xref: /openbmc/linux/drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /******************************************************************************
5  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
6 ******************************************************************************/
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/types.h>
11 #include <linux/bitops.h>
12 #include <linux/module.h>
13 #include <linux/pci.h>
14 #include <linux/netdevice.h>
15 #include <linux/vmalloc.h>
16 #include <linux/string.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/tcp.h>
20 #include <linux/sctp.h>
21 #include <linux/ipv6.h>
22 #include <linux/slab.h>
23 #include <net/checksum.h>
24 #include <net/ip6_checksum.h>
25 #include <linux/ethtool.h>
26 #include <linux/if.h>
27 #include <linux/if_vlan.h>
28 #include <linux/prefetch.h>
29 #include <net/mpls.h>
30 #include <linux/bpf.h>
31 #include <linux/bpf_trace.h>
32 #include <linux/atomic.h>
33 
34 #include "ixgbevf.h"
35 
36 const char ixgbevf_driver_name[] = "ixgbevf";
37 static const char ixgbevf_driver_string[] =
38 	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
39 
40 #define DRV_VERSION "4.1.0-k"
41 const char ixgbevf_driver_version[] = DRV_VERSION;
42 static char ixgbevf_copyright[] =
43 	"Copyright (c) 2009 - 2018 Intel Corporation.";
44 
45 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
46 	[board_82599_vf]	= &ixgbevf_82599_vf_info,
47 	[board_82599_vf_hv]	= &ixgbevf_82599_vf_hv_info,
48 	[board_X540_vf]		= &ixgbevf_X540_vf_info,
49 	[board_X540_vf_hv]	= &ixgbevf_X540_vf_hv_info,
50 	[board_X550_vf]		= &ixgbevf_X550_vf_info,
51 	[board_X550_vf_hv]	= &ixgbevf_X550_vf_hv_info,
52 	[board_X550EM_x_vf]	= &ixgbevf_X550EM_x_vf_info,
53 	[board_X550EM_x_vf_hv]	= &ixgbevf_X550EM_x_vf_hv_info,
54 	[board_x550em_a_vf]	= &ixgbevf_x550em_a_vf_info,
55 };
56 
57 /* ixgbevf_pci_tbl - PCI Device ID Table
58  *
59  * Wildcard entries (PCI_ANY_ID) should come last
60  * Last entry must be all 0s
61  *
62  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
63  *   Class, Class Mask, private data (not used) }
64  */
65 static const struct pci_device_id ixgbevf_pci_tbl[] = {
66 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
67 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
68 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
69 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
70 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
71 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
72 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
73 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
74 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
75 	/* required last entry */
76 	{0, }
77 };
78 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
79 
80 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
81 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
82 MODULE_LICENSE("GPL v2");
83 MODULE_VERSION(DRV_VERSION);
84 
85 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
86 static int debug = -1;
87 module_param(debug, int, 0);
88 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
89 
90 static struct workqueue_struct *ixgbevf_wq;
91 
92 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
93 {
94 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
95 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
96 	    !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
97 		queue_work(ixgbevf_wq, &adapter->service_task);
98 }
99 
100 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
101 {
102 	BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
103 
104 	/* flush memory to make sure state is correct before next watchdog */
105 	smp_mb__before_atomic();
106 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
107 }
108 
109 /* forward decls */
110 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
111 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
112 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
113 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer);
114 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
115 				  struct ixgbevf_rx_buffer *old_buff);
116 
117 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
118 {
119 	struct ixgbevf_adapter *adapter = hw->back;
120 
121 	if (!hw->hw_addr)
122 		return;
123 	hw->hw_addr = NULL;
124 	dev_err(&adapter->pdev->dev, "Adapter removed\n");
125 	if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
126 		ixgbevf_service_event_schedule(adapter);
127 }
128 
129 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
130 {
131 	u32 value;
132 
133 	/* The following check not only optimizes a bit by not
134 	 * performing a read on the status register when the
135 	 * register just read was a status register read that
136 	 * returned IXGBE_FAILED_READ_REG. It also blocks any
137 	 * potential recursion.
138 	 */
139 	if (reg == IXGBE_VFSTATUS) {
140 		ixgbevf_remove_adapter(hw);
141 		return;
142 	}
143 	value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
144 	if (value == IXGBE_FAILED_READ_REG)
145 		ixgbevf_remove_adapter(hw);
146 }
147 
148 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
149 {
150 	u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr);
151 	u32 value;
152 
153 	if (IXGBE_REMOVED(reg_addr))
154 		return IXGBE_FAILED_READ_REG;
155 	value = readl(reg_addr + reg);
156 	if (unlikely(value == IXGBE_FAILED_READ_REG))
157 		ixgbevf_check_remove(hw, reg);
158 	return value;
159 }
160 
161 /**
162  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
163  * @adapter: pointer to adapter struct
164  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
165  * @queue: queue to map the corresponding interrupt to
166  * @msix_vector: the vector to map to the corresponding queue
167  **/
168 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
169 			     u8 queue, u8 msix_vector)
170 {
171 	u32 ivar, index;
172 	struct ixgbe_hw *hw = &adapter->hw;
173 
174 	if (direction == -1) {
175 		/* other causes */
176 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
177 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
178 		ivar &= ~0xFF;
179 		ivar |= msix_vector;
180 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
181 	} else {
182 		/* Tx or Rx causes */
183 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
184 		index = ((16 * (queue & 1)) + (8 * direction));
185 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
186 		ivar &= ~(0xFF << index);
187 		ivar |= (msix_vector << index);
188 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
189 	}
190 }
191 
192 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
193 {
194 	return ring->stats.packets;
195 }
196 
197 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
198 {
199 	struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
200 	struct ixgbe_hw *hw = &adapter->hw;
201 
202 	u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
203 	u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
204 
205 	if (head != tail)
206 		return (head < tail) ?
207 			tail - head : (tail + ring->count - head);
208 
209 	return 0;
210 }
211 
212 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
213 {
214 	u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
215 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
216 	u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
217 
218 	clear_check_for_tx_hang(tx_ring);
219 
220 	/* Check for a hung queue, but be thorough. This verifies
221 	 * that a transmit has been completed since the previous
222 	 * check AND there is at least one packet pending. The
223 	 * ARMED bit is set to indicate a potential hang.
224 	 */
225 	if ((tx_done_old == tx_done) && tx_pending) {
226 		/* make sure it is true for two checks in a row */
227 		return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
228 					&tx_ring->state);
229 	}
230 	/* reset the countdown */
231 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
232 
233 	/* update completed stats and continue */
234 	tx_ring->tx_stats.tx_done_old = tx_done;
235 
236 	return false;
237 }
238 
239 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
240 {
241 	/* Do the reset outside of interrupt context */
242 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
243 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
244 		ixgbevf_service_event_schedule(adapter);
245 	}
246 }
247 
248 /**
249  * ixgbevf_tx_timeout - Respond to a Tx Hang
250  * @netdev: network interface device structure
251  **/
252 static void ixgbevf_tx_timeout(struct net_device *netdev)
253 {
254 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
255 
256 	ixgbevf_tx_timeout_reset(adapter);
257 }
258 
259 /**
260  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
261  * @q_vector: board private structure
262  * @tx_ring: tx ring to clean
263  * @napi_budget: Used to determine if we are in netpoll
264  **/
265 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
266 				 struct ixgbevf_ring *tx_ring, int napi_budget)
267 {
268 	struct ixgbevf_adapter *adapter = q_vector->adapter;
269 	struct ixgbevf_tx_buffer *tx_buffer;
270 	union ixgbe_adv_tx_desc *tx_desc;
271 	unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0;
272 	unsigned int budget = tx_ring->count / 2;
273 	unsigned int i = tx_ring->next_to_clean;
274 
275 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
276 		return true;
277 
278 	tx_buffer = &tx_ring->tx_buffer_info[i];
279 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
280 	i -= tx_ring->count;
281 
282 	do {
283 		union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
284 
285 		/* if next_to_watch is not set then there is no work pending */
286 		if (!eop_desc)
287 			break;
288 
289 		/* prevent any other reads prior to eop_desc */
290 		smp_rmb();
291 
292 		/* if DD is not set pending work has not been completed */
293 		if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
294 			break;
295 
296 		/* clear next_to_watch to prevent false hangs */
297 		tx_buffer->next_to_watch = NULL;
298 
299 		/* update the statistics for this packet */
300 		total_bytes += tx_buffer->bytecount;
301 		total_packets += tx_buffer->gso_segs;
302 		if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC)
303 			total_ipsec++;
304 
305 		/* free the skb */
306 		if (ring_is_xdp(tx_ring))
307 			page_frag_free(tx_buffer->data);
308 		else
309 			napi_consume_skb(tx_buffer->skb, napi_budget);
310 
311 		/* unmap skb header data */
312 		dma_unmap_single(tx_ring->dev,
313 				 dma_unmap_addr(tx_buffer, dma),
314 				 dma_unmap_len(tx_buffer, len),
315 				 DMA_TO_DEVICE);
316 
317 		/* clear tx_buffer data */
318 		dma_unmap_len_set(tx_buffer, len, 0);
319 
320 		/* unmap remaining buffers */
321 		while (tx_desc != eop_desc) {
322 			tx_buffer++;
323 			tx_desc++;
324 			i++;
325 			if (unlikely(!i)) {
326 				i -= tx_ring->count;
327 				tx_buffer = tx_ring->tx_buffer_info;
328 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
329 			}
330 
331 			/* unmap any remaining paged data */
332 			if (dma_unmap_len(tx_buffer, len)) {
333 				dma_unmap_page(tx_ring->dev,
334 					       dma_unmap_addr(tx_buffer, dma),
335 					       dma_unmap_len(tx_buffer, len),
336 					       DMA_TO_DEVICE);
337 				dma_unmap_len_set(tx_buffer, len, 0);
338 			}
339 		}
340 
341 		/* move us one more past the eop_desc for start of next pkt */
342 		tx_buffer++;
343 		tx_desc++;
344 		i++;
345 		if (unlikely(!i)) {
346 			i -= tx_ring->count;
347 			tx_buffer = tx_ring->tx_buffer_info;
348 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
349 		}
350 
351 		/* issue prefetch for next Tx descriptor */
352 		prefetch(tx_desc);
353 
354 		/* update budget accounting */
355 		budget--;
356 	} while (likely(budget));
357 
358 	i += tx_ring->count;
359 	tx_ring->next_to_clean = i;
360 	u64_stats_update_begin(&tx_ring->syncp);
361 	tx_ring->stats.bytes += total_bytes;
362 	tx_ring->stats.packets += total_packets;
363 	u64_stats_update_end(&tx_ring->syncp);
364 	q_vector->tx.total_bytes += total_bytes;
365 	q_vector->tx.total_packets += total_packets;
366 	adapter->tx_ipsec += total_ipsec;
367 
368 	if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
369 		struct ixgbe_hw *hw = &adapter->hw;
370 		union ixgbe_adv_tx_desc *eop_desc;
371 
372 		eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
373 
374 		pr_err("Detected Tx Unit Hang%s\n"
375 		       "  Tx Queue             <%d>\n"
376 		       "  TDH, TDT             <%x>, <%x>\n"
377 		       "  next_to_use          <%x>\n"
378 		       "  next_to_clean        <%x>\n"
379 		       "tx_buffer_info[next_to_clean]\n"
380 		       "  next_to_watch        <%p>\n"
381 		       "  eop_desc->wb.status  <%x>\n"
382 		       "  time_stamp           <%lx>\n"
383 		       "  jiffies              <%lx>\n",
384 		       ring_is_xdp(tx_ring) ? " XDP" : "",
385 		       tx_ring->queue_index,
386 		       IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
387 		       IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
388 		       tx_ring->next_to_use, i,
389 		       eop_desc, (eop_desc ? eop_desc->wb.status : 0),
390 		       tx_ring->tx_buffer_info[i].time_stamp, jiffies);
391 
392 		if (!ring_is_xdp(tx_ring))
393 			netif_stop_subqueue(tx_ring->netdev,
394 					    tx_ring->queue_index);
395 
396 		/* schedule immediate reset if we believe we hung */
397 		ixgbevf_tx_timeout_reset(adapter);
398 
399 		return true;
400 	}
401 
402 	if (ring_is_xdp(tx_ring))
403 		return !!budget;
404 
405 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
406 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
407 		     (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
408 		/* Make sure that anybody stopping the queue after this
409 		 * sees the new next_to_clean.
410 		 */
411 		smp_mb();
412 
413 		if (__netif_subqueue_stopped(tx_ring->netdev,
414 					     tx_ring->queue_index) &&
415 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
416 			netif_wake_subqueue(tx_ring->netdev,
417 					    tx_ring->queue_index);
418 			++tx_ring->tx_stats.restart_queue;
419 		}
420 	}
421 
422 	return !!budget;
423 }
424 
425 /**
426  * ixgbevf_rx_skb - Helper function to determine proper Rx method
427  * @q_vector: structure containing interrupt and ring information
428  * @skb: packet to send up
429  **/
430 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
431 			   struct sk_buff *skb)
432 {
433 	napi_gro_receive(&q_vector->napi, skb);
434 }
435 
436 #define IXGBE_RSS_L4_TYPES_MASK \
437 	((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
438 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
439 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
440 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
441 
442 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
443 				   union ixgbe_adv_rx_desc *rx_desc,
444 				   struct sk_buff *skb)
445 {
446 	u16 rss_type;
447 
448 	if (!(ring->netdev->features & NETIF_F_RXHASH))
449 		return;
450 
451 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
452 		   IXGBE_RXDADV_RSSTYPE_MASK;
453 
454 	if (!rss_type)
455 		return;
456 
457 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
458 		     (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
459 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
460 }
461 
462 /**
463  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
464  * @ring: structure containig ring specific data
465  * @rx_desc: current Rx descriptor being processed
466  * @skb: skb currently being received and modified
467  **/
468 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
469 				       union ixgbe_adv_rx_desc *rx_desc,
470 				       struct sk_buff *skb)
471 {
472 	skb_checksum_none_assert(skb);
473 
474 	/* Rx csum disabled */
475 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
476 		return;
477 
478 	/* if IP and error */
479 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
480 	    ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
481 		ring->rx_stats.csum_err++;
482 		return;
483 	}
484 
485 	if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
486 		return;
487 
488 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
489 		ring->rx_stats.csum_err++;
490 		return;
491 	}
492 
493 	/* It must be a TCP or UDP packet with a valid checksum */
494 	skb->ip_summed = CHECKSUM_UNNECESSARY;
495 }
496 
497 /**
498  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
499  * @rx_ring: rx descriptor ring packet is being transacted on
500  * @rx_desc: pointer to the EOP Rx descriptor
501  * @skb: pointer to current skb being populated
502  *
503  * This function checks the ring, descriptor, and packet information in
504  * order to populate the checksum, VLAN, protocol, and other fields within
505  * the skb.
506  **/
507 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
508 				       union ixgbe_adv_rx_desc *rx_desc,
509 				       struct sk_buff *skb)
510 {
511 	ixgbevf_rx_hash(rx_ring, rx_desc, skb);
512 	ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
513 
514 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
515 		u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
516 		unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
517 
518 		if (test_bit(vid & VLAN_VID_MASK, active_vlans))
519 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
520 	}
521 
522 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP))
523 		ixgbevf_ipsec_rx(rx_ring, rx_desc, skb);
524 
525 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
526 }
527 
528 static
529 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring,
530 						const unsigned int size)
531 {
532 	struct ixgbevf_rx_buffer *rx_buffer;
533 
534 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
535 	prefetchw(rx_buffer->page);
536 
537 	/* we are reusing so sync this buffer for CPU use */
538 	dma_sync_single_range_for_cpu(rx_ring->dev,
539 				      rx_buffer->dma,
540 				      rx_buffer->page_offset,
541 				      size,
542 				      DMA_FROM_DEVICE);
543 
544 	rx_buffer->pagecnt_bias--;
545 
546 	return rx_buffer;
547 }
548 
549 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring,
550 				  struct ixgbevf_rx_buffer *rx_buffer,
551 				  struct sk_buff *skb)
552 {
553 	if (ixgbevf_can_reuse_rx_page(rx_buffer)) {
554 		/* hand second half of page back to the ring */
555 		ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
556 	} else {
557 		if (IS_ERR(skb))
558 			/* We are not reusing the buffer so unmap it and free
559 			 * any references we are holding to it
560 			 */
561 			dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
562 					     ixgbevf_rx_pg_size(rx_ring),
563 					     DMA_FROM_DEVICE,
564 					     IXGBEVF_RX_DMA_ATTR);
565 		__page_frag_cache_drain(rx_buffer->page,
566 					rx_buffer->pagecnt_bias);
567 	}
568 
569 	/* clear contents of rx_buffer */
570 	rx_buffer->page = NULL;
571 }
572 
573 /**
574  * ixgbevf_is_non_eop - process handling of non-EOP buffers
575  * @rx_ring: Rx ring being processed
576  * @rx_desc: Rx descriptor for current buffer
577  *
578  * This function updates next to clean.  If the buffer is an EOP buffer
579  * this function exits returning false, otherwise it will place the
580  * sk_buff in the next buffer to be chained and return true indicating
581  * that this is in fact a non-EOP buffer.
582  **/
583 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
584 			       union ixgbe_adv_rx_desc *rx_desc)
585 {
586 	u32 ntc = rx_ring->next_to_clean + 1;
587 
588 	/* fetch, update, and store next to clean */
589 	ntc = (ntc < rx_ring->count) ? ntc : 0;
590 	rx_ring->next_to_clean = ntc;
591 
592 	prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
593 
594 	if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
595 		return false;
596 
597 	return true;
598 }
599 
600 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring)
601 {
602 	return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0;
603 }
604 
605 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
606 				      struct ixgbevf_rx_buffer *bi)
607 {
608 	struct page *page = bi->page;
609 	dma_addr_t dma;
610 
611 	/* since we are recycling buffers we should seldom need to alloc */
612 	if (likely(page))
613 		return true;
614 
615 	/* alloc new page for storage */
616 	page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring));
617 	if (unlikely(!page)) {
618 		rx_ring->rx_stats.alloc_rx_page_failed++;
619 		return false;
620 	}
621 
622 	/* map page for use */
623 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
624 				 ixgbevf_rx_pg_size(rx_ring),
625 				 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR);
626 
627 	/* if mapping failed free memory back to system since
628 	 * there isn't much point in holding memory we can't use
629 	 */
630 	if (dma_mapping_error(rx_ring->dev, dma)) {
631 		__free_pages(page, ixgbevf_rx_pg_order(rx_ring));
632 
633 		rx_ring->rx_stats.alloc_rx_page_failed++;
634 		return false;
635 	}
636 
637 	bi->dma = dma;
638 	bi->page = page;
639 	bi->page_offset = ixgbevf_rx_offset(rx_ring);
640 	bi->pagecnt_bias = 1;
641 	rx_ring->rx_stats.alloc_rx_page++;
642 
643 	return true;
644 }
645 
646 /**
647  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
648  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
649  * @cleaned_count: number of buffers to replace
650  **/
651 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
652 				     u16 cleaned_count)
653 {
654 	union ixgbe_adv_rx_desc *rx_desc;
655 	struct ixgbevf_rx_buffer *bi;
656 	unsigned int i = rx_ring->next_to_use;
657 
658 	/* nothing to do or no valid netdev defined */
659 	if (!cleaned_count || !rx_ring->netdev)
660 		return;
661 
662 	rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
663 	bi = &rx_ring->rx_buffer_info[i];
664 	i -= rx_ring->count;
665 
666 	do {
667 		if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
668 			break;
669 
670 		/* sync the buffer for use by the device */
671 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
672 						 bi->page_offset,
673 						 ixgbevf_rx_bufsz(rx_ring),
674 						 DMA_FROM_DEVICE);
675 
676 		/* Refresh the desc even if pkt_addr didn't change
677 		 * because each write-back erases this info.
