1 /******************************************************************************* 2 3 Intel 82599 Virtual Function driver 4 Copyright(c) 1999 - 2015 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, see <http://www.gnu.org/licenses/>. 17 18 The full GNU General Public License is included in this distribution in 19 the file called "COPYING". 20 21 Contact Information: 22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 25 *******************************************************************************/ 26 27 /****************************************************************************** 28 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 29 ******************************************************************************/ 30 31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 32 33 #include <linux/types.h> 34 #include <linux/bitops.h> 35 #include <linux/module.h> 36 #include <linux/pci.h> 37 #include <linux/netdevice.h> 38 #include <linux/vmalloc.h> 39 #include <linux/string.h> 40 #include <linux/in.h> 41 #include <linux/ip.h> 42 #include <linux/tcp.h> 43 #include <linux/sctp.h> 44 #include <linux/ipv6.h> 45 #include <linux/slab.h> 46 #include <net/checksum.h> 47 #include <net/ip6_checksum.h> 48 #include <linux/ethtool.h> 49 #include <linux/if.h> 50 #include <linux/if_vlan.h> 51 #include <linux/prefetch.h> 52 53 #include "ixgbevf.h" 54 55 const char ixgbevf_driver_name[] = "ixgbevf"; 56 static const char ixgbevf_driver_string[] = 57 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 58 59 #define DRV_VERSION "3.2.2-k" 60 const char ixgbevf_driver_version[] = DRV_VERSION; 61 static char ixgbevf_copyright[] = 62 "Copyright (c) 2009 - 2015 Intel Corporation."; 63 64 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 65 [board_82599_vf] = &ixgbevf_82599_vf_info, 66 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 67 [board_X540_vf] = &ixgbevf_X540_vf_info, 68 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 69 [board_X550_vf] = &ixgbevf_X550_vf_info, 70 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 71 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 72 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 73 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 74 }; 75 76 /* ixgbevf_pci_tbl - PCI Device ID Table 77 * 78 * Wildcard entries (PCI_ANY_ID) should come last 79 * Last entry must be all 0s 80 * 81 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 82 * Class, Class Mask, private data (not used) } 83 */ 84 static const struct pci_device_id ixgbevf_pci_tbl[] = { 85 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 86 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 87 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 88 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 89 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 90 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 91 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 92 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 93 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 94 /* required last entry */ 95 {0, } 96 }; 97 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 98 99 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 100 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 101 MODULE_LICENSE("GPL"); 102 MODULE_VERSION(DRV_VERSION); 103 104 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 105 static int debug = -1; 106 module_param(debug, int, 0); 107 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 108 109 static struct workqueue_struct *ixgbevf_wq; 110 111 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 112 { 113 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 114 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 115 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 116 queue_work(ixgbevf_wq, &adapter->service_task); 117 } 118 119 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 120 { 121 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 122 123 /* flush memory to make sure state is correct before next watchdog */ 124 smp_mb__before_atomic(); 125 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 126 } 127 128 /* forward decls */ 129 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 130 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 131 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 132 133 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 134 { 135 struct ixgbevf_adapter *adapter = hw->back; 136 137 if (!hw->hw_addr) 138 return; 139 hw->hw_addr = NULL; 140 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 141 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 142 ixgbevf_service_event_schedule(adapter); 143 } 144 145 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 146 { 147 u32 value; 148 149 /* The following check not only optimizes a bit by not 150 * performing a read on the status register when the 151 * register just read was a status register read that 152 * returned IXGBE_FAILED_READ_REG. It also blocks any 153 * potential recursion. 154 */ 155 if (reg == IXGBE_VFSTATUS) { 156 ixgbevf_remove_adapter(hw); 157 return; 158 } 159 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 160 if (value == IXGBE_FAILED_READ_REG) 161 ixgbevf_remove_adapter(hw); 162 } 163 164 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 165 { 166 u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr); 167 u32 value; 168 169 if (IXGBE_REMOVED(reg_addr)) 170 return IXGBE_FAILED_READ_REG; 171 value = readl(reg_addr + reg); 172 if (unlikely(value == IXGBE_FAILED_READ_REG)) 173 ixgbevf_check_remove(hw, reg); 174 return value; 175 } 176 177 /** 178 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 179 * @adapter: pointer to adapter struct 180 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 181 * @queue: queue to map the corresponding interrupt to 182 * @msix_vector: the vector to map to the corresponding queue 183 **/ 184 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 185 u8 queue, u8 msix_vector) 186 { 187 u32 ivar, index; 188 struct ixgbe_hw *hw = &adapter->hw; 189 190 if (direction == -1) { 191 /* other causes */ 192 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 193 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 194 ivar &= ~0xFF; 195 ivar |= msix_vector; 196 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 197 } else { 198 /* Tx or Rx causes */ 199 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 200 index = ((16 * (queue & 1)) + (8 * direction)); 201 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 202 ivar &= ~(0xFF << index); 203 ivar |= (msix_vector << index); 204 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 205 } 206 } 207 208 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring, 209 struct ixgbevf_tx_buffer *tx_buffer) 210 { 211 if (tx_buffer->skb) { 212 dev_kfree_skb_any(tx_buffer->skb); 213 if (dma_unmap_len(tx_buffer, len)) 214 dma_unmap_single(tx_ring->dev, 215 dma_unmap_addr(tx_buffer, dma), 216 dma_unmap_len(tx_buffer, len), 217 DMA_TO_DEVICE); 218 } else if (dma_unmap_len(tx_buffer, len)) { 219 dma_unmap_page(tx_ring->dev, 220 dma_unmap_addr(tx_buffer, dma), 221 dma_unmap_len(tx_buffer, len), 222 DMA_TO_DEVICE); 223 } 224 tx_buffer->next_to_watch = NULL; 225 tx_buffer->skb = NULL; 226 dma_unmap_len_set(tx_buffer, len, 0); 227 /* tx_buffer must be completely set up in the transmit path */ 228 } 229 230 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 231 { 232 return ring->stats.packets; 233 } 234 235 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 236 { 237 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 238 struct ixgbe_hw *hw = &adapter->hw; 239 240 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 241 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 242 243 if (head != tail) 244 return (head < tail) ? 245 tail - head : (tail + ring->count - head); 246 247 return 0; 248 } 249 250 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 251 { 252 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 253 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 254 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 255 256 clear_check_for_tx_hang(tx_ring); 257 258 /* Check for a hung queue, but be thorough. This verifies 259 * that a transmit has been completed since the previous 260 * check AND there is at least one packet pending. The 261 * ARMED bit is set to indicate a potential hang. 262 */ 263 if ((tx_done_old == tx_done) && tx_pending) { 264 /* make sure it is true for two checks in a row */ 265 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 266 &tx_ring->state); 267 } 268 /* reset the countdown */ 269 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 270 271 /* update completed stats and continue */ 272 tx_ring->tx_stats.tx_done_old = tx_done; 273 274 return false; 275 } 276 277 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 278 { 279 /* Do the reset outside of interrupt context */ 280 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 281 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 282 ixgbevf_service_event_schedule(adapter); 283 } 284 } 285 286 /** 287 * ixgbevf_tx_timeout - Respond to a Tx Hang 288 * @netdev: network interface device structure 289 **/ 290 static void ixgbevf_tx_timeout(struct net_device *netdev) 291 { 292 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 293 294 ixgbevf_tx_timeout_reset(adapter); 295 } 296 297 /** 298 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 299 * @q_vector: board private structure 300 * @tx_ring: tx ring to clean 301 * @napi_budget: Used to determine if we are in netpoll 302 **/ 303 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 304 struct ixgbevf_ring *tx_ring, int napi_budget) 305 { 306 struct ixgbevf_adapter *adapter = q_vector->adapter; 307 struct ixgbevf_tx_buffer *tx_buffer; 308 union ixgbe_adv_tx_desc *tx_desc; 309 unsigned int total_bytes = 0, total_packets = 0; 310 unsigned int budget = tx_ring->count / 2; 311 unsigned int i = tx_ring->next_to_clean; 312 313 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 314 return true; 315 316 tx_buffer = &tx_ring->tx_buffer_info[i]; 317 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 318 i -= tx_ring->count; 319 320 do { 321 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 322 323 /* if next_to_watch is not set then there is no work pending */ 324 if (!eop_desc) 325 break; 326 327 /* prevent any other reads prior to eop_desc */ 328 read_barrier_depends(); 329 330 /* if DD is not set pending work has not been completed */ 331 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 332 break; 333 334 /* clear next_to_watch to prevent false hangs */ 335 tx_buffer->next_to_watch = NULL; 336 337 /* update the statistics for this packet */ 338 total_bytes += tx_buffer->bytecount; 339 total_packets += tx_buffer->gso_segs; 340 341 /* free the skb */ 342 napi_consume_skb(tx_buffer->skb, napi_budget); 343 344 /* unmap skb header data */ 345 dma_unmap_single(tx_ring->dev, 346 dma_unmap_addr(tx_buffer, dma), 347 dma_unmap_len(tx_buffer, len), 348 DMA_TO_DEVICE); 349 350 /* clear tx_buffer data */ 351 tx_buffer->skb = NULL; 352 dma_unmap_len_set(tx_buffer, len, 0); 353 354 /* unmap remaining buffers */ 355 while (tx_desc != eop_desc) { 356 tx_buffer++; 357 tx_desc++; 358 i++; 359 if (unlikely(!i)) { 360 i -= tx_ring->count; 361 tx_buffer = tx_ring->tx_buffer_info; 362 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 363 } 364 365 /* unmap any remaining paged data */ 366 if (dma_unmap_len(tx_buffer, len)) { 367 dma_unmap_page(tx_ring->dev, 368 dma_unmap_addr(tx_buffer, dma), 369 dma_unmap_len(tx_buffer, len), 370 DMA_TO_DEVICE); 371 dma_unmap_len_set(tx_buffer, len, 0); 372 } 373 } 374 375 /* move us one more past the eop_desc for start of next pkt */ 376 tx_buffer++; 377 tx_desc++; 378 i++; 379 if (unlikely(!i)) { 380 i -= tx_ring->count; 381 tx_buffer = tx_ring->tx_buffer_info; 382 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 383 } 384 385 /* issue prefetch for next Tx descriptor */ 386 prefetch(tx_desc); 387 388 /* update budget accounting */ 389 budget--; 390 } while (likely(budget)); 391 392 i += tx_ring->count; 393 tx_ring->next_to_clean = i; 394 u64_stats_update_begin(&tx_ring->syncp); 395 tx_ring->stats.bytes += total_bytes; 396 tx_ring->stats.packets += total_packets; 397 u64_stats_update_end(&tx_ring->syncp); 398 q_vector->tx.total_bytes += total_bytes; 399 q_vector->tx.total_packets += total_packets; 400 401 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 402 struct ixgbe_hw *hw = &adapter->hw; 403 union ixgbe_adv_tx_desc *eop_desc; 404 405 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 406 407 pr_err("Detected Tx Unit Hang\n" 408 " Tx Queue <%d>\n" 409 " TDH, TDT <%x>, <%x>\n" 410 " next_to_use <%x>\n" 411 " next_to_clean <%x>\n" 412 "tx_buffer_info[next_to_clean]\n" 413 " next_to_watch <%p>\n" 414 " eop_desc->wb.status <%x>\n" 415 " time_stamp <%lx>\n" 416 " jiffies <%lx>\n", 417 tx_ring->queue_index, 418 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 419 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 420 tx_ring->next_to_use, i, 421 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 422 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 423 424 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 425 426 /* schedule immediate reset if we believe we hung */ 427 ixgbevf_tx_timeout_reset(adapter); 428 429 return true; 430 } 431 432 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 433 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 434 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 435 /* Make sure that anybody stopping the queue after this 436 * sees the new next_to_clean. 