1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /******************************************************************************
5  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
6 ******************************************************************************/
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/types.h>
11 #include <linux/bitops.h>
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/netdevice.h>
15 #include <linux/vmalloc.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/tcp.h>
20 #include <linux/sctp.h>
21 #include <linux/ipv6.h>
22 #include <linux/slab.h>
23 #include <net/checksum.h>
24 #include <net/ip6_checksum.h>
25 #include <linux/ethtool.h>
26 #include <linux/if.h>
27 #include <linux/if_vlan.h>
28 #include <linux/prefetch.h>
29 #include <net/mpls.h>
30 #include <linux/bpf.h>
31 #include <linux/bpf_trace.h>
32 #include <linux/atomic.h>
33 #include <net/xfrm.h>
34 
35 #include "ixgbevf.h"
36 
37 const char ixgbevf_driver_name[] = "ixgbevf";
38 static const char ixgbevf_driver_string[] =
39 	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
40 
41 static char ixgbevf_copyright[] =
42 	"Copyright (c) 2009 - 2018 Intel Corporation.";
43 
44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
45 	[board_82599_vf]	= &ixgbevf_82599_vf_info,
46 	[board_82599_vf_hv]	= &ixgbevf_82599_vf_hv_info,
47 	[board_X540_vf]		= &ixgbevf_X540_vf_info,
48 	[board_X540_vf_hv]	= &ixgbevf_X540_vf_hv_info,
49 	[board_X550_vf]		= &ixgbevf_X550_vf_info,
50 	[board_X550_vf_hv]	= &ixgbevf_X550_vf_hv_info,
51 	[board_X550EM_x_vf]	= &ixgbevf_X550EM_x_vf_info,
52 	[board_X550EM_x_vf_hv]	= &ixgbevf_X550EM_x_vf_hv_info,
53 	[board_x550em_a_vf]	= &ixgbevf_x550em_a_vf_info,
54 };
55 
56 /* ixgbevf_pci_tbl - PCI Device ID Table
57  *
58  * Wildcard entries (PCI_ANY_ID) should come last
59  * Last entry must be all 0s
60  *
61  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
62  *   Class, Class Mask, private data (not used) }
63  */
64 static const struct pci_device_id ixgbevf_pci_tbl[] = {
65 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
66 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
67 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
68 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
69 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
70 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
71 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
72 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
73 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
74 	/* required last entry */
75 	{0, }
76 };
77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
78 
79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
80 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
81 MODULE_LICENSE("GPL v2");
82 
83 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
84 static int debug = -1;
85 module_param(debug, int, 0);
86 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
87 
88 static struct workqueue_struct *ixgbevf_wq;
89 
90 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
91 {
92 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
93 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
94 	    !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
95 		queue_work(ixgbevf_wq, &adapter->service_task);
96 }
97 
98 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
99 {
100 	BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
101 
102 	/* flush memory to make sure state is correct before next watchdog */
103 	smp_mb__before_atomic();
104 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
105 }
106 
107 /* forward decls */
108 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
109 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
110 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
111 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer);
112 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
113 				  struct ixgbevf_rx_buffer *old_buff);
114 
115 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
116 {
117 	struct ixgbevf_adapter *adapter = hw->back;
118 
119 	if (!hw->hw_addr)
120 		return;
121 	hw->hw_addr = NULL;
122 	dev_err(&adapter->pdev->dev, "Adapter removed\n");
123 	if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
124 		ixgbevf_service_event_schedule(adapter);
125 }
126 
127 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
128 {
129 	u32 value;
130 
131 	/* The following check not only optimizes a bit by not
132 	 * performing a read on the status register when the
133 	 * register just read was a status register read that
134 	 * returned IXGBE_FAILED_READ_REG. It also blocks any
135 	 * potential recursion.
136 	 */
137 	if (reg == IXGBE_VFSTATUS) {
138 		ixgbevf_remove_adapter(hw);
139 		return;
140 	}
141 	value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
142 	if (value == IXGBE_FAILED_READ_REG)
143 		ixgbevf_remove_adapter(hw);
144 }
145 
146 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
147 {
148 	u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr);
149 	u32 value;
150 
151 	if (IXGBE_REMOVED(reg_addr))
152 		return IXGBE_FAILED_READ_REG;
153 	value = readl(reg_addr + reg);
154 	if (unlikely(value == IXGBE_FAILED_READ_REG))
155 		ixgbevf_check_remove(hw, reg);
156 	return value;
157 }
158 
159 /**
160  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
161  * @adapter: pointer to adapter struct
162  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
163  * @queue: queue to map the corresponding interrupt to
164  * @msix_vector: the vector to map to the corresponding queue
165  **/
166 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
167 			     u8 queue, u8 msix_vector)
168 {
169 	u32 ivar, index;
170 	struct ixgbe_hw *hw = &adapter->hw;
171 
172 	if (direction == -1) {
173 		/* other causes */
174 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
175 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
176 		ivar &= ~0xFF;
177 		ivar |= msix_vector;
178 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
179 	} else {
180 		/* Tx or Rx causes */
181 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
182 		index = ((16 * (queue & 1)) + (8 * direction));
183 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
184 		ivar &= ~(0xFF << index);
185 		ivar |= (msix_vector << index);
186 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
187 	}
188 }
189 
190 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
191 {
192 	return ring->stats.packets;
193 }
194 
195 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
196 {
197 	struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
198 	struct ixgbe_hw *hw = &adapter->hw;
199 
200 	u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
201 	u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
202 
203 	if (head != tail)
204 		return (head < tail) ?
205 			tail - head : (tail + ring->count - head);
206 
207 	return 0;
208 }
209 
210 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
211 {
212 	u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
213 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
214 	u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
215 
216 	clear_check_for_tx_hang(tx_ring);
217 
218 	/* Check for a hung queue, but be thorough. This verifies
219 	 * that a transmit has been completed since the previous
220 	 * check AND there is at least one packet pending. The
221 	 * ARMED bit is set to indicate a potential hang.
222 	 */
223 	if ((tx_done_old == tx_done) && tx_pending) {
224 		/* make sure it is true for two checks in a row */
225 		return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
226 					&tx_ring->state);
227 	}
228 	/* reset the countdown */
229 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
230 
231 	/* update completed stats and continue */
232 	tx_ring->tx_stats.tx_done_old = tx_done;
233 
234 	return false;
235 }
236 
237 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
238 {
239 	/* Do the reset outside of interrupt context */
240 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
241 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
242 		ixgbevf_service_event_schedule(adapter);
243 	}
244 }
245 
246 /**
247  * ixgbevf_tx_timeout - Respond to a Tx Hang
248  * @netdev: network interface device structure
249  * @txqueue: transmit queue hanging (unused)
250  **/
251 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
252 {
253 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
254 
255 	ixgbevf_tx_timeout_reset(adapter);
256 }
257 
258 /**
259  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
260  * @q_vector: board private structure
261  * @tx_ring: tx ring to clean
262  * @napi_budget: Used to determine if we are in netpoll
263  **/
264 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
265 				 struct ixgbevf_ring *tx_ring, int napi_budget)
266 {
267 	struct ixgbevf_adapter *adapter = q_vector->adapter;
268 	struct ixgbevf_tx_buffer *tx_buffer;
269 	union ixgbe_adv_tx_desc *tx_desc;
270 	unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0;
271 	unsigned int budget = tx_ring->count / 2;
272 	unsigned int i = tx_ring->next_to_clean;
273 
274 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
275 		return true;
276 
277 	tx_buffer = &tx_ring->tx_buffer_info[i];
278 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
279 	i -= tx_ring->count;
280 
281 	do {
282 		union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
283 
284 		/* if next_to_watch is not set then there is no work pending */
285 		if (!eop_desc)
286 			break;
287 
288 		/* prevent any other reads prior to eop_desc */
289 		smp_rmb();
290 
291 		/* if DD is not set pending work has not been completed */
292 		if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
293 			break;
294 
295 		/* clear next_to_watch to prevent false hangs */
296 		tx_buffer->next_to_watch = NULL;
297 
298 		/* update the statistics for this packet */
299 		total_bytes += tx_buffer->bytecount;
300 		total_packets += tx_buffer->gso_segs;
301 		if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC)
302 			total_ipsec++;
303 
304 		/* free the skb */
305 		if (ring_is_xdp(tx_ring))
306 			page_frag_free(tx_buffer->data);
307 		else
308 			napi_consume_skb(tx_buffer->skb, napi_budget);
309 
310 		/* unmap skb header data */
311 		dma_unmap_single(tx_ring->dev,
312 				 dma_unmap_addr(tx_buffer, dma),
313 				 dma_unmap_len(tx_buffer, len),
314 				 DMA_TO_DEVICE);
315 
316 		/* clear tx_buffer data */
317 		dma_unmap_len_set(tx_buffer, len, 0);
318 
319 		/* unmap remaining buffers */
320 		while (tx_desc != eop_desc) {
321 			tx_buffer++;
322 			tx_desc++;
323 			i++;
324 			if (unlikely(!i)) {
325 				i -= tx_ring->count;
326 				tx_buffer = tx_ring->tx_buffer_info;
327 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
328 			}
329 
330 			/* unmap any remaining paged data */
331 			if (dma_unmap_len(tx_buffer, len)) {
332 				dma_unmap_page(tx_ring->dev,
333 					       dma_unmap_addr(tx_buffer, dma),
334 					       dma_unmap_len(tx_buffer, len),
335 					       DMA_TO_DEVICE);
336 				dma_unmap_len_set(tx_buffer, len, 0);
337 			}
338 		}
339 
340 		/* move us one more past the eop_desc for start of next pkt */
341 		tx_buffer++;
342 		tx_desc++;
343 		i++;
344 		if (unlikely(!i)) {
345 			i -= tx_ring->count;
346 			tx_buffer = tx_ring->tx_buffer_info;
347 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
348 		}
349 
350 		/* issue prefetch for next Tx descriptor */
351 		prefetch(tx_desc);
352 
353 		/* update budget accounting */
354 		budget--;
355 	} while (likely(budget));
356 
357 	i += tx_ring->count;
358 	tx_ring->next_to_clean = i;
359 	u64_stats_update_begin(&tx_ring->syncp);
360 	tx_ring->stats.bytes += total_bytes;
361 	tx_ring->stats.packets += total_packets;
362 	u64_stats_update_end(&tx_ring->syncp);
363 	q_vector->tx.total_bytes += total_bytes;
364 	q_vector->tx.total_packets += total_packets;
365 	adapter->tx_ipsec += total_ipsec;
366 
367 	if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
368 		struct ixgbe_hw *hw = &adapter->hw;
369 		union ixgbe_adv_tx_desc *eop_desc;
370 
371 		eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
372 
373 		pr_err("Detected Tx Unit Hang%s\n"
374 		       "  Tx Queue             <%d>\n"
375 		       "  TDH, TDT             <%x>, <%x>\n"
376 		       "  next_to_use          <%x>\n"
377 		       "  next_to_clean        <%x>\n"
378 		       "tx_buffer_info[next_to_clean]\n"
379 		       "  next_to_watch        <%p>\n"
380 		       "  eop_desc->wb.status  <%x>\n"
381 		       "  time_stamp           <%lx>\n"
382 		       "  jiffies              <%lx>\n",
383 		       ring_is_xdp(tx_ring) ? " XDP" : "",
384 		       tx_ring->queue_index,
385 		       IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
386 		       IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
387 		       tx_ring->next_to_use, i,
388 		       eop_desc, (eop_desc ? eop_desc->wb.status : 0),
389 		       tx_ring->tx_buffer_info[i].time_stamp, jiffies);
390 
391 		if (!ring_is_xdp(tx_ring))
392 			netif_stop_subqueue(tx_ring->netdev,
393 					    tx_ring->queue_index);
394 
395 		/* schedule immediate reset if we believe we hung */
396 		ixgbevf_tx_timeout_reset(adapter);
397 
398 		return true;
399 	}
400 
401 	if (ring_is_xdp(tx_ring))
402 		return !!budget;
403 
404 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
405 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
406 		     (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
407 		/* Make sure that anybody stopping the queue after this
408 		 * sees the new next_to_clean.
409 		 */
410 		smp_mb();
411 
412 		if (__netif_subqueue_stopped(tx_ring->netdev,
413 					     tx_ring->queue_index) &&
414 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
415 			netif_wake_subqueue(tx_ring->netdev,
416 					    tx_ring->queue_index);
417 			++tx_ring->tx_stats.restart_queue;
418 		}
419 	}
420 
421 	return !!budget;
422 }
423 
424 /**
425  * ixgbevf_rx_skb - Helper function to determine proper Rx method
426  * @q_vector: structure containing interrupt and ring information
427  * @skb: packet to send up
428  **/
429 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
430 			   struct sk_buff *skb)
431 {
432 	napi_gro_receive(&q_vector->napi, skb);
433 }
434 
435 #define IXGBE_RSS_L4_TYPES_MASK \
436 	((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
437 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
438 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
439 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
440 
441 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
442 				   union ixgbe_adv_rx_desc *rx_desc,
443 				   struct sk_buff *skb)
444 {
445 	u16 rss_type;
446 
447 	if (!(ring->netdev->features & NETIF_F_RXHASH))
448 		return;
449 
450 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
451 		   IXGBE_RXDADV_RSSTYPE_MASK;
452 
453 	if (!rss_type)
454 		return;
455 
456 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
457 		     (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
458 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
459 }
460 
461 /**
462  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
463  * @ring: structure containig ring specific data
464  * @rx_desc: current Rx descriptor being processed
465  * @skb: skb currently being received and modified
466  **/
467 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
468 				       union ixgbe_adv_rx_desc *rx_desc,
469 				       struct sk_buff *skb)
470 {
471 	skb_checksum_none_assert(skb);
472 
473 	/* Rx csum disabled */
474 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
475 		return;
476 
477 	/* if IP and error */
478 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
479 	    ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
480 		ring->rx_stats.csum_err++;
481 		return;
482 	}
483 
484 	if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
485 		return;
486 
487 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
488 		ring->rx_stats.csum_err++;
489 		return;
490 	}
491 
492 	/* It must be a TCP or UDP packet with a valid checksum */
493 	skb->ip_summed = CHECKSUM_UNNECESSARY;
494 }
495 
496 /**
497  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
498  * @rx_ring: rx descriptor ring packet is being transacted on
499  * @rx_desc: pointer to the EOP Rx descriptor
500  * @skb: pointer to current skb being populated
501  *
502  * This function checks the ring, descriptor, and packet information in
503  * order to populate the checksum, VLAN, protocol, and other fields within
504  * the skb.
505  **/
506 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
507 				       union ixgbe_adv_rx_desc *rx_desc,
508 				       struct sk_buff *skb)
509 {
510 	ixgbevf_rx_hash(rx_ring, rx_desc, skb);
511 	ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
512 
513 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
514 		u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
515 		unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
516 
517 		if (test_bit(vid & VLAN_VID_MASK, active_vlans))
518 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
519 	}
520 
521 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP))
522 		ixgbevf_ipsec_rx(rx_ring, rx_desc, skb);
523 
524 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
525 }
526 
527 static
528 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring,
529 						const unsigned int size)
530 {
531 	struct ixgbevf_rx_buffer *rx_buffer;
532 
533 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
534 	prefetchw(rx_buffer->page);
535 
536 	/* we are reusing so sync this buffer for CPU use */
537 	dma_sync_single_range_for_cpu(rx_ring->dev,
538 				      rx_buffer->dma,
539 				      rx_buffer->page_offset,
540 				      size,
541 				      DMA_FROM_DEVICE);
542 
543 	rx_buffer->pagecnt_bias--;
544 
545 	return rx_buffer;
546 }
547 
548 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring,
549 				  struct ixgbevf_rx_buffer *rx_buffer,
550 				  struct sk_buff *skb)
551 {
552 	if (ixgbevf_can_reuse_rx_page(rx_buffer)) {
553 		/* hand second half of page back to the ring */
554 		ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
555 	} else {
556 		if (IS_ERR(skb))
557 			/* We are not reusing the buffer so unmap it and free
558 			 * any references we are holding to it
559 			 */
560 			dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
561 					     ixgbevf_rx_pg_size(rx_ring),
562 					     DMA_FROM_DEVICE,
563 					     IXGBEVF_RX_DMA_ATTR);
564 		__page_frag_cache_drain(rx_buffer->page,
565 					rx_buffer->pagecnt_bias);
566 	}
567 
568 	/* clear contents of rx_buffer */
569 	rx_buffer->page = NULL;
570 }
571 
572 /**
573  * ixgbevf_is_non_eop - process handling of non-EOP buffers
574  * @rx_ring: Rx ring being processed
575  * @rx_desc: Rx descriptor for current buffer
576  *
577  * This function updates next to clean.  If the buffer is an EOP buffer
578  * this function exits returning false, otherwise it will place the
579  * sk_buff in the next buffer to be chained and return true indicating
580  * that this is in fact a non-EOP buffer.
581  **/
582 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
583 			       union ixgbe_adv_rx_desc *rx_desc)
584 {
585 	u32 ntc = rx_ring->next_to_clean + 1;
586 
587 	/* fetch, update, and store next to clean */
588 	ntc = (ntc < rx_ring->count) ? ntc : 0;
589 	rx_ring->next_to_clean = ntc;
590 
591 	prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
592 
593 	if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
594 		return false;
595 
596 	return true;
597 }
598 
599 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring)
600 {
601 	return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0;
602 }
603 
604 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
605 				      struct ixgbevf_rx_buffer *bi)
606 {
607 	struct page *page = bi->page;
608 	dma_addr_t dma;
609 
610 	/* since we are recycling buffers we should seldom need to alloc */
611 	if (likely(page))
612 		return true;
613 
614 	/* alloc new page for storage */
615 	page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring));
616 	if (unlikely(!page)) {
617 		rx_ring->rx_stats.alloc_rx_page_failed++;
618 		return false;
619 	}
620 
621 	/* map page for use */
622 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
623 				 ixgbevf_rx_pg_size(rx_ring),
624 				 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR);
625 
626 	/* if mapping failed free memory back to system since
627 	 * there isn't much point in holding memory we can't use
628 	 */
629 	if (dma_mapping_error(rx_ring->dev, dma)) {
630 		__free_pages(page, ixgbevf_rx_pg_order(rx_ring));
631 
632 		rx_ring->rx_stats.alloc_rx_page_failed++;
633 		return false;
634 	}
635 
636 	bi->dma = dma;
637 	bi->page = page;
638 	bi->page_offset = ixgbevf_rx_offset(rx_ring);
639 	bi->pagecnt_bias = 1;
640 	rx_ring->rx_stats.alloc_rx_page++;
641 
642 	return true;
643 }
644 
645 /**
646  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
647  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
648  * @cleaned_count: number of buffers to replace
649  **/
650 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
651 				     u16 cleaned_count)
652 {
653 	union ixgbe_adv_rx_desc *rx_desc;
654 	struct ixgbevf_rx_buffer *bi;
655 	unsigned int i = rx_ring->next_to_use;
656 
657 	/* nothing to do or no valid netdev defined */
658 	if (!cleaned_count || !rx_ring->netdev)
659 		return;
660 
661 	rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
662 	bi = &rx_ring->rx_buffer_info[i];
663 	i -= rx_ring->count;
664 
665 	do {
666 		if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
667 			break;
668 
669 		/* sync the buffer for use by the device */
670 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
671 						 bi->page_offset,
672 						 ixgbevf_rx_bufsz(rx_ring),
673 						 DMA_FROM_DEVICE);
674 
675 		/* Refresh the desc even if pkt_addr didn't change
676 		 * because each write-back erases this info.
