1 /*******************************************************************************
2 
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2018 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, see <http://www.gnu.org/licenses/>.
17 
18   The full GNU General Public License is included in this distribution in
19   the file called "COPYING".
20 
21   Contact Information:
22   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 
25 *******************************************************************************/
26 
27 /******************************************************************************
28  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
29 ******************************************************************************/
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/types.h>
34 #include <linux/bitops.h>
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/vmalloc.h>
39 #include <linux/string.h>
40 #include <linux/in.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/sctp.h>
44 #include <linux/ipv6.h>
45 #include <linux/slab.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/ethtool.h>
49 #include <linux/if.h>
50 #include <linux/if_vlan.h>
51 #include <linux/prefetch.h>
52 #include <net/mpls.h>
53 #include <linux/bpf.h>
54 #include <linux/bpf_trace.h>
55 #include <linux/atomic.h>
56 
57 #include "ixgbevf.h"
58 
59 const char ixgbevf_driver_name[] = "ixgbevf";
60 static const char ixgbevf_driver_string[] =
61 	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
62 
63 #define DRV_VERSION "4.1.0-k"
64 const char ixgbevf_driver_version[] = DRV_VERSION;
65 static char ixgbevf_copyright[] =
66 	"Copyright (c) 2009 - 2015 Intel Corporation.";
67 
68 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
69 	[board_82599_vf]	= &ixgbevf_82599_vf_info,
70 	[board_82599_vf_hv]	= &ixgbevf_82599_vf_hv_info,
71 	[board_X540_vf]		= &ixgbevf_X540_vf_info,
72 	[board_X540_vf_hv]	= &ixgbevf_X540_vf_hv_info,
73 	[board_X550_vf]		= &ixgbevf_X550_vf_info,
74 	[board_X550_vf_hv]	= &ixgbevf_X550_vf_hv_info,
75 	[board_X550EM_x_vf]	= &ixgbevf_X550EM_x_vf_info,
76 	[board_X550EM_x_vf_hv]	= &ixgbevf_X550EM_x_vf_hv_info,
77 	[board_x550em_a_vf]	= &ixgbevf_x550em_a_vf_info,
78 };
79 
80 /* ixgbevf_pci_tbl - PCI Device ID Table
81  *
82  * Wildcard entries (PCI_ANY_ID) should come last
83  * Last entry must be all 0s
84  *
85  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
86  *   Class, Class Mask, private data (not used) }
87  */
88 static const struct pci_device_id ixgbevf_pci_tbl[] = {
89 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
90 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv },
91 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
92 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv },
93 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
94 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv },
95 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
96 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv},
97 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf },
98 	/* required last entry */
99 	{0, }
100 };
101 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
102 
103 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
104 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
105 MODULE_LICENSE("GPL");
106 MODULE_VERSION(DRV_VERSION);
107 
108 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
109 static int debug = -1;
110 module_param(debug, int, 0);
111 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
112 
113 static struct workqueue_struct *ixgbevf_wq;
114 
115 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter)
116 {
117 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
118 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state) &&
119 	    !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state))
120 		queue_work(ixgbevf_wq, &adapter->service_task);
121 }
122 
123 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter)
124 {
125 	BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state));
126 
127 	/* flush memory to make sure state is correct before next watchdog */
128 	smp_mb__before_atomic();
129 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
130 }
131 
132 /* forward decls */
133 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
134 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
135 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
136 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer);
137 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
138 				  struct ixgbevf_rx_buffer *old_buff);
139 
140 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
141 {
142 	struct ixgbevf_adapter *adapter = hw->back;
143 
144 	if (!hw->hw_addr)
145 		return;
146 	hw->hw_addr = NULL;
147 	dev_err(&adapter->pdev->dev, "Adapter removed\n");
148 	if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
149 		ixgbevf_service_event_schedule(adapter);
150 }
151 
152 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
153 {
154 	u32 value;
155 
156 	/* The following check not only optimizes a bit by not
157 	 * performing a read on the status register when the
158 	 * register just read was a status register read that
159 	 * returned IXGBE_FAILED_READ_REG. It also blocks any
160 	 * potential recursion.
161 	 */
162 	if (reg == IXGBE_VFSTATUS) {
163 		ixgbevf_remove_adapter(hw);
164 		return;
165 	}
166 	value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
167 	if (value == IXGBE_FAILED_READ_REG)
168 		ixgbevf_remove_adapter(hw);
169 }
170 
171 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
172 {
173 	u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr);
174 	u32 value;
175 
176 	if (IXGBE_REMOVED(reg_addr))
177 		return IXGBE_FAILED_READ_REG;
178 	value = readl(reg_addr + reg);
179 	if (unlikely(value == IXGBE_FAILED_READ_REG))
180 		ixgbevf_check_remove(hw, reg);
181 	return value;
182 }
183 
184 /**
185  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
186  * @adapter: pointer to adapter struct
187  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
188  * @queue: queue to map the corresponding interrupt to
189  * @msix_vector: the vector to map to the corresponding queue
190  **/
191 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
192 			     u8 queue, u8 msix_vector)
193 {
194 	u32 ivar, index;
195 	struct ixgbe_hw *hw = &adapter->hw;
196 
197 	if (direction == -1) {
198 		/* other causes */
199 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
200 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
201 		ivar &= ~0xFF;
202 		ivar |= msix_vector;
203 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
204 	} else {
205 		/* Tx or Rx causes */
206 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
207 		index = ((16 * (queue & 1)) + (8 * direction));
208 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
209 		ivar &= ~(0xFF << index);
210 		ivar |= (msix_vector << index);
211 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
212 	}
213 }
214 
215 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring)
216 {
217 	return ring->stats.packets;
218 }
219 
220 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring)
221 {
222 	struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev);
223 	struct ixgbe_hw *hw = &adapter->hw;
224 
225 	u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx));
226 	u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx));
227 
228 	if (head != tail)
229 		return (head < tail) ?
230 			tail - head : (tail + ring->count - head);
231 
232 	return 0;
233 }
234 
235 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring)
236 {
237 	u32 tx_done = ixgbevf_get_tx_completed(tx_ring);
238 	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
239 	u32 tx_pending = ixgbevf_get_tx_pending(tx_ring);
240 
241 	clear_check_for_tx_hang(tx_ring);
242 
243 	/* Check for a hung queue, but be thorough. This verifies
244 	 * that a transmit has been completed since the previous
245 	 * check AND there is at least one packet pending. The
246 	 * ARMED bit is set to indicate a potential hang.
247 	 */
248 	if ((tx_done_old == tx_done) && tx_pending) {
249 		/* make sure it is true for two checks in a row */
250 		return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED,
251 					&tx_ring->state);
252 	}
253 	/* reset the countdown */
254 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state);
255 
256 	/* update completed stats and continue */
257 	tx_ring->tx_stats.tx_done_old = tx_done;
258 
259 	return false;
260 }
261 
262 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter)
263 {
264 	/* Do the reset outside of interrupt context */
265 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
266 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
267 		ixgbevf_service_event_schedule(adapter);
268 	}
269 }
270 
271 /**
272  * ixgbevf_tx_timeout - Respond to a Tx Hang
273  * @netdev: network interface device structure
274  **/
275 static void ixgbevf_tx_timeout(struct net_device *netdev)
276 {
277 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
278 
279 	ixgbevf_tx_timeout_reset(adapter);
280 }
281 
282 /**
283  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
284  * @q_vector: board private structure
285  * @tx_ring: tx ring to clean
286  * @napi_budget: Used to determine if we are in netpoll
287  **/
288 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
289 				 struct ixgbevf_ring *tx_ring, int napi_budget)
290 {
291 	struct ixgbevf_adapter *adapter = q_vector->adapter;
292 	struct ixgbevf_tx_buffer *tx_buffer;
293 	union ixgbe_adv_tx_desc *tx_desc;
294 	unsigned int total_bytes = 0, total_packets = 0;
295 	unsigned int budget = tx_ring->count / 2;
296 	unsigned int i = tx_ring->next_to_clean;
297 
298 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
299 		return true;
300 
301 	tx_buffer = &tx_ring->tx_buffer_info[i];
302 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
303 	i -= tx_ring->count;
304 
305 	do {
306 		union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
307 
308 		/* if next_to_watch is not set then there is no work pending */
309 		if (!eop_desc)
310 			break;
311 
312 		/* prevent any other reads prior to eop_desc */
313 		smp_rmb();
314 
315 		/* if DD is not set pending work has not been completed */
316 		if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
317 			break;
318 
319 		/* clear next_to_watch to prevent false hangs */
320 		tx_buffer->next_to_watch = NULL;
321 
322 		/* update the statistics for this packet */
323 		total_bytes += tx_buffer->bytecount;
324 		total_packets += tx_buffer->gso_segs;
325 
326 		/* free the skb */
327 		if (ring_is_xdp(tx_ring))
328 			page_frag_free(tx_buffer->data);
329 		else
330 			napi_consume_skb(tx_buffer->skb, napi_budget);
331 
332 		/* unmap skb header data */
333 		dma_unmap_single(tx_ring->dev,
334 				 dma_unmap_addr(tx_buffer, dma),
335 				 dma_unmap_len(tx_buffer, len),
336 				 DMA_TO_DEVICE);
337 
338 		/* clear tx_buffer data */
339 		dma_unmap_len_set(tx_buffer, len, 0);
340 
341 		/* unmap remaining buffers */
342 		while (tx_desc != eop_desc) {
343 			tx_buffer++;
344 			tx_desc++;
345 			i++;
346 			if (unlikely(!i)) {
347 				i -= tx_ring->count;
348 				tx_buffer = tx_ring->tx_buffer_info;
349 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
350 			}
351 
352 			/* unmap any remaining paged data */
353 			if (dma_unmap_len(tx_buffer, len)) {
354 				dma_unmap_page(tx_ring->dev,
355 					       dma_unmap_addr(tx_buffer, dma),
356 					       dma_unmap_len(tx_buffer, len),
357 					       DMA_TO_DEVICE);
358 				dma_unmap_len_set(tx_buffer, len, 0);
359 			}
360 		}
361 
362 		/* move us one more past the eop_desc for start of next pkt */
363 		tx_buffer++;
364 		tx_desc++;
365 		i++;
366 		if (unlikely(!i)) {
367 			i -= tx_ring->count;
368 			tx_buffer = tx_ring->tx_buffer_info;
369 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
370 		}
371 
372 		/* issue prefetch for next Tx descriptor */
373 		prefetch(tx_desc);
374 
375 		/* update budget accounting */
376 		budget--;
377 	} while (likely(budget));
378 
379 	i += tx_ring->count;
380 	tx_ring->next_to_clean = i;
381 	u64_stats_update_begin(&tx_ring->syncp);
382 	tx_ring->stats.bytes += total_bytes;
383 	tx_ring->stats.packets += total_packets;
384 	u64_stats_update_end(&tx_ring->syncp);
385 	q_vector->tx.total_bytes += total_bytes;
386 	q_vector->tx.total_packets += total_packets;
387 
388 	if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) {
389 		struct ixgbe_hw *hw = &adapter->hw;
390 		union ixgbe_adv_tx_desc *eop_desc;
391 
392 		eop_desc = tx_ring->tx_buffer_info[i].next_to_watch;
393 
394 		pr_err("Detected Tx Unit Hang%s\n"
395 		       "  Tx Queue             <%d>\n"
396 		       "  TDH, TDT             <%x>, <%x>\n"
397 		       "  next_to_use          <%x>\n"
398 		       "  next_to_clean        <%x>\n"
399 		       "tx_buffer_info[next_to_clean]\n"
400 		       "  next_to_watch        <%p>\n"
401 		       "  eop_desc->wb.status  <%x>\n"
402 		       "  time_stamp           <%lx>\n"
403 		       "  jiffies              <%lx>\n",
404 		       ring_is_xdp(tx_ring) ? " XDP" : "",
405 		       tx_ring->queue_index,
406 		       IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)),
407 		       IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)),
408 		       tx_ring->next_to_use, i,
409 		       eop_desc, (eop_desc ? eop_desc->wb.status : 0),
410 		       tx_ring->tx_buffer_info[i].time_stamp, jiffies);
411 
412 		if (!ring_is_xdp(tx_ring))
413 			netif_stop_subqueue(tx_ring->netdev,
414 					    tx_ring->queue_index);
415 
416 		/* schedule immediate reset if we believe we hung */
417 		ixgbevf_tx_timeout_reset(adapter);
418 
419 		return true;
420 	}
421 
422 	if (ring_is_xdp(tx_ring))
423 		return !!budget;
424 
425 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
426 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
427 		     (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
428 		/* Make sure that anybody stopping the queue after this
429 		 * sees the new next_to_clean.
430 		 */
431 		smp_mb();
432 
433 		if (__netif_subqueue_stopped(tx_ring->netdev,
434 					     tx_ring->queue_index) &&
435 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
436 			netif_wake_subqueue(tx_ring->netdev,
437 					    tx_ring->queue_index);
438 			++tx_ring->tx_stats.restart_queue;
439 		}
440 	}
441 
442 	return !!budget;
443 }
444 
445 /**
446  * ixgbevf_rx_skb - Helper function to determine proper Rx method
447  * @q_vector: structure containing interrupt and ring information
448  * @skb: packet to send up
449  **/
450 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
451 			   struct sk_buff *skb)
452 {
453 	napi_gro_receive(&q_vector->napi, skb);
454 }
455 
456 #define IXGBE_RSS_L4_TYPES_MASK \
457 	((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \
458 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \
459 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \
460 	 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP))
461 
462 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring,
463 				   union ixgbe_adv_rx_desc *rx_desc,
464 				   struct sk_buff *skb)
465 {
466 	u16 rss_type;
467 
468 	if (!(ring->netdev->features & NETIF_F_RXHASH))
469 		return;
470 
471 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
472 		   IXGBE_RXDADV_RSSTYPE_MASK;
473 
474 	if (!rss_type)
475 		return;
476 
477 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
478 		     (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
479 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
480 }
481 
482 /**
483  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
484  * @ring: structure containig ring specific data
485  * @rx_desc: current Rx descriptor being processed
486  * @skb: skb currently being received and modified
487  **/
488 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
489 				       union ixgbe_adv_rx_desc *rx_desc,
490 				       struct sk_buff *skb)
491 {
492 	skb_checksum_none_assert(skb);
493 
494 	/* Rx csum disabled */
495 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
496 		return;
497 
498 	/* if IP and error */
499 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
500 	    ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
501 		ring->rx_stats.csum_err++;
502 		return;
503 	}
504 
505 	if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
506 		return;
507 
508 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
509 		ring->rx_stats.csum_err++;
510 		return;
511 	}
512 
513 	/* It must be a TCP or UDP packet with a valid checksum */
514 	skb->ip_summed = CHECKSUM_UNNECESSARY;
515 }
516 
517 /**
518  * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
519  * @rx_ring: rx descriptor ring packet is being transacted on
520  * @rx_desc: pointer to the EOP Rx descriptor
521  * @skb: pointer to current skb being populated
522  *
523  * This function checks the ring, descriptor, and packet information in
524  * order to populate the checksum, VLAN, protocol, and other fields within
525  * the skb.
526  **/
527 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
528 				       union ixgbe_adv_rx_desc *rx_desc,
529 				       struct sk_buff *skb)
530 {
531 	ixgbevf_rx_hash(rx_ring, rx_desc, skb);
532 	ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
533 
534 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
535 		u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
536 		unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
537 
538 		if (test_bit(vid & VLAN_VID_MASK, active_vlans))
539 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
540 	}
541 
542 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
543 }
544 
545 static
546 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring,
547 						const unsigned int size)
548 {
549 	struct ixgbevf_rx_buffer *rx_buffer;
550 
551 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
552 	prefetchw(rx_buffer->page);
553 
554 	/* we are reusing so sync this buffer for CPU use */
555 	dma_sync_single_range_for_cpu(rx_ring->dev,
556 				      rx_buffer->dma,
557 				      rx_buffer->page_offset,
558 				      size,
559 				      DMA_FROM_DEVICE);
560 
561 	rx_buffer->pagecnt_bias--;
562 
563 	return rx_buffer;
564 }
565 
566 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring,
567 				  struct ixgbevf_rx_buffer *rx_buffer,
568 				  struct sk_buff *skb)
569 {
570 	if (ixgbevf_can_reuse_rx_page(rx_buffer)) {
571 		/* hand second half of page back to the ring */
572 		ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
573 	} else {
574 		if (IS_ERR(skb))
575 			/* We are not reusing the buffer so unmap it and free
576 			 * any references we are holding to it
577 			 */
578 			dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
579 					     ixgbevf_rx_pg_size(rx_ring),
580 					     DMA_FROM_DEVICE,
581 					     IXGBEVF_RX_DMA_ATTR);
582 		__page_frag_cache_drain(rx_buffer->page,
583 					rx_buffer->pagecnt_bias);
584 	}
585 
586 	/* clear contents of rx_buffer */
587 	rx_buffer->page = NULL;
588 }
589 
590 /**
591  * ixgbevf_is_non_eop - process handling of non-EOP buffers
592  * @rx_ring: Rx ring being processed
593  * @rx_desc: Rx descriptor for current buffer
594  *
595  * This function updates next to clean.  If the buffer is an EOP buffer
596  * this function exits returning false, otherwise it will place the
597  * sk_buff in the next buffer to be chained and return true indicating
598  * that this is in fact a non-EOP buffer.
599  **/
600 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
601 			       union ixgbe_adv_rx_desc *rx_desc)
602 {
603 	u32 ntc = rx_ring->next_to_clean + 1;
604 
605 	/* fetch, update, and store next to clean */
606 	ntc = (ntc < rx_ring->count) ? ntc : 0;
607 	rx_ring->next_to_clean = ntc;
608 
609 	prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
610 
611 	if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
612 		return false;
613 
614 	return true;
615 }
616 
617 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring)
618 {
619 	return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0;
620 }
621 
622 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
623 				      struct ixgbevf_rx_buffer *bi)
624 {
625 	struct page *page = bi->page;
626 	dma_addr_t dma;
627 
628 	/* since we are recycling buffers we should seldom need to alloc */
629 	if (likely(page))
630 		return true;
631 
632 	/* alloc new page for storage */
633 	page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring));
634 	if (unlikely(!page)) {
635 		rx_ring->rx_stats.alloc_rx_page_failed++;
636 		return false;
637 	}
638 
639 	/* map page for use */
640 	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
641 				 ixgbevf_rx_pg_size(rx_ring),
642 				 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR);
643 
644 	/* if mapping failed free memory back to system since
645 	 * there isn't much point in holding memory we can't use
646 	 */
647 	if (dma_mapping_error(rx_ring->dev, dma)) {
648 		__free_pages(page, ixgbevf_rx_pg_order(rx_ring));
649 
650 		rx_ring->rx_stats.alloc_rx_page_failed++;
651 		return false;
652 	}
653 
654 	bi->dma = dma;
655 	bi->page = page;
656 	bi->page_offset = ixgbevf_rx_offset(rx_ring);
657 	bi->pagecnt_bias = 1;
658 	rx_ring->rx_stats.alloc_rx_page++;
659 
660 	return true;
661 }
662 
663 /**
664  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
665  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
666  * @cleaned_count: number of buffers to replace
667  **/
668 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
669 				     u16 cleaned_count)
670 {
671 	union ixgbe_adv_rx_desc *rx_desc;
672 	struct ixgbevf_rx_buffer *bi;
673 	unsigned int i = rx_ring->next_to_use;
674 
675 	/* nothing to do or no valid netdev defined */
676 	if (!cleaned_count || !rx_ring->netdev)
677 		return;
678 
679 	rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
680 	bi = &rx_ring->rx_buffer_info[i];
681 	i -= rx_ring->count;
682 
683 	do {
684 		if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
685 			break;
686 
687 		/* sync the buffer for use by the device */
688 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
689 						 bi->page_offset,
690 						 ixgbevf_rx_bufsz(rx_ring),
691 						 DMA_FROM_DEVICE);
692 
693 		/* Refresh the desc even if pkt_addr didn't change
694 		 * because each write-back erases this info.
