1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 #include <net/xfrm.h> 34 35 #include "ixgbevf.h" 36 37 const char ixgbevf_driver_name[] = "ixgbevf"; 38 static const char ixgbevf_driver_string[] = 39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 40 41 static char ixgbevf_copyright[] = 42 "Copyright (c) 2009 - 2018 Intel Corporation."; 43 44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 45 [board_82599_vf] = &ixgbevf_82599_vf_info, 46 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 47 [board_X540_vf] = &ixgbevf_X540_vf_info, 48 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 49 [board_X550_vf] = &ixgbevf_X550_vf_info, 50 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 51 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 52 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 53 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 54 }; 55 56 /* ixgbevf_pci_tbl - PCI Device ID Table 57 * 58 * Wildcard entries (PCI_ANY_ID) should come last 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id ixgbevf_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 66 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 74 /* required last entry */ 75 {0, } 76 }; 77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 78 79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 80 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 81 MODULE_LICENSE("GPL v2"); 82 83 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 84 static int debug = -1; 85 module_param(debug, int, 0); 86 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 87 88 static struct workqueue_struct *ixgbevf_wq; 89 90 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 91 { 92 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 93 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 94 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 95 queue_work(ixgbevf_wq, &adapter->service_task); 96 } 97 98 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 99 { 100 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 101 102 /* flush memory to make sure state is correct before next watchdog */ 103 smp_mb__before_atomic(); 104 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 105 } 106 107 /* forward decls */ 108 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 109 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 110 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 111 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 112 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 113 struct ixgbevf_rx_buffer *old_buff); 114 115 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 116 { 117 struct ixgbevf_adapter *adapter = hw->back; 118 119 if (!hw->hw_addr) 120 return; 121 hw->hw_addr = NULL; 122 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 123 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 124 ixgbevf_service_event_schedule(adapter); 125 } 126 127 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 128 { 129 u32 value; 130 131 /* The following check not only optimizes a bit by not 132 * performing a read on the status register when the 133 * register just read was a status register read that 134 * returned IXGBE_FAILED_READ_REG. It also blocks any 135 * potential recursion. 136 */ 137 if (reg == IXGBE_VFSTATUS) { 138 ixgbevf_remove_adapter(hw); 139 return; 140 } 141 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 142 if (value == IXGBE_FAILED_READ_REG) 143 ixgbevf_remove_adapter(hw); 144 } 145 146 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 147 { 148 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 149 u32 value; 150 151 if (IXGBE_REMOVED(reg_addr)) 152 return IXGBE_FAILED_READ_REG; 153 value = readl(reg_addr + reg); 154 if (unlikely(value == IXGBE_FAILED_READ_REG)) 155 ixgbevf_check_remove(hw, reg); 156 return value; 157 } 158 159 /** 160 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 161 * @adapter: pointer to adapter struct 162 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 163 * @queue: queue to map the corresponding interrupt to 164 * @msix_vector: the vector to map to the corresponding queue 165 **/ 166 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 167 u8 queue, u8 msix_vector) 168 { 169 u32 ivar, index; 170 struct ixgbe_hw *hw = &adapter->hw; 171 172 if (direction == -1) { 173 /* other causes */ 174 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 175 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 176 ivar &= ~0xFF; 177 ivar |= msix_vector; 178 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 179 } else { 180 /* Tx or Rx causes */ 181 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 182 index = ((16 * (queue & 1)) + (8 * direction)); 183 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 184 ivar &= ~(0xFF << index); 185 ivar |= (msix_vector << index); 186 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 187 } 188 } 189 190 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 191 { 192 return ring->stats.packets; 193 } 194 195 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 196 { 197 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 198 struct ixgbe_hw *hw = &adapter->hw; 199 200 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 201 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 202 203 if (head != tail) 204 return (head < tail) ? 205 tail - head : (tail + ring->count - head); 206 207 return 0; 208 } 209 210 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 211 { 212 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 213 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 214 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 215 216 clear_check_for_tx_hang(tx_ring); 217 218 /* Check for a hung queue, but be thorough. This verifies 219 * that a transmit has been completed since the previous 220 * check AND there is at least one packet pending. The 221 * ARMED bit is set to indicate a potential hang. 222 */ 223 if ((tx_done_old == tx_done) && tx_pending) { 224 /* make sure it is true for two checks in a row */ 225 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 226 &tx_ring->state); 227 } 228 /* reset the countdown */ 229 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 230 231 /* update completed stats and continue */ 232 tx_ring->tx_stats.tx_done_old = tx_done; 233 234 return false; 235 } 236 237 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 238 { 239 /* Do the reset outside of interrupt context */ 240 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 241 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 242 ixgbevf_service_event_schedule(adapter); 243 } 244 } 245 246 /** 247 * ixgbevf_tx_timeout - Respond to a Tx Hang 248 * @netdev: network interface device structure 249 **/ 250 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 251 { 252 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 253 254 ixgbevf_tx_timeout_reset(adapter); 255 } 256 257 /** 258 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 259 * @q_vector: board private structure 260 * @tx_ring: tx ring to clean 261 * @napi_budget: Used to determine if we are in netpoll 262 **/ 263 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 264 struct ixgbevf_ring *tx_ring, int napi_budget) 265 { 266 struct ixgbevf_adapter *adapter = q_vector->adapter; 267 struct ixgbevf_tx_buffer *tx_buffer; 268 union ixgbe_adv_tx_desc *tx_desc; 269 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; 270 unsigned int budget = tx_ring->count / 2; 271 unsigned int i = tx_ring->next_to_clean; 272 273 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 274 return true; 275 276 tx_buffer = &tx_ring->tx_buffer_info[i]; 277 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 278 i -= tx_ring->count; 279 280 do { 281 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 282 283 /* if next_to_watch is not set then there is no work pending */ 284 if (!eop_desc) 285 break; 286 287 /* prevent any other reads prior to eop_desc */ 288 smp_rmb(); 289 290 /* if DD is not set pending work has not been completed */ 291 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 292 break; 293 294 /* clear next_to_watch to prevent false hangs */ 295 tx_buffer->next_to_watch = NULL; 296 297 /* update the statistics for this packet */ 298 total_bytes += tx_buffer->bytecount; 299 total_packets += tx_buffer->gso_segs; 300 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) 301 total_ipsec++; 302 303 /* free the skb */ 304 if (ring_is_xdp(tx_ring)) 305 page_frag_free(tx_buffer->data); 306 else 307 napi_consume_skb(tx_buffer->skb, napi_budget); 308 309 /* unmap skb header data */ 310 dma_unmap_single(tx_ring->dev, 311 dma_unmap_addr(tx_buffer, dma), 312 dma_unmap_len(tx_buffer, len), 313 DMA_TO_DEVICE); 314 315 /* clear tx_buffer data */ 316 dma_unmap_len_set(tx_buffer, len, 0); 317 318 /* unmap remaining buffers */ 319 while (tx_desc != eop_desc) { 320 tx_buffer++; 321 tx_desc++; 322 i++; 323 if (unlikely(!i)) { 324 i -= tx_ring->count; 325 tx_buffer = tx_ring->tx_buffer_info; 326 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 327 } 328 329 /* unmap any remaining paged data */ 330 if (dma_unmap_len(tx_buffer, len)) { 331 dma_unmap_page(tx_ring->dev, 332 dma_unmap_addr(tx_buffer, dma), 333 dma_unmap_len(tx_buffer, len), 334 DMA_TO_DEVICE); 335 dma_unmap_len_set(tx_buffer, len, 0); 336 } 337 } 338 339 /* move us one more past the eop_desc for start of next pkt */ 340 tx_buffer++; 341 tx_desc++; 342 i++; 343 if (unlikely(!i)) { 344 i -= tx_ring->count; 345 tx_buffer = tx_ring->tx_buffer_info; 346 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 347 } 348 349 /* issue prefetch for next Tx descriptor */ 350 prefetch(tx_desc); 351 352 /* update budget accounting */ 353 budget--; 354 } while (likely(budget)); 355 356 i += tx_ring->count; 357 tx_ring->next_to_clean = i; 358 u64_stats_update_begin(&tx_ring->syncp); 359 tx_ring->stats.bytes += total_bytes; 360 tx_ring->stats.packets += total_packets; 361 u64_stats_update_end(&tx_ring->syncp); 362 q_vector->tx.total_bytes += total_bytes; 363 q_vector->tx.total_packets += total_packets; 364 adapter->tx_ipsec += total_ipsec; 365 366 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 367 struct ixgbe_hw *hw = &adapter->hw; 368 union ixgbe_adv_tx_desc *eop_desc; 369 370 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 371 372 pr_err("Detected Tx Unit Hang%s\n" 373 " Tx Queue <%d>\n" 374 " TDH, TDT <%x>, <%x>\n" 375 " next_to_use <%x>\n" 376 " next_to_clean <%x>\n" 377 "tx_buffer_info[next_to_clean]\n" 378 " next_to_watch <%p>\n" 379 " eop_desc->wb.status <%x>\n" 380 " time_stamp <%lx>\n" 381 " jiffies <%lx>\n", 382 ring_is_xdp(tx_ring) ? " XDP" : "", 383 tx_ring->queue_index, 384 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 385 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 386 tx_ring->next_to_use, i, 387 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 388 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 389 390 if (!ring_is_xdp(tx_ring)) 391 netif_stop_subqueue(tx_ring->netdev, 392 tx_ring->queue_index); 393 394 /* schedule immediate reset if we believe we hung */ 395 ixgbevf_tx_timeout_reset(adapter); 396 397 return true; 398 } 399 400 if (ring_is_xdp(tx_ring)) 401 return !!budget; 402 403 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 404 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 405 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 406 /* Make sure that anybody stopping the queue after this 407 * sees the new next_to_clean. 408 */ 409 smp_mb(); 410 411 if (__netif_subqueue_stopped(tx_ring->netdev, 412 tx_ring->queue_index) && 413 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 414 netif_wake_subqueue(tx_ring->netdev, 415 tx_ring->queue_index); 416 ++tx_ring->tx_stats.restart_queue; 417 } 418 } 419 420 return !!budget; 421 } 422 423 /** 424 * ixgbevf_rx_skb - Helper function to determine proper Rx method 425 * @q_vector: structure containing interrupt and ring information 426 * @skb: packet to send up 427 **/ 428 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 429 struct sk_buff *skb) 430 { 431 napi_gro_receive(&q_vector->napi, skb); 432 } 433 434 #define IXGBE_RSS_L4_TYPES_MASK \ 435 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 436 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 437 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 438 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 439 440 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 441 union ixgbe_adv_rx_desc *rx_desc, 442 struct sk_buff *skb) 443 { 444 u16 rss_type; 445 446 if (!(ring->netdev->features & NETIF_F_RXHASH)) 447 return; 448 449 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 450 IXGBE_RXDADV_RSSTYPE_MASK; 451 452 if (!rss_type) 453 return; 454 455 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 456 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 457 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 458 } 459 460 /** 461 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 462 * @ring: structure containig ring specific data 463 * @rx_desc: current Rx descriptor being processed 464 * @skb: skb currently being received and modified 465 **/ 466 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 467 union ixgbe_adv_rx_desc *rx_desc, 468 struct sk_buff *skb) 469 { 470 skb_checksum_none_assert(skb); 471 472 /* Rx csum disabled */ 473 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 474 return; 475 476 /* if IP and error */ 477 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 478 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 479 ring->rx_stats.csum_err++; 480 return; 481 } 482 483 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 484 return; 485 486 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 487 ring->rx_stats.csum_err++; 488 return; 489 } 490 491 /* It must be a TCP or UDP packet with a valid checksum */ 492 skb->ip_summed = CHECKSUM_UNNECESSARY; 493 } 494 495 /** 496 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 497 * @rx_ring: rx descriptor ring packet is being transacted on 498 * @rx_desc: pointer to the EOP Rx descriptor 499 * @skb: pointer to current skb being populated 500 * 501 * This function checks the ring, descriptor, and packet information in 502 * order to populate the checksum, VLAN, protocol, and other fields within 503 * the skb. 504 **/ 505 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 506 union ixgbe_adv_rx_desc *rx_desc, 507 struct sk_buff *skb) 508 { 509 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 510 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 511 512 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 513 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 514 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 515 516 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 517 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 518 } 519 520 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) 521 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); 522 523 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 524 } 525 526 static 527 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 528 const unsigned int size) 529 { 530 struct ixgbevf_rx_buffer *rx_buffer; 531 532 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 533 prefetchw(rx_buffer->page); 534 535 /* we are reusing so sync this buffer for CPU use */ 536 dma_sync_single_range_for_cpu(rx_ring->dev, 537 rx_buffer->dma, 538 rx_buffer->page_offset, 539 size, 540 DMA_FROM_DEVICE); 541 542 rx_buffer->pagecnt_bias--; 543 544 return rx_buffer; 545 } 546 547 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 548 struct ixgbevf_rx_buffer *rx_buffer, 549 struct sk_buff *skb) 550 { 551 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 552 /* hand second half of page back to the ring */ 553 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 554 } else { 555 if (IS_ERR(skb)) 556 /* We are not reusing the buffer so unmap it and free 557 * any references we are holding to it 558 */ 559 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 560 ixgbevf_rx_pg_size(rx_ring), 561 DMA_FROM_DEVICE, 562 IXGBEVF_RX_DMA_ATTR); 563 __page_frag_cache_drain(rx_buffer->page, 564 rx_buffer->pagecnt_bias); 565 } 566 567 /* clear contents of rx_buffer */ 568 rx_buffer->page = NULL; 569 } 570 571 /** 572 * ixgbevf_is_non_eop - process handling of non-EOP buffers 573 * @rx_ring: Rx ring being processed 574 * @rx_desc: Rx descriptor for current buffer 575 * 576 * This function updates next to clean. If the buffer is an EOP buffer 577 * this function exits returning false, otherwise it will place the 578 * sk_buff in the next buffer to be chained and return true indicating 579 * that this is in fact a non-EOP buffer. 