677 		 */
678 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
679 
680 		rx_desc++;
681 		bi++;
682 		i++;
683 		if (unlikely(!i)) {
684 			rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
685 			bi = rx_ring->rx_buffer_info;
686 			i -= rx_ring->count;
687 		}
688 
689 		/* clear the length for the next_to_use descriptor */
690 		rx_desc->wb.upper.length = 0;
691 
692 		cleaned_count--;
693 	} while (cleaned_count);
694 
695 	i += rx_ring->count;
696 
697 	if (rx_ring->next_to_use != i) {
698 		/* record the next descriptor to use */
699 		rx_ring->next_to_use = i;
700 
701 		/* update next to alloc since we have filled the ring */
702 		rx_ring->next_to_alloc = i;
703 
704 		/* Force memory writes to complete before letting h/w
705 		 * know there are new descriptors to fetch.  (Only
706 		 * applicable for weak-ordered memory model archs,
707 		 * such as IA-64).
708 		 */
709 		wmb();
710 		ixgbevf_write_tail(rx_ring, i);
711 	}
712 }
713 
714 /**
715  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
716  * @rx_ring: rx descriptor ring packet is being transacted on
717  * @rx_desc: pointer to the EOP Rx descriptor
718  * @skb: pointer to current skb being fixed
719  *
720  * Check for corrupted packet headers caused by senders on the local L2
721  * embedded NIC switch not setting up their Tx Descriptors right.  These
722  * should be very rare.
723  *
724  * Also address the case where we are pulling data in on pages only
725  * and as such no data is present in the skb header.
726  *
727  * In addition if skb is not at least 60 bytes we need to pad it so that
728  * it is large enough to qualify as a valid Ethernet frame.
729  *
730  * Returns true if an error was encountered and skb was freed.
731  **/
732 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
733 				    union ixgbe_adv_rx_desc *rx_desc,
734 				    struct sk_buff *skb)
735 {
736 	/* XDP packets use error pointer so abort at this point */
737 	if (IS_ERR(skb))
738 		return true;
739 
740 	/* verify that the packet does not have any known errors */
741 	if (unlikely(ixgbevf_test_staterr(rx_desc,
742 					  IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
743 		struct net_device *netdev = rx_ring->netdev;
744 
745 		if (!(netdev->features & NETIF_F_RXALL)) {
746 			dev_kfree_skb_any(skb);
747 			return true;
748 		}
749 	}
750 
751 	/* if eth_skb_pad returns an error the skb was freed */
752 	if (eth_skb_pad(skb))
753 		return true;
754 
755 	return false;
756 }
757 
758 /**
759  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
760  * @rx_ring: rx descriptor ring to store buffers on
761  * @old_buff: donor buffer to have page reused
762  *
763  * Synchronizes page for reuse by the adapter
764  **/
765 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
766 				  struct ixgbevf_rx_buffer *old_buff)
767 {
768 	struct ixgbevf_rx_buffer *new_buff;
769 	u16 nta = rx_ring->next_to_alloc;
770 
771 	new_buff = &rx_ring->rx_buffer_info[nta];
772 
773 	/* update, and store next to alloc */
774 	nta++;
775 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
776 
777 	/* transfer page from old buffer to new buffer */
778 	new_buff->page = old_buff->page;
779 	new_buff->dma = old_buff->dma;
780 	new_buff->page_offset = old_buff->page_offset;
781 	new_buff->pagecnt_bias = old_buff->pagecnt_bias;
782 }
783 
784 static inline bool ixgbevf_page_is_reserved(struct page *page)
785 {
786 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
787 }
788 
789 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer)
790 {
791 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
792 	struct page *page = rx_buffer->page;
793 
794 	/* avoid re-using remote pages */
795 	if (unlikely(ixgbevf_page_is_reserved(page)))
796 		return false;
797 
798 #if (PAGE_SIZE < 8192)
799 	/* if we are only owner of page we can reuse it */
800 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
801 		return false;
802 #else
803 #define IXGBEVF_LAST_OFFSET \
804 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048)
805 
806 	if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET)
807 		return false;
808 
809 #endif
810 
811 	/* If we have drained the page fragment pool we need to update
812 	 * the pagecnt_bias and page count so that we fully restock the
813 	 * number of references the driver holds.
814 	 */
815 	if (unlikely(!pagecnt_bias)) {
816 		page_ref_add(page, USHRT_MAX);
817 		rx_buffer->pagecnt_bias = USHRT_MAX;
818 	}
819 
820 	return true;
821 }
822 
823 /**
824  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
825  * @rx_ring: rx descriptor ring to transact packets on
826  * @rx_buffer: buffer containing page to add
827  * @skb: sk_buff to place the data into
828  * @size: size of buffer to be added
829  *
830  * This function will add the data contained in rx_buffer->page to the skb.
831  **/
832 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
833 				struct ixgbevf_rx_buffer *rx_buffer,
834 				struct sk_buff *skb,
835 				unsigned int size)
836 {
837 #if (PAGE_SIZE < 8192)
838 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
839 #else
840 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
841 				SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
842 				SKB_DATA_ALIGN(size);
843 #endif
844 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
845 			rx_buffer->page_offset, size, truesize);
846 #if (PAGE_SIZE < 8192)
847 	rx_buffer->page_offset ^= truesize;
848 #else
849 	rx_buffer->page_offset += truesize;
850 #endif
851 }
852 
853 static
854 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring,
855 				      struct ixgbevf_rx_buffer *rx_buffer,
856 				      struct xdp_buff *xdp,
857 				      union ixgbe_adv_rx_desc *rx_desc)
858 {
859 	unsigned int size = xdp->data_end - xdp->data;
860 #if (PAGE_SIZE < 8192)
861 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
862 #else
863 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
864 					       xdp->data_hard_start);
865 #endif
866 	unsigned int headlen;
867 	struct sk_buff *skb;
868 
869 	/* prefetch first cache line of first page */
870 	net_prefetch(xdp->data);
871 
872 	/* Note, we get here by enabling legacy-rx via:
873 	 *
874 	 *    ethtool --set-priv-flags <dev> legacy-rx on
875 	 *
876 	 * In this mode, we currently get 0 extra XDP headroom as
877 	 * opposed to having legacy-rx off, where we process XDP
878 	 * packets going to stack via ixgbevf_build_skb().
879 	 *
880 	 * For ixgbevf_construct_skb() mode it means that the
881 	 * xdp->data_meta will always point to xdp->data, since
882 	 * the helper cannot expand the head. Should this ever
883 	 * changed in future for legacy-rx mode on, then lets also
884 	 * add xdp->data_meta handling here.
885 	 */
886 
887 	/* allocate a skb to store the frags */
888 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE);
889 	if (unlikely(!skb))
890 		return NULL;
891 
892 	/* Determine available headroom for copy */
893 	headlen = size;
894 	if (headlen > IXGBEVF_RX_HDR_SIZE)
895 		headlen = eth_get_headlen(skb->dev, xdp->data,
896 					  IXGBEVF_RX_HDR_SIZE);
897 
898 	/* align pull length to size of long to optimize memcpy performance */
899 	memcpy(__skb_put(skb, headlen), xdp->data,
900 	       ALIGN(headlen, sizeof(long)));
901 
902 	/* update all of the pointers */
903 	size -= headlen;
904 	if (size) {
905 		skb_add_rx_frag(skb, 0, rx_buffer->page,
906 				(xdp->data + headlen) -
907 					page_address(rx_buffer->page),
908 				size, truesize);
909 #if (PAGE_SIZE < 8192)
910 		rx_buffer->page_offset ^= truesize;
911 #else
912 		rx_buffer->page_offset += truesize;
913 #endif
914 	} else {
915 		rx_buffer->pagecnt_bias++;
916 	}
917 
918 	return skb;
919 }
920 
921 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
922 					     u32 qmask)
923 {
924 	struct ixgbe_hw *hw = &adapter->hw;
925 
926 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
927 }
928 
929 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring,
930 					 struct ixgbevf_rx_buffer *rx_buffer,
931 					 struct xdp_buff *xdp,
932 					 union ixgbe_adv_rx_desc *rx_desc)
933 {
934 	unsigned int metasize = xdp->data - xdp->data_meta;
935 #if (PAGE_SIZE < 8192)
936 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
937 #else
938 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
939 				SKB_DATA_ALIGN(xdp->data_end -
940 					       xdp->data_hard_start);
941 #endif
942 	struct sk_buff *skb;
943 
944 	/* Prefetch first cache line of first page. If xdp->data_meta
945 	 * is unused, this points to xdp->data, otherwise, we likely
946 	 * have a consumer accessing first few bytes of meta data,
947 	 * and then actual data.
948 	 */
949 	net_prefetch(xdp->data_meta);
950 
951 	/* build an skb around the page buffer */
952 	skb = build_skb(xdp->data_hard_start, truesize);
953 	if (unlikely(!skb))
954 		return NULL;
955 
956 	/* update pointers within the skb to store the data */
957 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
958 	__skb_put(skb, xdp->data_end - xdp->data);
959 	if (metasize)
960 		skb_metadata_set(skb, metasize);
961 
962 	/* update buffer offset */
963 #if (PAGE_SIZE < 8192)
964 	rx_buffer->page_offset ^= truesize;
965 #else
966 	rx_buffer->page_offset += truesize;
967 #endif
968 
969 	return skb;
970 }
971 
972 #define IXGBEVF_XDP_PASS 0
973 #define IXGBEVF_XDP_CONSUMED 1
974 #define IXGBEVF_XDP_TX 2
975 
976 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring,
977 				 struct xdp_buff *xdp)
978 {
979 	struct ixgbevf_tx_buffer *tx_buffer;
980 	union ixgbe_adv_tx_desc *tx_desc;
981 	u32 len, cmd_type;
982 	dma_addr_t dma;
983 	u16 i;
984 
985 	len = xdp->data_end - xdp->data;
986 
987 	if (unlikely(!ixgbevf_desc_unused(ring)))
988 		return IXGBEVF_XDP_CONSUMED;
989 
990 	dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE);
991 	if (dma_mapping_error(ring->dev, dma))
992 		return IXGBEVF_XDP_CONSUMED;
993 
994 	/* record the location of the first descriptor for this packet */
995 	i = ring->next_to_use;
996 	tx_buffer = &ring->tx_buffer_info[i];
997 
998 	dma_unmap_len_set(tx_buffer, len, len);
999 	dma_unmap_addr_set(tx_buffer, dma, dma);
1000 	tx_buffer->data = xdp->data;
1001 	tx_buffer->bytecount = len;
1002 	tx_buffer->gso_segs = 1;
1003 	tx_buffer->protocol = 0;
1004 
1005 	/* Populate minimal context descriptor that will provide for the
1006 	 * fact that we are expected to process Ethernet frames.
1007 	 */
1008 	if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) {
1009 		struct ixgbe_adv_tx_context_desc *context_desc;
1010 
1011 		set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1012 
1013 		context_desc = IXGBEVF_TX_CTXTDESC(ring, 0);
1014 		context_desc->vlan_macip_lens	=
1015 			cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT);
1016 		context_desc->fceof_saidx	= 0;
1017 		context_desc->type_tucmd_mlhl	=
1018 			cpu_to_le32(IXGBE_TXD_CMD_DEXT |
1019 				    IXGBE_ADVTXD_DTYP_CTXT);
1020 		context_desc->mss_l4len_idx	= 0;
1021 
1022 		i = 1;
1023 	}
1024 
1025 	/* put descriptor type bits */
1026 	cmd_type = IXGBE_ADVTXD_DTYP_DATA |
1027 		   IXGBE_ADVTXD_DCMD_DEXT |
1028 		   IXGBE_ADVTXD_DCMD_IFCS;
1029 	cmd_type |= len | IXGBE_TXD_CMD;
1030 
1031 	tx_desc = IXGBEVF_TX_DESC(ring, i);
1032 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
1033 
1034 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1035 	tx_desc->read.olinfo_status =
1036 			cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) |
1037 				    IXGBE_ADVTXD_CC);
1038 
1039 	/* Avoid any potential race with cleanup */
1040 	smp_wmb();
1041 
1042 	/* set next_to_watch value indicating a packet is present */
1043 	i++;
1044 	if (i == ring->count)
1045 		i = 0;
1046 
1047 	tx_buffer->next_to_watch = tx_desc;
1048 	ring->next_to_use = i;
1049 
1050 	return IXGBEVF_XDP_TX;
1051 }
1052 
1053 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter,
1054 				       struct ixgbevf_ring  *rx_ring,
1055 				       struct xdp_buff *xdp)
1056 {
1057 	int result = IXGBEVF_XDP_PASS;
1058 	struct ixgbevf_ring *xdp_ring;
1059 	struct bpf_prog *xdp_prog;
1060 	u32 act;
1061 
1062 	rcu_read_lock();
1063 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1064 
1065 	if (!xdp_prog)
1066 		goto xdp_out;
1067 
1068 	act = bpf_prog_run_xdp(xdp_prog, xdp);
1069 	switch (act) {
1070 	case XDP_PASS:
1071 		break;
1072 	case XDP_TX:
1073 		xdp_ring = adapter->xdp_ring[rx_ring->queue_index];
1074 		result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp);
1075 		break;
1076 	default:
1077 		bpf_warn_invalid_xdp_action(act);
1078 		fallthrough;
1079 	case XDP_ABORTED:
1080 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
1081 		fallthrough; /* handle aborts by dropping packet */
1082 	case XDP_DROP:
1083 		result = IXGBEVF_XDP_CONSUMED;
1084 		break;
1085 	}
1086 xdp_out:
1087 	rcu_read_unlock();
1088 	return ERR_PTR(-result);
1089 }
1090 
1091 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring,
1092 					      unsigned int size)
1093 {
1094 	unsigned int truesize;
1095 
1096 #if (PAGE_SIZE < 8192)
1097 	truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1098 #else
1099 	truesize = ring_uses_build_skb(rx_ring) ?
1100 		SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) +
1101 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1102 		SKB_DATA_ALIGN(size);
1103 #endif
1104 	return truesize;
1105 }
1106 
1107 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring,
1108 				   struct ixgbevf_rx_buffer *rx_buffer,
1109 				   unsigned int size)
1110 {
1111 	unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size);
1112 
1113 #if (PAGE_SIZE < 8192)
1114 	rx_buffer->page_offset ^= truesize;
1115 #else
1116 	rx_buffer->page_offset += truesize;
1117 #endif
1118 }
1119 
1120 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
1121 				struct ixgbevf_ring *rx_ring,
1122 				int budget)
1123 {
1124 	unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0;
1125 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1126 	u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
1127 	struct sk_buff *skb = rx_ring->skb;
1128 	bool xdp_xmit = false;
1129 	struct xdp_buff xdp;
1130 
1131 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1132 #if (PAGE_SIZE < 8192)
1133 	frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0);
1134 #endif
1135 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
1136 
1137 	while (likely(total_rx_packets < budget)) {
1138 		struct ixgbevf_rx_buffer *rx_buffer;
1139 		union ixgbe_adv_rx_desc *rx_desc;
1140 		unsigned int size;
1141 
1142 		/* return some buffers to hardware, one at a time is too slow */
1143 		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
1144 			ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
1145 			cleaned_count = 0;
1146 		}
1147 
1148 		rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1149 		size = le16_to_cpu(rx_desc->wb.upper.length);
1150 		if (!size)
1151 			break;
1152 
1153 		/* This memory barrier is needed to keep us from reading
1154 		 * any other fields out of the rx_desc until we know the
1155 		 * RXD_STAT_DD bit is set
1156 		 */
1157 		rmb();
1158 
1159 		rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size);
1160 
1161 		/* retrieve a buffer from the ring */
1162 		if (!skb) {
1163 			xdp.data = page_address(rx_buffer->page) +
1164 				   rx_buffer->page_offset;
1165 			xdp.data_meta = xdp.data;
1166 			xdp.data_hard_start = xdp.data -
1167 					      ixgbevf_rx_offset(rx_ring);
1168 			xdp.data_end = xdp.data + size;
1169 #if (PAGE_SIZE > 4096)
1170 			/* At larger PAGE_SIZE, frame_sz depend on len size */
1171 			xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size);
1172 #endif
1173 			skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp);
1174 		}
1175 
1176 		if (IS_ERR(skb)) {
1177 			if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) {
1178 				xdp_xmit = true;
1179 				ixgbevf_rx_buffer_flip(rx_ring, rx_buffer,
1180 						       size);
1181 			} else {
1182 				rx_buffer->pagecnt_bias++;
1183 			}
1184 			total_rx_packets++;
1185 			total_rx_bytes += size;
1186 		} else if (skb) {
1187 			ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1188 		} else if (ring_uses_build_skb(rx_ring)) {
1189 			skb = ixgbevf_build_skb(rx_ring, rx_buffer,
1190 						&xdp, rx_desc);
1191 		} else {
1192 			skb = ixgbevf_construct_skb(rx_ring, rx_buffer,
1193 						    &xdp, rx_desc);
1194 		}
1195 
1196 		/* exit if we failed to retrieve a buffer */
1197 		if (!skb) {
1198 			rx_ring->rx_stats.alloc_rx_buff_failed++;
1199 			rx_buffer->pagecnt_bias++;
1200 			break;
1201 		}
1202 
1203 		ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb);
1204 		cleaned_count++;
1205 
1206 		/* fetch next buffer in frame if non-eop */
1207 		if (ixgbevf_is_non_eop(rx_ring, rx_desc))
1208 			continue;
1209 
1210 		/* verify the packet layout is correct */
1211 		if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
1212 			skb = NULL;
1213 			continue;
1214 		}
1215 
1216 		/* probably a little skewed due to removing CRC */
1217 		total_rx_bytes += skb->len;
1218 
1219 		/* Workaround hardware that can't do proper VEPA multicast
1220 		 * source pruning.
1221 		 */
1222 		if ((skb->pkt_type == PACKET_BROADCAST ||
1223 		     skb->pkt_type == PACKET_MULTICAST) &&
1224 		    ether_addr_equal(rx_ring->netdev->dev_addr,
1225 				     eth_hdr(skb)->h_source)) {
1226 			dev_kfree_skb_irq(skb);
1227 			continue;
1228 		}
1229 
1230 		/* populate checksum, VLAN, and protocol */
1231 		ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
1232 
1233 		ixgbevf_rx_skb(q_vector, skb);
1234 
1235 		/* reset skb pointer */
1236 		skb = NULL;
1237 
1238 		/* update budget accounting */
1239 		total_rx_packets++;
1240 	}
1241 
1242 	/* place incomplete frames back on ring for completion */
1243 	rx_ring->skb = skb;
1244 
1245 	if (xdp_xmit) {
1246 		struct ixgbevf_ring *xdp_ring =
1247 			adapter->xdp_ring[rx_ring->queue_index];
1248 
1249 		/* Force memory writes to complete before letting h/w
1250 		 * know there are new descriptors to fetch.