695 		 */
696 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
697 
698 		rx_desc++;
699 		bi++;
700 		i++;
701 		if (unlikely(!i)) {
702 			rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
703 			bi = rx_ring->rx_buffer_info;
704 			i -= rx_ring->count;
705 		}
706 
707 		/* clear the length for the next_to_use descriptor */
708 		rx_desc->wb.upper.length = 0;
709 
710 		cleaned_count--;
711 	} while (cleaned_count);
712 
713 	i += rx_ring->count;
714 
715 	if (rx_ring->next_to_use != i) {
716 		/* record the next descriptor to use */
717 		rx_ring->next_to_use = i;
718 
719 		/* update next to alloc since we have filled the ring */
720 		rx_ring->next_to_alloc = i;
721 
722 		/* Force memory writes to complete before letting h/w
723 		 * know there are new descriptors to fetch.  (Only
724 		 * applicable for weak-ordered memory model archs,
725 		 * such as IA-64).
726 		 */
727 		wmb();
728 		ixgbevf_write_tail(rx_ring, i);
729 	}
730 }
731 
732 /**
733  * ixgbevf_cleanup_headers - Correct corrupted or empty headers
734  * @rx_ring: rx descriptor ring packet is being transacted on
735  * @rx_desc: pointer to the EOP Rx descriptor
736  * @skb: pointer to current skb being fixed
737  *
738  * Check for corrupted packet headers caused by senders on the local L2
739  * embedded NIC switch not setting up their Tx Descriptors right.  These
740  * should be very rare.
741  *
742  * Also address the case where we are pulling data in on pages only
743  * and as such no data is present in the skb header.
744  *
745  * In addition if skb is not at least 60 bytes we need to pad it so that
746  * it is large enough to qualify as a valid Ethernet frame.
747  *
748  * Returns true if an error was encountered and skb was freed.
749  **/
750 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
751 				    union ixgbe_adv_rx_desc *rx_desc,
752 				    struct sk_buff *skb)
753 {
754 	/* XDP packets use error pointer so abort at this point */
755 	if (IS_ERR(skb))
756 		return true;
757 
758 	/* verify that the packet does not have any known errors */
759 	if (unlikely(ixgbevf_test_staterr(rx_desc,
760 					  IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
761 		struct net_device *netdev = rx_ring->netdev;
762 
763 		if (!(netdev->features & NETIF_F_RXALL)) {
764 			dev_kfree_skb_any(skb);
765 			return true;
766 		}
767 	}
768 
769 	/* if eth_skb_pad returns an error the skb was freed */
770 	if (eth_skb_pad(skb))
771 		return true;
772 
773 	return false;
774 }
775 
776 /**
777  * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
778  * @rx_ring: rx descriptor ring to store buffers on
779  * @old_buff: donor buffer to have page reused
780  *
781  * Synchronizes page for reuse by the adapter
782  **/
783 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
784 				  struct ixgbevf_rx_buffer *old_buff)
785 {
786 	struct ixgbevf_rx_buffer *new_buff;
787 	u16 nta = rx_ring->next_to_alloc;
788 
789 	new_buff = &rx_ring->rx_buffer_info[nta];
790 
791 	/* update, and store next to alloc */
792 	nta++;
793 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
794 
795 	/* transfer page from old buffer to new buffer */
796 	new_buff->page = old_buff->page;
797 	new_buff->dma = old_buff->dma;
798 	new_buff->page_offset = old_buff->page_offset;
799 	new_buff->pagecnt_bias = old_buff->pagecnt_bias;
800 }
801 
802 static inline bool ixgbevf_page_is_reserved(struct page *page)
803 {
804 	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
805 }
806 
807 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer)
808 {
809 	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
810 	struct page *page = rx_buffer->page;
811 
812 	/* avoid re-using remote pages */
813 	if (unlikely(ixgbevf_page_is_reserved(page)))
814 		return false;
815 
816 #if (PAGE_SIZE < 8192)
817 	/* if we are only owner of page we can reuse it */
818 	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
819 		return false;
820 #else
821 #define IXGBEVF_LAST_OFFSET \
822 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048)
823 
824 	if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET)
825 		return false;
826 
827 #endif
828 
829 	/* If we have drained the page fragment pool we need to update
830 	 * the pagecnt_bias and page count so that we fully restock the
831 	 * number of references the driver holds.
832 	 */
833 	if (unlikely(!pagecnt_bias)) {
834 		page_ref_add(page, USHRT_MAX);
835 		rx_buffer->pagecnt_bias = USHRT_MAX;
836 	}
837 
838 	return true;
839 }
840 
841 /**
842  * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
843  * @rx_ring: rx descriptor ring to transact packets on
844  * @rx_buffer: buffer containing page to add
845  * @skb: sk_buff to place the data into
846  * @size: size of buffer to be added
847  *
848  * This function will add the data contained in rx_buffer->page to the skb.
849  **/
850 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
851 				struct ixgbevf_rx_buffer *rx_buffer,
852 				struct sk_buff *skb,
853 				unsigned int size)
854 {
855 #if (PAGE_SIZE < 8192)
856 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
857 #else
858 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
859 				SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
860 				SKB_DATA_ALIGN(size);
861 #endif
862 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
863 			rx_buffer->page_offset, size, truesize);
864 #if (PAGE_SIZE < 8192)
865 	rx_buffer->page_offset ^= truesize;
866 #else
867 	rx_buffer->page_offset += truesize;
868 #endif
869 }
870 
871 static
872 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring,
873 				      struct ixgbevf_rx_buffer *rx_buffer,
874 				      struct xdp_buff *xdp,
875 				      union ixgbe_adv_rx_desc *rx_desc)
876 {
877 	unsigned int size = xdp->data_end - xdp->data;
878 #if (PAGE_SIZE < 8192)
879 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
880 #else
881 	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
882 					       xdp->data_hard_start);
883 #endif
884 	unsigned int headlen;
885 	struct sk_buff *skb;
886 
887 	/* prefetch first cache line of first page */
888 	prefetch(xdp->data);
889 #if L1_CACHE_BYTES < 128
890 	prefetch(xdp->data + L1_CACHE_BYTES);
891 #endif
892 	/* Note, we get here by enabling legacy-rx via:
893 	 *
894 	 *    ethtool --set-priv-flags <dev> legacy-rx on
895 	 *
896 	 * In this mode, we currently get 0 extra XDP headroom as
897 	 * opposed to having legacy-rx off, where we process XDP
898 	 * packets going to stack via ixgbevf_build_skb().
899 	 *
900 	 * For ixgbevf_construct_skb() mode it means that the
901 	 * xdp->data_meta will always point to xdp->data, since
902 	 * the helper cannot expand the head. Should this ever
903 	 * changed in future for legacy-rx mode on, then lets also
904 	 * add xdp->data_meta handling here.
905 	 */
906 
907 	/* allocate a skb to store the frags */
908 	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE);
909 	if (unlikely(!skb))
910 		return NULL;
911 
912 	/* Determine available headroom for copy */
913 	headlen = size;
914 	if (headlen > IXGBEVF_RX_HDR_SIZE)
915 		headlen = eth_get_headlen(xdp->data, IXGBEVF_RX_HDR_SIZE);
916 
917 	/* align pull length to size of long to optimize memcpy performance */
918 	memcpy(__skb_put(skb, headlen), xdp->data,
919 	       ALIGN(headlen, sizeof(long)));
920 
921 	/* update all of the pointers */
922 	size -= headlen;
923 	if (size) {
924 		skb_add_rx_frag(skb, 0, rx_buffer->page,
925 				(xdp->data + headlen) -
926 					page_address(rx_buffer->page),
927 				size, truesize);
928 #if (PAGE_SIZE < 8192)
929 		rx_buffer->page_offset ^= truesize;
930 #else
931 		rx_buffer->page_offset += truesize;
932 #endif
933 	} else {
934 		rx_buffer->pagecnt_bias++;
935 	}
936 
937 	return skb;
938 }
939 
940 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
941 					     u32 qmask)
942 {
943 	struct ixgbe_hw *hw = &adapter->hw;
944 
945 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
946 }
947 
948 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring,
949 					 struct ixgbevf_rx_buffer *rx_buffer,
950 					 struct xdp_buff *xdp,
951 					 union ixgbe_adv_rx_desc *rx_desc)
952 {
953 	unsigned int metasize = xdp->data - xdp->data_meta;
954 #if (PAGE_SIZE < 8192)
955 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
956 #else
957 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
958 				SKB_DATA_ALIGN(xdp->data_end -
959 					       xdp->data_hard_start);
960 #endif
961 	struct sk_buff *skb;
962 
963 	/* Prefetch first cache line of first page. If xdp->data_meta
964 	 * is unused, this points to xdp->data, otherwise, we likely
965 	 * have a consumer accessing first few bytes of meta data,
966 	 * and then actual data.
967 	 */
968 	prefetch(xdp->data_meta);
969 #if L1_CACHE_BYTES < 128
970 	prefetch(xdp->data_meta + L1_CACHE_BYTES);
971 #endif
972 
973 	/* build an skb around the page buffer */
974 	skb = build_skb(xdp->data_hard_start, truesize);
975 	if (unlikely(!skb))
976 		return NULL;
977 
978 	/* update pointers within the skb to store the data */
979 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
980 	__skb_put(skb, xdp->data_end - xdp->data);
981 	if (metasize)
982 		skb_metadata_set(skb, metasize);
983 
984 	/* update buffer offset */
985 #if (PAGE_SIZE < 8192)
986 	rx_buffer->page_offset ^= truesize;
987 #else
988 	rx_buffer->page_offset += truesize;
989 #endif
990 
991 	return skb;
992 }
993 
994 #define IXGBEVF_XDP_PASS 0
995 #define IXGBEVF_XDP_CONSUMED 1
996 #define IXGBEVF_XDP_TX 2
997 
998 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring,
999 				 struct xdp_buff *xdp)
1000 {
1001 	struct ixgbevf_tx_buffer *tx_buffer;
1002 	union ixgbe_adv_tx_desc *tx_desc;
1003 	u32 len, cmd_type;
1004 	dma_addr_t dma;
1005 	u16 i;
1006 
1007 	len = xdp->data_end - xdp->data;
1008 
1009 	if (unlikely(!ixgbevf_desc_unused(ring)))
1010 		return IXGBEVF_XDP_CONSUMED;
1011 
1012 	dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE);
1013 	if (dma_mapping_error(ring->dev, dma))
1014 		return IXGBEVF_XDP_CONSUMED;
1015 
1016 	/* record the location of the first descriptor for this packet */
1017 	tx_buffer = &ring->tx_buffer_info[ring->next_to_use];
1018 	tx_buffer->bytecount = len;
1019 	tx_buffer->gso_segs = 1;
1020 	tx_buffer->protocol = 0;
1021 
1022 	i = ring->next_to_use;
1023 	tx_desc = IXGBEVF_TX_DESC(ring, i);
1024 
1025 	dma_unmap_len_set(tx_buffer, len, len);
1026 	dma_unmap_addr_set(tx_buffer, dma, dma);
1027 	tx_buffer->data = xdp->data;
1028 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
1029 
1030 	/* put descriptor type bits */
1031 	cmd_type = IXGBE_ADVTXD_DTYP_DATA |
1032 		   IXGBE_ADVTXD_DCMD_DEXT |
1033 		   IXGBE_ADVTXD_DCMD_IFCS;
1034 	cmd_type |= len | IXGBE_TXD_CMD;
1035 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1036 	tx_desc->read.olinfo_status =
1037 			cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) |
1038 				    IXGBE_ADVTXD_CC);
1039 
1040 	/* Avoid any potential race with cleanup */
1041 	smp_wmb();
1042 
1043 	/* set next_to_watch value indicating a packet is present */
1044 	i++;
1045 	if (i == ring->count)
1046 		i = 0;
1047 
1048 	tx_buffer->next_to_watch = tx_desc;
1049 	ring->next_to_use = i;
1050 
1051 	return IXGBEVF_XDP_TX;
1052 }
1053 
1054 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter,
1055 				       struct ixgbevf_ring  *rx_ring,
1056 				       struct xdp_buff *xdp)
1057 {
1058 	int result = IXGBEVF_XDP_PASS;
1059 	struct ixgbevf_ring *xdp_ring;
1060 	struct bpf_prog *xdp_prog;
1061 	u32 act;
1062 
1063 	rcu_read_lock();
1064 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1065 
1066 	if (!xdp_prog)
1067 		goto xdp_out;
1068 
1069 	act = bpf_prog_run_xdp(xdp_prog, xdp);
1070 	switch (act) {
1071 	case XDP_PASS:
1072 		break;
1073 	case XDP_TX:
1074 		xdp_ring = adapter->xdp_ring[rx_ring->queue_index];
1075 		result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp);
1076 		break;
1077 	default:
1078 		bpf_warn_invalid_xdp_action(act);
1079 		/* fallthrough */
1080 	case XDP_ABORTED:
1081 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
1082 		/* fallthrough -- handle aborts by dropping packet */
1083 	case XDP_DROP:
1084 		result = IXGBEVF_XDP_CONSUMED;
1085 		break;
1086 	}
1087 xdp_out:
1088 	rcu_read_unlock();
1089 	return ERR_PTR(-result);
1090 }
1091 
1092 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring,
1093 				   struct ixgbevf_rx_buffer *rx_buffer,
1094 				   unsigned int size)
1095 {
1096 #if (PAGE_SIZE < 8192)
1097 	unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2;
1098 
1099 	rx_buffer->page_offset ^= truesize;
1100 #else
1101 	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1102 				SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) :
1103 				SKB_DATA_ALIGN(size);
1104 
1105 	rx_buffer->page_offset += truesize;
1106 #endif
1107 }
1108 
1109 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
1110 				struct ixgbevf_ring *rx_ring,
1111 				int budget)
1112 {
1113 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1114 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1115 	u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
1116 	struct sk_buff *skb = rx_ring->skb;
1117 	bool xdp_xmit = false;
1118 	struct xdp_buff xdp;
1119 
1120 	xdp.rxq = &rx_ring->xdp_rxq;
1121 
1122 	while (likely(total_rx_packets < budget)) {
1123 		struct ixgbevf_rx_buffer *rx_buffer;
1124 		union ixgbe_adv_rx_desc *rx_desc;
1125 		unsigned int size;
1126 
1127 		/* return some buffers to hardware, one at a time is too slow */
1128 		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
1129 			ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
1130 			cleaned_count = 0;
1131 		}
1132 
1133 		rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1134 		size = le16_to_cpu(rx_desc->wb.upper.length);
1135 		if (!size)
1136 			break;
1137 
1138 		/* This memory barrier is needed to keep us from reading
1139 		 * any other fields out of the rx_desc until we know the
1140 		 * RXD_STAT_DD bit is set
1141 		 */
1142 		rmb();
1143 
1144 		rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size);
1145 
1146 		/* retrieve a buffer from the ring */
1147 		if (!skb) {
1148 			xdp.data = page_address(rx_buffer->page) +
1149 				   rx_buffer->page_offset;
1150 			xdp.data_meta = xdp.data;
1151 			xdp.data_hard_start = xdp.data -
1152 					      ixgbevf_rx_offset(rx_ring);
1153 			xdp.data_end = xdp.data + size;
1154 
1155 			skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp);
1156 		}
1157 
1158 		if (IS_ERR(skb)) {
1159 			if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) {
1160 				xdp_xmit = true;
1161 				ixgbevf_rx_buffer_flip(rx_ring, rx_buffer,
1162 						       size);
1163 			} else {
1164 				rx_buffer->pagecnt_bias++;
1165 			}
1166 			total_rx_packets++;
1167 			total_rx_bytes += size;
1168 		} else if (skb) {
1169 			ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1170 		} else if (ring_uses_build_skb(rx_ring)) {
1171 			skb = ixgbevf_build_skb(rx_ring, rx_buffer,
1172 						&xdp, rx_desc);
1173 		} else {
1174 			skb = ixgbevf_construct_skb(rx_ring, rx_buffer,
1175 						    &xdp, rx_desc);
1176 		}
1177 
1178 		/* exit if we failed to retrieve a buffer */
1179 		if (!skb) {
1180 			rx_ring->rx_stats.alloc_rx_buff_failed++;
1181 			rx_buffer->pagecnt_bias++;
1182 			break;
1183 		}
1184 
1185 		ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb);
1186 		cleaned_count++;
1187 
1188 		/* fetch next buffer in frame if non-eop */
1189 		if (ixgbevf_is_non_eop(rx_ring, rx_desc))
1190 			continue;
1191 
1192 		/* verify the packet layout is correct */
1193 		if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
1194 			skb = NULL;
1195 			continue;
1196 		}
1197 
1198 		/* probably a little skewed due to removing CRC */
1199 		total_rx_bytes += skb->len;
1200 
1201 		/* Workaround hardware that can't do proper VEPA multicast
1202 		 * source pruning.
1203 		 */
1204 		if ((skb->pkt_type == PACKET_BROADCAST ||
1205 		     skb->pkt_type == PACKET_MULTICAST) &&
1206 		    ether_addr_equal(rx_ring->netdev->dev_addr,
1207 				     eth_hdr(skb)->h_source)) {
1208 			dev_kfree_skb_irq(skb);
1209 			continue;
1210 		}
1211 
1212 		/* populate checksum, VLAN, and protocol */
1213 		ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
1214 
1215 		ixgbevf_rx_skb(q_vector, skb);
1216 
1217 		/* reset skb pointer */
1218 		skb = NULL;
1219 
1220 		/* update budget accounting */
1221 		total_rx_packets++;
1222 	}
1223 
1224 	/* place incomplete frames back on ring for completion */
1225 	rx_ring->skb = skb;
1226 
1227 	if (xdp_xmit) {
1228 		struct ixgbevf_ring *xdp_ring =
1229 			adapter->xdp_ring[rx_ring->queue_index];
1230 
1231 		/* Force memory writes to complete before letting h/w
1232 		 * know there are new descriptors to fetch.
1233 		 */
1234 		wmb();
1235 		ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use);
1236 	}
1237 
1238 	u64_stats_update_begin(&rx_ring->syncp);
1239 	rx_ring->stats.packets += total_rx_packets;
1240 	rx_ring->stats.bytes += total_rx_bytes;
1241 	u64_stats_update_end(&rx_ring->syncp);
1242 	q_vector->rx.total_packets += total_rx_packets;
1243 	q_vector->rx.total_bytes += total_rx_bytes;
1244 
1245 	return total_rx_packets;
1246 }
1247 
1248 /**
1249  * ixgbevf_poll - NAPI polling calback
1250  * @napi: napi struct with our devices info in it
1251  * @budget: amount of work driver is allowed to do this pass, in packets
1252  *
1253  * This function will clean more than one or more rings associated with a
1254  * q_vector.