437 */ 438 smp_mb(); 439 440 if (__netif_subqueue_stopped(tx_ring->netdev, 441 tx_ring->queue_index) && 442 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 443 netif_wake_subqueue(tx_ring->netdev, 444 tx_ring->queue_index); 445 ++tx_ring->tx_stats.restart_queue; 446 } 447 } 448 449 return !!budget; 450 } 451 452 /** 453 * ixgbevf_rx_skb - Helper function to determine proper Rx method 454 * @q_vector: structure containing interrupt and ring information 455 * @skb: packet to send up 456 **/ 457 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 458 struct sk_buff *skb) 459 { 460 #ifdef CONFIG_NET_RX_BUSY_POLL 461 skb_mark_napi_id(skb, &q_vector->napi); 462 463 if (ixgbevf_qv_busy_polling(q_vector)) { 464 netif_receive_skb(skb); 465 /* exit early if we busy polled */ 466 return; 467 } 468 #endif /* CONFIG_NET_RX_BUSY_POLL */ 469 470 napi_gro_receive(&q_vector->napi, skb); 471 } 472 473 #define IXGBE_RSS_L4_TYPES_MASK \ 474 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 475 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 476 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 477 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 478 479 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 480 union ixgbe_adv_rx_desc *rx_desc, 481 struct sk_buff *skb) 482 { 483 u16 rss_type; 484 485 if (!(ring->netdev->features & NETIF_F_RXHASH)) 486 return; 487 488 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 489 IXGBE_RXDADV_RSSTYPE_MASK; 490 491 if (!rss_type) 492 return; 493 494 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 495 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 496 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 497 } 498 499 /** 500 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 501 * @ring: structure containig ring specific data 502 * @rx_desc: current Rx descriptor being processed 503 * @skb: skb currently being received and modified 504 **/ 505 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 506 union ixgbe_adv_rx_desc *rx_desc, 507 struct sk_buff *skb) 508 { 509 skb_checksum_none_assert(skb); 510 511 /* Rx csum disabled */ 512 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 513 return; 514 515 /* if IP and error */ 516 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 517 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 518 ring->rx_stats.csum_err++; 519 return; 520 } 521 522 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 523 return; 524 525 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 526 ring->rx_stats.csum_err++; 527 return; 528 } 529 530 /* It must be a TCP or UDP packet with a valid checksum */ 531 skb->ip_summed = CHECKSUM_UNNECESSARY; 532 } 533 534 /** 535 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 536 * @rx_ring: rx descriptor ring packet is being transacted on 537 * @rx_desc: pointer to the EOP Rx descriptor 538 * @skb: pointer to current skb being populated 539 * 540 * This function checks the ring, descriptor, and packet information in 541 * order to populate the checksum, VLAN, protocol, and other fields within 542 * the skb. 543 **/ 544 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 545 union ixgbe_adv_rx_desc *rx_desc, 546 struct sk_buff *skb) 547 { 548 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 549 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 550 551 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 552 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 553 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 554 555 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 556 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 557 } 558 559 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 560 } 561 562 /** 563 * ixgbevf_is_non_eop - process handling of non-EOP buffers 564 * @rx_ring: Rx ring being processed 565 * @rx_desc: Rx descriptor for current buffer 566 * @skb: current socket buffer containing buffer in progress 567 * 568 * This function updates next to clean. If the buffer is an EOP buffer 569 * this function exits returning false, otherwise it will place the 570 * sk_buff in the next buffer to be chained and return true indicating 571 * that this is in fact a non-EOP buffer. 572 **/ 573 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 574 union ixgbe_adv_rx_desc *rx_desc) 575 { 576 u32 ntc = rx_ring->next_to_clean + 1; 577 578 /* fetch, update, and store next to clean */ 579 ntc = (ntc < rx_ring->count) ? ntc : 0; 580 rx_ring->next_to_clean = ntc; 581 582 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 583 584 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 585 return false; 586 587 return true; 588 } 589 590 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 591 struct ixgbevf_rx_buffer *bi) 592 { 593 struct page *page = bi->page; 594 dma_addr_t dma = bi->dma; 595 596 /* since we are recycling buffers we should seldom need to alloc */ 597 if (likely(page)) 598 return true; 599 600 /* alloc new page for storage */ 601 page = dev_alloc_page(); 602 if (unlikely(!page)) { 603 rx_ring->rx_stats.alloc_rx_page_failed++; 604 return false; 605 } 606 607 /* map page for use */ 608 dma = dma_map_page(rx_ring->dev, page, 0, 609 PAGE_SIZE, DMA_FROM_DEVICE); 610 611 /* if mapping failed free memory back to system since 612 * there isn't much point in holding memory we can't use 613 */ 614 if (dma_mapping_error(rx_ring->dev, dma)) { 615 __free_page(page); 616 617 rx_ring->rx_stats.alloc_rx_buff_failed++; 618 return false; 619 } 620 621 bi->dma = dma; 622 bi->page = page; 623 bi->page_offset = 0; 624 625 return true; 626 } 627 628 /** 629 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 630 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 631 * @cleaned_count: number of buffers to replace 632 **/ 633 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 634 u16 cleaned_count) 635 { 636 union ixgbe_adv_rx_desc *rx_desc; 637 struct ixgbevf_rx_buffer *bi; 638 unsigned int i = rx_ring->next_to_use; 639 640 /* nothing to do or no valid netdev defined */ 641 if (!cleaned_count || !rx_ring->netdev) 642 return; 643 644 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 645 bi = &rx_ring->rx_buffer_info[i]; 646 i -= rx_ring->count; 647 648 do { 649 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 650 break; 651 652 /* Refresh the desc even if pkt_addr didn't change 653 * because each write-back erases this info. 654 */ 655 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 656 657 rx_desc++; 658 bi++; 659 i++; 660 if (unlikely(!i)) { 661 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 662 bi = rx_ring->rx_buffer_info; 663 i -= rx_ring->count; 664 } 665 666 /* clear the hdr_addr for the next_to_use descriptor */ 667 rx_desc->read.hdr_addr = 0; 668 669 cleaned_count--; 670 } while (cleaned_count); 671 672 i += rx_ring->count; 673 674 if (rx_ring->next_to_use != i) { 675 /* record the next descriptor to use */ 676 rx_ring->next_to_use = i; 677 678 /* update next to alloc since we have filled the ring */ 679 rx_ring->next_to_alloc = i; 680 681 /* Force memory writes to complete before letting h/w 682 * know there are new descriptors to fetch. (Only 683 * applicable for weak-ordered memory model archs, 684 * such as IA-64). 685 */ 686 wmb(); 687 ixgbevf_write_tail(rx_ring, i); 688 } 689 } 690 691 /** 692 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 693 * @rx_ring: rx descriptor ring packet is being transacted on 694 * @rx_desc: pointer to the EOP Rx descriptor 695 * @skb: pointer to current skb being fixed 696 * 697 * Check for corrupted packet headers caused by senders on the local L2 698 * embedded NIC switch not setting up their Tx Descriptors right. These 699 * should be very rare. 700 * 701 * Also address the case where we are pulling data in on pages only 702 * and as such no data is present in the skb header. 703 * 704 * In addition if skb is not at least 60 bytes we need to pad it so that 705 * it is large enough to qualify as a valid Ethernet frame. 706 * 707 * Returns true if an error was encountered and skb was freed. 708 **/ 709 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 710 union ixgbe_adv_rx_desc *rx_desc, 711 struct sk_buff *skb) 712 { 713 /* verify that the packet does not have any known errors */ 714 if (unlikely(ixgbevf_test_staterr(rx_desc, 715 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 716 struct net_device *netdev = rx_ring->netdev; 717 718 if (!(netdev->features & NETIF_F_RXALL)) { 719 dev_kfree_skb_any(skb); 720 return true; 721 } 722 } 723 724 /* if eth_skb_pad returns an error the skb was freed */ 725 if (eth_skb_pad(skb)) 726 return true; 727 728 return false; 729 } 730 731 /** 732 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 733 * @rx_ring: rx descriptor ring to store buffers on 734 * @old_buff: donor buffer to have page reused 735 * 736 * Synchronizes page for reuse by the adapter 737 **/ 738 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 739 struct ixgbevf_rx_buffer *old_buff) 740 { 741 struct ixgbevf_rx_buffer *new_buff; 742 u16 nta = rx_ring->next_to_alloc; 743 744 new_buff = &rx_ring->rx_buffer_info[nta]; 745 746 /* update, and store next to alloc */ 747 nta++; 748 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 749 750 /* transfer page from old buffer to new buffer */ 751 new_buff->page = old_buff->page; 752 new_buff->dma = old_buff->dma; 753 new_buff->page_offset = old_buff->page_offset; 754 755 /* sync the buffer for use by the device */ 756 dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma, 757 new_buff->page_offset, 758 IXGBEVF_RX_BUFSZ, 759 DMA_FROM_DEVICE); 760 } 761 762 static inline bool ixgbevf_page_is_reserved(struct page *page) 763 { 764 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 765 } 766 767 /** 768 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 769 * @rx_ring: rx descriptor ring to transact packets on 770 * @rx_buffer: buffer containing page to add 771 * @rx_desc: descriptor containing length of buffer written by hardware 772 * @skb: sk_buff to place the data into 773 * 774 * This function will add the data contained in rx_buffer->page to the skb. 775 * This is done either through a direct copy if the data in the buffer is 776 * less than the skb header size, otherwise it will just attach the page as 777 * a frag to the skb. 778 * 779 * The function will then update the page offset if necessary and return 780 * true if the buffer can be reused by the adapter. 781 **/ 782 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 783 struct ixgbevf_rx_buffer *rx_buffer, 784 union ixgbe_adv_rx_desc *rx_desc, 785 struct sk_buff *skb) 786 { 787 struct page *page = rx_buffer->page; 788 unsigned char *va = page_address(page) + rx_buffer->page_offset; 789 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 790 #if (PAGE_SIZE < 8192) 791 unsigned int truesize = IXGBEVF_RX_BUFSZ; 792 #else 793 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 794 #endif 795 unsigned int pull_len; 796 797 if (unlikely(skb_is_nonlinear(skb))) 798 goto add_tail_frag; 799 800 if (likely(size <= IXGBEVF_RX_HDR_SIZE)) { 801 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 802 803 /* page is not reserved, we can reuse buffer as is */ 804 if (likely(!ixgbevf_page_is_reserved(page))) 805 return true; 806 807 /* this page cannot be reused so discard it */ 808 put_page(page); 809 return false; 810 } 811 812 /* we need the header to contain the greater of either ETH_HLEN or 813 * 60 bytes if the skb->len is less than 60 for skb_pad. 814 */ 815 pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE); 816 817 /* align pull length to size of long to optimize memcpy performance */ 818 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long))); 819 820 /* update all of the pointers */ 821 va += pull_len; 822 size -= pull_len; 823 824 add_tail_frag: 825 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 826 (unsigned long)va & ~PAGE_MASK, size, truesize); 827 828 /* avoid re-using remote pages */ 829 if (unlikely(ixgbevf_page_is_reserved(page))) 830 return false; 831 832 #if (PAGE_SIZE < 8192) 833 /* if we are only owner of page we can reuse it */ 834 if (unlikely(page_count(page) != 1)) 835 return false; 836 837 /* flip page offset to other buffer */ 838 rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ; 839 840 #else 841 /* move offset up to the next cache line */ 842 rx_buffer->page_offset += truesize; 843 844 if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ)) 845 return false; 846 847 #endif 848 /* Even if we own the page, we are not allowed to use atomic_set() 849 * This would break get_page_unless_zero() users. 