1251 		 */
1252 		wmb();
1253 		ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use);
1254 	}
1255 
1256 	u64_stats_update_begin(&rx_ring->syncp);
1257 	rx_ring->stats.packets += total_rx_packets;
1258 	rx_ring->stats.bytes += total_rx_bytes;
1259 	u64_stats_update_end(&rx_ring->syncp);
1260 	q_vector->rx.total_packets += total_rx_packets;
1261 	q_vector->rx.total_bytes += total_rx_bytes;
1262 
1263 	return total_rx_packets;
1264 }
1265 
1266 /**
1267  * ixgbevf_poll - NAPI polling calback
1268  * @napi: napi struct with our devices info in it
1269  * @budget: amount of work driver is allowed to do this pass, in packets
1270  *
1271  * This function will clean more than one or more rings associated with a
1272  * q_vector.
1273  **/
1274 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1275 {
1276 	struct ixgbevf_q_vector *q_vector =
1277 		container_of(napi, struct ixgbevf_q_vector, napi);
1278 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1279 	struct ixgbevf_ring *ring;
1280 	int per_ring_budget, work_done = 0;
1281 	bool clean_complete = true;
1282 
1283 	ixgbevf_for_each_ring(ring, q_vector->tx) {
1284 		if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1285 			clean_complete = false;
1286 	}
1287 
1288 	if (budget <= 0)
1289 		return budget;
1290 
1291 	/* attempt to distribute budget to each queue fairly, but don't allow
1292 	 * the budget to go below 1 because we'll exit polling
1293 	 */
1294 	if (q_vector->rx.count > 1)
1295 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1296 	else
1297 		per_ring_budget = budget;
1298 
1299 	ixgbevf_for_each_ring(ring, q_vector->rx) {
1300 		int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1301 						   per_ring_budget);
1302 		work_done += cleaned;
1303 		if (cleaned >= per_ring_budget)
1304 			clean_complete = false;
1305 	}
1306 
1307 	/* If all work not completed, return budget and keep polling */
1308 	if (!clean_complete)
1309 		return budget;
1310 
1311 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1312 	 * poll us due to busy-polling
1313 	 */
1314 	if (likely(napi_complete_done(napi, work_done))) {
1315 		if (adapter->rx_itr_setting == 1)
1316 			ixgbevf_set_itr(q_vector);
1317 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1318 		    !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1319 			ixgbevf_irq_enable_queues(adapter,
1320 						  BIT(q_vector->v_idx));
1321 	}
1322 
1323 	return min(work_done, budget - 1);
1324 }
1325 
1326 /**
1327  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1328  * @q_vector: structure containing interrupt and ring information
1329  **/
1330 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1331 {
1332 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1333 	struct ixgbe_hw *hw = &adapter->hw;
1334 	int v_idx = q_vector->v_idx;
1335 	u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1336 
1337 	/* set the WDIS bit to not clear the timer bits and cause an
1338 	 * immediate assertion of the interrupt
1339 	 */
1340 	itr_reg |= IXGBE_EITR_CNT_WDIS;
1341 
1342 	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1343 }
1344 
1345 /**
1346  * ixgbevf_configure_msix - Configure MSI-X hardware
1347  * @adapter: board private structure
1348  *
1349  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1350  * interrupts.
1351  **/
1352 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1353 {
1354 	struct ixgbevf_q_vector *q_vector;
1355 	int q_vectors, v_idx;
1356 
1357 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1358 	adapter->eims_enable_mask = 0;
1359 
1360 	/* Populate the IVAR table and set the ITR values to the
1361 	 * corresponding register.
1362 	 */
1363 	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1364 		struct ixgbevf_ring *ring;
1365 
1366 		q_vector = adapter->q_vector[v_idx];
1367 
1368 		ixgbevf_for_each_ring(ring, q_vector->rx)
1369 			ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1370 
1371 		ixgbevf_for_each_ring(ring, q_vector->tx)
1372 			ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1373 
1374 		if (q_vector->tx.ring && !q_vector->rx.ring) {
1375 			/* Tx only vector */
1376 			if (adapter->tx_itr_setting == 1)
1377 				q_vector->itr = IXGBE_12K_ITR;
1378 			else
1379 				q_vector->itr = adapter->tx_itr_setting;
1380 		} else {
1381 			/* Rx or Rx/Tx vector */
1382 			if (adapter->rx_itr_setting == 1)
1383 				q_vector->itr = IXGBE_20K_ITR;
1384 			else
1385 				q_vector->itr = adapter->rx_itr_setting;
1386 		}
1387 
1388 		/* add q_vector eims value to global eims_enable_mask */
1389 		adapter->eims_enable_mask |= BIT(v_idx);
1390 
1391 		ixgbevf_write_eitr(q_vector);
1392 	}
1393 
1394 	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1395 	/* setup eims_other and add value to global eims_enable_mask */
1396 	adapter->eims_other = BIT(v_idx);
1397 	adapter->eims_enable_mask |= adapter->eims_other;
1398 }
1399 
1400 enum latency_range {
1401 	lowest_latency = 0,
1402 	low_latency = 1,
1403 	bulk_latency = 2,
1404 	latency_invalid = 255
1405 };
1406 
1407 /**
1408  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1409  * @q_vector: structure containing interrupt and ring information
1410  * @ring_container: structure containing ring performance data
1411  *
1412  * Stores a new ITR value based on packets and byte
1413  * counts during the last interrupt.  The advantage of per interrupt
1414  * computation is faster updates and more accurate ITR for the current
1415  * traffic pattern.  Constants in this function were computed
1416  * based on theoretical maximum wire speed and thresholds were set based
1417  * on testing data as well as attempting to minimize response time
1418  * while increasing bulk throughput.
1419  **/
1420 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1421 			       struct ixgbevf_ring_container *ring_container)
1422 {
1423 	int bytes = ring_container->total_bytes;
1424 	int packets = ring_container->total_packets;
1425 	u32 timepassed_us;
1426 	u64 bytes_perint;
1427 	u8 itr_setting = ring_container->itr;
1428 
1429 	if (packets == 0)
1430 		return;
1431 
1432 	/* simple throttle rate management
1433 	 *    0-20MB/s lowest (100000 ints/s)
1434 	 *   20-100MB/s low   (20000 ints/s)
1435 	 *  100-1249MB/s bulk (12000 ints/s)
1436 	 */
1437 	/* what was last interrupt timeslice? */
1438 	timepassed_us = q_vector->itr >> 2;
1439 	if (timepassed_us == 0)
1440 		return;
1441 
1442 	bytes_perint = bytes / timepassed_us; /* bytes/usec */
1443 
1444 	switch (itr_setting) {
1445 	case lowest_latency:
1446 		if (bytes_perint > 10)
1447 			itr_setting = low_latency;
1448 		break;
1449 	case low_latency:
1450 		if (bytes_perint > 20)
1451 			itr_setting = bulk_latency;
1452 		else if (bytes_perint <= 10)
1453 			itr_setting = lowest_latency;
1454 		break;
1455 	case bulk_latency:
1456 		if (bytes_perint <= 20)
1457 			itr_setting = low_latency;
1458 		break;
1459 	}
1460 
1461 	/* clear work counters since we have the values we need */
1462 	ring_container->total_bytes = 0;
1463 	ring_container->total_packets = 0;
1464 
1465 	/* write updated itr to ring container */
1466 	ring_container->itr = itr_setting;
1467 }
1468 
1469 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1470 {
1471 	u32 new_itr = q_vector->itr;
1472 	u8 current_itr;
1473 
1474 	ixgbevf_update_itr(q_vector, &q_vector->tx);
1475 	ixgbevf_update_itr(q_vector, &q_vector->rx);
1476 
1477 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1478 
1479 	switch (current_itr) {
1480 	/* counts and packets in update_itr are dependent on these numbers */
1481 	case lowest_latency:
1482 		new_itr = IXGBE_100K_ITR;
1483 		break;
1484 	case low_latency:
1485 		new_itr = IXGBE_20K_ITR;
1486 		break;
1487 	case bulk_latency:
1488 		new_itr = IXGBE_12K_ITR;
1489 		break;
1490 	default:
1491 		break;
1492 	}
1493 
1494 	if (new_itr != q_vector->itr) {
1495 		/* do an exponential smoothing */
1496 		new_itr = (10 * new_itr * q_vector->itr) /
1497 			  ((9 * new_itr) + q_vector->itr);
1498 
1499 		/* save the algorithm value here */
1500 		q_vector->itr = new_itr;
1501 
1502 		ixgbevf_write_eitr(q_vector);
1503 	}
1504 }
1505 
1506 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1507 {
1508 	struct ixgbevf_adapter *adapter = data;
1509 	struct ixgbe_hw *hw = &adapter->hw;
1510 
1511 	hw->mac.get_link_status = 1;
1512 
1513 	ixgbevf_service_event_schedule(adapter);
1514 
1515 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1516 
1517 	return IRQ_HANDLED;
1518 }
1519 
1520 /**
1521  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1522  * @irq: unused
1523  * @data: pointer to our q_vector struct for this interrupt vector
1524  **/
1525 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1526 {
1527 	struct ixgbevf_q_vector *q_vector = data;
1528 
1529 	/* EIAM disabled interrupts (on this vector) for us */
1530 	if (q_vector->rx.ring || q_vector->tx.ring)
1531 		napi_schedule_irqoff(&q_vector->napi);
1532 
1533 	return IRQ_HANDLED;
1534 }
1535 
1536 /**
1537  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1538  * @adapter: board private structure
1539  *
1540  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1541  * interrupts from the kernel.
1542  **/
1543 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1544 {
1545 	struct net_device *netdev = adapter->netdev;
1546 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1547 	unsigned int ri = 0, ti = 0;
1548 	int vector, err;
1549 
1550 	for (vector = 0; vector < q_vectors; vector++) {
1551 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1552 		struct msix_entry *entry = &adapter->msix_entries[vector];
1553 
1554 		if (q_vector->tx.ring && q_vector->rx.ring) {
1555 			snprintf(q_vector->name, sizeof(q_vector->name),
1556 				 "%s-TxRx-%u", netdev->name, ri++);
1557 			ti++;
1558 		} else if (q_vector->rx.ring) {
1559 			snprintf(q_vector->name, sizeof(q_vector->name),
1560 				 "%s-rx-%u", netdev->name, ri++);
1561 		} else if (q_vector->tx.ring) {
1562 			snprintf(q_vector->name, sizeof(q_vector->name),
1563 				 "%s-tx-%u", netdev->name, ti++);
1564 		} else {
1565 			/* skip this unused q_vector */
1566 			continue;
1567 		}
1568 		err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1569 				  q_vector->name, q_vector);
1570 		if (err) {
1571 			hw_dbg(&adapter->hw,
1572 			       "request_irq failed for MSIX interrupt Error: %d\n",
1573 			       err);
1574 			goto free_queue_irqs;
1575 		}
1576 	}
1577 
1578 	err = request_irq(adapter->msix_entries[vector].vector,
1579 			  &ixgbevf_msix_other, 0, netdev->name, adapter);
1580 	if (err) {
1581 		hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1582 		       err);
1583 		goto free_queue_irqs;
1584 	}
1585 
1586 	return 0;
1587 
1588 free_queue_irqs:
1589 	while (vector) {
1590 		vector--;
1591 		free_irq(adapter->msix_entries[vector].vector,
1592 			 adapter->q_vector[vector]);
1593 	}
1594 	/* This failure is non-recoverable - it indicates the system is
1595 	 * out of MSIX vector resources and the VF driver cannot run
1596 	 * without them.  Set the number of msix vectors to zero
1597 	 * indicating that not enough can be allocated.  The error
1598 	 * will be returned to the user indicating device open failed.
1599 	 * Any further attempts to force the driver to open will also
1600 	 * fail.  The only way to recover is to unload the driver and
1601 	 * reload it again.  If the system has recovered some MSIX
1602 	 * vectors then it may succeed.
1603 	 */
1604 	adapter->num_msix_vectors = 0;
1605 	return err;
1606 }
1607 
1608 /**
1609  * ixgbevf_request_irq - initialize interrupts
1610  * @adapter: board private structure
1611  *
1612  * Attempts to configure interrupts using the best available
1613  * capabilities of the hardware and kernel.
1614  **/
1615 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1616 {
1617 	int err = ixgbevf_request_msix_irqs(adapter);
1618 
1619 	if (err)
1620 		hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1621 
1622 	return err;
1623 }
1624 
1625 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1626 {
1627 	int i, q_vectors;
1628 
1629 	if (!adapter->msix_entries)
1630 		return;
1631 
1632 	q_vectors = adapter->num_msix_vectors;
1633 	i = q_vectors - 1;
1634 
1635 	free_irq(adapter->msix_entries[i].vector, adapter);
1636 	i--;
1637 
1638 	for (; i >= 0; i--) {
1639 		/* free only the irqs that were actually requested */
1640 		if (!adapter->q_vector[i]->rx.ring &&
1641 		    !adapter->q_vector[i]->tx.ring)
1642 			continue;
1643 
1644 		free_irq(adapter->msix_entries[i].vector,
1645 			 adapter->q_vector[i]);
1646 	}
1647 }
1648 
1649 /**
1650  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1651  * @adapter: board private structure
1652  **/
1653 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1654 {
1655 	struct ixgbe_hw *hw = &adapter->hw;
1656 	int i;
1657 
1658 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1659 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1660 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1661 
1662 	IXGBE_WRITE_FLUSH(hw);
1663 
1664 	for (i = 0; i < adapter->num_msix_vectors; i++)
1665 		synchronize_irq(adapter->msix_entries[i].vector);
1666 }
1667 
1668 /**
1669  * ixgbevf_irq_enable - Enable default interrupt generation settings
1670  * @adapter: board private structure
1671  **/
1672 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1673 {
1674 	struct ixgbe_hw *hw = &adapter->hw;
1675 
1676 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1677 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1678 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1679 }
1680 
1681 /**
1682  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1683  * @adapter: board private structure
1684  * @ring: structure containing ring specific data
1685  *
1686  * Configure the Tx descriptor ring after a reset.
1687  **/
1688 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1689 				      struct ixgbevf_ring *ring)
1690 {
1691 	struct ixgbe_hw *hw = &adapter->hw;
1692 	u64 tdba = ring->dma;
1693 	int wait_loop = 10;
1694 	u32 txdctl = IXGBE_TXDCTL_ENABLE;
1695 	u8 reg_idx = ring->reg_idx;
1696 
1697 	/* disable queue to avoid issues while updating state */
1698 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1699 	IXGBE_WRITE_FLUSH(hw);
1700 
1701 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1702 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1703 	IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1704 			ring->count * sizeof(union ixgbe_adv_tx_desc));
1705 
1706 	/* disable head writeback */
1707 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1708 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1709 
1710 	/* enable relaxed ordering */
1711 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1712 			(IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1713 			 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1714 
1715 	/* reset head and tail pointers */
1716 	IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1717 	IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1718 	ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1719 
1720 	/* reset ntu and ntc to place SW in sync with hardwdare */
1721 	ring->next_to_clean = 0;
1722 	ring->next_to_use = 0;
1723 
1724 	/* In order to avoid issues WTHRESH + PTHRESH should always be equal
1725 	 * to or less than the number of on chip descriptors, which is
1726 	 * currently 40.
1727 	 */
1728 	txdctl |= (8 << 16);    /* WTHRESH = 8 */
1729 
1730 	/* Setting PTHRESH to 32 both improves performance */
1731 	txdctl |= (1u << 8) |    /* HTHRESH = 1 */
1732 		   32;           /* PTHRESH = 32 */
1733 
1734 	/* reinitialize tx_buffer_info */
1735 	memset(ring->tx_buffer_info, 0,
1736 	       sizeof(struct ixgbevf_tx_buffer) * ring->count);
1737 
1738 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1739 	clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1740 
1741 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1742 
1743 	/* poll to verify queue is enabled */
1744 	do {
1745 		usleep_range(1000, 2000);
1746 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1747 	}  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1748 	if (!wait_loop)
1749 		hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1750 }
1751 
1752 /**
1753  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1754  * @adapter: board private structure
1755  *
1756  * Configure the Tx unit of the MAC after a reset.
1757  **/
1758 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1759 {
1760 	u32 i;
1761 
1762 	/* Setup the HW Tx Head and Tail descriptor pointers */
1763 	for (i = 0; i < adapter->num_tx_queues; i++)
1764 		ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1765 	for (i = 0; i < adapter->num_xdp_queues; i++)
1766 		ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]);
1767 }
1768 
1769 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1770 
1771 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter,
1772 				     struct ixgbevf_ring *ring, int index)
1773 {
1774 	struct ixgbe_hw *hw = &adapter->hw;
1775 	u32 srrctl;
1776 
1777 	srrctl = IXGBE_SRRCTL_DROP_EN;
1778 
1779 	srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1780 	if (ring_uses_large_buffer(ring))
1781 		srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1782 	else
1783 		srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1784 	srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1785 
1786 	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1787 }
1788 
1789 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1790 {
1791 	struct ixgbe_hw *hw = &adapter->hw;
1792 
1793 	/* PSRTYPE must be initialized in 82599 */
1794 	u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1795 		      IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1796 		      IXGBE_PSRTYPE_L2HDR;
1797 
1798 	if (adapter->num_rx_queues > 1)
1799 		psrtype |= BIT(29);
1800 
1801 	IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1802 }
1803 
1804 #define IXGBEVF_MAX_RX_DESC_POLL 10
1805 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1806 				     struct ixgbevf_ring *ring)
1807 {
1808 	struct ixgbe_hw *hw = &adapter->hw;
1809 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1810 	u32 rxdctl;
1811 	u8 reg_idx = ring->reg_idx;
1812 
1813 	if (IXGBE_REMOVED(hw->hw_addr))
1814 		return;
1815 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1816 	rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1817 
1818 	/* write value back with RXDCTL.ENABLE bit cleared */
1819 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1820 
1821 	/* the hardware may take up to 100us to really disable the Rx queue */
1822 	do {
1823 		udelay(10);
1824 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1825 	} while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1826 
1827 	if (!wait_loop)
1828 		pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1829 		       reg_idx);
1830 }
1831 
1832 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1833 					 struct ixgbevf_ring *ring)
1834 {
1835 	struct ixgbe_hw *hw = &adapter->hw;
1836 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1837 	u32 rxdctl;
1838 	u8 reg_idx = ring->reg_idx;
1839 
1840 	if (IXGBE_REMOVED(hw->hw_addr))
1841 		return;
1842 	do {
1843 		usleep_range(1000, 2000);
1844 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1845 	} while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1846 
1847 	if (!wait_loop)
1848 		pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1849 		       reg_idx);
1850 }
1851 
1852 /**
1853  * ixgbevf_init_rss_key - Initialize adapter RSS key
1854  * @adapter: device handle
1855  *
1856  * Allocates and initializes the RSS key if it is not allocated.