1255  **/
1256 static int ixgbevf_poll(struct napi_struct *napi, int budget)
1257 {
1258 	struct ixgbevf_q_vector *q_vector =
1259 		container_of(napi, struct ixgbevf_q_vector, napi);
1260 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1261 	struct ixgbevf_ring *ring;
1262 	int per_ring_budget, work_done = 0;
1263 	bool clean_complete = true;
1264 
1265 	ixgbevf_for_each_ring(ring, q_vector->tx) {
1266 		if (!ixgbevf_clean_tx_irq(q_vector, ring, budget))
1267 			clean_complete = false;
1268 	}
1269 
1270 	if (budget <= 0)
1271 		return budget;
1272 
1273 	/* attempt to distribute budget to each queue fairly, but don't allow
1274 	 * the budget to go below 1 because we'll exit polling
1275 	 */
1276 	if (q_vector->rx.count > 1)
1277 		per_ring_budget = max(budget/q_vector->rx.count, 1);
1278 	else
1279 		per_ring_budget = budget;
1280 
1281 	ixgbevf_for_each_ring(ring, q_vector->rx) {
1282 		int cleaned = ixgbevf_clean_rx_irq(q_vector, ring,
1283 						   per_ring_budget);
1284 		work_done += cleaned;
1285 		if (cleaned >= per_ring_budget)
1286 			clean_complete = false;
1287 	}
1288 
1289 	/* If all work not completed, return budget and keep polling */
1290 	if (!clean_complete)
1291 		return budget;
1292 	/* all work done, exit the polling mode */
1293 	napi_complete_done(napi, work_done);
1294 	if (adapter->rx_itr_setting == 1)
1295 		ixgbevf_set_itr(q_vector);
1296 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1297 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1298 		ixgbevf_irq_enable_queues(adapter,
1299 					  BIT(q_vector->v_idx));
1300 
1301 	return 0;
1302 }
1303 
1304 /**
1305  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
1306  * @q_vector: structure containing interrupt and ring information
1307  **/
1308 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
1309 {
1310 	struct ixgbevf_adapter *adapter = q_vector->adapter;
1311 	struct ixgbe_hw *hw = &adapter->hw;
1312 	int v_idx = q_vector->v_idx;
1313 	u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
1314 
1315 	/* set the WDIS bit to not clear the timer bits and cause an
1316 	 * immediate assertion of the interrupt
1317 	 */
1318 	itr_reg |= IXGBE_EITR_CNT_WDIS;
1319 
1320 	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
1321 }
1322 
1323 /**
1324  * ixgbevf_configure_msix - Configure MSI-X hardware
1325  * @adapter: board private structure
1326  *
1327  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1328  * interrupts.
1329  **/
1330 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1331 {
1332 	struct ixgbevf_q_vector *q_vector;
1333 	int q_vectors, v_idx;
1334 
1335 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1336 	adapter->eims_enable_mask = 0;
1337 
1338 	/* Populate the IVAR table and set the ITR values to the
1339 	 * corresponding register.
1340 	 */
1341 	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1342 		struct ixgbevf_ring *ring;
1343 
1344 		q_vector = adapter->q_vector[v_idx];
1345 
1346 		ixgbevf_for_each_ring(ring, q_vector->rx)
1347 			ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1348 
1349 		ixgbevf_for_each_ring(ring, q_vector->tx)
1350 			ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1351 
1352 		if (q_vector->tx.ring && !q_vector->rx.ring) {
1353 			/* Tx only vector */
1354 			if (adapter->tx_itr_setting == 1)
1355 				q_vector->itr = IXGBE_12K_ITR;
1356 			else
1357 				q_vector->itr = adapter->tx_itr_setting;
1358 		} else {
1359 			/* Rx or Rx/Tx vector */
1360 			if (adapter->rx_itr_setting == 1)
1361 				q_vector->itr = IXGBE_20K_ITR;
1362 			else
1363 				q_vector->itr = adapter->rx_itr_setting;
1364 		}
1365 
1366 		/* add q_vector eims value to global eims_enable_mask */
1367 		adapter->eims_enable_mask |= BIT(v_idx);
1368 
1369 		ixgbevf_write_eitr(q_vector);
1370 	}
1371 
1372 	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1373 	/* setup eims_other and add value to global eims_enable_mask */
1374 	adapter->eims_other = BIT(v_idx);
1375 	adapter->eims_enable_mask |= adapter->eims_other;
1376 }
1377 
1378 enum latency_range {
1379 	lowest_latency = 0,
1380 	low_latency = 1,
1381 	bulk_latency = 2,
1382 	latency_invalid = 255
1383 };
1384 
1385 /**
1386  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1387  * @q_vector: structure containing interrupt and ring information
1388  * @ring_container: structure containing ring performance data
1389  *
1390  * Stores a new ITR value based on packets and byte
1391  * counts during the last interrupt.  The advantage of per interrupt
1392  * computation is faster updates and more accurate ITR for the current
1393  * traffic pattern.  Constants in this function were computed
1394  * based on theoretical maximum wire speed and thresholds were set based
1395  * on testing data as well as attempting to minimize response time
1396  * while increasing bulk throughput.
1397  **/
1398 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1399 			       struct ixgbevf_ring_container *ring_container)
1400 {
1401 	int bytes = ring_container->total_bytes;
1402 	int packets = ring_container->total_packets;
1403 	u32 timepassed_us;
1404 	u64 bytes_perint;
1405 	u8 itr_setting = ring_container->itr;
1406 
1407 	if (packets == 0)
1408 		return;
1409 
1410 	/* simple throttle rate management
1411 	 *    0-20MB/s lowest (100000 ints/s)
1412 	 *   20-100MB/s low   (20000 ints/s)
1413 	 *  100-1249MB/s bulk (12000 ints/s)
1414 	 */
1415 	/* what was last interrupt timeslice? */
1416 	timepassed_us = q_vector->itr >> 2;
1417 	bytes_perint = bytes / timepassed_us; /* bytes/usec */
1418 
1419 	switch (itr_setting) {
1420 	case lowest_latency:
1421 		if (bytes_perint > 10)
1422 			itr_setting = low_latency;
1423 		break;
1424 	case low_latency:
1425 		if (bytes_perint > 20)
1426 			itr_setting = bulk_latency;
1427 		else if (bytes_perint <= 10)
1428 			itr_setting = lowest_latency;
1429 		break;
1430 	case bulk_latency:
1431 		if (bytes_perint <= 20)
1432 			itr_setting = low_latency;
1433 		break;
1434 	}
1435 
1436 	/* clear work counters since we have the values we need */
1437 	ring_container->total_bytes = 0;
1438 	ring_container->total_packets = 0;
1439 
1440 	/* write updated itr to ring container */
1441 	ring_container->itr = itr_setting;
1442 }
1443 
1444 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1445 {
1446 	u32 new_itr = q_vector->itr;
1447 	u8 current_itr;
1448 
1449 	ixgbevf_update_itr(q_vector, &q_vector->tx);
1450 	ixgbevf_update_itr(q_vector, &q_vector->rx);
1451 
1452 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1453 
1454 	switch (current_itr) {
1455 	/* counts and packets in update_itr are dependent on these numbers */
1456 	case lowest_latency:
1457 		new_itr = IXGBE_100K_ITR;
1458 		break;
1459 	case low_latency:
1460 		new_itr = IXGBE_20K_ITR;
1461 		break;
1462 	case bulk_latency:
1463 		new_itr = IXGBE_12K_ITR;
1464 		break;
1465 	default:
1466 		break;
1467 	}
1468 
1469 	if (new_itr != q_vector->itr) {
1470 		/* do an exponential smoothing */
1471 		new_itr = (10 * new_itr * q_vector->itr) /
1472 			  ((9 * new_itr) + q_vector->itr);
1473 
1474 		/* save the algorithm value here */
1475 		q_vector->itr = new_itr;
1476 
1477 		ixgbevf_write_eitr(q_vector);
1478 	}
1479 }
1480 
1481 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1482 {
1483 	struct ixgbevf_adapter *adapter = data;
1484 	struct ixgbe_hw *hw = &adapter->hw;
1485 
1486 	hw->mac.get_link_status = 1;
1487 
1488 	ixgbevf_service_event_schedule(adapter);
1489 
1490 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1491 
1492 	return IRQ_HANDLED;
1493 }
1494 
1495 /**
1496  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1497  * @irq: unused
1498  * @data: pointer to our q_vector struct for this interrupt vector
1499  **/
1500 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1501 {
1502 	struct ixgbevf_q_vector *q_vector = data;
1503 
1504 	/* EIAM disabled interrupts (on this vector) for us */
1505 	if (q_vector->rx.ring || q_vector->tx.ring)
1506 		napi_schedule_irqoff(&q_vector->napi);
1507 
1508 	return IRQ_HANDLED;
1509 }
1510 
1511 /**
1512  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1513  * @adapter: board private structure
1514  *
1515  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1516  * interrupts from the kernel.
1517  **/
1518 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1519 {
1520 	struct net_device *netdev = adapter->netdev;
1521 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1522 	unsigned int ri = 0, ti = 0;
1523 	int vector, err;
1524 
1525 	for (vector = 0; vector < q_vectors; vector++) {
1526 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1527 		struct msix_entry *entry = &adapter->msix_entries[vector];
1528 
1529 		if (q_vector->tx.ring && q_vector->rx.ring) {
1530 			snprintf(q_vector->name, sizeof(q_vector->name),
1531 				 "%s-TxRx-%u", netdev->name, ri++);
1532 			ti++;
1533 		} else if (q_vector->rx.ring) {
1534 			snprintf(q_vector->name, sizeof(q_vector->name),
1535 				 "%s-rx-%u", netdev->name, ri++);
1536 		} else if (q_vector->tx.ring) {
1537 			snprintf(q_vector->name, sizeof(q_vector->name),
1538 				 "%s-tx-%u", netdev->name, ti++);
1539 		} else {
1540 			/* skip this unused q_vector */
1541 			continue;
1542 		}
1543 		err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1544 				  q_vector->name, q_vector);
1545 		if (err) {
1546 			hw_dbg(&adapter->hw,
1547 			       "request_irq failed for MSIX interrupt Error: %d\n",
1548 			       err);
1549 			goto free_queue_irqs;
1550 		}
1551 	}
1552 
1553 	err = request_irq(adapter->msix_entries[vector].vector,
1554 			  &ixgbevf_msix_other, 0, netdev->name, adapter);
1555 	if (err) {
1556 		hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n",
1557 		       err);
1558 		goto free_queue_irqs;
1559 	}
1560 
1561 	return 0;
1562 
1563 free_queue_irqs:
1564 	while (vector) {
1565 		vector--;
1566 		free_irq(adapter->msix_entries[vector].vector,
1567 			 adapter->q_vector[vector]);
1568 	}
1569 	/* This failure is non-recoverable - it indicates the system is
1570 	 * out of MSIX vector resources and the VF driver cannot run
1571 	 * without them.  Set the number of msix vectors to zero
1572 	 * indicating that not enough can be allocated.  The error
1573 	 * will be returned to the user indicating device open failed.
1574 	 * Any further attempts to force the driver to open will also
1575 	 * fail.  The only way to recover is to unload the driver and
1576 	 * reload it again.  If the system has recovered some MSIX
1577 	 * vectors then it may succeed.
1578 	 */
1579 	adapter->num_msix_vectors = 0;
1580 	return err;
1581 }
1582 
1583 /**
1584  * ixgbevf_request_irq - initialize interrupts
1585  * @adapter: board private structure
1586  *
1587  * Attempts to configure interrupts using the best available
1588  * capabilities of the hardware and kernel.
1589  **/
1590 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1591 {
1592 	int err = ixgbevf_request_msix_irqs(adapter);
1593 
1594 	if (err)
1595 		hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err);
1596 
1597 	return err;
1598 }
1599 
1600 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1601 {
1602 	int i, q_vectors;
1603 
1604 	if (!adapter->msix_entries)
1605 		return;
1606 
1607 	q_vectors = adapter->num_msix_vectors;
1608 	i = q_vectors - 1;
1609 
1610 	free_irq(adapter->msix_entries[i].vector, adapter);
1611 	i--;
1612 
1613 	for (; i >= 0; i--) {
1614 		/* free only the irqs that were actually requested */
1615 		if (!adapter->q_vector[i]->rx.ring &&
1616 		    !adapter->q_vector[i]->tx.ring)
1617 			continue;
1618 
1619 		free_irq(adapter->msix_entries[i].vector,
1620 			 adapter->q_vector[i]);
1621 	}
1622 }
1623 
1624 /**
1625  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1626  * @adapter: board private structure
1627  **/
1628 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1629 {
1630 	struct ixgbe_hw *hw = &adapter->hw;
1631 	int i;
1632 
1633 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1634 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1635 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1636 
1637 	IXGBE_WRITE_FLUSH(hw);
1638 
1639 	for (i = 0; i < adapter->num_msix_vectors; i++)
1640 		synchronize_irq(adapter->msix_entries[i].vector);
1641 }
1642 
1643 /**
1644  * ixgbevf_irq_enable - Enable default interrupt generation settings
1645  * @adapter: board private structure
1646  **/
1647 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1648 {
1649 	struct ixgbe_hw *hw = &adapter->hw;
1650 
1651 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1652 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1653 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1654 }
1655 
1656 /**
1657  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1658  * @adapter: board private structure
1659  * @ring: structure containing ring specific data
1660  *
1661  * Configure the Tx descriptor ring after a reset.
1662  **/
1663 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1664 				      struct ixgbevf_ring *ring)
1665 {
1666 	struct ixgbe_hw *hw = &adapter->hw;
1667 	u64 tdba = ring->dma;
1668 	int wait_loop = 10;
1669 	u32 txdctl = IXGBE_TXDCTL_ENABLE;
1670 	u8 reg_idx = ring->reg_idx;
1671 
1672 	/* disable queue to avoid issues while updating state */
1673 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1674 	IXGBE_WRITE_FLUSH(hw);
1675 
1676 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1677 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1678 	IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1679 			ring->count * sizeof(union ixgbe_adv_tx_desc));
1680 
1681 	/* disable head writeback */
1682 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1683 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1684 
1685 	/* enable relaxed ordering */
1686 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1687 			(IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1688 			 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1689 
1690 	/* reset head and tail pointers */
1691 	IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1692 	IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1693 	ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1694 
1695 	/* reset ntu and ntc to place SW in sync with hardwdare */
1696 	ring->next_to_clean = 0;
1697 	ring->next_to_use = 0;
1698 
1699 	/* In order to avoid issues WTHRESH + PTHRESH should always be equal
1700 	 * to or less than the number of on chip descriptors, which is
1701 	 * currently 40.
1702 	 */
1703 	txdctl |= (8 << 16);    /* WTHRESH = 8 */
1704 
1705 	/* Setting PTHRESH to 32 both improves performance */
1706 	txdctl |= (1u << 8) |    /* HTHRESH = 1 */
1707 		   32;           /* PTHRESH = 32 */
1708 
1709 	/* reinitialize tx_buffer_info */
1710 	memset(ring->tx_buffer_info, 0,
1711 	       sizeof(struct ixgbevf_tx_buffer) * ring->count);
1712 
1713 	clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state);
1714 
1715 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1716 
1717 	/* poll to verify queue is enabled */
1718 	do {
1719 		usleep_range(1000, 2000);
1720 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1721 	}  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1722 	if (!wait_loop)
1723 		hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx);
1724 }
1725 
1726 /**
1727  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1728  * @adapter: board private structure
1729  *
1730  * Configure the Tx unit of the MAC after a reset.
1731  **/
1732 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1733 {
1734 	u32 i;
1735 
1736 	/* Setup the HW Tx Head and Tail descriptor pointers */
1737 	for (i = 0; i < adapter->num_tx_queues; i++)
1738 		ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1739 	for (i = 0; i < adapter->num_xdp_queues; i++)
1740 		ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]);
1741 }
1742 
1743 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1744 
1745 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter,
1746 				     struct ixgbevf_ring *ring, int index)
1747 {
1748 	struct ixgbe_hw *hw = &adapter->hw;
1749 	u32 srrctl;
1750 
1751 	srrctl = IXGBE_SRRCTL_DROP_EN;
1752 
1753 	srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1754 	if (ring_uses_large_buffer(ring))
1755 		srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1756 	else
1757 		srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1758 	srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1759 
1760 	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1761 }
1762 
1763 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1764 {
1765 	struct ixgbe_hw *hw = &adapter->hw;
1766 
1767 	/* PSRTYPE must be initialized in 82599 */
1768 	u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1769 		      IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1770 		      IXGBE_PSRTYPE_L2HDR;
1771 
1772 	if (adapter->num_rx_queues > 1)
1773 		psrtype |= BIT(29);
1774 
1775 	IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1776 }
1777 
1778 #define IXGBEVF_MAX_RX_DESC_POLL 10
1779 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1780 				     struct ixgbevf_ring *ring)
1781 {
1782 	struct ixgbe_hw *hw = &adapter->hw;
1783 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1784 	u32 rxdctl;
1785 	u8 reg_idx = ring->reg_idx;
1786 
1787 	if (IXGBE_REMOVED(hw->hw_addr))
1788 		return;
1789 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1790 	rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1791 
1792 	/* write value back with RXDCTL.ENABLE bit cleared */
1793 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1794 
1795 	/* the hardware may take up to 100us to really disable the Rx queue */
1796 	do {
1797 		udelay(10);
1798 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1799 	} while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1800 
1801 	if (!wait_loop)
1802 		pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1803 		       reg_idx);
1804 }
1805 
1806 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1807 					 struct ixgbevf_ring *ring)
1808 {
1809 	struct ixgbe_hw *hw = &adapter->hw;
1810 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1811 	u32 rxdctl;
1812 	u8 reg_idx = ring->reg_idx;
1813 
1814 	if (IXGBE_REMOVED(hw->hw_addr))
1815 		return;
1816 	do {
1817 		usleep_range(1000, 2000);
1818 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1819 	} while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1820 
1821 	if (!wait_loop)
1822 		pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1823 		       reg_idx);
1824 }
1825 
1826 /**
1827  * ixgbevf_init_rss_key - Initialize adapter RSS key
1828  * @adapter: device handle
1829  *
1830  * Allocates and initializes the RSS key if it is not allocated.