580 **/ 581 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 582 union ixgbe_adv_rx_desc *rx_desc) 583 { 584 u32 ntc = rx_ring->next_to_clean + 1; 585 586 /* fetch, update, and store next to clean */ 587 ntc = (ntc < rx_ring->count) ? ntc : 0; 588 rx_ring->next_to_clean = ntc; 589 590 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 591 592 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 593 return false; 594 595 return true; 596 } 597 598 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 599 { 600 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 601 } 602 603 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 604 struct ixgbevf_rx_buffer *bi) 605 { 606 struct page *page = bi->page; 607 dma_addr_t dma; 608 609 /* since we are recycling buffers we should seldom need to alloc */ 610 if (likely(page)) 611 return true; 612 613 /* alloc new page for storage */ 614 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 615 if (unlikely(!page)) { 616 rx_ring->rx_stats.alloc_rx_page_failed++; 617 return false; 618 } 619 620 /* map page for use */ 621 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 622 ixgbevf_rx_pg_size(rx_ring), 623 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 624 625 /* if mapping failed free memory back to system since 626 * there isn't much point in holding memory we can't use 627 */ 628 if (dma_mapping_error(rx_ring->dev, dma)) { 629 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 630 631 rx_ring->rx_stats.alloc_rx_page_failed++; 632 return false; 633 } 634 635 bi->dma = dma; 636 bi->page = page; 637 bi->page_offset = ixgbevf_rx_offset(rx_ring); 638 bi->pagecnt_bias = 1; 639 rx_ring->rx_stats.alloc_rx_page++; 640 641 return true; 642 } 643 644 /** 645 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 646 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 647 * @cleaned_count: number of buffers to replace 648 **/ 649 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 650 u16 cleaned_count) 651 { 652 union ixgbe_adv_rx_desc *rx_desc; 653 struct ixgbevf_rx_buffer *bi; 654 unsigned int i = rx_ring->next_to_use; 655 656 /* nothing to do or no valid netdev defined */ 657 if (!cleaned_count || !rx_ring->netdev) 658 return; 659 660 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 661 bi = &rx_ring->rx_buffer_info[i]; 662 i -= rx_ring->count; 663 664 do { 665 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 666 break; 667 668 /* sync the buffer for use by the device */ 669 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 670 bi->page_offset, 671 ixgbevf_rx_bufsz(rx_ring), 672 DMA_FROM_DEVICE); 673 674 /* Refresh the desc even if pkt_addr didn't change 675 * because each write-back erases this info. 676 */ 677 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 678 679 rx_desc++; 680 bi++; 681 i++; 682 if (unlikely(!i)) { 683 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 684 bi = rx_ring->rx_buffer_info; 685 i -= rx_ring->count; 686 } 687 688 /* clear the length for the next_to_use descriptor */ 689 rx_desc->wb.upper.length = 0; 690 691 cleaned_count--; 692 } while (cleaned_count); 693 694 i += rx_ring->count; 695 696 if (rx_ring->next_to_use != i) { 697 /* record the next descriptor to use */ 698 rx_ring->next_to_use = i; 699 700 /* update next to alloc since we have filled the ring */ 701 rx_ring->next_to_alloc = i; 702 703 /* Force memory writes to complete before letting h/w 704 * know there are new descriptors to fetch. (Only 705 * applicable for weak-ordered memory model archs, 706 * such as IA-64). 707 */ 708 wmb(); 709 ixgbevf_write_tail(rx_ring, i); 710 } 711 } 712 713 /** 714 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 715 * @rx_ring: rx descriptor ring packet is being transacted on 716 * @rx_desc: pointer to the EOP Rx descriptor 717 * @skb: pointer to current skb being fixed 718 * 719 * Check for corrupted packet headers caused by senders on the local L2 720 * embedded NIC switch not setting up their Tx Descriptors right. These 721 * should be very rare. 722 * 723 * Also address the case where we are pulling data in on pages only 724 * and as such no data is present in the skb header. 725 * 726 * In addition if skb is not at least 60 bytes we need to pad it so that 727 * it is large enough to qualify as a valid Ethernet frame. 728 * 729 * Returns true if an error was encountered and skb was freed. 730 **/ 731 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 732 union ixgbe_adv_rx_desc *rx_desc, 733 struct sk_buff *skb) 734 { 735 /* XDP packets use error pointer so abort at this point */ 736 if (IS_ERR(skb)) 737 return true; 738 739 /* verify that the packet does not have any known errors */ 740 if (unlikely(ixgbevf_test_staterr(rx_desc, 741 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 742 struct net_device *netdev = rx_ring->netdev; 743 744 if (!(netdev->features & NETIF_F_RXALL)) { 745 dev_kfree_skb_any(skb); 746 return true; 747 } 748 } 749 750 /* if eth_skb_pad returns an error the skb was freed */ 751 if (eth_skb_pad(skb)) 752 return true; 753 754 return false; 755 } 756 757 /** 758 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 759 * @rx_ring: rx descriptor ring to store buffers on 760 * @old_buff: donor buffer to have page reused 761 * 762 * Synchronizes page for reuse by the adapter 763 **/ 764 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 765 struct ixgbevf_rx_buffer *old_buff) 766 { 767 struct ixgbevf_rx_buffer *new_buff; 768 u16 nta = rx_ring->next_to_alloc; 769 770 new_buff = &rx_ring->rx_buffer_info[nta]; 771 772 /* update, and store next to alloc */ 773 nta++; 774 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 775 776 /* transfer page from old buffer to new buffer */ 777 new_buff->page = old_buff->page; 778 new_buff->dma = old_buff->dma; 779 new_buff->page_offset = old_buff->page_offset; 780 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 781 } 782 783 static inline bool ixgbevf_page_is_reserved(struct page *page) 784 { 785 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 786 } 787 788 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 789 { 790 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 791 struct page *page = rx_buffer->page; 792 793 /* avoid re-using remote pages */ 794 if (unlikely(ixgbevf_page_is_reserved(page))) 795 return false; 796 797 #if (PAGE_SIZE < 8192) 798 /* if we are only owner of page we can reuse it */ 799 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 800 return false; 801 #else 802 #define IXGBEVF_LAST_OFFSET \ 803 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 804 805 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 806 return false; 807 808 #endif 809 810 /* If we have drained the page fragment pool we need to update 811 * the pagecnt_bias and page count so that we fully restock the 812 * number of references the driver holds. 813 */ 814 if (unlikely(!pagecnt_bias)) { 815 page_ref_add(page, USHRT_MAX); 816 rx_buffer->pagecnt_bias = USHRT_MAX; 817 } 818 819 return true; 820 } 821 822 /** 823 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 824 * @rx_ring: rx descriptor ring to transact packets on 825 * @rx_buffer: buffer containing page to add 826 * @skb: sk_buff to place the data into 827 * @size: size of buffer to be added 828 * 829 * This function will add the data contained in rx_buffer->page to the skb. 830 **/ 831 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 832 struct ixgbevf_rx_buffer *rx_buffer, 833 struct sk_buff *skb, 834 unsigned int size) 835 { 836 #if (PAGE_SIZE < 8192) 837 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 838 #else 839 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 840 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 841 SKB_DATA_ALIGN(size); 842 #endif 843 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 844 rx_buffer->page_offset, size, truesize); 845 #if (PAGE_SIZE < 8192) 846 rx_buffer->page_offset ^= truesize; 847 #else 848 rx_buffer->page_offset += truesize; 849 #endif 850 } 851 852 static 853 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 854 struct ixgbevf_rx_buffer *rx_buffer, 855 struct xdp_buff *xdp, 856 union ixgbe_adv_rx_desc *rx_desc) 857 { 858 unsigned int size = xdp->data_end - xdp->data; 859 #if (PAGE_SIZE < 8192) 860 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 861 #else 862 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 863 xdp->data_hard_start); 864 #endif 865 unsigned int headlen; 866 struct sk_buff *skb; 867 868 /* prefetch first cache line of first page */ 869 prefetch(xdp->data); 870 #if L1_CACHE_BYTES < 128 871 prefetch(xdp->data + L1_CACHE_BYTES); 872 #endif 873 /* Note, we get here by enabling legacy-rx via: 874 * 875 * ethtool --set-priv-flags <dev> legacy-rx on 876 * 877 * In this mode, we currently get 0 extra XDP headroom as 878 * opposed to having legacy-rx off, where we process XDP 879 * packets going to stack via ixgbevf_build_skb(). 880 * 881 * For ixgbevf_construct_skb() mode it means that the 882 * xdp->data_meta will always point to xdp->data, since 883 * the helper cannot expand the head. Should this ever 884 * changed in future for legacy-rx mode on, then lets also 885 * add xdp->data_meta handling here. 886 */ 887 888 /* allocate a skb to store the frags */ 889 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 890 if (unlikely(!skb)) 891 return NULL; 892 893 /* Determine available headroom for copy */ 894 headlen = size; 895 if (headlen > IXGBEVF_RX_HDR_SIZE) 896 headlen = eth_get_headlen(skb->dev, xdp->data, 897 IXGBEVF_RX_HDR_SIZE); 898 899 /* align pull length to size of long to optimize memcpy performance */ 900 memcpy(__skb_put(skb, headlen), xdp->data, 901 ALIGN(headlen, sizeof(long))); 902 903 /* update all of the pointers */ 904 size -= headlen; 905 if (size) { 906 skb_add_rx_frag(skb, 0, rx_buffer->page, 907 (xdp->data + headlen) - 908 page_address(rx_buffer->page), 909 size, truesize); 910 #if (PAGE_SIZE < 8192) 911 rx_buffer->page_offset ^= truesize; 912 #else 913 rx_buffer->page_offset += truesize; 914 #endif 915 } else { 916 rx_buffer->pagecnt_bias++; 917 } 918 919 return skb; 920 } 921 922 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 923 u32 qmask) 924 { 925 struct ixgbe_hw *hw = &adapter->hw; 926 927 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 928 } 929 930 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 931 struct ixgbevf_rx_buffer *rx_buffer, 932 struct xdp_buff *xdp, 933 union ixgbe_adv_rx_desc *rx_desc) 934 { 935 unsigned int metasize = xdp->data - xdp->data_meta; 936 #if (PAGE_SIZE < 8192) 937 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 938 #else 939 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 940 SKB_DATA_ALIGN(xdp->data_end - 941 xdp->data_hard_start); 942 #endif 943 struct sk_buff *skb; 944 945 /* Prefetch first cache line of first page. If xdp->data_meta 946 * is unused, this points to xdp->data, otherwise, we likely 947 * have a consumer accessing first few bytes of meta data, 948 * and then actual data. 949 */ 950 prefetch(xdp->data_meta); 951 #if L1_CACHE_BYTES < 128 952 prefetch(xdp->data_meta + L1_CACHE_BYTES); 953 #endif 954 955 /* build an skb around the page buffer */ 956 skb = build_skb(xdp->data_hard_start, truesize); 957 if (unlikely(!skb)) 958 return NULL; 959 960 /* update pointers within the skb to store the data */ 961 skb_reserve(skb, xdp->data - xdp->data_hard_start); 962 __skb_put(skb, xdp->data_end - xdp->data); 963 if (metasize) 964 skb_metadata_set(skb, metasize); 965 966 /* update buffer offset */ 967 #if (PAGE_SIZE < 8192) 968 rx_buffer->page_offset ^= truesize; 969 #else 970 rx_buffer->page_offset += truesize; 971 #endif 972 973 return skb; 974 } 975 976 #define IXGBEVF_XDP_PASS 0 977 #define IXGBEVF_XDP_CONSUMED 1 978 #define IXGBEVF_XDP_TX 2 979 980 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 981 struct xdp_buff *xdp) 982 { 983 struct ixgbevf_tx_buffer *tx_buffer; 984 union ixgbe_adv_tx_desc *tx_desc; 985 u32 len, cmd_type; 986 dma_addr_t dma; 987 u16 i; 988 989 len = xdp->data_end - xdp->data; 990 991 if (unlikely(!ixgbevf_desc_unused(ring))) 992 return IXGBEVF_XDP_CONSUMED; 993 994 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 995 if (dma_mapping_error(ring->dev, dma)) 996 return IXGBEVF_XDP_CONSUMED; 997 998 /* record the location of the first descriptor for this packet */ 999 i = ring->next_to_use; 1000 tx_buffer = &ring->tx_buffer_info[i]; 1001 1002 dma_unmap_len_set(tx_buffer, len, len); 1003 dma_unmap_addr_set(tx_buffer, dma, dma); 1004 tx_buffer->data = xdp->data; 1005 tx_buffer->bytecount = len; 1006 tx_buffer->gso_segs = 1; 1007 tx_buffer->protocol = 0; 1008 1009 /* Populate minimal context descriptor that will provide for the 1010 * fact that we are expected to process Ethernet frames. 1011 */ 1012 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1013 struct ixgbe_adv_tx_context_desc *context_desc; 1014 1015 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1016 1017 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1018 context_desc->vlan_macip_lens = 1019 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1020 context_desc->fceof_saidx = 0; 1021 context_desc->type_tucmd_mlhl = 1022 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1023 IXGBE_ADVTXD_DTYP_CTXT); 1024 context_desc->mss_l4len_idx = 0; 1025 1026 i = 1; 1027 } 1028 1029 /* put descriptor type bits */ 1030 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1031 IXGBE_ADVTXD_DCMD_DEXT | 1032 IXGBE_ADVTXD_DCMD_IFCS; 1033 cmd_type |= len | IXGBE_TXD_CMD; 1034 1035 tx_desc = IXGBEVF_TX_DESC(ring, i); 1036 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1037 1038 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1039 tx_desc->read.olinfo_status = 1040 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1041 IXGBE_ADVTXD_CC); 1042 1043 /* Avoid any potential race with cleanup */ 1044 smp_wmb(); 1045 1046 /* set next_to_watch value indicating a packet is present */ 1047 i++; 1048 if (i == ring->count) 1049 i = 0; 1050 1051 tx_buffer->next_to_watch = tx_desc; 1052 ring->next_to_use = i; 1053 1054 return IXGBEVF_XDP_TX; 1055 } 1056 1057 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1058 struct ixgbevf_ring *rx_ring, 1059 struct xdp_buff *xdp) 1060 { 1061 int result = IXGBEVF_XDP_PASS; 1062 struct ixgbevf_ring *xdp_ring; 1063 struct bpf_prog *xdp_prog; 1064 u32 act; 1065 1066 rcu_read_lock(); 1067 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1068 1069 if (!xdp_prog) 1070 goto xdp_out; 1071 1072 act = bpf_prog_run_xdp(xdp_prog, xdp); 1073 switch (act) { 1074 case XDP_PASS: 1075 break; 1076 case XDP_TX: 1077 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1078 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1079 break; 1080 default: 1081 bpf_warn_invalid_xdp_action(act); 1082 fallthrough; 1083 case XDP_ABORTED: 1084 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1085 fallthrough; /* handle aborts by dropping packet */ 1086 case XDP_DROP: 1087 result = IXGBEVF_XDP_CONSUMED; 1088 break; 1089 } 1090 xdp_out: 1091 rcu_read_unlock(); 1092 return ERR_PTR(-result); 1093 } 1094 1095 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring, 1096 unsigned int size) 1097 { 1098 unsigned int truesize; 1099 1100 #if (PAGE_SIZE < 8192) 1101 truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 1102 #else 1103 truesize = ring_uses_build_skb(rx_ring) ? 1104 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) + 1105 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1106 SKB_DATA_ALIGN(size); 1107 #endif 1108 return truesize; 1109 } 1110 1111 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1112 struct ixgbevf_rx_buffer *rx_buffer, 1113 unsigned int size) 1114 { 1115 unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size); 1116 1117 #if (PAGE_SIZE < 8192) 1118 rx_buffer->page_offset ^= truesize; 1119 #else 1120 rx_buffer->page_offset += truesize; 1121 #endif 1122 } 1123 1124 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1125 struct ixgbevf_ring *rx_ring, 1126 int budget) 1127 { 1128 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1129 struct ixgbevf_adapter *adapter = q_vector->adapter; 1130 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1131 struct sk_buff *skb = rx_ring->skb; 1132 bool xdp_xmit = false; 1133 struct xdp_buff xdp; 1134 1135 xdp.rxq = &rx_ring->xdp_rxq; 1136 1137 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1138 #if (PAGE_SIZE < 8192) 1139 xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0); 1140 #endif 1141 1142 while (likely(total_rx_packets < budget)) { 1143 struct ixgbevf_rx_buffer *rx_buffer; 1144 union ixgbe_adv_rx_desc *rx_desc; 1145 unsigned int size; 1146 1147 /* return some buffers to hardware, one at a time is too slow */ 1148 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1149 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1150 cleaned_count = 0; 1151 } 1152 1153 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1154 size = le16_to_cpu(rx_desc->wb.upper.length); 1155 if (!size) 1156 break; 1157 1158 /* This memory barrier is needed to keep us from reading 1159 * any other fields out of the rx_desc until we know the 1160 * RXD_STAT_DD bit is set 1161 */ 1162 rmb(); 1163 1164 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1165 1166 /* retrieve a buffer from the ring */ 1167 if (!skb) { 1168 xdp.data = page_address(rx_buffer->page) + 1169 rx_buffer->page_offset; 1170 xdp.data_meta = xdp.data; 1171 xdp.data_hard_start = xdp.data - 1172 ixgbevf_rx_offset(rx_ring); 1173 xdp.data_end = xdp.data + size; 1174 #if (PAGE_SIZE > 4096) 1175 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1176 xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size); 1177 #endif 1178 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1179 } 1180 1181 if (IS_ERR(skb)) { 1182 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1183 xdp_xmit = true; 1184 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1185 size); 1186 } else { 1187 rx_buffer->pagecnt_bias++; 1188 } 1189 total_rx_packets++; 1190 total_rx_bytes += size; 1191 } else if (skb) { 1192 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1193 } else if (ring_uses_build_skb(rx_ring)) { 1194 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1195 &xdp, rx_desc); 1196 } else { 1197 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1198 &xdp, rx_desc); 1199 } 1200 1201 /* exit if we failed to retrieve a buffer */ 1202 if (!skb) { 1203 rx_ring->rx_stats.alloc_rx_buff_failed++; 1204 rx_buffer->pagecnt_bias++; 1205 break; 1206 } 1207 1208 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1209 cleaned_count++; 1210 1211 /* fetch next buffer in frame if non-eop */ 1212 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1213 continue; 1214 1215 /* verify the packet layout is correct */ 1216 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1217 skb = NULL; 1218 continue; 1219 } 1220 1221 /* probably a little skewed due to removing CRC */ 1222 total_rx_bytes += skb->len; 1223 1224 /* Workaround hardware that can't do proper VEPA multicast 1225 * source pruning. 1226 */ 1227 if ((skb->pkt_type == PACKET_BROADCAST || 1228 skb->pkt_type == PACKET_MULTICAST) && 1229 ether_addr_equal(rx_ring->netdev->dev_addr, 1230 eth_hdr(skb)->h_source)) { 1231 dev_kfree_skb_irq(skb); 1232 continue; 1233 } 1234 1235 /* populate checksum, VLAN, and protocol */ 1236 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1237 1238 ixgbevf_rx_skb(q_vector, skb); 1239 1240 /* reset skb pointer */ 1241 skb = NULL; 1242 1243 /* update budget accounting */ 1244 total_rx_packets++; 1245 } 1246 1247 /* place incomplete frames back on ring for completion */ 1248 rx_ring->skb = skb; 1249 1250 if (xdp_xmit) { 1251 struct ixgbevf_ring *xdp_ring = 1252 adapter->xdp_ring[rx_ring->queue_index]; 1253 1254 /* Force memory writes to complete before letting h/w 1255 * know there are new descriptors to fetch. 