1857  **/
1858 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter)
1859 {
1860 	u32 *rss_key;
1861 
1862 	if (!adapter->rss_key) {
1863 		rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL);
1864 		if (unlikely(!rss_key))
1865 			return -ENOMEM;
1866 
1867 		netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE);
1868 		adapter->rss_key = rss_key;
1869 	}
1870 
1871 	return 0;
1872 }
1873 
1874 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1875 {
1876 	struct ixgbe_hw *hw = &adapter->hw;
1877 	u32 vfmrqc = 0, vfreta = 0;
1878 	u16 rss_i = adapter->num_rx_queues;
1879 	u8 i, j;
1880 
1881 	/* Fill out hash function seeds */
1882 	for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1883 		IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i));
1884 
1885 	for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1886 		if (j == rss_i)
1887 			j = 0;
1888 
1889 		adapter->rss_indir_tbl[i] = j;
1890 
1891 		vfreta |= j << (i & 0x3) * 8;
1892 		if ((i & 3) == 3) {
1893 			IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1894 			vfreta = 0;
1895 		}
1896 	}
1897 
1898 	/* Perform hash on these packet types */
1899 	vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1900 		IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1901 		IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1902 		IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1903 
1904 	vfmrqc |= IXGBE_VFMRQC_RSSEN;
1905 
1906 	IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1907 }
1908 
1909 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1910 				      struct ixgbevf_ring *ring)
1911 {
1912 	struct ixgbe_hw *hw = &adapter->hw;
1913 	union ixgbe_adv_rx_desc *rx_desc;
1914 	u64 rdba = ring->dma;
1915 	u32 rxdctl;
1916 	u8 reg_idx = ring->reg_idx;
1917 
1918 	/* disable queue to avoid issues while updating state */
1919 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1920 	ixgbevf_disable_rx_queue(adapter, ring);
1921 
1922 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1923 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1924 	IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1925 			ring->count * sizeof(union ixgbe_adv_rx_desc));
1926 
1927 #ifndef CONFIG_SPARC
1928 	/* enable relaxed ordering */
1929 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1930 			IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1931 #else
1932 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1933 			IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1934 			IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1935 #endif
1936 
1937 	/* reset head and tail pointers */
1938 	IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1939 	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1940 	ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1941 
1942 	/* initialize rx_buffer_info */
1943 	memset(ring->rx_buffer_info, 0,
1944 	       sizeof(struct ixgbevf_rx_buffer) * ring->count);
1945 
1946 	/* initialize Rx descriptor 0 */
1947 	rx_desc = IXGBEVF_RX_DESC(ring, 0);
1948 	rx_desc->wb.upper.length = 0;
1949 
1950 	/* reset ntu and ntc to place SW in sync with hardwdare */
1951 	ring->next_to_clean = 0;
1952 	ring->next_to_use = 0;
1953 	ring->next_to_alloc = 0;
1954 
1955 	ixgbevf_configure_srrctl(adapter, ring, reg_idx);
1956 
1957 	/* RXDCTL.RLPML does not work on 82599 */
1958 	if (adapter->hw.mac.type != ixgbe_mac_82599_vf) {
1959 		rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK |
1960 			    IXGBE_RXDCTL_RLPML_EN);
1961 
1962 #if (PAGE_SIZE < 8192)
1963 		/* Limit the maximum frame size so we don't overrun the skb */
1964 		if (ring_uses_build_skb(ring) &&
1965 		    !ring_uses_large_buffer(ring))
1966 			rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB |
1967 				  IXGBE_RXDCTL_RLPML_EN;
1968 #endif
1969 	}
1970 
1971 	rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1972 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1973 
1974 	ixgbevf_rx_desc_queue_enable(adapter, ring);
1975 	ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1976 }
1977 
1978 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter,
1979 				      struct ixgbevf_ring *rx_ring)
1980 {
1981 	struct net_device *netdev = adapter->netdev;
1982 	unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1983 
1984 	/* set build_skb and buffer size flags */
1985 	clear_ring_build_skb_enabled(rx_ring);
1986 	clear_ring_uses_large_buffer(rx_ring);
1987 
1988 	if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX)
1989 		return;
1990 
1991 	set_ring_build_skb_enabled(rx_ring);
1992 
1993 	if (PAGE_SIZE < 8192) {
1994 		if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB)
1995 			return;
1996 
1997 		set_ring_uses_large_buffer(rx_ring);
1998 	}
1999 }
2000 
2001 /**
2002  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
2003  * @adapter: board private structure
2004  *
2005  * Configure the Rx unit of the MAC after a reset.
2006  **/
2007 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
2008 {
2009 	struct ixgbe_hw *hw = &adapter->hw;
2010 	struct net_device *netdev = adapter->netdev;
2011 	int i, ret;
2012 
2013 	ixgbevf_setup_psrtype(adapter);
2014 	if (hw->mac.type >= ixgbe_mac_X550_vf)
2015 		ixgbevf_setup_vfmrqc(adapter);
2016 
2017 	spin_lock_bh(&adapter->mbx_lock);
2018 	/* notify the PF of our intent to use this size of frame */
2019 	ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
2020 	spin_unlock_bh(&adapter->mbx_lock);
2021 	if (ret)
2022 		dev_err(&adapter->pdev->dev,
2023 			"Failed to set MTU at %d\n", netdev->mtu);
2024 
2025 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
2026 	 * the Base and Length of the Rx Descriptor Ring
2027 	 */
2028 	for (i = 0; i < adapter->num_rx_queues; i++) {
2029 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
2030 
2031 		ixgbevf_set_rx_buffer_len(adapter, rx_ring);
2032 		ixgbevf_configure_rx_ring(adapter, rx_ring);
2033 	}
2034 }
2035 
2036 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
2037 				   __be16 proto, u16 vid)
2038 {
2039 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2040 	struct ixgbe_hw *hw = &adapter->hw;
2041 	int err;
2042 
2043 	spin_lock_bh(&adapter->mbx_lock);
2044 
2045 	/* add VID to filter table */
2046 	err = hw->mac.ops.set_vfta(hw, vid, 0, true);
2047 
2048 	spin_unlock_bh(&adapter->mbx_lock);
2049 
2050 	/* translate error return types so error makes sense */
2051 	if (err == IXGBE_ERR_MBX)
2052 		return -EIO;
2053 
2054 	if (err == IXGBE_ERR_INVALID_ARGUMENT)
2055 		return -EACCES;
2056 
2057 	set_bit(vid, adapter->active_vlans);
2058 
2059 	return err;
2060 }
2061 
2062 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
2063 				    __be16 proto, u16 vid)
2064 {
2065 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2066 	struct ixgbe_hw *hw = &adapter->hw;
2067 	int err;
2068 
2069 	spin_lock_bh(&adapter->mbx_lock);
2070 
2071 	/* remove VID from filter table */
2072 	err = hw->mac.ops.set_vfta(hw, vid, 0, false);
2073 
2074 	spin_unlock_bh(&adapter->mbx_lock);
2075 
2076 	clear_bit(vid, adapter->active_vlans);
2077 
2078 	return err;
2079 }
2080 
2081 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
2082 {
2083 	u16 vid;
2084 
2085 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2086 		ixgbevf_vlan_rx_add_vid(adapter->netdev,
2087 					htons(ETH_P_8021Q), vid);
2088 }
2089 
2090 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
2091 {
2092 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2093 	struct ixgbe_hw *hw = &adapter->hw;
2094 	int count = 0;
2095 
2096 	if (!netdev_uc_empty(netdev)) {
2097 		struct netdev_hw_addr *ha;
2098 
2099 		netdev_for_each_uc_addr(ha, netdev) {
2100 			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
2101 			udelay(200);
2102 		}
2103 	} else {
2104 		/* If the list is empty then send message to PF driver to
2105 		 * clear all MAC VLANs on this VF.
2106 		 */
2107 		hw->mac.ops.set_uc_addr(hw, 0, NULL);
2108 	}
2109 
2110 	return count;
2111 }
2112 
2113 /**
2114  * ixgbevf_set_rx_mode - Multicast and unicast set
2115  * @netdev: network interface device structure
2116  *
2117  * The set_rx_method entry point is called whenever the multicast address
2118  * list, unicast address list or the network interface flags are updated.
2119  * This routine is responsible for configuring the hardware for proper
2120  * multicast mode and configuring requested unicast filters.
2121  **/
2122 static void ixgbevf_set_rx_mode(struct net_device *netdev)
2123 {
2124 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2125 	struct ixgbe_hw *hw = &adapter->hw;
2126 	unsigned int flags = netdev->flags;
2127 	int xcast_mode;
2128 
2129 	/* request the most inclusive mode we need */
2130 	if (flags & IFF_PROMISC)
2131 		xcast_mode = IXGBEVF_XCAST_MODE_PROMISC;
2132 	else if (flags & IFF_ALLMULTI)
2133 		xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI;
2134 	else if (flags & (IFF_BROADCAST | IFF_MULTICAST))
2135 		xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
2136 	else
2137 		xcast_mode = IXGBEVF_XCAST_MODE_NONE;
2138 
2139 	spin_lock_bh(&adapter->mbx_lock);
2140 
2141 	hw->mac.ops.update_xcast_mode(hw, xcast_mode);
2142 
2143 	/* reprogram multicast list */
2144 	hw->mac.ops.update_mc_addr_list(hw, netdev);
2145 
2146 	ixgbevf_write_uc_addr_list(netdev);
2147 
2148 	spin_unlock_bh(&adapter->mbx_lock);
2149 }
2150 
2151 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
2152 {
2153 	int q_idx;
2154 	struct ixgbevf_q_vector *q_vector;
2155 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2156 
2157 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2158 		q_vector = adapter->q_vector[q_idx];
2159 		napi_enable(&q_vector->napi);
2160 	}
2161 }
2162 
2163 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
2164 {
2165 	int q_idx;
2166 	struct ixgbevf_q_vector *q_vector;
2167 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2168 
2169 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2170 		q_vector = adapter->q_vector[q_idx];
2171 		napi_disable(&q_vector->napi);
2172 	}
2173 }
2174 
2175 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
2176 {
2177 	struct ixgbe_hw *hw = &adapter->hw;
2178 	unsigned int def_q = 0;
2179 	unsigned int num_tcs = 0;
2180 	unsigned int num_rx_queues = adapter->num_rx_queues;
2181 	unsigned int num_tx_queues = adapter->num_tx_queues;
2182 	int err;
2183 
2184 	spin_lock_bh(&adapter->mbx_lock);
2185 
2186 	/* fetch queue configuration from the PF */
2187 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2188 
2189 	spin_unlock_bh(&adapter->mbx_lock);
2190 
2191 	if (err)
2192 		return err;
2193 
2194 	if (num_tcs > 1) {
2195 		/* we need only one Tx queue */
2196 		num_tx_queues = 1;
2197 
2198 		/* update default Tx ring register index */
2199 		adapter->tx_ring[0]->reg_idx = def_q;
2200 
2201 		/* we need as many queues as traffic classes */
2202 		num_rx_queues = num_tcs;
2203 	}
2204 
2205 	/* if we have a bad config abort request queue reset */
2206 	if ((adapter->num_rx_queues != num_rx_queues) ||
2207 	    (adapter->num_tx_queues != num_tx_queues)) {
2208 		/* force mailbox timeout to prevent further messages */
2209 		hw->mbx.timeout = 0;
2210 
2211 		/* wait for watchdog to come around and bail us out */
2212 		set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
2213 	}
2214 
2215 	return 0;
2216 }
2217 
2218 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2219 {
2220 	ixgbevf_configure_dcb(adapter);
2221 
2222 	ixgbevf_set_rx_mode(adapter->netdev);
2223 
2224 	ixgbevf_restore_vlan(adapter);
2225 	ixgbevf_ipsec_restore(adapter);
2226 
2227 	ixgbevf_configure_tx(adapter);
2228 	ixgbevf_configure_rx(adapter);
2229 }
2230 
2231 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2232 {
2233 	/* Only save pre-reset stats if there are some */
2234 	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2235 		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2236 			adapter->stats.base_vfgprc;
2237 		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2238 			adapter->stats.base_vfgptc;
2239 		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2240 			adapter->stats.base_vfgorc;
2241 		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2242 			adapter->stats.base_vfgotc;
2243 		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2244 			adapter->stats.base_vfmprc;
2245 	}
2246 }
2247 
2248 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2249 {
2250 	struct ixgbe_hw *hw = &adapter->hw;
2251 
2252 	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2253 	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2254 	adapter->stats.last_vfgorc |=
2255 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2256 	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2257 	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2258 	adapter->stats.last_vfgotc |=
2259 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2260 	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2261 
2262 	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2263 	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2264 	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2265 	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2266 	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2267 }
2268 
2269 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2270 {
2271 	struct ixgbe_hw *hw = &adapter->hw;
2272 	static const int api[] = {
2273 		ixgbe_mbox_api_14,
2274 		ixgbe_mbox_api_13,
2275 		ixgbe_mbox_api_12,
2276 		ixgbe_mbox_api_11,
2277 		ixgbe_mbox_api_10,
2278 		ixgbe_mbox_api_unknown
2279 	};
2280 	int err, idx = 0;
2281 
2282 	spin_lock_bh(&adapter->mbx_lock);
2283 
2284 	while (api[idx] != ixgbe_mbox_api_unknown) {
2285 		err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2286 		if (!err)
2287 			break;
2288 		idx++;
2289 	}
2290 
2291 	spin_unlock_bh(&adapter->mbx_lock);
2292 }
2293 
2294 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2295 {
2296 	struct net_device *netdev = adapter->netdev;
2297 	struct ixgbe_hw *hw = &adapter->hw;
2298 
2299 	ixgbevf_configure_msix(adapter);
2300 
2301 	spin_lock_bh(&adapter->mbx_lock);
2302 
2303 	if (is_valid_ether_addr(hw->mac.addr))
2304 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2305 	else
2306 		hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2307 
2308 	spin_unlock_bh(&adapter->mbx_lock);
2309 
2310 	smp_mb__before_atomic();
2311 	clear_bit(__IXGBEVF_DOWN, &adapter->state);
2312 	ixgbevf_napi_enable_all(adapter);
2313 
2314 	/* clear any pending interrupts, may auto mask */
2315 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2316 	ixgbevf_irq_enable(adapter);
2317 
2318 	/* enable transmits */
2319 	netif_tx_start_all_queues(netdev);
2320 
2321 	ixgbevf_save_reset_stats(adapter);
2322 	ixgbevf_init_last_counter_stats(adapter);
2323 
2324 	hw->mac.get_link_status = 1;
2325 	mod_timer(&adapter->service_timer, jiffies);
2326 }
2327 
2328 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2329 {
2330 	ixgbevf_configure(adapter);
2331 
2332 	ixgbevf_up_complete(adapter);
2333 }
2334 
2335 /**
2336  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2337  * @rx_ring: ring to free buffers from
2338  **/
2339 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2340 {
2341 	u16 i = rx_ring->next_to_clean;
2342 
2343 	/* Free Rx ring sk_buff */
2344 	if (rx_ring->skb) {
2345 		dev_kfree_skb(rx_ring->skb);
2346 		rx_ring->skb = NULL;
2347 	}
2348 
2349 	/* Free all the Rx ring pages */
2350 	while (i != rx_ring->next_to_alloc) {
2351 		struct ixgbevf_rx_buffer *rx_buffer;
2352 
2353 		rx_buffer = &rx_ring->rx_buffer_info[i];
2354 
2355 		/* Invalidate cache lines that may have been written to by
2356 		 * device so that we avoid corrupting memory.
2357 		 */
2358 		dma_sync_single_range_for_cpu(rx_ring->dev,
2359 					      rx_buffer->dma,
2360 					      rx_buffer->page_offset,
2361 					      ixgbevf_rx_bufsz(rx_ring),
2362 					      DMA_FROM_DEVICE);
2363 
2364 		/* free resources associated with mapping */
2365 		dma_unmap_page_attrs(rx_ring->dev,
2366 				     rx_buffer->dma,
2367 				     ixgbevf_rx_pg_size(rx_ring),
2368 				     DMA_FROM_DEVICE,
2369 				     IXGBEVF_RX_DMA_ATTR);
2370 
2371 		__page_frag_cache_drain(rx_buffer->page,
2372 					rx_buffer->pagecnt_bias);
2373 
2374 		i++;
2375 		if (i == rx_ring->count)
2376 			i = 0;
2377 	}
2378 
2379 	rx_ring->next_to_alloc = 0;
2380 	rx_ring->next_to_clean = 0;
2381 	rx_ring->next_to_use = 0;
2382 }
2383 
2384 /**
2385  * ixgbevf_clean_tx_ring - Free Tx Buffers
2386  * @tx_ring: ring to be cleaned
2387  **/
2388 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2389 {
2390 	u16 i = tx_ring->next_to_clean;
2391 	struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
2392 
2393 	while (i != tx_ring->next_to_use) {
2394 		union ixgbe_adv_tx_desc *eop_desc, *tx_desc;
2395 
2396 		/* Free all the Tx ring sk_buffs */
2397 		if (ring_is_xdp(tx_ring))
2398 			page_frag_free(tx_buffer->data);
2399 		else
2400 			dev_kfree_skb_any(tx_buffer->skb);
2401 
2402 		/* unmap skb header data */
2403 		dma_unmap_single(tx_ring->dev,
2404 				 dma_unmap_addr(tx_buffer, dma),
2405 				 dma_unmap_len(tx_buffer, len),
2406 				 DMA_TO_DEVICE);
2407 
2408 		/* check for eop_desc to determine the end of the packet */
2409 		eop_desc = tx_buffer->next_to_watch;
2410 		tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2411 
2412 		/* unmap remaining buffers */
2413 		while (tx_desc != eop_desc) {
2414 			tx_buffer++;
2415 			tx_desc++;
2416 			i++;
2417 			if (unlikely(i == tx_ring->count)) {
2418 				i = 0;
2419 				tx_buffer = tx_ring->tx_buffer_info;
2420 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
2421 			}
2422 
2423 			/* unmap any remaining paged data */
2424 			if (dma_unmap_len(tx_buffer, len))
2425 				dma_unmap_page(tx_ring->dev,
2426 					       dma_unmap_addr(tx_buffer, dma),
2427 					       dma_unmap_len(tx_buffer, len),
2428 					       DMA_TO_DEVICE);
2429 		}
2430 
2431 		/* move us one more past the eop_desc for start of next pkt */
2432 		tx_buffer++;
2433 		i++;
2434 		if (unlikely(i == tx_ring->count)) {
2435 			i = 0;
2436 			tx_buffer = tx_ring->tx_buffer_info;
2437 		}
2438 	}
2439 
2440 	/* reset next_to_use and next_to_clean */
2441 	tx_ring->next_to_use = 0;
2442 	tx_ring->next_to_clean = 0;
2443 
2444 }
2445 
2446 /**
2447  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2448  * @adapter: board private structure
2449  **/
2450 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2451 {
2452 	int i;
2453 
2454 	for (i = 0; i < adapter->num_rx_queues; i++)
2455 		ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2456 }
2457 
2458 /**
2459  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2460  * @adapter: board private structure
2461  **/
2462 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2463 {
2464 	int i;
2465 
2466 	for (i = 0; i < adapter->num_tx_queues; i++)
2467 		ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2468 	for (i = 0; i < adapter->num_xdp_queues; i++)
2469 		ixgbevf_clean_tx_ring(adapter->xdp_ring[i]);
2470 }
2471 
2472 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2473 {
2474 	struct net_device *netdev = adapter->netdev;
2475 	struct ixgbe_hw *hw = &adapter->hw;
2476 	int i;
2477 
2478 	/* signal that we are down to the interrupt handler */
2479 	if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2480 		return; /* do nothing if already down */
2481 
2482 	/* disable all enabled Rx queues */
2483 	for (i = 0; i < adapter->num_rx_queues; i++)
2484 		ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2485 
2486 	usleep_range(10000, 20000);
2487 
2488 	netif_tx_stop_all_queues(netdev);
2489 
2490 	/* call carrier off first to avoid false dev_watchdog timeouts */
2491 	netif_carrier_off(netdev);
2492 	netif_tx_disable(netdev);
2493 
2494 	ixgbevf_irq_disable(adapter);
2495 
2496 	ixgbevf_napi_disable_all(adapter);
2497 
2498 	del_timer_sync(&adapter->service_timer);
2499 
2500 	/* disable transmits in the hardware now that interrupts are off */
2501 	for (i = 0; i < adapter->num_tx_queues; i++) {
2502 		u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2503 
2504 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2505 				IXGBE_TXDCTL_SWFLSH);
2506 	}
2507 
2508 	for (i = 0; i < adapter->num_xdp_queues; i++) {
2509 		u8 reg_idx = adapter->xdp_ring[i]->reg_idx;
2510 
2511 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2512 				IXGBE_TXDCTL_SWFLSH);
2513 	}
2514 
2515 	if (!pci_channel_offline(adapter->pdev))
2516 		ixgbevf_reset(adapter);
2517 
2518 	ixgbevf_clean_all_tx_rings(adapter);
2519 	ixgbevf_clean_all_rx_rings(adapter);
2520 }
2521 
2522 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2523 {
2524 	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2525 		msleep(1);
2526 
2527 	ixgbevf_down(adapter);
2528 	pci_set_master(adapter->pdev);
2529 	ixgbevf_up(adapter);
2530 
2531 	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2532 }
2533 
2534 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2535 {
2536 	struct ixgbe_hw *hw = &adapter->hw;
2537 	struct net_device *netdev = adapter->netdev;
2538 
2539 	if (hw->mac.ops.reset_hw(hw)) {
2540 		hw_dbg(hw, "PF still resetting\n");
2541 	} else {
2542 		hw->mac.ops.init_hw(hw);
2543 		ixgbevf_negotiate_api(adapter);
2544 	}
2545 
2546 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2547 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2548 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2549 	}
2550 
2551 	adapter->last_reset = jiffies;
2552 }
2553 
2554 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2555 					int vectors)
2556 {
2557 	int vector_threshold;
2558 
2559 	/* We'll want at least 2 (vector_threshold):
2560 	 * 1) TxQ[0] + RxQ[0] handler
2561 	 * 2) Other (Link Status Change, etc.)