1831  **/
1832 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter)
1833 {
1834 	u32 *rss_key;
1835 
1836 	if (!adapter->rss_key) {
1837 		rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL);
1838 		if (unlikely(!rss_key))
1839 			return -ENOMEM;
1840 
1841 		netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE);
1842 		adapter->rss_key = rss_key;
1843 	}
1844 
1845 	return 0;
1846 }
1847 
1848 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter)
1849 {
1850 	struct ixgbe_hw *hw = &adapter->hw;
1851 	u32 vfmrqc = 0, vfreta = 0;
1852 	u16 rss_i = adapter->num_rx_queues;
1853 	u8 i, j;
1854 
1855 	/* Fill out hash function seeds */
1856 	for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++)
1857 		IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i));
1858 
1859 	for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) {
1860 		if (j == rss_i)
1861 			j = 0;
1862 
1863 		adapter->rss_indir_tbl[i] = j;
1864 
1865 		vfreta |= j << (i & 0x3) * 8;
1866 		if ((i & 3) == 3) {
1867 			IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta);
1868 			vfreta = 0;
1869 		}
1870 	}
1871 
1872 	/* Perform hash on these packet types */
1873 	vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 |
1874 		IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP |
1875 		IXGBE_VFMRQC_RSS_FIELD_IPV6 |
1876 		IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP;
1877 
1878 	vfmrqc |= IXGBE_VFMRQC_RSSEN;
1879 
1880 	IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc);
1881 }
1882 
1883 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1884 				      struct ixgbevf_ring *ring)
1885 {
1886 	struct ixgbe_hw *hw = &adapter->hw;
1887 	union ixgbe_adv_rx_desc *rx_desc;
1888 	u64 rdba = ring->dma;
1889 	u32 rxdctl;
1890 	u8 reg_idx = ring->reg_idx;
1891 
1892 	/* disable queue to avoid issues while updating state */
1893 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1894 	ixgbevf_disable_rx_queue(adapter, ring);
1895 
1896 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1897 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1898 	IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1899 			ring->count * sizeof(union ixgbe_adv_rx_desc));
1900 
1901 #ifndef CONFIG_SPARC
1902 	/* enable relaxed ordering */
1903 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1904 			IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1905 #else
1906 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1907 			IXGBE_DCA_RXCTRL_DESC_RRO_EN |
1908 			IXGBE_DCA_RXCTRL_DATA_WRO_EN);
1909 #endif
1910 
1911 	/* reset head and tail pointers */
1912 	IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1913 	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1914 	ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1915 
1916 	/* initialize rx_buffer_info */
1917 	memset(ring->rx_buffer_info, 0,
1918 	       sizeof(struct ixgbevf_rx_buffer) * ring->count);
1919 
1920 	/* initialize Rx descriptor 0 */
1921 	rx_desc = IXGBEVF_RX_DESC(ring, 0);
1922 	rx_desc->wb.upper.length = 0;
1923 
1924 	/* reset ntu and ntc to place SW in sync with hardwdare */
1925 	ring->next_to_clean = 0;
1926 	ring->next_to_use = 0;
1927 	ring->next_to_alloc = 0;
1928 
1929 	ixgbevf_configure_srrctl(adapter, ring, reg_idx);
1930 
1931 	/* RXDCTL.RLPML does not work on 82599 */
1932 	if (adapter->hw.mac.type != ixgbe_mac_82599_vf) {
1933 		rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK |
1934 			    IXGBE_RXDCTL_RLPML_EN);
1935 
1936 #if (PAGE_SIZE < 8192)
1937 		/* Limit the maximum frame size so we don't overrun the skb */
1938 		if (ring_uses_build_skb(ring) &&
1939 		    !ring_uses_large_buffer(ring))
1940 			rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB |
1941 				  IXGBE_RXDCTL_RLPML_EN;
1942 #endif
1943 	}
1944 
1945 	rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1946 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1947 
1948 	ixgbevf_rx_desc_queue_enable(adapter, ring);
1949 	ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1950 }
1951 
1952 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter,
1953 				      struct ixgbevf_ring *rx_ring)
1954 {
1955 	struct net_device *netdev = adapter->netdev;
1956 	unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1957 
1958 	/* set build_skb and buffer size flags */
1959 	clear_ring_build_skb_enabled(rx_ring);
1960 	clear_ring_uses_large_buffer(rx_ring);
1961 
1962 	if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX)
1963 		return;
1964 
1965 	set_ring_build_skb_enabled(rx_ring);
1966 
1967 	if (PAGE_SIZE < 8192) {
1968 		if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB)
1969 			return;
1970 
1971 		set_ring_uses_large_buffer(rx_ring);
1972 	}
1973 }
1974 
1975 /**
1976  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1977  * @adapter: board private structure
1978  *
1979  * Configure the Rx unit of the MAC after a reset.
1980  **/
1981 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1982 {
1983 	struct ixgbe_hw *hw = &adapter->hw;
1984 	struct net_device *netdev = adapter->netdev;
1985 	int i, ret;
1986 
1987 	ixgbevf_setup_psrtype(adapter);
1988 	if (hw->mac.type >= ixgbe_mac_X550_vf)
1989 		ixgbevf_setup_vfmrqc(adapter);
1990 
1991 	spin_lock_bh(&adapter->mbx_lock);
1992 	/* notify the PF of our intent to use this size of frame */
1993 	ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1994 	spin_unlock_bh(&adapter->mbx_lock);
1995 	if (ret)
1996 		dev_err(&adapter->pdev->dev,
1997 			"Failed to set MTU at %d\n", netdev->mtu);
1998 
1999 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
2000 	 * the Base and Length of the Rx Descriptor Ring
2001 	 */
2002 	for (i = 0; i < adapter->num_rx_queues; i++) {
2003 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
2004 
2005 		ixgbevf_set_rx_buffer_len(adapter, rx_ring);
2006 		ixgbevf_configure_rx_ring(adapter, rx_ring);
2007 	}
2008 }
2009 
2010 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
2011 				   __be16 proto, u16 vid)
2012 {
2013 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2014 	struct ixgbe_hw *hw = &adapter->hw;
2015 	int err;
2016 
2017 	spin_lock_bh(&adapter->mbx_lock);
2018 
2019 	/* add VID to filter table */
2020 	err = hw->mac.ops.set_vfta(hw, vid, 0, true);
2021 
2022 	spin_unlock_bh(&adapter->mbx_lock);
2023 
2024 	/* translate error return types so error makes sense */
2025 	if (err == IXGBE_ERR_MBX)
2026 		return -EIO;
2027 
2028 	if (err == IXGBE_ERR_INVALID_ARGUMENT)
2029 		return -EACCES;
2030 
2031 	set_bit(vid, adapter->active_vlans);
2032 
2033 	return err;
2034 }
2035 
2036 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
2037 				    __be16 proto, u16 vid)
2038 {
2039 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2040 	struct ixgbe_hw *hw = &adapter->hw;
2041 	int err;
2042 
2043 	spin_lock_bh(&adapter->mbx_lock);
2044 
2045 	/* remove VID from filter table */
2046 	err = hw->mac.ops.set_vfta(hw, vid, 0, false);
2047 
2048 	spin_unlock_bh(&adapter->mbx_lock);
2049 
2050 	clear_bit(vid, adapter->active_vlans);
2051 
2052 	return err;
2053 }
2054 
2055 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
2056 {
2057 	u16 vid;
2058 
2059 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2060 		ixgbevf_vlan_rx_add_vid(adapter->netdev,
2061 					htons(ETH_P_8021Q), vid);
2062 }
2063 
2064 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
2065 {
2066 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2067 	struct ixgbe_hw *hw = &adapter->hw;
2068 	int count = 0;
2069 
2070 	if ((netdev_uc_count(netdev)) > 10) {
2071 		pr_err("Too many unicast filters - No Space\n");
2072 		return -ENOSPC;
2073 	}
2074 
2075 	if (!netdev_uc_empty(netdev)) {
2076 		struct netdev_hw_addr *ha;
2077 
2078 		netdev_for_each_uc_addr(ha, netdev) {
2079 			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
2080 			udelay(200);
2081 		}
2082 	} else {
2083 		/* If the list is empty then send message to PF driver to
2084 		 * clear all MAC VLANs on this VF.
2085 		 */
2086 		hw->mac.ops.set_uc_addr(hw, 0, NULL);
2087 	}
2088 
2089 	return count;
2090 }
2091 
2092 /**
2093  * ixgbevf_set_rx_mode - Multicast and unicast set
2094  * @netdev: network interface device structure
2095  *
2096  * The set_rx_method entry point is called whenever the multicast address
2097  * list, unicast address list or the network interface flags are updated.
2098  * This routine is responsible for configuring the hardware for proper
2099  * multicast mode and configuring requested unicast filters.
2100  **/
2101 static void ixgbevf_set_rx_mode(struct net_device *netdev)
2102 {
2103 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2104 	struct ixgbe_hw *hw = &adapter->hw;
2105 	unsigned int flags = netdev->flags;
2106 	int xcast_mode;
2107 
2108 	/* request the most inclusive mode we need */
2109 	if (flags & IFF_PROMISC)
2110 		xcast_mode = IXGBEVF_XCAST_MODE_PROMISC;
2111 	else if (flags & IFF_ALLMULTI)
2112 		xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI;
2113 	else if (flags & (IFF_BROADCAST | IFF_MULTICAST))
2114 		xcast_mode = IXGBEVF_XCAST_MODE_MULTI;
2115 	else
2116 		xcast_mode = IXGBEVF_XCAST_MODE_NONE;
2117 
2118 	spin_lock_bh(&adapter->mbx_lock);
2119 
2120 	hw->mac.ops.update_xcast_mode(hw, xcast_mode);
2121 
2122 	/* reprogram multicast list */
2123 	hw->mac.ops.update_mc_addr_list(hw, netdev);
2124 
2125 	ixgbevf_write_uc_addr_list(netdev);
2126 
2127 	spin_unlock_bh(&adapter->mbx_lock);
2128 }
2129 
2130 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
2131 {
2132 	int q_idx;
2133 	struct ixgbevf_q_vector *q_vector;
2134 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2135 
2136 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2137 		q_vector = adapter->q_vector[q_idx];
2138 		napi_enable(&q_vector->napi);
2139 	}
2140 }
2141 
2142 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
2143 {
2144 	int q_idx;
2145 	struct ixgbevf_q_vector *q_vector;
2146 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2147 
2148 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
2149 		q_vector = adapter->q_vector[q_idx];
2150 		napi_disable(&q_vector->napi);
2151 	}
2152 }
2153 
2154 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
2155 {
2156 	struct ixgbe_hw *hw = &adapter->hw;
2157 	unsigned int def_q = 0;
2158 	unsigned int num_tcs = 0;
2159 	unsigned int num_rx_queues = adapter->num_rx_queues;
2160 	unsigned int num_tx_queues = adapter->num_tx_queues;
2161 	int err;
2162 
2163 	spin_lock_bh(&adapter->mbx_lock);
2164 
2165 	/* fetch queue configuration from the PF */
2166 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2167 
2168 	spin_unlock_bh(&adapter->mbx_lock);
2169 
2170 	if (err)
2171 		return err;
2172 
2173 	if (num_tcs > 1) {
2174 		/* we need only one Tx queue */
2175 		num_tx_queues = 1;
2176 
2177 		/* update default Tx ring register index */
2178 		adapter->tx_ring[0]->reg_idx = def_q;
2179 
2180 		/* we need as many queues as traffic classes */
2181 		num_rx_queues = num_tcs;
2182 	}
2183 
2184 	/* if we have a bad config abort request queue reset */
2185 	if ((adapter->num_rx_queues != num_rx_queues) ||
2186 	    (adapter->num_tx_queues != num_tx_queues)) {
2187 		/* force mailbox timeout to prevent further messages */
2188 		hw->mbx.timeout = 0;
2189 
2190 		/* wait for watchdog to come around and bail us out */
2191 		set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state);
2192 	}
2193 
2194 	return 0;
2195 }
2196 
2197 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
2198 {
2199 	ixgbevf_configure_dcb(adapter);
2200 
2201 	ixgbevf_set_rx_mode(adapter->netdev);
2202 
2203 	ixgbevf_restore_vlan(adapter);
2204 
2205 	ixgbevf_configure_tx(adapter);
2206 	ixgbevf_configure_rx(adapter);
2207 }
2208 
2209 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
2210 {
2211 	/* Only save pre-reset stats if there are some */
2212 	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
2213 		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
2214 			adapter->stats.base_vfgprc;
2215 		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
2216 			adapter->stats.base_vfgptc;
2217 		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
2218 			adapter->stats.base_vfgorc;
2219 		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
2220 			adapter->stats.base_vfgotc;
2221 		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
2222 			adapter->stats.base_vfmprc;
2223 	}
2224 }
2225 
2226 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
2227 {
2228 	struct ixgbe_hw *hw = &adapter->hw;
2229 
2230 	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
2231 	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
2232 	adapter->stats.last_vfgorc |=
2233 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
2234 	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
2235 	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
2236 	adapter->stats.last_vfgotc |=
2237 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
2238 	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
2239 
2240 	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
2241 	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
2242 	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
2243 	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
2244 	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
2245 }
2246 
2247 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
2248 {
2249 	struct ixgbe_hw *hw = &adapter->hw;
2250 	int api[] = { ixgbe_mbox_api_13,
2251 		      ixgbe_mbox_api_12,
2252 		      ixgbe_mbox_api_11,
2253 		      ixgbe_mbox_api_10,
2254 		      ixgbe_mbox_api_unknown };
2255 	int err, idx = 0;
2256 
2257 	spin_lock_bh(&adapter->mbx_lock);
2258 
2259 	while (api[idx] != ixgbe_mbox_api_unknown) {
2260 		err = hw->mac.ops.negotiate_api_version(hw, api[idx]);
2261 		if (!err)
2262 			break;
2263 		idx++;
2264 	}
2265 
2266 	spin_unlock_bh(&adapter->mbx_lock);
2267 }
2268 
2269 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
2270 {
2271 	struct net_device *netdev = adapter->netdev;
2272 	struct ixgbe_hw *hw = &adapter->hw;
2273 
2274 	ixgbevf_configure_msix(adapter);
2275 
2276 	spin_lock_bh(&adapter->mbx_lock);
2277 
2278 	if (is_valid_ether_addr(hw->mac.addr))
2279 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
2280 	else
2281 		hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
2282 
2283 	spin_unlock_bh(&adapter->mbx_lock);
2284 
2285 	smp_mb__before_atomic();
2286 	clear_bit(__IXGBEVF_DOWN, &adapter->state);
2287 	ixgbevf_napi_enable_all(adapter);
2288 
2289 	/* clear any pending interrupts, may auto mask */
2290 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2291 	ixgbevf_irq_enable(adapter);
2292 
2293 	/* enable transmits */
2294 	netif_tx_start_all_queues(netdev);
2295 
2296 	ixgbevf_save_reset_stats(adapter);
2297 	ixgbevf_init_last_counter_stats(adapter);
2298 
2299 	hw->mac.get_link_status = 1;
2300 	mod_timer(&adapter->service_timer, jiffies);
2301 }
2302 
2303 void ixgbevf_up(struct ixgbevf_adapter *adapter)
2304 {
2305 	ixgbevf_configure(adapter);
2306 
2307 	ixgbevf_up_complete(adapter);
2308 }
2309 
2310 /**
2311  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
2312  * @rx_ring: ring to free buffers from
2313  **/
2314 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
2315 {
2316 	u16 i = rx_ring->next_to_clean;
2317 
2318 	/* Free Rx ring sk_buff */
2319 	if (rx_ring->skb) {
2320 		dev_kfree_skb(rx_ring->skb);
2321 		rx_ring->skb = NULL;
2322 	}
2323 
2324 	/* Free all the Rx ring pages */
2325 	while (i != rx_ring->next_to_alloc) {
2326 		struct ixgbevf_rx_buffer *rx_buffer;
2327 
2328 		rx_buffer = &rx_ring->rx_buffer_info[i];
2329 
2330 		/* Invalidate cache lines that may have been written to by
2331 		 * device so that we avoid corrupting memory.
2332 		 */
2333 		dma_sync_single_range_for_cpu(rx_ring->dev,
2334 					      rx_buffer->dma,
2335 					      rx_buffer->page_offset,
2336 					      ixgbevf_rx_bufsz(rx_ring),
2337 					      DMA_FROM_DEVICE);
2338 
2339 		/* free resources associated with mapping */
2340 		dma_unmap_page_attrs(rx_ring->dev,
2341 				     rx_buffer->dma,
2342 				     ixgbevf_rx_pg_size(rx_ring),
2343 				     DMA_FROM_DEVICE,
2344 				     IXGBEVF_RX_DMA_ATTR);
2345 
2346 		__page_frag_cache_drain(rx_buffer->page,
2347 					rx_buffer->pagecnt_bias);
2348 
2349 		i++;
2350 		if (i == rx_ring->count)
2351 			i = 0;
2352 	}
2353 
2354 	rx_ring->next_to_alloc = 0;
2355 	rx_ring->next_to_clean = 0;
2356 	rx_ring->next_to_use = 0;
2357 }
2358 
2359 /**
2360  * ixgbevf_clean_tx_ring - Free Tx Buffers
2361  * @tx_ring: ring to be cleaned
2362  **/
2363 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
2364 {
2365 	u16 i = tx_ring->next_to_clean;
2366 	struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
2367 
2368 	while (i != tx_ring->next_to_use) {
2369 		union ixgbe_adv_tx_desc *eop_desc, *tx_desc;
2370 
2371 		/* Free all the Tx ring sk_buffs */
2372 		if (ring_is_xdp(tx_ring))
2373 			page_frag_free(tx_buffer->data);
2374 		else
2375 			dev_kfree_skb_any(tx_buffer->skb);
2376 
2377 		/* unmap skb header data */
2378 		dma_unmap_single(tx_ring->dev,
2379 				 dma_unmap_addr(tx_buffer, dma),
2380 				 dma_unmap_len(tx_buffer, len),
2381 				 DMA_TO_DEVICE);
2382 
2383 		/* check for eop_desc to determine the end of the packet */
2384 		eop_desc = tx_buffer->next_to_watch;
2385 		tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
2386 
2387 		/* unmap remaining buffers */
2388 		while (tx_desc != eop_desc) {
2389 			tx_buffer++;
2390 			tx_desc++;
2391 			i++;
2392 			if (unlikely(i == tx_ring->count)) {
2393 				i = 0;
2394 				tx_buffer = tx_ring->tx_buffer_info;
2395 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
2396 			}
2397 
2398 			/* unmap any remaining paged data */
2399 			if (dma_unmap_len(tx_buffer, len))
2400 				dma_unmap_page(tx_ring->dev,
2401 					       dma_unmap_addr(tx_buffer, dma),
2402 					       dma_unmap_len(tx_buffer, len),
2403 					       DMA_TO_DEVICE);
2404 		}
2405 
2406 		/* move us one more past the eop_desc for start of next pkt */
2407 		tx_buffer++;
2408 		i++;
2409 		if (unlikely(i == tx_ring->count)) {
2410 			i = 0;
2411 			tx_buffer = tx_ring->tx_buffer_info;
2412 		}
2413 	}
2414 
2415 	/* reset next_to_use and next_to_clean */
2416 	tx_ring->next_to_use = 0;
2417 	tx_ring->next_to_clean = 0;
2418 
2419 }
2420 
2421 /**
2422  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2423  * @adapter: board private structure
2424  **/
2425 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2426 {
2427 	int i;
2428 
2429 	for (i = 0; i < adapter->num_rx_queues; i++)
2430 		ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2431 }
2432 
2433 /**
2434  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2435  * @adapter: board private structure
2436  **/
2437 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2438 {
2439 	int i;
2440 
2441 	for (i = 0; i < adapter->num_tx_queues; i++)
2442 		ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2443 	for (i = 0; i < adapter->num_xdp_queues; i++)
2444 		ixgbevf_clean_tx_ring(adapter->xdp_ring[i]);
2445 }
2446 
2447 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2448 {
2449 	struct net_device *netdev = adapter->netdev;
2450 	struct ixgbe_hw *hw = &adapter->hw;
2451 	int i;
2452 
2453 	/* signal that we are down to the interrupt handler */
2454 	if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2455 		return; /* do nothing if already down */
2456 
2457 	/* disable all enabled Rx queues */
2458 	for (i = 0; i < adapter->num_rx_queues; i++)
2459 		ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2460 
2461 	usleep_range(10000, 20000);
2462 
2463 	netif_tx_stop_all_queues(netdev);
2464 
2465 	/* call carrier off first to avoid false dev_watchdog timeouts */
2466 	netif_carrier_off(netdev);
2467 	netif_tx_disable(netdev);
2468 
2469 	ixgbevf_irq_disable(adapter);
2470 
2471 	ixgbevf_napi_disable_all(adapter);
2472 
2473 	del_timer_sync(&adapter->service_timer);
2474 
2475 	/* disable transmits in the hardware now that interrupts are off */
2476 	for (i = 0; i < adapter->num_tx_queues; i++) {
2477 		u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2478 
2479 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2480 				IXGBE_TXDCTL_SWFLSH);
2481 	}
2482 
2483 	for (i = 0; i < adapter->num_xdp_queues; i++) {
2484 		u8 reg_idx = adapter->xdp_ring[i]->reg_idx;
2485 
2486 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2487 				IXGBE_TXDCTL_SWFLSH);
2488 	}
2489 
2490 	if (!pci_channel_offline(adapter->pdev))
2491 		ixgbevf_reset(adapter);
2492 
2493 	ixgbevf_clean_all_tx_rings(adapter);
2494 	ixgbevf_clean_all_rx_rings(adapter);
2495 }
2496 
2497 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2498 {
2499 	WARN_ON(in_interrupt());
2500 
2501 	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2502 		msleep(1);
2503 
2504 	ixgbevf_down(adapter);
2505 	ixgbevf_up(adapter);
2506 
2507 	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2508 }
2509 
2510 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2511 {
2512 	struct ixgbe_hw *hw = &adapter->hw;
2513 	struct net_device *netdev = adapter->netdev;
2514 
2515 	if (hw->mac.ops.reset_hw(hw)) {
2516 		hw_dbg(hw, "PF still resetting\n");
2517 	} else {
2518 		hw->mac.ops.init_hw(hw);
2519 		ixgbevf_negotiate_api(adapter);
2520 	}
2521 
2522 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2523 		ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
2524 		ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
2525 	}
2526 
2527 	adapter->last_reset = jiffies;
2528 }
2529 
2530 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2531 					int vectors)
2532 {
2533 	int vector_threshold;
2534 
2535 	/* We'll want at least 2 (vector_threshold):
2536 	 * 1) TxQ[0] + RxQ[0] handler
2537 	 * 2) Other (Link Status Change, etc.)