1256 */ 1257 wmb(); 1258 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1259 } 1260 1261 u64_stats_update_begin(&rx_ring->syncp); 1262 rx_ring->stats.packets += total_rx_packets; 1263 rx_ring->stats.bytes += total_rx_bytes; 1264 u64_stats_update_end(&rx_ring->syncp); 1265 q_vector->rx.total_packets += total_rx_packets; 1266 q_vector->rx.total_bytes += total_rx_bytes; 1267 1268 return total_rx_packets; 1269 } 1270 1271 /** 1272 * ixgbevf_poll - NAPI polling calback 1273 * @napi: napi struct with our devices info in it 1274 * @budget: amount of work driver is allowed to do this pass, in packets 1275 * 1276 * This function will clean more than one or more rings associated with a 1277 * q_vector. 1278 **/ 1279 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1280 { 1281 struct ixgbevf_q_vector *q_vector = 1282 container_of(napi, struct ixgbevf_q_vector, napi); 1283 struct ixgbevf_adapter *adapter = q_vector->adapter; 1284 struct ixgbevf_ring *ring; 1285 int per_ring_budget, work_done = 0; 1286 bool clean_complete = true; 1287 1288 ixgbevf_for_each_ring(ring, q_vector->tx) { 1289 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1290 clean_complete = false; 1291 } 1292 1293 if (budget <= 0) 1294 return budget; 1295 1296 /* attempt to distribute budget to each queue fairly, but don't allow 1297 * the budget to go below 1 because we'll exit polling 1298 */ 1299 if (q_vector->rx.count > 1) 1300 per_ring_budget = max(budget/q_vector->rx.count, 1); 1301 else 1302 per_ring_budget = budget; 1303 1304 ixgbevf_for_each_ring(ring, q_vector->rx) { 1305 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1306 per_ring_budget); 1307 work_done += cleaned; 1308 if (cleaned >= per_ring_budget) 1309 clean_complete = false; 1310 } 1311 1312 /* If all work not completed, return budget and keep polling */ 1313 if (!clean_complete) 1314 return budget; 1315 1316 /* Exit the polling mode, but don't re-enable interrupts if stack might 1317 * poll us due to busy-polling 1318 */ 1319 if (likely(napi_complete_done(napi, work_done))) { 1320 if (adapter->rx_itr_setting == 1) 1321 ixgbevf_set_itr(q_vector); 1322 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1323 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1324 ixgbevf_irq_enable_queues(adapter, 1325 BIT(q_vector->v_idx)); 1326 } 1327 1328 return min(work_done, budget - 1); 1329 } 1330 1331 /** 1332 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1333 * @q_vector: structure containing interrupt and ring information 1334 **/ 1335 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1336 { 1337 struct ixgbevf_adapter *adapter = q_vector->adapter; 1338 struct ixgbe_hw *hw = &adapter->hw; 1339 int v_idx = q_vector->v_idx; 1340 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1341 1342 /* set the WDIS bit to not clear the timer bits and cause an 1343 * immediate assertion of the interrupt 1344 */ 1345 itr_reg |= IXGBE_EITR_CNT_WDIS; 1346 1347 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1348 } 1349 1350 /** 1351 * ixgbevf_configure_msix - Configure MSI-X hardware 1352 * @adapter: board private structure 1353 * 1354 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1355 * interrupts. 1356 **/ 1357 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1358 { 1359 struct ixgbevf_q_vector *q_vector; 1360 int q_vectors, v_idx; 1361 1362 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1363 adapter->eims_enable_mask = 0; 1364 1365 /* Populate the IVAR table and set the ITR values to the 1366 * corresponding register. 1367 */ 1368 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1369 struct ixgbevf_ring *ring; 1370 1371 q_vector = adapter->q_vector[v_idx]; 1372 1373 ixgbevf_for_each_ring(ring, q_vector->rx) 1374 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1375 1376 ixgbevf_for_each_ring(ring, q_vector->tx) 1377 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1378 1379 if (q_vector->tx.ring && !q_vector->rx.ring) { 1380 /* Tx only vector */ 1381 if (adapter->tx_itr_setting == 1) 1382 q_vector->itr = IXGBE_12K_ITR; 1383 else 1384 q_vector->itr = adapter->tx_itr_setting; 1385 } else { 1386 /* Rx or Rx/Tx vector */ 1387 if (adapter->rx_itr_setting == 1) 1388 q_vector->itr = IXGBE_20K_ITR; 1389 else 1390 q_vector->itr = adapter->rx_itr_setting; 1391 } 1392 1393 /* add q_vector eims value to global eims_enable_mask */ 1394 adapter->eims_enable_mask |= BIT(v_idx); 1395 1396 ixgbevf_write_eitr(q_vector); 1397 } 1398 1399 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1400 /* setup eims_other and add value to global eims_enable_mask */ 1401 adapter->eims_other = BIT(v_idx); 1402 adapter->eims_enable_mask |= adapter->eims_other; 1403 } 1404 1405 enum latency_range { 1406 lowest_latency = 0, 1407 low_latency = 1, 1408 bulk_latency = 2, 1409 latency_invalid = 255 1410 }; 1411 1412 /** 1413 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1414 * @q_vector: structure containing interrupt and ring information 1415 * @ring_container: structure containing ring performance data 1416 * 1417 * Stores a new ITR value based on packets and byte 1418 * counts during the last interrupt. The advantage of per interrupt 1419 * computation is faster updates and more accurate ITR for the current 1420 * traffic pattern. Constants in this function were computed 1421 * based on theoretical maximum wire speed and thresholds were set based 1422 * on testing data as well as attempting to minimize response time 1423 * while increasing bulk throughput. 1424 **/ 1425 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1426 struct ixgbevf_ring_container *ring_container) 1427 { 1428 int bytes = ring_container->total_bytes; 1429 int packets = ring_container->total_packets; 1430 u32 timepassed_us; 1431 u64 bytes_perint; 1432 u8 itr_setting = ring_container->itr; 1433 1434 if (packets == 0) 1435 return; 1436 1437 /* simple throttle rate management 1438 * 0-20MB/s lowest (100000 ints/s) 1439 * 20-100MB/s low (20000 ints/s) 1440 * 100-1249MB/s bulk (12000 ints/s) 1441 */ 1442 /* what was last interrupt timeslice? */ 1443 timepassed_us = q_vector->itr >> 2; 1444 if (timepassed_us == 0) 1445 return; 1446 1447 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1448 1449 switch (itr_setting) { 1450 case lowest_latency: 1451 if (bytes_perint > 10) 1452 itr_setting = low_latency; 1453 break; 1454 case low_latency: 1455 if (bytes_perint > 20) 1456 itr_setting = bulk_latency; 1457 else if (bytes_perint <= 10) 1458 itr_setting = lowest_latency; 1459 break; 1460 case bulk_latency: 1461 if (bytes_perint <= 20) 1462 itr_setting = low_latency; 1463 break; 1464 } 1465 1466 /* clear work counters since we have the values we need */ 1467 ring_container->total_bytes = 0; 1468 ring_container->total_packets = 0; 1469 1470 /* write updated itr to ring container */ 1471 ring_container->itr = itr_setting; 1472 } 1473 1474 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1475 { 1476 u32 new_itr = q_vector->itr; 1477 u8 current_itr; 1478 1479 ixgbevf_update_itr(q_vector, &q_vector->tx); 1480 ixgbevf_update_itr(q_vector, &q_vector->rx); 1481 1482 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1483 1484 switch (current_itr) { 1485 /* counts and packets in update_itr are dependent on these numbers */ 1486 case lowest_latency: 1487 new_itr = IXGBE_100K_ITR; 1488 break; 1489 case low_latency: 1490 new_itr = IXGBE_20K_ITR; 1491 break; 1492 case bulk_latency: 1493 new_itr = IXGBE_12K_ITR; 1494 break; 1495 default: 1496 break; 1497 } 1498 1499 if (new_itr != q_vector->itr) { 1500 /* do an exponential smoothing */ 1501 new_itr = (10 * new_itr * q_vector->itr) / 1502 ((9 * new_itr) + q_vector->itr); 1503 1504 /* save the algorithm value here */ 1505 q_vector->itr = new_itr; 1506 1507 ixgbevf_write_eitr(q_vector); 1508 } 1509 } 1510 1511 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1512 { 1513 struct ixgbevf_adapter *adapter = data; 1514 struct ixgbe_hw *hw = &adapter->hw; 1515 1516 hw->mac.get_link_status = 1; 1517 1518 ixgbevf_service_event_schedule(adapter); 1519 1520 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1521 1522 return IRQ_HANDLED; 1523 } 1524 1525 /** 1526 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1527 * @irq: unused 1528 * @data: pointer to our q_vector struct for this interrupt vector 1529 **/ 1530 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1531 { 1532 struct ixgbevf_q_vector *q_vector = data; 1533 1534 /* EIAM disabled interrupts (on this vector) for us */ 1535 if (q_vector->rx.ring || q_vector->tx.ring) 1536 napi_schedule_irqoff(&q_vector->napi); 1537 1538 return IRQ_HANDLED; 1539 } 1540 1541 /** 1542 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1543 * @adapter: board private structure 1544 * 1545 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1546 * interrupts from the kernel. 1547 **/ 1548 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1549 { 1550 struct net_device *netdev = adapter->netdev; 1551 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1552 unsigned int ri = 0, ti = 0; 1553 int vector, err; 1554 1555 for (vector = 0; vector < q_vectors; vector++) { 1556 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1557 struct msix_entry *entry = &adapter->msix_entries[vector]; 1558 1559 if (q_vector->tx.ring && q_vector->rx.ring) { 1560 snprintf(q_vector->name, sizeof(q_vector->name), 1561 "%s-TxRx-%u", netdev->name, ri++); 1562 ti++; 1563 } else if (q_vector->rx.ring) { 1564 snprintf(q_vector->name, sizeof(q_vector->name), 1565 "%s-rx-%u", netdev->name, ri++); 1566 } else if (q_vector->tx.ring) { 1567 snprintf(q_vector->name, sizeof(q_vector->name), 1568 "%s-tx-%u", netdev->name, ti++); 1569 } else { 1570 /* skip this unused q_vector */ 1571 continue; 1572 } 1573 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1574 q_vector->name, q_vector); 1575 if (err) { 1576 hw_dbg(&adapter->hw, 1577 "request_irq failed for MSIX interrupt Error: %d\n", 1578 err); 1579 goto free_queue_irqs; 1580 } 1581 } 1582 1583 err = request_irq(adapter->msix_entries[vector].vector, 1584 &ixgbevf_msix_other, 0, netdev->name, adapter); 1585 if (err) { 1586 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1587 err); 1588 goto free_queue_irqs; 1589 } 1590 1591 return 0; 1592 1593 free_queue_irqs: 1594 while (vector) { 1595 vector--; 1596 free_irq(adapter->msix_entries[vector].vector, 1597 adapter->q_vector[vector]); 1598 } 1599 /* This failure is non-recoverable - it indicates the system is 1600 * out of MSIX vector resources and the VF driver cannot run 1601 * without them. Set the number of msix vectors to zero 1602 * indicating that not enough can be allocated. The error 1603 * will be returned to the user indicating device open failed. 1604 * Any further attempts to force the driver to open will also 1605 * fail. The only way to recover is to unload the driver and 1606 * reload it again. If the system has recovered some MSIX 1607 * vectors then it may succeed. 1608 */ 1609 adapter->num_msix_vectors = 0; 1610 return err; 1611 } 1612 1613 /** 1614 * ixgbevf_request_irq - initialize interrupts 1615 * @adapter: board private structure 1616 * 1617 * Attempts to configure interrupts using the best available 1618 * capabilities of the hardware and kernel. 1619 **/ 1620 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1621 { 1622 int err = ixgbevf_request_msix_irqs(adapter); 1623 1624 if (err) 1625 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1626 1627 return err; 1628 } 1629 1630 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1631 { 1632 int i, q_vectors; 1633 1634 if (!adapter->msix_entries) 1635 return; 1636 1637 q_vectors = adapter->num_msix_vectors; 1638 i = q_vectors - 1; 1639 1640 free_irq(adapter->msix_entries[i].vector, adapter); 1641 i--; 1642 1643 for (; i >= 0; i--) { 1644 /* free only the irqs that were actually requested */ 1645 if (!adapter->q_vector[i]->rx.ring && 1646 !adapter->q_vector[i]->tx.ring) 1647 continue; 1648 1649 free_irq(adapter->msix_entries[i].vector, 1650 adapter->q_vector[i]); 1651 } 1652 } 1653 1654 /** 1655 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1656 * @adapter: board private structure 1657 **/ 1658 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1659 { 1660 struct ixgbe_hw *hw = &adapter->hw; 1661 int i; 1662 1663 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1664 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1665 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1666 1667 IXGBE_WRITE_FLUSH(hw); 1668 1669 for (i = 0; i < adapter->num_msix_vectors; i++) 1670 synchronize_irq(adapter->msix_entries[i].vector); 1671 } 1672 1673 /** 1674 * ixgbevf_irq_enable - Enable default interrupt generation settings 1675 * @adapter: board private structure 1676 **/ 1677 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1678 { 1679 struct ixgbe_hw *hw = &adapter->hw; 1680 1681 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1682 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1683 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1684 } 1685 1686 /** 1687 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1688 * @adapter: board private structure 1689 * @ring: structure containing ring specific data 1690 * 1691 * Configure the Tx descriptor ring after a reset. 1692 **/ 1693 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1694 struct ixgbevf_ring *ring) 1695 { 1696 struct ixgbe_hw *hw = &adapter->hw; 1697 u64 tdba = ring->dma; 1698 int wait_loop = 10; 1699 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1700 u8 reg_idx = ring->reg_idx; 1701 1702 /* disable queue to avoid issues while updating state */ 1703 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1704 IXGBE_WRITE_FLUSH(hw); 1705 1706 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1707 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1708 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1709 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1710 1711 /* disable head writeback */ 1712 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1713 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1714 1715 /* enable relaxed ordering */ 1716 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1717 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1718 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1719 1720 /* reset head and tail pointers */ 1721 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1722 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1723 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1724 1725 /* reset ntu and ntc to place SW in sync with hardwdare */ 1726 ring->next_to_clean = 0; 1727 ring->next_to_use = 0; 1728 1729 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1730 * to or less than the number of on chip descriptors, which is 1731 * currently 40. 1732 */ 1733 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1734 1735 /* Setting PTHRESH to 32 both improves performance */ 1736 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1737 32; /* PTHRESH = 32 */ 1738 1739 /* reinitialize tx_buffer_info */ 1740 memset(ring->tx_buffer_info, 0, 1741 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1742 1743 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1744 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1745 1746 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1747 1748 /* poll to verify queue is enabled */ 1749 do { 1750 usleep_range(1000, 2000); 1751 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1752 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1753 if (!wait_loop) 1754 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1755 } 1756 1757 /** 1758 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1759 * @adapter: board private structure 1760 * 1761 * Configure the Tx unit of the MAC after a reset. 1762 **/ 1763 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1764 { 1765 u32 i; 1766 1767 /* Setup the HW Tx Head and Tail descriptor pointers */ 1768 for (i = 0; i < adapter->num_tx_queues; i++) 1769 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1770 for (i = 0; i < adapter->num_xdp_queues; i++) 1771 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1772 } 1773 1774 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1775 1776 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1777 struct ixgbevf_ring *ring, int index) 1778 { 1779 struct ixgbe_hw *hw = &adapter->hw; 1780 u32 srrctl; 1781 1782 srrctl = IXGBE_SRRCTL_DROP_EN; 1783 1784 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1785 if (ring_uses_large_buffer(ring)) 1786 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1787 else 1788 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1789 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1790 1791 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1792 } 1793 1794 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1795 { 1796 struct ixgbe_hw *hw = &adapter->hw; 1797 1798 /* PSRTYPE must be initialized in 82599 */ 1799 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1800 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1801 IXGBE_PSRTYPE_L2HDR; 1802 1803 if (adapter->num_rx_queues > 1) 1804 psrtype |= BIT(29); 1805 1806 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1807 } 1808 1809 #define IXGBEVF_MAX_RX_DESC_POLL 10 1810 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1811 struct ixgbevf_ring *ring) 1812 { 1813 struct ixgbe_hw *hw = &adapter->hw; 1814 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1815 u32 rxdctl; 1816 u8 reg_idx = ring->reg_idx; 1817 1818 if (IXGBE_REMOVED(hw->hw_addr)) 1819 return; 1820 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1821 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1822 1823 /* write value back with RXDCTL.ENABLE bit cleared */ 1824 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1825 1826 /* the hardware may take up to 100us to really disable the Rx queue */ 1827 do { 1828 udelay(10); 1829 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1830 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1831 1832 if (!wait_loop) 1833 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1834 reg_idx); 1835 } 1836 1837 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1838 struct ixgbevf_ring *ring) 1839 { 1840 struct ixgbe_hw *hw = &adapter->hw; 1841 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1842 u32 rxdctl; 1843 u8 reg_idx = ring->reg_idx; 1844 1845 if (IXGBE_REMOVED(hw->hw_addr)) 1846 return; 1847 do { 1848 usleep_range(1000, 2000); 1849 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1850 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1851 1852 if (!wait_loop) 1853 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1854 reg_idx); 1855 } 1856 1857 /** 1858 * ixgbevf_init_rss_key - Initialize adapter RSS key 1859 * @adapter: device handle 1860 * 1861 * Allocates and initializes the RSS key if it is not allocated. 