2562 	 */
2563 	vector_threshold = MIN_MSIX_COUNT;
2564 
2565 	/* The more we get, the more we will assign to Tx/Rx Cleanup
2566 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2567 	 * Right now, we simply care about how many we'll get; we'll
2568 	 * set them up later while requesting irq's.
2569 	 */
2570 	vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2571 					vector_threshold, vectors);
2572 
2573 	if (vectors < 0) {
2574 		dev_err(&adapter->pdev->dev,
2575 			"Unable to allocate MSI-X interrupts\n");
2576 		kfree(adapter->msix_entries);
2577 		adapter->msix_entries = NULL;
2578 		return vectors;
2579 	}
2580 
2581 	/* Adjust for only the vectors we'll use, which is minimum
2582 	 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2583 	 * vectors we were allocated.
2584 	 */
2585 	adapter->num_msix_vectors = vectors;
2586 
2587 	return 0;
2588 }
2589 
2590 /**
2591  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2592  * @adapter: board private structure to initialize
2593  *
2594  * This is the top level queue allocation routine.  The order here is very
2595  * important, starting with the "most" number of features turned on at once,
2596  * and ending with the smallest set of features.  This way large combinations
2597  * can be allocated if they're turned on, and smaller combinations are the
2598  * fall through conditions.
2599  *
2600  **/
2601 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2602 {
2603 	struct ixgbe_hw *hw = &adapter->hw;
2604 	unsigned int def_q = 0;
2605 	unsigned int num_tcs = 0;
2606 	int err;
2607 
2608 	/* Start with base case */
2609 	adapter->num_rx_queues = 1;
2610 	adapter->num_tx_queues = 1;
2611 	adapter->num_xdp_queues = 0;
2612 
2613 	spin_lock_bh(&adapter->mbx_lock);
2614 
2615 	/* fetch queue configuration from the PF */
2616 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2617 
2618 	spin_unlock_bh(&adapter->mbx_lock);
2619 
2620 	if (err)
2621 		return;
2622 
2623 	/* we need as many queues as traffic classes */
2624 	if (num_tcs > 1) {
2625 		adapter->num_rx_queues = num_tcs;
2626 	} else {
2627 		u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2628 
2629 		switch (hw->api_version) {
2630 		case ixgbe_mbox_api_11:
2631 		case ixgbe_mbox_api_12:
2632 		case ixgbe_mbox_api_13:
2633 		case ixgbe_mbox_api_14:
2634 			if (adapter->xdp_prog &&
2635 			    hw->mac.max_tx_queues == rss)
2636 				rss = rss > 3 ? 2 : 1;
2637 
2638 			adapter->num_rx_queues = rss;
2639 			adapter->num_tx_queues = rss;
2640 			adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0;
2641 		default:
2642 			break;
2643 		}
2644 	}
2645 }
2646 
2647 /**
2648  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2649  * @adapter: board private structure to initialize
2650  *
2651  * Attempt to configure the interrupts using the best available
2652  * capabilities of the hardware and the kernel.
2653  **/
2654 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2655 {
2656 	int vector, v_budget;
2657 
2658 	/* It's easy to be greedy for MSI-X vectors, but it really
2659 	 * doesn't do us much good if we have a lot more vectors
2660 	 * than CPU's.  So let's be conservative and only ask for
2661 	 * (roughly) the same number of vectors as there are CPU's.
2662 	 * The default is to use pairs of vectors.
2663 	 */
2664 	v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2665 	v_budget = min_t(int, v_budget, num_online_cpus());
2666 	v_budget += NON_Q_VECTORS;
2667 
2668 	adapter->msix_entries = kcalloc(v_budget,
2669 					sizeof(struct msix_entry), GFP_KERNEL);
2670 	if (!adapter->msix_entries)
2671 		return -ENOMEM;
2672 
2673 	for (vector = 0; vector < v_budget; vector++)
2674 		adapter->msix_entries[vector].entry = vector;
2675 
2676 	/* A failure in MSI-X entry allocation isn't fatal, but the VF driver
2677 	 * does not support any other modes, so we will simply fail here. Note
2678 	 * that we clean up the msix_entries pointer else-where.
2679 	 */
2680 	return ixgbevf_acquire_msix_vectors(adapter, v_budget);
2681 }
2682 
2683 static void ixgbevf_add_ring(struct ixgbevf_ring *ring,
2684 			     struct ixgbevf_ring_container *head)
2685 {
2686 	ring->next = head->ring;
2687 	head->ring = ring;
2688 	head->count++;
2689 }
2690 
2691 /**
2692  * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector
2693  * @adapter: board private structure to initialize
2694  * @v_idx: index of vector in adapter struct
2695  * @txr_count: number of Tx rings for q vector
2696  * @txr_idx: index of first Tx ring to assign
2697  * @xdp_count: total number of XDP rings to allocate
2698  * @xdp_idx: index of first XDP ring to allocate
2699  * @rxr_count: number of Rx rings for q vector
2700  * @rxr_idx: index of first Rx ring to assign
2701  *
2702  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
2703  **/
2704 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx,
2705 				  int txr_count, int txr_idx,
2706 				  int xdp_count, int xdp_idx,
2707 				  int rxr_count, int rxr_idx)
2708 {
2709 	struct ixgbevf_q_vector *q_vector;
2710 	int reg_idx = txr_idx + xdp_idx;
2711 	struct ixgbevf_ring *ring;
2712 	int ring_count, size;
2713 
2714 	ring_count = txr_count + xdp_count + rxr_count;
2715 	size = sizeof(*q_vector) + (sizeof(*ring) * ring_count);
2716 
2717 	/* allocate q_vector and rings */
2718 	q_vector = kzalloc(size, GFP_KERNEL);
2719 	if (!q_vector)
2720 		return -ENOMEM;
2721 
2722 	/* initialize NAPI */
2723 	netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64);
2724 
2725 	/* tie q_vector and adapter together */
2726 	adapter->q_vector[v_idx] = q_vector;
2727 	q_vector->adapter = adapter;
2728 	q_vector->v_idx = v_idx;
2729 
2730 	/* initialize pointer to rings */
2731 	ring = q_vector->ring;
2732 
2733 	while (txr_count) {
2734 		/* assign generic ring traits */
2735 		ring->dev = &adapter->pdev->dev;
2736 		ring->netdev = adapter->netdev;
2737 
2738 		/* configure backlink on ring */
2739 		ring->q_vector = q_vector;
2740 
2741 		/* update q_vector Tx values */
2742 		ixgbevf_add_ring(ring, &q_vector->tx);
2743 
2744 		/* apply Tx specific ring traits */
2745 		ring->count = adapter->tx_ring_count;
2746 		ring->queue_index = txr_idx;
2747 		ring->reg_idx = reg_idx;
2748 
2749 		/* assign ring to adapter */
2750 		 adapter->tx_ring[txr_idx] = ring;
2751 
2752 		/* update count and index */
2753 		txr_count--;
2754 		txr_idx++;
2755 		reg_idx++;
2756 
2757 		/* push pointer to next ring */
2758 		ring++;
2759 	}
2760 
2761 	while (xdp_count) {
2762 		/* assign generic ring traits */
2763 		ring->dev = &adapter->pdev->dev;
2764 		ring->netdev = adapter->netdev;
2765 
2766 		/* configure backlink on ring */
2767 		ring->q_vector = q_vector;
2768 
2769 		/* update q_vector Tx values */
2770 		ixgbevf_add_ring(ring, &q_vector->tx);
2771 
2772 		/* apply Tx specific ring traits */
2773 		ring->count = adapter->tx_ring_count;
2774 		ring->queue_index = xdp_idx;
2775 		ring->reg_idx = reg_idx;
2776 		set_ring_xdp(ring);
2777 
2778 		/* assign ring to adapter */
2779 		adapter->xdp_ring[xdp_idx] = ring;
2780 
2781 		/* update count and index */
2782 		xdp_count--;
2783 		xdp_idx++;
2784 		reg_idx++;
2785 
2786 		/* push pointer to next ring */
2787 		ring++;
2788 	}
2789 
2790 	while (rxr_count) {
2791 		/* assign generic ring traits */
2792 		ring->dev = &adapter->pdev->dev;
2793 		ring->netdev = adapter->netdev;
2794 
2795 		/* configure backlink on ring */
2796 		ring->q_vector = q_vector;
2797 
2798 		/* update q_vector Rx values */
2799 		ixgbevf_add_ring(ring, &q_vector->rx);
2800 
2801 		/* apply Rx specific ring traits */
2802 		ring->count = adapter->rx_ring_count;
2803 		ring->queue_index = rxr_idx;
2804 		ring->reg_idx = rxr_idx;
2805 
2806 		/* assign ring to adapter */
2807 		adapter->rx_ring[rxr_idx] = ring;
2808 
2809 		/* update count and index */
2810 		rxr_count--;
2811 		rxr_idx++;
2812 
2813 		/* push pointer to next ring */
2814 		ring++;
2815 	}
2816 
2817 	return 0;
2818 }
2819 
2820 /**
2821  * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector
2822  * @adapter: board private structure to initialize
2823  * @v_idx: index of vector in adapter struct
2824  *
2825  * This function frees the memory allocated to the q_vector.  In addition if
2826  * NAPI is enabled it will delete any references to the NAPI struct prior
2827  * to freeing the q_vector.
2828  **/
2829 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx)
2830 {
2831 	struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx];
2832 	struct ixgbevf_ring *ring;
2833 
2834 	ixgbevf_for_each_ring(ring, q_vector->tx) {
2835 		if (ring_is_xdp(ring))
2836 			adapter->xdp_ring[ring->queue_index] = NULL;
2837 		else
2838 			adapter->tx_ring[ring->queue_index] = NULL;
2839 	}
2840 
2841 	ixgbevf_for_each_ring(ring, q_vector->rx)
2842 		adapter->rx_ring[ring->queue_index] = NULL;
2843 
2844 	adapter->q_vector[v_idx] = NULL;
2845 	netif_napi_del(&q_vector->napi);
2846 
2847 	/* ixgbevf_get_stats() might access the rings on this vector,
2848 	 * we must wait a grace period before freeing it.
2849 	 */
2850 	kfree_rcu(q_vector, rcu);
2851 }
2852 
2853 /**
2854  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2855  * @adapter: board private structure to initialize
2856  *
2857  * We allocate one q_vector per queue interrupt.  If allocation fails we
2858  * return -ENOMEM.
2859  **/
2860 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2861 {
2862 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2863 	int rxr_remaining = adapter->num_rx_queues;
2864 	int txr_remaining = adapter->num_tx_queues;
2865 	int xdp_remaining = adapter->num_xdp_queues;
2866 	int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0;
2867 	int err;
2868 
2869 	if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) {
2870 		for (; rxr_remaining; v_idx++, q_vectors--) {
2871 			int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2872 
2873 			err = ixgbevf_alloc_q_vector(adapter, v_idx,
2874 						     0, 0, 0, 0, rqpv, rxr_idx);
2875 			if (err)
2876 				goto err_out;
2877 
2878 			/* update counts and index */
2879 			rxr_remaining -= rqpv;
2880 			rxr_idx += rqpv;
2881 		}
2882 	}
2883 
2884 	for (; q_vectors; v_idx++, q_vectors--) {
2885 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2886 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors);
2887 		int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors);
2888 
2889 		err = ixgbevf_alloc_q_vector(adapter, v_idx,
2890 					     tqpv, txr_idx,
2891 					     xqpv, xdp_idx,
2892 					     rqpv, rxr_idx);
2893 
2894 		if (err)
2895 			goto err_out;
2896 
2897 		/* update counts and index */
2898 		rxr_remaining -= rqpv;
2899 		rxr_idx += rqpv;
2900 		txr_remaining -= tqpv;
2901 		txr_idx += tqpv;
2902 		xdp_remaining -= xqpv;
2903 		xdp_idx += xqpv;
2904 	}
2905 
2906 	return 0;
2907 
2908 err_out:
2909 	while (v_idx) {
2910 		v_idx--;
2911 		ixgbevf_free_q_vector(adapter, v_idx);
2912 	}
2913 
2914 	return -ENOMEM;
2915 }
2916 
2917 /**
2918  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2919  * @adapter: board private structure to initialize
2920  *
2921  * This function frees the memory allocated to the q_vectors.  In addition if
2922  * NAPI is enabled it will delete any references to the NAPI struct prior
2923  * to freeing the q_vector.
2924  **/
2925 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2926 {
2927 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2928 
2929 	while (q_vectors) {
2930 		q_vectors--;
2931 		ixgbevf_free_q_vector(adapter, q_vectors);
2932 	}
2933 }
2934 
2935 /**
2936  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2937  * @adapter: board private structure
2938  *
2939  **/
2940 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2941 {
2942 	if (!adapter->msix_entries)
2943 		return;
2944 
2945 	pci_disable_msix(adapter->pdev);
2946 	kfree(adapter->msix_entries);
2947 	adapter->msix_entries = NULL;
2948 }
2949 
2950 /**
2951  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2952  * @adapter: board private structure to initialize
2953  *
2954  **/
2955 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2956 {
2957 	int err;
2958 
2959 	/* Number of supported queues */
2960 	ixgbevf_set_num_queues(adapter);
2961 
2962 	err = ixgbevf_set_interrupt_capability(adapter);
2963 	if (err) {
2964 		hw_dbg(&adapter->hw,
2965 		       "Unable to setup interrupt capabilities\n");
2966 		goto err_set_interrupt;
2967 	}
2968 
2969 	err = ixgbevf_alloc_q_vectors(adapter);
2970 	if (err) {
2971 		hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2972 		goto err_alloc_q_vectors;
2973 	}
2974 
2975 	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n",
2976 	       (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled",
2977 	       adapter->num_rx_queues, adapter->num_tx_queues,
2978 	       adapter->num_xdp_queues);
2979 
2980 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2981 
2982 	return 0;
2983 err_alloc_q_vectors:
2984 	ixgbevf_reset_interrupt_capability(adapter);
2985 err_set_interrupt:
2986 	return err;
2987 }
2988 
2989 /**
2990  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2991  * @adapter: board private structure to clear interrupt scheme on
2992  *
2993  * We go through and clear interrupt specific resources and reset the structure
2994  * to pre-load conditions
2995  **/
2996 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2997 {
2998 	adapter->num_tx_queues = 0;
2999 	adapter->num_xdp_queues = 0;
3000 	adapter->num_rx_queues = 0;
3001 
3002 	ixgbevf_free_q_vectors(adapter);
3003 	ixgbevf_reset_interrupt_capability(adapter);
3004 }
3005 
3006 /**
3007  * ixgbevf_sw_init - Initialize general software structures
3008  * @adapter: board private structure to initialize
3009  *
3010  * ixgbevf_sw_init initializes the Adapter private data structure.
3011  * Fields are initialized based on PCI device information and
3012  * OS network device settings (MTU size).
3013  **/
3014 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
3015 {
3016 	struct ixgbe_hw *hw = &adapter->hw;
3017 	struct pci_dev *pdev = adapter->pdev;
3018 	struct net_device *netdev = adapter->netdev;
3019 	int err;
3020 
3021 	/* PCI config space info */
3022 	hw->vendor_id = pdev->vendor;
3023 	hw->device_id = pdev->device;
3024 	hw->revision_id = pdev->revision;
3025 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3026 	hw->subsystem_device_id = pdev->subsystem_device;
3027 
3028 	hw->mbx.ops.init_params(hw);
3029 
3030 	if (hw->mac.type >= ixgbe_mac_X550_vf) {
3031 		err = ixgbevf_init_rss_key(adapter);
3032 		if (err)
3033 			goto out;
3034 	}
3035 
3036 	/* assume legacy case in which PF would only give VF 2 queues */
3037 	hw->mac.max_tx_queues = 2;
3038 	hw->mac.max_rx_queues = 2;
3039 
3040 	/* lock to protect mailbox accesses */
3041 	spin_lock_init(&adapter->mbx_lock);
3042 
3043 	err = hw->mac.ops.reset_hw(hw);
3044 	if (err) {
3045 		dev_info(&pdev->dev,
3046 			 "PF still in reset state.  Is the PF interface up?\n");
3047 	} else {
3048 		err = hw->mac.ops.init_hw(hw);
3049 		if (err) {
3050 			pr_err("init_shared_code failed: %d\n", err);
3051 			goto out;
3052 		}
3053 		ixgbevf_negotiate_api(adapter);
3054 		err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
3055 		if (err)
3056 			dev_info(&pdev->dev, "Error reading MAC address\n");
3057 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
3058 			dev_info(&pdev->dev,
3059 				 "MAC address not assigned by administrator.\n");
3060 		ether_addr_copy(netdev->dev_addr, hw->mac.addr);
3061 	}
3062 
3063 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3064 		dev_info(&pdev->dev, "Assigning random MAC address\n");
3065 		eth_hw_addr_random(netdev);
3066 		ether_addr_copy(hw->mac.addr, netdev->dev_addr);
3067 		ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
3068 	}
3069 
3070 	/* Enable dynamic interrupt throttling rates */
3071 	adapter->rx_itr_setting = 1;
3072 	adapter->tx_itr_setting = 1;
3073 
3074 	/* set default ring sizes */
3075 	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
3076 	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
3077 
3078 	set_bit(__IXGBEVF_DOWN, &adapter->state);
3079 	return 0;
3080 
3081 out:
3082 	return err;
3083 }
3084 
3085 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
3086 	{							\
3087 		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
3088 		if (current_counter < last_counter)		\
3089 			counter += 0x100000000LL;		\
3090 		last_counter = current_counter;			\
3091 		counter &= 0xFFFFFFFF00000000LL;		\
3092 		counter |= current_counter;			\
3093 	}
3094 
3095 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
3096 	{								 \
3097 		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
3098 		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
3099 		u64 current_counter = (current_counter_msb << 32) |	 \
3100 			current_counter_lsb;				 \
3101 		if (current_counter < last_counter)			 \
3102 			counter += 0x1000000000LL;			 \
3103 		last_counter = current_counter;				 \
3104 		counter &= 0xFFFFFFF000000000LL;			 \
3105 		counter |= current_counter;				 \
3106 	}
3107 /**
3108  * ixgbevf_update_stats - Update the board statistics counters.