678 		 */
679 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
680 
681 		rx_desc++;
682 		bi++;
683 		i++;
684 		if (unlikely(!i)) {
685 			rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
686 			bi = rx_ring->rx_buffer_info;
687 			i -= rx_ring->count;
688 		}
689 
690 		/* clear the length for the next_to_use descriptor */
691 		rx_desc->wb.upper.length = 0;
692 
693 		cleaned_count--;
694 	} while (cleaned_count);
695 
696 	i += rx_ring->count;
697 
698 	if (rx_ring->next_to_use != i) {
699 		/* record the next descriptor to use */
700 		rx_ring->next_to_use = i;
701 
702 		/* update next to alloc since we have filled the ring */
703 		rx_ring->next_to_alloc = i;
704 
705 		/* Force memory writes to complete before letting h/w
706 		 * know there are new descriptors to fetch.  (Only
707 		 * applicable for weak-ordered memory model archs,
708 		 * such as IA-64).
709 		 */
710 		wmb();
711 		ixgbevf_write_tail(rx_ring, i);
712 	}
713 }
714 
715 /**
716  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
717  * @rx_ring: rx descriptor ring packet is being transacted on
718  * @rx_desc: pointer to the EOP Rx descriptor
719  * @skb: pointer to current skb being fixed
720  *
721  * Check for corrupted packet headers caused by senders on the local L2
722  * embedded NIC switch not setting up their Tx Descriptors right.  These
723  * should be very rare.
724  *
725  * Also address the case where we are pulling data in on pages only
726  * and as such no data is present in the skb header.
727  *
728  * In addition if skb is not at least 60 bytes we need to pad it so that
729  * it is large enough to qualify as a valid Ethernet frame.
730  *
731  * Returns true if an error was encountered and skb was freed.
732  **/
733 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
734 				    union ixgbe_adv_rx_desc *rx_desc,
735 				    struct sk_buff *skb)
736 {
737 	/* XDP packets use error pointer so abort at this point */
738 	if (IS_ERR(skb))
739 		return true;
740 
741 	/* verify that the packet does not have any known errors */
742 	if (unlikely(ixgbevf_test_staterr(rx_desc,
743 					  IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
744 		struct net_device *netdev = rx_ring->netdev;
745 
746 		if (!(netdev->features & NETIF_F_RXALL)) {
747 			dev_kfree_skb_any(skb);
748 			return true;
749 		}
750 	}
751 
752 	/* if eth_skb_pad returns an error the skb was freed */
753 	if (eth_skb_pad(skb))
754 		return true;
755 
756 	return false;
757 }
758 
759 /**
760  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
761  * @rx_ring: rx descriptor ring to store buffers on
762  * @old_buff: donor buffer to have page reused
763  *
764  * Synchronizes page for reuse by the adapter
765  **/
766 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
767 				  struct ixgbevf_rx_buffer *old_buff)
768 {
769 	struct ixgbevf_rx_buffer *new_buff;
770 	u16 nta = rx_ring->next_to_alloc;
771 
772 	new_buff = &rx_ring->rx_buffer_info[nta];
773 
774 	/* update, and store next to alloc */
775 	nta++;
776 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
777 
778 	/* transfer page from old buffer to new buffer */
779 	new_buff->page = old_buff->page;
780 	new_buff->dma = old_buff->dma;
781 	new_buff->page_offset = old_buff->page_offset;
782 	new_buff->pagecnt_bias = old_buff->pagecnt_bias;
783 }
784 
785 static inline bool ixgbevf_page_is_reserved(struct page *page)
786 {
787 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
788 }
789 
790 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer)
791 {
792 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
793 	struct page *page = rx_buffer->page;
794 
795 	/* avoid re-using remote pages */
796 	if (unlikely(ixgbevf_page_is_reserved(page)))
797 		return false;
798 
799 #if (PAGE_SIZE < 8192)
800 	/* if we are only owner of page we can reuse it */
801 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
802 		return false;
803 #else
804 #define IXGBEVF_LAST_OFFSET \
805 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048)
806 
807 	if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET)
808 		return false;
809 
810 #endif
811 
812 	/* If we have drained the page fragment pool we need to update
813 	 * the pagecnt_bias and page count so that we fully restock the
814 	 * number of references the driver holds.
815 	 */
816 	if (unlikely(!pagecnt_bias)) {
817 		page_ref_add(page, USHRT_MAX);
818 		rx_buffer->pagecnt_bias = USHRT_MAX;
819 	}
820 
821 	return true;
822 }
823 
824 /**
825  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
826  * @rx_ring: rx descriptor ring to transact packets on
827  * @rx_buffer: buffer containing page to add
828  * @skb: sk_buff to place the data into
829  * @size: size of buffer to be added
830  *
831  * This function will add the data contained in rx_buffer->page to the skb.
832  **/
833 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
834 				struct ixgbevf_rx_buffer *rx_buffer,
835 				struct sk_buff *skb,
836 				unsigned int size)
837 {
838 #if (PAGE_SIZE < 8192)
839 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
840 #else
841 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
842 				SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
843 				SKB_DATA_ALIGN(size);
844 #endif
845 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
846 			rx_buffer->page_offset, size, truesize);
847 #if (PAGE_SIZE < 8192)
848 	rx_buffer->page_offset ^= truesize;
849 #else
850 	rx_buffer->page_offset += truesize;
851 #endif
852 }
853 
854 static
855 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring,
856 				      struct ixgbevf_rx_buffer *rx_buffer,
857 				      struct xdp_buff *xdp,
858 				      union ixgbe_adv_rx_desc *rx_desc)
859 {
860 	unsigned int size = xdp->data_end - xdp->data;
861 #if (PAGE_SIZE < 8192)
862 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
863 #else
864 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
865 					       xdp->data_hard_start);
866 #endif
867 	unsigned int headlen;
868 	struct sk_buff *skb;
869 
870 	/* prefetch first cache line of first page */
871 	prefetch(xdp->data);
872 #if L1_CACHE_BYTES < 128
873 	prefetch(xdp->data + L1_CACHE_BYTES);
874 #endif
875 	/* Note, we get here by enabling legacy-rx via:
876 	 *
877 	 *    ethtool --set-priv-flags <dev> legacy-rx on
878 	 *
879 	 * In this mode, we currently get 0 extra XDP headroom as
880 	 * opposed to having legacy-rx off, where we process XDP
881 	 * packets going to stack via ixgbevf_build_skb().
882 	 *
883 	 * For ixgbevf_construct_skb() mode it means that the
884 	 * xdp->data_meta will always point to xdp->data, since
885 	 * the helper cannot expand the head. Should this ever
886 	 * changed in future for legacy-rx mode on, then lets also
887 	 * add xdp->data_meta handling here.
888 	 */
889 
890 	/* allocate a skb to store the frags */
891 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE);
892 	if (unlikely(!skb))
893 		return NULL;
894 
895 	/* Determine available headroom for copy */
896 	headlen = size;
897 	if (headlen > IXGBEVF_RX_HDR_SIZE)
898 		headlen = eth_get_headlen(skb->dev, xdp->data,
899 					  IXGBEVF_RX_HDR_SIZE);
900 
901 	/* align pull length to size of long to optimize memcpy performance */
902 	memcpy(__skb_put(skb, headlen), xdp->data,
903 	       ALIGN(headlen, sizeof(long)));
904 
905 	/* update all of the pointers */
906 	size -= headlen;
907 	if (size) {
908 		skb_add_rx_frag(skb, 0, rx_buffer->page,
909 				(xdp->data + headlen) -
910 					page_address(rx_buffer->page),
911 				size, truesize);
912 #if (PAGE_SIZE < 8192)
913 		rx_buffer->page_offset ^= truesize;
914 #else
915 		rx_buffer->page_offset += truesize;
916 #endif
917 	} else {
918 		rx_buffer->pagecnt_bias++;
919 	}
920 
921 	return skb;
922 }
923 
924 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
925 					     u32 qmask)
926 {
927 	struct ixgbe_hw *hw = &adapter->hw;
928 
929 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
930 }
931 
932 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring,
933 					 struct ixgbevf_rx_buffer *rx_buffer,
934 					 struct xdp_buff *xdp,
935 					 union ixgbe_adv_rx_desc *rx_desc)
936 {
937 	unsigned int metasize = xdp->data - xdp->data_meta;
938 #if (PAGE_SIZE < 8192)
939 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
940 #else
941 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
942 				SKB_DATA_ALIGN(xdp->data_end -
943 					       xdp->data_hard_start);
944 #endif
945 	struct sk_buff *skb;
946 
947 	/* Prefetch first cache line of first page. If xdp->data_meta
948 	 * is unused, this points to xdp->data, otherwise, we likely
949 	 * have a consumer accessing first few bytes of meta data,
950 	 * and then actual data.
951 	 */
952 	prefetch(xdp->data_meta);
953 #if L1_CACHE_BYTES < 128
954 	prefetch(xdp->data_meta + L1_CACHE_BYTES);
955 #endif
956 
957 	/* build an skb around the page buffer */
958 	skb = build_skb(xdp->data_hard_start, truesize);
959 	if (unlikely(!skb))
960 		return NULL;
961 
962 	/* update pointers within the skb to store the data */
963 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
964 	__skb_put(skb, xdp->data_end - xdp->data);
965 	if (metasize)
966 		skb_metadata_set(skb, metasize);
967 
968 	/* update buffer offset */
969 #if (PAGE_SIZE < 8192)
970 	rx_buffer->page_offset ^= truesize;
971 #else
972 	rx_buffer->page_offset += truesize;
973 #endif
974 
975 	return skb;
976 }
977 
978 #define IXGBEVF_XDP_PASS 0
979 #define IXGBEVF_XDP_CONSUMED 1
980 #define IXGBEVF_XDP_TX 2
981 
982 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring,
983 				 struct xdp_buff *xdp)
984 {
985 	struct ixgbevf_tx_buffer *tx_buffer;
986 	union ixgbe_adv_tx_desc *tx_desc;
987 	u32 len, cmd_type;
988 	dma_addr_t dma;
989 	u16 i;
990 
991 	len = xdp->data_end - xdp->data;
992 
993 	if (unlikely(!ixgbevf_desc_unused(ring)))
994 		return IXGBEVF_XDP_CONSUMED;
995 
996 	dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE);
997 	if (dma_mapping_error(ring->dev, dma))
998 		return IXGBEVF_XDP_CONSUMED;
999 
1000 	/* record the location of the first descriptor for this packet */
1001 	i = ring->next_to_use;
1002 	tx_buffer = &ring->tx_buffer_info[i];
1003 
1004 	dma_unmap_len_set(tx_buffer, len, len);
1005 	dma_unmap_addr_set(tx_buffer, dma, dma);
1006 	tx_buffer->data = xdp->data;
1007 	tx_buffer->bytecount = len;
1008 	tx_buffer->gso_segs = 1;
1009 	tx_buffer->protocol = 0;
1010 
1011 	/* Populate minimal context descriptor that will provide for the
1012 	 * fact that we are expected to process Ethernet frames.
1013 	 */
1014 	if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) {
1015 		struct ixgbe_adv_tx_context_desc *context_desc;
1016 
1017 		set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1018 
1019 		context_desc = IXGBEVF_TX_CTXTDESC(ring, 0);
1020 		context_desc->vlan_macip_lens	=
1021 			cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT);
1022 		context_desc->fceof_saidx	= 0;
1023 		context_desc->type_tucmd_mlhl	=
1024 			cpu_to_le32(IXGBE_TXD_CMD_DEXT |
1025 				    IXGBE_ADVTXD_DTYP_CTXT);
1026 		context_desc->mss_l4len_idx	= 0;
1027 
1028 		i = 1;
1029 	}
1030 
1031 	/* put descriptor type bits */
1032 	cmd_type = IXGBE_ADVTXD_DTYP_DATA |
1033 		   IXGBE_ADVTXD_DCMD_DEXT |
1034 		   IXGBE_ADVTXD_DCMD_IFCS;
1035 	cmd_type |= len | IXGBE_TXD_CMD;
1036 
1037 	tx_desc = IXGBEVF_TX_DESC(ring, i);
1038 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
1039 
1040 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1041 	tx_desc->read.olinfo_status =
1042 			cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) |
1043 				    IXGBE_ADVTXD_CC);
1044 
1045 	/* Avoid any potential race with cleanup */
1046 	smp_wmb();
1047 
1048 	/* set next_to_watch value indicating a packet is present */
1049 	i++;
1050 	if (i == ring->count)
1051 		i = 0;
1052 
1053 	tx_buffer->next_to_watch = tx_desc;
1054 	ring->next_to_use = i;
1055 
1056 	return IXGBEVF_XDP_TX;
1057 }
1058 
1059 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter,
1060 				       struct ixgbevf_ring  *rx_ring,
1061 				       struct xdp_buff *xdp)
1062 {
1063 	int result = IXGBEVF_XDP_PASS;
1064 	struct ixgbevf_ring *xdp_ring;
1065 	struct bpf_prog *xdp_prog;
1066 	u32 act;
1067 
1068 	rcu_read_lock();
1069 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1070 
1071 	if (!xdp_prog)
1072 		goto xdp_out;
1073 
1074 	act = bpf_prog_run_xdp(xdp_prog, xdp);
1075 	switch (act) {
1076 	case XDP_PASS:
1077 		break;
1078 	case XDP_TX:
1079 		xdp_ring = adapter->xdp_ring[rx_ring->queue_index];
1080 		result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp);
1081 		break;
1082 	default:
1083 		bpf_warn_invalid_xdp_action(act);
1084 		/* fallthrough */
1085 	case XDP_ABORTED:
1086 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
1087 		/* fallthrough -- handle aborts by dropping packet */
1088 	case XDP_DROP:
1089 		result = IXGBEVF_XDP_CONSUMED;
1090 		break;
1091 	}
1092 xdp_out:
1093 	rcu_read_unlock();
1094 	return ERR_PTR(-result);
1095 }
1096 
1097 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring,
1098 				   struct ixgbevf_rx_buffer *rx_buffer,
1099 				   unsigned int size)
1100 {
1101 #if (PAGE_SIZE < 8192)
1102 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
1103 
1104 	rx_buffer->page_offset ^= truesize;
1105 #else
1106 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1107 				SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
1108 				SKB_DATA_ALIGN(size);
1109 
1110 	rx_buffer->page_offset += truesize;
1111 #endif
1112 }
1113 
1114 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
1115 				struct ixgbevf_ring *rx_ring,
1116 				int budget)
1117 {
1118 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1119 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1120 	u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
1121 	struct sk_buff *skb = rx_ring->skb;
1122 	bool xdp_xmit = false;
1123 	struct xdp_buff xdp;
1124 
1125 	xdp.rxq = &rx_ring->xdp_rxq;
1126 
1127 	while (likely(total_rx_packets < budget)) {
1128 		struct ixgbevf_rx_buffer *rx_buffer;
1129 		union ixgbe_adv_rx_desc *rx_desc;
1130 		unsigned int size;
1131 
1132 		/* return some buffers to hardware, one at a time is too slow */
1133 		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
1134 			ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
1135 			cleaned_count = 0;
1136 		}
1137 
1138 		rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1139 		size = le16_to_cpu(rx_desc->wb.upper.length);
1140 		if (!size)
1141 			break;
1142 
1143 		/* This memory barrier is needed to keep us from reading
1144 		 * any other fields out of the rx_desc until we know the
1145 		 * RXD_STAT_DD bit is set
1146 		 */
1147 		rmb();
1148 
1149 		rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size);
1150 
1151 		/* retrieve a buffer from the ring */
1152 		if (!skb) {
1153 			xdp.data = page_address(rx_buffer->page) +
1154 				   rx_buffer->page_offset;
1155 			xdp.data_meta = xdp.data;
1156 			xdp.data_hard_start = xdp.data -
1157 					      ixgbevf_rx_offset(rx_ring);
1158 			xdp.data_end = xdp.data + size;
1159 
1160 			skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp);
1161 		}
1162 
1163 		if (IS_ERR(skb)) {
1164 			if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) {
1165 				xdp_xmit = true;
1166 				ixgbevf_rx_buffer_flip(rx_ring, rx_buffer,
1167 						       size);
1168 			} else {
1169 				rx_buffer->pagecnt_bias++;
1170 			}
1171 			total_rx_packets++;
1172 			total_rx_bytes += size;
1173 		} else if (skb) {
1174 			ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1175 		} else if (ring_uses_build_skb(rx_ring)) {
1176 			skb = ixgbevf_build_skb(rx_ring, rx_buffer,
1177 						&xdp, rx_desc);
1178 		} else {
1179 			skb = ixgbevf_construct_skb(rx_ring, rx_buffer,
1180 						    &xdp, rx_desc);
1181 		}
1182 
1183 		/* exit if we failed to retrieve a buffer */
1184 		if (!skb) {
1185 			rx_ring->rx_stats.alloc_rx_buff_failed++;
1186 			rx_buffer->pagecnt_bias++;
1187 			break;
1188 		}
1189 
1190 		ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb);
1191 		cleaned_count++;
1192 
1193 		/* fetch next buffer in frame if non-eop */
1194 		if (ixgbevf_is_non_eop(rx_ring, rx_desc))
1195 			continue;
1196 
1197 		/* verify the packet layout is correct */
1198 		if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
1199 			skb = NULL;
1200 			continue;
1201 		}
1202 
1203 		/* probably a little skewed due to removing CRC */
1204 		total_rx_bytes += skb->len;
1205 
1206 		/* Workaround hardware that can't do proper VEPA multicast
1207 		 * source pruning.
1208 		 */
1209 		if ((skb->pkt_type == PACKET_BROADCAST ||
1210 		     skb->pkt_type == PACKET_MULTICAST) &&
1211 		    ether_addr_equal(rx_ring->netdev->dev_addr,
1212 				     eth_hdr(skb)->h_source)) {
1213 			dev_kfree_skb_irq(skb);
1214 			continue;
1215 		}
1216 
1217 		/* populate checksum, VLAN, and protocol */
1218 		ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
1219 
1220 		ixgbevf_rx_skb(q_vector, skb);
1221 
1222 		/* reset skb pointer */
1223 		skb = NULL;
1224 
1225 		/* update budget accounting */
1226 		total_rx_packets++;
1227 	}
1228 
1229 	/* place incomplete frames back on ring for completion */
1230 	rx_ring->skb = skb;
1231 
1232 	if (xdp_xmit) {
1233 		struct ixgbevf_ring *xdp_ring =
1234 			adapter->xdp_ring[rx_ring->queue_index];
1235 
1236 		/* Force memory writes to complete before letting h/w
1237 		 * know there are new descriptors to fetch.