1862 **/ 1863 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1864 { 1865 u32 *rss_key; 1866 1867 if (!adapter->rss_key) { 1868 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1869 if (unlikely(!rss_key)) 1870 return -ENOMEM; 1871 1872 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1873 adapter->rss_key = rss_key; 1874 } 1875 1876 return 0; 1877 } 1878 1879 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1880 { 1881 struct ixgbe_hw *hw = &adapter->hw; 1882 u32 vfmrqc = 0, vfreta = 0; 1883 u16 rss_i = adapter->num_rx_queues; 1884 u8 i, j; 1885 1886 /* Fill out hash function seeds */ 1887 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1888 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1889 1890 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1891 if (j == rss_i) 1892 j = 0; 1893 1894 adapter->rss_indir_tbl[i] = j; 1895 1896 vfreta |= j << (i & 0x3) * 8; 1897 if ((i & 3) == 3) { 1898 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1899 vfreta = 0; 1900 } 1901 } 1902 1903 /* Perform hash on these packet types */ 1904 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1905 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1906 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1907 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1908 1909 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1910 1911 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1912 } 1913 1914 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1915 struct ixgbevf_ring *ring) 1916 { 1917 struct ixgbe_hw *hw = &adapter->hw; 1918 union ixgbe_adv_rx_desc *rx_desc; 1919 u64 rdba = ring->dma; 1920 u32 rxdctl; 1921 u8 reg_idx = ring->reg_idx; 1922 1923 /* disable queue to avoid issues while updating state */ 1924 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1925 ixgbevf_disable_rx_queue(adapter, ring); 1926 1927 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1928 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1929 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1930 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1931 1932 #ifndef CONFIG_SPARC 1933 /* enable relaxed ordering */ 1934 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1935 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1936 #else 1937 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1938 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1939 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1940 #endif 1941 1942 /* reset head and tail pointers */ 1943 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1944 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1945 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1946 1947 /* initialize rx_buffer_info */ 1948 memset(ring->rx_buffer_info, 0, 1949 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1950 1951 /* initialize Rx descriptor 0 */ 1952 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1953 rx_desc->wb.upper.length = 0; 1954 1955 /* reset ntu and ntc to place SW in sync with hardwdare */ 1956 ring->next_to_clean = 0; 1957 ring->next_to_use = 0; 1958 ring->next_to_alloc = 0; 1959 1960 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1961 1962 /* RXDCTL.RLPML does not work on 82599 */ 1963 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1964 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1965 IXGBE_RXDCTL_RLPML_EN); 1966 1967 #if (PAGE_SIZE < 8192) 1968 /* Limit the maximum frame size so we don't overrun the skb */ 1969 if (ring_uses_build_skb(ring) && 1970 !ring_uses_large_buffer(ring)) 1971 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1972 IXGBE_RXDCTL_RLPML_EN; 1973 #endif 1974 } 1975 1976 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1977 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1978 1979 ixgbevf_rx_desc_queue_enable(adapter, ring); 1980 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1981 } 1982 1983 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1984 struct ixgbevf_ring *rx_ring) 1985 { 1986 struct net_device *netdev = adapter->netdev; 1987 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1988 1989 /* set build_skb and buffer size flags */ 1990 clear_ring_build_skb_enabled(rx_ring); 1991 clear_ring_uses_large_buffer(rx_ring); 1992 1993 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1994 return; 1995 1996 set_ring_build_skb_enabled(rx_ring); 1997 1998 if (PAGE_SIZE < 8192) { 1999 if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB) 2000 return; 2001 2002 set_ring_uses_large_buffer(rx_ring); 2003 } 2004 } 2005 2006 /** 2007 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 2008 * @adapter: board private structure 2009 * 2010 * Configure the Rx unit of the MAC after a reset. 2011 **/ 2012 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 2013 { 2014 struct ixgbe_hw *hw = &adapter->hw; 2015 struct net_device *netdev = adapter->netdev; 2016 int i, ret; 2017 2018 ixgbevf_setup_psrtype(adapter); 2019 if (hw->mac.type >= ixgbe_mac_X550_vf) 2020 ixgbevf_setup_vfmrqc(adapter); 2021 2022 spin_lock_bh(&adapter->mbx_lock); 2023 /* notify the PF of our intent to use this size of frame */ 2024 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 2025 spin_unlock_bh(&adapter->mbx_lock); 2026 if (ret) 2027 dev_err(&adapter->pdev->dev, 2028 "Failed to set MTU at %d\n", netdev->mtu); 2029 2030 /* Setup the HW Rx Head and Tail Descriptor Pointers and 2031 * the Base and Length of the Rx Descriptor Ring 2032 */ 2033 for (i = 0; i < adapter->num_rx_queues; i++) { 2034 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2035 2036 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2037 ixgbevf_configure_rx_ring(adapter, rx_ring); 2038 } 2039 } 2040 2041 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2042 __be16 proto, u16 vid) 2043 { 2044 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2045 struct ixgbe_hw *hw = &adapter->hw; 2046 int err; 2047 2048 spin_lock_bh(&adapter->mbx_lock); 2049 2050 /* add VID to filter table */ 2051 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2052 2053 spin_unlock_bh(&adapter->mbx_lock); 2054 2055 /* translate error return types so error makes sense */ 2056 if (err == IXGBE_ERR_MBX) 2057 return -EIO; 2058 2059 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2060 return -EACCES; 2061 2062 set_bit(vid, adapter->active_vlans); 2063 2064 return err; 2065 } 2066 2067 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2068 __be16 proto, u16 vid) 2069 { 2070 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2071 struct ixgbe_hw *hw = &adapter->hw; 2072 int err; 2073 2074 spin_lock_bh(&adapter->mbx_lock); 2075 2076 /* remove VID from filter table */ 2077 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2078 2079 spin_unlock_bh(&adapter->mbx_lock); 2080 2081 clear_bit(vid, adapter->active_vlans); 2082 2083 return err; 2084 } 2085 2086 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2087 { 2088 u16 vid; 2089 2090 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2091 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2092 htons(ETH_P_8021Q), vid); 2093 } 2094 2095 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2096 { 2097 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2098 struct ixgbe_hw *hw = &adapter->hw; 2099 int count = 0; 2100 2101 if (!netdev_uc_empty(netdev)) { 2102 struct netdev_hw_addr *ha; 2103 2104 netdev_for_each_uc_addr(ha, netdev) { 2105 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2106 udelay(200); 2107 } 2108 } else { 2109 /* If the list is empty then send message to PF driver to 2110 * clear all MAC VLANs on this VF. 2111 */ 2112 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2113 } 2114 2115 return count; 2116 } 2117 2118 /** 2119 * ixgbevf_set_rx_mode - Multicast and unicast set 2120 * @netdev: network interface device structure 2121 * 2122 * The set_rx_method entry point is called whenever the multicast address 2123 * list, unicast address list or the network interface flags are updated. 2124 * This routine is responsible for configuring the hardware for proper 2125 * multicast mode and configuring requested unicast filters. 2126 **/ 2127 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2128 { 2129 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2130 struct ixgbe_hw *hw = &adapter->hw; 2131 unsigned int flags = netdev->flags; 2132 int xcast_mode; 2133 2134 /* request the most inclusive mode we need */ 2135 if (flags & IFF_PROMISC) 2136 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2137 else if (flags & IFF_ALLMULTI) 2138 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2139 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2140 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2141 else 2142 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2143 2144 spin_lock_bh(&adapter->mbx_lock); 2145 2146 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2147 2148 /* reprogram multicast list */ 2149 hw->mac.ops.update_mc_addr_list(hw, netdev); 2150 2151 ixgbevf_write_uc_addr_list(netdev); 2152 2153 spin_unlock_bh(&adapter->mbx_lock); 2154 } 2155 2156 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2157 { 2158 int q_idx; 2159 struct ixgbevf_q_vector *q_vector; 2160 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2161 2162 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2163 q_vector = adapter->q_vector[q_idx]; 2164 napi_enable(&q_vector->napi); 2165 } 2166 } 2167 2168 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2169 { 2170 int q_idx; 2171 struct ixgbevf_q_vector *q_vector; 2172 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2173 2174 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2175 q_vector = adapter->q_vector[q_idx]; 2176 napi_disable(&q_vector->napi); 2177 } 2178 } 2179 2180 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2181 { 2182 struct ixgbe_hw *hw = &adapter->hw; 2183 unsigned int def_q = 0; 2184 unsigned int num_tcs = 0; 2185 unsigned int num_rx_queues = adapter->num_rx_queues; 2186 unsigned int num_tx_queues = adapter->num_tx_queues; 2187 int err; 2188 2189 spin_lock_bh(&adapter->mbx_lock); 2190 2191 /* fetch queue configuration from the PF */ 2192 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2193 2194 spin_unlock_bh(&adapter->mbx_lock); 2195 2196 if (err) 2197 return err; 2198 2199 if (num_tcs > 1) { 2200 /* we need only one Tx queue */ 2201 num_tx_queues = 1; 2202 2203 /* update default Tx ring register index */ 2204 adapter->tx_ring[0]->reg_idx = def_q; 2205 2206 /* we need as many queues as traffic classes */ 2207 num_rx_queues = num_tcs; 2208 } 2209 2210 /* if we have a bad config abort request queue reset */ 2211 if ((adapter->num_rx_queues != num_rx_queues) || 2212 (adapter->num_tx_queues != num_tx_queues)) { 2213 /* force mailbox timeout to prevent further messages */ 2214 hw->mbx.timeout = 0; 2215 2216 /* wait for watchdog to come around and bail us out */ 2217 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2218 } 2219 2220 return 0; 2221 } 2222 2223 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2224 { 2225 ixgbevf_configure_dcb(adapter); 2226 2227 ixgbevf_set_rx_mode(adapter->netdev); 2228 2229 ixgbevf_restore_vlan(adapter); 2230 ixgbevf_ipsec_restore(adapter); 2231 2232 ixgbevf_configure_tx(adapter); 2233 ixgbevf_configure_rx(adapter); 2234 } 2235 2236 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2237 { 2238 /* Only save pre-reset stats if there are some */ 2239 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2240 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2241 adapter->stats.base_vfgprc; 2242 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2243 adapter->stats.base_vfgptc; 2244 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2245 adapter->stats.base_vfgorc; 2246 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2247 adapter->stats.base_vfgotc; 2248 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2249 adapter->stats.base_vfmprc; 2250 } 2251 } 2252 2253 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2254 { 2255 struct ixgbe_hw *hw = &adapter->hw; 2256 2257 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2258 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2259 adapter->stats.last_vfgorc |= 2260 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2261 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2262 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2263 adapter->stats.last_vfgotc |= 2264 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2265 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2266 2267 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2268 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2269 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2270 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2271 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2272 } 2273 2274 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2275 { 2276 struct ixgbe_hw *hw = &adapter->hw; 2277 static const int api[] = { 2278 ixgbe_mbox_api_14, 2279 ixgbe_mbox_api_13, 2280 ixgbe_mbox_api_12, 2281 ixgbe_mbox_api_11, 2282 ixgbe_mbox_api_10, 2283 ixgbe_mbox_api_unknown 2284 }; 2285 int err, idx = 0; 2286 2287 spin_lock_bh(&adapter->mbx_lock); 2288 2289 while (api[idx] != ixgbe_mbox_api_unknown) { 2290 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2291 if (!err) 2292 break; 2293 idx++; 2294 } 2295 2296 spin_unlock_bh(&adapter->mbx_lock); 2297 } 2298 2299 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2300 { 2301 struct net_device *netdev = adapter->netdev; 2302 struct ixgbe_hw *hw = &adapter->hw; 2303 2304 ixgbevf_configure_msix(adapter); 2305 2306 spin_lock_bh(&adapter->mbx_lock); 2307 2308 if (is_valid_ether_addr(hw->mac.addr)) 2309 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2310 else 2311 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2312 2313 spin_unlock_bh(&adapter->mbx_lock); 2314 2315 smp_mb__before_atomic(); 2316 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2317 ixgbevf_napi_enable_all(adapter); 2318 2319 /* clear any pending interrupts, may auto mask */ 2320 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2321 ixgbevf_irq_enable(adapter); 2322 2323 /* enable transmits */ 2324 netif_tx_start_all_queues(netdev); 2325 2326 ixgbevf_save_reset_stats(adapter); 2327 ixgbevf_init_last_counter_stats(adapter); 2328 2329 hw->mac.get_link_status = 1; 2330 mod_timer(&adapter->service_timer, jiffies); 2331 } 2332 2333 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2334 { 2335 ixgbevf_configure(adapter); 2336 2337 ixgbevf_up_complete(adapter); 2338 } 2339 2340 /** 2341 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2342 * @rx_ring: ring to free buffers from 2343 **/ 2344 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2345 { 2346 u16 i = rx_ring->next_to_clean; 2347 2348 /* Free Rx ring sk_buff */ 2349 if (rx_ring->skb) { 2350 dev_kfree_skb(rx_ring->skb); 2351 rx_ring->skb = NULL; 2352 } 2353 2354 /* Free all the Rx ring pages */ 2355 while (i != rx_ring->next_to_alloc) { 2356 struct ixgbevf_rx_buffer *rx_buffer; 2357 2358 rx_buffer = &rx_ring->rx_buffer_info[i]; 2359 2360 /* Invalidate cache lines that may have been written to by 2361 * device so that we avoid corrupting memory. 