850 */ 851 page_ref_inc(page); 852 853 return true; 854 } 855 856 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring, 857 union ixgbe_adv_rx_desc *rx_desc, 858 struct sk_buff *skb) 859 { 860 struct ixgbevf_rx_buffer *rx_buffer; 861 struct page *page; 862 863 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 864 page = rx_buffer->page; 865 prefetchw(page); 866 867 if (likely(!skb)) { 868 void *page_addr = page_address(page) + 869 rx_buffer->page_offset; 870 871 /* prefetch first cache line of first page */ 872 prefetch(page_addr); 873 #if L1_CACHE_BYTES < 128 874 prefetch(page_addr + L1_CACHE_BYTES); 875 #endif 876 877 /* allocate a skb to store the frags */ 878 skb = netdev_alloc_skb_ip_align(rx_ring->netdev, 879 IXGBEVF_RX_HDR_SIZE); 880 if (unlikely(!skb)) { 881 rx_ring->rx_stats.alloc_rx_buff_failed++; 882 return NULL; 883 } 884 885 /* we will be copying header into skb->data in 886 * pskb_may_pull so it is in our interest to prefetch 887 * it now to avoid a possible cache miss 888 */ 889 prefetchw(skb->data); 890 } 891 892 /* we are reusing so sync this buffer for CPU use */ 893 dma_sync_single_range_for_cpu(rx_ring->dev, 894 rx_buffer->dma, 895 rx_buffer->page_offset, 896 IXGBEVF_RX_BUFSZ, 897 DMA_FROM_DEVICE); 898 899 /* pull page into skb */ 900 if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { 901 /* hand second half of page back to the ring */ 902 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 903 } else { 904 /* we are not reusing the buffer so unmap it */ 905 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 906 PAGE_SIZE, DMA_FROM_DEVICE); 907 } 908 909 /* clear contents of buffer_info */ 910 rx_buffer->dma = 0; 911 rx_buffer->page = NULL; 912 913 return skb; 914 } 915 916 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 917 u32 qmask) 918 { 919 struct ixgbe_hw *hw = &adapter->hw; 920 921 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 922 } 923 924 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 925 struct ixgbevf_ring *rx_ring, 926 int budget) 927 { 928 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 929 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 930 struct sk_buff *skb = rx_ring->skb; 931 932 while (likely(total_rx_packets < budget)) { 933 union ixgbe_adv_rx_desc *rx_desc; 934 935 /* return some buffers to hardware, one at a time is too slow */ 936 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 937 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 938 cleaned_count = 0; 939 } 940 941 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 942 943 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD)) 944 break; 945 946 /* This memory barrier is needed to keep us from reading 947 * any other fields out of the rx_desc until we know the 948 * RXD_STAT_DD bit is set 949 */ 950 rmb(); 951 952 /* retrieve a buffer from the ring */ 953 skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb); 954 955 /* exit if we failed to retrieve a buffer */ 956 if (!skb) 957 break; 958 959 cleaned_count++; 960 961 /* fetch next buffer in frame if non-eop */ 962 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 963 continue; 964 965 /* verify the packet layout is correct */ 966 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 967 skb = NULL; 968 continue; 969 } 970 971 /* probably a little skewed due to removing CRC */ 972 total_rx_bytes += skb->len; 973 974 /* Workaround hardware that can't do proper VEPA multicast 975 * source pruning. 976 */ 977 if ((skb->pkt_type == PACKET_BROADCAST || 978 skb->pkt_type == PACKET_MULTICAST) && 979 ether_addr_equal(rx_ring->netdev->dev_addr, 980 eth_hdr(skb)->h_source)) { 981 dev_kfree_skb_irq(skb); 982 continue; 983 } 984 985 /* populate checksum, VLAN, and protocol */ 986 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 987 988 ixgbevf_rx_skb(q_vector, skb); 989 990 /* reset skb pointer */ 991 skb = NULL; 992 993 /* update budget accounting */ 994 total_rx_packets++; 995 } 996 997 /* place incomplete frames back on ring for completion */ 998 rx_ring->skb = skb; 999 1000 u64_stats_update_begin(&rx_ring->syncp); 1001 rx_ring->stats.packets += total_rx_packets; 1002 rx_ring->stats.bytes += total_rx_bytes; 1003 u64_stats_update_end(&rx_ring->syncp); 1004 q_vector->rx.total_packets += total_rx_packets; 1005 q_vector->rx.total_bytes += total_rx_bytes; 1006 1007 return total_rx_packets; 1008 } 1009 1010 /** 1011 * ixgbevf_poll - NAPI polling calback 1012 * @napi: napi struct with our devices info in it 1013 * @budget: amount of work driver is allowed to do this pass, in packets 1014 * 1015 * This function will clean more than one or more rings associated with a 1016 * q_vector. 1017 **/ 1018 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1019 { 1020 struct ixgbevf_q_vector *q_vector = 1021 container_of(napi, struct ixgbevf_q_vector, napi); 1022 struct ixgbevf_adapter *adapter = q_vector->adapter; 1023 struct ixgbevf_ring *ring; 1024 int per_ring_budget, work_done = 0; 1025 bool clean_complete = true; 1026 1027 ixgbevf_for_each_ring(ring, q_vector->tx) { 1028 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1029 clean_complete = false; 1030 } 1031 1032 if (budget <= 0) 1033 return budget; 1034 #ifdef CONFIG_NET_RX_BUSY_POLL 1035 if (!ixgbevf_qv_lock_napi(q_vector)) 1036 return budget; 1037 #endif 1038 1039 /* attempt to distribute budget to each queue fairly, but don't allow 1040 * the budget to go below 1 because we'll exit polling 1041 */ 1042 if (q_vector->rx.count > 1) 1043 per_ring_budget = max(budget/q_vector->rx.count, 1); 1044 else 1045 per_ring_budget = budget; 1046 1047 ixgbevf_for_each_ring(ring, q_vector->rx) { 1048 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1049 per_ring_budget); 1050 work_done += cleaned; 1051 if (cleaned >= per_ring_budget) 1052 clean_complete = false; 1053 } 1054 1055 #ifdef CONFIG_NET_RX_BUSY_POLL 1056 ixgbevf_qv_unlock_napi(q_vector); 1057 #endif 1058 1059 /* If all work not completed, return budget and keep polling */ 1060 if (!clean_complete) 1061 return budget; 1062 /* all work done, exit the polling mode */ 1063 napi_complete_done(napi, work_done); 1064 if (adapter->rx_itr_setting == 1) 1065 ixgbevf_set_itr(q_vector); 1066 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1067 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1068 ixgbevf_irq_enable_queues(adapter, 1069 BIT(q_vector->v_idx)); 1070 1071 return 0; 1072 } 1073 1074 /** 1075 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1076 * @q_vector: structure containing interrupt and ring information 1077 **/ 1078 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1079 { 1080 struct ixgbevf_adapter *adapter = q_vector->adapter; 1081 struct ixgbe_hw *hw = &adapter->hw; 1082 int v_idx = q_vector->v_idx; 1083 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1084 1085 /* set the WDIS bit to not clear the timer bits and cause an 1086 * immediate assertion of the interrupt 1087 */ 1088 itr_reg |= IXGBE_EITR_CNT_WDIS; 1089 1090 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1091 } 1092 1093 #ifdef CONFIG_NET_RX_BUSY_POLL 1094 /* must be called with local_bh_disable()d */ 1095 static int ixgbevf_busy_poll_recv(struct napi_struct *napi) 1096 { 1097 struct ixgbevf_q_vector *q_vector = 1098 container_of(napi, struct ixgbevf_q_vector, napi); 1099 struct ixgbevf_adapter *adapter = q_vector->adapter; 1100 struct ixgbevf_ring *ring; 1101 int found = 0; 1102 1103 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 1104 return LL_FLUSH_FAILED; 1105 1106 if (!ixgbevf_qv_lock_poll(q_vector)) 1107 return LL_FLUSH_BUSY; 1108 1109 ixgbevf_for_each_ring(ring, q_vector->rx) { 1110 found = ixgbevf_clean_rx_irq(q_vector, ring, 4); 1111 #ifdef BP_EXTENDED_STATS 1112 if (found) 1113 ring->stats.cleaned += found; 1114 else 1115 ring->stats.misses++; 1116 #endif 1117 if (found) 1118 break; 1119 } 1120 1121 ixgbevf_qv_unlock_poll(q_vector); 1122 1123 return found; 1124 } 1125 #endif /* CONFIG_NET_RX_BUSY_POLL */ 1126 1127 /** 1128 * ixgbevf_configure_msix - Configure MSI-X hardware 1129 * @adapter: board private structure 1130 * 1131 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1132 * interrupts. 1133 **/ 1134 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1135 { 1136 struct ixgbevf_q_vector *q_vector; 1137 int q_vectors, v_idx; 1138 1139 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1140 adapter->eims_enable_mask = 0; 1141 1142 /* Populate the IVAR table and set the ITR values to the 1143 * corresponding register. 1144 */ 1145 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1146 struct ixgbevf_ring *ring; 1147 1148 q_vector = adapter->q_vector[v_idx]; 1149 1150 ixgbevf_for_each_ring(ring, q_vector->rx) 1151 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1152 1153 ixgbevf_for_each_ring(ring, q_vector->tx) 1154 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1155 1156 if (q_vector->tx.ring && !q_vector->rx.ring) { 1157 /* Tx only vector */ 1158 if (adapter->tx_itr_setting == 1) 1159 q_vector->itr = IXGBE_12K_ITR; 1160 else 1161 q_vector->itr = adapter->tx_itr_setting; 1162 } else { 1163 /* Rx or Rx/Tx vector */ 1164 if (adapter->rx_itr_setting == 1) 1165 q_vector->itr = IXGBE_20K_ITR; 1166 else 1167 q_vector->itr = adapter->rx_itr_setting; 1168 } 1169 1170 /* add q_vector eims value to global eims_enable_mask */ 1171 adapter->eims_enable_mask |= BIT(v_idx); 1172 1173 ixgbevf_write_eitr(q_vector); 1174 } 1175 1176 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1177 /* setup eims_other and add value to global eims_enable_mask */ 1178 adapter->eims_other = BIT(v_idx); 1179 adapter->eims_enable_mask |= adapter->eims_other; 1180 } 1181 1182 enum latency_range { 1183 lowest_latency = 0, 1184 low_latency = 1, 1185 bulk_latency = 2, 1186 latency_invalid = 255 1187 }; 1188 1189 /** 1190 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1191 * @q_vector: structure containing interrupt and ring information 1192 * @ring_container: structure containing ring performance data 1193 * 1194 * Stores a new ITR value based on packets and byte 1195 * counts during the last interrupt. The advantage of per interrupt 1196 * computation is faster updates and more accurate ITR for the current 1197 * traffic pattern. Constants in this function were computed 1198 * based on theoretical maximum wire speed and thresholds were set based 1199 * on testing data as well as attempting to minimize response time 1200 * while increasing bulk throughput. 