2538 	 */
2539 	vector_threshold = MIN_MSIX_COUNT;
2540 
2541 	/* The more we get, the more we will assign to Tx/Rx Cleanup
2542 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2543 	 * Right now, we simply care about how many we'll get; we'll
2544 	 * set them up later while requesting irq's.
2545 	 */
2546 	vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2547 					vector_threshold, vectors);
2548 
2549 	if (vectors < 0) {
2550 		dev_err(&adapter->pdev->dev,
2551 			"Unable to allocate MSI-X interrupts\n");
2552 		kfree(adapter->msix_entries);
2553 		adapter->msix_entries = NULL;
2554 		return vectors;
2555 	}
2556 
2557 	/* Adjust for only the vectors we'll use, which is minimum
2558 	 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2559 	 * vectors we were allocated.
2560 	 */
2561 	adapter->num_msix_vectors = vectors;
2562 
2563 	return 0;
2564 }
2565 
2566 /**
2567  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2568  * @adapter: board private structure to initialize
2569  *
2570  * This is the top level queue allocation routine.  The order here is very
2571  * important, starting with the "most" number of features turned on at once,
2572  * and ending with the smallest set of features.  This way large combinations
2573  * can be allocated if they're turned on, and smaller combinations are the
2574  * fallthrough conditions.
2575  *
2576  **/
2577 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2578 {
2579 	struct ixgbe_hw *hw = &adapter->hw;
2580 	unsigned int def_q = 0;
2581 	unsigned int num_tcs = 0;
2582 	int err;
2583 
2584 	/* Start with base case */
2585 	adapter->num_rx_queues = 1;
2586 	adapter->num_tx_queues = 1;
2587 	adapter->num_xdp_queues = 0;
2588 
2589 	spin_lock_bh(&adapter->mbx_lock);
2590 
2591 	/* fetch queue configuration from the PF */
2592 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2593 
2594 	spin_unlock_bh(&adapter->mbx_lock);
2595 
2596 	if (err)
2597 		return;
2598 
2599 	/* we need as many queues as traffic classes */
2600 	if (num_tcs > 1) {
2601 		adapter->num_rx_queues = num_tcs;
2602 	} else {
2603 		u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES);
2604 
2605 		switch (hw->api_version) {
2606 		case ixgbe_mbox_api_11:
2607 		case ixgbe_mbox_api_12:
2608 		case ixgbe_mbox_api_13:
2609 			if (adapter->xdp_prog &&
2610 			    hw->mac.max_tx_queues == rss)
2611 				rss = rss > 3 ? 2 : 1;
2612 
2613 			adapter->num_rx_queues = rss;
2614 			adapter->num_tx_queues = rss;
2615 			adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0;
2616 		default:
2617 			break;
2618 		}
2619 	}
2620 }
2621 
2622 /**
2623  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2624  * @adapter: board private structure to initialize
2625  *
2626  * Attempt to configure the interrupts using the best available
2627  * capabilities of the hardware and the kernel.
2628  **/
2629 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2630 {
2631 	int vector, v_budget;
2632 
2633 	/* It's easy to be greedy for MSI-X vectors, but it really
2634 	 * doesn't do us much good if we have a lot more vectors
2635 	 * than CPU's.  So let's be conservative and only ask for
2636 	 * (roughly) the same number of vectors as there are CPU's.
2637 	 * The default is to use pairs of vectors.
2638 	 */
2639 	v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2640 	v_budget = min_t(int, v_budget, num_online_cpus());
2641 	v_budget += NON_Q_VECTORS;
2642 
2643 	adapter->msix_entries = kcalloc(v_budget,
2644 					sizeof(struct msix_entry), GFP_KERNEL);
2645 	if (!adapter->msix_entries)
2646 		return -ENOMEM;
2647 
2648 	for (vector = 0; vector < v_budget; vector++)
2649 		adapter->msix_entries[vector].entry = vector;
2650 
2651 	/* A failure in MSI-X entry allocation isn't fatal, but the VF driver
2652 	 * does not support any other modes, so we will simply fail here. Note
2653 	 * that we clean up the msix_entries pointer else-where.
2654 	 */
2655 	return ixgbevf_acquire_msix_vectors(adapter, v_budget);
2656 }
2657 
2658 static void ixgbevf_add_ring(struct ixgbevf_ring *ring,
2659 			     struct ixgbevf_ring_container *head)
2660 {
2661 	ring->next = head->ring;
2662 	head->ring = ring;
2663 	head->count++;
2664 }
2665 
2666 /**
2667  * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector
2668  * @adapter: board private structure to initialize
2669  * @v_idx: index of vector in adapter struct
2670  * @txr_count: number of Tx rings for q vector
2671  * @txr_idx: index of first Tx ring to assign
2672  * @xdp_count: total number of XDP rings to allocate
2673  * @xdp_idx: index of first XDP ring to allocate
2674  * @rxr_count: number of Rx rings for q vector
2675  * @rxr_idx: index of first Rx ring to assign
2676  *
2677  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
2678  **/
2679 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx,
2680 				  int txr_count, int txr_idx,
2681 				  int xdp_count, int xdp_idx,
2682 				  int rxr_count, int rxr_idx)
2683 {
2684 	struct ixgbevf_q_vector *q_vector;
2685 	int reg_idx = txr_idx + xdp_idx;
2686 	struct ixgbevf_ring *ring;
2687 	int ring_count, size;
2688 
2689 	ring_count = txr_count + xdp_count + rxr_count;
2690 	size = sizeof(*q_vector) + (sizeof(*ring) * ring_count);
2691 
2692 	/* allocate q_vector and rings */
2693 	q_vector = kzalloc(size, GFP_KERNEL);
2694 	if (!q_vector)
2695 		return -ENOMEM;
2696 
2697 	/* initialize NAPI */
2698 	netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64);
2699 
2700 	/* tie q_vector and adapter together */
2701 	adapter->q_vector[v_idx] = q_vector;
2702 	q_vector->adapter = adapter;
2703 	q_vector->v_idx = v_idx;
2704 
2705 	/* initialize pointer to rings */
2706 	ring = q_vector->ring;
2707 
2708 	while (txr_count) {
2709 		/* assign generic ring traits */
2710 		ring->dev = &adapter->pdev->dev;
2711 		ring->netdev = adapter->netdev;
2712 
2713 		/* configure backlink on ring */
2714 		ring->q_vector = q_vector;
2715 
2716 		/* update q_vector Tx values */
2717 		ixgbevf_add_ring(ring, &q_vector->tx);
2718 
2719 		/* apply Tx specific ring traits */
2720 		ring->count = adapter->tx_ring_count;
2721 		ring->queue_index = txr_idx;
2722 		ring->reg_idx = reg_idx;
2723 
2724 		/* assign ring to adapter */
2725 		 adapter->tx_ring[txr_idx] = ring;
2726 
2727 		/* update count and index */
2728 		txr_count--;
2729 		txr_idx++;
2730 		reg_idx++;
2731 
2732 		/* push pointer to next ring */
2733 		ring++;
2734 	}
2735 
2736 	while (xdp_count) {
2737 		/* assign generic ring traits */
2738 		ring->dev = &adapter->pdev->dev;
2739 		ring->netdev = adapter->netdev;
2740 
2741 		/* configure backlink on ring */
2742 		ring->q_vector = q_vector;
2743 
2744 		/* update q_vector Tx values */
2745 		ixgbevf_add_ring(ring, &q_vector->tx);
2746 
2747 		/* apply Tx specific ring traits */
2748 		ring->count = adapter->tx_ring_count;
2749 		ring->queue_index = xdp_idx;
2750 		ring->reg_idx = reg_idx;
2751 		set_ring_xdp(ring);
2752 
2753 		/* assign ring to adapter */
2754 		adapter->xdp_ring[xdp_idx] = ring;
2755 
2756 		/* update count and index */
2757 		xdp_count--;
2758 		xdp_idx++;
2759 		reg_idx++;
2760 
2761 		/* push pointer to next ring */
2762 		ring++;
2763 	}
2764 
2765 	while (rxr_count) {
2766 		/* assign generic ring traits */
2767 		ring->dev = &adapter->pdev->dev;
2768 		ring->netdev = adapter->netdev;
2769 
2770 		/* configure backlink on ring */
2771 		ring->q_vector = q_vector;
2772 
2773 		/* update q_vector Rx values */
2774 		ixgbevf_add_ring(ring, &q_vector->rx);
2775 
2776 		/* apply Rx specific ring traits */
2777 		ring->count = adapter->rx_ring_count;
2778 		ring->queue_index = rxr_idx;
2779 		ring->reg_idx = rxr_idx;
2780 
2781 		/* assign ring to adapter */
2782 		adapter->rx_ring[rxr_idx] = ring;
2783 
2784 		/* update count and index */
2785 		rxr_count--;
2786 		rxr_idx++;
2787 
2788 		/* push pointer to next ring */
2789 		ring++;
2790 	}
2791 
2792 	return 0;
2793 }
2794 
2795 /**
2796  * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector
2797  * @adapter: board private structure to initialize
2798  * @v_idx: index of vector in adapter struct
2799  *
2800  * This function frees the memory allocated to the q_vector.  In addition if
2801  * NAPI is enabled it will delete any references to the NAPI struct prior
2802  * to freeing the q_vector.
2803  **/
2804 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx)
2805 {
2806 	struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx];
2807 	struct ixgbevf_ring *ring;
2808 
2809 	ixgbevf_for_each_ring(ring, q_vector->tx) {
2810 		if (ring_is_xdp(ring))
2811 			adapter->xdp_ring[ring->queue_index] = NULL;
2812 		else
2813 			adapter->tx_ring[ring->queue_index] = NULL;
2814 	}
2815 
2816 	ixgbevf_for_each_ring(ring, q_vector->rx)
2817 		adapter->rx_ring[ring->queue_index] = NULL;
2818 
2819 	adapter->q_vector[v_idx] = NULL;
2820 	netif_napi_del(&q_vector->napi);
2821 
2822 	/* ixgbevf_get_stats() might access the rings on this vector,
2823 	 * we must wait a grace period before freeing it.
2824 	 */
2825 	kfree_rcu(q_vector, rcu);
2826 }
2827 
2828 /**
2829  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2830  * @adapter: board private structure to initialize
2831  *
2832  * We allocate one q_vector per queue interrupt.  If allocation fails we
2833  * return -ENOMEM.
2834  **/
2835 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2836 {
2837 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2838 	int rxr_remaining = adapter->num_rx_queues;
2839 	int txr_remaining = adapter->num_tx_queues;
2840 	int xdp_remaining = adapter->num_xdp_queues;
2841 	int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0;
2842 	int err;
2843 
2844 	if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) {
2845 		for (; rxr_remaining; v_idx++, q_vectors--) {
2846 			int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2847 
2848 			err = ixgbevf_alloc_q_vector(adapter, v_idx,
2849 						     0, 0, 0, 0, rqpv, rxr_idx);
2850 			if (err)
2851 				goto err_out;
2852 
2853 			/* update counts and index */
2854 			rxr_remaining -= rqpv;
2855 			rxr_idx += rqpv;
2856 		}
2857 	}
2858 
2859 	for (; q_vectors; v_idx++, q_vectors--) {
2860 		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors);
2861 		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors);
2862 		int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors);
2863 
2864 		err = ixgbevf_alloc_q_vector(adapter, v_idx,
2865 					     tqpv, txr_idx,
2866 					     xqpv, xdp_idx,
2867 					     rqpv, rxr_idx);
2868 
2869 		if (err)
2870 			goto err_out;
2871 
2872 		/* update counts and index */
2873 		rxr_remaining -= rqpv;
2874 		rxr_idx += rqpv;
2875 		txr_remaining -= tqpv;
2876 		txr_idx += tqpv;
2877 		xdp_remaining -= xqpv;
2878 		xdp_idx += xqpv;
2879 	}
2880 
2881 	return 0;
2882 
2883 err_out:
2884 	while (v_idx) {
2885 		v_idx--;
2886 		ixgbevf_free_q_vector(adapter, v_idx);
2887 	}
2888 
2889 	return -ENOMEM;
2890 }
2891 
2892 /**
2893  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2894  * @adapter: board private structure to initialize
2895  *
2896  * This function frees the memory allocated to the q_vectors.  In addition if
2897  * NAPI is enabled it will delete any references to the NAPI struct prior
2898  * to freeing the q_vector.
2899  **/
2900 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2901 {
2902 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2903 
2904 	while (q_vectors) {
2905 		q_vectors--;
2906 		ixgbevf_free_q_vector(adapter, q_vectors);
2907 	}
2908 }
2909 
2910 /**
2911  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2912  * @adapter: board private structure
2913  *
2914  **/
2915 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2916 {
2917 	if (!adapter->msix_entries)
2918 		return;
2919 
2920 	pci_disable_msix(adapter->pdev);
2921 	kfree(adapter->msix_entries);
2922 	adapter->msix_entries = NULL;
2923 }
2924 
2925 /**
2926  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2927  * @adapter: board private structure to initialize
2928  *
2929  **/
2930 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2931 {
2932 	int err;
2933 
2934 	/* Number of supported queues */
2935 	ixgbevf_set_num_queues(adapter);
2936 
2937 	err = ixgbevf_set_interrupt_capability(adapter);
2938 	if (err) {
2939 		hw_dbg(&adapter->hw,
2940 		       "Unable to setup interrupt capabilities\n");
2941 		goto err_set_interrupt;
2942 	}
2943 
2944 	err = ixgbevf_alloc_q_vectors(adapter);
2945 	if (err) {
2946 		hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n");
2947 		goto err_alloc_q_vectors;
2948 	}
2949 
2950 	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n",
2951 	       (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled",
2952 	       adapter->num_rx_queues, adapter->num_tx_queues,
2953 	       adapter->num_xdp_queues);
2954 
2955 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2956 
2957 	return 0;
2958 err_alloc_q_vectors:
2959 	ixgbevf_reset_interrupt_capability(adapter);
2960 err_set_interrupt:
2961 	return err;
2962 }
2963 
2964 /**
2965  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2966  * @adapter: board private structure to clear interrupt scheme on
2967  *
2968  * We go through and clear interrupt specific resources and reset the structure
2969  * to pre-load conditions
2970  **/
2971 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2972 {
2973 	adapter->num_tx_queues = 0;
2974 	adapter->num_xdp_queues = 0;
2975 	adapter->num_rx_queues = 0;
2976 
2977 	ixgbevf_free_q_vectors(adapter);
2978 	ixgbevf_reset_interrupt_capability(adapter);
2979 }
2980 
2981 /**
2982  * ixgbevf_sw_init - Initialize general software structures
2983  * @adapter: board private structure to initialize
2984  *
2985  * ixgbevf_sw_init initializes the Adapter private data structure.
2986  * Fields are initialized based on PCI device information and
2987  * OS network device settings (MTU size).
2988  **/
2989 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2990 {
2991 	struct ixgbe_hw *hw = &adapter->hw;
2992 	struct pci_dev *pdev = adapter->pdev;
2993 	struct net_device *netdev = adapter->netdev;
2994 	int err;
2995 
2996 	/* PCI config space info */
2997 	hw->vendor_id = pdev->vendor;
2998 	hw->device_id = pdev->device;
2999 	hw->revision_id = pdev->revision;
3000 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3001 	hw->subsystem_device_id = pdev->subsystem_device;
3002 
3003 	hw->mbx.ops.init_params(hw);
3004 
3005 	if (hw->mac.type >= ixgbe_mac_X550_vf) {
3006 		err = ixgbevf_init_rss_key(adapter);
3007 		if (err)
3008 			goto out;
3009 	}
3010 
3011 	/* assume legacy case in which PF would only give VF 2 queues */
3012 	hw->mac.max_tx_queues = 2;
3013 	hw->mac.max_rx_queues = 2;
3014 
3015 	/* lock to protect mailbox accesses */
3016 	spin_lock_init(&adapter->mbx_lock);
3017 
3018 	err = hw->mac.ops.reset_hw(hw);
3019 	if (err) {
3020 		dev_info(&pdev->dev,
3021 			 "PF still in reset state.  Is the PF interface up?\n");
3022 	} else {
3023 		err = hw->mac.ops.init_hw(hw);
3024 		if (err) {
3025 			pr_err("init_shared_code failed: %d\n", err);
3026 			goto out;
3027 		}
3028 		ixgbevf_negotiate_api(adapter);
3029 		err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
3030 		if (err)
3031 			dev_info(&pdev->dev, "Error reading MAC address\n");
3032 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
3033 			dev_info(&pdev->dev,
3034 				 "MAC address not assigned by administrator.\n");
3035 		ether_addr_copy(netdev->dev_addr, hw->mac.addr);
3036 	}
3037 
3038 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3039 		dev_info(&pdev->dev, "Assigning random MAC address\n");
3040 		eth_hw_addr_random(netdev);
3041 		ether_addr_copy(hw->mac.addr, netdev->dev_addr);
3042 		ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr);
3043 	}
3044 
3045 	/* Enable dynamic interrupt throttling rates */
3046 	adapter->rx_itr_setting = 1;
3047 	adapter->tx_itr_setting = 1;
3048 
3049 	/* set default ring sizes */
3050 	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
3051 	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
3052 
3053 	set_bit(__IXGBEVF_DOWN, &adapter->state);
3054 	return 0;
3055 
3056 out:
3057 	return err;
3058 }
3059 
3060 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
3061 	{							\
3062 		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
3063 		if (current_counter < last_counter)		\
3064 			counter += 0x100000000LL;		\
3065 		last_counter = current_counter;			\
3066 		counter &= 0xFFFFFFFF00000000LL;		\
3067 		counter |= current_counter;			\
3068 	}
3069 
3070 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
3071 	{								 \
3072 		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
3073 		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
3074 		u64 current_counter = (current_counter_msb << 32) |	 \
3075 			current_counter_lsb;				 \
3076 		if (current_counter < last_counter)			 \
3077 			counter += 0x1000000000LL;			 \
3078 		last_counter = current_counter;				 \
3079 		counter &= 0xFFFFFFF000000000LL;			 \
3080 		counter |= current_counter;				 \
3081 	}
3082 /**
3083  * ixgbevf_update_stats - Update the board statistics counters.