2362 */ 2363 dma_sync_single_range_for_cpu(rx_ring->dev, 2364 rx_buffer->dma, 2365 rx_buffer->page_offset, 2366 ixgbevf_rx_bufsz(rx_ring), 2367 DMA_FROM_DEVICE); 2368 2369 /* free resources associated with mapping */ 2370 dma_unmap_page_attrs(rx_ring->dev, 2371 rx_buffer->dma, 2372 ixgbevf_rx_pg_size(rx_ring), 2373 DMA_FROM_DEVICE, 2374 IXGBEVF_RX_DMA_ATTR); 2375 2376 __page_frag_cache_drain(rx_buffer->page, 2377 rx_buffer->pagecnt_bias); 2378 2379 i++; 2380 if (i == rx_ring->count) 2381 i = 0; 2382 } 2383 2384 rx_ring->next_to_alloc = 0; 2385 rx_ring->next_to_clean = 0; 2386 rx_ring->next_to_use = 0; 2387 } 2388 2389 /** 2390 * ixgbevf_clean_tx_ring - Free Tx Buffers 2391 * @tx_ring: ring to be cleaned 2392 **/ 2393 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2394 { 2395 u16 i = tx_ring->next_to_clean; 2396 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2397 2398 while (i != tx_ring->next_to_use) { 2399 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2400 2401 /* Free all the Tx ring sk_buffs */ 2402 if (ring_is_xdp(tx_ring)) 2403 page_frag_free(tx_buffer->data); 2404 else 2405 dev_kfree_skb_any(tx_buffer->skb); 2406 2407 /* unmap skb header data */ 2408 dma_unmap_single(tx_ring->dev, 2409 dma_unmap_addr(tx_buffer, dma), 2410 dma_unmap_len(tx_buffer, len), 2411 DMA_TO_DEVICE); 2412 2413 /* check for eop_desc to determine the end of the packet */ 2414 eop_desc = tx_buffer->next_to_watch; 2415 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2416 2417 /* unmap remaining buffers */ 2418 while (tx_desc != eop_desc) { 2419 tx_buffer++; 2420 tx_desc++; 2421 i++; 2422 if (unlikely(i == tx_ring->count)) { 2423 i = 0; 2424 tx_buffer = tx_ring->tx_buffer_info; 2425 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2426 } 2427 2428 /* unmap any remaining paged data */ 2429 if (dma_unmap_len(tx_buffer, len)) 2430 dma_unmap_page(tx_ring->dev, 2431 dma_unmap_addr(tx_buffer, dma), 2432 dma_unmap_len(tx_buffer, len), 2433 DMA_TO_DEVICE); 2434 } 2435 2436 /* move us one more past the eop_desc for start of next pkt */ 2437 tx_buffer++; 2438 i++; 2439 if (unlikely(i == tx_ring->count)) { 2440 i = 0; 2441 tx_buffer = tx_ring->tx_buffer_info; 2442 } 2443 } 2444 2445 /* reset next_to_use and next_to_clean */ 2446 tx_ring->next_to_use = 0; 2447 tx_ring->next_to_clean = 0; 2448 2449 } 2450 2451 /** 2452 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2453 * @adapter: board private structure 2454 **/ 2455 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2456 { 2457 int i; 2458 2459 for (i = 0; i < adapter->num_rx_queues; i++) 2460 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2461 } 2462 2463 /** 2464 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2465 * @adapter: board private structure 2466 **/ 2467 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2468 { 2469 int i; 2470 2471 for (i = 0; i < adapter->num_tx_queues; i++) 2472 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2473 for (i = 0; i < adapter->num_xdp_queues; i++) 2474 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2475 } 2476 2477 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2478 { 2479 struct net_device *netdev = adapter->netdev; 2480 struct ixgbe_hw *hw = &adapter->hw; 2481 int i; 2482 2483 /* signal that we are down to the interrupt handler */ 2484 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2485 return; /* do nothing if already down */ 2486 2487 /* disable all enabled Rx queues */ 2488 for (i = 0; i < adapter->num_rx_queues; i++) 2489 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2490 2491 usleep_range(10000, 20000); 2492 2493 netif_tx_stop_all_queues(netdev); 2494 2495 /* call carrier off first to avoid false dev_watchdog timeouts */ 2496 netif_carrier_off(netdev); 2497 netif_tx_disable(netdev); 2498 2499 ixgbevf_irq_disable(adapter); 2500 2501 ixgbevf_napi_disable_all(adapter); 2502 2503 del_timer_sync(&adapter->service_timer); 2504 2505 /* disable transmits in the hardware now that interrupts are off */ 2506 for (i = 0; i < adapter->num_tx_queues; i++) { 2507 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2508 2509 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2510 IXGBE_TXDCTL_SWFLSH); 2511 } 2512 2513 for (i = 0; i < adapter->num_xdp_queues; i++) { 2514 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2515 2516 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2517 IXGBE_TXDCTL_SWFLSH); 2518 } 2519 2520 if (!pci_channel_offline(adapter->pdev)) 2521 ixgbevf_reset(adapter); 2522 2523 ixgbevf_clean_all_tx_rings(adapter); 2524 ixgbevf_clean_all_rx_rings(adapter); 2525 } 2526 2527 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2528 { 2529 WARN_ON(in_interrupt()); 2530 2531 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2532 msleep(1); 2533 2534 ixgbevf_down(adapter); 2535 pci_set_master(adapter->pdev); 2536 ixgbevf_up(adapter); 2537 2538 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2539 } 2540 2541 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2542 { 2543 struct ixgbe_hw *hw = &adapter->hw; 2544 struct net_device *netdev = adapter->netdev; 2545 2546 if (hw->mac.ops.reset_hw(hw)) { 2547 hw_dbg(hw, "PF still resetting\n"); 2548 } else { 2549 hw->mac.ops.init_hw(hw); 2550 ixgbevf_negotiate_api(adapter); 2551 } 2552 2553 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2554 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2555 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2556 } 2557 2558 adapter->last_reset = jiffies; 2559 } 2560 2561 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2562 int vectors) 2563 { 2564 int vector_threshold; 2565 2566 /* We'll want at least 2 (vector_threshold): 2567 * 1) TxQ[0] + RxQ[0] handler 2568 * 2) Other (Link Status Change, etc.) 2569 */ 2570 vector_threshold = MIN_MSIX_COUNT; 2571 2572 /* The more we get, the more we will assign to Tx/Rx Cleanup 2573 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2574 * Right now, we simply care about how many we'll get; we'll 2575 * set them up later while requesting irq's. 2576 */ 2577 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2578 vector_threshold, vectors); 2579 2580 if (vectors < 0) { 2581 dev_err(&adapter->pdev->dev, 2582 "Unable to allocate MSI-X interrupts\n"); 2583 kfree(adapter->msix_entries); 2584 adapter->msix_entries = NULL; 2585 return vectors; 2586 } 2587 2588 /* Adjust for only the vectors we'll use, which is minimum 2589 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2590 * vectors we were allocated. 2591 */ 2592 adapter->num_msix_vectors = vectors; 2593 2594 return 0; 2595 } 2596 2597 /** 2598 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2599 * @adapter: board private structure to initialize 2600 * 2601 * This is the top level queue allocation routine. The order here is very 2602 * important, starting with the "most" number of features turned on at once, 2603 * and ending with the smallest set of features. This way large combinations 2604 * can be allocated if they're turned on, and smaller combinations are the 2605 * fall through conditions. 2606 * 2607 **/ 2608 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2609 { 2610 struct ixgbe_hw *hw = &adapter->hw; 2611 unsigned int def_q = 0; 2612 unsigned int num_tcs = 0; 2613 int err; 2614 2615 /* Start with base case */ 2616 adapter->num_rx_queues = 1; 2617 adapter->num_tx_queues = 1; 2618 adapter->num_xdp_queues = 0; 2619 2620 spin_lock_bh(&adapter->mbx_lock); 2621 2622 /* fetch queue configuration from the PF */ 2623 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2624 2625 spin_unlock_bh(&adapter->mbx_lock); 2626 2627 if (err) 2628 return; 2629 2630 /* we need as many queues as traffic classes */ 2631 if (num_tcs > 1) { 2632 adapter->num_rx_queues = num_tcs; 2633 } else { 2634 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2635 2636 switch (hw->api_version) { 2637 case ixgbe_mbox_api_11: 2638 case ixgbe_mbox_api_12: 2639 case ixgbe_mbox_api_13: 2640 case ixgbe_mbox_api_14: 2641 if (adapter->xdp_prog && 2642 hw->mac.max_tx_queues == rss) 2643 rss = rss > 3 ? 2 : 1; 2644 2645 adapter->num_rx_queues = rss; 2646 adapter->num_tx_queues = rss; 2647 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2648 default: 2649 break; 2650 } 2651 } 2652 } 2653 2654 /** 2655 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2656 * @adapter: board private structure to initialize 2657 * 2658 * Attempt to configure the interrupts using the best available 2659 * capabilities of the hardware and the kernel. 2660 **/ 2661 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2662 { 2663 int vector, v_budget; 2664 2665 /* It's easy to be greedy for MSI-X vectors, but it really 2666 * doesn't do us much good if we have a lot more vectors 2667 * than CPU's. So let's be conservative and only ask for 2668 * (roughly) the same number of vectors as there are CPU's. 2669 * The default is to use pairs of vectors. 2670 */ 2671 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2672 v_budget = min_t(int, v_budget, num_online_cpus()); 2673 v_budget += NON_Q_VECTORS; 2674 2675 adapter->msix_entries = kcalloc(v_budget, 2676 sizeof(struct msix_entry), GFP_KERNEL); 2677 if (!adapter->msix_entries) 2678 return -ENOMEM; 2679 2680 for (vector = 0; vector < v_budget; vector++) 2681 adapter->msix_entries[vector].entry = vector; 2682 2683 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2684 * does not support any other modes, so we will simply fail here. Note 2685 * that we clean up the msix_entries pointer else-where. 2686 */ 2687 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2688 } 2689 2690 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2691 struct ixgbevf_ring_container *head) 2692 { 2693 ring->next = head->ring; 2694 head->ring = ring; 2695 head->count++; 2696 } 2697 2698 /** 2699 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2700 * @adapter: board private structure to initialize 2701 * @v_idx: index of vector in adapter struct 2702 * @txr_count: number of Tx rings for q vector 2703 * @txr_idx: index of first Tx ring to assign 2704 * @xdp_count: total number of XDP rings to allocate 2705 * @xdp_idx: index of first XDP ring to allocate 2706 * @rxr_count: number of Rx rings for q vector 2707 * @rxr_idx: index of first Rx ring to assign 2708 * 2709 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2710 **/ 2711 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2712 int txr_count, int txr_idx, 2713 int xdp_count, int xdp_idx, 2714 int rxr_count, int rxr_idx) 2715 { 2716 struct ixgbevf_q_vector *q_vector; 2717 int reg_idx = txr_idx + xdp_idx; 2718 struct ixgbevf_ring *ring; 2719 int ring_count, size; 2720 2721 ring_count = txr_count + xdp_count + rxr_count; 2722 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2723 2724 /* allocate q_vector and rings */ 2725 q_vector = kzalloc(size, GFP_KERNEL); 2726 if (!q_vector) 2727 return -ENOMEM; 2728 2729 /* initialize NAPI */ 2730 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64); 2731 2732 /* tie q_vector and adapter together */ 2733 adapter->q_vector[v_idx] = q_vector; 2734 q_vector->adapter = adapter; 2735 q_vector->v_idx = v_idx; 2736 2737 /* initialize pointer to rings */ 2738 ring = q_vector->ring; 2739 2740 while (txr_count) { 2741 /* assign generic ring traits */ 2742 ring->dev = &adapter->pdev->dev; 2743 ring->netdev = adapter->netdev; 2744 2745 /* configure backlink on ring */ 2746 ring->q_vector = q_vector; 2747 2748 /* update q_vector Tx values */ 2749 ixgbevf_add_ring(ring, &q_vector->tx); 2750 2751 /* apply Tx specific ring traits */ 2752 ring->count = adapter->tx_ring_count; 2753 ring->queue_index = txr_idx; 2754 ring->reg_idx = reg_idx; 2755 2756 /* assign ring to adapter */ 2757 adapter->tx_ring[txr_idx] = ring; 2758 2759 /* update count and index */ 2760 txr_count--; 2761 txr_idx++; 2762 reg_idx++; 2763 2764 /* push pointer to next ring */ 2765 ring++; 2766 } 2767 2768 while (xdp_count) { 2769 /* assign generic ring traits */ 2770 ring->dev = &adapter->pdev->dev; 2771 ring->netdev = adapter->netdev; 2772 2773 /* configure backlink on ring */ 2774 ring->q_vector = q_vector; 2775 2776 /* update q_vector Tx values */ 2777 ixgbevf_add_ring(ring, &q_vector->tx); 2778 2779 /* apply Tx specific ring traits */ 2780 ring->count = adapter->tx_ring_count; 2781 ring->queue_index = xdp_idx; 2782 ring->reg_idx = reg_idx; 2783 set_ring_xdp(ring); 2784 2785 /* assign ring to adapter */ 2786 adapter->xdp_ring[xdp_idx] = ring; 2787 2788 /* update count and index */ 2789 xdp_count--; 2790 xdp_idx++; 2791 reg_idx++; 2792 2793 /* push pointer to next ring */ 2794 ring++; 2795 } 2796 2797 while (rxr_count) { 2798 /* assign generic ring traits */ 2799 ring->dev = &adapter->pdev->dev; 2800 ring->netdev = adapter->netdev; 2801 2802 /* configure backlink on ring */ 2803 ring->q_vector = q_vector; 2804 2805 /* update q_vector Rx values */ 2806 ixgbevf_add_ring(ring, &q_vector->rx); 2807 2808 /* apply Rx specific ring traits */ 2809 ring->count = adapter->rx_ring_count; 2810 ring->queue_index = rxr_idx; 2811 ring->reg_idx = rxr_idx; 2812 2813 /* assign ring to adapter */ 2814 adapter->rx_ring[rxr_idx] = ring; 2815 2816 /* update count and index */ 2817 rxr_count--; 2818 rxr_idx++; 2819 2820 /* push pointer to next ring */ 2821 ring++; 2822 } 2823 2824 return 0; 2825 } 2826 2827 /** 2828 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2829 * @adapter: board private structure to initialize 2830 * @v_idx: index of vector in adapter struct 2831 * 2832 * This function frees the memory allocated to the q_vector. In addition if 2833 * NAPI is enabled it will delete any references to the NAPI struct prior 2834 * to freeing the q_vector. 2835 **/ 2836 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2837 { 2838 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2839 struct ixgbevf_ring *ring; 2840 2841 ixgbevf_for_each_ring(ring, q_vector->tx) { 2842 if (ring_is_xdp(ring)) 2843 adapter->xdp_ring[ring->queue_index] = NULL; 2844 else 2845 adapter->tx_ring[ring->queue_index] = NULL; 2846 } 2847 2848 ixgbevf_for_each_ring(ring, q_vector->rx) 2849 adapter->rx_ring[ring->queue_index] = NULL; 2850 2851 adapter->q_vector[v_idx] = NULL; 2852 netif_napi_del(&q_vector->napi); 2853 2854 /* ixgbevf_get_stats() might access the rings on this vector, 2855 * we must wait a grace period before freeing it. 2856 */ 2857 kfree_rcu(q_vector, rcu); 2858 } 2859 2860 /** 2861 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2862 * @adapter: board private structure to initialize 2863 * 2864 * We allocate one q_vector per queue interrupt. If allocation fails we 2865 * return -ENOMEM. 2866 **/ 2867 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2868 { 2869 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2870 int rxr_remaining = adapter->num_rx_queues; 2871 int txr_remaining = adapter->num_tx_queues; 2872 int xdp_remaining = adapter->num_xdp_queues; 2873 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2874 int err; 2875 2876 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2877 for (; rxr_remaining; v_idx++, q_vectors--) { 2878 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2879 2880 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2881 0, 0, 0, 0, rqpv, rxr_idx); 2882 if (err) 2883 goto err_out; 2884 2885 /* update counts and index */ 2886 rxr_remaining -= rqpv; 2887 rxr_idx += rqpv; 2888 } 2889 } 2890 2891 for (; q_vectors; v_idx++, q_vectors--) { 2892 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2893 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2894 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2895 2896 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2897 tqpv, txr_idx, 2898 xqpv, xdp_idx, 2899 rqpv, rxr_idx); 2900 2901 if (err) 2902 goto err_out; 2903 2904 /* update counts and index */ 2905 rxr_remaining -= rqpv; 2906 rxr_idx += rqpv; 2907 txr_remaining -= tqpv; 2908 txr_idx += tqpv; 2909 xdp_remaining -= xqpv; 2910 xdp_idx += xqpv; 2911 } 2912 2913 return 0; 2914 2915 err_out: 2916 while (v_idx) { 2917 v_idx--; 2918 ixgbevf_free_q_vector(adapter, v_idx); 2919 } 2920 2921 return -ENOMEM; 2922 } 2923 2924 /** 2925 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2926 * @adapter: board private structure to initialize 2927 * 2928 * This function frees the memory allocated to the q_vectors. In addition if 2929 * NAPI is enabled it will delete any references to the NAPI struct prior 2930 * to freeing the q_vector. 2931 **/ 2932 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2933 { 2934 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2935 2936 while (q_vectors) { 2937 q_vectors--; 2938 ixgbevf_free_q_vector(adapter, q_vectors); 2939 } 2940 } 2941 2942 /** 2943 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2944 * @adapter: board private structure 2945 * 2946 **/ 2947 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2948 { 2949 if (!adapter->msix_entries) 2950 return; 2951 2952 pci_disable_msix(adapter->pdev); 2953 kfree(adapter->msix_entries); 2954 adapter->msix_entries = NULL; 2955 } 2956 2957 /** 2958 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2959 * @adapter: board private structure to initialize 2960 * 2961 **/ 2962 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2963 { 2964 int err; 2965 2966 /* Number of supported queues */ 2967 ixgbevf_set_num_queues(adapter); 2968 2969 err = ixgbevf_set_interrupt_capability(adapter); 2970 if (err) { 2971 hw_dbg(&adapter->hw, 2972 "Unable to setup interrupt capabilities\n"); 2973 goto err_set_interrupt; 2974 } 2975 2976 err = ixgbevf_alloc_q_vectors(adapter); 2977 if (err) { 2978 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2979 goto err_alloc_q_vectors; 2980 } 2981 2982 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2983 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2984 adapter->num_rx_queues, adapter->num_tx_queues, 2985 adapter->num_xdp_queues); 2986 2987 set_bit(__IXGBEVF_DOWN, &adapter->state); 2988 2989 return 0; 2990 err_alloc_q_vectors: 2991 ixgbevf_reset_interrupt_capability(adapter); 2992 err_set_interrupt: 2993 return err; 2994 } 2995 2996 /** 2997 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2998 * @adapter: board private structure to clear interrupt scheme on 2999 * 3000 * We go through and clear interrupt specific resources and reset the structure 3001 * to pre-load conditions 3002 **/ 3003 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 3004 { 3005 adapter->num_tx_queues = 0; 3006 adapter->num_xdp_queues = 0; 3007 adapter->num_rx_queues = 0; 3008 3009 ixgbevf_free_q_vectors(adapter); 3010 ixgbevf_reset_interrupt_capability(adapter); 3011 } 3012 3013 /** 3014 * ixgbevf_sw_init - Initialize general software structures 3015 * @adapter: board private structure to initialize 3016 * 3017 * ixgbevf_sw_init initializes the Adapter private data structure. 3018 * Fields are initialized based on PCI device information and 3019 * OS network device settings (MTU size). 3020 **/ 3021 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 3022 { 3023 struct ixgbe_hw *hw = &adapter->hw; 3024 struct pci_dev *pdev = adapter->pdev; 3025 struct net_device *netdev = adapter->netdev; 3026 int err; 3027 3028 /* PCI config space info */ 3029 hw->vendor_id = pdev->vendor; 3030 hw->device_id = pdev->device; 3031 hw->revision_id = pdev->revision; 3032 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3033 hw->subsystem_device_id = pdev->subsystem_device; 3034 3035 hw->mbx.ops.init_params(hw); 3036 3037 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3038 err = ixgbevf_init_rss_key(adapter); 3039 if (err) 3040 goto out; 3041 } 3042 3043 /* assume legacy case in which PF would only give VF 2 queues */ 3044 hw->mac.max_tx_queues = 2; 3045 hw->mac.max_rx_queues = 2; 3046 3047 /* lock to protect mailbox accesses */ 3048 spin_lock_init(&adapter->mbx_lock); 3049 3050 err = hw->mac.ops.reset_hw(hw); 3051 if (err) { 3052 dev_info(&pdev->dev, 3053 "PF still in reset state. Is the PF interface up?\n"); 3054 } else { 3055 err = hw->mac.ops.init_hw(hw); 3056 if (err) { 3057 pr_err("init_shared_code failed: %d\n", err); 3058 goto out; 3059 } 3060 ixgbevf_negotiate_api(adapter); 3061 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3062 if (err) 3063 dev_info(&pdev->dev, "Error reading MAC address\n"); 3064 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3065 dev_info(&pdev->dev, 3066 "MAC address not assigned by administrator.