1201 **/ 1202 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1203 struct ixgbevf_ring_container *ring_container) 1204 { 1205 int bytes = ring_container->total_bytes; 1206 int packets = ring_container->total_packets; 1207 u32 timepassed_us; 1208 u64 bytes_perint; 1209 u8 itr_setting = ring_container->itr; 1210 1211 if (packets == 0) 1212 return; 1213 1214 /* simple throttle rate management 1215 * 0-20MB/s lowest (100000 ints/s) 1216 * 20-100MB/s low (20000 ints/s) 1217 * 100-1249MB/s bulk (12000 ints/s) 1218 */ 1219 /* what was last interrupt timeslice? */ 1220 timepassed_us = q_vector->itr >> 2; 1221 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1222 1223 switch (itr_setting) { 1224 case lowest_latency: 1225 if (bytes_perint > 10) 1226 itr_setting = low_latency; 1227 break; 1228 case low_latency: 1229 if (bytes_perint > 20) 1230 itr_setting = bulk_latency; 1231 else if (bytes_perint <= 10) 1232 itr_setting = lowest_latency; 1233 break; 1234 case bulk_latency: 1235 if (bytes_perint <= 20) 1236 itr_setting = low_latency; 1237 break; 1238 } 1239 1240 /* clear work counters since we have the values we need */ 1241 ring_container->total_bytes = 0; 1242 ring_container->total_packets = 0; 1243 1244 /* write updated itr to ring container */ 1245 ring_container->itr = itr_setting; 1246 } 1247 1248 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1249 { 1250 u32 new_itr = q_vector->itr; 1251 u8 current_itr; 1252 1253 ixgbevf_update_itr(q_vector, &q_vector->tx); 1254 ixgbevf_update_itr(q_vector, &q_vector->rx); 1255 1256 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1257 1258 switch (current_itr) { 1259 /* counts and packets in update_itr are dependent on these numbers */ 1260 case lowest_latency: 1261 new_itr = IXGBE_100K_ITR; 1262 break; 1263 case low_latency: 1264 new_itr = IXGBE_20K_ITR; 1265 break; 1266 case bulk_latency: 1267 new_itr = IXGBE_12K_ITR; 1268 break; 1269 default: 1270 break; 1271 } 1272 1273 if (new_itr != q_vector->itr) { 1274 /* do an exponential smoothing */ 1275 new_itr = (10 * new_itr * q_vector->itr) / 1276 ((9 * new_itr) + q_vector->itr); 1277 1278 /* save the algorithm value here */ 1279 q_vector->itr = new_itr; 1280 1281 ixgbevf_write_eitr(q_vector); 1282 } 1283 } 1284 1285 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1286 { 1287 struct ixgbevf_adapter *adapter = data; 1288 struct ixgbe_hw *hw = &adapter->hw; 1289 1290 hw->mac.get_link_status = 1; 1291 1292 ixgbevf_service_event_schedule(adapter); 1293 1294 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1295 1296 return IRQ_HANDLED; 1297 } 1298 1299 /** 1300 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1301 * @irq: unused 1302 * @data: pointer to our q_vector struct for this interrupt vector 1303 **/ 1304 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1305 { 1306 struct ixgbevf_q_vector *q_vector = data; 1307 1308 /* EIAM disabled interrupts (on this vector) for us */ 1309 if (q_vector->rx.ring || q_vector->tx.ring) 1310 napi_schedule_irqoff(&q_vector->napi); 1311 1312 return IRQ_HANDLED; 1313 } 1314 1315 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx, 1316 int r_idx) 1317 { 1318 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx]; 1319 1320 a->rx_ring[r_idx]->next = q_vector->rx.ring; 1321 q_vector->rx.ring = a->rx_ring[r_idx]; 1322 q_vector->rx.count++; 1323 } 1324 1325 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx, 1326 int t_idx) 1327 { 1328 struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx]; 1329 1330 a->tx_ring[t_idx]->next = q_vector->tx.ring; 1331 q_vector->tx.ring = a->tx_ring[t_idx]; 1332 q_vector->tx.count++; 1333 } 1334 1335 /** 1336 * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors 1337 * @adapter: board private structure to initialize 1338 * 1339 * This function maps descriptor rings to the queue-specific vectors 1340 * we were allotted through the MSI-X enabling code. Ideally, we'd have 1341 * one vector per ring/queue, but on a constrained vector budget, we 1342 * group the rings as "efficiently" as possible. You would add new 1343 * mapping configurations in here. 1344 **/ 1345 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter) 1346 { 1347 int q_vectors; 1348 int v_start = 0; 1349 int rxr_idx = 0, txr_idx = 0; 1350 int rxr_remaining = adapter->num_rx_queues; 1351 int txr_remaining = adapter->num_tx_queues; 1352 int i, j; 1353 int rqpv, tqpv; 1354 1355 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1356 1357 /* The ideal configuration... 1358 * We have enough vectors to map one per queue. 1359 */ 1360 if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) { 1361 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++) 1362 map_vector_to_rxq(adapter, v_start, rxr_idx); 1363 1364 for (; txr_idx < txr_remaining; v_start++, txr_idx++) 1365 map_vector_to_txq(adapter, v_start, txr_idx); 1366 return 0; 1367 } 1368 1369 /* If we don't have enough vectors for a 1-to-1 1370 * mapping, we'll have to group them so there are 1371 * multiple queues per vector. 1372 */ 1373 /* Re-adjusting *qpv takes care of the remainder. */ 1374 for (i = v_start; i < q_vectors; i++) { 1375 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i); 1376 for (j = 0; j < rqpv; j++) { 1377 map_vector_to_rxq(adapter, i, rxr_idx); 1378 rxr_idx++; 1379 rxr_remaining--; 1380 } 1381 } 1382 for (i = v_start; i < q_vectors; i++) { 1383 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i); 1384 for (j = 0; j < tqpv; j++) { 1385 map_vector_to_txq(adapter, i, txr_idx); 1386 txr_idx++; 1387 txr_remaining--; 1388 } 1389 } 1390 1391 return 0; 1392 } 1393 1394 /** 1395 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1396 * @adapter: board private structure 1397 * 1398 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1399 * interrupts from the kernel. 1400 **/ 1401 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1402 { 1403 struct net_device *netdev = adapter->netdev; 1404 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1405 int vector, err; 1406 int ri = 0, ti = 0; 1407 1408 for (vector = 0; vector < q_vectors; vector++) { 1409 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1410 struct msix_entry *entry = &adapter->msix_entries[vector]; 1411 1412 if (q_vector->tx.ring && q_vector->rx.ring) { 1413 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1414 "%s-%s-%d", netdev->name, "TxRx", ri++); 1415 ti++; 1416 } else if (q_vector->rx.ring) { 1417 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1418 "%s-%s-%d", netdev->name, "rx", ri++); 1419 } else if (q_vector->tx.ring) { 1420 snprintf(q_vector->name, sizeof(q_vector->name) - 1, 1421 "%s-%s-%d", netdev->name, "tx", ti++); 1422 } else { 1423 /* skip this unused q_vector */ 1424 continue; 1425 } 1426 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1427 q_vector->name, q_vector); 1428 if (err) { 1429 hw_dbg(&adapter->hw, 1430 "request_irq failed for MSIX interrupt Error: %d\n", 1431 err); 1432 goto free_queue_irqs; 1433 } 1434 } 1435 1436 err = request_irq(adapter->msix_entries[vector].vector, 1437 &ixgbevf_msix_other, 0, netdev->name, adapter); 1438 if (err) { 1439 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1440 err); 1441 goto free_queue_irqs; 1442 } 1443 1444 return 0; 1445 1446 free_queue_irqs: 1447 while (vector) { 1448 vector--; 1449 free_irq(adapter->msix_entries[vector].vector, 1450 adapter->q_vector[vector]); 1451 } 1452 /* This failure is non-recoverable - it indicates the system is 1453 * out of MSIX vector resources and the VF driver cannot run 1454 * without them. Set the number of msix vectors to zero 1455 * indicating that not enough can be allocated. The error 1456 * will be returned to the user indicating device open failed. 1457 * Any further attempts to force the driver to open will also 1458 * fail. The only way to recover is to unload the driver and 1459 * reload it again. If the system has recovered some MSIX 1460 * vectors then it may succeed. 1461 */ 1462 adapter->num_msix_vectors = 0; 1463 return err; 1464 } 1465 1466 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter) 1467 { 1468 int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1469 1470 for (i = 0; i < q_vectors; i++) { 1471 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i]; 1472 1473 q_vector->rx.ring = NULL; 1474 q_vector->tx.ring = NULL; 1475 q_vector->rx.count = 0; 1476 q_vector->tx.count = 0; 1477 } 1478 } 1479 1480 /** 1481 * ixgbevf_request_irq - initialize interrupts 1482 * @adapter: board private structure 1483 * 1484 * Attempts to configure interrupts using the best available 1485 * capabilities of the hardware and kernel. 1486 **/ 1487 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1488 { 1489 int err = ixgbevf_request_msix_irqs(adapter); 1490 1491 if (err) 1492 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1493 1494 return err; 1495 } 1496 1497 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1498 { 1499 int i, q_vectors; 1500 1501 q_vectors = adapter->num_msix_vectors; 1502 i = q_vectors - 1; 1503 1504 free_irq(adapter->msix_entries[i].vector, adapter); 1505 i--; 1506 1507 for (; i >= 0; i--) { 1508 /* free only the irqs that were actually requested */ 1509 if (!adapter->q_vector[i]->rx.ring && 1510 !adapter->q_vector[i]->tx.ring) 1511 continue; 1512 1513 free_irq(adapter->msix_entries[i].vector, 1514 adapter->q_vector[i]); 1515 } 1516 1517 ixgbevf_reset_q_vectors(adapter); 1518 } 1519 1520 /** 1521 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1522 * @adapter: board private structure 1523 **/ 1524 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1525 { 1526 struct ixgbe_hw *hw = &adapter->hw; 1527 int i; 1528 1529 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1530 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1531 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1532 1533 IXGBE_WRITE_FLUSH(hw); 1534 1535 for (i = 0; i < adapter->num_msix_vectors; i++) 1536 synchronize_irq(adapter->msix_entries[i].vector); 1537 } 1538 1539 /** 1540 * ixgbevf_irq_enable - Enable default interrupt generation settings 1541 * @adapter: board private structure 1542 **/ 1543 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1544 { 1545 struct ixgbe_hw *hw = &adapter->hw; 1546 1547 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1548 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1549 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1550 } 1551 1552 /** 1553 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1554 * @adapter: board private structure 1555 * @ring: structure containing ring specific data 1556 * 1557 * Configure the Tx descriptor ring after a reset. 1558 **/ 1559 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1560 struct ixgbevf_ring *ring) 1561 { 1562 struct ixgbe_hw *hw = &adapter->hw; 1563 u64 tdba = ring->dma; 1564 int wait_loop = 10; 1565 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1566 u8 reg_idx = ring->reg_idx; 1567 1568 /* disable queue to avoid issues while updating state */ 1569 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1570 IXGBE_WRITE_FLUSH(hw); 1571 1572 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1573 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1574 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1575 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1576 1577 /* disable head writeback */ 1578 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1579 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1580 1581 /* enable relaxed ordering */ 1582 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1583 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1584 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1585 1586 /* reset head and tail pointers */ 1587 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1588 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1589 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1590 1591 /* reset ntu and ntc to place SW in sync with hardwdare */ 1592 ring->next_to_clean = 0; 1593 ring->next_to_use = 0; 1594 1595 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1596 * to or less than the number of on chip descriptors, which is 1597 * currently 40. 1598 */ 1599 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1600 1601 /* Setting PTHRESH to 32 both improves performance */ 1602 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1603 32; /* PTHRESH = 32 */ 1604 1605 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1606 1607 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1608 1609 /* poll to verify queue is enabled */ 1610 do { 1611 usleep_range(1000, 2000); 1612 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1613 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1614 if (!wait_loop) 1615 pr_err("Could not enable Tx Queue %d\n", reg_idx); 1616 } 1617 1618 /** 1619 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1620 * @adapter: board private structure 1621 * 1622 * Configure the Tx unit of the MAC after a reset. 