3109  * @adapter: board private structure
3110  **/
3111 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
3112 {
3113 	struct ixgbe_hw *hw = &adapter->hw;
3114 	u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0;
3115 	u64 alloc_rx_page = 0, hw_csum_rx_error = 0;
3116 	int i;
3117 
3118 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3119 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3120 		return;
3121 
3122 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
3123 				adapter->stats.vfgprc);
3124 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
3125 				adapter->stats.vfgptc);
3126 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
3127 				adapter->stats.last_vfgorc,
3128 				adapter->stats.vfgorc);
3129 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
3130 				adapter->stats.last_vfgotc,
3131 				adapter->stats.vfgotc);
3132 	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
3133 				adapter->stats.vfmprc);
3134 
3135 	for (i = 0;  i  < adapter->num_rx_queues;  i++) {
3136 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
3137 
3138 		hw_csum_rx_error += rx_ring->rx_stats.csum_err;
3139 		alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed;
3140 		alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
3141 		alloc_rx_page += rx_ring->rx_stats.alloc_rx_page;
3142 	}
3143 
3144 	adapter->hw_csum_rx_error = hw_csum_rx_error;
3145 	adapter->alloc_rx_page_failed = alloc_rx_page_failed;
3146 	adapter->alloc_rx_buff_failed = alloc_rx_buff_failed;
3147 	adapter->alloc_rx_page = alloc_rx_page;
3148 }
3149 
3150 /**
3151  * ixgbevf_service_timer - Timer Call-back
3152  * @t: pointer to timer_list struct
3153  **/
3154 static void ixgbevf_service_timer(struct timer_list *t)
3155 {
3156 	struct ixgbevf_adapter *adapter = from_timer(adapter, t,
3157 						     service_timer);
3158 
3159 	/* Reset the timer */
3160 	mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
3161 
3162 	ixgbevf_service_event_schedule(adapter);
3163 }
3164 
3165 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
3166 {
3167 	if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
3168 		return;
3169 
3170 	rtnl_lock();
3171 	/* If we're already down or resetting, just bail */
3172 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3173 	    test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
3174 	    test_bit(__IXGBEVF_RESETTING, &adapter->state)) {
3175 		rtnl_unlock();
3176 		return;
3177 	}
3178 
3179 	adapter->tx_timeout_count++;
3180 
3181 	ixgbevf_reinit_locked(adapter);
3182 	rtnl_unlock();
3183 }
3184 
3185 /**
3186  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
3187  * @adapter: pointer to the device adapter structure
3188  *
3189  * This function serves two purposes.  First it strobes the interrupt lines
3190  * in order to make certain interrupts are occurring.  Secondly it sets the
3191  * bits needed to check for TX hangs.  As a result we should immediately
3192  * determine if a hang has occurred.
3193  **/
3194 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
3195 {
3196 	struct ixgbe_hw *hw = &adapter->hw;
3197 	u32 eics = 0;
3198 	int i;
3199 
3200 	/* If we're down or resetting, just bail */
3201 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3202 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3203 		return;
3204 
3205 	/* Force detection of hung controller */
3206 	if (netif_carrier_ok(adapter->netdev)) {
3207 		for (i = 0; i < adapter->num_tx_queues; i++)
3208 			set_check_for_tx_hang(adapter->tx_ring[i]);
3209 		for (i = 0; i < adapter->num_xdp_queues; i++)
3210 			set_check_for_tx_hang(adapter->xdp_ring[i]);
3211 	}
3212 
3213 	/* get one bit for every active Tx/Rx interrupt vector */
3214 	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
3215 		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
3216 
3217 		if (qv->rx.ring || qv->tx.ring)
3218 			eics |= BIT(i);
3219 	}
3220 
3221 	/* Cause software interrupt to ensure rings are cleaned */
3222 	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
3223 }
3224 
3225 /**
3226  * ixgbevf_watchdog_update_link - update the link status
3227  * @adapter: pointer to the device adapter structure
3228  **/
3229 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
3230 {
3231 	struct ixgbe_hw *hw = &adapter->hw;
3232 	u32 link_speed = adapter->link_speed;
3233 	bool link_up = adapter->link_up;
3234 	s32 err;
3235 
3236 	spin_lock_bh(&adapter->mbx_lock);
3237 
3238 	err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
3239 
3240 	spin_unlock_bh(&adapter->mbx_lock);
3241 
3242 	/* if check for link returns error we will need to reset */
3243 	if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
3244 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
3245 		link_up = false;
3246 	}
3247 
3248 	adapter->link_up = link_up;
3249 	adapter->link_speed = link_speed;
3250 }
3251 
3252 /**
3253  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
3254  *				 print link up message
3255  * @adapter: pointer to the device adapter structure
3256  **/
3257 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
3258 {
3259 	struct net_device *netdev = adapter->netdev;
3260 
3261 	/* only continue if link was previously down */
3262 	if (netif_carrier_ok(netdev))
3263 		return;
3264 
3265 	dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
3266 		 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
3267 		 "10 Gbps" :
3268 		 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
3269 		 "1 Gbps" :
3270 		 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
3271 		 "100 Mbps" :
3272 		 "unknown speed");
3273 
3274 	netif_carrier_on(netdev);
3275 }
3276 
3277 /**
3278  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
3279  *				   print link down message
3280  * @adapter: pointer to the adapter structure
3281  **/
3282 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
3283 {
3284 	struct net_device *netdev = adapter->netdev;
3285 
3286 	adapter->link_speed = 0;
3287 
3288 	/* only continue if link was up previously */
3289 	if (!netif_carrier_ok(netdev))
3290 		return;
3291 
3292 	dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
3293 
3294 	netif_carrier_off(netdev);
3295 }
3296 
3297 /**
3298  * ixgbevf_watchdog_subtask - worker thread to bring link up
3299  * @adapter: board private structure
3300  **/
3301 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
3302 {
3303 	/* if interface is down do nothing */
3304 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3305 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3306 		return;
3307 
3308 	ixgbevf_watchdog_update_link(adapter);
3309 
3310 	if (adapter->link_up)
3311 		ixgbevf_watchdog_link_is_up(adapter);
3312 	else
3313 		ixgbevf_watchdog_link_is_down(adapter);
3314 
3315 	ixgbevf_update_stats(adapter);
3316 }
3317 
3318 /**
3319  * ixgbevf_service_task - manages and runs subtasks
3320  * @work: pointer to work_struct containing our data
3321  **/
3322 static void ixgbevf_service_task(struct work_struct *work)
3323 {
3324 	struct ixgbevf_adapter *adapter = container_of(work,
3325 						       struct ixgbevf_adapter,
3326 						       service_task);
3327 	struct ixgbe_hw *hw = &adapter->hw;
3328 
3329 	if (IXGBE_REMOVED(hw->hw_addr)) {
3330 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
3331 			rtnl_lock();
3332 			ixgbevf_down(adapter);
3333 			rtnl_unlock();
3334 		}
3335 		return;
3336 	}
3337 
3338 	ixgbevf_queue_reset_subtask(adapter);
3339 	ixgbevf_reset_subtask(adapter);
3340 	ixgbevf_watchdog_subtask(adapter);
3341 	ixgbevf_check_hang_subtask(adapter);
3342 
3343 	ixgbevf_service_event_complete(adapter);
3344 }
3345 
3346 /**
3347  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
3348  * @tx_ring: Tx descriptor ring for a specific queue
3349  *
3350  * Free all transmit software resources
3351  **/
3352 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
3353 {
3354 	ixgbevf_clean_tx_ring(tx_ring);
3355 
3356 	vfree(tx_ring->tx_buffer_info);
3357 	tx_ring->tx_buffer_info = NULL;
3358 
3359 	/* if not set, then don't free */
3360 	if (!tx_ring->desc)
3361 		return;
3362 
3363 	dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
3364 			  tx_ring->dma);
3365 
3366 	tx_ring->desc = NULL;
3367 }
3368 
3369 /**
3370  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
3371  * @adapter: board private structure
3372  *
3373  * Free all transmit software resources
3374  **/
3375 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
3376 {
3377 	int i;
3378 
3379 	for (i = 0; i < adapter->num_tx_queues; i++)
3380 		if (adapter->tx_ring[i]->desc)
3381 			ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3382 	for (i = 0; i < adapter->num_xdp_queues; i++)
3383 		if (adapter->xdp_ring[i]->desc)
3384 			ixgbevf_free_tx_resources(adapter->xdp_ring[i]);
3385 }
3386 
3387 /**
3388  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
3389  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
3390  *
3391  * Return 0 on success, negative on failure
3392  **/
3393 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
3394 {
3395 	struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
3396 	int size;
3397 
3398 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
3399 	tx_ring->tx_buffer_info = vmalloc(size);
3400 	if (!tx_ring->tx_buffer_info)
3401 		goto err;
3402 
3403 	u64_stats_init(&tx_ring->syncp);
3404 
3405 	/* round up to nearest 4K */
3406 	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
3407 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3408 
3409 	tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3410 					   &tx_ring->dma, GFP_KERNEL);
3411 	if (!tx_ring->desc)
3412 		goto err;
3413 
3414 	return 0;
3415 
3416 err:
3417 	vfree(tx_ring->tx_buffer_info);
3418 	tx_ring->tx_buffer_info = NULL;
3419 	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3420 	return -ENOMEM;
3421 }
3422 
3423 /**
3424  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3425  * @adapter: board private structure
3426  *
3427  * If this function returns with an error, then it's possible one or
3428  * more of the rings is populated (while the rest are not).  It is the
3429  * callers duty to clean those orphaned rings.
3430  *
3431  * Return 0 on success, negative on failure
3432  **/
3433 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3434 {
3435 	int i, j = 0, err = 0;
3436 
3437 	for (i = 0; i < adapter->num_tx_queues; i++) {
3438 		err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3439 		if (!err)
3440 			continue;
3441 		hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3442 		goto err_setup_tx;
3443 	}
3444 
3445 	for (j = 0; j < adapter->num_xdp_queues; j++) {
3446 		err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]);
3447 		if (!err)
3448 			continue;
3449 		hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j);
3450 		goto err_setup_tx;
3451 	}
3452 
3453 	return 0;
3454 err_setup_tx:
3455 	/* rewind the index freeing the rings as we go */
3456 	while (j--)
3457 		ixgbevf_free_tx_resources(adapter->xdp_ring[j]);
3458 	while (i--)
3459 		ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3460 
3461 	return err;
3462 }
3463 
3464 /**
3465  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3466  * @adapter: board private structure
3467  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3468  *
3469  * Returns 0 on success, negative on failure
3470  **/
3471 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
3472 			       struct ixgbevf_ring *rx_ring)
3473 {
3474 	int size;
3475 
3476 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3477 	rx_ring->rx_buffer_info = vmalloc(size);
3478 	if (!rx_ring->rx_buffer_info)
3479 		goto err;
3480 
3481 	u64_stats_init(&rx_ring->syncp);
3482 
3483 	/* Round up to nearest 4K */
3484 	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3485 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3486 
3487 	rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3488 					   &rx_ring->dma, GFP_KERNEL);
3489 
3490 	if (!rx_ring->desc)
3491 		goto err;
3492 
3493 	/* XDP RX-queue info */
3494 	if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev,
3495 			     rx_ring->queue_index, 0) < 0)
3496 		goto err;
3497 
3498 	rx_ring->xdp_prog = adapter->xdp_prog;
3499 
3500 	return 0;
3501 err:
3502 	vfree(rx_ring->rx_buffer_info);
3503 	rx_ring->rx_buffer_info = NULL;
3504 	dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3505 	return -ENOMEM;
3506 }
3507 
3508 /**
3509  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3510  * @adapter: board private structure
3511  *
3512  * If this function returns with an error, then it's possible one or
3513  * more of the rings is populated (while the rest are not).  It is the
3514  * callers duty to clean those orphaned rings.
3515  *
3516  * Return 0 on success, negative on failure
3517  **/
3518 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3519 {
3520 	int i, err = 0;
3521 
3522 	for (i = 0; i < adapter->num_rx_queues; i++) {
3523 		err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]);
3524 		if (!err)
3525 			continue;
3526 		hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3527 		goto err_setup_rx;
3528 	}
3529 
3530 	return 0;
3531 err_setup_rx:
3532 	/* rewind the index freeing the rings as we go */
3533 	while (i--)
3534 		ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3535 	return err;
3536 }
3537 
3538 /**
3539  * ixgbevf_free_rx_resources - Free Rx Resources
3540  * @rx_ring: ring to clean the resources from
3541  *
3542  * Free all receive software resources
3543  **/
3544 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3545 {
3546 	ixgbevf_clean_rx_ring(rx_ring);
3547 
3548 	rx_ring->xdp_prog = NULL;
3549 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
3550 	vfree(rx_ring->rx_buffer_info);
3551 	rx_ring->rx_buffer_info = NULL;
3552 
3553 	dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3554 			  rx_ring->dma);
3555 
3556 	rx_ring->desc = NULL;
3557 }
3558 
3559 /**
3560  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3561  * @adapter: board private structure
3562  *
3563  * Free all receive software resources
3564  **/
3565 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3566 {
3567 	int i;
3568 
3569 	for (i = 0; i < adapter->num_rx_queues; i++)
3570 		if (adapter->rx_ring[i]->desc)
3571 			ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3572 }
3573 
3574 /**
3575  * ixgbevf_open - Called when a network interface is made active
3576  * @netdev: network interface device structure
3577  *
3578  * Returns 0 on success, negative value on failure
3579  *
3580  * The open entry point is called when a network interface is made
3581  * active by the system (IFF_UP).  At this point all resources needed
3582  * for transmit and receive operations are allocated, the interrupt
3583  * handler is registered with the OS, the watchdog timer is started,
3584  * and the stack is notified that the interface is ready.
3585  **/
3586 int ixgbevf_open(struct net_device *netdev)
3587 {
3588 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3589 	struct ixgbe_hw *hw = &adapter->hw;
3590 	int err;
3591 
3592 	/* A previous failure to open the device because of a lack of
3593 	 * available MSIX vector resources may have reset the number
3594 	 * of msix vectors variable to zero.  The only way to recover
3595 	 * is to unload/reload the driver and hope that the system has
3596 	 * been able to recover some MSIX vector resources.
3597 	 */
3598 	if (!adapter->num_msix_vectors)
3599 		return -ENOMEM;
3600 
3601 	if (hw->adapter_stopped) {
3602 		ixgbevf_reset(adapter);
3603 		/* if adapter is still stopped then PF isn't up and
3604 		 * the VF can't start.
3605 		 */
3606 		if (hw->adapter_stopped) {
3607 			err = IXGBE_ERR_MBX;
3608 			pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3609 			goto err_setup_reset;
3610 		}
3611 	}
3612 
3613 	/* disallow open during test */
3614 	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3615 		return -EBUSY;
3616 
3617 	netif_carrier_off(netdev);
3618 
3619 	/* allocate transmit descriptors */
3620 	err = ixgbevf_setup_all_tx_resources(adapter);
3621 	if (err)
3622 		goto err_setup_tx;
3623 
3624 	/* allocate receive descriptors */
3625 	err = ixgbevf_setup_all_rx_resources(adapter);
3626 	if (err)
3627 		goto err_setup_rx;
3628 
3629 	ixgbevf_configure(adapter);
3630 
3631 	err = ixgbevf_request_irq(adapter);
3632 	if (err)
3633 		goto err_req_irq;
3634 
3635 	/* Notify the stack of the actual queue counts. */
3636 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3637 	if (err)
3638 		goto err_set_queues;
3639 
3640 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3641 	if (err)
3642 		goto err_set_queues;
3643 
3644 	ixgbevf_up_complete(adapter);
3645 
3646 	return 0;
3647 
3648 err_set_queues:
3649 	ixgbevf_free_irq(adapter);
3650 err_req_irq:
3651 	ixgbevf_free_all_rx_resources(adapter);
3652 err_setup_rx:
3653 	ixgbevf_free_all_tx_resources(adapter);
3654 err_setup_tx:
3655 	ixgbevf_reset(adapter);
3656 err_setup_reset:
3657 
3658 	return err;
3659 }
3660 
3661 /**
3662  * ixgbevf_close_suspend - actions necessary to both suspend and close flows
3663  * @adapter: the private adapter struct
3664  *
3665  * This function should contain the necessary work common to both suspending
3666  * and closing of the device.
3667  */
3668 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter)
3669 {
3670 	ixgbevf_down(adapter);
3671 	ixgbevf_free_irq(adapter);
3672 	ixgbevf_free_all_tx_resources(adapter);
3673 	ixgbevf_free_all_rx_resources(adapter);
3674 }
3675 
3676 /**
3677  * ixgbevf_close - Disables a network interface
3678  * @netdev: network interface device structure
3679  *
3680  * Returns 0, this is not allowed to fail
3681  *
3682  * The close entry point is called when an interface is de-activated
3683  * by the OS.  The hardware is still under the drivers control, but
3684  * needs to be disabled.  A global MAC reset is issued to stop the
3685  * hardware, and all transmit and receive resources are freed.
3686  **/
3687 int ixgbevf_close(struct net_device *netdev)
3688 {
3689 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3690 
3691 	if (netif_device_present(netdev))
3692 		ixgbevf_close_suspend(adapter);
3693 
3694 	return 0;
3695 }
3696 
3697 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3698 {
3699 	struct net_device *dev = adapter->netdev;
3700 
3701 	if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3702 				&adapter->state))
3703 		return;
3704 
3705 	/* if interface is down do nothing */
3706 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3707 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3708 		return;
3709 
3710 	/* Hardware has to reinitialize queues and interrupts to
3711 	 * match packet buffer alignment. Unfortunately, the
3712 	 * hardware is not flexible enough to do this dynamically.