\n"); 3067 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 3068 } 3069 3070 if (!is_valid_ether_addr(netdev->dev_addr)) { 3071 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3072 eth_hw_addr_random(netdev); 3073 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3074 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3075 } 3076 3077 /* Enable dynamic interrupt throttling rates */ 3078 adapter->rx_itr_setting = 1; 3079 adapter->tx_itr_setting = 1; 3080 3081 /* set default ring sizes */ 3082 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3083 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3084 3085 set_bit(__IXGBEVF_DOWN, &adapter->state); 3086 return 0; 3087 3088 out: 3089 return err; 3090 } 3091 3092 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3093 { \ 3094 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3095 if (current_counter < last_counter) \ 3096 counter += 0x100000000LL; \ 3097 last_counter = current_counter; \ 3098 counter &= 0xFFFFFFFF00000000LL; \ 3099 counter |= current_counter; \ 3100 } 3101 3102 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3103 { \ 3104 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3105 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3106 u64 current_counter = (current_counter_msb << 32) | \ 3107 current_counter_lsb; \ 3108 if (current_counter < last_counter) \ 3109 counter += 0x1000000000LL; \ 3110 last_counter = current_counter; \ 3111 counter &= 0xFFFFFFF000000000LL; \ 3112 counter |= current_counter; \ 3113 } 3114 /** 3115 * ixgbevf_update_stats - Update the board statistics counters. 3116 * @adapter: board private structure 3117 **/ 3118 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3119 { 3120 struct ixgbe_hw *hw = &adapter->hw; 3121 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3122 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3123 int i; 3124 3125 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3126 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3127 return; 3128 3129 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3130 adapter->stats.vfgprc); 3131 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3132 adapter->stats.vfgptc); 3133 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3134 adapter->stats.last_vfgorc, 3135 adapter->stats.vfgorc); 3136 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3137 adapter->stats.last_vfgotc, 3138 adapter->stats.vfgotc); 3139 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3140 adapter->stats.vfmprc); 3141 3142 for (i = 0; i < adapter->num_rx_queues; i++) { 3143 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3144 3145 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3146 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3147 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3148 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3149 } 3150 3151 adapter->hw_csum_rx_error = hw_csum_rx_error; 3152 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3153 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3154 adapter->alloc_rx_page = alloc_rx_page; 3155 } 3156 3157 /** 3158 * ixgbevf_service_timer - Timer Call-back 3159 * @t: pointer to timer_list struct 3160 **/ 3161 static void ixgbevf_service_timer(struct timer_list *t) 3162 { 3163 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3164 service_timer); 3165 3166 /* Reset the timer */ 3167 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3168 3169 ixgbevf_service_event_schedule(adapter); 3170 } 3171 3172 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3173 { 3174 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3175 return; 3176 3177 rtnl_lock(); 3178 /* If we're already down or resetting, just bail */ 3179 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3180 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3181 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3182 rtnl_unlock(); 3183 return; 3184 } 3185 3186 adapter->tx_timeout_count++; 3187 3188 ixgbevf_reinit_locked(adapter); 3189 rtnl_unlock(); 3190 } 3191 3192 /** 3193 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3194 * @adapter: pointer to the device adapter structure 3195 * 3196 * This function serves two purposes. First it strobes the interrupt lines 3197 * in order to make certain interrupts are occurring. Secondly it sets the 3198 * bits needed to check for TX hangs. As a result we should immediately 3199 * determine if a hang has occurred. 3200 **/ 3201 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3202 { 3203 struct ixgbe_hw *hw = &adapter->hw; 3204 u32 eics = 0; 3205 int i; 3206 3207 /* If we're down or resetting, just bail */ 3208 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3209 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3210 return; 3211 3212 /* Force detection of hung controller */ 3213 if (netif_carrier_ok(adapter->netdev)) { 3214 for (i = 0; i < adapter->num_tx_queues; i++) 3215 set_check_for_tx_hang(adapter->tx_ring[i]); 3216 for (i = 0; i < adapter->num_xdp_queues; i++) 3217 set_check_for_tx_hang(adapter->xdp_ring[i]); 3218 } 3219 3220 /* get one bit for every active Tx/Rx interrupt vector */ 3221 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3222 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3223 3224 if (qv->rx.ring || qv->tx.ring) 3225 eics |= BIT(i); 3226 } 3227 3228 /* Cause software interrupt to ensure rings are cleaned */ 3229 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3230 } 3231 3232 /** 3233 * ixgbevf_watchdog_update_link - update the link status 3234 * @adapter: pointer to the device adapter structure 3235 **/ 3236 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3237 { 3238 struct ixgbe_hw *hw = &adapter->hw; 3239 u32 link_speed = adapter->link_speed; 3240 bool link_up = adapter->link_up; 3241 s32 err; 3242 3243 spin_lock_bh(&adapter->mbx_lock); 3244 3245 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3246 3247 spin_unlock_bh(&adapter->mbx_lock); 3248 3249 /* if check for link returns error we will need to reset */ 3250 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3251 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3252 link_up = false; 3253 } 3254 3255 adapter->link_up = link_up; 3256 adapter->link_speed = link_speed; 3257 } 3258 3259 /** 3260 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3261 * print link up message 3262 * @adapter: pointer to the device adapter structure 3263 **/ 3264 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3265 { 3266 struct net_device *netdev = adapter->netdev; 3267 3268 /* only continue if link was previously down */ 3269 if (netif_carrier_ok(netdev)) 3270 return; 3271 3272 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3273 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3274 "10 Gbps" : 3275 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3276 "1 Gbps" : 3277 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3278 "100 Mbps" : 3279 "unknown speed"); 3280 3281 netif_carrier_on(netdev); 3282 } 3283 3284 /** 3285 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3286 * print link down message 3287 * @adapter: pointer to the adapter structure 3288 **/ 3289 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3290 { 3291 struct net_device *netdev = adapter->netdev; 3292 3293 adapter->link_speed = 0; 3294 3295 /* only continue if link was up previously */ 3296 if (!netif_carrier_ok(netdev)) 3297 return; 3298 3299 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3300 3301 netif_carrier_off(netdev); 3302 } 3303 3304 /** 3305 * ixgbevf_watchdog_subtask - worker thread to bring link up 3306 * @adapter: board private structure 3307 **/ 3308 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3309 { 3310 /* if interface is down do nothing */ 3311 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3312 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3313 return; 3314 3315 ixgbevf_watchdog_update_link(adapter); 3316 3317 if (adapter->link_up) 3318 ixgbevf_watchdog_link_is_up(adapter); 3319 else 3320 ixgbevf_watchdog_link_is_down(adapter); 3321 3322 ixgbevf_update_stats(adapter); 3323 } 3324 3325 /** 3326 * ixgbevf_service_task - manages and runs subtasks 3327 * @work: pointer to work_struct containing our data 3328 **/ 3329 static void ixgbevf_service_task(struct work_struct *work) 3330 { 3331 struct ixgbevf_adapter *adapter = container_of(work, 3332 struct ixgbevf_adapter, 3333 service_task); 3334 struct ixgbe_hw *hw = &adapter->hw; 3335 3336 if (IXGBE_REMOVED(hw->hw_addr)) { 3337 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3338 rtnl_lock(); 3339 ixgbevf_down(adapter); 3340 rtnl_unlock(); 3341 } 3342 return; 3343 } 3344 3345 ixgbevf_queue_reset_subtask(adapter); 3346 ixgbevf_reset_subtask(adapter); 3347 ixgbevf_watchdog_subtask(adapter); 3348 ixgbevf_check_hang_subtask(adapter); 3349 3350 ixgbevf_service_event_complete(adapter); 3351 } 3352 3353 /** 3354 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3355 * @tx_ring: Tx descriptor ring for a specific queue 3356 * 3357 * Free all transmit software resources 3358 **/ 3359 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3360 { 3361 ixgbevf_clean_tx_ring(tx_ring); 3362 3363 vfree(tx_ring->tx_buffer_info); 3364 tx_ring->tx_buffer_info = NULL; 3365 3366 /* if not set, then don't free */ 3367 if (!tx_ring->desc) 3368 return; 3369 3370 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3371 tx_ring->dma); 3372 3373 tx_ring->desc = NULL; 3374 } 3375 3376 /** 3377 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3378 * @adapter: board private structure 3379 * 3380 * Free all transmit software resources 3381 **/ 3382 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3383 { 3384 int i; 3385 3386 for (i = 0; i < adapter->num_tx_queues; i++) 3387 if (adapter->tx_ring[i]->desc) 3388 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3389 for (i = 0; i < adapter->num_xdp_queues; i++) 3390 if (adapter->xdp_ring[i]->desc) 3391 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3392 } 3393 3394 /** 3395 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3396 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3397 * 3398 * Return 0 on success, negative on failure 3399 **/ 3400 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3401 { 3402 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3403 int size; 3404 3405 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3406 tx_ring->tx_buffer_info = vmalloc(size); 3407 if (!tx_ring->tx_buffer_info) 3408 goto err; 3409 3410 u64_stats_init(&tx_ring->syncp); 3411 3412 /* round up to nearest 4K */ 3413 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3414 tx_ring->size = ALIGN(tx_ring->size, 4096); 3415 3416 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3417 &tx_ring->dma, GFP_KERNEL); 3418 if (!tx_ring->desc) 3419 goto err; 3420 3421 return 0; 3422 3423 err: 3424 vfree(tx_ring->tx_buffer_info); 3425 tx_ring->tx_buffer_info = NULL; 3426 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3427 return -ENOMEM; 3428 } 3429 3430 /** 3431 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3432 * @adapter: board private structure 3433 * 3434 * If this function returns with an error, then it's possible one or 3435 * more of the rings is populated (while the rest are not). It is the 3436 * callers duty to clean those orphaned rings. 3437 * 3438 * Return 0 on success, negative on failure 3439 **/ 3440 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3441 { 3442 int i, j = 0, err = 0; 3443 3444 for (i = 0; i < adapter->num_tx_queues; i++) { 3445 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3446 if (!err) 3447 continue; 3448 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3449 goto err_setup_tx; 3450 } 3451 3452 for (j = 0; j < adapter->num_xdp_queues; j++) { 3453 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3454 if (!err) 3455 continue; 3456 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3457 goto err_setup_tx; 3458 } 3459 3460 return 0; 3461 err_setup_tx: 3462 /* rewind the index freeing the rings as we go */ 3463 while (j--) 3464 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3465 while (i--) 3466 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3467 3468 return err; 3469 } 3470 3471 /** 3472 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3473 * @adapter: board private structure 3474 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3475 * 3476 * Returns 0 on success, negative on failure 3477 **/ 3478 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3479 struct ixgbevf_ring *rx_ring) 3480 { 3481 int size; 3482 3483 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3484 rx_ring->rx_buffer_info = vmalloc(size); 3485 if (!rx_ring->rx_buffer_info) 3486 goto err; 3487 3488 u64_stats_init(&rx_ring->syncp); 3489 3490 /* Round up to nearest 4K */ 3491 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3492 rx_ring->size = ALIGN(rx_ring->size, 4096); 3493 3494 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3495 &rx_ring->dma, GFP_KERNEL); 3496 3497 if (!rx_ring->desc) 3498 goto err; 3499 3500 /* XDP RX-queue info */ 3501 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3502 rx_ring->queue_index) < 0) 3503 goto err; 3504 3505 rx_ring->xdp_prog = adapter->xdp_prog; 3506 3507 return 0; 3508 err: 3509 vfree(rx_ring->rx_buffer_info); 3510 rx_ring->rx_buffer_info = NULL; 3511 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3512 return -ENOMEM; 3513 } 3514 3515 /** 3516 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3517 * @adapter: board private structure 3518 * 3519 * If this function returns with an error, then it's possible one or 3520 * more of the rings is populated (while the rest are not). It is the 3521 * callers duty to clean those orphaned rings. 3522 * 3523 * Return 0 on success, negative on failure 3524 **/ 3525 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3526 { 3527 int i, err = 0; 3528 3529 for (i = 0; i < adapter->num_rx_queues; i++) { 3530 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3531 if (!err) 3532 continue; 3533 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3534 goto err_setup_rx; 3535 } 3536 3537 return 0; 3538 err_setup_rx: 3539 /* rewind the index freeing the rings as we go */ 3540 while (i--) 3541 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3542 return err; 3543 } 3544 3545 /** 3546 * ixgbevf_free_rx_resources - Free Rx Resources 3547 * @rx_ring: ring to clean the resources from 3548 * 3549 * Free all receive software resources 3550 **/ 3551 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3552 { 3553 ixgbevf_clean_rx_ring(rx_ring); 3554 3555 rx_ring->xdp_prog = NULL; 3556 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3557 vfree(rx_ring->rx_buffer_info); 3558 rx_ring->rx_buffer_info = NULL; 3559 3560 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3561 rx_ring->dma); 3562 3563 rx_ring->desc = NULL; 3564 } 3565 3566 /** 3567 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3568 * @adapter: board private structure 3569 * 3570 * Free all receive software resources 3571 **/ 3572 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3573 { 3574 int i; 3575 3576 for (i = 0; i < adapter->num_rx_queues; i++) 3577 if (adapter->rx_ring[i]->desc) 3578 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3579 } 3580 3581 /** 3582 * ixgbevf_open - Called when a network interface is made active 3583 * @netdev: network interface device structure 3584 * 3585 * Returns 0 on success, negative value on failure 3586 * 3587 * The open entry point is called when a network interface is made 3588 * active by the system (IFF_UP). At this point all resources needed 3589 * for transmit and receive operations are allocated, the interrupt 3590 * handler is registered with the OS, the watchdog timer is started, 3591 * and the stack is notified that the interface is ready. 3592 **/ 3593 int ixgbevf_open(struct net_device *netdev) 3594 { 3595 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3596 struct ixgbe_hw *hw = &adapter->hw; 3597 int err; 3598 3599 /* A previous failure to open the device because of a lack of 3600 * available MSIX vector resources may have reset the number 3601 * of msix vectors variable to zero. The only way to recover 3602 * is to unload/reload the driver and hope that the system has 3603 * been able to recover some MSIX vector resources. 3604 */ 3605 if (!adapter->num_msix_vectors) 3606 return -ENOMEM; 3607 3608 if (hw->adapter_stopped) { 3609 ixgbevf_reset(adapter); 3610 /* if adapter is still stopped then PF isn't up and 3611 * the VF can't start. 3612 */ 3613 if (hw->adapter_stopped) { 3614 err = IXGBE_ERR_MBX; 3615 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3616 goto err_setup_reset; 3617 } 3618 } 3619 3620 /* disallow open during test */ 3621 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3622 return -EBUSY; 3623 3624 netif_carrier_off(netdev); 3625 3626 /* allocate transmit descriptors */ 3627 err = ixgbevf_setup_all_tx_resources(adapter); 3628 if (err) 3629 goto err_setup_tx; 3630 3631 /* allocate receive descriptors */ 3632 err = ixgbevf_setup_all_rx_resources(adapter); 3633 if (err) 3634 goto err_setup_rx; 3635 3636 ixgbevf_configure(adapter); 3637 3638 err = ixgbevf_request_irq(adapter); 3639 if (err) 3640 goto err_req_irq; 3641 3642 /* Notify the stack of the actual queue counts. */ 3643 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3644 if (err) 3645 goto err_set_queues; 3646 3647 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3648 if (err) 3649 goto err_set_queues; 3650 3651 ixgbevf_up_complete(adapter); 3652 3653 return 0; 3654 3655 err_set_queues: 3656 ixgbevf_free_irq(adapter); 3657 err_req_irq: 3658 ixgbevf_free_all_rx_resources(adapter); 3659 err_setup_rx: 3660 ixgbevf_free_all_tx_resources(adapter); 3661 err_setup_tx: 3662 ixgbevf_reset(adapter); 3663 err_setup_reset: 3664 3665 return err; 3666 } 3667 3668 /** 3669 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3670 * @adapter: the private adapter struct 3671 * 3672 * This function should contain the necessary work common to both suspending 3673 * and closing of the device. 3674 */ 3675 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3676 { 3677 ixgbevf_down(adapter); 3678 ixgbevf_free_irq(adapter); 3679 ixgbevf_free_all_tx_resources(adapter); 3680 ixgbevf_free_all_rx_resources(adapter); 3681 } 3682 3683 /** 3684 * ixgbevf_close - Disables a network interface 3685 * @netdev: network interface device structure 3686 * 3687 * Returns 0, this is not allowed to fail 3688 * 3689 * The close entry point is called when an interface is de-activated 3690 * by the OS. The hardware is still under the drivers control, but 3691 * needs to be disabled. A global MAC reset is issued to stop the 3692 * hardware, and all transmit and receive resources are freed. 