1623 **/ 1624 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1625 { 1626 u32 i; 1627 1628 /* Setup the HW Tx Head and Tail descriptor pointers */ 1629 for (i = 0; i < adapter->num_tx_queues; i++) 1630 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1631 } 1632 1633 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1634 1635 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index) 1636 { 1637 struct ixgbe_hw *hw = &adapter->hw; 1638 u32 srrctl; 1639 1640 srrctl = IXGBE_SRRCTL_DROP_EN; 1641 1642 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1643 srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1644 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1645 1646 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1647 } 1648 1649 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1650 { 1651 struct ixgbe_hw *hw = &adapter->hw; 1652 1653 /* PSRTYPE must be initialized in 82599 */ 1654 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1655 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1656 IXGBE_PSRTYPE_L2HDR; 1657 1658 if (adapter->num_rx_queues > 1) 1659 psrtype |= BIT(29); 1660 1661 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1662 } 1663 1664 #define IXGBEVF_MAX_RX_DESC_POLL 10 1665 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1666 struct ixgbevf_ring *ring) 1667 { 1668 struct ixgbe_hw *hw = &adapter->hw; 1669 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1670 u32 rxdctl; 1671 u8 reg_idx = ring->reg_idx; 1672 1673 if (IXGBE_REMOVED(hw->hw_addr)) 1674 return; 1675 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1676 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1677 1678 /* write value back with RXDCTL.ENABLE bit cleared */ 1679 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1680 1681 /* the hardware may take up to 100us to really disable the Rx queue */ 1682 do { 1683 udelay(10); 1684 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1685 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1686 1687 if (!wait_loop) 1688 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1689 reg_idx); 1690 } 1691 1692 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1693 struct ixgbevf_ring *ring) 1694 { 1695 struct ixgbe_hw *hw = &adapter->hw; 1696 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1697 u32 rxdctl; 1698 u8 reg_idx = ring->reg_idx; 1699 1700 if (IXGBE_REMOVED(hw->hw_addr)) 1701 return; 1702 do { 1703 usleep_range(1000, 2000); 1704 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1705 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1706 1707 if (!wait_loop) 1708 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1709 reg_idx); 1710 } 1711 1712 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1713 { 1714 struct ixgbe_hw *hw = &adapter->hw; 1715 u32 vfmrqc = 0, vfreta = 0; 1716 u16 rss_i = adapter->num_rx_queues; 1717 u8 i, j; 1718 1719 /* Fill out hash function seeds */ 1720 netdev_rss_key_fill(adapter->rss_key, sizeof(adapter->rss_key)); 1721 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1722 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), adapter->rss_key[i]); 1723 1724 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1725 if (j == rss_i) 1726 j = 0; 1727 1728 adapter->rss_indir_tbl[i] = j; 1729 1730 vfreta |= j << (i & 0x3) * 8; 1731 if ((i & 3) == 3) { 1732 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1733 vfreta = 0; 1734 } 1735 } 1736 1737 /* Perform hash on these packet types */ 1738 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1739 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1740 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1741 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1742 1743 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1744 1745 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1746 } 1747 1748 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1749 struct ixgbevf_ring *ring) 1750 { 1751 struct ixgbe_hw *hw = &adapter->hw; 1752 u64 rdba = ring->dma; 1753 u32 rxdctl; 1754 u8 reg_idx = ring->reg_idx; 1755 1756 /* disable queue to avoid issues while updating state */ 1757 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1758 ixgbevf_disable_rx_queue(adapter, ring); 1759 1760 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1761 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1762 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1763 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1764 1765 #ifndef CONFIG_SPARC 1766 /* enable relaxed ordering */ 1767 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1768 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1769 #else 1770 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1771 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1772 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1773 #endif 1774 1775 /* reset head and tail pointers */ 1776 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1777 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1778 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1779 1780 /* reset ntu and ntc to place SW in sync with hardwdare */ 1781 ring->next_to_clean = 0; 1782 ring->next_to_use = 0; 1783 ring->next_to_alloc = 0; 1784 1785 ixgbevf_configure_srrctl(adapter, reg_idx); 1786 1787 /* allow any size packet since we can handle overflow */ 1788 rxdctl &= ~IXGBE_RXDCTL_RLPML_EN; 1789 1790 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1791 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1792 1793 ixgbevf_rx_desc_queue_enable(adapter, ring); 1794 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1795 } 1796 1797 /** 1798 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1799 * @adapter: board private structure 1800 * 1801 * Configure the Rx unit of the MAC after a reset. 1802 **/ 1803 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 1804 { 1805 struct ixgbe_hw *hw = &adapter->hw; 1806 struct net_device *netdev = adapter->netdev; 1807 int i, ret; 1808 1809 ixgbevf_setup_psrtype(adapter); 1810 if (hw->mac.type >= ixgbe_mac_X550_vf) 1811 ixgbevf_setup_vfmrqc(adapter); 1812 1813 /* notify the PF of our intent to use this size of frame */ 1814 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 1815 if (ret) 1816 dev_err(&adapter->pdev->dev, 1817 "Failed to set MTU at %d\n", netdev->mtu); 1818 1819 /* Setup the HW Rx Head and Tail Descriptor Pointers and 1820 * the Base and Length of the Rx Descriptor Ring 1821 */ 1822 for (i = 0; i < adapter->num_rx_queues; i++) 1823 ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]); 1824 } 1825 1826 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 1827 __be16 proto, u16 vid) 1828 { 1829 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1830 struct ixgbe_hw *hw = &adapter->hw; 1831 int err; 1832 1833 spin_lock_bh(&adapter->mbx_lock); 1834 1835 /* add VID to filter table */ 1836 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 1837 1838 spin_unlock_bh(&adapter->mbx_lock); 1839 1840 /* translate error return types so error makes sense */ 1841 if (err == IXGBE_ERR_MBX) 1842 return -EIO; 1843 1844 if (err == IXGBE_ERR_INVALID_ARGUMENT) 1845 return -EACCES; 1846 1847 set_bit(vid, adapter->active_vlans); 1848 1849 return err; 1850 } 1851 1852 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 1853 __be16 proto, u16 vid) 1854 { 1855 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1856 struct ixgbe_hw *hw = &adapter->hw; 1857 int err; 1858 1859 spin_lock_bh(&adapter->mbx_lock); 1860 1861 /* remove VID from filter table */ 1862 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 1863 1864 spin_unlock_bh(&adapter->mbx_lock); 1865 1866 clear_bit(vid, adapter->active_vlans); 1867 1868 return err; 1869 } 1870 1871 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 1872 { 1873 u16 vid; 1874 1875 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 1876 ixgbevf_vlan_rx_add_vid(adapter->netdev, 1877 htons(ETH_P_8021Q), vid); 1878 } 1879 1880 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 1881 { 1882 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1883 struct ixgbe_hw *hw = &adapter->hw; 1884 int count = 0; 1885 1886 if ((netdev_uc_count(netdev)) > 10) { 1887 pr_err("Too many unicast filters - No Space\n"); 1888 return -ENOSPC; 1889 } 1890 1891 if (!netdev_uc_empty(netdev)) { 1892 struct netdev_hw_addr *ha; 1893 1894 netdev_for_each_uc_addr(ha, netdev) { 1895 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 1896 udelay(200); 1897 } 1898 } else { 1899 /* If the list is empty then send message to PF driver to 1900 * clear all MAC VLANs on this VF. 1901 */ 1902 hw->mac.ops.set_uc_addr(hw, 0, NULL); 1903 } 1904 1905 return count; 1906 } 1907 1908 /** 1909 * ixgbevf_set_rx_mode - Multicast and unicast set 1910 * @netdev: network interface device structure 1911 * 1912 * The set_rx_method entry point is called whenever the multicast address 1913 * list, unicast address list or the network interface flags are updated. 1914 * This routine is responsible for configuring the hardware for proper 1915 * multicast mode and configuring requested unicast filters. 1916 **/ 1917 static void ixgbevf_set_rx_mode(struct net_device *netdev) 1918 { 1919 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 1920 struct ixgbe_hw *hw = &adapter->hw; 1921 unsigned int flags = netdev->flags; 1922 int xcast_mode; 1923 1924 xcast_mode = (flags & IFF_ALLMULTI) ? IXGBEVF_XCAST_MODE_ALLMULTI : 1925 (flags & (IFF_BROADCAST | IFF_MULTICAST)) ? 1926 IXGBEVF_XCAST_MODE_MULTI : IXGBEVF_XCAST_MODE_NONE; 1927 1928 spin_lock_bh(&adapter->mbx_lock); 1929 1930 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 1931 1932 /* reprogram multicast list */ 1933 hw->mac.ops.update_mc_addr_list(hw, netdev); 1934 1935 ixgbevf_write_uc_addr_list(netdev); 1936 1937 spin_unlock_bh(&adapter->mbx_lock); 1938 } 1939 1940 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 1941 { 1942 int q_idx; 1943 struct ixgbevf_q_vector *q_vector; 1944 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1945 1946 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1947 q_vector = adapter->q_vector[q_idx]; 1948 #ifdef CONFIG_NET_RX_BUSY_POLL 1949 ixgbevf_qv_init_lock(adapter->q_vector[q_idx]); 1950 #endif 1951 napi_enable(&q_vector->napi); 1952 } 1953 } 1954 1955 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 1956 { 1957 int q_idx; 1958 struct ixgbevf_q_vector *q_vector; 1959 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1960 1961 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 1962 q_vector = adapter->q_vector[q_idx]; 1963 napi_disable(&q_vector->napi); 1964 #ifdef CONFIG_NET_RX_BUSY_POLL 1965 while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) { 1966 pr_info("QV %d locked\n", q_idx); 1967 usleep_range(1000, 20000); 1968 } 1969 #endif /* CONFIG_NET_RX_BUSY_POLL */ 1970 } 1971 } 1972 1973 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 1974 { 1975 struct ixgbe_hw *hw = &adapter->hw; 1976 unsigned int def_q = 0; 1977 unsigned int num_tcs = 0; 1978 unsigned int num_rx_queues = adapter->num_rx_queues; 1979 unsigned int num_tx_queues = adapter->num_tx_queues; 1980 int err; 1981 1982 spin_lock_bh(&adapter->mbx_lock); 1983 1984 /* fetch queue configuration from the PF */ 1985 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 1986 1987 spin_unlock_bh(&adapter->mbx_lock); 1988 1989 if (err) 1990 return err; 1991 1992 if (num_tcs > 1) { 1993 /* we need only one Tx queue */ 1994 num_tx_queues = 1; 1995 1996 /* update default Tx ring register index */ 1997 adapter->tx_ring[0]->reg_idx = def_q; 1998 1999 /* we need as many queues as traffic classes */ 2000 num_rx_queues = num_tcs; 2001 } 2002 2003 /* if we have a bad config abort request queue reset */ 2004 if ((adapter->num_rx_queues != num_rx_queues) || 2005 (adapter->num_tx_queues != num_tx_queues)) { 2006 /* force mailbox timeout to prevent further messages */ 2007 hw->mbx.timeout = 0; 2008 2009 /* wait for watchdog to come around and bail us out */ 2010 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2011 } 2012 2013 return 0; 2014 } 2015 2016 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2017 { 2018 ixgbevf_configure_dcb(adapter); 2019 2020 ixgbevf_set_rx_mode(adapter->netdev); 2021 2022 ixgbevf_restore_vlan(adapter); 2023 2024 ixgbevf_configure_tx(adapter); 2025 ixgbevf_configure_rx(adapter); 2026 } 2027 2028 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2029 { 2030 /* Only save pre-reset stats if there are some */ 2031 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2032 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2033 adapter->stats.base_vfgprc; 2034 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2035 adapter->stats.base_vfgptc; 2036 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2037 adapter->stats.base_vfgorc; 2038 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2039 adapter->stats.base_vfgotc; 2040 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2041 adapter->stats.base_vfmprc; 2042 } 2043 } 2044 2045 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2046 { 2047 struct ixgbe_hw *hw = &adapter->hw; 2048 2049 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2050 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2051 adapter->stats.last_vfgorc |= 2052 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2053 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2054 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2055 adapter->stats.last_vfgotc |= 2056 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2057 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2058 2059 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2060 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2061 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2062 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2063 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2064 } 2065 2066 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2067 { 2068 struct ixgbe_hw *hw = &adapter->hw; 2069 int api[] = { ixgbe_mbox_api_12, 2070 ixgbe_mbox_api_11, 2071 