1238 		 */
1239 		wmb();
1240 		ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use);
1241 	}
1242 
1243 	u64_stats_update_begin(&rx_ring->syncp);
1244 	rx_ring->stats.packets += total_rx_packets;
1245 	rx_ring->stats.bytes += total_rx_bytes;
1246 	u64_stats_update_end(&rx_ring->syncp);
1247 	q_vector->rx.total_packets += total_rx_packets;
1248 	q_vector->rx.total_bytes += total_rx_bytes;
1249 
1250 	return total_rx_packets;
1251 }
1252 
1253 /**
1254  * ixgbevf_poll - NAPI polling calback
1255  * @napi: napi struct with our devices info in it
1256  * @budget: amount of work driver is allowed to do this pass, in packets
1257  *
1258  * This function will clean more than one or more rings associated with a
1259  * q_vector.
1260  **/
1261 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1262 {
1263 	struct ixgbevf_q_vector *q_vector =
1264 		container_of(napi, struct ixgbevf_q_vector, napi);
1265 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1266 	struct ixgbevf_ring *ring;
1267 	int per_ring_budget, work_done = 0;
1268 	bool clean_complete = true;
1269 
1270 	ixgbevf_for_each_ring(ring, q_vector->tx) {
1271 		if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1272 			clean_complete = false;
1273 	}
1274 
1275 	if (budget <= 0)
1276 		return budget;
1277 
1278 	/* attempt to distribute budget to each queue fairly, but don't allow
1279 	 * the budget to go below 1 because we'll exit polling
1280 	 */
1281 	if (q_vector->rx.count > 1)
1282 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1283 	else
1284 		per_ring_budget = budget;
1285 
1286 	ixgbevf_for_each_ring(ring, q_vector->rx) {
1287 		int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1288 						   per_ring_budget);
1289 		work_done += cleaned;
1290 		if (cleaned >= per_ring_budget)
1291 			clean_complete = false;
1292 	}
1293 
1294 	/* If all work not completed, return budget and keep polling */
1295 	if (!clean_complete)
1296 		return budget;
1297 
1298 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1299 	 * poll us due to busy-polling
1300 	 */
1301 	if (likely(napi_complete_done(napi, work_done))) {
1302 		if (adapter->rx_itr_setting == 1)
1303 			ixgbevf_set_itr(q_vector);
1304 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1305 		    !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1306 			ixgbevf_irq_enable_queues(adapter,
1307 						  BIT(q_vector->v_idx));
1308 	}
1309 
1310 	return min(work_done, budget - 1);
1311 }
1312 
1313 /**
1314  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1315  * @q_vector: structure containing interrupt and ring information
1316  **/
1317 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1318 {
1319 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1320 	struct ixgbe_hw *hw = &adapter->hw;
1321 	int v_idx = q_vector->v_idx;
1322 	u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1323 
1324 	/* set the WDIS bit to not clear the timer bits and cause an
1325 	 * immediate assertion of the interrupt
1326 	 */
1327 	itr_reg |= IXGBE_EITR_CNT_WDIS;
1328 
1329 	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1330 }
1331 
1332 /**
1333  * ixgbevf_configure_msix - Configure MSI-X hardware
1334  * @adapter: board private structure
1335  *
1336  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1337  * interrupts.
1338  **/
1339 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1340 {
1341 	struct ixgbevf_q_vector *q_vector;
1342 	int q_vectors, v_idx;
1343 
1344 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1345 	adapter->eims_enable_mask = 0;
1346 
1347 	/* Populate the IVAR table and set the ITR values to the
1348 	 * corresponding register.
1349 	 */
1350 	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1351 		struct ixgbevf_ring *ring;
1352 
1353 		q_vector = adapter->q_vector[v_idx];
1354 
1355 		ixgbevf_for_each_ring(ring, q_vector->rx)
1356 			ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1357 
1358 		ixgbevf_for_each_ring(ring, q_vector->tx)
1359 			ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1360 
1361 		if (q_vector->tx.ring && !q_vector->rx.ring) {
1362 			/* Tx only vector */
1363 			if (adapter->tx_itr_setting == 1)
1364 				q_vector->itr = IXGBE_12K_ITR;
1365 			else
1366 				q_vector->itr = adapter->tx_itr_setting;
1367 		} else {
1368 			/* Rx or Rx/Tx vector */
1369 			if (adapter->rx_itr_setting == 1)
1370 				q_vector->itr = IXGBE_20K_ITR;
1371 			else
1372 				q_vector->itr = adapter->rx_itr_setting;
1373 		}
1374 
1375 		/* add q_vector eims value to global eims_enable_mask */
1376 		adapter->eims_enable_mask |= BIT(v_idx);
1377 
1378 		ixgbevf_write_eitr(q_vector);
1379 	}
1380 
1381 	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1382 	/* setup eims_other and add value to global eims_enable_mask */
1383 	adapter->eims_other = BIT(v_idx);
1384 	adapter->eims_enable_mask |= adapter->eims_other;
1385 }
1386 
1387 enum latency_range {
1388 	lowest_latency = 0,
1389 	low_latency = 1,
1390 	bulk_latency = 2,
1391 	latency_invalid = 255
1392 };
1393 
1394 /**
1395  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1396  * @q_vector: structure containing interrupt and ring information
1397  * @ring_container: structure containing ring performance data
1398  *
1399  * Stores a new ITR value based on packets and byte
1400  * counts during the last interrupt.  The advantage of per interrupt
1401  * computation is faster updates and more accurate ITR for the current
1402  * traffic pattern.  Constants in this function were computed
1403  * based on theoretical maximum wire speed and thresholds were set based
1404  * on testing data as well as attempting to minimize response time
1405  * while increasing bulk throughput.
1406  **/
1407 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1408 			       struct ixgbevf_ring_container *ring_container)
1409 {
1410 	int bytes = ring_container->total_bytes;
1411 	int packets = ring_container->total_packets;
1412 	u32 timepassed_us;
1413 	u64 bytes_perint;
1414 	u8 itr_setting = ring_container->itr;
1415 
1416 	if (packets == 0)
1417 		return;
1418 
1419 	/* simple throttle rate management
1420 	 *    0-20MB/s lowest (100000 ints/s)
1421 	 *   20-100MB/s low   (20000 ints/s)
1422 	 *  100-1249MB/s bulk (12000 ints/s)
1423 	 */
1424 	/* what was last interrupt timeslice? */
1425 	timepassed_us = q_vector->itr >> 2;
1426 	bytes_perint = bytes / timepassed_us; /* bytes/usec */
1427 
1428 	switch (itr_setting) {
1429 	case lowest_latency:
1430 		if (bytes_perint > 10)
1431 			itr_setting = low_latency;
1432 		break;
1433 	case low_latency:
1434 		if (bytes_perint > 20)
1435 			itr_setting = bulk_latency;
1436 		else if (bytes_perint <= 10)
1437 			itr_setting = lowest_latency;
1438 		break;
1439 	case bulk_latency:
1440 		if (bytes_perint <= 20)
1441 			itr_setting = low_latency;
1442 		break;
1443 	}
1444 
1445 	/* clear work counters since we have the values we need */
1446 	ring_container->total_bytes = 0;
1447 	ring_container->total_packets = 0;
1448 
1449 	/* write updated itr to ring container */
1450 	ring_container->itr = itr_setting;
1451 }
1452 
1453 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1454 {
1455 	u32 new_itr = q_vector->itr;
1456 	u8 current_itr;
1457 
1458 	ixgbevf_update_itr(q_vector, &q_vector->tx);
1459 	ixgbevf_update_itr(q_vector, &q_vector->rx);
1460 
1461 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1462 
1463 	switch (current_itr) {
1464 	/* counts and packets in update_itr are dependent on these numbers */
1465 	case lowest_latency:
1466 		new_itr = IXGBE_100K_ITR;
1467 		break;
1468 	case low_latency:
1469 		new_itr = IXGBE_20K_ITR;
1470 		break;
1471 	case bulk_latency:
1472 		new_itr = IXGBE_12K_ITR;
1473 		break;
1474 	default:
1475 		break;
1476 	}
1477 
1478 	if (new_itr != q_vector->itr) {
1479 		/* do an exponential smoothing */
1480 		new_itr = (10 * new_itr * q_vector->itr) /
1481 			  ((9 * new_itr) + q_vector->itr);
1482 
1483 		/* save the algorithm value here */
1484 		q_vector->itr = new_itr;
1485 
1486 		ixgbevf_write_eitr(q_vector);
1487 	}
1488 }
1489 
1490 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1491 {
1492 	struct ixgbevf_adapter *adapter = data;
1493 	struct ixgbe_hw *hw = &adapter->hw;
1494 
1495 	hw->mac.get_link_status = 1;
1496 
1497 	ixgbevf_service_event_schedule(adapter);
1498 
1499 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1500 
1501 	return IRQ_HANDLED;
1502 }
1503 
1504 /**
1505  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1506  * @irq: unused
1507  * @data: pointer to our q_vector struct for this interrupt vector
1508  **/
1509 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1510 {
1511 	struct ixgbevf_q_vector *q_vector = data;
1512 
1513 	/* EIAM disabled interrupts (on this vector) for us */
1514 	if (q_vector->rx.ring || q_vector->tx.ring)
1515 		napi_schedule_irqoff(&q_vector->napi);
1516 
1517 	return IRQ_HANDLED;
1518 }
1519 
1520 /**
1521  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1522  * @adapter: board private structure
1523  *
1524  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1525  * interrupts from the kernel.
1526  **/
1527 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1528 {
1529 	struct net_device *netdev = adapter->netdev;
1530 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1531 	unsigned int ri = 0, ti = 0;
1532 	int vector, err;
1533 
1534 	for (vector = 0; vector < q_vectors; vector++) {
1535 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1536 		struct msix_entry *entry = &adapter->msix_entries[vector];
1537 
1538 		if (q_vector->tx.ring && q_vector->rx.ring) {
1539 			snprintf(q_vector->name, sizeof(q_vector->name),
1540 				 "%s-TxRx-%u", netdev->name, ri++);
1541 			ti++;
1542 		} else if (q_vector->rx.ring) {
1543 			snprintf(q_vector->name, sizeof(q_vector->name),
1544 				 "%s-rx-%u", netdev->name, ri++);
1545 		} else if (q_vector->tx.ring) {
1546 			snprintf(q_vector->name, sizeof(q_vector->name),
1547 				 "%s-tx-%u", netdev->name, ti++);
1548 		} else {
1549 			/* skip this unused q_vector */
1550 			continue;
1551 		}
1552 		err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1553 				  q_vector->name, q_vector);
1554 		if (err) {
1555 			hw_dbg(&adapter->hw,
1556 			       "request_irq failed for MSIX interrupt Error: %d\n",
1557 			       err);
1558 			goto free_queue_irqs;
1559 		}
1560 	}
1561 
1562 	err = request_irq(adapter->msix_entries[vector].vector,
1563 			  &ixgbevf_msix_other, 0, netdev->name, adapter);
1564 	if (err) {
1565 		hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1566 		       err);
1567 		goto free_queue_irqs;
1568 	}
1569 
1570 	return 0;
1571 
1572 free_queue_irqs:
1573 	while (vector) {
1574 		vector--;
1575 		free_irq(adapter->msix_entries[vector].vector,
1576 			 adapter->q_vector[vector]);
1577 	}
1578 	/* This failure is non-recoverable - it indicates the system is
1579 	 * out of MSIX vector resources and the VF driver cannot run
1580 	 * without them.  Set the number of msix vectors to zero
1581 	 * indicating that not enough can be allocated.  The error
1582 	 * will be returned to the user indicating device open failed.
1583 	 * Any further attempts to force the driver to open will also
1584 	 * fail.  The only way to recover is to unload the driver and
1585 	 * reload it again.  If the system has recovered some MSIX
1586 	 * vectors then it may succeed.
1587 	 */
1588 	adapter->num_msix_vectors = 0;
1589 	return err;
1590 }
1591 
1592 /**
1593  * ixgbevf_request_irq - initialize interrupts
1594  * @adapter: board private structure
1595  *
1596  * Attempts to configure interrupts using the best available
1597  * capabilities of the hardware and kernel.
1598  **/
1599 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1600 {
1601 	int err = ixgbevf_request_msix_irqs(adapter);
1602 
1603 	if (err)
1604 		hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1605 
1606 	return err;
1607 }
1608 
1609 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1610 {
1611 	int i, q_vectors;
1612 
1613 	if (!adapter->msix_entries)
1614 		return;
1615 
1616 	q_vectors = adapter->num_msix_vectors;
1617 	i = q_vectors - 1;
1618 
1619 	free_irq(adapter->msix_entries[i].vector, adapter);
1620 	i--;
1621 
1622 	for (; i >= 0; i--) {
1623 		/* free only the irqs that were actually requested */
1624 		if (!adapter->q_vector[i]->rx.ring &&
1625 		    !adapter->q_vector[i]->tx.ring)
1626 			continue;
1627 
1628 		free_irq(adapter->msix_entries[i].vector,
1629 			 adapter->q_vector[i]);
1630 	}
1631 }
1632 
1633 /**
1634  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1635  * @adapter: board private structure
1636  **/
1637 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1638 {
1639 	struct ixgbe_hw *hw = &adapter->hw;
1640 	int i;
1641 
1642 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1643 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1644 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1645 
1646 	IXGBE_WRITE_FLUSH(hw);
1647 
1648 	for (i = 0; i < adapter->num_msix_vectors; i++)
1649 		synchronize_irq(adapter->msix_entries[i].vector);
1650 }
1651 
1652 /**
1653  * ixgbevf_irq_enable - Enable default interrupt generation settings
1654  * @adapter: board private structure
1655  **/
1656 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1657 {
1658 	struct ixgbe_hw *hw = &adapter->hw;
1659 
1660 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1661 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1662 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1663 }
1664 
1665 /**
1666  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1667  * @adapter: board private structure
1668  * @ring: structure containing ring specific data
1669  *
1670  * Configure the Tx descriptor ring after a reset.
1671  **/
1672 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1673 				      struct ixgbevf_ring *ring)
1674 {
1675 	struct ixgbe_hw *hw = &adapter->hw;
1676 	u64 tdba = ring->dma;
1677 	int wait_loop = 10;
1678 	u32 txdctl = IXGBE_TXDCTL_ENABLE;
1679 	u8 reg_idx = ring->reg_idx;
1680 
1681 	/* disable queue to avoid issues while updating state */
1682 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1683 	IXGBE_WRITE_FLUSH(hw);
1684 
1685 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1686 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1687 	IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1688 			ring->count * sizeof(union ixgbe_adv_tx_desc));
1689 
1690 	/* disable head writeback */
1691 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1692 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1693 
1694 	/* enable relaxed ordering */
1695 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1696 			(IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1697 			 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1698 
1699 	/* reset head and tail pointers */
1700 	IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1701 	IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1702 	ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1703 
1704 	/* reset ntu and ntc to place SW in sync with hardwdare */
1705 	ring->next_to_clean = 0;
1706 	ring->next_to_use = 0;
1707 
1708 	/* In order to avoid issues WTHRESH + PTHRESH should always be equal
1709 	 * to or less than the number of on chip descriptors, which is
1710 	 * currently 40.
1711 	 */
1712 	txdctl |= (8 << 16);    /* WTHRESH = 8 */
1713 
1714 	/* Setting PTHRESH to 32 both improves performance */
1715 	txdctl |= (1u << 8) |    /* HTHRESH = 1 */
1716 		   32;           /* PTHRESH = 32 */
1717 
1718 	/* reinitialize tx_buffer_info */
1719 	memset(ring->tx_buffer_info, 0,
1720 	       sizeof(struct ixgbevf_tx_buffer) * ring->count);
1721 
1722 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1723 	clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state);
1724 
1725 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1726 
1727 	/* poll to verify queue is enabled */
1728 	do {
1729 		usleep_range(1000, 2000);
1730 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1731 	}  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1732 	if (!wait_loop)
1733 		hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1734 }
1735 
1736 /**
1737  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1738  * @adapter: board private structure
1739  *
1740  * Configure the Tx unit of the MAC after a reset.
1741  **/
1742 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1743 {
1744 	u32 i;
1745 
1746 	/* Setup the HW Tx Head and Tail descriptor pointers */
1747 	for (i = 0; i < adapter->num_tx_queues; i++)
1748 		ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1749 	for (i = 0; i < adapter->num_xdp_queues; i++)
1750 		ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]);
1751 }
1752 
1753 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1754 
1755 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter,
1756 				     struct ixgbevf_ring *ring, int index)
1757 {
1758 	struct ixgbe_hw *hw = &adapter->hw;
1759 	u32 srrctl;
1760 
1761 	srrctl = IXGBE_SRRCTL_DROP_EN;
1762 
1763 	srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1764 	if (ring_uses_large_buffer(ring))
1765 		srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1766 	else
1767 		srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1768 	srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1769 
1770 	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1771 }
1772 
1773 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1774 {
1775 	struct ixgbe_hw *hw = &adapter->hw;
1776 
1777 	/* PSRTYPE must be initialized in 82599 */
1778 	u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1779 		      IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1780 		      IXGBE_PSRTYPE_L2HDR;
1781 
1782 	if (adapter->num_rx_queues > 1)
1783 		psrtype |= BIT(29);
1784 
1785 	IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1786 }
1787 
1788 #define IXGBEVF_MAX_RX_DESC_POLL 10
1789 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1790 				     struct ixgbevf_ring *ring)
1791 {
1792 	struct ixgbe_hw *hw = &adapter->hw;
1793 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1794 	u32 rxdctl;
1795 	u8 reg_idx = ring->reg_idx;
1796 
1797 	if (IXGBE_REMOVED(hw->hw_addr))
1798 		return;
1799 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1800 	rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1801 
1802 	/* write value back with RXDCTL.ENABLE bit cleared */
1803 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1804 
1805 	/* the hardware may take up to 100us to really disable the Rx queue */
1806 	do {
1807 		udelay(10);
1808 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1809 	} while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1810 
1811 	if (!wait_loop)
1812 		pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1813 		       reg_idx);
1814 }
1815 
1816 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1817 					 struct ixgbevf_ring *ring)
1818 {
1819 	struct ixgbe_hw *hw = &adapter->hw;
1820 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1821 	u32 rxdctl;
1822 	u8 reg_idx = ring->reg_idx;
1823 
1824 	if (IXGBE_REMOVED(hw->hw_addr))
1825 		return;
1826 	do {
1827 		usleep_range(1000, 2000);
1828 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1829 	} while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1830 
1831 	if (!wait_loop)
1832 		pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1833 		       reg_idx);
1834 }
1835 
1836 /**
1837  * ixgbevf_init_rss_key - Initialize adapter RSS key
1838  * @adapter: device handle
1839  *
1840  * Allocates and initializes the RSS key if it is not allocated.