3084  * @adapter: board private structure
3085  **/
3086 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
3087 {
3088 	struct ixgbe_hw *hw = &adapter->hw;
3089 	u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0;
3090 	u64 alloc_rx_page = 0, hw_csum_rx_error = 0;
3091 	int i;
3092 
3093 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3094 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3095 		return;
3096 
3097 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
3098 				adapter->stats.vfgprc);
3099 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
3100 				adapter->stats.vfgptc);
3101 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
3102 				adapter->stats.last_vfgorc,
3103 				adapter->stats.vfgorc);
3104 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
3105 				adapter->stats.last_vfgotc,
3106 				adapter->stats.vfgotc);
3107 	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
3108 				adapter->stats.vfmprc);
3109 
3110 	for (i = 0;  i  < adapter->num_rx_queues;  i++) {
3111 		struct ixgbevf_ring *rx_ring = adapter->rx_ring[i];
3112 
3113 		hw_csum_rx_error += rx_ring->rx_stats.csum_err;
3114 		alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed;
3115 		alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed;
3116 		alloc_rx_page += rx_ring->rx_stats.alloc_rx_page;
3117 	}
3118 
3119 	adapter->hw_csum_rx_error = hw_csum_rx_error;
3120 	adapter->alloc_rx_page_failed = alloc_rx_page_failed;
3121 	adapter->alloc_rx_buff_failed = alloc_rx_buff_failed;
3122 	adapter->alloc_rx_page = alloc_rx_page;
3123 }
3124 
3125 /**
3126  * ixgbevf_service_timer - Timer Call-back
3127  * @t: pointer to timer_list struct
3128  **/
3129 static void ixgbevf_service_timer(struct timer_list *t)
3130 {
3131 	struct ixgbevf_adapter *adapter = from_timer(adapter, t,
3132 						     service_timer);
3133 
3134 	/* Reset the timer */
3135 	mod_timer(&adapter->service_timer, (HZ * 2) + jiffies);
3136 
3137 	ixgbevf_service_event_schedule(adapter);
3138 }
3139 
3140 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter)
3141 {
3142 	if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state))
3143 		return;
3144 
3145 	/* If we're already down or resetting, just bail */
3146 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3147 	    test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
3148 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3149 		return;
3150 
3151 	adapter->tx_timeout_count++;
3152 
3153 	rtnl_lock();
3154 	ixgbevf_reinit_locked(adapter);
3155 	rtnl_unlock();
3156 }
3157 
3158 /**
3159  * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts
3160  * @adapter: pointer to the device adapter structure
3161  *
3162  * This function serves two purposes.  First it strobes the interrupt lines
3163  * in order to make certain interrupts are occurring.  Secondly it sets the
3164  * bits needed to check for TX hangs.  As a result we should immediately
3165  * determine if a hang has occurred.
3166  **/
3167 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter)
3168 {
3169 	struct ixgbe_hw *hw = &adapter->hw;
3170 	u32 eics = 0;
3171 	int i;
3172 
3173 	/* If we're down or resetting, just bail */
3174 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3175 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3176 		return;
3177 
3178 	/* Force detection of hung controller */
3179 	if (netif_carrier_ok(adapter->netdev)) {
3180 		for (i = 0; i < adapter->num_tx_queues; i++)
3181 			set_check_for_tx_hang(adapter->tx_ring[i]);
3182 		for (i = 0; i < adapter->num_xdp_queues; i++)
3183 			set_check_for_tx_hang(adapter->xdp_ring[i]);
3184 	}
3185 
3186 	/* get one bit for every active Tx/Rx interrupt vector */
3187 	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
3188 		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
3189 
3190 		if (qv->rx.ring || qv->tx.ring)
3191 			eics |= BIT(i);
3192 	}
3193 
3194 	/* Cause software interrupt to ensure rings are cleaned */
3195 	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
3196 }
3197 
3198 /**
3199  * ixgbevf_watchdog_update_link - update the link status
3200  * @adapter: pointer to the device adapter structure
3201  **/
3202 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter)
3203 {
3204 	struct ixgbe_hw *hw = &adapter->hw;
3205 	u32 link_speed = adapter->link_speed;
3206 	bool link_up = adapter->link_up;
3207 	s32 err;
3208 
3209 	spin_lock_bh(&adapter->mbx_lock);
3210 
3211 	err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
3212 
3213 	spin_unlock_bh(&adapter->mbx_lock);
3214 
3215 	/* if check for link returns error we will need to reset */
3216 	if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) {
3217 		set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state);
3218 		link_up = false;
3219 	}
3220 
3221 	adapter->link_up = link_up;
3222 	adapter->link_speed = link_speed;
3223 }
3224 
3225 /**
3226  * ixgbevf_watchdog_link_is_up - update netif_carrier status and
3227  *				 print link up message
3228  * @adapter: pointer to the device adapter structure
3229  **/
3230 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter)
3231 {
3232 	struct net_device *netdev = adapter->netdev;
3233 
3234 	/* only continue if link was previously down */
3235 	if (netif_carrier_ok(netdev))
3236 		return;
3237 
3238 	dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n",
3239 		 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
3240 		 "10 Gbps" :
3241 		 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ?
3242 		 "1 Gbps" :
3243 		 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ?
3244 		 "100 Mbps" :
3245 		 "unknown speed");
3246 
3247 	netif_carrier_on(netdev);
3248 }
3249 
3250 /**
3251  * ixgbevf_watchdog_link_is_down - update netif_carrier status and
3252  *				   print link down message
3253  * @adapter: pointer to the adapter structure
3254  **/
3255 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter)
3256 {
3257 	struct net_device *netdev = adapter->netdev;
3258 
3259 	adapter->link_speed = 0;
3260 
3261 	/* only continue if link was up previously */
3262 	if (!netif_carrier_ok(netdev))
3263 		return;
3264 
3265 	dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
3266 
3267 	netif_carrier_off(netdev);
3268 }
3269 
3270 /**
3271  * ixgbevf_watchdog_subtask - worker thread to bring link up
3272  * @adapter: board private structure
3273  **/
3274 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter)
3275 {
3276 	/* if interface is down do nothing */
3277 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3278 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3279 		return;
3280 
3281 	ixgbevf_watchdog_update_link(adapter);
3282 
3283 	if (adapter->link_up)
3284 		ixgbevf_watchdog_link_is_up(adapter);
3285 	else
3286 		ixgbevf_watchdog_link_is_down(adapter);
3287 
3288 	ixgbevf_update_stats(adapter);
3289 }
3290 
3291 /**
3292  * ixgbevf_service_task - manages and runs subtasks
3293  * @work: pointer to work_struct containing our data
3294  **/
3295 static void ixgbevf_service_task(struct work_struct *work)
3296 {
3297 	struct ixgbevf_adapter *adapter = container_of(work,
3298 						       struct ixgbevf_adapter,
3299 						       service_task);
3300 	struct ixgbe_hw *hw = &adapter->hw;
3301 
3302 	if (IXGBE_REMOVED(hw->hw_addr)) {
3303 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
3304 			rtnl_lock();
3305 			ixgbevf_down(adapter);
3306 			rtnl_unlock();
3307 		}
3308 		return;
3309 	}
3310 
3311 	ixgbevf_queue_reset_subtask(adapter);
3312 	ixgbevf_reset_subtask(adapter);
3313 	ixgbevf_watchdog_subtask(adapter);
3314 	ixgbevf_check_hang_subtask(adapter);
3315 
3316 	ixgbevf_service_event_complete(adapter);
3317 }
3318 
3319 /**
3320  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
3321  * @tx_ring: Tx descriptor ring for a specific queue
3322  *
3323  * Free all transmit software resources
3324  **/
3325 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
3326 {
3327 	ixgbevf_clean_tx_ring(tx_ring);
3328 
3329 	vfree(tx_ring->tx_buffer_info);
3330 	tx_ring->tx_buffer_info = NULL;
3331 
3332 	/* if not set, then don't free */
3333 	if (!tx_ring->desc)
3334 		return;
3335 
3336 	dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
3337 			  tx_ring->dma);
3338 
3339 	tx_ring->desc = NULL;
3340 }
3341 
3342 /**
3343  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
3344  * @adapter: board private structure
3345  *
3346  * Free all transmit software resources
3347  **/
3348 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
3349 {
3350 	int i;
3351 
3352 	for (i = 0; i < adapter->num_tx_queues; i++)
3353 		if (adapter->tx_ring[i]->desc)
3354 			ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3355 	for (i = 0; i < adapter->num_xdp_queues; i++)
3356 		if (adapter->xdp_ring[i]->desc)
3357 			ixgbevf_free_tx_resources(adapter->xdp_ring[i]);
3358 }
3359 
3360 /**
3361  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
3362  * @tx_ring: Tx descriptor ring (for a specific queue) to setup
3363  *
3364  * Return 0 on success, negative on failure
3365  **/
3366 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
3367 {
3368 	struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev);
3369 	int size;
3370 
3371 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
3372 	tx_ring->tx_buffer_info = vmalloc(size);
3373 	if (!tx_ring->tx_buffer_info)
3374 		goto err;
3375 
3376 	u64_stats_init(&tx_ring->syncp);
3377 
3378 	/* round up to nearest 4K */
3379 	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
3380 	tx_ring->size = ALIGN(tx_ring->size, 4096);
3381 
3382 	tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
3383 					   &tx_ring->dma, GFP_KERNEL);
3384 	if (!tx_ring->desc)
3385 		goto err;
3386 
3387 	return 0;
3388 
3389 err:
3390 	vfree(tx_ring->tx_buffer_info);
3391 	tx_ring->tx_buffer_info = NULL;
3392 	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n");
3393 	return -ENOMEM;
3394 }
3395 
3396 /**
3397  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
3398  * @adapter: board private structure
3399  *
3400  * If this function returns with an error, then it's possible one or
3401  * more of the rings is populated (while the rest are not).  It is the
3402  * callers duty to clean those orphaned rings.
3403  *
3404  * Return 0 on success, negative on failure
3405  **/
3406 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
3407 {
3408 	int i, j = 0, err = 0;
3409 
3410 	for (i = 0; i < adapter->num_tx_queues; i++) {
3411 		err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
3412 		if (!err)
3413 			continue;
3414 		hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i);
3415 		goto err_setup_tx;
3416 	}
3417 
3418 	for (j = 0; j < adapter->num_xdp_queues; j++) {
3419 		err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]);
3420 		if (!err)
3421 			continue;
3422 		hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j);
3423 		goto err_setup_tx;
3424 	}
3425 
3426 	return 0;
3427 err_setup_tx:
3428 	/* rewind the index freeing the rings as we go */
3429 	while (j--)
3430 		ixgbevf_free_tx_resources(adapter->xdp_ring[j]);
3431 	while (i--)
3432 		ixgbevf_free_tx_resources(adapter->tx_ring[i]);
3433 
3434 	return err;
3435 }
3436 
3437 /**
3438  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
3439  * @adapter: board private structure
3440  * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3441  *
3442  * Returns 0 on success, negative on failure
3443  **/
3444 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
3445 			       struct ixgbevf_ring *rx_ring)
3446 {
3447 	int size;
3448 
3449 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
3450 	rx_ring->rx_buffer_info = vmalloc(size);
3451 	if (!rx_ring->rx_buffer_info)
3452 		goto err;
3453 
3454 	u64_stats_init(&rx_ring->syncp);
3455 
3456 	/* Round up to nearest 4K */
3457 	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
3458 	rx_ring->size = ALIGN(rx_ring->size, 4096);
3459 
3460 	rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
3461 					   &rx_ring->dma, GFP_KERNEL);
3462 
3463 	if (!rx_ring->desc)
3464 		goto err;
3465 
3466 	/* XDP RX-queue info */
3467 	if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev,
3468 			     rx_ring->queue_index) < 0)
3469 		goto err;
3470 
3471 	rx_ring->xdp_prog = adapter->xdp_prog;
3472 
3473 	return 0;
3474 err:
3475 	vfree(rx_ring->rx_buffer_info);
3476 	rx_ring->rx_buffer_info = NULL;
3477 	dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
3478 	return -ENOMEM;
3479 }
3480 
3481 /**
3482  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
3483  * @adapter: board private structure
3484  *
3485  * If this function returns with an error, then it's possible one or
3486  * more of the rings is populated (while the rest are not).  It is the
3487  * callers duty to clean those orphaned rings.
3488  *
3489  * Return 0 on success, negative on failure
3490  **/
3491 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
3492 {
3493 	int i, err = 0;
3494 
3495 	for (i = 0; i < adapter->num_rx_queues; i++) {
3496 		err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]);
3497 		if (!err)
3498 			continue;
3499 		hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i);
3500 		goto err_setup_rx;
3501 	}
3502 
3503 	return 0;
3504 err_setup_rx:
3505 	/* rewind the index freeing the rings as we go */
3506 	while (i--)
3507 		ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3508 	return err;
3509 }
3510 
3511 /**
3512  * ixgbevf_free_rx_resources - Free Rx Resources
3513  * @rx_ring: ring to clean the resources from
3514  *
3515  * Free all receive software resources
3516  **/
3517 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
3518 {
3519 	ixgbevf_clean_rx_ring(rx_ring);
3520 
3521 	rx_ring->xdp_prog = NULL;
3522 	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
3523 	vfree(rx_ring->rx_buffer_info);
3524 	rx_ring->rx_buffer_info = NULL;
3525 
3526 	dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
3527 			  rx_ring->dma);
3528 
3529 	rx_ring->desc = NULL;
3530 }
3531 
3532 /**
3533  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
3534  * @adapter: board private structure
3535  *
3536  * Free all receive software resources
3537  **/
3538 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
3539 {
3540 	int i;
3541 
3542 	for (i = 0; i < adapter->num_rx_queues; i++)
3543 		if (adapter->rx_ring[i]->desc)
3544 			ixgbevf_free_rx_resources(adapter->rx_ring[i]);
3545 }
3546 
3547 /**
3548  * ixgbevf_open - Called when a network interface is made active
3549  * @netdev: network interface device structure
3550  *
3551  * Returns 0 on success, negative value on failure
3552  *
3553  * The open entry point is called when a network interface is made
3554  * active by the system (IFF_UP).  At this point all resources needed
3555  * for transmit and receive operations are allocated, the interrupt
3556  * handler is registered with the OS, the watchdog timer is started,
3557  * and the stack is notified that the interface is ready.
3558  **/
3559 int ixgbevf_open(struct net_device *netdev)
3560 {
3561 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3562 	struct ixgbe_hw *hw = &adapter->hw;
3563 	int err;
3564 
3565 	/* A previous failure to open the device because of a lack of
3566 	 * available MSIX vector resources may have reset the number
3567 	 * of msix vectors variable to zero.  The only way to recover
3568 	 * is to unload/reload the driver and hope that the system has
3569 	 * been able to recover some MSIX vector resources.
3570 	 */
3571 	if (!adapter->num_msix_vectors)
3572 		return -ENOMEM;
3573 
3574 	if (hw->adapter_stopped) {
3575 		ixgbevf_reset(adapter);
3576 		/* if adapter is still stopped then PF isn't up and
3577 		 * the VF can't start.
3578 		 */
3579 		if (hw->adapter_stopped) {
3580 			err = IXGBE_ERR_MBX;
3581 			pr_err("Unable to start - perhaps the PF Driver isn't up yet\n");
3582 			goto err_setup_reset;
3583 		}
3584 	}
3585 
3586 	/* disallow open during test */
3587 	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
3588 		return -EBUSY;
3589 
3590 	netif_carrier_off(netdev);
3591 
3592 	/* allocate transmit descriptors */
3593 	err = ixgbevf_setup_all_tx_resources(adapter);
3594 	if (err)
3595 		goto err_setup_tx;
3596 
3597 	/* allocate receive descriptors */
3598 	err = ixgbevf_setup_all_rx_resources(adapter);
3599 	if (err)
3600 		goto err_setup_rx;
3601 
3602 	ixgbevf_configure(adapter);
3603 
3604 	err = ixgbevf_request_irq(adapter);
3605 	if (err)
3606 		goto err_req_irq;
3607 
3608 	/* Notify the stack of the actual queue counts. */
3609 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3610 	if (err)
3611 		goto err_set_queues;
3612 
3613 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3614 	if (err)
3615 		goto err_set_queues;
3616 
3617 	ixgbevf_up_complete(adapter);
3618 
3619 	return 0;
3620 
3621 err_set_queues:
3622 	ixgbevf_free_irq(adapter);
3623 err_req_irq:
3624 	ixgbevf_free_all_rx_resources(adapter);
3625 err_setup_rx:
3626 	ixgbevf_free_all_tx_resources(adapter);
3627 err_setup_tx:
3628 	ixgbevf_reset(adapter);
3629 err_setup_reset:
3630 
3631 	return err;
3632 }
3633 
3634 /**
3635  * ixgbevf_close_suspend - actions necessary to both suspend and close flows
3636  * @adapter: the private adapter struct
3637  *
3638  * This function should contain the necessary work common to both suspending
3639  * and closing of the device.
3640  */
3641 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter)
3642 {
3643 	ixgbevf_down(adapter);
3644 	ixgbevf_free_irq(adapter);
3645 	ixgbevf_free_all_tx_resources(adapter);
3646 	ixgbevf_free_all_rx_resources(adapter);
3647 }
3648 
3649 /**
3650  * ixgbevf_close - Disables a network interface
3651  * @netdev: network interface device structure
3652  *
3653  * Returns 0, this is not allowed to fail
3654  *
3655  * The close entry point is called when an interface is de-activated
3656  * by the OS.  The hardware is still under the drivers control, but
3657  * needs to be disabled.  A global MAC reset is issued to stop the
3658  * hardware, and all transmit and receive resources are freed.
3659  **/
3660 int ixgbevf_close(struct net_device *netdev)
3661 {
3662 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3663 
3664 	if (netif_device_present(netdev))
3665 		ixgbevf_close_suspend(adapter);
3666 
3667 	return 0;
3668 }
3669 
3670 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3671 {
3672 	struct net_device *dev = adapter->netdev;
3673 
3674 	if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED,
3675 				&adapter->state))
3676 		return;
3677 
3678 	/* if interface is down do nothing */
3679 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3680 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3681 		return;
3682 
3683 	/* Hardware has to reinitialize queues and interrupts to
3684 	 * match packet buffer alignment. Unfortunately, the
3685 	 * hardware is not flexible enough to do this dynamically.