ixgbe_mbox_api_10, 2072 ixgbe_mbox_api_unknown }; 2073 int err, idx = 0; 2074 2075 spin_lock_bh(&adapter->mbx_lock); 2076 2077 while (api[idx] != ixgbe_mbox_api_unknown) { 2078 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2079 if (!err) 2080 break; 2081 idx++; 2082 } 2083 2084 spin_unlock_bh(&adapter->mbx_lock); 2085 } 2086 2087 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2088 { 2089 struct net_device *netdev = adapter->netdev; 2090 struct ixgbe_hw *hw = &adapter->hw; 2091 2092 ixgbevf_configure_msix(adapter); 2093 2094 spin_lock_bh(&adapter->mbx_lock); 2095 2096 if (is_valid_ether_addr(hw->mac.addr)) 2097 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2098 else 2099 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2100 2101 spin_unlock_bh(&adapter->mbx_lock); 2102 2103 smp_mb__before_atomic(); 2104 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2105 ixgbevf_napi_enable_all(adapter); 2106 2107 /* clear any pending interrupts, may auto mask */ 2108 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2109 ixgbevf_irq_enable(adapter); 2110 2111 /* enable transmits */ 2112 netif_tx_start_all_queues(netdev); 2113 2114 ixgbevf_save_reset_stats(adapter); 2115 ixgbevf_init_last_counter_stats(adapter); 2116 2117 hw->mac.get_link_status = 1; 2118 mod_timer(&adapter->service_timer, jiffies); 2119 } 2120 2121 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2122 { 2123 ixgbevf_configure(adapter); 2124 2125 ixgbevf_up_complete(adapter); 2126 } 2127 2128 /** 2129 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2130 * @rx_ring: ring to free buffers from 2131 **/ 2132 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2133 { 2134 struct device *dev = rx_ring->dev; 2135 unsigned long size; 2136 unsigned int i; 2137 2138 /* Free Rx ring sk_buff */ 2139 if (rx_ring->skb) { 2140 dev_kfree_skb(rx_ring->skb); 2141 rx_ring->skb = NULL; 2142 } 2143 2144 /* ring already cleared, nothing to do */ 2145 if (!rx_ring->rx_buffer_info) 2146 return; 2147 2148 /* Free all the Rx ring pages */ 2149 for (i = 0; i < rx_ring->count; i++) { 2150 struct ixgbevf_rx_buffer *rx_buffer; 2151 2152 rx_buffer = &rx_ring->rx_buffer_info[i]; 2153 if (rx_buffer->dma) 2154 dma_unmap_page(dev, rx_buffer->dma, 2155 PAGE_SIZE, DMA_FROM_DEVICE); 2156 rx_buffer->dma = 0; 2157 if (rx_buffer->page) 2158 __free_page(rx_buffer->page); 2159 rx_buffer->page = NULL; 2160 } 2161 2162 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 2163 memset(rx_ring->rx_buffer_info, 0, size); 2164 2165 /* Zero out the descriptor ring */ 2166 memset(rx_ring->desc, 0, rx_ring->size); 2167 } 2168 2169 /** 2170 * ixgbevf_clean_tx_ring - Free Tx Buffers 2171 * @tx_ring: ring to be cleaned 2172 **/ 2173 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2174 { 2175 struct ixgbevf_tx_buffer *tx_buffer_info; 2176 unsigned long size; 2177 unsigned int i; 2178 2179 if (!tx_ring->tx_buffer_info) 2180 return; 2181 2182 /* Free all the Tx ring sk_buffs */ 2183 for (i = 0; i < tx_ring->count; i++) { 2184 tx_buffer_info = &tx_ring->tx_buffer_info[i]; 2185 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); 2186 } 2187 2188 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 2189 memset(tx_ring->tx_buffer_info, 0, size); 2190 2191 memset(tx_ring->desc, 0, tx_ring->size); 2192 } 2193 2194 /** 2195 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2196 * @adapter: board private structure 2197 **/ 2198 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2199 { 2200 int i; 2201 2202 for (i = 0; i < adapter->num_rx_queues; i++) 2203 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2204 } 2205 2206 /** 2207 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2208 * @adapter: board private structure 2209 **/ 2210 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2211 { 2212 int i; 2213 2214 for (i = 0; i < adapter->num_tx_queues; i++) 2215 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2216 } 2217 2218 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2219 { 2220 struct net_device *netdev = adapter->netdev; 2221 struct ixgbe_hw *hw = &adapter->hw; 2222 int i; 2223 2224 /* signal that we are down to the interrupt handler */ 2225 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2226 return; /* do nothing if already down */ 2227 2228 /* disable all enabled Rx queues */ 2229 for (i = 0; i < adapter->num_rx_queues; i++) 2230 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2231 2232 usleep_range(10000, 20000); 2233 2234 netif_tx_stop_all_queues(netdev); 2235 2236 /* call carrier off first to avoid false dev_watchdog timeouts */ 2237 netif_carrier_off(netdev); 2238 netif_tx_disable(netdev); 2239 2240 ixgbevf_irq_disable(adapter); 2241 2242 ixgbevf_napi_disable_all(adapter); 2243 2244 del_timer_sync(&adapter->service_timer); 2245 2246 /* disable transmits in the hardware now that interrupts are off */ 2247 for (i = 0; i < adapter->num_tx_queues; i++) { 2248 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2249 2250 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2251 IXGBE_TXDCTL_SWFLSH); 2252 } 2253 2254 if (!pci_channel_offline(adapter->pdev)) 2255 ixgbevf_reset(adapter); 2256 2257 ixgbevf_clean_all_tx_rings(adapter); 2258 ixgbevf_clean_all_rx_rings(adapter); 2259 } 2260 2261 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2262 { 2263 WARN_ON(in_interrupt()); 2264 2265 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2266 msleep(1); 2267 2268 ixgbevf_down(adapter); 2269 ixgbevf_up(adapter); 2270 2271 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2272 } 2273 2274 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2275 { 2276 struct ixgbe_hw *hw = &adapter->hw; 2277 struct net_device *netdev = adapter->netdev; 2278 2279 if (hw->mac.ops.reset_hw(hw)) { 2280 hw_dbg(hw, "PF still resetting\n"); 2281 } else { 2282 hw->mac.ops.init_hw(hw); 2283 ixgbevf_negotiate_api(adapter); 2284 } 2285 2286 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2287 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2288 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2289 } 2290 2291 adapter->last_reset = jiffies; 2292 } 2293 2294 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2295 int vectors) 2296 { 2297 int vector_threshold; 2298 2299 /* We'll want at least 2 (vector_threshold): 2300 * 1) TxQ[0] + RxQ[0] handler 2301 * 2) Other (Link Status Change, etc.) 2302 */ 2303 vector_threshold = MIN_MSIX_COUNT; 2304 2305 /* The more we get, the more we will assign to Tx/Rx Cleanup 2306 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2307 * Right now, we simply care about how many we'll get; we'll 2308 * set them up later while requesting irq's. 2309 */ 2310 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2311 vector_threshold, vectors); 2312 2313 if (vectors < 0) { 2314 dev_err(&adapter->pdev->dev, 2315 "Unable to allocate MSI-X interrupts\n"); 2316 kfree(adapter->msix_entries); 2317 adapter->msix_entries = NULL; 2318 return vectors; 2319 } 2320 2321 /* Adjust for only the vectors we'll use, which is minimum 2322 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2323 * vectors we were allocated. 2324 */ 2325 adapter->num_msix_vectors = vectors; 2326 2327 return 0; 2328 } 2329 2330 /** 2331 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2332 * @adapter: board private structure to initialize 2333 * 2334 * This is the top level queue allocation routine. The order here is very 2335 * important, starting with the "most" number of features turned on at once, 2336 * and ending with the smallest set of features. This way large combinations 2337 * can be allocated if they're turned on, and smaller combinations are the 2338 * fallthrough conditions. 2339 * 2340 **/ 2341 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2342 { 2343 struct ixgbe_hw *hw = &adapter->hw; 2344 unsigned int def_q = 0; 2345 unsigned int num_tcs = 0; 2346 int err; 2347 2348 /* Start with base case */ 2349 adapter->num_rx_queues = 1; 2350 adapter->num_tx_queues = 1; 2351 2352 spin_lock_bh(&adapter->mbx_lock); 2353 2354 /* fetch queue configuration from the PF */ 2355 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2356 2357 spin_unlock_bh(&adapter->mbx_lock); 2358 2359 if (err) 2360 return; 2361 2362 /* we need as many queues as traffic classes */ 2363 if (num_tcs > 1) { 2364 adapter->num_rx_queues = num_tcs; 2365 } else { 2366 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2367 2368 switch (hw->api_version) { 2369 case ixgbe_mbox_api_11: 2370 case ixgbe_mbox_api_12: 2371 adapter->num_rx_queues = rss; 2372 adapter->num_tx_queues = rss; 2373 default: 2374 break; 2375 } 2376 } 2377 } 2378 2379 /** 2380 * ixgbevf_alloc_queues - Allocate memory for all rings 2381 * @adapter: board private structure to initialize 2382 * 2383 * We allocate one ring per queue at run-time since we don't know the 2384 * number of queues at compile-time. The polling_netdev array is 2385 * intended for Multiqueue, but should work fine with a single queue. 2386 **/ 2387 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter) 2388 { 2389 struct ixgbevf_ring *ring; 2390 int rx = 0, tx = 0; 2391 2392 for (; tx < adapter->num_tx_queues; tx++) { 2393 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 2394 if (!ring) 2395 goto err_allocation; 2396 2397 ring->dev = &adapter->pdev->dev; 2398 ring->netdev = adapter->netdev; 2399 ring->count = adapter->tx_ring_count; 2400 ring->queue_index = tx; 2401 ring->reg_idx = tx; 2402 2403 adapter->tx_ring[tx] = ring; 2404 } 2405 2406 for (; rx < adapter->num_rx_queues; rx++) { 2407 ring = kzalloc(sizeof(*ring), GFP_KERNEL); 2408 if (!ring) 2409 goto err_allocation; 2410 2411 ring->dev = &adapter->pdev->dev; 2412 ring->netdev = adapter->netdev; 2413 2414 ring->count = adapter->rx_ring_count; 2415 ring->queue_index = rx; 2416 ring->reg_idx = rx; 2417 2418 adapter->rx_ring[rx] = ring; 2419 } 2420 2421 return 0; 2422 2423 err_allocation: 2424 while (tx) { 2425 kfree(adapter->tx_ring[--tx]); 2426 adapter->tx_ring[tx] = NULL; 2427 } 2428 2429 while (rx) { 2430 kfree(adapter->rx_ring[--rx]); 2431 adapter->rx_ring[rx] = NULL; 2432 } 2433 return -ENOMEM; 2434 } 2435 2436 /** 2437 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2438 * @adapter: board private structure to initialize 2439 * 2440 * Attempt to configure the interrupts using the best available 2441 * capabilities of the hardware and the kernel. 2442 **/ 2443 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2444 { 2445 struct net_device *netdev = adapter->netdev; 2446 int err; 2447 int vector, v_budget; 2448 2449 /* It's easy to be greedy for MSI-X vectors, but it really 2450 * doesn't do us much good if we have a lot more vectors 2451 * than CPU's. So let's be conservative and only ask for 2452 * (roughly) the same number of vectors as there are CPU's. 2453 * The default is to use pairs of vectors. 2454 */ 2455 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2456 v_budget = min_t(int, v_budget, num_online_cpus()); 2457 v_budget += NON_Q_VECTORS; 2458 2459 /* A failure in MSI-X entry allocation isn't fatal, but it does 2460 * mean we disable MSI-X capabilities of the adapter. 2461 */ 2462 adapter->msix_entries = kcalloc(v_budget, 2463 sizeof(struct msix_entry), GFP_KERNEL); 2464 if (!adapter->msix_entries) 2465 return -ENOMEM; 2466 2467 for (vector = 0; vector < v_budget; vector++) 2468 adapter->msix_entries[vector].entry = vector; 2469 2470 err = ixgbevf_acquire_msix_vectors(adapter, v_budget); 2471 if (err) 2472 return err; 2473 2474 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 2475 if (err) 2476 return err; 2477 2478 return netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 2479 } 2480 2481 /** 2482 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2483 * @adapter: board private structure to initialize 2484 * 2485 * We allocate one q_vector per queue interrupt. If allocation fails we 2486 * return -ENOMEM. 2487 **/ 2488 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2489 { 2490 int q_idx, num_q_vectors; 2491 struct ixgbevf_q_vector *q_vector; 2492 2493 num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2494 2495 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 2496 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL); 2497 if (!q_vector) 2498 goto err_out; 2499 q_vector->adapter = adapter; 2500 q_vector->v_idx = q_idx; 2501 netif_napi_add(adapter->netdev, &q_vector->napi, 2502 ixgbevf_poll, 64); 2503 adapter->q_vector[q_idx] = q_vector; 2504 } 2505 2506 return 0; 2507 2508 err_out: 2509 while (q_idx) { 2510 q_idx--; 2511 q_vector = adapter->q_vector[q_idx]; 2512 #ifdef CONFIG_NET_RX_BUSY_POLL 2513 napi_hash_del(&q_vector->napi); 2514 #endif 2515 netif_napi_del(&q_vector->napi); 2516 kfree(q_vector); 2517 adapter->q_vector[q_idx] = NULL; 2518 } 2519 return -ENOMEM; 2520 } 2521 2522 /** 2523 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2524 * @adapter: board private structure to initialize 2525 * 2526 * This function frees the memory allocated to the q_vectors. In addition if 2527 * NAPI is enabled it will delete any references to the NAPI struct prior 2528 * to freeing the q_vector. 