3693 **/ 3694 int ixgbevf_close(struct net_device *netdev) 3695 { 3696 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3697 3698 if (netif_device_present(netdev)) 3699 ixgbevf_close_suspend(adapter); 3700 3701 return 0; 3702 } 3703 3704 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3705 { 3706 struct net_device *dev = adapter->netdev; 3707 3708 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3709 &adapter->state)) 3710 return; 3711 3712 /* if interface is down do nothing */ 3713 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3714 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3715 return; 3716 3717 /* Hardware has to reinitialize queues and interrupts to 3718 * match packet buffer alignment. Unfortunately, the 3719 * hardware is not flexible enough to do this dynamically. 3720 */ 3721 rtnl_lock(); 3722 3723 if (netif_running(dev)) 3724 ixgbevf_close(dev); 3725 3726 ixgbevf_clear_interrupt_scheme(adapter); 3727 ixgbevf_init_interrupt_scheme(adapter); 3728 3729 if (netif_running(dev)) 3730 ixgbevf_open(dev); 3731 3732 rtnl_unlock(); 3733 } 3734 3735 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3736 u32 vlan_macip_lens, u32 fceof_saidx, 3737 u32 type_tucmd, u32 mss_l4len_idx) 3738 { 3739 struct ixgbe_adv_tx_context_desc *context_desc; 3740 u16 i = tx_ring->next_to_use; 3741 3742 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3743 3744 i++; 3745 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3746 3747 /* set bits to identify this as an advanced context descriptor */ 3748 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3749 3750 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3751 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); 3752 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3753 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3754 } 3755 3756 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3757 struct ixgbevf_tx_buffer *first, 3758 u8 *hdr_len, 3759 struct ixgbevf_ipsec_tx_data *itd) 3760 { 3761 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3762 struct sk_buff *skb = first->skb; 3763 union { 3764 struct iphdr *v4; 3765 struct ipv6hdr *v6; 3766 unsigned char *hdr; 3767 } ip; 3768 union { 3769 struct tcphdr *tcp; 3770 unsigned char *hdr; 3771 } l4; 3772 u32 paylen, l4_offset; 3773 u32 fceof_saidx = 0; 3774 int err; 3775 3776 if (skb->ip_summed != CHECKSUM_PARTIAL) 3777 return 0; 3778 3779 if (!skb_is_gso(skb)) 3780 return 0; 3781 3782 err = skb_cow_head(skb, 0); 3783 if (err < 0) 3784 return err; 3785 3786 if (eth_p_mpls(first->protocol)) 3787 ip.hdr = skb_inner_network_header(skb); 3788 else 3789 ip.hdr = skb_network_header(skb); 3790 l4.hdr = skb_checksum_start(skb); 3791 3792 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3793 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3794 3795 /* initialize outer IP header fields */ 3796 if (ip.v4->version == 4) { 3797 unsigned char *csum_start = skb_checksum_start(skb); 3798 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3799 int len = csum_start - trans_start; 3800 3801 /* IP header will have to cancel out any data that 3802 * is not a part of the outer IP header, so set to 3803 * a reverse csum if needed, else init check to 0. 3804 */ 3805 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? 3806 csum_fold(csum_partial(trans_start, 3807 len, 0)) : 0; 3808 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3809 3810 ip.v4->tot_len = 0; 3811 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3812 IXGBE_TX_FLAGS_CSUM | 3813 IXGBE_TX_FLAGS_IPV4; 3814 } else { 3815 ip.v6->payload_len = 0; 3816 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3817 IXGBE_TX_FLAGS_CSUM; 3818 } 3819 3820 /* determine offset of inner transport header */ 3821 l4_offset = l4.hdr - skb->data; 3822 3823 /* compute length of segmentation header */ 3824 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3825 3826 /* remove payload length from inner checksum */ 3827 paylen = skb->len - l4_offset; 3828 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3829 3830 /* update gso size and bytecount with header size */ 3831 first->gso_segs = skb_shinfo(skb)->gso_segs; 3832 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3833 3834 /* mss_l4len_id: use 1 as index for TSO */ 3835 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3836 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3837 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3838 3839 fceof_saidx |= itd->pfsa; 3840 type_tucmd |= itd->flags | itd->trailer_len; 3841 3842 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3843 vlan_macip_lens = l4.hdr - ip.hdr; 3844 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3845 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3846 3847 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 3848 mss_l4len_idx); 3849 3850 return 1; 3851 } 3852 3853 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) 3854 { 3855 unsigned int offset = 0; 3856 3857 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 3858 3859 return offset == skb_checksum_start_offset(skb); 3860 } 3861 3862 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3863 struct ixgbevf_tx_buffer *first, 3864 struct ixgbevf_ipsec_tx_data *itd) 3865 { 3866 struct sk_buff *skb = first->skb; 3867 u32 vlan_macip_lens = 0; 3868 u32 fceof_saidx = 0; 3869 u32 type_tucmd = 0; 3870 3871 if (skb->ip_summed != CHECKSUM_PARTIAL) 3872 goto no_csum; 3873 3874 switch (skb->csum_offset) { 3875 case offsetof(struct tcphdr, check): 3876 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3877 fallthrough; 3878 case offsetof(struct udphdr, check): 3879 break; 3880 case offsetof(struct sctphdr, checksum): 3881 /* validate that this is actually an SCTP request */ 3882 if (((first->protocol == htons(ETH_P_IP)) && 3883 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 3884 ((first->protocol == htons(ETH_P_IPV6)) && 3885 ixgbevf_ipv6_csum_is_sctp(skb))) { 3886 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3887 break; 3888 } 3889 fallthrough; 3890 default: 3891 skb_checksum_help(skb); 3892 goto no_csum; 3893 } 3894 3895 if (first->protocol == htons(ETH_P_IP)) 3896 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3897 3898 /* update TX checksum flag */ 3899 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3900 vlan_macip_lens = skb_checksum_start_offset(skb) - 3901 skb_network_offset(skb); 3902 no_csum: 3903 /* vlan_macip_lens: MACLEN, VLAN tag */ 3904 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3905 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3906 3907 fceof_saidx |= itd->pfsa; 3908 type_tucmd |= itd->flags | itd->trailer_len; 3909 3910 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3911 fceof_saidx, type_tucmd, 0); 3912 } 3913 3914 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3915 { 3916 /* set type for advanced descriptor with frame checksum insertion */ 3917 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3918 IXGBE_ADVTXD_DCMD_IFCS | 3919 IXGBE_ADVTXD_DCMD_DEXT); 3920 3921 /* set HW VLAN bit if VLAN is present */ 3922 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3923 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3924 3925 /* set segmentation enable bits for TSO/FSO */ 3926 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3927 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3928 3929 return cmd_type; 3930 } 3931 3932 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3933 u32 tx_flags, unsigned int paylen) 3934 { 3935 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3936 3937 /* enable L4 checksum for TSO and TX checksum offload */ 3938 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3939 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3940 3941 /* enble IPv4 checksum for TSO */ 3942 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3943 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3944 3945 /* enable IPsec */ 3946 if (tx_flags & IXGBE_TX_FLAGS_IPSEC) 3947 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); 3948 3949 /* use index 1 context for TSO/FSO/FCOE/IPSEC */ 3950 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) 3951 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3952 3953 /* Check Context must be set if Tx switch is enabled, which it 3954 * always is for case where virtual functions are running 3955 */ 3956 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3957 3958 tx_desc->read.olinfo_status = olinfo_status; 3959 } 3960 3961 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3962 struct ixgbevf_tx_buffer *first, 3963 const u8 hdr_len) 3964 { 3965 struct sk_buff *skb = first->skb; 3966 struct ixgbevf_tx_buffer *tx_buffer; 3967 union ixgbe_adv_tx_desc *tx_desc; 3968 skb_frag_t *frag; 3969 dma_addr_t dma; 3970 unsigned int data_len, size; 3971 u32 tx_flags = first->tx_flags; 3972 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3973 u16 i = tx_ring->next_to_use; 3974 3975 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3976 3977 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3978 3979 size = skb_headlen(skb); 3980 data_len = skb->data_len; 3981 3982 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3983 3984 tx_buffer = first; 3985 3986 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3987 if (dma_mapping_error(tx_ring->dev, dma)) 3988 goto dma_error; 3989 3990 /* record length, and DMA address */ 3991 dma_unmap_len_set(tx_buffer, len, size); 3992 dma_unmap_addr_set(tx_buffer, dma, dma); 3993 3994 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3995 3996 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3997 tx_desc->read.cmd_type_len = 3998 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3999 4000 i++; 4001 tx_desc++; 4002 if (i == tx_ring->count) { 4003 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4004 i = 0; 4005 } 4006 tx_desc->read.olinfo_status = 0; 4007 4008 dma += IXGBE_MAX_DATA_PER_TXD; 4009 size -= IXGBE_MAX_DATA_PER_TXD; 4010 4011 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4012 } 4013 4014 if (likely(!data_len)) 4015 break; 4016 4017 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 4018 4019 i++; 4020 tx_desc++; 4021 if (i == tx_ring->count) { 4022 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4023 i = 0; 4024 } 4025 tx_desc->read.olinfo_status = 0; 4026 4027 size = skb_frag_size(frag); 4028 data_len -= size; 4029 4030 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 4031 DMA_TO_DEVICE); 4032 4033 tx_buffer = &tx_ring->tx_buffer_info[i]; 4034 } 4035 4036 /* write last descriptor with RS and EOP bits */ 4037 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 4038 tx_desc->read.cmd_type_len = cmd_type; 4039 4040 /* set the timestamp */ 4041 first->time_stamp = jiffies; 4042 4043 skb_tx_timestamp(skb); 4044 4045 /* Force memory writes to complete before letting h/w know there 4046 * are new descriptors to fetch. (Only applicable for weak-ordered 4047 * memory model archs, such as IA-64). 4048 * 4049 * We also need this memory barrier (wmb) to make certain all of the 4050 * status bits have been updated before next_to_watch is written. 4051 */ 4052 wmb(); 4053 4054 /* set next_to_watch value indicating a packet is present */ 4055 first->next_to_watch = tx_desc; 4056 4057 i++; 4058 if (i == tx_ring->count) 4059 i = 0; 4060 4061 tx_ring->next_to_use = i; 4062 4063 /* notify HW of packet */ 4064 ixgbevf_write_tail(tx_ring, i); 4065 4066 return; 4067 dma_error: 4068 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4069 tx_buffer = &tx_ring->tx_buffer_info[i]; 4070 4071 /* clear dma mappings for failed tx_buffer_info map */ 4072 while (tx_buffer != first) { 4073 if (dma_unmap_len(tx_buffer, len)) 4074 dma_unmap_page(tx_ring->dev, 4075 dma_unmap_addr(tx_buffer, dma), 4076 dma_unmap_len(tx_buffer, len), 4077 DMA_TO_DEVICE); 4078 dma_unmap_len_set(tx_buffer, len, 0); 4079 4080 if (i-- == 0) 4081 i += tx_ring->count; 4082 tx_buffer = &tx_ring->tx_buffer_info[i]; 4083 } 4084 4085 if (dma_unmap_len(tx_buffer, len)) 4086 dma_unmap_single(tx_ring->dev, 4087 dma_unmap_addr(tx_buffer, dma), 4088 dma_unmap_len(tx_buffer, len), 4089 DMA_TO_DEVICE); 4090 dma_unmap_len_set(tx_buffer, len, 0); 4091 4092 dev_kfree_skb_any(tx_buffer->skb); 4093 tx_buffer->skb = NULL; 4094 4095 tx_ring->next_to_use = i; 4096 } 4097 4098 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4099 { 4100 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4101 /* Herbert's original patch had: 4102 * smp_mb__after_netif_stop_queue(); 4103 * but since that doesn't exist yet, just open code it. 4104 */ 4105 smp_mb(); 4106 4107 /* We need to check again in a case another CPU has just 4108 * made room available. 4109 */ 4110 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4111 return -EBUSY; 4112 4113 /* A reprieve! - use start_queue because it doesn't call schedule */ 4114 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4115 ++tx_ring->tx_stats.restart_queue; 4116 4117 return 0; 4118 } 4119 4120 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4121 { 4122 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4123 return 0; 4124 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4125 } 4126 4127 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4128 struct ixgbevf_ring *tx_ring) 4129 { 4130 struct ixgbevf_tx_buffer *first; 4131 int tso; 4132 u32 tx_flags = 0; 4133 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4134 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; 4135 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4136 unsigned short f; 4137 #endif 4138 u8 hdr_len = 0; 4139 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4140 4141 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4142 dev_kfree_skb_any(skb); 4143 return NETDEV_TX_OK; 4144 } 4145 4146 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4147 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4148 * + 2 desc gap to keep tail from touching head, 4149 * + 1 desc for context descriptor, 4150 * otherwise try next time 4151 */ 4152 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4153 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 4154 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 4155 4156 count += TXD_USE_COUNT(skb_frag_size(frag)); 4157 } 4158 #else 4159 count += skb_shinfo(skb)->nr_frags; 4160 #endif 4161 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4162 tx_ring->tx_stats.tx_busy++; 4163 return NETDEV_TX_BUSY; 4164 } 4165 4166 /* record the location of the first descriptor for this packet */ 4167 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4168 first->skb = skb; 4169 first->bytecount = skb->len; 4170 first->gso_segs = 1; 4171 4172 if (skb_vlan_tag_present(skb)) { 4173 tx_flags |= skb_vlan_tag_get(skb); 4174 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4175 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4176 } 4177 4178 /* record initial flags and protocol */ 4179 first->tx_flags = tx_flags; 4180 first->protocol = vlan_get_protocol(skb); 4181 4182 #ifdef CONFIG_IXGBEVF_IPSEC 4183 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) 4184 goto out_drop; 4185 #endif 4186 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); 4187 if (tso < 0) 4188 goto out_drop; 4189 else if (!tso) 4190 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); 4191 4192 ixgbevf_tx_map(tx_ring, first, hdr_len); 4193 4194 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4195 4196 return NETDEV_TX_OK; 4197 4198 out_drop: 4199 dev_kfree_skb_any(first->skb); 4200 first->skb = NULL; 4201 4202 return NETDEV_TX_OK; 4203 } 4204 4205 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4206 { 4207 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4208 struct ixgbevf_ring *tx_ring; 4209 4210 if (skb->len <= 0) { 4211 dev_kfree_skb_any(skb); 4212 return NETDEV_TX_OK; 4213 } 4214 4215 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4216 * in order to meet this minimum size requirement. 