1841  **/
1842 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter)
1843 {
1844 	u32 *rss_key;
1845 
1846 	if (!adapter->rss_key) {
1847 		rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL);
1848 		if (unlikely(!rss_key))
1849 			return -ENOMEM;
1850 
1851 		netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE);
1852 		adapter->rss_key = rss_key;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1859 {
1860 	struct ixgbe_hw *hw = &adapter->hw;
1861 	u32 vfmrqc = 0, vfreta = 0;
1862 	u16 rss_i = adapter->num_rx_queues;
1863 	u8 i, j;
1864 
1865 	/* Fill out hash function seeds */
1866 	for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1867 		IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i));
1868 
1869 	for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1870 		if (j == rss_i)
1871 			j = 0;
1872 
1873 		adapter->rss_indir_tbl[i] = j;
1874 
1875 		vfreta |= j << (i & 0x3) * 8;
1876 		if ((i & 3) == 3) {
1877 			IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1878 			vfreta = 0;
1879 		}
1880 	}
1881 
1882 	/* Perform hash on these packet types */
1883 	vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1884 		IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1885 		IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1886 		IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1887 
1888 	vfmrqc |= IXGBE_VFMRQC_RSSEN;
1889 
1890 	IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1891 }
1892 
1893 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1894 				      struct ixgbevf_ring *ring)
1895 {
1896 	struct ixgbe_hw *hw = &adapter->hw;
1897 	union ixgbe_adv_rx_desc *rx_desc;
1898 	u64 rdba = ring->dma;
1899 	u32 rxdctl;
1900 	u8 reg_idx = ring->reg_idx;
1901 
1902 	/* disable queue to avoid issues while updating state */
1903 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1904 	ixgbevf_disable_rx_queue(adapter, ring);
1905 
1906 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1907 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1908 	IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1909 			ring->count * sizeof(union ixgbe_adv_rx_desc));
1910 
1911 #ifndef CONFIG_SPARC
1912 	/* enable relaxed ordering */
1913 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1914 			IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1915 #else
1916 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1917 			IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1918 			IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1919 #endif
1920 
1921 	/* reset head and tail pointers */
1922 	IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1923 	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1924 	ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1925 
1926 	/* initialize rx_buffer_info */
1927 	memset(ring->rx_buffer_info, 0,
1928 	       sizeof(struct ixgbevf_rx_buffer) * ring->count);
1929 
1930 	/* initialize Rx descriptor 0 */
1931 	rx_desc = IXGBEVF_RX_DESC(ring, 0);
1932 	rx_desc->wb.upper.length = 0;
1933 
1934 	/* reset ntu and ntc to place SW in sync with hardwdare */
1935 	ring->next_to_clean = 0;
1936 	ring->next_to_use = 0;
1937 	ring->next_to_alloc = 0;
1938 
1939 	ixgbevf_configure_srrctl(adapter, ring, reg_idx);
1940 
1941 	/* RXDCTL.RLPML does not work on 82599 */
1942 	if (adapter->hw.mac.type != ixgbe_mac_82599_vf) {
1943 		rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK |
1944 			    IXGBE_RXDCTL_RLPML_EN);
1945 
1946 #if (PAGE_SIZE < 8192)
1947 		/* Limit the maximum frame size so we don't overrun the skb */
1948 		if (ring_uses_build_skb(ring) &&
1949 		    !ring_uses_large_buffer(ring))
1950 			rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB |
1951 				  IXGBE_RXDCTL_RLPML_EN;
1952 #endif
1953 	}
1954 
1955 	rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1956 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1957 
1958 	ixgbevf_rx_desc_queue_enable(adapter, ring);
1959 	ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1960 }
1961 
1962 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter,
1963 				      struct ixgbevf_ring *rx_ring)
1964 {
1965 	struct net_device *netdev = adapter->netdev;
1966 	unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1967 
1968 	/* set build_skb and buffer size flags */
1969 	clear_ring_build_skb_enabled(rx_ring);
1970 	clear_ring_uses_large_buffer(rx_ring);
1971 
1972 	if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX)
1973 		return;
1974 
1975 	set_ring_build_skb_enabled(rx_ring);
1976 
1977 	if (PAGE_SIZE < 8192) {
1978 		if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB)
1979 			return;
1980 
1981 		set_ring_uses_large_buffer(rx_ring);
1982 	}
1983 }
1984 
1985 /**
1986  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1987  * @adapter: board private structure
1988  *
1989  * Configure the Rx unit of the MAC after a reset.
1990  **/
1991 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1992 {
1993 	struct ixgbe_hw *hw = &adapter->hw;
1994 	struct net_device *netdev = adapter->netdev;
1995 	int i, ret;
1996 
1997 	ixgbevf_setup_psrtype(adapter);
1998 	if (hw->mac.type >= ixgbe_mac_X550_vf)
1999 		ixgbevf_setup_vfmrqc(adapter);
2000 
2001 	spin_lock_bh(&adapter->mbx_lock);
2002 	/* notify the PF of our intent to use this size of frame */
2003 	ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
2004 	spin_unlock_bh(&adapter->mbx_lock);
2005 	if (ret)
2006 		dev_err(&adapter->pdev->dev,
2007 			"Failed to set MTU at %d\n", netdev->mtu);
2008 
2009 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
2010 	 * the Base and Length of the Rx Descriptor Ring
2011 	 */
2012 	for (i = 0; i < adapter->num_rx_queues; i++) {
2013 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
2014 
2015 		ixgbevf_set_rx_buffer_len(adapter, rx_ring);
2016 		ixgbevf_configure_rx_ring(adapter, rx_ring);
2017 	}
2018 }
2019 
2020 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
2021 				   __be16 proto, u16 vid)
2022 {
2023 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2024 	struct ixgbe_hw *hw = &adapter->hw;
2025 	int err;
2026 
2027 	spin_lock_bh(&adapter->mbx_lock);
2028 
2029 	/* add VID to filter table */
2030 	err = hw->mac.ops.set_vfta(hw, vid, 0, true);
2031 
2032 	spin_unlock_bh(&adapter->mbx_lock);
2033 
2034 	/* translate error return types so error makes sense */
2035 	if (err == IXGBE_ERR_MBX)
2036 		return -EIO;
2037 
2038 	if (err == IXGBE_ERR_INVALID_ARGUMENT)
2039 		return -EACCES;
2040 
2041 	set_bit(vid, adapter->active_vlans);
2042 
2043 	return err;
2044 }
2045 
2046 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
2047 				    __be16 proto, u16 vid)
2048 {
2049 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2050 	struct ixgbe_hw *hw = &adapter->hw;
2051 	int err;
2052 
2053 	spin_lock_bh(&adapter->mbx_lock);
2054 
2055 	/* remove VID from filter table */
2056 	err = hw->mac.ops.set_vfta(hw, vid, 0, false);
2057 
2058 	spin_unlock_bh(&adapter->mbx_lock);
2059 
2060 	clear_bit(vid, adapter->active_vlans);
2061 
2062 	return err;
2063 }
2064 
2065 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
2066 {
2067 	u16 vid;
2068 
2069 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2070 		ixgbevf_vlan_rx_add_vid(adapter->netdev,
2071 					htons(ETH_P_8021Q), vid);
2072 }
2073 
2074 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
2075 {
2076 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2077 	struct ixgbe_hw *hw = &adapter->hw;
2078 	int count = 0;
2079 
2080 	if ((netdev_uc_count(netdev)) > 10) {
2081 		pr_err("Too many unicast filters - No Space\n");
2082 		return -ENOSPC;
2083 	}
2084 
2085 	if (!netdev_uc_empty(netdev)) {
2086 		struct netdev_hw_addr *ha;
2087 
2088 		netdev_for_each_uc_addr(ha, netdev) {
2089 			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
2090 			udelay(200);
2091 		}
2092 	} else {
2093 		/* If the list is empty then send message to PF driver to
2094 		 * clear all MAC VLANs on this VF.
2095 		 */
2096 		hw->mac.ops.set_uc_addr(hw, 0, NULL);
2097 	}
2098 
2099 	return count;
2100 }
2101 
2102 /**
2103  * ixgbevf_set_rx_mode - Multicast and unicast set
2104  * @netdev: network interface device structure
2105  *
2106  * The set_rx_method entry point is called whenever the multicast address
2107  * list, unicast address list or the network interface flags are updated.
2108  * This routine is responsible for configuring the hardware for proper
2109  * multicast mode and configuring requested unicast filters.
2110  **/
2111 static void ixgbevf_set_rx_mode(struct net_device *netdev)
2112 {
2113 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2114 	struct ixgbe_hw *hw = &adapter->hw;
2115 	unsigned int flags = netdev->flags;
2116 	int xcast_mode;
2117 
2118 	/* request the most inclusive mode we need */
2119 	if (flags & IFF_PROMISC)
2120 		xcast_mode = IXGBEVF_XCAST_MODE_PROMISC;
2121 	else if (flags & IFF_ALLMULTI)
2122 		xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI;
2123 	else if (flags & (IFF_BROADCAST | IFF_MULTICAST))
2124 		xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
2125 	else
2126 		xcast_mode = IXGBEVF_XCAST_MODE_NONE;
2127 
2128 	spin_lock_bh(&adapter->mbx_lock);
2129 
2130 	hw->mac.ops.update_xcast_mode(hw, xcast_mode);
2131 
2132 	/* reprogram multicast list */
2133 	hw->mac.ops.update_mc_addr_list(hw, netdev);
2134 
2135 	ixgbevf_write_uc_addr_list(netdev);
2136 
2137 	spin_unlock_bh(&adapter->mbx_lock);
2138 }
2139 
2140 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
2141 {
2142 	int q_idx;
2143 	struct ixgbevf_q_vector *q_vector;
2144 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2145 
2146 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2147 		q_vector = adapter->q_vector[q_idx];
2148 		napi_enable(&q_vector->napi);
2149 	}
2150 }
2151 
2152 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
2153 {
2154 	int q_idx;
2155 	struct ixgbevf_q_vector *q_vector;
2156 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2157 
2158 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2159 		q_vector = adapter->q_vector[q_idx];
2160 		napi_disable(&q_vector->napi);
2161 	}
2162 }
2163 
2164 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
2165 {
2166 	struct ixgbe_hw *hw = &adapter->hw;
2167 	unsigned int def_q = 0;
2168 	unsigned int num_tcs = 0;
2169 	unsigned int num_rx_queues = adapter->num_rx_queues;
2170 	unsigned int num_tx_queues = adapter->num_tx_queues;
2171 	int err;
2172 
2173 	spin_lock_bh(&adapter->mbx_lock);
2174 
2175 	/* fetch queue configuration from the PF */
2176 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2177 
2178 	spin_unlock_bh(&adapter->mbx_lock);
2179 
2180 	if (err)
2181 		return err;
2182 
2183 	if (num_tcs > 1) {
2184 		/* we need only one Tx queue */
2185 		num_tx_queues = 1;
2186 
2187 		/* update default Tx ring register index */
2188 		adapter->tx_ring[0]->reg_idx = def_q;
2189 
2190 		/* we need as many queues as traffic classes */
2191 		num_rx_queues = num_tcs;
2192 	}
2193 
2194 	/* if we have a bad config abort request queue reset */
2195 	if ((adapter->num_rx_queues != num_rx_queues) ||
2196 	    (adapter->num_tx_queues != num_tx_queues)) {
2197 		/* force mailbox timeout to prevent further messages */
2198 		hw->mbx.timeout = 0;
2199 
2200 		/* wait for watchdog to come around and bail us out */
2201 		set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
2202 	}
2203 
2204 	return 0;
2205 }
2206 
2207 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2208 {
2209 	ixgbevf_configure_dcb(adapter);
2210 
2211 	ixgbevf_set_rx_mode(adapter->netdev);
2212 
2213 	ixgbevf_restore_vlan(adapter);
2214 	ixgbevf_ipsec_restore(adapter);
2215 
2216 	ixgbevf_configure_tx(adapter);
2217 	ixgbevf_configure_rx(adapter);
2218 }
2219 
2220 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2221 {
2222 	/* Only save pre-reset stats if there are some */
2223 	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2224 		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2225 			adapter->stats.base_vfgprc;
2226 		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2227 			adapter->stats.base_vfgptc;
2228 		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2229 			adapter->stats.base_vfgorc;
2230 		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2231 			adapter->stats.base_vfgotc;
2232 		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2233 			adapter->stats.base_vfmprc;
2234 	}
2235 }
2236 
2237 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2238 {
2239 	struct ixgbe_hw *hw = &adapter->hw;
2240 
2241 	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2242 	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2243 	adapter->stats.last_vfgorc |=
2244 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2245 	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2246 	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2247 	adapter->stats.last_vfgotc |=
2248 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2249 	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2250 
2251 	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2252 	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2253 	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2254 	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2255 	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2256 }
2257 
2258 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2259 {
2260 	struct ixgbe_hw *hw = &adapter->hw;
2261 	int api[] = { ixgbe_mbox_api_14,
2262 		      ixgbe_mbox_api_13,
2263 		      ixgbe_mbox_api_12,
2264 		      ixgbe_mbox_api_11,
2265 		      ixgbe_mbox_api_10,
2266 		      ixgbe_mbox_api_unknown };
2267 	int err, idx = 0;
2268 
2269 	spin_lock_bh(&adapter->mbx_lock);
2270 
2271 	while (api[idx] != ixgbe_mbox_api_unknown) {
2272 		err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2273 		if (!err)
2274 			break;
2275 		idx++;
2276 	}
2277 
2278 	spin_unlock_bh(&adapter->mbx_lock);
2279 }
2280 
2281 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2282 {
2283 	struct net_device *netdev = adapter->netdev;
2284 	struct ixgbe_hw *hw = &adapter->hw;
2285 
2286 	ixgbevf_configure_msix(adapter);
2287 
2288 	spin_lock_bh(&adapter->mbx_lock);
2289 
2290 	if (is_valid_ether_addr(hw->mac.addr))
2291 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2292 	else
2293 		hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2294 
2295 	spin_unlock_bh(&adapter->mbx_lock);
2296 
2297 	smp_mb__before_atomic();
2298 	clear_bit(__IXGBEVF_DOWN, &adapter->state);
2299 	ixgbevf_napi_enable_all(adapter);
2300 
2301 	/* clear any pending interrupts, may auto mask */
2302 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2303 	ixgbevf_irq_enable(adapter);
2304 
2305 	/* enable transmits */
2306 	netif_tx_start_all_queues(netdev);
2307 
2308 	ixgbevf_save_reset_stats(adapter);
2309 	ixgbevf_init_last_counter_stats(adapter);
2310 
2311 	hw->mac.get_link_status = 1;
2312 	mod_timer(&adapter->service_timer, jiffies);
2313 }
2314 
2315 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2316 {
2317 	ixgbevf_configure(adapter);
2318 
2319 	ixgbevf_up_complete(adapter);
2320 }
2321 
2322 /**
2323  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2324  * @rx_ring: ring to free buffers from
2325  **/
2326 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2327 {
2328 	u16 i = rx_ring->next_to_clean;
2329 
2330 	/* Free Rx ring sk_buff */
2331 	if (rx_ring->skb) {
2332 		dev_kfree_skb(rx_ring->skb);
2333 		rx_ring->skb = NULL;
2334 	}
2335 
2336 	/* Free all the Rx ring pages */
2337 	while (i != rx_ring->next_to_alloc) {
2338 		struct ixgbevf_rx_buffer *rx_buffer;
2339 
2340 		rx_buffer = &rx_ring->rx_buffer_info[i];
2341 
2342 		/* Invalidate cache lines that may have been written to by
2343 		 * device so that we avoid corrupting memory.
2344 		 */
2345 		dma_sync_single_range_for_cpu(rx_ring->dev,
2346 					      rx_buffer->dma,
2347 					      rx_buffer->page_offset,
2348 					      ixgbevf_rx_bufsz(rx_ring),
2349 					      DMA_FROM_DEVICE);
2350 
2351 		/* free resources associated with mapping */
2352 		dma_unmap_page_attrs(rx_ring->dev,
2353 				     rx_buffer->dma,
2354 				     ixgbevf_rx_pg_size(rx_ring),
2355 				     DMA_FROM_DEVICE,
2356 				     IXGBEVF_RX_DMA_ATTR);
2357 
2358 		__page_frag_cache_drain(rx_buffer->page,
2359 					rx_buffer->pagecnt_bias);
2360 
2361 		i++;
2362 		if (i == rx_ring->count)
2363 			i = 0;
2364 	}
2365 
2366 	rx_ring->next_to_alloc = 0;
2367 	rx_ring->next_to_clean = 0;
2368 	rx_ring->next_to_use = 0;
2369 }
2370 
2371 /**
2372  * ixgbevf_clean_tx_ring - Free Tx Buffers
2373  * @tx_ring: ring to be cleaned
2374  **/
2375 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2376 {
2377 	u16 i = tx_ring->next_to_clean;
2378 	struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
2379 
2380 	while (i != tx_ring->next_to_use) {
2381 		union ixgbe_adv_tx_desc *eop_desc, *tx_desc;
2382 
2383 		/* Free all the Tx ring sk_buffs */
2384 		if (ring_is_xdp(tx_ring))
2385 			page_frag_free(tx_buffer->data);
2386 		else
2387 			dev_kfree_skb_any(tx_buffer->skb);
2388 
2389 		/* unmap skb header data */
2390 		dma_unmap_single(tx_ring->dev,
2391 				 dma_unmap_addr(tx_buffer, dma),
2392 				 dma_unmap_len(tx_buffer, len),
2393 				 DMA_TO_DEVICE);
2394 
2395 		/* check for eop_desc to determine the end of the packet */
2396 		eop_desc = tx_buffer->next_to_watch;
2397 		tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2398 
2399 		/* unmap remaining buffers */
2400 		while (tx_desc != eop_desc) {
2401 			tx_buffer++;
2402 			tx_desc++;
2403 			i++;
2404 			if (unlikely(i == tx_ring->count)) {
2405 				i = 0;
2406 				tx_buffer = tx_ring->tx_buffer_info;
2407 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
2408 			}
2409 
2410 			/* unmap any remaining paged data */
2411 			if (dma_unmap_len(tx_buffer, len))
2412 				dma_unmap_page(tx_ring->dev,
2413 					       dma_unmap_addr(tx_buffer, dma),
2414 					       dma_unmap_len(tx_buffer, len),
2415 					       DMA_TO_DEVICE);
2416 		}
2417 
2418 		/* move us one more past the eop_desc for start of next pkt */
2419 		tx_buffer++;
2420 		i++;
2421 		if (unlikely(i == tx_ring->count)) {
2422 			i = 0;
2423 			tx_buffer = tx_ring->tx_buffer_info;
2424 		}
2425 	}
2426 
2427 	/* reset next_to_use and next_to_clean */
2428 	tx_ring->next_to_use = 0;
2429 	tx_ring->next_to_clean = 0;
2430 
2431 }
2432 
2433 /**
2434  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2435  * @adapter: board private structure
2436  **/
2437 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2438 {
2439 	int i;
2440 
2441 	for (i = 0; i < adapter->num_rx_queues; i++)
2442 		ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2443 }
2444 
2445 /**
2446  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2447  * @adapter: board private structure
2448  **/
2449 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2450 {
2451 	int i;
2452 
2453 	for (i = 0; i < adapter->num_tx_queues; i++)
2454 		ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2455 	for (i = 0; i < adapter->num_xdp_queues; i++)
2456 		ixgbevf_clean_tx_ring(adapter->xdp_ring[i]);
2457 }
2458 
2459 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2460 {
2461 	struct net_device *netdev = adapter->netdev;
2462 	struct ixgbe_hw *hw = &adapter->hw;
2463 	int i;
2464 
2465 	/* signal that we are down to the interrupt handler */
2466 	if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2467 		return; /* do nothing if already down */
2468 
2469 	/* disable all enabled Rx queues */
2470 	for (i = 0; i < adapter->num_rx_queues; i++)
2471 		ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2472 
2473 	usleep_range(10000, 20000);
2474 
2475 	netif_tx_stop_all_queues(netdev);
2476 
2477 	/* call carrier off first to avoid false dev_watchdog timeouts */
2478 	netif_carrier_off(netdev);
2479 	netif_tx_disable(netdev);
2480 
2481 	ixgbevf_irq_disable(adapter);
2482 
2483 	ixgbevf_napi_disable_all(adapter);
2484 
2485 	del_timer_sync(&adapter->service_timer);
2486 
2487 	/* disable transmits in the hardware now that interrupts are off */
2488 	for (i = 0; i < adapter->num_tx_queues; i++) {
2489 		u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2490 
2491 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2492 				IXGBE_TXDCTL_SWFLSH);
2493 	}
2494 
2495 	for (i = 0; i < adapter->num_xdp_queues; i++) {
2496 		u8 reg_idx = adapter->xdp_ring[i]->reg_idx;
2497 
2498 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2499 				IXGBE_TXDCTL_SWFLSH);
2500 	}
2501 
2502 	if (!pci_channel_offline(adapter->pdev))
2503 		ixgbevf_reset(adapter);
2504 
2505 	ixgbevf_clean_all_tx_rings(adapter);
2506 	ixgbevf_clean_all_rx_rings(adapter);
2507 }
2508 
2509 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2510 {
2511 	WARN_ON(in_interrupt());
2512 
2513 	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2514 		msleep(1);
2515 
2516 	ixgbevf_down(adapter);
2517 	ixgbevf_up(adapter);
2518 
2519 	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2520 }
2521 
2522 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2523 {
2524 	struct ixgbe_hw *hw = &adapter->hw;
2525 	struct net_device *netdev = adapter->netdev;
2526 
2527 	if (hw->mac.ops.reset_hw(hw)) {
2528 		hw_dbg(hw, "PF still resetting\n");
2529 	} else {
2530 		hw->mac.ops.init_hw(hw);
2531 		ixgbevf_negotiate_api(adapter);
2532 	}
2533 
2534 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2535 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2536 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2537 	}
2538 
2539 	adapter->last_reset = jiffies;
2540 }
2541 
2542 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2543 					int vectors)
2544 {
2545 	int vector_threshold;
2546 
2547 	/* We'll want at least 2 (vector_threshold):
2548 	 * 1) TxQ[0] + RxQ[0] handler
2549 	 * 2) Other (Link Status Change, etc.)