3686 	 */
3687 	rtnl_lock();
3688 
3689 	if (netif_running(dev))
3690 		ixgbevf_close(dev);
3691 
3692 	ixgbevf_clear_interrupt_scheme(adapter);
3693 	ixgbevf_init_interrupt_scheme(adapter);
3694 
3695 	if (netif_running(dev))
3696 		ixgbevf_open(dev);
3697 
3698 	rtnl_unlock();
3699 }
3700 
3701 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3702 				u32 vlan_macip_lens, u32 type_tucmd,
3703 				u32 mss_l4len_idx)
3704 {
3705 	struct ixgbe_adv_tx_context_desc *context_desc;
3706 	u16 i = tx_ring->next_to_use;
3707 
3708 	context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3709 
3710 	i++;
3711 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3712 
3713 	/* set bits to identify this as an advanced context descriptor */
3714 	type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3715 
3716 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
3717 	context_desc->seqnum_seed	= 0;
3718 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
3719 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
3720 }
3721 
3722 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3723 		       struct ixgbevf_tx_buffer *first,
3724 		       u8 *hdr_len)
3725 {
3726 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
3727 	struct sk_buff *skb = first->skb;
3728 	union {
3729 		struct iphdr *v4;
3730 		struct ipv6hdr *v6;
3731 		unsigned char *hdr;
3732 	} ip;
3733 	union {
3734 		struct tcphdr *tcp;
3735 		unsigned char *hdr;
3736 	} l4;
3737 	u32 paylen, l4_offset;
3738 	int err;
3739 
3740 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3741 		return 0;
3742 
3743 	if (!skb_is_gso(skb))
3744 		return 0;
3745 
3746 	err = skb_cow_head(skb, 0);
3747 	if (err < 0)
3748 		return err;
3749 
3750 	if (eth_p_mpls(first->protocol))
3751 		ip.hdr = skb_inner_network_header(skb);
3752 	else
3753 		ip.hdr = skb_network_header(skb);
3754 	l4.hdr = skb_checksum_start(skb);
3755 
3756 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3757 	type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3758 
3759 	/* initialize outer IP header fields */
3760 	if (ip.v4->version == 4) {
3761 		unsigned char *csum_start = skb_checksum_start(skb);
3762 		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
3763 
3764 		/* IP header will have to cancel out any data that
3765 		 * is not a part of the outer IP header
3766 		 */
3767 		ip.v4->check = csum_fold(csum_partial(trans_start,
3768 						      csum_start - trans_start,
3769 						      0));
3770 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3771 
3772 		ip.v4->tot_len = 0;
3773 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3774 				   IXGBE_TX_FLAGS_CSUM |
3775 				   IXGBE_TX_FLAGS_IPV4;
3776 	} else {
3777 		ip.v6->payload_len = 0;
3778 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3779 				   IXGBE_TX_FLAGS_CSUM;
3780 	}
3781 
3782 	/* determine offset of inner transport header */
3783 	l4_offset = l4.hdr - skb->data;
3784 
3785 	/* compute length of segmentation header */
3786 	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3787 
3788 	/* remove payload length from inner checksum */
3789 	paylen = skb->len - l4_offset;
3790 	csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
3791 
3792 	/* update gso size and bytecount with header size */
3793 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3794 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3795 
3796 	/* mss_l4len_id: use 1 as index for TSO */
3797 	mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT;
3798 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3799 	mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT);
3800 
3801 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3802 	vlan_macip_lens = l4.hdr - ip.hdr;
3803 	vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT;
3804 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3805 
3806 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3807 			    type_tucmd, mss_l4len_idx);
3808 
3809 	return 1;
3810 }
3811 
3812 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb)
3813 {
3814 	unsigned int offset = 0;
3815 
3816 	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
3817 
3818 	return offset == skb_checksum_start_offset(skb);
3819 }
3820 
3821 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3822 			    struct ixgbevf_tx_buffer *first)
3823 {
3824 	struct sk_buff *skb = first->skb;
3825 	u32 vlan_macip_lens = 0;
3826 	u32 type_tucmd = 0;
3827 
3828 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3829 		goto no_csum;
3830 
3831 	switch (skb->csum_offset) {
3832 	case offsetof(struct tcphdr, check):
3833 		type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3834 		/* fall through */
3835 	case offsetof(struct udphdr, check):
3836 		break;
3837 	case offsetof(struct sctphdr, checksum):
3838 		/* validate that this is actually an SCTP request */
3839 		if (((first->protocol == htons(ETH_P_IP)) &&
3840 		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
3841 		    ((first->protocol == htons(ETH_P_IPV6)) &&
3842 		     ixgbevf_ipv6_csum_is_sctp(skb))) {
3843 			type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3844 			break;
3845 		}
3846 		/* fall through */
3847 	default:
3848 		skb_checksum_help(skb);
3849 		goto no_csum;
3850 	}
3851 	/* update TX checksum flag */
3852 	first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3853 	vlan_macip_lens = skb_checksum_start_offset(skb) -
3854 			  skb_network_offset(skb);
3855 no_csum:
3856 	/* vlan_macip_lens: MACLEN, VLAN tag */
3857 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3858 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3859 
3860 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
3861 }
3862 
3863 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3864 {
3865 	/* set type for advanced descriptor with frame checksum insertion */
3866 	__le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3867 				      IXGBE_ADVTXD_DCMD_IFCS |
3868 				      IXGBE_ADVTXD_DCMD_DEXT);
3869 
3870 	/* set HW VLAN bit if VLAN is present */
3871 	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3872 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3873 
3874 	/* set segmentation enable bits for TSO/FSO */
3875 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3876 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3877 
3878 	return cmd_type;
3879 }
3880 
3881 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3882 				     u32 tx_flags, unsigned int paylen)
3883 {
3884 	__le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3885 
3886 	/* enable L4 checksum for TSO and TX checksum offload */
3887 	if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3888 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3889 
3890 	/* enble IPv4 checksum for TSO */
3891 	if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3892 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3893 
3894 	/* use index 1 context for TSO/FSO/FCOE */
3895 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3896 		olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT);
3897 
3898 	/* Check Context must be set if Tx switch is enabled, which it
3899 	 * always is for case where virtual functions are running
3900 	 */
3901 	olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3902 
3903 	tx_desc->read.olinfo_status = olinfo_status;
3904 }
3905 
3906 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3907 			   struct ixgbevf_tx_buffer *first,
3908 			   const u8 hdr_len)
3909 {
3910 	struct sk_buff *skb = first->skb;
3911 	struct ixgbevf_tx_buffer *tx_buffer;
3912 	union ixgbe_adv_tx_desc *tx_desc;
3913 	struct skb_frag_struct *frag;
3914 	dma_addr_t dma;
3915 	unsigned int data_len, size;
3916 	u32 tx_flags = first->tx_flags;
3917 	__le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3918 	u16 i = tx_ring->next_to_use;
3919 
3920 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3921 
3922 	ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
3923 
3924 	size = skb_headlen(skb);
3925 	data_len = skb->data_len;
3926 
3927 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3928 
3929 	tx_buffer = first;
3930 
3931 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3932 		if (dma_mapping_error(tx_ring->dev, dma))
3933 			goto dma_error;
3934 
3935 		/* record length, and DMA address */
3936 		dma_unmap_len_set(tx_buffer, len, size);
3937 		dma_unmap_addr_set(tx_buffer, dma, dma);
3938 
3939 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3940 
3941 		while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3942 			tx_desc->read.cmd_type_len =
3943 				cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3944 
3945 			i++;
3946 			tx_desc++;
3947 			if (i == tx_ring->count) {
3948 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3949 				i = 0;
3950 			}
3951 			tx_desc->read.olinfo_status = 0;
3952 
3953 			dma += IXGBE_MAX_DATA_PER_TXD;
3954 			size -= IXGBE_MAX_DATA_PER_TXD;
3955 
3956 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
3957 		}
3958 
3959 		if (likely(!data_len))
3960 			break;
3961 
3962 		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3963 
3964 		i++;
3965 		tx_desc++;
3966 		if (i == tx_ring->count) {
3967 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3968 			i = 0;
3969 		}
3970 		tx_desc->read.olinfo_status = 0;
3971 
3972 		size = skb_frag_size(frag);
3973 		data_len -= size;
3974 
3975 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3976 				       DMA_TO_DEVICE);
3977 
3978 		tx_buffer = &tx_ring->tx_buffer_info[i];
3979 	}
3980 
3981 	/* write last descriptor with RS and EOP bits */
3982 	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3983 	tx_desc->read.cmd_type_len = cmd_type;
3984 
3985 	/* set the timestamp */
3986 	first->time_stamp = jiffies;
3987 
3988 	/* Force memory writes to complete before letting h/w know there
3989 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
3990 	 * memory model archs, such as IA-64).
3991 	 *
3992 	 * We also need this memory barrier (wmb) to make certain all of the
3993 	 * status bits have been updated before next_to_watch is written.
3994 	 */
3995 	wmb();
3996 
3997 	/* set next_to_watch value indicating a packet is present */
3998 	first->next_to_watch = tx_desc;
3999 
4000 	i++;
4001 	if (i == tx_ring->count)
4002 		i = 0;
4003 
4004 	tx_ring->next_to_use = i;
4005 
4006 	/* notify HW of packet */
4007 	ixgbevf_write_tail(tx_ring, i);
4008 
4009 	return;
4010 dma_error:
4011 	dev_err(tx_ring->dev, "TX DMA map failed\n");
4012 	tx_buffer = &tx_ring->tx_buffer_info[i];
4013 
4014 	/* clear dma mappings for failed tx_buffer_info map */
4015 	while (tx_buffer != first) {
4016 		if (dma_unmap_len(tx_buffer, len))
4017 			dma_unmap_page(tx_ring->dev,
4018 				       dma_unmap_addr(tx_buffer, dma),
4019 				       dma_unmap_len(tx_buffer, len),
4020 				       DMA_TO_DEVICE);
4021 		dma_unmap_len_set(tx_buffer, len, 0);
4022 
4023 		if (i-- == 0)
4024 			i += tx_ring->count;
4025 		tx_buffer = &tx_ring->tx_buffer_info[i];
4026 	}
4027 
4028 	if (dma_unmap_len(tx_buffer, len))
4029 		dma_unmap_single(tx_ring->dev,
4030 				 dma_unmap_addr(tx_buffer, dma),
4031 				 dma_unmap_len(tx_buffer, len),
4032 				 DMA_TO_DEVICE);
4033 	dma_unmap_len_set(tx_buffer, len, 0);
4034 
4035 	dev_kfree_skb_any(tx_buffer->skb);
4036 	tx_buffer->skb = NULL;
4037 
4038 	tx_ring->next_to_use = i;
4039 }
4040 
4041 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4042 {
4043 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
4044 	/* Herbert's original patch had:
4045 	 *  smp_mb__after_netif_stop_queue();
4046 	 * but since that doesn't exist yet, just open code it.
4047 	 */
4048 	smp_mb();
4049 
4050 	/* We need to check again in a case another CPU has just
4051 	 * made room available.
4052 	 */
4053 	if (likely(ixgbevf_desc_unused(tx_ring) < size))
4054 		return -EBUSY;
4055 
4056 	/* A reprieve! - use start_queue because it doesn't call schedule */
4057 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
4058 	++tx_ring->tx_stats.restart_queue;
4059 
4060 	return 0;
4061 }
4062 
4063 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
4064 {
4065 	if (likely(ixgbevf_desc_unused(tx_ring) >= size))
4066 		return 0;
4067 	return __ixgbevf_maybe_stop_tx(tx_ring, size);
4068 }
4069 
4070 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb,
4071 				   struct ixgbevf_ring *tx_ring)
4072 {
4073 	struct ixgbevf_tx_buffer *first;
4074 	int tso;
4075 	u32 tx_flags = 0;
4076 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
4077 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4078 	unsigned short f;
4079 #endif
4080 	u8 hdr_len = 0;
4081 	u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
4082 
4083 	if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
4084 		dev_kfree_skb_any(skb);
4085 		return NETDEV_TX_OK;
4086 	}
4087 
4088 	/* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
4089 	 *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
4090 	 *       + 2 desc gap to keep tail from touching head,
4091 	 *       + 1 desc for context descriptor,
4092 	 * otherwise try next time
4093 	 */
4094 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
4095 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4096 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4097 #else
4098 	count += skb_shinfo(skb)->nr_frags;
4099 #endif
4100 	if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
4101 		tx_ring->tx_stats.tx_busy++;
4102 		return NETDEV_TX_BUSY;
4103 	}
4104 
4105 	/* record the location of the first descriptor for this packet */
4106 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4107 	first->skb = skb;
4108 	first->bytecount = skb->len;
4109 	first->gso_segs = 1;
4110 
4111 	if (skb_vlan_tag_present(skb)) {
4112 		tx_flags |= skb_vlan_tag_get(skb);
4113 		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
4114 		tx_flags |= IXGBE_TX_FLAGS_VLAN;
4115 	}
4116 
4117 	/* record initial flags and protocol */
4118 	first->tx_flags = tx_flags;
4119 	first->protocol = vlan_get_protocol(skb);
4120 
4121 	tso = ixgbevf_tso(tx_ring, first, &hdr_len);
4122 	if (tso < 0)
4123 		goto out_drop;
4124 	else if (!tso)
4125 		ixgbevf_tx_csum(tx_ring, first);
4126 
4127 	ixgbevf_tx_map(tx_ring, first, hdr_len);
4128 
4129 	ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
4130 
4131 	return NETDEV_TX_OK;
4132 
4133 out_drop:
4134 	dev_kfree_skb_any(first->skb);
4135 	first->skb = NULL;
4136 
4137 	return NETDEV_TX_OK;
4138 }
4139 
4140 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4141 {
4142 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4143 	struct ixgbevf_ring *tx_ring;
4144 
4145 	if (skb->len <= 0) {
4146 		dev_kfree_skb_any(skb);
4147 		return NETDEV_TX_OK;
4148 	}
4149 
4150 	/* The minimum packet size for olinfo paylen is 17 so pad the skb
4151 	 * in order to meet this minimum size requirement.
4152 	 */
4153 	if (skb->len < 17) {
4154 		if (skb_padto(skb, 17))
4155 			return NETDEV_TX_OK;
4156 		skb->len = 17;
4157 	}
4158 
4159 	tx_ring = adapter->tx_ring[skb->queue_mapping];
4160 	return ixgbevf_xmit_frame_ring(skb, tx_ring);
4161 }
4162 
4163 /**
4164  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
4165  * @netdev: network interface device structure
4166  * @p: pointer to an address structure
4167  *
4168  * Returns 0 on success, negative on failure
4169  **/
4170 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
4171 {
4172 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4173 	struct ixgbe_hw *hw = &adapter->hw;
4174 	struct sockaddr *addr = p;
4175 	int err;
4176 
4177 	if (!is_valid_ether_addr(addr->sa_data))
4178 		return -EADDRNOTAVAIL;
4179 
4180 	spin_lock_bh(&adapter->mbx_lock);
4181 
4182 	err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0);
4183 
4184 	spin_unlock_bh(&adapter->mbx_lock);
4185 
4186 	if (err)
4187 		return -EPERM;
4188 
4189 	ether_addr_copy(hw->mac.addr, addr->sa_data);
4190 	ether_addr_copy(netdev->dev_addr, addr->sa_data);
4191 
4192 	return 0;
4193 }
4194 
4195 /**
4196  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
4197  * @netdev: network interface device structure
4198  * @new_mtu: new value for maximum frame size
4199  *
4200  * Returns 0 on success, negative on failure
4201  **/
4202 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
4203 {
4204 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4205 	struct ixgbe_hw *hw = &adapter->hw;
4206 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4207 	int ret;
4208 
4209 	/* prevent MTU being changed to a size unsupported by XDP */
4210 	if (adapter->xdp_prog) {
4211 		dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n");
4212 		return -EPERM;
4213 	}
4214 
4215 	spin_lock_bh(&adapter->mbx_lock);
4216 	/* notify the PF of our intent to use this size of frame */
4217 	ret = hw->mac.ops.set_rlpml(hw, max_frame);
4218 	spin_unlock_bh(&adapter->mbx_lock);
4219 	if (ret)
4220 		return -EINVAL;
4221 
4222 	hw_dbg(hw, "changing MTU from %d to %d\n",
4223 	       netdev->mtu, new_mtu);
4224 
4225 	/* must set new MTU before calling down or up */
4226 	netdev->mtu = new_mtu;
4227 
4228 	if (netif_running(netdev))
4229 		ixgbevf_reinit_locked(adapter);
4230 
4231 	return 0;
4232 }
4233 
4234 #ifdef CONFIG_NET_POLL_CONTROLLER
4235 /* Polling 'interrupt' - used by things like netconsole to send skbs
4236  * without having to re-enable interrupts. It's not called while
4237  * the interrupt routine is executing.
4238  */
4239 static void ixgbevf_netpoll(struct net_device *netdev)
4240 {
4241 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4242 	int i;
4243 
4244 	/* if interface is down do nothing */
4245 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
4246 		return;
4247 	for (i = 0; i < adapter->num_rx_queues; i++)
4248 		ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
4249 }
4250 #endif /* CONFIG_NET_POLL_CONTROLLER */
4251 
4252 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
4253 {
4254 	struct net_device *netdev = pci_get_drvdata(pdev);
4255 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4256 #ifdef CONFIG_PM
4257 	int retval = 0;
4258 #endif
4259 
4260 	rtnl_lock();
4261 	netif_device_detach(netdev);
4262 
4263 	if (netif_running(netdev))
4264 		ixgbevf_close_suspend(adapter);
4265 
4266 	ixgbevf_clear_interrupt_scheme(adapter);
4267 	rtnl_unlock();
4268 
4269 #ifdef CONFIG_PM
4270 	retval = pci_save_state(pdev);
4271 	if (retval)
4272 		return retval;
4273 
4274 #endif
4275 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4276 		pci_disable_device(pdev);
4277 
4278 	return 0;
4279 }
4280 
4281 #ifdef CONFIG_PM
4282 static int ixgbevf_resume(struct pci_dev *pdev)
4283 {
4284 	struct net_device *netdev = pci_get_drvdata(pdev);
4285 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4286 	u32 err;
4287 
4288 	pci_restore_state(pdev);
4289 	/* pci_restore_state clears dev->state_saved so call
4290 	 * pci_save_state to restore it.