2529 **/ 2530 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2531 { 2532 int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2533 2534 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) { 2535 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx]; 2536 2537 adapter->q_vector[q_idx] = NULL; 2538 #ifdef CONFIG_NET_RX_BUSY_POLL 2539 napi_hash_del(&q_vector->napi); 2540 #endif 2541 netif_napi_del(&q_vector->napi); 2542 kfree(q_vector); 2543 } 2544 } 2545 2546 /** 2547 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2548 * @adapter: board private structure 2549 * 2550 **/ 2551 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2552 { 2553 pci_disable_msix(adapter->pdev); 2554 kfree(adapter->msix_entries); 2555 adapter->msix_entries = NULL; 2556 } 2557 2558 /** 2559 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2560 * @adapter: board private structure to initialize 2561 * 2562 **/ 2563 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2564 { 2565 int err; 2566 2567 /* Number of supported queues */ 2568 ixgbevf_set_num_queues(adapter); 2569 2570 err = ixgbevf_set_interrupt_capability(adapter); 2571 if (err) { 2572 hw_dbg(&adapter->hw, 2573 "Unable to setup interrupt capabilities\n"); 2574 goto err_set_interrupt; 2575 } 2576 2577 err = ixgbevf_alloc_q_vectors(adapter); 2578 if (err) { 2579 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2580 goto err_alloc_q_vectors; 2581 } 2582 2583 err = ixgbevf_alloc_queues(adapter); 2584 if (err) { 2585 pr_err("Unable to allocate memory for queues\n"); 2586 goto err_alloc_queues; 2587 } 2588 2589 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u\n", 2590 (adapter->num_rx_queues > 1) ? "Enabled" : 2591 "Disabled", adapter->num_rx_queues, adapter->num_tx_queues); 2592 2593 set_bit(__IXGBEVF_DOWN, &adapter->state); 2594 2595 return 0; 2596 err_alloc_queues: 2597 ixgbevf_free_q_vectors(adapter); 2598 err_alloc_q_vectors: 2599 ixgbevf_reset_interrupt_capability(adapter); 2600 err_set_interrupt: 2601 return err; 2602 } 2603 2604 /** 2605 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2606 * @adapter: board private structure to clear interrupt scheme on 2607 * 2608 * We go through and clear interrupt specific resources and reset the structure 2609 * to pre-load conditions 2610 **/ 2611 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2612 { 2613 int i; 2614 2615 for (i = 0; i < adapter->num_tx_queues; i++) { 2616 kfree(adapter->tx_ring[i]); 2617 adapter->tx_ring[i] = NULL; 2618 } 2619 for (i = 0; i < adapter->num_rx_queues; i++) { 2620 kfree(adapter->rx_ring[i]); 2621 adapter->rx_ring[i] = NULL; 2622 } 2623 2624 adapter->num_tx_queues = 0; 2625 adapter->num_rx_queues = 0; 2626 2627 ixgbevf_free_q_vectors(adapter); 2628 ixgbevf_reset_interrupt_capability(adapter); 2629 } 2630 2631 /** 2632 * ixgbevf_sw_init - Initialize general software structures 2633 * @adapter: board private structure to initialize 2634 * 2635 * ixgbevf_sw_init initializes the Adapter private data structure. 2636 * Fields are initialized based on PCI device information and 2637 * OS network device settings (MTU size). 2638 **/ 2639 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 2640 { 2641 struct ixgbe_hw *hw = &adapter->hw; 2642 struct pci_dev *pdev = adapter->pdev; 2643 struct net_device *netdev = adapter->netdev; 2644 int err; 2645 2646 /* PCI config space info */ 2647 hw->vendor_id = pdev->vendor; 2648 hw->device_id = pdev->device; 2649 hw->revision_id = pdev->revision; 2650 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2651 hw->subsystem_device_id = pdev->subsystem_device; 2652 2653 hw->mbx.ops.init_params(hw); 2654 2655 /* assume legacy case in which PF would only give VF 2 queues */ 2656 hw->mac.max_tx_queues = 2; 2657 hw->mac.max_rx_queues = 2; 2658 2659 /* lock to protect mailbox accesses */ 2660 spin_lock_init(&adapter->mbx_lock); 2661 2662 err = hw->mac.ops.reset_hw(hw); 2663 if (err) { 2664 dev_info(&pdev->dev, 2665 "PF still in reset state. Is the PF interface up?\n"); 2666 } else { 2667 err = hw->mac.ops.init_hw(hw); 2668 if (err) { 2669 pr_err("init_shared_code failed: %d\n", err); 2670 goto out; 2671 } 2672 ixgbevf_negotiate_api(adapter); 2673 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 2674 if (err) 2675 dev_info(&pdev->dev, "Error reading MAC address\n"); 2676 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 2677 dev_info(&pdev->dev, 2678 "MAC address not assigned by administrator.\n"); 2679 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 2680 } 2681 2682 if (!is_valid_ether_addr(netdev->dev_addr)) { 2683 dev_info(&pdev->dev, "Assigning random MAC address\n"); 2684 eth_hw_addr_random(netdev); 2685 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 2686 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 2687 } 2688 2689 /* Enable dynamic interrupt throttling rates */ 2690 adapter->rx_itr_setting = 1; 2691 adapter->tx_itr_setting = 1; 2692 2693 /* set default ring sizes */ 2694 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 2695 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 2696 2697 set_bit(__IXGBEVF_DOWN, &adapter->state); 2698 return 0; 2699 2700 out: 2701 return err; 2702 } 2703 2704 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 2705 { \ 2706 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 2707 if (current_counter < last_counter) \ 2708 counter += 0x100000000LL; \ 2709 last_counter = current_counter; \ 2710 counter &= 0xFFFFFFFF00000000LL; \ 2711 counter |= current_counter; \ 2712 } 2713 2714 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 2715 { \ 2716 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 2717 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 2718 u64 current_counter = (current_counter_msb << 32) | \ 2719 current_counter_lsb; \ 2720 if (current_counter < last_counter) \ 2721 counter += 0x1000000000LL; \ 2722 last_counter = current_counter; \ 2723 counter &= 0xFFFFFFF000000000LL; \ 2724 counter |= current_counter; \ 2725 } 2726 /** 2727 * ixgbevf_update_stats - Update the board statistics counters. 2728 * @adapter: board private structure 2729 **/ 2730 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 2731 { 2732 struct ixgbe_hw *hw = &adapter->hw; 2733 int i; 2734 2735 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2736 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2737 return; 2738 2739 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 2740 adapter->stats.vfgprc); 2741 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 2742 adapter->stats.vfgptc); 2743 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 2744 adapter->stats.last_vfgorc, 2745 adapter->stats.vfgorc); 2746 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 2747 adapter->stats.last_vfgotc, 2748 adapter->stats.vfgotc); 2749 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 2750 adapter->stats.vfmprc); 2751 2752 for (i = 0; i < adapter->num_rx_queues; i++) { 2753 adapter->hw_csum_rx_error += 2754 adapter->rx_ring[i]->hw_csum_rx_error; 2755 adapter->rx_ring[i]->hw_csum_rx_error = 0; 2756 } 2757 } 2758 2759 /** 2760 * ixgbevf_service_timer - Timer Call-back 2761 * @data: pointer to adapter cast into an unsigned long 2762 **/ 2763 static void ixgbevf_service_timer(unsigned long data) 2764 { 2765 struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data; 2766 2767 /* Reset the timer */ 2768 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 2769 2770 ixgbevf_service_event_schedule(adapter); 2771 } 2772 2773 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 2774 { 2775 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 2776 return; 2777 2778 /* If we're already down or resetting, just bail */ 2779 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2780 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 2781 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2782 return; 2783 2784 adapter->tx_timeout_count++; 2785 2786 rtnl_lock(); 2787 ixgbevf_reinit_locked(adapter); 2788 rtnl_unlock(); 2789 } 2790 2791 /** 2792 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 2793 * @adapter: pointer to the device adapter structure 2794 * 2795 * This function serves two purposes. First it strobes the interrupt lines 2796 * in order to make certain interrupts are occurring. Secondly it sets the 2797 * bits needed to check for TX hangs. As a result we should immediately 2798 * determine if a hang has occurred. 2799 **/ 2800 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 2801 { 2802 struct ixgbe_hw *hw = &adapter->hw; 2803 u32 eics = 0; 2804 int i; 2805 2806 /* If we're down or resetting, just bail */ 2807 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2808 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2809 return; 2810 2811 /* Force detection of hung controller */ 2812 if (netif_carrier_ok(adapter->netdev)) { 2813 for (i = 0; i < adapter->num_tx_queues; i++) 2814 set_check_for_tx_hang(adapter->tx_ring[i]); 2815 } 2816 2817 /* get one bit for every active Tx/Rx interrupt vector */ 2818 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 2819 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 2820 2821 if (qv->rx.ring || qv->tx.ring) 2822 eics |= BIT(i); 2823 } 2824 2825 /* Cause software interrupt to ensure rings are cleaned */ 2826 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 2827 } 2828 2829 /** 2830 * ixgbevf_watchdog_update_link - update the link status 2831 * @adapter: pointer to the device adapter structure 2832 **/ 2833 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 2834 { 2835 struct ixgbe_hw *hw = &adapter->hw; 2836 u32 link_speed = adapter->link_speed; 2837 bool link_up = adapter->link_up; 2838 s32 err; 2839 2840 spin_lock_bh(&adapter->mbx_lock); 2841 2842 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 2843 2844 spin_unlock_bh(&adapter->mbx_lock); 2845 2846 /* if check for link returns error we will need to reset */ 2847 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 2848 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 2849 link_up = false; 2850 } 2851 2852 adapter->link_up = link_up; 2853 adapter->link_speed = link_speed; 2854 } 2855 2856 /** 2857 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 2858 * print link up message 2859 * @adapter: pointer to the device adapter structure 2860 **/ 2861 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 2862 { 2863 struct net_device *netdev = adapter->netdev; 2864 2865 /* only continue if link was previously down */ 2866 if (netif_carrier_ok(netdev)) 2867 return; 2868 2869 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 2870 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 2871 "10 Gbps" : 2872 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 2873 "1 Gbps" : 2874 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 2875 "100 Mbps" : 2876 "unknown speed"); 2877 2878 netif_carrier_on(netdev); 2879 } 2880 2881 /** 2882 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 2883 * print link down message 2884 * @adapter: pointer to the adapter structure 2885 **/ 2886 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 2887 { 2888 struct net_device *netdev = adapter->netdev; 2889 2890 adapter->link_speed = 0; 2891 2892 /* only continue if link was up previously */ 2893 if (!netif_carrier_ok(netdev)) 2894 return; 2895 2896 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 2897 2898 netif_carrier_off(netdev); 2899 } 2900 2901 /** 2902 * ixgbevf_watchdog_subtask - worker thread to bring link up 2903 * @work: pointer to work_struct containing our data 2904 **/ 2905 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 2906 { 2907 /* if interface is down do nothing */ 2908 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 2909 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 2910 return; 2911 2912 ixgbevf_watchdog_update_link(adapter); 2913 2914 if (adapter->link_up) 2915 ixgbevf_watchdog_link_is_up(adapter); 2916 else 2917 ixgbevf_watchdog_link_is_down(adapter); 2918 2919 ixgbevf_update_stats(adapter); 2920 } 2921 2922 /** 2923 * ixgbevf_service_task - manages and runs subtasks 2924 * @work: pointer to work_struct containing our data 2925 **/ 2926 static void ixgbevf_service_task(struct work_struct *work) 2927 { 2928 struct ixgbevf_adapter *adapter = container_of(work, 2929 struct ixgbevf_adapter, 2930 service_task); 2931 struct ixgbe_hw *hw = &adapter->hw; 2932 2933 if (IXGBE_REMOVED(hw->hw_addr)) { 2934 