2550 	 */
2551 	vector_threshold = MIN_MSIX_COUNT;
2552 
2553 	/* The more we get, the more we will assign to Tx/Rx Cleanup
2554 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2555 	 * Right now, we simply care about how many we'll get; we'll
2556 	 * set them up later while requesting irq's.
2557 	 */
2558 	vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2559 					vector_threshold, vectors);
2560 
2561 	if (vectors < 0) {
2562 		dev_err(&adapter->pdev->dev,
2563 			"Unable to allocate MSI-X interrupts\n");
2564 		kfree(adapter->msix_entries);
2565 		adapter->msix_entries = NULL;
2566 		return vectors;
2567 	}
2568 
2569 	/* Adjust for only the vectors we'll use, which is minimum
2570 	 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2571 	 * vectors we were allocated.
2572 	 */
2573 	adapter->num_msix_vectors = vectors;
2574 
2575 	return 0;
2576 }
2577 
2578 /**
2579  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2580  * @adapter: board private structure to initialize
2581  *
2582  * This is the top level queue allocation routine.  The order here is very
2583  * important, starting with the "most" number of features turned on at once,
2584  * and ending with the smallest set of features.  This way large combinations
2585  * can be allocated if they're turned on, and smaller combinations are the
2586  * fallthrough conditions.
2587  *
2588  **/
2589 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2590 {
2591 	struct ixgbe_hw *hw = &adapter->hw;
2592 	unsigned int def_q = 0;
2593 	unsigned int num_tcs = 0;
2594 	int err;
2595 
2596 	/* Start with base case */
2597 	adapter->num_rx_queues = 1;
2598 	adapter->num_tx_queues = 1;
2599 	adapter->num_xdp_queues = 0;
2600 
2601 	spin_lock_bh(&adapter->mbx_lock);
2602 
2603 	/* fetch queue configuration from the PF */
2604 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2605 
2606 	spin_unlock_bh(&adapter->mbx_lock);
2607 
2608 	if (err)
2609 		return;
2610 
2611 	/* we need as many queues as traffic classes */
2612 	if (num_tcs > 1) {
2613 		adapter->num_rx_queues = num_tcs;
2614 	} else {
2615 		u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2616 
2617 		switch (hw->api_version) {
2618 		case ixgbe_mbox_api_11:
2619 		case ixgbe_mbox_api_12:
2620 		case ixgbe_mbox_api_13:
2621 		case ixgbe_mbox_api_14:
2622 			if (adapter->xdp_prog &&
2623 			    hw->mac.max_tx_queues == rss)
2624 				rss = rss > 3 ? 2 : 1;
2625 
2626 			adapter->num_rx_queues = rss;
2627 			adapter->num_tx_queues = rss;
2628 			adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0;
2629 		default:
2630 			break;
2631 		}
2632 	}
2633 }
2634 
2635 /**
2636  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2637  * @adapter: board private structure to initialize
2638  *
2639  * Attempt to configure the interrupts using the best available
2640  * capabilities of the hardware and the kernel.
2641  **/
2642 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2643 {
2644 	int vector, v_budget;
2645 
2646 	/* It's easy to be greedy for MSI-X vectors, but it really
2647 	 * doesn't do us much good if we have a lot more vectors
2648 	 * than CPU's.  So let's be conservative and only ask for
2649 	 * (roughly) the same number of vectors as there are CPU's.
2650 	 * The default is to use pairs of vectors.
2651 	 */
2652 	v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2653 	v_budget = min_t(int, v_budget, num_online_cpus());
2654 	v_budget += NON_Q_VECTORS;
2655 
2656 	adapter->msix_entries = kcalloc(v_budget,
2657 					sizeof(struct msix_entry), GFP_KERNEL);
2658 	if (!adapter->msix_entries)
2659 		return -ENOMEM;
2660 
2661 	for (vector = 0; vector < v_budget; vector++)
2662 		adapter->msix_entries[vector].entry = vector;
2663 
2664 	/* A failure in MSI-X entry allocation isn't fatal, but the VF driver
2665 	 * does not support any other modes, so we will simply fail here. Note
2666 	 * that we clean up the msix_entries pointer else-where.
2667 	 */
2668 	return ixgbevf_acquire_msix_vectors(adapter, v_budget);
2669 }
2670 
2671 static void ixgbevf_add_ring(struct ixgbevf_ring *ring,
2672 			     struct ixgbevf_ring_container *head)
2673 {
2674 	ring->next = head->ring;
2675 	head->ring = ring;
2676 	head->count++;
2677 }
2678 
2679 /**
2680  * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector
2681  * @adapter: board private structure to initialize
2682  * @v_idx: index of vector in adapter struct
2683  * @txr_count: number of Tx rings for q vector
2684  * @txr_idx: index of first Tx ring to assign
2685  * @xdp_count: total number of XDP rings to allocate
2686  * @xdp_idx: index of first XDP ring to allocate
2687  * @rxr_count: number of Rx rings for q vector
2688  * @rxr_idx: index of first Rx ring to assign
2689  *
2690  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
2691  **/
2692 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx,
2693 				  int txr_count, int txr_idx,
2694 				  int xdp_count, int xdp_idx,
2695 				  int rxr_count, int rxr_idx)
2696 {
2697 	struct ixgbevf_q_vector *q_vector;
2698 	int reg_idx = txr_idx + xdp_idx;
2699 	struct ixgbevf_ring *ring;
2700 	int ring_count, size;
2701 
2702 	ring_count = txr_count + xdp_count + rxr_count;
2703 	size = sizeof(*q_vector) + (sizeof(*ring) * ring_count);
2704 
2705 	/* allocate q_vector and rings */
2706 	q_vector = kzalloc(size, GFP_KERNEL);
2707 	if (!q_vector)
2708 		return -ENOMEM;
2709 
2710 	/* initialize NAPI */
2711 	netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64);
2712 
2713 	/* tie q_vector and adapter together */
2714 	adapter->q_vector[v_idx] = q_vector;
2715 	q_vector->adapter = adapter;
2716 	q_vector->v_idx = v_idx;
2717 
2718 	/* initialize pointer to rings */
2719 	ring = q_vector->ring;
2720 
2721 	while (txr_count) {
2722 		/* assign generic ring traits */
2723 		ring->dev = &adapter->pdev->dev;
2724 		ring->netdev = adapter->netdev;
2725 
2726 		/* configure backlink on ring */
2727 		ring->q_vector = q_vector;
2728 
2729 		/* update q_vector Tx values */
2730 		ixgbevf_add_ring(ring, &q_vector->tx);
2731 
2732 		/* apply Tx specific ring traits */
2733 		ring->count = adapter->tx_ring_count;
2734 		ring->queue_index = txr_idx;
2735 		ring->reg_idx = reg_idx;
2736 
2737 		/* assign ring to adapter */
2738 		 adapter->tx_ring[txr_idx] = ring;
2739 
2740 		/* update count and index */
2741 		txr_count--;
2742 		txr_idx++;
2743 		reg_idx++;
2744 
2745 		/* push pointer to next ring */
2746 		ring++;
2747 	}
2748 
2749 	while (xdp_count) {
2750 		/* assign generic ring traits */
2751 		ring->dev = &adapter->pdev->dev;
2752 		ring->netdev = adapter->netdev;
2753 
2754 		/* configure backlink on ring */
2755 		ring->q_vector = q_vector;
2756 
2757 		/* update q_vector Tx values */
2758 		ixgbevf_add_ring(ring, &q_vector->tx);
2759 
2760 		/* apply Tx specific ring traits */
2761 		ring->count = adapter->tx_ring_count;
2762 		ring->queue_index = xdp_idx;
2763 		ring->reg_idx = reg_idx;
2764 		set_ring_xdp(ring);
2765 
2766 		/* assign ring to adapter */
2767 		adapter->xdp_ring[xdp_idx] = ring;
2768 
2769 		/* update count and index */
2770 		xdp_count--;
2771 		xdp_idx++;
2772 		reg_idx++;
2773 
2774 		/* push pointer to next ring */
2775 		ring++;
2776 	}
2777 
2778 	while (rxr_count) {
2779 		/* assign generic ring traits */
2780 		ring->dev = &adapter->pdev->dev;
2781 		ring->netdev = adapter->netdev;
2782 
2783 		/* configure backlink on ring */
2784 		ring->q_vector = q_vector;
2785 
2786 		/* update q_vector Rx values */
2787 		ixgbevf_add_ring(ring, &q_vector->rx);
2788 
2789 		/* apply Rx specific ring traits */
2790 		ring->count = adapter->rx_ring_count;
2791 		ring->queue_index = rxr_idx;
2792 		ring->reg_idx = rxr_idx;
2793 
2794 		/* assign ring to adapter */
2795 		adapter->rx_ring[rxr_idx] = ring;
2796 
2797 		/* update count and index */
2798 		rxr_count--;
2799 		rxr_idx++;
2800 
2801 		/* push pointer to next ring */
2802 		ring++;
2803 	}
2804 
2805 	return 0;
2806 }
2807 
2808 /**
2809  * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector
2810  * @adapter: board private structure to initialize
2811  * @v_idx: index of vector in adapter struct
2812  *
2813  * This function frees the memory allocated to the q_vector.  In addition if
2814  * NAPI is enabled it will delete any references to the NAPI struct prior
2815  * to freeing the q_vector.
2816  **/
2817 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx)
2818 {
2819 	struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx];
2820 	struct ixgbevf_ring *ring;
2821 
2822 	ixgbevf_for_each_ring(ring, q_vector->tx) {
2823 		if (ring_is_xdp(ring))
2824 			adapter->xdp_ring[ring->queue_index] = NULL;
2825 		else
2826 			adapter->tx_ring[ring->queue_index] = NULL;
2827 	}
2828 
2829 	ixgbevf_for_each_ring(ring, q_vector->rx)
2830 		adapter->rx_ring[ring->queue_index] = NULL;
2831 
2832 	adapter->q_vector[v_idx] = NULL;
2833 	netif_napi_del(&q_vector->napi);
2834 
2835 	/* ixgbevf_get_stats() might access the rings on this vector,
2836 	 * we must wait a grace period before freeing it.
2837 	 */
2838 	kfree_rcu(q_vector, rcu);
2839 }
2840 
2841 /**
2842  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2843  * @adapter: board private structure to initialize
2844  *
2845  * We allocate one q_vector per queue interrupt.  If allocation fails we
2846  * return -ENOMEM.
2847  **/
2848 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2849 {
2850 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2851 	int rxr_remaining = adapter->num_rx_queues;
2852 	int txr_remaining = adapter->num_tx_queues;
2853 	int xdp_remaining = adapter->num_xdp_queues;
2854 	int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0;
2855 	int err;
2856 
2857 	if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) {
2858 		for (; rxr_remaining; v_idx++, q_vectors--) {
2859 			int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2860 
2861 			err = ixgbevf_alloc_q_vector(adapter, v_idx,
2862 						     0, 0, 0, 0, rqpv, rxr_idx);
2863 			if (err)
2864 				goto err_out;
2865 
2866 			/* update counts and index */
2867 			rxr_remaining -= rqpv;
2868 			rxr_idx += rqpv;
2869 		}
2870 	}
2871 
2872 	for (; q_vectors; v_idx++, q_vectors--) {
2873 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2874 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors);
2875 		int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors);
2876 
2877 		err = ixgbevf_alloc_q_vector(adapter, v_idx,
2878 					     tqpv, txr_idx,
2879 					     xqpv, xdp_idx,
2880 					     rqpv, rxr_idx);
2881 
2882 		if (err)
2883 			goto err_out;
2884 
2885 		/* update counts and index */
2886 		rxr_remaining -= rqpv;
2887 		rxr_idx += rqpv;
2888 		txr_remaining -= tqpv;
2889 		txr_idx += tqpv;
2890 		xdp_remaining -= xqpv;
2891 		xdp_idx += xqpv;
2892 	}
2893 
2894 	return 0;
2895 
2896 err_out:
2897 	while (v_idx) {
2898 		v_idx--;
2899 		ixgbevf_free_q_vector(adapter, v_idx);
2900 	}
2901 
2902 	return -ENOMEM;
2903 }
2904 
2905 /**
2906  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2907  * @adapter: board private structure to initialize
2908  *
2909  * This function frees the memory allocated to the q_vectors.  In addition if
2910  * NAPI is enabled it will delete any references to the NAPI struct prior
2911  * to freeing the q_vector.
2912  **/
2913 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2914 {
2915 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2916 
2917 	while (q_vectors) {
2918 		q_vectors--;
2919 		ixgbevf_free_q_vector(adapter, q_vectors);
2920 	}
2921 }
2922 
2923 /**
2924  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2925  * @adapter: board private structure
2926  *
2927  **/
2928 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2929 {
2930 	if (!adapter->msix_entries)
2931 		return;
2932 
2933 	pci_disable_msix(adapter->pdev);
2934 	kfree(adapter->msix_entries);
2935 	adapter->msix_entries = NULL;
2936 }
2937 
2938 /**
2939  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2940  * @adapter: board private structure to initialize
2941  *
2942  **/
2943 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2944 {
2945 	int err;
2946 
2947 	/* Number of supported queues */
2948 	ixgbevf_set_num_queues(adapter);
2949 
2950 	err = ixgbevf_set_interrupt_capability(adapter);
2951 	if (err) {
2952 		hw_dbg(&adapter->hw,
2953 		       "Unable to setup interrupt capabilities\n");
2954 		goto err_set_interrupt;
2955 	}
2956 
2957 	err = ixgbevf_alloc_q_vectors(adapter);
2958 	if (err) {
2959 		hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2960 		goto err_alloc_q_vectors;
2961 	}
2962 
2963 	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n",
2964 	       (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled",
2965 	       adapter->num_rx_queues, adapter->num_tx_queues,
2966 	       adapter->num_xdp_queues);
2967 
2968 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2969 
2970 	return 0;
2971 err_alloc_q_vectors:
2972 	ixgbevf_reset_interrupt_capability(adapter);
2973 err_set_interrupt:
2974 	return err;
2975 }
2976 
2977 /**
2978  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2979  * @adapter: board private structure to clear interrupt scheme on
2980  *
2981  * We go through and clear interrupt specific resources and reset the structure
2982  * to pre-load conditions
2983  **/
2984 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2985 {
2986 	adapter->num_tx_queues = 0;
2987 	adapter->num_xdp_queues = 0;
2988 	adapter->num_rx_queues = 0;
2989 
2990 	ixgbevf_free_q_vectors(adapter);
2991 	ixgbevf_reset_interrupt_capability(adapter);
2992 }
2993 
2994 /**
2995  * ixgbevf_sw_init - Initialize general software structures
2996  * @adapter: board private structure to initialize
2997  *
2998  * ixgbevf_sw_init initializes the Adapter private data structure.
2999  * Fields are initialized based on PCI device information and
3000  * OS network device settings (MTU size).
3001  **/
3002 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
3003 {
3004 	struct ixgbe_hw *hw = &adapter->hw;
3005 	struct pci_dev *pdev = adapter->pdev;
3006 	struct net_device *netdev = adapter->netdev;
3007 	int err;
3008 
3009 	/* PCI config space info */
3010 	hw->vendor_id = pdev->vendor;
3011 	hw->device_id = pdev->device;
3012 	hw->revision_id = pdev->revision;
3013 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3014 	hw->subsystem_device_id = pdev->subsystem_device;
3015 
3016 	hw->mbx.ops.init_params(hw);
3017 
3018 	if (hw->mac.type >= ixgbe_mac_X550_vf) {
3019 		err = ixgbevf_init_rss_key(adapter);
3020 		if (err)
3021 			goto out;
3022 	}
3023 
3024 	/* assume legacy case in which PF would only give VF 2 queues */
3025 	hw->mac.max_tx_queues = 2;
3026 	hw->mac.max_rx_queues = 2;
3027 
3028 	/* lock to protect mailbox accesses */
3029 	spin_lock_init(&adapter->mbx_lock);
3030 
3031 	err = hw->mac.ops.reset_hw(hw);
3032 	if (err) {
3033 		dev_info(&pdev->dev,
3034 			 "PF still in reset state.  Is the PF interface up?\n");
3035 	} else {
3036 		err = hw->mac.ops.init_hw(hw);
3037 		if (err) {
3038 			pr_err("init_shared_code failed: %d\n", err);
3039 			goto out;
3040 		}
3041 		ixgbevf_negotiate_api(adapter);
3042 		err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
3043 		if (err)
3044 			dev_info(&pdev->dev, "Error reading MAC address\n");
3045 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
3046 			dev_info(&pdev->dev,
3047 				 "MAC address not assigned by administrator.\n");
3048 		ether_addr_copy(netdev->dev_addr, hw->mac.addr);
3049 	}
3050 
3051 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3052 		dev_info(&pdev->dev, "Assigning random MAC address\n");
3053 		eth_hw_addr_random(netdev);
3054 		ether_addr_copy(hw->mac.addr, netdev->dev_addr);
3055 		ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
3056 	}
3057 
3058 	/* Enable dynamic interrupt throttling rates */
3059 	adapter->rx_itr_setting = 1;
3060 	adapter->tx_itr_setting = 1;
3061 
3062 	/* set default ring sizes */
3063 	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
3064 	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
3065 
3066 	set_bit(__IXGBEVF_DOWN, &adapter->state);
3067 	return 0;
3068 
3069 out:
3070 	return err;
3071 }
3072 
3073 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
3074 	{							\
3075 		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
3076 		if (current_counter < last_counter)		\
3077 			counter += 0x100000000LL;		\
3078 		last_counter = current_counter;			\
3079 		counter &= 0xFFFFFFFF00000000LL;		\
3080 		counter |= current_counter;			\
3081 	}
3082 
3083 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
3084 	{								 \
3085 		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
3086 		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
3087 		u64 current_counter = (current_counter_msb << 32) |	 \
3088 			current_counter_lsb;				 \
3089 		if (current_counter < last_counter)			 \
3090 			counter += 0x1000000000LL;			 \
3091 		last_counter = current_counter;				 \
3092 		counter &= 0xFFFFFFF000000000LL;			 \
3093 		counter |= current_counter;				 \
3094 	}
3095 /**
3096  * ixgbevf_update_stats - Update the board statistics counters.
