return device name string 4934 * used by hardware layer to print debugging information 4935 * @hw: pointer to private hardware struct 4936 **/ 4937 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4938 { 4939 struct ixgbevf_adapter *adapter = hw->back; 4940 4941 return adapter->netdev->name; 4942 } 4943 4944 #endif 4945 module_exit(ixgbevf_exit_module); 4946 4947 /* ixgbevf_main.c */ 4948