4291 	 */
4292 	pci_save_state(pdev);
4293 
4294 	err = pci_enable_device_mem(pdev);
4295 	if (err) {
4296 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
4297 		return err;
4298 	}
4299 
4300 	adapter->hw.hw_addr = adapter->io_addr;
4301 	smp_mb__before_atomic();
4302 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4303 	pci_set_master(pdev);
4304 
4305 	ixgbevf_reset(adapter);
4306 
4307 	rtnl_lock();
4308 	err = ixgbevf_init_interrupt_scheme(adapter);
4309 	if (!err && netif_running(netdev))
4310 		err = ixgbevf_open(netdev);
4311 	rtnl_unlock();
4312 	if (err)
4313 		return err;
4314 
4315 	netif_device_attach(netdev);
4316 
4317 	return err;
4318 }
4319 
4320 #endif /* CONFIG_PM */
4321 static void ixgbevf_shutdown(struct pci_dev *pdev)
4322 {
4323 	ixgbevf_suspend(pdev, PMSG_SUSPEND);
4324 }
4325 
4326 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats,
4327 				      const struct ixgbevf_ring *ring)
4328 {
4329 	u64 bytes, packets;
4330 	unsigned int start;
4331 
4332 	if (ring) {
4333 		do {
4334 			start = u64_stats_fetch_begin_irq(&ring->syncp);
4335 			bytes = ring->stats.bytes;
4336 			packets = ring->stats.packets;
4337 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4338 		stats->tx_bytes += bytes;
4339 		stats->tx_packets += packets;
4340 	}
4341 }
4342 
4343 static void ixgbevf_get_stats(struct net_device *netdev,
4344 			      struct rtnl_link_stats64 *stats)
4345 {
4346 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4347 	unsigned int start;
4348 	u64 bytes, packets;
4349 	const struct ixgbevf_ring *ring;
4350 	int i;
4351 
4352 	ixgbevf_update_stats(adapter);
4353 
4354 	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
4355 
4356 	rcu_read_lock();
4357 	for (i = 0; i < adapter->num_rx_queues; i++) {
4358 		ring = adapter->rx_ring[i];
4359 		do {
4360 			start = u64_stats_fetch_begin_irq(&ring->syncp);
4361 			bytes = ring->stats.bytes;
4362 			packets = ring->stats.packets;
4363 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4364 		stats->rx_bytes += bytes;
4365 		stats->rx_packets += packets;
4366 	}
4367 
4368 	for (i = 0; i < adapter->num_tx_queues; i++) {
4369 		ring = adapter->tx_ring[i];
4370 		ixgbevf_get_tx_ring_stats(stats, ring);
4371 	}
4372 
4373 	for (i = 0; i < adapter->num_xdp_queues; i++) {
4374 		ring = adapter->xdp_ring[i];
4375 		ixgbevf_get_tx_ring_stats(stats, ring);
4376 	}
4377 	rcu_read_unlock();
4378 }
4379 
4380 #define IXGBEVF_MAX_MAC_HDR_LEN		127
4381 #define IXGBEVF_MAX_NETWORK_HDR_LEN	511
4382 
4383 static netdev_features_t
4384 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev,
4385 		       netdev_features_t features)
4386 {
4387 	unsigned int network_hdr_len, mac_hdr_len;
4388 
4389 	/* Make certain the headers can be described by a context descriptor */
4390 	mac_hdr_len = skb_network_header(skb) - skb->data;
4391 	if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN))
4392 		return features & ~(NETIF_F_HW_CSUM |
4393 				    NETIF_F_SCTP_CRC |
4394 				    NETIF_F_HW_VLAN_CTAG_TX |
4395 				    NETIF_F_TSO |
4396 				    NETIF_F_TSO6);
4397 
4398 	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4399 	if (unlikely(network_hdr_len >  IXGBEVF_MAX_NETWORK_HDR_LEN))
4400 		return features & ~(NETIF_F_HW_CSUM |
4401 				    NETIF_F_SCTP_CRC |
4402 				    NETIF_F_TSO |
4403 				    NETIF_F_TSO6);
4404 
4405 	/* We can only support IPV4 TSO in tunnels if we can mangle the
4406 	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4407 	 */
4408 	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4409 		features &= ~NETIF_F_TSO;
4410 
4411 	return features;
4412 }
4413 
4414 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog)
4415 {
4416 	int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4417 	struct ixgbevf_adapter *adapter = netdev_priv(dev);
4418 	struct bpf_prog *old_prog;
4419 
4420 	/* verify ixgbevf ring attributes are sufficient for XDP */
4421 	for (i = 0; i < adapter->num_rx_queues; i++) {
4422 		struct ixgbevf_ring *ring = adapter->rx_ring[i];
4423 
4424 		if (frame_size > ixgbevf_rx_bufsz(ring))
4425 			return -EINVAL;
4426 	}
4427 
4428 	old_prog = xchg(&adapter->xdp_prog, prog);
4429 
4430 	/* If transitioning XDP modes reconfigure rings */
4431 	if (!!prog != !!old_prog) {
4432 		/* Hardware has to reinitialize queues and interrupts to
4433 		 * match packet buffer alignment. Unfortunately, the
4434 		 * hardware is not flexible enough to do this dynamically.
4435 		 */
4436 		if (netif_running(dev))
4437 			ixgbevf_close(dev);
4438 
4439 		ixgbevf_clear_interrupt_scheme(adapter);
4440 		ixgbevf_init_interrupt_scheme(adapter);
4441 
4442 		if (netif_running(dev))
4443 			ixgbevf_open(dev);
4444 	} else {
4445 		for (i = 0; i < adapter->num_rx_queues; i++)
4446 			xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog);
4447 	}
4448 
4449 	if (old_prog)
4450 		bpf_prog_put(old_prog);
4451 
4452 	return 0;
4453 }
4454 
4455 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4456 {
4457 	struct ixgbevf_adapter *adapter = netdev_priv(dev);
4458 
4459 	switch (xdp->command) {
4460 	case XDP_SETUP_PROG:
4461 		return ixgbevf_xdp_setup(dev, xdp->prog);
4462 	case XDP_QUERY_PROG:
4463 		xdp->prog_attached = !!(adapter->xdp_prog);
4464 		xdp->prog_id = adapter->xdp_prog ?
4465 			       adapter->xdp_prog->aux->id : 0;
4466 		return 0;
4467 	default:
4468 		return -EINVAL;
4469 	}
4470 }
4471 
4472 static const struct net_device_ops ixgbevf_netdev_ops = {
4473 	.ndo_open		= ixgbevf_open,
4474 	.ndo_stop		= ixgbevf_close,
4475 	.ndo_start_xmit		= ixgbevf_xmit_frame,
4476 	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
4477 	.ndo_get_stats64	= ixgbevf_get_stats,
4478 	.ndo_validate_addr	= eth_validate_addr,
4479 	.ndo_set_mac_address	= ixgbevf_set_mac,
4480 	.ndo_change_mtu		= ixgbevf_change_mtu,
4481 	.ndo_tx_timeout		= ixgbevf_tx_timeout,
4482 	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
4483 	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
4484 #ifdef CONFIG_NET_POLL_CONTROLLER
4485 	.ndo_poll_controller	= ixgbevf_netpoll,
4486 #endif
4487 	.ndo_features_check	= ixgbevf_features_check,
4488 	.ndo_bpf		= ixgbevf_xdp,
4489 };
4490 
4491 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
4492 {
4493 	dev->netdev_ops = &ixgbevf_netdev_ops;
4494 	ixgbevf_set_ethtool_ops(dev);
4495 	dev->watchdog_timeo = 5 * HZ;
4496 }
4497 
4498 /**
4499  * ixgbevf_probe - Device Initialization Routine
4500  * @pdev: PCI device information struct
4501  * @ent: entry in ixgbevf_pci_tbl
4502  *
4503  * Returns 0 on success, negative on failure
4504  *
4505  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
4506  * The OS initialization, configuring of the adapter private structure,
4507  * and a hardware reset occur.
4508  **/
4509 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
4510 {
4511 	struct net_device *netdev;
4512 	struct ixgbevf_adapter *adapter = NULL;
4513 	struct ixgbe_hw *hw = NULL;
4514 	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
4515 	int err, pci_using_dac;
4516 	bool disable_dev = false;
4517 
4518 	err = pci_enable_device(pdev);
4519 	if (err)
4520 		return err;
4521 
4522 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
4523 		pci_using_dac = 1;
4524 	} else {
4525 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4526 		if (err) {
4527 			dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
4528 			goto err_dma;
4529 		}
4530 		pci_using_dac = 0;
4531 	}
4532 
4533 	err = pci_request_regions(pdev, ixgbevf_driver_name);
4534 	if (err) {
4535 		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
4536 		goto err_pci_reg;
4537 	}
4538 
4539 	pci_set_master(pdev);
4540 
4541 	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
4542 				   MAX_TX_QUEUES);
4543 	if (!netdev) {
4544 		err = -ENOMEM;
4545 		goto err_alloc_etherdev;
4546 	}
4547 
4548 	SET_NETDEV_DEV(netdev, &pdev->dev);
4549 
4550 	adapter = netdev_priv(netdev);
4551 
4552 	adapter->netdev = netdev;
4553 	adapter->pdev = pdev;
4554 	hw = &adapter->hw;
4555 	hw->back = adapter;
4556 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4557 
4558 	/* call save state here in standalone driver because it relies on
4559 	 * adapter struct to exist, and needs to call netdev_priv
4560 	 */
4561 	pci_save_state(pdev);
4562 
4563 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
4564 			      pci_resource_len(pdev, 0));
4565 	adapter->io_addr = hw->hw_addr;
4566 	if (!hw->hw_addr) {
4567 		err = -EIO;
4568 		goto err_ioremap;
4569 	}
4570 
4571 	ixgbevf_assign_netdev_ops(netdev);
4572 
4573 	/* Setup HW API */
4574 	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
4575 	hw->mac.type  = ii->mac;
4576 
4577 	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
4578 	       sizeof(struct ixgbe_mbx_operations));
4579 
4580 	/* setup the private structure */
4581 	err = ixgbevf_sw_init(adapter);
4582 	if (err)
4583 		goto err_sw_init;
4584 
4585 	/* The HW MAC address was set and/or determined in sw_init */
4586 	if (!is_valid_ether_addr(netdev->dev_addr)) {
4587 		pr_err("invalid MAC address\n");
4588 		err = -EIO;
4589 		goto err_sw_init;
4590 	}
4591 
4592 	netdev->hw_features = NETIF_F_SG |
4593 			      NETIF_F_TSO |
4594 			      NETIF_F_TSO6 |
4595 			      NETIF_F_RXCSUM |
4596 			      NETIF_F_HW_CSUM |
4597 			      NETIF_F_SCTP_CRC;
4598 
4599 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
4600 				      NETIF_F_GSO_GRE_CSUM | \
4601 				      NETIF_F_GSO_IPXIP4 | \
4602 				      NETIF_F_GSO_IPXIP6 | \
4603 				      NETIF_F_GSO_UDP_TUNNEL | \
4604 				      NETIF_F_GSO_UDP_TUNNEL_CSUM)
4605 
4606 	netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES;
4607 	netdev->hw_features |= NETIF_F_GSO_PARTIAL |
4608 			       IXGBEVF_GSO_PARTIAL_FEATURES;
4609 
4610 	netdev->features = netdev->hw_features;
4611 
4612 	if (pci_using_dac)
4613 		netdev->features |= NETIF_F_HIGHDMA;
4614 
4615 	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
4616 	netdev->mpls_features |= NETIF_F_SG |
4617 				 NETIF_F_TSO |
4618 				 NETIF_F_TSO6 |
4619 				 NETIF_F_HW_CSUM;
4620 	netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES;
4621 	netdev->hw_enc_features |= netdev->vlan_features;
4622 
4623 	/* set this bit last since it cannot be part of vlan_features */
4624 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
4625 			    NETIF_F_HW_VLAN_CTAG_RX |
4626 			    NETIF_F_HW_VLAN_CTAG_TX;
4627 
4628 	netdev->priv_flags |= IFF_UNICAST_FLT;
4629 
4630 	/* MTU range: 68 - 1504 or 9710 */
4631 	netdev->min_mtu = ETH_MIN_MTU;
4632 	switch (adapter->hw.api_version) {
4633 	case ixgbe_mbox_api_11:
4634 	case ixgbe_mbox_api_12:
4635 	case ixgbe_mbox_api_13:
4636 		netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4637 				  (ETH_HLEN + ETH_FCS_LEN);
4638 		break;
4639 	default:
4640 		if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
4641 			netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE -
4642 					  (ETH_HLEN + ETH_FCS_LEN);
4643 		else
4644 			netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN;
4645 		break;
4646 	}
4647 
4648 	if (IXGBE_REMOVED(hw->hw_addr)) {
4649 		err = -EIO;
4650 		goto err_sw_init;
4651 	}
4652 
4653 	timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0);
4654 
4655 	INIT_WORK(&adapter->service_task, ixgbevf_service_task);
4656 	set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state);
4657 	clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state);
4658 
4659 	err = ixgbevf_init_interrupt_scheme(adapter);
4660 	if (err)
4661 		goto err_sw_init;
4662 
4663 	strcpy(netdev->name, "eth%d");
4664 
4665 	err = register_netdev(netdev);
4666 	if (err)
4667 		goto err_register;
4668 
4669 	pci_set_drvdata(pdev, netdev);
4670 	netif_carrier_off(netdev);
4671 
4672 	ixgbevf_init_last_counter_stats(adapter);
4673 
4674 	/* print the VF info */
4675 	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
4676 	dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
4677 
4678 	switch (hw->mac.type) {
4679 	case ixgbe_mac_X550_vf:
4680 		dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
4681 		break;
4682 	case ixgbe_mac_X540_vf:
4683 		dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
4684 		break;
4685 	case ixgbe_mac_82599_vf:
4686 	default:
4687 		dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
4688 		break;
4689 	}
4690 
4691 	return 0;
4692 
4693 err_register:
4694 	ixgbevf_clear_interrupt_scheme(adapter);
4695 err_sw_init:
4696 	ixgbevf_reset_interrupt_capability(adapter);
4697 	iounmap(adapter->io_addr);
4698 	kfree(adapter->rss_key);
4699 err_ioremap:
4700 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4701 	free_netdev(netdev);
4702 err_alloc_etherdev:
4703 	pci_release_regions(pdev);
4704 err_pci_reg:
4705 err_dma:
4706 	if (!adapter || disable_dev)
4707 		pci_disable_device(pdev);
4708 	return err;
4709 }
4710 
4711 /**
4712  * ixgbevf_remove - Device Removal Routine
4713  * @pdev: PCI device information struct
4714  *
4715  * ixgbevf_remove is called by the PCI subsystem to alert the driver
4716  * that it should release a PCI device.  The could be caused by a
4717  * Hot-Plug event, or because the driver is going to be removed from
4718  * memory.
4719  **/
4720 static void ixgbevf_remove(struct pci_dev *pdev)
4721 {
4722 	struct net_device *netdev = pci_get_drvdata(pdev);
4723 	struct ixgbevf_adapter *adapter;
4724 	bool disable_dev;
4725 
4726 	if (!netdev)
4727 		return;
4728 
4729 	adapter = netdev_priv(netdev);
4730 
4731 	set_bit(__IXGBEVF_REMOVING, &adapter->state);
4732 	cancel_work_sync(&adapter->service_task);
4733 
4734 	if (netdev->reg_state == NETREG_REGISTERED)
4735 		unregister_netdev(netdev);
4736 
4737 	ixgbevf_clear_interrupt_scheme(adapter);
4738 	ixgbevf_reset_interrupt_capability(adapter);
4739 
4740 	iounmap(adapter->io_addr);
4741 	pci_release_regions(pdev);
4742 
4743 	hw_dbg(&adapter->hw, "Remove complete\n");
4744 
4745 	kfree(adapter->rss_key);
4746 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
4747 	free_netdev(netdev);
4748 
4749 	if (disable_dev)
4750 		pci_disable_device(pdev);
4751 }
4752 
4753 /**
4754  * ixgbevf_io_error_detected - called when PCI error is detected
4755  * @pdev: Pointer to PCI device
4756  * @state: The current pci connection state
4757  *
4758  * This function is called after a PCI bus error affecting
4759  * this device has been detected.
4760  **/
4761 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
4762 						  pci_channel_state_t state)
4763 {
4764 	struct net_device *netdev = pci_get_drvdata(pdev);
4765 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4766 
4767 	if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state))
4768 		return PCI_ERS_RESULT_DISCONNECT;
4769 
4770 	rtnl_lock();
4771 	netif_device_detach(netdev);
4772 
4773 	if (state == pci_channel_io_perm_failure) {
4774 		rtnl_unlock();
4775 		return PCI_ERS_RESULT_DISCONNECT;
4776 	}
4777 
4778 	if (netif_running(netdev))
4779 		ixgbevf_close_suspend(adapter);
4780 
4781 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
4782 		pci_disable_device(pdev);
4783 	rtnl_unlock();
4784 
4785 	/* Request a slot slot reset. */
4786 	return PCI_ERS_RESULT_NEED_RESET;
4787 }
4788 
4789 /**
4790  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
4791  * @pdev: Pointer to PCI device
4792  *
4793  * Restart the card from scratch, as if from a cold-boot. Implementation
4794  * resembles the first-half of the ixgbevf_resume routine.
4795  **/
4796 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
4797 {
4798 	struct net_device *netdev = pci_get_drvdata(pdev);
4799 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4800 
4801 	if (pci_enable_device_mem(pdev)) {
4802 		dev_err(&pdev->dev,
4803 			"Cannot re-enable PCI device after reset.\n");
4804 		return PCI_ERS_RESULT_DISCONNECT;
4805 	}
4806 
4807 	adapter->hw.hw_addr = adapter->io_addr;
4808 	smp_mb__before_atomic();
4809 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4810 	pci_set_master(pdev);
4811 
4812 	ixgbevf_reset(adapter);
4813 
4814 	return PCI_ERS_RESULT_RECOVERED;
4815 }
4816 
4817 /**
4818  * ixgbevf_io_resume - called when traffic can start flowing again.
4819  * @pdev: Pointer to PCI device
4820  *
4821  * This callback is called when the error recovery driver tells us that
4822  * its OK to resume normal operation. Implementation resembles the
4823  * second-half of the ixgbevf_resume routine.
4824  **/
4825 static void ixgbevf_io_resume(struct pci_dev *pdev)
4826 {
4827 	struct net_device *netdev = pci_get_drvdata(pdev);
4828 
4829 	rtnl_lock();
4830 	if (netif_running(netdev))
4831 		ixgbevf_open(netdev);
4832 
4833 	netif_device_attach(netdev);
4834 	rtnl_unlock();
4835 }
4836 
4837 /* PCI Error Recovery (ERS) */
4838 static const struct pci_error_handlers ixgbevf_err_handler = {
4839 	.error_detected = ixgbevf_io_error_detected,
4840 	.slot_reset = ixgbevf_io_slot_reset,
4841 	.resume = ixgbevf_io_resume,
4842 };
4843 
4844 static struct pci_driver ixgbevf_driver = {
4845 	.name		= ixgbevf_driver_name,
4846 	.id_table	= ixgbevf_pci_tbl,
4847 	.probe		= ixgbevf_probe,
4848 	.remove		= ixgbevf_remove,
4849 #ifdef CONFIG_PM
4850 	/* Power Management Hooks */
4851 	.suspend	= ixgbevf_suspend,
4852 	.resume		= ixgbevf_resume,
4853 #endif
4854 	.shutdown	= ixgbevf_shutdown,
4855 	.err_handler	= &ixgbevf_err_handler
4856 };
4857 
4858 /**
4859  * ixgbevf_init_module - Driver Registration Routine
4860  *
4861  * ixgbevf_init_module is the first routine called when the driver is
4862  * loaded. All it does is register with the PCI subsystem.
4863  **/
4864 static int __init ixgbevf_init_module(void)
4865 {
4866 	pr_info("%s - version %s\n", ixgbevf_driver_string,
4867 		ixgbevf_driver_version);
4868 
4869 	pr_info("%s\n", ixgbevf_copyright);
4870 	ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name);
4871 	if (!ixgbevf_wq) {
4872 		pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name);
4873 		return -ENOMEM;
4874 	}
4875 
4876 	return pci_register_driver(&ixgbevf_driver);
4877 }
4878 
4879 module_init(ixgbevf_init_module);
4880 
4881 /**
4882  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4883  *
4884  * ixgbevf_exit_module is called just before the driver is removed
4885  * from memory.
4886  **/
4887 static void __exit ixgbevf_exit_module(void)
4888 {
4889 	pci_unregister_driver(&ixgbevf_driver);
4890 	if (ixgbevf_wq) {
4891 		destroy_workqueue(ixgbevf_wq);
4892 		ixgbevf_wq = NULL;
4893 	}
4894 }
4895 
4896 #ifdef DEBUG
4897 /**
4898  * ixgbevf_get_hw_dev_name - return device name string
4899  * used by hardware layer to print debugging information
4900  * @hw: pointer to private hardware struct
4901  **/
4902 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4903 {
4904 	struct ixgbevf_adapter *adapter = hw->back;
4905 
4906 	return adapter->netdev->name;
4907 }
4908 
4909 #endif
4910 module_exit(ixgbevf_exit_module);
4911 
4912 /* ixgbevf_main.c */
4913