3097  * @adapter: board private structure
3098  **/
3099 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
3100 {
3101 	struct ixgbe_hw *hw = &adapter->hw;
3102 	u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0;
3103 	u64 alloc_rx_page = 0, hw_csum_rx_error = 0;
3104 	int i;
3105 
3106 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3107 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3108 		return;
3109 
3110 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
3111 				adapter->stats.vfgprc);
3112 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
3113 				adapter->stats.vfgptc);
3114 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
3115 				adapter->stats.last_vfgorc,
3116 				adapter->stats.vfgorc);
3117 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
3118 				adapter->stats.last_vfgotc,
3119 				adapter->stats.vfgotc);
3120 	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
3121 				adapter->stats.vfmprc);
3122 
3123 	for (i = 0;  i  < adapter->num_rx_queues;  i++) {
3124 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
3125 
3126 		hw_csum_rx_error += rx_ring->rx_stats.csum_err;
3127 		alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed;
3128 		alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
3129 		alloc_rx_page += rx_ring->rx_stats.alloc_rx_page;
3130 	}
3131 
3132 	adapter->hw_csum_rx_error = hw_csum_rx_error;
3133 	adapter->alloc_rx_page_failed = alloc_rx_page_failed;
3134 	adapter->alloc_rx_buff_failed = alloc_rx_buff_failed;
3135 	adapter->alloc_rx_page = alloc_rx_page;
3136 }
3137 
3138 /**
3139  * ixgbevf_service_timer - Timer Call-back
3140  * @t: pointer to timer_list struct
3141  **/
3142 static void ixgbevf_service_timer(struct timer_list *t)
3143 {
3144 	struct ixgbevf_adapter *adapter = from_timer(adapter, t,
3145 						     service_timer);
3146 
3147 	/* Reset the timer */
3148 	mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
3149 
3150 	ixgbevf_service_event_schedule(adapter);
3151 }
3152 
3153 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
3154 {
3155 	if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
3156 		return;
3157 
3158 	rtnl_lock();
3159 	/* If we're already down or resetting, just bail */
3160 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3161 	    test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
3162 	    test_bit(__IXGBEVF_RESETTING, &adapter->state)) {
3163 		rtnl_unlock();
3164 		return;
3165 	}
3166 
3167 	adapter->tx_timeout_count++;
3168 
3169 	ixgbevf_reinit_locked(adapter);
3170 	rtnl_unlock();
3171 }
3172 
3173 /**
3174  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
3175  * @adapter: pointer to the device adapter structure
3176  *
3177  * This function serves two purposes.  First it strobes the interrupt lines
3178  * in order to make certain interrupts are occurring.  Secondly it sets the
3179  * bits needed to check for TX hangs.  As a result we should immediately
3180  * determine if a hang has occurred.
3181  **/
3182 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
3183 {
3184 	struct ixgbe_hw *hw = &adapter->hw;
3185 	u32 eics = 0;
3186 	int i;
3187 
3188 	/* If we're down or resetting, just bail */
3189 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3190 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3191 		return;
3192 
3193 	/* Force detection of hung controller */
3194 	if (netif_carrier_ok(adapter->netdev)) {
3195 		for (i = 0; i < adapter->num_tx_queues; i++)
3196 			set_check_for_tx_hang(adapter->tx_ring[i]);
3197 		for (i = 0; i < adapter->num_xdp_queues; i++)
3198 			set_check_for_tx_hang(adapter->xdp_ring[i]);
3199 	}
3200 
3201 	/* get one bit for every active Tx/Rx interrupt vector */
3202 	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
3203 		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
3204 
3205 		if (qv->rx.ring || qv->tx.ring)
3206 			eics |= BIT(i);
3207 	}
3208 
3209 	/* Cause software interrupt to ensure rings are cleaned */
3210 	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
3211 }
3212 
3213 /**
3214  * ixgbevf_watchdog_update_link - update the link status
3215  * @adapter: pointer to the device adapter structure
3216  **/
3217 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
3218 {
3219 	struct ixgbe_hw *hw = &adapter->hw;
3220 	u32 link_speed = adapter->link_speed;
3221 	bool link_up = adapter->link_up;
3222 	s32 err;
3223 
3224 	spin_lock_bh(&adapter->mbx_lock);
3225 
3226 	err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
3227 
3228 	spin_unlock_bh(&adapter->mbx_lock);
3229 
3230 	/* if check for link returns error we will need to reset */
3231 	if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
3232 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
3233 		link_up = false;
3234 	}
3235 
3236 	adapter->link_up = link_up;
3237 	adapter->link_speed = link_speed;
3238 }
3239 
3240 /**
3241  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
3242  *				 print link up message
3243  * @adapter: pointer to the device adapter structure
3244  **/
3245 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
3246 {
3247 	struct net_device *netdev = adapter->netdev;
3248 
3249 	/* only continue if link was previously down */
3250 	if (netif_carrier_ok(netdev))
3251 		return;
3252 
3253 	dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
3254 		 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
3255 		 "10 Gbps" :
3256 		 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
3257 		 "1 Gbps" :
3258 		 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
3259 		 "100 Mbps" :
3260 		 "unknown speed");
3261 
3262 	netif_carrier_on(netdev);
3263 }
3264 
3265 /**
3266  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
3267  *				   print link down message
3268  * @adapter: pointer to the adapter structure
3269  **/
3270 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
3271 {
3272 	struct net_device *netdev = adapter->netdev;
3273 
3274 	adapter->link_speed = 0;
3275 
3276 	/* only continue if link was up previously */
3277 	if (!netif_carrier_ok(netdev))
3278 		return;
3279 
3280 	dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
3281 
3282 	netif_carrier_off(netdev);
3283 }
3284 
3285 /**
3286  * ixgbevf_watchdog_subtask - worker thread to bring link up
3287  * @adapter: board private structure
3288  **/
3289 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
3290 {
3291 	/* if interface is down do nothing */
3292 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3293 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3294 		return;
3295 
3296 	ixgbevf_watchdog_update_link(adapter);
3297 
3298 	if (adapter->link_up)
3299 		ixgbevf_watchdog_link_is_up(adapter);
3300 	else
3301 		ixgbevf_watchdog_link_is_down(adapter);
3302 
3303 	ixgbevf_update_stats(adapter);
3304 }
3305 
3306 /**
3307  * ixgbevf_service_task - manages and runs subtasks
3308  * @work: pointer to work_struct containing our data
3309  **/
3310 static void ixgbevf_service_task(struct work_struct *work)
3311 {
3312 	struct ixgbevf_adapter *adapter = container_of(work,
3313 						       struct ixgbevf_adapter,
3314 						       service_task);
3315 	struct ixgbe_hw *hw = &adapter->hw;
3316 
3317 	if (IXGBE_REMOVED(hw->hw_addr)) {
3318 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
3319 			rtnl_lock();
3320 			ixgbevf_down(adapter);
3321 			rtnl_unlock();
3322 		}
3323 		return;
3324 	}
3325 
3326 	ixgbevf_queue_reset_subtask(adapter);
3327 	ixgbevf_reset_subtask(adapter);
3328 	ixgbevf_watchdog_subtask(adapter);
3329 	ixgbevf_check_hang_subtask(adapter);
3330 
3331 	ixgbevf_service_event_complete(adapter);
3332 }
3333 
3334 /**
3335  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
3336  * @tx_ring: Tx descriptor ring for a specific queue
3337  *
3338  * Free all transmit software resources
3339  **/
3340 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
3341 {
3342 	ixgbevf_clean_tx_ring(tx_ring);
3343 
3344 	vfree(tx_ring->tx_buffer_info);
3345 	tx_ring->tx_buffer_info = NULL;
3346 
3347 	/* if not set, then don't free */
3348 	if (!tx_ring->desc)
3349 		return;
3350 
3351 	dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
3352 			  tx_ring->dma);
3353 
3354 	tx_ring->desc = NULL;
3355 }
3356 
3357 /**
3358  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
3359  * @adapter: board private structure
3360  *
3361  * Free all transmit software resources
3362  **/
3363 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
3364 {
3365 	int i;
3366 
3367 	for (i = 0; i < adapter->num_tx_queues; i++)
3368 		if (adapter->tx_ring[i]->desc)
3369 			ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3370 	for (i = 0; i < adapter->num_xdp_queues; i++)
3371 		if (adapter->xdp_ring[i]->desc)
3372 			ixgbevf_free_tx_resources(adapter->xdp_ring[i]);
3373 }
3374 
3375 /**
3376  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
3377  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
3378  *
3379  * Return 0 on success, negative on failure
3380  **/
3381 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
3382 {
3383 	struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
3384 	int size;
3385 
3386 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
3387 	tx_ring->tx_buffer_info = vmalloc(size);
3388 	if (!tx_ring->tx_buffer_info)
3389 		goto err;
3390 
3391 	u64_stats_init(&tx_ring->syncp);
3392 
3393 	/* round up to nearest 4K */
3394 	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
3395 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3396 
3397 	tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3398 					   &tx_ring->dma, GFP_KERNEL);
3399 	if (!tx_ring->desc)
3400 		goto err;
3401 
3402 	return 0;
3403 
3404 err:
3405 	vfree(tx_ring->tx_buffer_info);
3406 	tx_ring->tx_buffer_info = NULL;
3407 	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3408 	return -ENOMEM;
3409 }
3410 
3411 /**
3412  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3413  * @adapter: board private structure
3414  *
3415  * If this function returns with an error, then it's possible one or
3416  * more of the rings is populated (while the rest are not).  It is the
3417  * callers duty to clean those orphaned rings.
3418  *
3419  * Return 0 on success, negative on failure
3420  **/
3421 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3422 {
3423 	int i, j = 0, err = 0;
3424 
3425 	for (i = 0; i < adapter->num_tx_queues; i++) {
3426 		err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3427 		if (!err)
3428 			continue;
3429 		hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3430 		goto err_setup_tx;
3431 	}
3432 
3433 	for (j = 0; j < adapter->num_xdp_queues; j++) {
3434 		err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]);
3435 		if (!err)
3436 			continue;
3437 		hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j);
3438 		goto err_setup_tx;
3439 	}
3440 
3441 	return 0;
3442 err_setup_tx:
3443 	/* rewind the index freeing the rings as we go */
3444 	while (j--)
3445 		ixgbevf_free_tx_resources(adapter->xdp_ring[j]);
3446 	while (i--)
3447 		ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3448 
3449 	return err;
3450 }
3451 
3452 /**
3453  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3454  * @adapter: board private structure
3455  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3456  *
3457  * Returns 0 on success, negative on failure
3458  **/
3459 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
3460 			       struct ixgbevf_ring *rx_ring)
3461 {
3462 	int size;
3463 
3464 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3465 	rx_ring->rx_buffer_info = vmalloc(size);
3466 	if (!rx_ring->rx_buffer_info)
3467 		goto err;
3468 
3469 	u64_stats_init(&rx_ring->syncp);
3470 
3471 	/* Round up to nearest 4K */
3472 	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3473 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3474 
3475 	rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3476 					   &rx_ring->dma, GFP_KERNEL);
3477 
3478 	if (!rx_ring->desc)
3479 		goto err;
3480 
3481 	/* XDP RX-queue info */
3482 	if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev,
3483 			     rx_ring->queue_index) < 0)
3484 		goto err;
3485 
3486 	rx_ring->xdp_prog = adapter->xdp_prog;
3487 
3488 	return 0;
3489 err:
3490 	vfree(rx_ring->rx_buffer_info);
3491 	rx_ring->rx_buffer_info = NULL;
3492 	dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3493 	return -ENOMEM;
3494 }
3495 
3496 /**
3497  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3498  * @adapter: board private structure
3499  *
3500  * If this function returns with an error, then it's possible one or
3501  * more of the rings is populated (while the rest are not).  It is the
3502  * callers duty to clean those orphaned rings.
3503  *
3504  * Return 0 on success, negative on failure
3505  **/
3506 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3507 {
3508 	int i, err = 0;
3509 
3510 	for (i = 0; i < adapter->num_rx_queues; i++) {
3511 		err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]);
3512 		if (!err)
3513 			continue;
3514 		hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3515 		goto err_setup_rx;
3516 	}
3517 
3518 	return 0;
3519 err_setup_rx:
3520 	/* rewind the index freeing the rings as we go */
3521 	while (i--)
3522 		ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3523 	return err;
3524 }
3525 
3526 /**
3527  * ixgbevf_free_rx_resources - Free Rx Resources
3528  * @rx_ring: ring to clean the resources from
3529  *
3530  * Free all receive software resources
3531  **/
3532 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3533 {
3534 	ixgbevf_clean_rx_ring(rx_ring);
3535 
3536 	rx_ring->xdp_prog = NULL;
3537 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
3538 	vfree(rx_ring->rx_buffer_info);
3539 	rx_ring->rx_buffer_info = NULL;
3540 
3541 	dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3542 			  rx_ring->dma);
3543 
3544 	rx_ring->desc = NULL;
3545 }
3546 
3547 /**
3548  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3549  * @adapter: board private structure
3550  *
3551  * Free all receive software resources
3552  **/
3553 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3554 {
3555 	int i;
3556 
3557 	for (i = 0; i < adapter->num_rx_queues; i++)
3558 		if (adapter->rx_ring[i]->desc)
3559 			ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3560 }
3561 
3562 /**
3563  * ixgbevf_open - Called when a network interface is made active
3564  * @netdev: network interface device structure
3565  *
3566  * Returns 0 on success, negative value on failure
3567  *
3568  * The open entry point is called when a network interface is made
3569  * active by the system (IFF_UP).  At this point all resources needed
3570  * for transmit and receive operations are allocated, the interrupt
3571  * handler is registered with the OS, the watchdog timer is started,
3572  * and the stack is notified that the interface is ready.
3573  **/
3574 int ixgbevf_open(struct net_device *netdev)
3575 {
3576 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3577 	struct ixgbe_hw *hw = &adapter->hw;
3578 	int err;
3579 
3580 	/* A previous failure to open the device because of a lack of
3581 	 * available MSIX vector resources may have reset the number
3582 	 * of msix vectors variable to zero.  The only way to recover
3583 	 * is to unload/reload the driver and hope that the system has
3584 	 * been able to recover some MSIX vector resources.
3585 	 */
3586 	if (!adapter->num_msix_vectors)
3587 		return -ENOMEM;
3588 
3589 	if (hw->adapter_stopped) {
3590 		ixgbevf_reset(adapter);
3591 		/* if adapter is still stopped then PF isn't up and
3592 		 * the VF can't start.
3593 		 */
3594 		if (hw->adapter_stopped) {
3595 			err = IXGBE_ERR_MBX;
3596 			pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3597 			goto err_setup_reset;
3598 		}
3599 	}
3600 
3601 	/* disallow open during test */
3602 	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3603 		return -EBUSY;
3604 
3605 	netif_carrier_off(netdev);
3606 
3607 	/* allocate transmit descriptors */
3608 	err = ixgbevf_setup_all_tx_resources(adapter);
3609 	if (err)
3610 		goto err_setup_tx;
3611 
3612 	/* allocate receive descriptors */
3613 	err = ixgbevf_setup_all_rx_resources(adapter);
3614 	if (err)
3615 		goto err_setup_rx;
3616 
3617 	ixgbevf_configure(adapter);
3618 
3619 	err = ixgbevf_request_irq(adapter);
3620 	if (err)
3621 		goto err_req_irq;
3622 
3623 	/* Notify the stack of the actual queue counts. */
3624 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3625 	if (err)
3626 		goto err_set_queues;
3627 
3628 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3629 	if (err)
3630 		goto err_set_queues;
3631 
3632 	ixgbevf_up_complete(adapter);
3633 
3634 	return 0;
3635 
3636 err_set_queues:
3637 	ixgbevf_free_irq(adapter);
3638 err_req_irq:
3639 	ixgbevf_free_all_rx_resources(adapter);
3640 err_setup_rx:
3641 	ixgbevf_free_all_tx_resources(adapter);
3642 err_setup_tx:
3643 	ixgbevf_reset(adapter);
3644 err_setup_reset:
3645 
3646 	return err;
3647 }
3648 
3649 /**
3650  * ixgbevf_close_suspend - actions necessary to both suspend and close flows
3651  * @adapter: the private adapter struct
3652  *
3653  * This function should contain the necessary work common to both suspending
3654  * and closing of the device.
3655  */
3656 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter)
3657 {
3658 	ixgbevf_down(adapter);
3659 	ixgbevf_free_irq(adapter);
3660 	ixgbevf_free_all_tx_resources(adapter);
3661 	ixgbevf_free_all_rx_resources(adapter);
3662 }
3663 
3664 /**
3665  * ixgbevf_close - Disables a network interface
3666  * @netdev: network interface device structure
3667  *
3668  * Returns 0, this is not allowed to fail
3669  *
3670  * The close entry point is called when an interface is de-activated
3671  * by the OS.  The hardware is still under the drivers control, but
3672  * needs to be disabled.  A global MAC reset is issued to stop the
3673  * hardware, and all transmit and receive resources are freed.
3674  **/
3675 int ixgbevf_close(struct net_device *netdev)
3676 {
3677 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3678 
3679 	if (netif_device_present(netdev))
3680 		ixgbevf_close_suspend(adapter);
3681 
3682 	return 0;
3683 }
3684 
3685 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3686 {
3687 	struct net_device *dev = adapter->netdev;
3688 
3689 	if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3690 				&adapter->state))
3691 		return;
3692 
3693 	/* if interface is down do nothing */
3694 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3695 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3696 		return;
3697 
3698 	/* Hardware has to reinitialize queues and interrupts to
3699 	 * match packet buffer alignment. Unfortunately, the
3700 	 * hardware is not flexible enough to do this dynamically.