3713 	 */
3714 	rtnl_lock();
3715 
3716 	if (netif_running(dev))
3717 		ixgbevf_close(dev);
3718 
3719 	ixgbevf_clear_interrupt_scheme(adapter);
3720 	ixgbevf_init_interrupt_scheme(adapter);
3721 
3722 	if (netif_running(dev))
3723 		ixgbevf_open(dev);
3724 
3725 	rtnl_unlock();
3726 }
3727 
3728 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3729 				u32 vlan_macip_lens, u32 fceof_saidx,
3730 				u32 type_tucmd, u32 mss_l4len_idx)
3731 {
3732 	struct ixgbe_adv_tx_context_desc *context_desc;
3733 	u16 i = tx_ring->next_to_use;
3734 
3735 	context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3736 
3737 	i++;
3738 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3739 
3740 	/* set bits to identify this as an advanced context descriptor */
3741 	type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3742 
3743 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
3744 	context_desc->fceof_saidx	= cpu_to_le32(fceof_saidx);
3745 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
3746 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
3747 }
3748 
3749 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3750 		       struct ixgbevf_tx_buffer *first,
3751 		       u8 *hdr_len,
3752 		       struct ixgbevf_ipsec_tx_data *itd)
3753 {
3754 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3755 	struct sk_buff *skb = first->skb;
3756 	union {
3757 		struct iphdr *v4;
3758 		struct ipv6hdr *v6;
3759 		unsigned char *hdr;
3760 	} ip;
3761 	union {
3762 		struct tcphdr *tcp;
3763 		unsigned char *hdr;
3764 	} l4;
3765 	u32 paylen, l4_offset;
3766 	u32 fceof_saidx = 0;
3767 	int err;
3768 
3769 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3770 		return 0;
3771 
3772 	if (!skb_is_gso(skb))
3773 		return 0;
3774 
3775 	err = skb_cow_head(skb, 0);
3776 	if (err < 0)
3777 		return err;
3778 
3779 	if (eth_p_mpls(first->protocol))
3780 		ip.hdr = skb_inner_network_header(skb);
3781 	else
3782 		ip.hdr = skb_network_header(skb);
3783 	l4.hdr = skb_checksum_start(skb);
3784 
3785 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3786 	type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3787 
3788 	/* initialize outer IP header fields */
3789 	if (ip.v4->version == 4) {
3790 		unsigned char *csum_start = skb_checksum_start(skb);
3791 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3792 		int len = csum_start - trans_start;
3793 
3794 		/* IP header will have to cancel out any data that
3795 		 * is not a part of the outer IP header, so set to
3796 		 * a reverse csum if needed, else init check to 0.
3797 		 */
3798 		ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ?
3799 					   csum_fold(csum_partial(trans_start,
3800 								  len, 0)) : 0;
3801 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3802 
3803 		ip.v4->tot_len = 0;
3804 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3805 				   IXGBE_TX_FLAGS_CSUM |
3806 				   IXGBE_TX_FLAGS_IPV4;
3807 	} else {
3808 		ip.v6->payload_len = 0;
3809 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3810 				   IXGBE_TX_FLAGS_CSUM;
3811 	}
3812 
3813 	/* determine offset of inner transport header */
3814 	l4_offset = l4.hdr - skb->data;
3815 
3816 	/* compute length of segmentation header */
3817 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3818 
3819 	/* remove payload length from inner checksum */
3820 	paylen = skb->len - l4_offset;
3821 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
3822 
3823 	/* update gso size and bytecount with header size */
3824 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3825 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3826 
3827 	/* mss_l4len_id: use 1 as index for TSO */
3828 	mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3829 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3830 	mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3831 
3832 	fceof_saidx |= itd->pfsa;
3833 	type_tucmd |= itd->flags | itd->trailer_len;
3834 
3835 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3836 	vlan_macip_lens = l4.hdr - ip.hdr;
3837 	vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3838 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3839 
3840 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd,
3841 			    mss_l4len_idx);
3842 
3843 	return 1;
3844 }
3845 
3846 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb)
3847 {
3848 	unsigned int offset = 0;
3849 
3850 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
3851 
3852 	return offset == skb_checksum_start_offset(skb);
3853 }
3854 
3855 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3856 			    struct ixgbevf_tx_buffer *first,
3857 			    struct ixgbevf_ipsec_tx_data *itd)
3858 {
3859 	struct sk_buff *skb = first->skb;
3860 	u32 vlan_macip_lens = 0;
3861 	u32 fceof_saidx = 0;
3862 	u32 type_tucmd = 0;
3863 
3864 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3865 		goto no_csum;
3866 
3867 	switch (skb->csum_offset) {
3868 	case offsetof(struct tcphdr, check):
3869 		type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3870 		fallthrough;
3871 	case offsetof(struct udphdr, check):
3872 		break;
3873 	case offsetof(struct sctphdr, checksum):
3874 		/* validate that this is actually an SCTP request */
3875 		if (((first->protocol == htons(ETH_P_IP)) &&
3876 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
3877 		    ((first->protocol == htons(ETH_P_IPV6)) &&
3878 		     ixgbevf_ipv6_csum_is_sctp(skb))) {
3879 			type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3880 			break;
3881 		}
3882 		fallthrough;
3883 	default:
3884 		skb_checksum_help(skb);
3885 		goto no_csum;
3886 	}
3887 
3888 	if (first->protocol == htons(ETH_P_IP))
3889 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3890 
3891 	/* update TX checksum flag */
3892 	first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3893 	vlan_macip_lens = skb_checksum_start_offset(skb) -
3894 			  skb_network_offset(skb);
3895 no_csum:
3896 	/* vlan_macip_lens: MACLEN, VLAN tag */
3897 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3898 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3899 
3900 	fceof_saidx |= itd->pfsa;
3901 	type_tucmd |= itd->flags | itd->trailer_len;
3902 
3903 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3904 			    fceof_saidx, type_tucmd, 0);
3905 }
3906 
3907 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3908 {
3909 	/* set type for advanced descriptor with frame checksum insertion */
3910 	__le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3911 				      IXGBE_ADVTXD_DCMD_IFCS |
3912 				      IXGBE_ADVTXD_DCMD_DEXT);
3913 
3914 	/* set HW VLAN bit if VLAN is present */
3915 	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3916 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3917 
3918 	/* set segmentation enable bits for TSO/FSO */
3919 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3920 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3921 
3922 	return cmd_type;
3923 }
3924 
3925 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3926 				     u32 tx_flags, unsigned int paylen)
3927 {
3928 	__le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3929 
3930 	/* enable L4 checksum for TSO and TX checksum offload */
3931 	if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3932 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3933 
3934 	/* enble IPv4 checksum for TSO */
3935 	if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3936 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3937 
3938 	/* enable IPsec */
3939 	if (tx_flags & IXGBE_TX_FLAGS_IPSEC)
3940 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC);
3941 
3942 	/* use index 1 context for TSO/FSO/FCOE/IPSEC */
3943 	if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC))
3944 		olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3945 
3946 	/* Check Context must be set if Tx switch is enabled, which it
3947 	 * always is for case where virtual functions are running
3948 	 */
3949 	olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3950 
3951 	tx_desc->read.olinfo_status = olinfo_status;
3952 }
3953 
3954 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3955 			   struct ixgbevf_tx_buffer *first,
3956 			   const u8 hdr_len)
3957 {
3958 	struct sk_buff *skb = first->skb;
3959 	struct ixgbevf_tx_buffer *tx_buffer;
3960 	union ixgbe_adv_tx_desc *tx_desc;
3961 	skb_frag_t *frag;
3962 	dma_addr_t dma;
3963 	unsigned int data_len, size;
3964 	u32 tx_flags = first->tx_flags;
3965 	__le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3966 	u16 i = tx_ring->next_to_use;
3967 
3968 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3969 
3970 	ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
3971 
3972 	size = skb_headlen(skb);
3973 	data_len = skb->data_len;
3974 
3975 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3976 
3977 	tx_buffer = first;
3978 
3979 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3980 		if (dma_mapping_error(tx_ring->dev, dma))
3981 			goto dma_error;
3982 
3983 		/* record length, and DMA address */
3984 		dma_unmap_len_set(tx_buffer, len, size);
3985 		dma_unmap_addr_set(tx_buffer, dma, dma);
3986 
3987 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3988 
3989 		while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3990 			tx_desc->read.cmd_type_len =
3991 				cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3992 
3993 			i++;
3994 			tx_desc++;
3995 			if (i == tx_ring->count) {
3996 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3997 				i = 0;
3998 			}
3999 			tx_desc->read.olinfo_status = 0;
4000 
4001 			dma += IXGBE_MAX_DATA_PER_TXD;
4002 			size -= IXGBE_MAX_DATA_PER_TXD;
4003 
4004 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4005 		}
4006 
4007 		if (likely(!data_len))
4008 			break;
4009 
4010 		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
4011 
4012 		i++;
4013 		tx_desc++;
4014 		if (i == tx_ring->count) {
4015 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
4016 			i = 0;
4017 		}
4018 		tx_desc->read.olinfo_status = 0;
4019 
4020 		size = skb_frag_size(frag);
4021 		data_len -= size;
4022 
4023 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
4024 				       DMA_TO_DEVICE);
4025 
4026 		tx_buffer = &tx_ring->tx_buffer_info[i];
4027 	}
4028 
4029 	/* write last descriptor with RS and EOP bits */
4030 	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
4031 	tx_desc->read.cmd_type_len = cmd_type;
4032 
4033 	/* set the timestamp */
4034 	first->time_stamp = jiffies;
4035 
4036 	skb_tx_timestamp(skb);
4037 
4038 	/* Force memory writes to complete before letting h/w know there
4039 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4040 	 * memory model archs, such as IA-64).
4041 	 *
4042 	 * We also need this memory barrier (wmb) to make certain all of the
4043 	 * status bits have been updated before next_to_watch is written.
4044 	 */
4045 	wmb();
4046 
4047 	/* set next_to_watch value indicating a packet is present */
4048 	first->next_to_watch = tx_desc;
4049 
4050 	i++;
4051 	if (i == tx_ring->count)
4052 		i = 0;
4053 
4054 	tx_ring->next_to_use = i;
4055 
4056 	/* notify HW of packet */
4057 	ixgbevf_write_tail(tx_ring, i);
4058 
4059 	return;
4060 dma_error:
4061 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4062 	tx_buffer = &tx_ring->tx_buffer_info[i];
4063 
4064 	/* clear dma mappings for failed tx_buffer_info map */
4065 	while (tx_buffer != first) {
4066 		if (dma_unmap_len(tx_buffer, len))
4067 			dma_unmap_page(tx_ring->dev,
4068 				       dma_unmap_addr(tx_buffer, dma),
4069 				       dma_unmap_len(tx_buffer, len),
4070 				       DMA_TO_DEVICE);
4071 		dma_unmap_len_set(tx_buffer, len, 0);
4072 
4073 		if (i-- == 0)
4074 			i += tx_ring->count;
4075 		tx_buffer = &tx_ring->tx_buffer_info[i];
4076 	}
4077 
4078 	if (dma_unmap_len(tx_buffer, len))
4079 		dma_unmap_single(tx_ring->dev,
4080 				 dma_unmap_addr(tx_buffer, dma),
4081 				 dma_unmap_len(tx_buffer, len),
4082 				 DMA_TO_DEVICE);
4083 	dma_unmap_len_set(tx_buffer, len, 0);
4084 
4085 	dev_kfree_skb_any(tx_buffer->skb);
4086 	tx_buffer->skb = NULL;
4087 
4088 	tx_ring->next_to_use = i;
4089 }
4090 
4091 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4092 {
4093 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
4094 	/* Herbert's original patch had:
4095 	 *  smp_mb__after_netif_stop_queue();
4096 	 * but since that doesn't exist yet, just open code it.
4097 	 */
4098 	smp_mb();
4099 
4100 	/* We need to check again in a case another CPU has just
4101 	 * made room available.
4102 	 */
4103 	if (likely(ixgbevf_desc_unused(tx_ring) < size))
4104 		return -EBUSY;
4105 
4106 	/* A reprieve! - use start_queue because it doesn't call schedule */
4107 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
4108 	++tx_ring->tx_stats.restart_queue;
4109 
4110 	return 0;
4111 }
4112 
4113 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4114 {
4115 	if (likely(ixgbevf_desc_unused(tx_ring) >= size))
4116 		return 0;
4117 	return __ixgbevf_maybe_stop_tx(tx_ring, size);
4118 }
4119 
4120 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb,
4121 				   struct ixgbevf_ring *tx_ring)
4122 {
4123 	struct ixgbevf_tx_buffer *first;
4124 	int tso;
4125 	u32 tx_flags = 0;
4126 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4127 	struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 };
4128 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4129 	unsigned short f;
4130 #endif
4131 	u8 hdr_len = 0;
4132 	u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
4133 
4134 	if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
4135 		dev_kfree_skb_any(skb);
4136 		return NETDEV_TX_OK;
4137 	}
4138 
4139 	/* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
4140 	 *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
4141 	 *       + 2 desc gap to keep tail from touching head,
4142 	 *       + 1 desc for context descriptor,
4143 	 * otherwise try next time
4144 	 */
4145 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4146 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
4147 		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
4148 
4149 		count += TXD_USE_COUNT(skb_frag_size(frag));
4150 	}
4151 #else
4152 	count += skb_shinfo(skb)->nr_frags;
4153 #endif
4154 	if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
4155 		tx_ring->tx_stats.tx_busy++;
4156 		return NETDEV_TX_BUSY;
4157 	}
4158 
4159 	/* record the location of the first descriptor for this packet */
4160 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4161 	first->skb = skb;
4162 	first->bytecount = skb->len;
4163 	first->gso_segs = 1;
4164 
4165 	if (skb_vlan_tag_present(skb)) {
4166 		tx_flags |= skb_vlan_tag_get(skb);
4167 		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
4168 		tx_flags |= IXGBE_TX_FLAGS_VLAN;
4169 	}
4170 
4171 	/* record initial flags and protocol */
4172 	first->tx_flags = tx_flags;
4173 	first->protocol = vlan_get_protocol(skb);
4174 
4175 #ifdef CONFIG_IXGBEVF_IPSEC
4176 	if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx))
4177 		goto out_drop;
4178 #endif
4179 	tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx);
4180 	if (tso < 0)
4181 		goto out_drop;
4182 	else if (!tso)
4183 		ixgbevf_tx_csum(tx_ring, first, &ipsec_tx);
4184 
4185 	ixgbevf_tx_map(tx_ring, first, hdr_len);
4186 
4187 	ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
4188 
4189 	return NETDEV_TX_OK;
4190 
4191 out_drop:
4192 	dev_kfree_skb_any(first->skb);
4193 	first->skb = NULL;
4194 
4195 	return NETDEV_TX_OK;
4196 }
4197 
4198 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4199 {
4200 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4201 	struct ixgbevf_ring *tx_ring;
4202 
4203 	if (skb->len <= 0) {
4204 		dev_kfree_skb_any(skb);
4205 		return NETDEV_TX_OK;
4206 	}
4207 
4208 	/* The minimum packet size for olinfo paylen is 17 so pad the skb
4209 	 * in order to meet this minimum size requirement.
4210 	 */
4211 	if (skb->len < 17) {
4212 		if (skb_padto(skb, 17))
4213 			return NETDEV_TX_OK;
4214 		skb->len = 17;
4215 	}
4216 
4217 	tx_ring = adapter->tx_ring[skb->queue_mapping];
4218 	return ixgbevf_xmit_frame_ring(skb, tx_ring);
4219 }
4220 
4221 /**
4222  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
4223  * @netdev: network interface device structure
4224  * @p: pointer to an address structure
4225  *
4226  * Returns 0 on success, negative on failure
4227  **/
4228 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
4229 {
4230 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4231 	struct ixgbe_hw *hw = &adapter->hw;
4232 	struct sockaddr *addr = p;
4233 	int err;
4234 
4235 	if (!is_valid_ether_addr(addr->sa_data))
4236 		return -EADDRNOTAVAIL;
4237 
4238 	spin_lock_bh(&adapter->mbx_lock);
4239 
4240 	err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
4241 
4242 	spin_unlock_bh(&adapter->mbx_lock);
4243 
4244 	if (err)
4245 		return -EPERM;
4246 
4247 	ether_addr_copy(hw->mac.addr, addr->sa_data);
4248 	ether_addr_copy(hw->mac.perm_addr, addr->sa_data);
4249 	ether_addr_copy(netdev->dev_addr, addr->sa_data);
4250 
4251 	return 0;
4252 }
4253 
4254 /**
4255  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
4256  * @netdev: network interface device structure
4257  * @new_mtu: new value for maximum frame size
4258  *
4259  * Returns 0 on success, negative on failure
4260  **/
4261 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
4262 {
4263 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4264 	struct ixgbe_hw *hw = &adapter->hw;
4265 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4266 	int ret;
4267 
4268 	/* prevent MTU being changed to a size unsupported by XDP */
4269 	if (adapter->xdp_prog) {
4270 		dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n");
4271 		return -EPERM;
4272 	}
4273 
4274 	spin_lock_bh(&adapter->mbx_lock);
4275 	/* notify the PF of our intent to use this size of frame */
4276 	ret = hw->mac.ops.set_rlpml(hw, max_frame);
4277 	spin_unlock_bh(&adapter->mbx_lock);
4278 	if (ret)
4279 		return -EINVAL;
4280 
4281 	hw_dbg(hw, "changing MTU from %d to %d\n",
4282 	       netdev->mtu, new_mtu);
4283 
4284 	/* must set new MTU before calling down or up */
4285 	netdev->mtu = new_mtu;
4286 
4287 	if (netif_running(netdev))
4288 		ixgbevf_reinit_locked(adapter);
4289 
4290 	return 0;
4291 }
4292 
4293 static int __maybe_unused ixgbevf_suspend(struct device *dev_d)
4294 {
4295 	struct net_device *netdev = dev_get_drvdata(dev_d);
4296 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4297 
4298 	rtnl_lock();
4299 	netif_device_detach(netdev);
4300 
4301 	if (netif_running(netdev))
4302 		ixgbevf_close_suspend(adapter);
4303 
4304 	ixgbevf_clear_interrupt_scheme(adapter);
4305 	rtnl_unlock();
4306 
4307 	return 0;
4308 }
4309 
4310 static int __maybe_unused ixgbevf_resume(struct device *dev_d)
4311 {
4312 	struct pci_dev *pdev = to_pci_dev(dev_d);
4313 	struct net_device *netdev = pci_get_drvdata(pdev);
4314 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4315 	u32 err;
4316 
4317 	adapter->hw.hw_addr = adapter->io_addr;
4318 	smp_mb__before_atomic();
4319 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4320 	pci_set_master(pdev);
4321 
4322 	ixgbevf_reset(adapter);
4323 
4324 	rtnl_lock();
4325 	err = ixgbevf_init_interrupt_scheme(adapter);
4326 	if (!err && netif_running(netdev))
4327 		err = ixgbevf_open(netdev);
4328 	rtnl_unlock();
4329 	if (err)
4330 		return err;
4331 
4332 	netif_device_attach(netdev);
4333 
4334 	return err;
4335 }
4336 
4337 static void ixgbevf_shutdown(struct pci_dev *pdev)
4338 {
4339 	ixgbevf_suspend(&pdev->dev);
4340 }
4341 
4342 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats,
4343 				      const struct ixgbevf_ring *ring)
4344 {
4345 	u64 bytes, packets;
4346 	unsigned int start;
4347 
4348 	if (ring) {
4349 		do {
4350 			start = u64_stats_fetch_begin_irq(&ring->syncp);
4351 			bytes = ring->stats.bytes;
4352 			packets = ring->stats.packets;
4353 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4354 		stats->tx_bytes += bytes;
4355 		stats->tx_packets += packets;
4356 	}
4357 }
4358 
4359 static void ixgbevf_get_stats(struct net_device *netdev,
4360 			      struct rtnl_link_stats64 *stats)
4361 {
4362 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4363 	unsigned int start;
4364 	u64 bytes, packets;
4365 	const struct ixgbevf_ring *ring;
4366 	int i;
4367 
4368 	ixgbevf_update_stats(adapter);
4369 
4370 	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
4371 
4372 	rcu_read_lock();
4373 	for (i = 0; i < adapter->num_rx_queues; i++) {
4374 		ring = adapter->rx_ring[i];
4375 		do {
4376 			start = u64_stats_fetch_begin_irq(&ring->syncp);
4377 			bytes = ring->stats.bytes;
4378 			packets = ring->stats.packets;
4379 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4380 		stats->rx_bytes += bytes;
4381 		stats->rx_packets += packets;
4382 	}
4383 
4384 	for (i = 0; i < adapter->num_tx_queues; i++) {
4385 		ring = adapter->tx_ring[i];
4386 		ixgbevf_get_tx_ring_stats(stats, ring);
4387 	}
4388 
4389 	for (i = 0; i < adapter->num_xdp_queues; i++) {
4390 		ring = adapter->xdp_ring[i];
4391 		ixgbevf_get_tx_ring_stats(stats, ring);
4392 	}
4393 	rcu_read_unlock();
4394 }
4395 
4396 #define IXGBEVF_MAX_MAC_HDR_LEN		127
4397 #define IXGBEVF_MAX_NETWORK_HDR_LEN	511
4398 
4399 static netdev_features_t
4400 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
4401 		       netdev_features_t features)
4402 {
4403 	unsigned int network_hdr_len, mac_hdr_len;
4404 
4405 	/* Make certain the headers can be described by a context descriptor */
4406 	mac_hdr_len = skb_network_header(skb) - skb->data;
4407 	if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
4408 		return features & ~(NETIF_F_HW_CSUM |
4409 				    NETIF_F_SCTP_CRC |
4410 				    NETIF_F_HW_VLAN_CTAG_TX |
4411 				    NETIF_F_TSO |
4412 				    NETIF_F_TSO6);
4413 
4414 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4415 	if (unlikely(network_hdr_len >  IXGBEVF_MAX_NETWORK_HDR_LEN))
4416 		return features & ~(NETIF_F_HW_CSUM |
4417 				    NETIF_F_SCTP_CRC |
4418 				    NETIF_F_TSO |
4419 				    NETIF_F_TSO6);
4420 
4421 	/* We can only support IPV4 TSO in tunnels if we can mangle the
4422 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4423 	 */
4424 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4425 		features &= ~NETIF_F_TSO;
4426 
4427 	return features;
4428 }
4429 
4430 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog)
4431 {
4432 	int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4433 	struct ixgbevf_adapter *adapter = netdev_priv(dev);
4434 	struct bpf_prog *old_prog;
4435 
4436 	/* verify ixgbevf ring attributes are sufficient for XDP */
4437 	for (i = 0; i < adapter->num_rx_queues; i++) {
4438 		struct ixgbevf_ring *ring = adapter->rx_ring[i];
4439 
4440 		if (frame_size > ixgbevf_rx_bufsz(ring))
4441 			return -EINVAL;
4442 	}
4443 
4444 	old_prog = xchg(&adapter->xdp_prog, prog);
4445 
4446 	/* If transitioning XDP modes reconfigure rings */
4447 	if (!!prog != !!old_prog) {
4448 		/* Hardware has to reinitialize queues and interrupts to
4449 		 * match packet buffer alignment. Unfortunately, the
4450 		 * hardware is not flexible enough to do this dynamically.