4217 */ 4218 if (skb->len < 17) { 4219 if (skb_padto(skb, 17)) 4220 return NETDEV_TX_OK; 4221 skb->len = 17; 4222 } 4223 4224 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4225 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4226 } 4227 4228 /** 4229 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4230 * @netdev: network interface device structure 4231 * @p: pointer to an address structure 4232 * 4233 * Returns 0 on success, negative on failure 4234 **/ 4235 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4236 { 4237 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4238 struct ixgbe_hw *hw = &adapter->hw; 4239 struct sockaddr *addr = p; 4240 int err; 4241 4242 if (!is_valid_ether_addr(addr->sa_data)) 4243 return -EADDRNOTAVAIL; 4244 4245 spin_lock_bh(&adapter->mbx_lock); 4246 4247 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4248 4249 spin_unlock_bh(&adapter->mbx_lock); 4250 4251 if (err) 4252 return -EPERM; 4253 4254 ether_addr_copy(hw->mac.addr, addr->sa_data); 4255 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4256 ether_addr_copy(netdev->dev_addr, addr->sa_data); 4257 4258 return 0; 4259 } 4260 4261 /** 4262 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4263 * @netdev: network interface device structure 4264 * @new_mtu: new value for maximum frame size 4265 * 4266 * Returns 0 on success, negative on failure 4267 **/ 4268 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4269 { 4270 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4271 struct ixgbe_hw *hw = &adapter->hw; 4272 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4273 int ret; 4274 4275 /* prevent MTU being changed to a size unsupported by XDP */ 4276 if (adapter->xdp_prog) { 4277 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4278 return -EPERM; 4279 } 4280 4281 spin_lock_bh(&adapter->mbx_lock); 4282 /* notify the PF of our intent to use this size of frame */ 4283 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4284 spin_unlock_bh(&adapter->mbx_lock); 4285 if (ret) 4286 return -EINVAL; 4287 4288 hw_dbg(hw, "changing MTU from %d to %d\n", 4289 netdev->mtu, new_mtu); 4290 4291 /* must set new MTU before calling down or up */ 4292 netdev->mtu = new_mtu; 4293 4294 if (netif_running(netdev)) 4295 ixgbevf_reinit_locked(adapter); 4296 4297 return 0; 4298 } 4299 4300 static int __maybe_unused ixgbevf_suspend(struct device *dev_d) 4301 { 4302 struct net_device *netdev = dev_get_drvdata(dev_d); 4303 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4304 4305 rtnl_lock(); 4306 netif_device_detach(netdev); 4307 4308 if (netif_running(netdev)) 4309 ixgbevf_close_suspend(adapter); 4310 4311 ixgbevf_clear_interrupt_scheme(adapter); 4312 rtnl_unlock(); 4313 4314 return 0; 4315 } 4316 4317 static int __maybe_unused ixgbevf_resume(struct device *dev_d) 4318 { 4319 struct pci_dev *pdev = to_pci_dev(dev_d); 4320 struct net_device *netdev = pci_get_drvdata(pdev); 4321 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4322 u32 err; 4323 4324 adapter->hw.hw_addr = adapter->io_addr; 4325 smp_mb__before_atomic(); 4326 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4327 pci_set_master(pdev); 4328 4329 ixgbevf_reset(adapter); 4330 4331 rtnl_lock(); 4332 err = ixgbevf_init_interrupt_scheme(adapter); 4333 if (!err && netif_running(netdev)) 4334 err = ixgbevf_open(netdev); 4335 rtnl_unlock(); 4336 if (err) 4337 return err; 4338 4339 netif_device_attach(netdev); 4340 4341 return err; 4342 } 4343 4344 static void ixgbevf_shutdown(struct pci_dev *pdev) 4345 { 4346 ixgbevf_suspend(&pdev->dev); 4347 } 4348 4349 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4350 const struct ixgbevf_ring *ring) 4351 { 4352 u64 bytes, packets; 4353 unsigned int start; 4354 4355 if (ring) { 4356 do { 4357 start = u64_stats_fetch_begin_irq(&ring->syncp); 4358 bytes = ring->stats.bytes; 4359 packets = ring->stats.packets; 4360 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4361 stats->tx_bytes += bytes; 4362 stats->tx_packets += packets; 4363 } 4364 } 4365 4366 static void ixgbevf_get_stats(struct net_device *netdev, 4367 struct rtnl_link_stats64 *stats) 4368 { 4369 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4370 unsigned int start; 4371 u64 bytes, packets; 4372 const struct ixgbevf_ring *ring; 4373 int i; 4374 4375 ixgbevf_update_stats(adapter); 4376 4377 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4378 4379 rcu_read_lock(); 4380 for (i = 0; i < adapter->num_rx_queues; i++) { 4381 ring = adapter->rx_ring[i]; 4382 do { 4383 start = u64_stats_fetch_begin_irq(&ring->syncp); 4384 bytes = ring->stats.bytes; 4385 packets = ring->stats.packets; 4386 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4387 stats->rx_bytes += bytes; 4388 stats->rx_packets += packets; 4389 } 4390 4391 for (i = 0; i < adapter->num_tx_queues; i++) { 4392 ring = adapter->tx_ring[i]; 4393 ixgbevf_get_tx_ring_stats(stats, ring); 4394 } 4395 4396 for (i = 0; i < adapter->num_xdp_queues; i++) { 4397 ring = adapter->xdp_ring[i]; 4398 ixgbevf_get_tx_ring_stats(stats, ring); 4399 } 4400 rcu_read_unlock(); 4401 } 4402 4403 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4404 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4405 4406 static netdev_features_t 4407 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4408 netdev_features_t features) 4409 { 4410 unsigned int network_hdr_len, mac_hdr_len; 4411 4412 /* Make certain the headers can be described by a context descriptor */ 4413 mac_hdr_len = skb_network_header(skb) - skb->data; 4414 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4415 return features & ~(NETIF_F_HW_CSUM | 4416 NETIF_F_SCTP_CRC | 4417 NETIF_F_HW_VLAN_CTAG_TX | 4418 NETIF_F_TSO | 4419 NETIF_F_TSO6); 4420 4421 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4422 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4423 return features & ~(NETIF_F_HW_CSUM | 4424 NETIF_F_SCTP_CRC | 4425 NETIF_F_TSO | 4426 NETIF_F_TSO6); 4427 4428 /* We can only support IPV4 TSO in tunnels if we can mangle the 4429 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4430 */ 4431 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4432 features &= ~NETIF_F_TSO; 4433 4434 return features; 4435 } 4436 4437 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4438 { 4439 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4440 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4441 struct bpf_prog *old_prog; 4442 4443 /* verify ixgbevf ring attributes are sufficient for XDP */ 4444 for (i = 0; i < adapter->num_rx_queues; i++) { 4445 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4446 4447 if (frame_size > ixgbevf_rx_bufsz(ring)) 4448 return -EINVAL; 4449 } 4450 4451 old_prog = xchg(&adapter->xdp_prog, prog); 4452 4453 /* If transitioning XDP modes reconfigure rings */ 4454 if (!!prog != !!old_prog) { 4455 /* Hardware has to reinitialize queues and interrupts to 4456 * match packet buffer alignment. Unfortunately, the 4457 * hardware is not flexible enough to do this dynamically. 4458 */ 4459 if (netif_running(dev)) 4460 ixgbevf_close(dev); 4461 4462 ixgbevf_clear_interrupt_scheme(adapter); 4463 ixgbevf_init_interrupt_scheme(adapter); 4464 4465 if (netif_running(dev)) 4466 ixgbevf_open(dev); 4467 } else { 4468 for (i = 0; i < adapter->num_rx_queues; i++) 4469 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4470 } 4471 4472 if (old_prog) 4473 bpf_prog_put(old_prog); 4474 4475 return 0; 4476 } 4477 4478 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4479 { 4480 switch (xdp->command) { 4481 case XDP_SETUP_PROG: 4482 return ixgbevf_xdp_setup(dev, xdp->prog); 4483 default: 4484 return -EINVAL; 4485 } 4486 } 4487 4488 static const struct net_device_ops ixgbevf_netdev_ops = { 4489 .ndo_open = ixgbevf_open, 4490 .ndo_stop = ixgbevf_close, 4491 .ndo_start_xmit = ixgbevf_xmit_frame, 4492 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4493 .ndo_get_stats64 = ixgbevf_get_stats, 4494 .ndo_validate_addr = eth_validate_addr, 4495 .ndo_set_mac_address = ixgbevf_set_mac, 4496 .ndo_change_mtu = ixgbevf_change_mtu, 4497 .ndo_tx_timeout = ixgbevf_tx_timeout, 4498 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4499 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4500 .ndo_features_check = ixgbevf_features_check, 4501 .ndo_bpf = ixgbevf_xdp, 4502 }; 4503 4504 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4505 { 4506 dev->netdev_ops = &ixgbevf_netdev_ops; 4507 ixgbevf_set_ethtool_ops(dev); 4508 dev->watchdog_timeo = 5 * HZ; 4509 } 4510 4511 /** 4512 * ixgbevf_probe - Device Initialization Routine 4513 * @pdev: PCI device information struct 4514 * @ent: entry in ixgbevf_pci_tbl 4515 * 4516 * Returns 0 on success, negative on failure 4517 * 4518 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4519 * The OS initialization, configuring of the adapter private structure, 4520 * and a hardware reset occur. 4521 **/ 4522 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4523 { 4524 struct net_device *netdev; 4525 struct ixgbevf_adapter *adapter = NULL; 4526 struct ixgbe_hw *hw = NULL; 4527 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4528 int err, pci_using_dac; 4529 bool disable_dev = false; 4530 4531 err = pci_enable_device(pdev); 4532 if (err) 4533 return err; 4534 4535 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 4536 pci_using_dac = 1; 4537 } else { 4538 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4539 if (err) { 4540 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4541 goto err_dma; 4542 } 4543 pci_using_dac = 0; 4544 } 4545 4546 err = pci_request_regions(pdev, ixgbevf_driver_name); 4547 if (err) { 4548 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4549 goto err_pci_reg; 4550 } 4551 4552 pci_set_master(pdev); 4553 4554 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4555 MAX_TX_QUEUES); 4556 if (!netdev) { 4557 err = -ENOMEM; 4558 goto err_alloc_etherdev; 4559 } 4560 4561 SET_NETDEV_DEV(netdev, &pdev->dev); 4562 4563 adapter = netdev_priv(netdev); 4564 4565 adapter->netdev = netdev; 4566 adapter->pdev = pdev; 4567 hw = &adapter->hw; 4568 hw->back = adapter; 4569 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4570 4571 /* call save state here in standalone driver because it relies on 4572 * adapter struct to exist, and needs to call netdev_priv 4573 */ 4574 pci_save_state(pdev); 4575 4576 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4577 pci_resource_len(pdev, 0)); 4578 adapter->io_addr = hw->hw_addr; 4579 if (!hw->hw_addr) { 4580 err = -EIO; 4581 goto err_ioremap; 4582 } 4583 4584 ixgbevf_assign_netdev_ops(netdev); 4585 4586 /* Setup HW API */ 4587 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4588 hw->mac.type = ii->mac; 4589 4590 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4591 sizeof(struct ixgbe_mbx_operations)); 4592 4593 /* setup the private structure */ 4594 err = ixgbevf_sw_init(adapter); 4595 if (err) 4596 goto err_sw_init; 4597 4598 /* The HW MAC address was set and/or determined in sw_init */ 4599 if (!is_valid_ether_addr(netdev->dev_addr)) { 4600 pr_err("invalid MAC address\n"); 4601 err = -EIO; 4602 goto err_sw_init; 4603 } 4604 4605 netdev->hw_features = NETIF_F_SG | 4606 NETIF_F_TSO | 4607 NETIF_F_TSO6 | 4608 NETIF_F_RXCSUM | 4609 NETIF_F_HW_CSUM | 4610 NETIF_F_SCTP_CRC; 4611 4612 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4613 NETIF_F_GSO_GRE_CSUM | \ 4614 NETIF_F_GSO_IPXIP4 | \ 4615 NETIF_F_GSO_IPXIP6 | \ 4616 NETIF_F_GSO_UDP_TUNNEL | \ 4617 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4618 4619 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4620 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4621 IXGBEVF_GSO_PARTIAL_FEATURES; 4622 4623 netdev->features = netdev->hw_features; 4624 4625 if (pci_using_dac) 4626 netdev->features |= NETIF_F_HIGHDMA; 4627 4628 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4629 netdev->mpls_features |= NETIF_F_SG | 4630 NETIF_F_TSO | 4631 NETIF_F_TSO6 | 4632 NETIF_F_HW_CSUM; 4633 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4634 netdev->hw_enc_features |= netdev->vlan_features; 4635 4636 /* set this bit last since it cannot be part of vlan_features */ 4637 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4638 NETIF_F_HW_VLAN_CTAG_RX | 4639 NETIF_F_HW_VLAN_CTAG_TX; 4640 4641 netdev->priv_flags |= IFF_UNICAST_FLT; 4642 4643 /* MTU range: 68 - 1504 or 9710 */ 4644 netdev->min_mtu = ETH_MIN_MTU; 4645 switch (adapter->hw.api_version) { 4646 case ixgbe_mbox_api_11: 4647 case ixgbe_mbox_api_12: 4648 case ixgbe_mbox_api_13: 4649 case ixgbe_mbox_api_14: 4650 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4651 (ETH_HLEN + ETH_FCS_LEN); 4652 break; 4653 default: 4654 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4655 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4656 (ETH_HLEN + ETH_FCS_LEN); 4657 else 4658 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4659 break; 4660 } 4661 4662 if (IXGBE_REMOVED(hw->hw_addr)) { 4663 err = -EIO; 4664 goto err_sw_init; 4665 } 4666 4667 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4668 4669 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4670 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4671 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4672 4673 err = ixgbevf_init_interrupt_scheme(adapter); 4674 if (err) 4675 goto err_sw_init; 4676 4677 strcpy(netdev->name, "eth%d"); 4678 4679 err = register_netdev(netdev); 4680 if (err) 4681 goto err_register; 4682 4683 pci_set_drvdata(pdev, netdev); 4684 netif_carrier_off(netdev); 4685 ixgbevf_init_ipsec_offload(adapter); 4686 4687 ixgbevf_init_last_counter_stats(adapter); 4688 4689 /* print the VF info */ 4690 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4691 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4692 4693 switch (hw->mac.type) { 4694 case ixgbe_mac_X550_vf: 4695 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4696 break; 4697 case ixgbe_mac_X540_vf: 4698 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4699 break; 4700 case ixgbe_mac_82599_vf: 4701 default: 4702 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4703 break; 4704 } 4705 4706 return 0; 4707 4708 err_register: 4709 ixgbevf_clear_interrupt_scheme(adapter); 4710 err_sw_init: 4711 ixgbevf_reset_interrupt_capability(adapter); 4712 iounmap(adapter->io_addr); 4713 kfree(adapter->rss_key); 4714 err_ioremap: 4715 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4716 free_netdev(netdev); 4717 err_alloc_etherdev: 4718 pci_release_regions(pdev); 4719 err_pci_reg: 4720 err_dma: 4721 if (!adapter || disable_dev) 4722 pci_disable_device(pdev); 4723 return err; 4724 } 4725 4726 /** 4727 * ixgbevf_remove - Device Removal Routine 4728 * @pdev: PCI device information struct 4729 * 4730 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4731 * that it should release a PCI device. The could be caused by a 4732 * Hot-Plug event, or because the driver is going to be removed from 4733 * memory. 4734 **/ 4735 static void ixgbevf_remove(struct pci_dev *pdev) 4736 { 4737 struct net_device *netdev = pci_get_drvdata(pdev); 4738 struct ixgbevf_adapter *adapter; 4739 bool disable_dev; 4740 4741 if (!netdev) 4742 return; 4743 4744 adapter = netdev_priv(netdev); 4745 4746 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4747 cancel_work_sync(&adapter->service_task); 4748 4749 if (netdev->reg_state == NETREG_REGISTERED) 4750 unregister_netdev(netdev); 4751 4752 ixgbevf_stop_ipsec_offload(adapter); 4753 ixgbevf_clear_interrupt_scheme(adapter); 4754 ixgbevf_reset_interrupt_capability(adapter); 4755 4756 iounmap(adapter->io_addr); 4757 pci_release_regions(pdev); 4758 4759 hw_dbg(&adapter->hw, "Remove complete\n"); 4760 4761 kfree(adapter->rss_key); 4762 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4763 free_netdev(netdev); 4764 4765 if (disable_dev) 4766 pci_disable_device(pdev); 4767 } 4768 4769 /** 4770 * ixgbevf_io_error_detected - called when PCI error is detected 4771 * @pdev: Pointer to PCI device 4772 * @state: The current pci connection state 4773 * 4774 * This function is called after a PCI bus error affecting 4775 * this device has been detected. 4776 **/ 4777 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4778 pci_channel_state_t state) 4779 { 4780 struct net_device *netdev = pci_get_drvdata(pdev); 4781 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4782 4783 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4784 return PCI_ERS_RESULT_DISCONNECT; 4785 4786 rtnl_lock(); 4787 netif_device_detach(netdev); 4788 4789 if (netif_running(netdev)) 4790 ixgbevf_close_suspend(adapter); 4791 4792 if (state == pci_channel_io_perm_failure) { 4793 rtnl_unlock(); 4794 return PCI_ERS_RESULT_DISCONNECT; 4795 } 4796 4797 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4798 pci_disable_device(pdev); 4799 rtnl_unlock(); 4800 4801 /* Request a slot slot reset. */ 4802 return PCI_ERS_RESULT_NEED_RESET; 4803 } 4804 4805 /** 4806 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4807 * @pdev: Pointer to PCI device 4808 * 4809 * Restart the card from scratch, as if from a cold-boot. Implementation 4810 * resembles the first-half of the ixgbevf_resume routine. 4811 **/ 4812 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4813 { 4814 struct net_device *netdev = pci_get_drvdata(pdev); 4815 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4816 4817 if (pci_enable_device_mem(pdev)) { 4818 dev_err(&pdev->dev, 4819 "Cannot re-enable PCI device after reset.\n"); 4820 return PCI_ERS_RESULT_DISCONNECT; 4821 } 4822 4823 adapter->hw.hw_addr = adapter->io_addr; 4824 smp_mb__before_atomic(); 4825 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4826 pci_set_master(pdev); 4827 4828 ixgbevf_reset(adapter); 4829 4830 return PCI_ERS_RESULT_RECOVERED; 4831 } 4832 4833 /** 4834 * ixgbevf_io_resume - called when traffic can start flowing again. 4835 * @pdev: Pointer to PCI device 4836 * 4837 * This callback is called when the error recovery driver tells us that 4838 * its OK to resume normal operation. Implementation resembles the 4839 * second-half of the ixgbevf_resume routine. 4840 **/ 4841 static void ixgbevf_io_resume(struct pci_dev *pdev) 4842 { 4843 struct net_device *netdev = pci_get_drvdata(pdev); 4844 4845 rtnl_lock(); 4846 if (netif_running(netdev)) 4847 ixgbevf_open(netdev); 4848 4849 netif_device_attach(netdev); 4850 rtnl_unlock(); 4851 } 4852 4853 /* PCI Error Recovery (ERS) */ 4854 static const struct pci_error_handlers ixgbevf_err_handler = { 4855 .error_detected = ixgbevf_io_error_detected, 4856 .slot_reset = ixgbevf_io_slot_reset, 4857 .resume = ixgbevf_io_resume, 4858 }; 4859 4860 static SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume); 4861 4862 static struct pci_driver ixgbevf_driver = { 4863 .name = ixgbevf_driver_name, 4864 .id_table = ixgbevf_pci_tbl, 4865 .probe = ixgbevf_probe, 4866 .remove = ixgbevf_remove, 4867 4868 /* Power Management Hooks */ 4869 .driver.pm = &ixgbevf_pm_ops, 4870 4871 .shutdown = ixgbevf_shutdown, 4872 .err_handler = &ixgbevf_err_handler 4873 }; 4874 4875 /** 4876 * ixgbevf_init_module - Driver Registration Routine 4877 * 4878 * ixgbevf_init_module is the first routine called when the driver is 4879 * loaded. All it does is register with the PCI subsystem. 4880 **/ 4881 static int __init ixgbevf_init_module(void) 4882 { 4883 pr_info("%s\n", ixgbevf_driver_string); 4884 pr_info("%s\n", ixgbevf_copyright); 4885 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4886 if (!ixgbevf_wq) { 4887 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4888 return -ENOMEM; 4889 } 4890 4891 return pci_register_driver(&ixgbevf_driver); 4892 } 4893 4894 module_init(ixgbevf_init_module); 4895 4896 /** 4897 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4898 * 4899 * ixgbevf_exit_module is called just before the driver is removed 4900 * from memory. 4901 **/ 4902 static void __exit ixgbevf_exit_module(void) 4903 { 4904 pci_unregister_driver(&ixgbevf_driver); 4905 if (ixgbevf_wq) { 4906 destroy_workqueue(ixgbevf_wq); 4907 ixgbevf_wq = NULL; 4908 } 4909 } 4910 4911 #ifdef DEBUG 4912 /** 4913 * ixgbevf_get_hw_dev_name - return device name string 4914 * used by hardware layer to print debugging information 4915 * @hw: pointer to private hardware struct 4916 **/ 4917 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4918 { 4919 struct ixgbevf_adapter *adapter = hw->back; 4920 4921 return adapter->netdev->name; 4922 } 4923 4924 #endif 4925 module_exit(ixgbevf_exit_module); 4926 4927 /* ixgbevf_main.c */ 4928