3701 	 */
3702 	rtnl_lock();
3703 
3704 	if (netif_running(dev))
3705 		ixgbevf_close(dev);
3706 
3707 	ixgbevf_clear_interrupt_scheme(adapter);
3708 	ixgbevf_init_interrupt_scheme(adapter);
3709 
3710 	if (netif_running(dev))
3711 		ixgbevf_open(dev);
3712 
3713 	rtnl_unlock();
3714 }
3715 
3716 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3717 				u32 vlan_macip_lens, u32 fceof_saidx,
3718 				u32 type_tucmd, u32 mss_l4len_idx)
3719 {
3720 	struct ixgbe_adv_tx_context_desc *context_desc;
3721 	u16 i = tx_ring->next_to_use;
3722 
3723 	context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3724 
3725 	i++;
3726 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3727 
3728 	/* set bits to identify this as an advanced context descriptor */
3729 	type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3730 
3731 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
3732 	context_desc->fceof_saidx	= cpu_to_le32(fceof_saidx);
3733 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
3734 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
3735 }
3736 
3737 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3738 		       struct ixgbevf_tx_buffer *first,
3739 		       u8 *hdr_len,
3740 		       struct ixgbevf_ipsec_tx_data *itd)
3741 {
3742 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3743 	struct sk_buff *skb = first->skb;
3744 	union {
3745 		struct iphdr *v4;
3746 		struct ipv6hdr *v6;
3747 		unsigned char *hdr;
3748 	} ip;
3749 	union {
3750 		struct tcphdr *tcp;
3751 		unsigned char *hdr;
3752 	} l4;
3753 	u32 paylen, l4_offset;
3754 	u32 fceof_saidx = 0;
3755 	int err;
3756 
3757 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3758 		return 0;
3759 
3760 	if (!skb_is_gso(skb))
3761 		return 0;
3762 
3763 	err = skb_cow_head(skb, 0);
3764 	if (err < 0)
3765 		return err;
3766 
3767 	if (eth_p_mpls(first->protocol))
3768 		ip.hdr = skb_inner_network_header(skb);
3769 	else
3770 		ip.hdr = skb_network_header(skb);
3771 	l4.hdr = skb_checksum_start(skb);
3772 
3773 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3774 	type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3775 
3776 	/* initialize outer IP header fields */
3777 	if (ip.v4->version == 4) {
3778 		unsigned char *csum_start = skb_checksum_start(skb);
3779 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3780 		int len = csum_start - trans_start;
3781 
3782 		/* IP header will have to cancel out any data that
3783 		 * is not a part of the outer IP header, so set to
3784 		 * a reverse csum if needed, else init check to 0.
3785 		 */
3786 		ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ?
3787 					   csum_fold(csum_partial(trans_start,
3788 								  len, 0)) : 0;
3789 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3790 
3791 		ip.v4->tot_len = 0;
3792 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3793 				   IXGBE_TX_FLAGS_CSUM |
3794 				   IXGBE_TX_FLAGS_IPV4;
3795 	} else {
3796 		ip.v6->payload_len = 0;
3797 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3798 				   IXGBE_TX_FLAGS_CSUM;
3799 	}
3800 
3801 	/* determine offset of inner transport header */
3802 	l4_offset = l4.hdr - skb->data;
3803 
3804 	/* compute length of segmentation header */
3805 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3806 
3807 	/* remove payload length from inner checksum */
3808 	paylen = skb->len - l4_offset;
3809 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
3810 
3811 	/* update gso size and bytecount with header size */
3812 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3813 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3814 
3815 	/* mss_l4len_id: use 1 as index for TSO */
3816 	mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3817 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3818 	mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3819 
3820 	fceof_saidx |= itd->pfsa;
3821 	type_tucmd |= itd->flags | itd->trailer_len;
3822 
3823 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3824 	vlan_macip_lens = l4.hdr - ip.hdr;
3825 	vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3826 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3827 
3828 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd,
3829 			    mss_l4len_idx);
3830 
3831 	return 1;
3832 }
3833 
3834 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb)
3835 {
3836 	unsigned int offset = 0;
3837 
3838 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
3839 
3840 	return offset == skb_checksum_start_offset(skb);
3841 }
3842 
3843 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3844 			    struct ixgbevf_tx_buffer *first,
3845 			    struct ixgbevf_ipsec_tx_data *itd)
3846 {
3847 	struct sk_buff *skb = first->skb;
3848 	u32 vlan_macip_lens = 0;
3849 	u32 fceof_saidx = 0;
3850 	u32 type_tucmd = 0;
3851 
3852 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3853 		goto no_csum;
3854 
3855 	switch (skb->csum_offset) {
3856 	case offsetof(struct tcphdr, check):
3857 		type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3858 		/* fall through */
3859 	case offsetof(struct udphdr, check):
3860 		break;
3861 	case offsetof(struct sctphdr, checksum):
3862 		/* validate that this is actually an SCTP request */
3863 		if (((first->protocol == htons(ETH_P_IP)) &&
3864 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
3865 		    ((first->protocol == htons(ETH_P_IPV6)) &&
3866 		     ixgbevf_ipv6_csum_is_sctp(skb))) {
3867 			type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3868 			break;
3869 		}
3870 		/* fall through */
3871 	default:
3872 		skb_checksum_help(skb);
3873 		goto no_csum;
3874 	}
3875 
3876 	if (first->protocol == htons(ETH_P_IP))
3877 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3878 
3879 	/* update TX checksum flag */
3880 	first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3881 	vlan_macip_lens = skb_checksum_start_offset(skb) -
3882 			  skb_network_offset(skb);
3883 no_csum:
3884 	/* vlan_macip_lens: MACLEN, VLAN tag */
3885 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3886 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3887 
3888 	fceof_saidx |= itd->pfsa;
3889 	type_tucmd |= itd->flags | itd->trailer_len;
3890 
3891 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3892 			    fceof_saidx, type_tucmd, 0);
3893 }
3894 
3895 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3896 {
3897 	/* set type for advanced descriptor with frame checksum insertion */
3898 	__le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3899 				      IXGBE_ADVTXD_DCMD_IFCS |
3900 				      IXGBE_ADVTXD_DCMD_DEXT);
3901 
3902 	/* set HW VLAN bit if VLAN is present */
3903 	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3904 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3905 
3906 	/* set segmentation enable bits for TSO/FSO */
3907 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3908 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3909 
3910 	return cmd_type;
3911 }
3912 
3913 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3914 				     u32 tx_flags, unsigned int paylen)
3915 {
3916 	__le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3917 
3918 	/* enable L4 checksum for TSO and TX checksum offload */
3919 	if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3920 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3921 
3922 	/* enble IPv4 checksum for TSO */
3923 	if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3924 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3925 
3926 	/* enable IPsec */
3927 	if (tx_flags & IXGBE_TX_FLAGS_IPSEC)
3928 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC);
3929 
3930 	/* use index 1 context for TSO/FSO/FCOE/IPSEC */
3931 	if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC))
3932 		olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3933 
3934 	/* Check Context must be set if Tx switch is enabled, which it
3935 	 * always is for case where virtual functions are running
3936 	 */
3937 	olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3938 
3939 	tx_desc->read.olinfo_status = olinfo_status;
3940 }
3941 
3942 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3943 			   struct ixgbevf_tx_buffer *first,
3944 			   const u8 hdr_len)
3945 {
3946 	struct sk_buff *skb = first->skb;
3947 	struct ixgbevf_tx_buffer *tx_buffer;
3948 	union ixgbe_adv_tx_desc *tx_desc;
3949 	struct skb_frag_struct *frag;
3950 	dma_addr_t dma;
3951 	unsigned int data_len, size;
3952 	u32 tx_flags = first->tx_flags;
3953 	__le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3954 	u16 i = tx_ring->next_to_use;
3955 
3956 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3957 
3958 	ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
3959 
3960 	size = skb_headlen(skb);
3961 	data_len = skb->data_len;
3962 
3963 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3964 
3965 	tx_buffer = first;
3966 
3967 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3968 		if (dma_mapping_error(tx_ring->dev, dma))
3969 			goto dma_error;
3970 
3971 		/* record length, and DMA address */
3972 		dma_unmap_len_set(tx_buffer, len, size);
3973 		dma_unmap_addr_set(tx_buffer, dma, dma);
3974 
3975 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3976 
3977 		while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3978 			tx_desc->read.cmd_type_len =
3979 				cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3980 
3981 			i++;
3982 			tx_desc++;
3983 			if (i == tx_ring->count) {
3984 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3985 				i = 0;
3986 			}
3987 			tx_desc->read.olinfo_status = 0;
3988 
3989 			dma += IXGBE_MAX_DATA_PER_TXD;
3990 			size -= IXGBE_MAX_DATA_PER_TXD;
3991 
3992 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
3993 		}
3994 
3995 		if (likely(!data_len))
3996 			break;
3997 
3998 		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3999 
4000 		i++;
4001 		tx_desc++;
4002 		if (i == tx_ring->count) {
4003 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
4004 			i = 0;
4005 		}
4006 		tx_desc->read.olinfo_status = 0;
4007 
4008 		size = skb_frag_size(frag);
4009 		data_len -= size;
4010 
4011 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
4012 				       DMA_TO_DEVICE);
4013 
4014 		tx_buffer = &tx_ring->tx_buffer_info[i];
4015 	}
4016 
4017 	/* write last descriptor with RS and EOP bits */
4018 	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
4019 	tx_desc->read.cmd_type_len = cmd_type;
4020 
4021 	/* set the timestamp */
4022 	first->time_stamp = jiffies;
4023 
4024 	skb_tx_timestamp(skb);
4025 
4026 	/* Force memory writes to complete before letting h/w know there
4027 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4028 	 * memory model archs, such as IA-64).
4029 	 *
4030 	 * We also need this memory barrier (wmb) to make certain all of the
4031 	 * status bits have been updated before next_to_watch is written.
4032 	 */
4033 	wmb();
4034 
4035 	/* set next_to_watch value indicating a packet is present */
4036 	first->next_to_watch = tx_desc;
4037 
4038 	i++;
4039 	if (i == tx_ring->count)
4040 		i = 0;
4041 
4042 	tx_ring->next_to_use = i;
4043 
4044 	/* notify HW of packet */
4045 	ixgbevf_write_tail(tx_ring, i);
4046 
4047 	return;
4048 dma_error:
4049 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4050 	tx_buffer = &tx_ring->tx_buffer_info[i];
4051 
4052 	/* clear dma mappings for failed tx_buffer_info map */
4053 	while (tx_buffer != first) {
4054 		if (dma_unmap_len(tx_buffer, len))
4055 			dma_unmap_page(tx_ring->dev,
4056 				       dma_unmap_addr(tx_buffer, dma),
4057 				       dma_unmap_len(tx_buffer, len),
4058 				       DMA_TO_DEVICE);
4059 		dma_unmap_len_set(tx_buffer, len, 0);
4060 
4061 		if (i-- == 0)
4062 			i += tx_ring->count;
4063 		tx_buffer = &tx_ring->tx_buffer_info[i];
4064 	}
4065 
4066 	if (dma_unmap_len(tx_buffer, len))
4067 		dma_unmap_single(tx_ring->dev,
4068 				 dma_unmap_addr(tx_buffer, dma),
4069 				 dma_unmap_len(tx_buffer, len),
4070 				 DMA_TO_DEVICE);
4071 	dma_unmap_len_set(tx_buffer, len, 0);
4072 
4073 	dev_kfree_skb_any(tx_buffer->skb);
4074 	tx_buffer->skb = NULL;
4075 
4076 	tx_ring->next_to_use = i;
4077 }
4078 
4079 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4080 {
4081 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
4082 	/* Herbert's original patch had:
4083 	 *  smp_mb__after_netif_stop_queue();
4084 	 * but since that doesn't exist yet, just open code it.
4085 	 */
4086 	smp_mb();
4087 
4088 	/* We need to check again in a case another CPU has just
4089 	 * made room available.
4090 	 */
4091 	if (likely(ixgbevf_desc_unused(tx_ring) < size))
4092 		return -EBUSY;
4093 
4094 	/* A reprieve! - use start_queue because it doesn't call schedule */
4095 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
4096 	++tx_ring->tx_stats.restart_queue;
4097 
4098 	return 0;
4099 }
4100 
4101 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4102 {
4103 	if (likely(ixgbevf_desc_unused(tx_ring) >= size))
4104 		return 0;
4105 	return __ixgbevf_maybe_stop_tx(tx_ring, size);
4106 }
4107 
4108 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb,
4109 				   struct ixgbevf_ring *tx_ring)
4110 {
4111 	struct ixgbevf_tx_buffer *first;
4112 	int tso;
4113 	u32 tx_flags = 0;
4114 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4115 	struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 };
4116 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4117 	unsigned short f;
4118 #endif
4119 	u8 hdr_len = 0;
4120 	u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
4121 
4122 	if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
4123 		dev_kfree_skb_any(skb);
4124 		return NETDEV_TX_OK;
4125 	}
4126 
4127 	/* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
4128 	 *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
4129 	 *       + 2 desc gap to keep tail from touching head,
4130 	 *       + 1 desc for context descriptor,
4131 	 * otherwise try next time
4132 	 */
4133 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4134 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4135 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4136 #else
4137 	count += skb_shinfo(skb)->nr_frags;
4138 #endif
4139 	if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
4140 		tx_ring->tx_stats.tx_busy++;
4141 		return NETDEV_TX_BUSY;
4142 	}
4143 
4144 	/* record the location of the first descriptor for this packet */
4145 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4146 	first->skb = skb;
4147 	first->bytecount = skb->len;
4148 	first->gso_segs = 1;
4149 
4150 	if (skb_vlan_tag_present(skb)) {
4151 		tx_flags |= skb_vlan_tag_get(skb);
4152 		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
4153 		tx_flags |= IXGBE_TX_FLAGS_VLAN;
4154 	}
4155 
4156 	/* record initial flags and protocol */
4157 	first->tx_flags = tx_flags;
4158 	first->protocol = vlan_get_protocol(skb);
4159 
4160 #ifdef CONFIG_IXGBEVF_IPSEC
4161 	if (secpath_exists(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx))
4162 		goto out_drop;
4163 #endif
4164 	tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx);
4165 	if (tso < 0)
4166 		goto out_drop;
4167 	else if (!tso)
4168 		ixgbevf_tx_csum(tx_ring, first, &ipsec_tx);
4169 
4170 	ixgbevf_tx_map(tx_ring, first, hdr_len);
4171 
4172 	ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
4173 
4174 	return NETDEV_TX_OK;
4175 
4176 out_drop:
4177 	dev_kfree_skb_any(first->skb);
4178 	first->skb = NULL;
4179 
4180 	return NETDEV_TX_OK;
4181 }
4182 
4183 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4184 {
4185 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4186 	struct ixgbevf_ring *tx_ring;
4187 
4188 	if (skb->len <= 0) {
4189 		dev_kfree_skb_any(skb);
4190 		return NETDEV_TX_OK;
4191 	}
4192 
4193 	/* The minimum packet size for olinfo paylen is 17 so pad the skb
4194 	 * in order to meet this minimum size requirement.
4195 	 */
4196 	if (skb->len < 17) {
4197 		if (skb_padto(skb, 17))
4198 			return NETDEV_TX_OK;
4199 		skb->len = 17;
4200 	}
4201 
4202 	tx_ring = adapter->tx_ring[skb->queue_mapping];
4203 	return ixgbevf_xmit_frame_ring(skb, tx_ring);
4204 }
4205 
4206 /**
4207  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
4208  * @netdev: network interface device structure
4209  * @p: pointer to an address structure
4210  *
4211  * Returns 0 on success, negative on failure
4212  **/
4213 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
4214 {
4215 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4216 	struct ixgbe_hw *hw = &adapter->hw;
4217 	struct sockaddr *addr = p;
4218 	int err;
4219 
4220 	if (!is_valid_ether_addr(addr->sa_data))
4221 		return -EADDRNOTAVAIL;
4222 
4223 	spin_lock_bh(&adapter->mbx_lock);
4224 
4225 	err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
4226 
4227 	spin_unlock_bh(&adapter->mbx_lock);
4228 
4229 	if (err)
4230 		return -EPERM;
4231 
4232 	ether_addr_copy(hw->mac.addr, addr->sa_data);
4233 	ether_addr_copy(hw->mac.perm_addr, addr->sa_data);
4234 	ether_addr_copy(netdev->dev_addr, addr->sa_data);
4235 
4236 	return 0;
4237 }
4238 
4239 /**
4240  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
4241  * @netdev: network interface device structure
4242  * @new_mtu: new value for maximum frame size
4243  *
4244  * Returns 0 on success, negative on failure
4245  **/
4246 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
4247 {
4248 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4249 	struct ixgbe_hw *hw = &adapter->hw;
4250 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4251 	int ret;
4252 
4253 	/* prevent MTU being changed to a size unsupported by XDP */
4254 	if (adapter->xdp_prog) {
4255 		dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n");
4256 		return -EPERM;
4257 	}
4258 
4259 	spin_lock_bh(&adapter->mbx_lock);
4260 	/* notify the PF of our intent to use this size of frame */
4261 	ret = hw->mac.ops.set_rlpml(hw, max_frame);
4262 	spin_unlock_bh(&adapter->mbx_lock);
4263 	if (ret)
4264 		return -EINVAL;
4265 
4266 	hw_dbg(hw, "changing MTU from %d to %d\n",
4267 	       netdev->mtu, new_mtu);
4268 
4269 	/* must set new MTU before calling down or up */
4270 	netdev->mtu = new_mtu;
4271 
4272 	if (netif_running(netdev))
4273 		ixgbevf_reinit_locked(adapter);
4274 
4275 	return 0;
4276 }
4277 
4278 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
4279 {
4280 	struct net_device *netdev = pci_get_drvdata(pdev);
4281 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4282 #ifdef CONFIG_PM
4283 	int retval = 0;
4284 #endif
4285 
4286 	rtnl_lock();
4287 	netif_device_detach(netdev);
4288 
4289 	if (netif_running(netdev))
4290 		ixgbevf_close_suspend(adapter);
4291 
4292 	ixgbevf_clear_interrupt_scheme(adapter);
4293 	rtnl_unlock();
4294 
4295 #ifdef CONFIG_PM
4296 	retval = pci_save_state(pdev);
4297 	if (retval)
4298 		return retval;
4299 
4300 #endif
4301 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4302 		pci_disable_device(pdev);
4303 
4304 	return 0;
4305 }
4306 
4307 #ifdef CONFIG_PM
4308 static int ixgbevf_resume(struct pci_dev *pdev)
4309 {
4310 	struct net_device *netdev = pci_get_drvdata(pdev);
4311 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4312 	u32 err;
4313 
4314 	pci_restore_state(pdev);
4315 	/* pci_restore_state clears dev->state_saved so call
4316 	 * pci_save_state to restore it.