4451 		 */
4452 		if (netif_running(dev))
4453 			ixgbevf_close(dev);
4454 
4455 		ixgbevf_clear_interrupt_scheme(adapter);
4456 		ixgbevf_init_interrupt_scheme(adapter);
4457 
4458 		if (netif_running(dev))
4459 			ixgbevf_open(dev);
4460 	} else {
4461 		for (i = 0; i < adapter->num_rx_queues; i++)
4462 			xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog);
4463 	}
4464 
4465 	if (old_prog)
4466 		bpf_prog_put(old_prog);
4467 
4468 	return 0;
4469 }
4470 
4471 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4472 {
4473 	switch (xdp->command) {
4474 	case XDP_SETUP_PROG:
4475 		return ixgbevf_xdp_setup(dev, xdp->prog);
4476 	default:
4477 		return -EINVAL;
4478 	}
4479 }
4480 
4481 static const struct net_device_ops ixgbevf_netdev_ops = {
4482 	.ndo_open		= ixgbevf_open,
4483 	.ndo_stop		= ixgbevf_close,
4484 	.ndo_start_xmit		= ixgbevf_xmit_frame,
4485 	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
4486 	.ndo_get_stats64	= ixgbevf_get_stats,
4487 	.ndo_validate_addr	= eth_validate_addr,
4488 	.ndo_set_mac_address	= ixgbevf_set_mac,
4489 	.ndo_change_mtu		= ixgbevf_change_mtu,
4490 	.ndo_tx_timeout		= ixgbevf_tx_timeout,
4491 	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
4492 	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
4493 	.ndo_features_check	= ixgbevf_features_check,
4494 	.ndo_bpf		= ixgbevf_xdp,
4495 };
4496 
4497 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
4498 {
4499 	dev->netdev_ops = &ixgbevf_netdev_ops;
4500 	ixgbevf_set_ethtool_ops(dev);
4501 	dev->watchdog_timeo = 5 * HZ;
4502 }
4503 
4504 /**
4505  * ixgbevf_probe - Device Initialization Routine
4506  * @pdev: PCI device information struct
4507  * @ent: entry in ixgbevf_pci_tbl
4508  *
4509  * Returns 0 on success, negative on failure
4510  *
4511  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
4512  * The OS initialization, configuring of the adapter private structure,
4513  * and a hardware reset occur.
4514  **/
4515 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4516 {
4517 	struct net_device *netdev;
4518 	struct ixgbevf_adapter *adapter = NULL;
4519 	struct ixgbe_hw *hw = NULL;
4520 	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
4521 	int err, pci_using_dac;
4522 	bool disable_dev = false;
4523 
4524 	err = pci_enable_device(pdev);
4525 	if (err)
4526 		return err;
4527 
4528 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
4529 		pci_using_dac = 1;
4530 	} else {
4531 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4532 		if (err) {
4533 			dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4534 			goto err_dma;
4535 		}
4536 		pci_using_dac = 0;
4537 	}
4538 
4539 	err = pci_request_regions(pdev, ixgbevf_driver_name);
4540 	if (err) {
4541 		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4542 		goto err_pci_reg;
4543 	}
4544 
4545 	pci_set_master(pdev);
4546 
4547 	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4548 				   MAX_TX_QUEUES);
4549 	if (!netdev) {
4550 		err = -ENOMEM;
4551 		goto err_alloc_etherdev;
4552 	}
4553 
4554 	SET_NETDEV_DEV(netdev, &pdev->dev);
4555 
4556 	adapter = netdev_priv(netdev);
4557 
4558 	adapter->netdev = netdev;
4559 	adapter->pdev = pdev;
4560 	hw = &adapter->hw;
4561 	hw->back = adapter;
4562 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4563 
4564 	/* call save state here in standalone driver because it relies on
4565 	 * adapter struct to exist, and needs to call netdev_priv
4566 	 */
4567 	pci_save_state(pdev);
4568 
4569 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4570 			      pci_resource_len(pdev, 0));
4571 	adapter->io_addr = hw->hw_addr;
4572 	if (!hw->hw_addr) {
4573 		err = -EIO;
4574 		goto err_ioremap;
4575 	}
4576 
4577 	ixgbevf_assign_netdev_ops(netdev);
4578 
4579 	/* Setup HW API */
4580 	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4581 	hw->mac.type  = ii->mac;
4582 
4583 	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
4584 	       sizeof(struct ixgbe_mbx_operations));
4585 
4586 	/* setup the private structure */
4587 	err = ixgbevf_sw_init(adapter);
4588 	if (err)
4589 		goto err_sw_init;
4590 
4591 	/* The HW MAC address was set and/or determined in sw_init */
4592 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4593 		pr_err("invalid MAC address\n");
4594 		err = -EIO;
4595 		goto err_sw_init;
4596 	}
4597 
4598 	netdev->hw_features = NETIF_F_SG |
4599 			      NETIF_F_TSO |
4600 			      NETIF_F_TSO6 |
4601 			      NETIF_F_RXCSUM |
4602 			      NETIF_F_HW_CSUM |
4603 			      NETIF_F_SCTP_CRC;
4604 
4605 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4606 				      NETIF_F_GSO_GRE_CSUM | \
4607 				      NETIF_F_GSO_IPXIP4 | \
4608 				      NETIF_F_GSO_IPXIP6 | \
4609 				      NETIF_F_GSO_UDP_TUNNEL | \
4610 				      NETIF_F_GSO_UDP_TUNNEL_CSUM)
4611 
4612 	netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4613 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4614 			       IXGBEVF_GSO_PARTIAL_FEATURES;
4615 
4616 	netdev->features = netdev->hw_features;
4617 
4618 	if (pci_using_dac)
4619 		netdev->features |= NETIF_F_HIGHDMA;
4620 
4621 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4622 	netdev->mpls_features |= NETIF_F_SG |
4623 				 NETIF_F_TSO |
4624 				 NETIF_F_TSO6 |
4625 				 NETIF_F_HW_CSUM;
4626 	netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES;
4627 	netdev->hw_enc_features |= netdev->vlan_features;
4628 
4629 	/* set this bit last since it cannot be part of vlan_features */
4630 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4631 			    NETIF_F_HW_VLAN_CTAG_RX |
4632 			    NETIF_F_HW_VLAN_CTAG_TX;
4633 
4634 	netdev->priv_flags |= IFF_UNICAST_FLT;
4635 
4636 	/* MTU range: 68 - 1504 or 9710 */
4637 	netdev->min_mtu = ETH_MIN_MTU;
4638 	switch (adapter->hw.api_version) {
4639 	case ixgbe_mbox_api_11:
4640 	case ixgbe_mbox_api_12:
4641 	case ixgbe_mbox_api_13:
4642 	case ixgbe_mbox_api_14:
4643 		netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4644 				  (ETH_HLEN + ETH_FCS_LEN);
4645 		break;
4646 	default:
4647 		if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
4648 			netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4649 					  (ETH_HLEN + ETH_FCS_LEN);
4650 		else
4651 			netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
4652 		break;
4653 	}
4654 
4655 	if (IXGBE_REMOVED(hw->hw_addr)) {
4656 		err = -EIO;
4657 		goto err_sw_init;
4658 	}
4659 
4660 	timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0);
4661 
4662 	INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4663 	set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4664 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4665 
4666 	err = ixgbevf_init_interrupt_scheme(adapter);
4667 	if (err)
4668 		goto err_sw_init;
4669 
4670 	strcpy(netdev->name, "eth%d");
4671 
4672 	err = register_netdev(netdev);
4673 	if (err)
4674 		goto err_register;
4675 
4676 	pci_set_drvdata(pdev, netdev);
4677 	netif_carrier_off(netdev);
4678 	ixgbevf_init_ipsec_offload(adapter);
4679 
4680 	ixgbevf_init_last_counter_stats(adapter);
4681 
4682 	/* print the VF info */
4683 	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4684 	dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4685 
4686 	switch (hw->mac.type) {
4687 	case ixgbe_mac_X550_vf:
4688 		dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4689 		break;
4690 	case ixgbe_mac_X540_vf:
4691 		dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4692 		break;
4693 	case ixgbe_mac_82599_vf:
4694 	default:
4695 		dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4696 		break;
4697 	}
4698 
4699 	return 0;
4700 
4701 err_register:
4702 	ixgbevf_clear_interrupt_scheme(adapter);
4703 err_sw_init:
4704 	ixgbevf_reset_interrupt_capability(adapter);
4705 	iounmap(adapter->io_addr);
4706 	kfree(adapter->rss_key);
4707 err_ioremap:
4708 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4709 	free_netdev(netdev);
4710 err_alloc_etherdev:
4711 	pci_release_regions(pdev);
4712 err_pci_reg:
4713 err_dma:
4714 	if (!adapter || disable_dev)
4715 		pci_disable_device(pdev);
4716 	return err;
4717 }
4718 
4719 /**
4720  * ixgbevf_remove - Device Removal Routine
4721  * @pdev: PCI device information struct
4722  *
4723  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4724  * that it should release a PCI device.  The could be caused by a
4725  * Hot-Plug event, or because the driver is going to be removed from
4726  * memory.
4727  **/
4728 static void ixgbevf_remove(struct pci_dev *pdev)
4729 {
4730 	struct net_device *netdev = pci_get_drvdata(pdev);
4731 	struct ixgbevf_adapter *adapter;
4732 	bool disable_dev;
4733 
4734 	if (!netdev)
4735 		return;
4736 
4737 	adapter = netdev_priv(netdev);
4738 
4739 	set_bit(__IXGBEVF_REMOVING, &adapter->state);
4740 	cancel_work_sync(&adapter->service_task);
4741 
4742 	if (netdev->reg_state == NETREG_REGISTERED)
4743 		unregister_netdev(netdev);
4744 
4745 	ixgbevf_stop_ipsec_offload(adapter);
4746 	ixgbevf_clear_interrupt_scheme(adapter);
4747 	ixgbevf_reset_interrupt_capability(adapter);
4748 
4749 	iounmap(adapter->io_addr);
4750 	pci_release_regions(pdev);
4751 
4752 	hw_dbg(&adapter->hw, "Remove complete\n");
4753 
4754 	kfree(adapter->rss_key);
4755 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4756 	free_netdev(netdev);
4757 
4758 	if (disable_dev)
4759 		pci_disable_device(pdev);
4760 }
4761 
4762 /**
4763  * ixgbevf_io_error_detected - called when PCI error is detected
4764  * @pdev: Pointer to PCI device
4765  * @state: The current pci connection state
4766  *
4767  * This function is called after a PCI bus error affecting
4768  * this device has been detected.
4769  **/
4770 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4771 						  pci_channel_state_t state)
4772 {
4773 	struct net_device *netdev = pci_get_drvdata(pdev);
4774 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4775 
4776 	if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4777 		return PCI_ERS_RESULT_DISCONNECT;
4778 
4779 	rtnl_lock();
4780 	netif_device_detach(netdev);
4781 
4782 	if (netif_running(netdev))
4783 		ixgbevf_close_suspend(adapter);
4784 
4785 	if (state == pci_channel_io_perm_failure) {
4786 		rtnl_unlock();
4787 		return PCI_ERS_RESULT_DISCONNECT;
4788 	}
4789 
4790 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4791 		pci_disable_device(pdev);
4792 	rtnl_unlock();
4793 
4794 	/* Request a slot slot reset. */
4795 	return PCI_ERS_RESULT_NEED_RESET;
4796 }
4797 
4798 /**
4799  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4800  * @pdev: Pointer to PCI device
4801  *
4802  * Restart the card from scratch, as if from a cold-boot. Implementation
4803  * resembles the first-half of the ixgbevf_resume routine.
4804  **/
4805 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4806 {
4807 	struct net_device *netdev = pci_get_drvdata(pdev);
4808 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4809 
4810 	if (pci_enable_device_mem(pdev)) {
4811 		dev_err(&pdev->dev,
4812 			"Cannot re-enable PCI device after reset.\n");
4813 		return PCI_ERS_RESULT_DISCONNECT;
4814 	}
4815 
4816 	adapter->hw.hw_addr = adapter->io_addr;
4817 	smp_mb__before_atomic();
4818 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4819 	pci_set_master(pdev);
4820 
4821 	ixgbevf_reset(adapter);
4822 
4823 	return PCI_ERS_RESULT_RECOVERED;
4824 }
4825 
4826 /**
4827  * ixgbevf_io_resume - called when traffic can start flowing again.
4828  * @pdev: Pointer to PCI device
4829  *
4830  * This callback is called when the error recovery driver tells us that
4831  * its OK to resume normal operation. Implementation resembles the
4832  * second-half of the ixgbevf_resume routine.
4833  **/
4834 static void ixgbevf_io_resume(struct pci_dev *pdev)
4835 {
4836 	struct net_device *netdev = pci_get_drvdata(pdev);
4837 
4838 	rtnl_lock();
4839 	if (netif_running(netdev))
4840 		ixgbevf_open(netdev);
4841 
4842 	netif_device_attach(netdev);
4843 	rtnl_unlock();
4844 }
4845 
4846 /* PCI Error Recovery (ERS) */
4847 static const struct pci_error_handlers ixgbevf_err_handler = {
4848 	.error_detected = ixgbevf_io_error_detected,
4849 	.slot_reset = ixgbevf_io_slot_reset,
4850 	.resume = ixgbevf_io_resume,
4851 };
4852 
4853 static SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume);
4854 
4855 static struct pci_driver ixgbevf_driver = {
4856 	.name		= ixgbevf_driver_name,
4857 	.id_table	= ixgbevf_pci_tbl,
4858 	.probe		= ixgbevf_probe,
4859 	.remove		= ixgbevf_remove,
4860 
4861 	/* Power Management Hooks */
4862 	.driver.pm	= &ixgbevf_pm_ops,
4863 
4864 	.shutdown	= ixgbevf_shutdown,
4865 	.err_handler	= &ixgbevf_err_handler
4866 };
4867 
4868 /**
4869  * ixgbevf_init_module - Driver Registration Routine
4870  *
4871  * ixgbevf_init_module is the first routine called when the driver is
4872  * loaded. All it does is register with the PCI subsystem.
4873  **/
4874 static int __init ixgbevf_init_module(void)
4875 {
4876 	pr_info("%s\n", ixgbevf_driver_string);
4877 	pr_info("%s\n", ixgbevf_copyright);
4878 	ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4879 	if (!ixgbevf_wq) {
4880 		pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4881 		return -ENOMEM;
4882 	}
4883 
4884 	return pci_register_driver(&ixgbevf_driver);
4885 }
4886 
4887 module_init(ixgbevf_init_module);
4888 
4889 /**
4890  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4891  *
4892  * ixgbevf_exit_module is called just before the driver is removed
4893  * from memory.
4894  **/
4895 static void __exit ixgbevf_exit_module(void)
4896 {
4897 	pci_unregister_driver(&ixgbevf_driver);
4898 	if (ixgbevf_wq) {
4899 		destroy_workqueue(ixgbevf_wq);
4900 		ixgbevf_wq = NULL;
4901 	}
4902 }
4903 
4904 #ifdef DEBUG
4905 /**
4906  * ixgbevf_get_hw_dev_name - return device name string
4907  * used by hardware layer to print debugging information
4908  * @hw: pointer to private hardware struct
4909  **/
4910 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4911 {
4912 	struct ixgbevf_adapter *adapter = hw->back;
4913 
4914 	return adapter->netdev->name;
4915 }
4916 
4917 #endif
4918 module_exit(ixgbevf_exit_module);
4919 
4920 /* ixgbevf_main.c */
4921