4317 	 */
4318 	pci_save_state(pdev);
4319 
4320 	err = pci_enable_device_mem(pdev);
4321 	if (err) {
4322 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
4323 		return err;
4324 	}
4325 
4326 	adapter->hw.hw_addr = adapter->io_addr;
4327 	smp_mb__before_atomic();
4328 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4329 	pci_set_master(pdev);
4330 
4331 	ixgbevf_reset(adapter);
4332 
4333 	rtnl_lock();
4334 	err = ixgbevf_init_interrupt_scheme(adapter);
4335 	if (!err && netif_running(netdev))
4336 		err = ixgbevf_open(netdev);
4337 	rtnl_unlock();
4338 	if (err)
4339 		return err;
4340 
4341 	netif_device_attach(netdev);
4342 
4343 	return err;
4344 }
4345 
4346 #endif /* CONFIG_PM */
4347 static void ixgbevf_shutdown(struct pci_dev *pdev)
4348 {
4349 	ixgbevf_suspend(pdev, PMSG_SUSPEND);
4350 }
4351 
4352 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats,
4353 				      const struct ixgbevf_ring *ring)
4354 {
4355 	u64 bytes, packets;
4356 	unsigned int start;
4357 
4358 	if (ring) {
4359 		do {
4360 			start = u64_stats_fetch_begin_irq(&ring->syncp);
4361 			bytes = ring->stats.bytes;
4362 			packets = ring->stats.packets;
4363 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4364 		stats->tx_bytes += bytes;
4365 		stats->tx_packets += packets;
4366 	}
4367 }
4368 
4369 static void ixgbevf_get_stats(struct net_device *netdev,
4370 			      struct rtnl_link_stats64 *stats)
4371 {
4372 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4373 	unsigned int start;
4374 	u64 bytes, packets;
4375 	const struct ixgbevf_ring *ring;
4376 	int i;
4377 
4378 	ixgbevf_update_stats(adapter);
4379 
4380 	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
4381 
4382 	rcu_read_lock();
4383 	for (i = 0; i < adapter->num_rx_queues; i++) {
4384 		ring = adapter->rx_ring[i];
4385 		do {
4386 			start = u64_stats_fetch_begin_irq(&ring->syncp);
4387 			bytes = ring->stats.bytes;
4388 			packets = ring->stats.packets;
4389 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4390 		stats->rx_bytes += bytes;
4391 		stats->rx_packets += packets;
4392 	}
4393 
4394 	for (i = 0; i < adapter->num_tx_queues; i++) {
4395 		ring = adapter->tx_ring[i];
4396 		ixgbevf_get_tx_ring_stats(stats, ring);
4397 	}
4398 
4399 	for (i = 0; i < adapter->num_xdp_queues; i++) {
4400 		ring = adapter->xdp_ring[i];
4401 		ixgbevf_get_tx_ring_stats(stats, ring);
4402 	}
4403 	rcu_read_unlock();
4404 }
4405 
4406 #define IXGBEVF_MAX_MAC_HDR_LEN		127
4407 #define IXGBEVF_MAX_NETWORK_HDR_LEN	511
4408 
4409 static netdev_features_t
4410 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
4411 		       netdev_features_t features)
4412 {
4413 	unsigned int network_hdr_len, mac_hdr_len;
4414 
4415 	/* Make certain the headers can be described by a context descriptor */
4416 	mac_hdr_len = skb_network_header(skb) - skb->data;
4417 	if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
4418 		return features & ~(NETIF_F_HW_CSUM |
4419 				    NETIF_F_SCTP_CRC |
4420 				    NETIF_F_HW_VLAN_CTAG_TX |
4421 				    NETIF_F_TSO |
4422 				    NETIF_F_TSO6);
4423 
4424 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4425 	if (unlikely(network_hdr_len >  IXGBEVF_MAX_NETWORK_HDR_LEN))
4426 		return features & ~(NETIF_F_HW_CSUM |
4427 				    NETIF_F_SCTP_CRC |
4428 				    NETIF_F_TSO |
4429 				    NETIF_F_TSO6);
4430 
4431 	/* We can only support IPV4 TSO in tunnels if we can mangle the
4432 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4433 	 */
4434 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4435 		features &= ~NETIF_F_TSO;
4436 
4437 	return features;
4438 }
4439 
4440 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog)
4441 {
4442 	int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4443 	struct ixgbevf_adapter *adapter = netdev_priv(dev);
4444 	struct bpf_prog *old_prog;
4445 
4446 	/* verify ixgbevf ring attributes are sufficient for XDP */
4447 	for (i = 0; i < adapter->num_rx_queues; i++) {
4448 		struct ixgbevf_ring *ring = adapter->rx_ring[i];
4449 
4450 		if (frame_size > ixgbevf_rx_bufsz(ring))
4451 			return -EINVAL;
4452 	}
4453 
4454 	old_prog = xchg(&adapter->xdp_prog, prog);
4455 
4456 	/* If transitioning XDP modes reconfigure rings */
4457 	if (!!prog != !!old_prog) {
4458 		/* Hardware has to reinitialize queues and interrupts to
4459 		 * match packet buffer alignment. Unfortunately, the
4460 		 * hardware is not flexible enough to do this dynamically.
4461 		 */
4462 		if (netif_running(dev))
4463 			ixgbevf_close(dev);
4464 
4465 		ixgbevf_clear_interrupt_scheme(adapter);
4466 		ixgbevf_init_interrupt_scheme(adapter);
4467 
4468 		if (netif_running(dev))
4469 			ixgbevf_open(dev);
4470 	} else {
4471 		for (i = 0; i < adapter->num_rx_queues; i++)
4472 			xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog);
4473 	}
4474 
4475 	if (old_prog)
4476 		bpf_prog_put(old_prog);
4477 
4478 	return 0;
4479 }
4480 
4481 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4482 {
4483 	struct ixgbevf_adapter *adapter = netdev_priv(dev);
4484 
4485 	switch (xdp->command) {
4486 	case XDP_SETUP_PROG:
4487 		return ixgbevf_xdp_setup(dev, xdp->prog);
4488 	case XDP_QUERY_PROG:
4489 		xdp->prog_id = adapter->xdp_prog ?
4490 			       adapter->xdp_prog->aux->id : 0;
4491 		return 0;
4492 	default:
4493 		return -EINVAL;
4494 	}
4495 }
4496 
4497 static const struct net_device_ops ixgbevf_netdev_ops = {
4498 	.ndo_open		= ixgbevf_open,
4499 	.ndo_stop		= ixgbevf_close,
4500 	.ndo_start_xmit		= ixgbevf_xmit_frame,
4501 	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
4502 	.ndo_get_stats64	= ixgbevf_get_stats,
4503 	.ndo_validate_addr	= eth_validate_addr,
4504 	.ndo_set_mac_address	= ixgbevf_set_mac,
4505 	.ndo_change_mtu		= ixgbevf_change_mtu,
4506 	.ndo_tx_timeout		= ixgbevf_tx_timeout,
4507 	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
4508 	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
4509 	.ndo_features_check	= ixgbevf_features_check,
4510 	.ndo_bpf		= ixgbevf_xdp,
4511 };
4512 
4513 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
4514 {
4515 	dev->netdev_ops = &ixgbevf_netdev_ops;
4516 	ixgbevf_set_ethtool_ops(dev);
4517 	dev->watchdog_timeo = 5 * HZ;
4518 }
4519 
4520 /**
4521  * ixgbevf_probe - Device Initialization Routine
4522  * @pdev: PCI device information struct
4523  * @ent: entry in ixgbevf_pci_tbl
4524  *
4525  * Returns 0 on success, negative on failure
4526  *
4527  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
4528  * The OS initialization, configuring of the adapter private structure,
4529  * and a hardware reset occur.
4530  **/
4531 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4532 {
4533 	struct net_device *netdev;
4534 	struct ixgbevf_adapter *adapter = NULL;
4535 	struct ixgbe_hw *hw = NULL;
4536 	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
4537 	int err, pci_using_dac;
4538 	bool disable_dev = false;
4539 
4540 	err = pci_enable_device(pdev);
4541 	if (err)
4542 		return err;
4543 
4544 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
4545 		pci_using_dac = 1;
4546 	} else {
4547 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4548 		if (err) {
4549 			dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4550 			goto err_dma;
4551 		}
4552 		pci_using_dac = 0;
4553 	}
4554 
4555 	err = pci_request_regions(pdev, ixgbevf_driver_name);
4556 	if (err) {
4557 		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4558 		goto err_pci_reg;
4559 	}
4560 
4561 	pci_set_master(pdev);
4562 
4563 	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4564 				   MAX_TX_QUEUES);
4565 	if (!netdev) {
4566 		err = -ENOMEM;
4567 		goto err_alloc_etherdev;
4568 	}
4569 
4570 	SET_NETDEV_DEV(netdev, &pdev->dev);
4571 
4572 	adapter = netdev_priv(netdev);
4573 
4574 	adapter->netdev = netdev;
4575 	adapter->pdev = pdev;
4576 	hw = &adapter->hw;
4577 	hw->back = adapter;
4578 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4579 
4580 	/* call save state here in standalone driver because it relies on
4581 	 * adapter struct to exist, and needs to call netdev_priv
4582 	 */
4583 	pci_save_state(pdev);
4584 
4585 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4586 			      pci_resource_len(pdev, 0));
4587 	adapter->io_addr = hw->hw_addr;
4588 	if (!hw->hw_addr) {
4589 		err = -EIO;
4590 		goto err_ioremap;
4591 	}
4592 
4593 	ixgbevf_assign_netdev_ops(netdev);
4594 
4595 	/* Setup HW API */
4596 	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4597 	hw->mac.type  = ii->mac;
4598 
4599 	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
4600 	       sizeof(struct ixgbe_mbx_operations));
4601 
4602 	/* setup the private structure */
4603 	err = ixgbevf_sw_init(adapter);
4604 	if (err)
4605 		goto err_sw_init;
4606 
4607 	/* The HW MAC address was set and/or determined in sw_init */
4608 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4609 		pr_err("invalid MAC address\n");
4610 		err = -EIO;
4611 		goto err_sw_init;
4612 	}
4613 
4614 	netdev->hw_features = NETIF_F_SG |
4615 			      NETIF_F_TSO |
4616 			      NETIF_F_TSO6 |
4617 			      NETIF_F_RXCSUM |
4618 			      NETIF_F_HW_CSUM |
4619 			      NETIF_F_SCTP_CRC;
4620 
4621 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4622 				      NETIF_F_GSO_GRE_CSUM | \
4623 				      NETIF_F_GSO_IPXIP4 | \
4624 				      NETIF_F_GSO_IPXIP6 | \
4625 				      NETIF_F_GSO_UDP_TUNNEL | \
4626 				      NETIF_F_GSO_UDP_TUNNEL_CSUM)
4627 
4628 	netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4629 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4630 			       IXGBEVF_GSO_PARTIAL_FEATURES;
4631 
4632 	netdev->features = netdev->hw_features;
4633 
4634 	if (pci_using_dac)
4635 		netdev->features |= NETIF_F_HIGHDMA;
4636 
4637 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4638 	netdev->mpls_features |= NETIF_F_SG |
4639 				 NETIF_F_TSO |
4640 				 NETIF_F_TSO6 |
4641 				 NETIF_F_HW_CSUM;
4642 	netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES;
4643 	netdev->hw_enc_features |= netdev->vlan_features;
4644 
4645 	/* set this bit last since it cannot be part of vlan_features */
4646 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4647 			    NETIF_F_HW_VLAN_CTAG_RX |
4648 			    NETIF_F_HW_VLAN_CTAG_TX;
4649 
4650 	netdev->priv_flags |= IFF_UNICAST_FLT;
4651 
4652 	/* MTU range: 68 - 1504 or 9710 */
4653 	netdev->min_mtu = ETH_MIN_MTU;
4654 	switch (adapter->hw.api_version) {
4655 	case ixgbe_mbox_api_11:
4656 	case ixgbe_mbox_api_12:
4657 	case ixgbe_mbox_api_13:
4658 	case ixgbe_mbox_api_14:
4659 		netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4660 				  (ETH_HLEN + ETH_FCS_LEN);
4661 		break;
4662 	default:
4663 		if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
4664 			netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4665 					  (ETH_HLEN + ETH_FCS_LEN);
4666 		else
4667 			netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
4668 		break;
4669 	}
4670 
4671 	if (IXGBE_REMOVED(hw->hw_addr)) {
4672 		err = -EIO;
4673 		goto err_sw_init;
4674 	}
4675 
4676 	timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0);
4677 
4678 	INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4679 	set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4680 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4681 
4682 	err = ixgbevf_init_interrupt_scheme(adapter);
4683 	if (err)
4684 		goto err_sw_init;
4685 
4686 	strcpy(netdev->name, "eth%d");
4687 
4688 	err = register_netdev(netdev);
4689 	if (err)
4690 		goto err_register;
4691 
4692 	pci_set_drvdata(pdev, netdev);
4693 	netif_carrier_off(netdev);
4694 	ixgbevf_init_ipsec_offload(adapter);
4695 
4696 	ixgbevf_init_last_counter_stats(adapter);
4697 
4698 	/* print the VF info */
4699 	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4700 	dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4701 
4702 	switch (hw->mac.type) {
4703 	case ixgbe_mac_X550_vf:
4704 		dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4705 		break;
4706 	case ixgbe_mac_X540_vf:
4707 		dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4708 		break;
4709 	case ixgbe_mac_82599_vf:
4710 	default:
4711 		dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4712 		break;
4713 	}
4714 
4715 	return 0;
4716 
4717 err_register:
4718 	ixgbevf_clear_interrupt_scheme(adapter);
4719 err_sw_init:
4720 	ixgbevf_reset_interrupt_capability(adapter);
4721 	iounmap(adapter->io_addr);
4722 	kfree(adapter->rss_key);
4723 err_ioremap:
4724 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4725 	free_netdev(netdev);
4726 err_alloc_etherdev:
4727 	pci_release_regions(pdev);
4728 err_pci_reg:
4729 err_dma:
4730 	if (!adapter || disable_dev)
4731 		pci_disable_device(pdev);
4732 	return err;
4733 }
4734 
4735 /**
4736  * ixgbevf_remove - Device Removal Routine
4737  * @pdev: PCI device information struct
4738  *
4739  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4740  * that it should release a PCI device.  The could be caused by a
4741  * Hot-Plug event, or because the driver is going to be removed from
4742  * memory.
4743  **/
4744 static void ixgbevf_remove(struct pci_dev *pdev)
4745 {
4746 	struct net_device *netdev = pci_get_drvdata(pdev);
4747 	struct ixgbevf_adapter *adapter;
4748 	bool disable_dev;
4749 
4750 	if (!netdev)
4751 		return;
4752 
4753 	adapter = netdev_priv(netdev);
4754 
4755 	set_bit(__IXGBEVF_REMOVING, &adapter->state);
4756 	cancel_work_sync(&adapter->service_task);
4757 
4758 	if (netdev->reg_state == NETREG_REGISTERED)
4759 		unregister_netdev(netdev);
4760 
4761 	ixgbevf_stop_ipsec_offload(adapter);
4762 	ixgbevf_clear_interrupt_scheme(adapter);
4763 	ixgbevf_reset_interrupt_capability(adapter);
4764 
4765 	iounmap(adapter->io_addr);
4766 	pci_release_regions(pdev);
4767 
4768 	hw_dbg(&adapter->hw, "Remove complete\n");
4769 
4770 	kfree(adapter->rss_key);
4771 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4772 	free_netdev(netdev);
4773 
4774 	if (disable_dev)
4775 		pci_disable_device(pdev);
4776 }
4777 
4778 /**
4779  * ixgbevf_io_error_detected - called when PCI error is detected
4780  * @pdev: Pointer to PCI device
4781  * @state: The current pci connection state
4782  *
4783  * This function is called after a PCI bus error affecting
4784  * this device has been detected.
4785  **/
4786 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4787 						  pci_channel_state_t state)
4788 {
4789 	struct net_device *netdev = pci_get_drvdata(pdev);
4790 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4791 
4792 	if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4793 		return PCI_ERS_RESULT_DISCONNECT;
4794 
4795 	rtnl_lock();
4796 	netif_device_detach(netdev);
4797 
4798 	if (netif_running(netdev))
4799 		ixgbevf_close_suspend(adapter);
4800 
4801 	if (state == pci_channel_io_perm_failure) {
4802 		rtnl_unlock();
4803 		return PCI_ERS_RESULT_DISCONNECT;
4804 	}
4805 
4806 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4807 		pci_disable_device(pdev);
4808 	rtnl_unlock();
4809 
4810 	/* Request a slot slot reset. */
4811 	return PCI_ERS_RESULT_NEED_RESET;
4812 }
4813 
4814 /**
4815  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4816  * @pdev: Pointer to PCI device
4817  *
4818  * Restart the card from scratch, as if from a cold-boot. Implementation
4819  * resembles the first-half of the ixgbevf_resume routine.
4820  **/
4821 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4822 {
4823 	struct net_device *netdev = pci_get_drvdata(pdev);
4824 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4825 
4826 	if (pci_enable_device_mem(pdev)) {
4827 		dev_err(&pdev->dev,
4828 			"Cannot re-enable PCI device after reset.\n");
4829 		return PCI_ERS_RESULT_DISCONNECT;
4830 	}
4831 
4832 	adapter->hw.hw_addr = adapter->io_addr;
4833 	smp_mb__before_atomic();
4834 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4835 	pci_set_master(pdev);
4836 
4837 	ixgbevf_reset(adapter);
4838 
4839 	return PCI_ERS_RESULT_RECOVERED;
4840 }
4841 
4842 /**
4843  * ixgbevf_io_resume - called when traffic can start flowing again.
4844  * @pdev: Pointer to PCI device
4845  *
4846  * This callback is called when the error recovery driver tells us that
4847  * its OK to resume normal operation. Implementation resembles the
4848  * second-half of the ixgbevf_resume routine.
4849  **/
4850 static void ixgbevf_io_resume(struct pci_dev *pdev)
4851 {
4852 	struct net_device *netdev = pci_get_drvdata(pdev);
4853 
4854 	rtnl_lock();
4855 	if (netif_running(netdev))
4856 		ixgbevf_open(netdev);
4857 
4858 	netif_device_attach(netdev);
4859 	rtnl_unlock();
4860 }
4861 
4862 /* PCI Error Recovery (ERS) */
4863 static const struct pci_error_handlers ixgbevf_err_handler = {
4864 	.error_detected = ixgbevf_io_error_detected,
4865 	.slot_reset = ixgbevf_io_slot_reset,
4866 	.resume = ixgbevf_io_resume,
4867 };
4868 
4869 static struct pci_driver ixgbevf_driver = {
4870 	.name		= ixgbevf_driver_name,
4871 	.id_table	= ixgbevf_pci_tbl,
4872 	.probe		= ixgbevf_probe,
4873 	.remove		= ixgbevf_remove,
4874 #ifdef CONFIG_PM
4875 	/* Power Management Hooks */
4876 	.suspend	= ixgbevf_suspend,
4877 	.resume		= ixgbevf_resume,
4878 #endif
4879 	.shutdown	= ixgbevf_shutdown,
4880 	.err_handler	= &ixgbevf_err_handler
4881 };
4882 
4883 /**
4884  * ixgbevf_init_module - Driver Registration Routine
4885  *
4886  * ixgbevf_init_module is the first routine called when the driver is
4887  * loaded. All it does is register with the PCI subsystem.
4888  **/
4889 static int __init ixgbevf_init_module(void)
4890 {
4891 	pr_info("%s - version %s\n", ixgbevf_driver_string,
4892 		ixgbevf_driver_version);
4893 
4894 	pr_info("%s\n", ixgbevf_copyright);
4895 	ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4896 	if (!ixgbevf_wq) {
4897 		pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4898 		return -ENOMEM;
4899 	}
4900 
4901 	return pci_register_driver(&ixgbevf_driver);
4902 }
4903 
4904 module_init(ixgbevf_init_module);
4905 
4906 /**
4907  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4908  *
4909  * ixgbevf_exit_module is called just before the driver is removed
4910  * from memory.
4911  **/
4912 static void __exit ixgbevf_exit_module(void)
4913 {
4914 	pci_unregister_driver(&ixgbevf_driver);
4915 	if (ixgbevf_wq) {
4916 		destroy_workqueue(ixgbevf_wq);
4917 		ixgbevf_wq = NULL;
4918 	}
4919 }
4920 
4921 #ifdef DEBUG
4922 /**
4923  * ixgbevf_get_hw_dev_name - return device name string
4924  * used by hardware layer to print debugging information
4925  * @hw: pointer to private hardware struct
4926  **/
4927 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4928 {
4929 	struct ixgbevf_adapter *adapter = hw->back;
4930 
4931 	return adapter->netdev->name;
4932 }
4933 
4934 #endif
4935 module_exit(ixgbevf_exit_module);
4936 
4937 /* ixgbevf_main.c */
4938