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 2935 rtnl_lock(); 2936 ixgbevf_down(adapter); 2937 rtnl_unlock(); 2938 } 2939 return; 2940 } 2941 2942 ixgbevf_queue_reset_subtask(adapter); 2943 ixgbevf_reset_subtask(adapter); 2944 ixgbevf_watchdog_subtask(adapter); 2945 ixgbevf_check_hang_subtask(adapter); 2946 2947 ixgbevf_service_event_complete(adapter); 2948 } 2949 2950 /** 2951 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 2952 * @tx_ring: Tx descriptor ring for a specific queue 2953 * 2954 * Free all transmit software resources 2955 **/ 2956 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 2957 { 2958 ixgbevf_clean_tx_ring(tx_ring); 2959 2960 vfree(tx_ring->tx_buffer_info); 2961 tx_ring->tx_buffer_info = NULL; 2962 2963 /* if not set, then don't free */ 2964 if (!tx_ring->desc) 2965 return; 2966 2967 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 2968 tx_ring->dma); 2969 2970 tx_ring->desc = NULL; 2971 } 2972 2973 /** 2974 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 2975 * @adapter: board private structure 2976 * 2977 * Free all transmit software resources 2978 **/ 2979 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 2980 { 2981 int i; 2982 2983 for (i = 0; i < adapter->num_tx_queues; i++) 2984 if (adapter->tx_ring[i]->desc) 2985 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 2986 } 2987 2988 /** 2989 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 2990 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 2991 * 2992 * Return 0 on success, negative on failure 2993 **/ 2994 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 2995 { 2996 int size; 2997 2998 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 2999 tx_ring->tx_buffer_info = vzalloc(size); 3000 if (!tx_ring->tx_buffer_info) 3001 goto err; 3002 3003 /* round up to nearest 4K */ 3004 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3005 tx_ring->size = ALIGN(tx_ring->size, 4096); 3006 3007 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3008 &tx_ring->dma, GFP_KERNEL); 3009 if (!tx_ring->desc) 3010 goto err; 3011 3012 return 0; 3013 3014 err: 3015 vfree(tx_ring->tx_buffer_info); 3016 tx_ring->tx_buffer_info = NULL; 3017 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3018 return -ENOMEM; 3019 } 3020 3021 /** 3022 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3023 * @adapter: board private structure 3024 * 3025 * If this function returns with an error, then it's possible one or 3026 * more of the rings is populated (while the rest are not). It is the 3027 * callers duty to clean those orphaned rings. 3028 * 3029 * Return 0 on success, negative on failure 3030 **/ 3031 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3032 { 3033 int i, err = 0; 3034 3035 for (i = 0; i < adapter->num_tx_queues; i++) { 3036 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3037 if (!err) 3038 continue; 3039 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3040 break; 3041 } 3042 3043 return err; 3044 } 3045 3046 /** 3047 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3048 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3049 * 3050 * Returns 0 on success, negative on failure 3051 **/ 3052 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring) 3053 { 3054 int size; 3055 3056 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3057 rx_ring->rx_buffer_info = vzalloc(size); 3058 if (!rx_ring->rx_buffer_info) 3059 goto err; 3060 3061 /* Round up to nearest 4K */ 3062 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3063 rx_ring->size = ALIGN(rx_ring->size, 4096); 3064 3065 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3066 &rx_ring->dma, GFP_KERNEL); 3067 3068 if (!rx_ring->desc) 3069 goto err; 3070 3071 return 0; 3072 err: 3073 vfree(rx_ring->rx_buffer_info); 3074 rx_ring->rx_buffer_info = NULL; 3075 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3076 return -ENOMEM; 3077 } 3078 3079 /** 3080 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3081 * @adapter: board private structure 3082 * 3083 * If this function returns with an error, then it's possible one or 3084 * more of the rings is populated (while the rest are not). It is the 3085 * callers duty to clean those orphaned rings. 3086 * 3087 * Return 0 on success, negative on failure 3088 **/ 3089 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3090 { 3091 int i, err = 0; 3092 3093 for (i = 0; i < adapter->num_rx_queues; i++) { 3094 err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]); 3095 if (!err) 3096 continue; 3097 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3098 break; 3099 } 3100 return err; 3101 } 3102 3103 /** 3104 * ixgbevf_free_rx_resources - Free Rx Resources 3105 * @rx_ring: ring to clean the resources from 3106 * 3107 * Free all receive software resources 3108 **/ 3109 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3110 { 3111 ixgbevf_clean_rx_ring(rx_ring); 3112 3113 vfree(rx_ring->rx_buffer_info); 3114 rx_ring->rx_buffer_info = NULL; 3115 3116 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3117 rx_ring->dma); 3118 3119 rx_ring->desc = NULL; 3120 } 3121 3122 /** 3123 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3124 * @adapter: board private structure 3125 * 3126 * Free all receive software resources 3127 **/ 3128 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3129 { 3130 int i; 3131 3132 for (i = 0; i < adapter->num_rx_queues; i++) 3133 if (adapter->rx_ring[i]->desc) 3134 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3135 } 3136 3137 /** 3138 * ixgbevf_open - Called when a network interface is made active 3139 * @netdev: network interface device structure 3140 * 3141 * Returns 0 on success, negative value on failure 3142 * 3143 * The open entry point is called when a network interface is made 3144 * active by the system (IFF_UP). At this point all resources needed 3145 * for transmit and receive operations are allocated, the interrupt 3146 * handler is registered with the OS, the watchdog timer is started, 3147 * and the stack is notified that the interface is ready. 3148 **/ 3149 int ixgbevf_open(struct net_device *netdev) 3150 { 3151 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3152 struct ixgbe_hw *hw = &adapter->hw; 3153 int err; 3154 3155 /* A previous failure to open the device because of a lack of 3156 * available MSIX vector resources may have reset the number 3157 * of msix vectors variable to zero. The only way to recover 3158 * is to unload/reload the driver and hope that the system has 3159 * been able to recover some MSIX vector resources. 3160 */ 3161 if (!adapter->num_msix_vectors) 3162 return -ENOMEM; 3163 3164 if (hw->adapter_stopped) { 3165 ixgbevf_reset(adapter); 3166 /* if adapter is still stopped then PF isn't up and 3167 * the VF can't start. 3168 */ 3169 if (hw->adapter_stopped) { 3170 err = IXGBE_ERR_MBX; 3171 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3172 goto err_setup_reset; 3173 } 3174 } 3175 3176 /* disallow open during test */ 3177 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3178 return -EBUSY; 3179 3180 netif_carrier_off(netdev); 3181 3182 /* allocate transmit descriptors */ 3183 err = ixgbevf_setup_all_tx_resources(adapter); 3184 if (err) 3185 goto err_setup_tx; 3186 3187 /* allocate receive descriptors */ 3188 err = ixgbevf_setup_all_rx_resources(adapter); 3189 if (err) 3190 goto err_setup_rx; 3191 3192 ixgbevf_configure(adapter); 3193 3194 /* Map the Tx/Rx rings to the vectors we were allotted. 3195 * if request_irq will be called in this function map_rings 3196 * must be called *before* up_complete 3197 */ 3198 ixgbevf_map_rings_to_vectors(adapter); 3199 3200 err = ixgbevf_request_irq(adapter); 3201 if (err) 3202 goto err_req_irq; 3203 3204 ixgbevf_up_complete(adapter); 3205 3206 return 0; 3207 3208 err_req_irq: 3209 ixgbevf_down(adapter); 3210 err_setup_rx: 3211 ixgbevf_free_all_rx_resources(adapter); 3212 err_setup_tx: 3213 ixgbevf_free_all_tx_resources(adapter); 3214 ixgbevf_reset(adapter); 3215 3216 err_setup_reset: 3217 3218 return err; 3219 } 3220 3221 /** 3222 * ixgbevf_close - Disables a network interface 3223 * @netdev: network interface device structure 3224 * 3225 * Returns 0, this is not allowed to fail 3226 * 3227 * The close entry point is called when an interface is de-activated 3228 * by the OS. The hardware is still under the drivers control, but 3229 * needs to be disabled. A global MAC reset is issued to stop the 3230 * hardware, and all transmit and receive resources are freed. 3231 **/ 3232 int ixgbevf_close(struct net_device *netdev) 3233 { 3234 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3235 3236 ixgbevf_down(adapter); 3237 ixgbevf_free_irq(adapter); 3238 3239 ixgbevf_free_all_tx_resources(adapter); 3240 ixgbevf_free_all_rx_resources(adapter); 3241 3242 return 0; 3243 } 3244 3245 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3246 { 3247 struct net_device *dev = adapter->netdev; 3248 3249 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3250 &adapter->state)) 3251 return; 3252 3253 /* if interface is down do nothing */ 3254 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3255 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3256 return; 3257 3258 /* Hardware has to reinitialize queues and interrupts to 3259 * match packet buffer alignment. Unfortunately, the 3260 * hardware is not flexible enough to do this dynamically. 3261 */ 3262 if (netif_running(dev)) 3263 ixgbevf_close(dev); 3264 3265 ixgbevf_clear_interrupt_scheme(adapter); 3266 ixgbevf_init_interrupt_scheme(adapter); 3267 3268 if (netif_running(dev)) 3269 ixgbevf_open(dev); 3270 } 3271 3272 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3273 u32 vlan_macip_lens, u32 type_tucmd, 3274 u32 mss_l4len_idx) 3275 { 3276 struct ixgbe_adv_tx_context_desc *context_desc; 3277 u16 i = tx_ring->next_to_use; 3278 3279 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3280 3281 i++; 3282 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3283 3284 /* set bits to identify this as an advanced context descriptor */ 3285 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3286 3287 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3288 context_desc->seqnum_seed = 0; 3289 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3290 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3291 } 3292 3293 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3294 struct ixgbevf_tx_buffer *first, 3295 u8 *hdr_len) 3296 { 3297 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3298 struct sk_buff *skb = first->skb; 3299 union { 3300 struct iphdr *v4; 3301 struct ipv6hdr *v6; 3302 unsigned char *hdr; 3303 } ip; 3304 union { 3305 struct tcphdr *tcp; 3306 unsigned char *hdr; 3307 } l4; 3308 u32 paylen, l4_offset; 3309 int err; 3310 3311 if (skb->ip_summed != CHECKSUM_PARTIAL) 3312 return 0; 3313 3314 if (!skb_is_gso(skb)) 3315 return 0; 3316 3317 err = skb_cow_head(skb, 0); 3318 if (err < 0) 3319 return err; 3320 3321 ip.hdr = skb_network_header(skb); 3322 l4.hdr = skb_checksum_start(skb); 3323 3324 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3325 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3326 3327 /* initialize outer IP header fields */ 3328 if (ip.v4->version == 4) { 3329 /* IP header will have to cancel out any data that 3330 * is not a part of the outer IP header 3331 */ 3332 ip.v4->check = csum_fold(csum_add(lco_csum(skb), 3333 csum_unfold(l4.tcp->check))); 3334 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3335 3336 ip.v4->tot_len = 0; 3337 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3338 IXGBE_TX_FLAGS_CSUM | 3339 IXGBE_TX_FLAGS_IPV4; 3340 } else { 3341 ip.v6->payload_len = 0; 3342 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3343 IXGBE_TX_FLAGS_CSUM; 3344 } 3345 3346 /* determine offset of inner transport header */ 3347 l4_offset = l4.hdr - skb->data; 3348 3349 /* compute length of segmentation header */ 3350 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3351 3352 /* remove payload length from inner checksum */ 3353 paylen = skb->len - l4_offset; 3354 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3355 3356 /* update gso size and bytecount with header size */ 3357 first->gso_segs = skb_shinfo(skb)->gso_segs; 3358 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3359 3360 /* mss_l4len_id: use 1 as index for TSO */ 3361 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3362 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3363 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3364 3365 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3366 vlan_macip_lens = l4.hdr - ip.hdr; 3367 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3368 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3369 3370 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3371 type_tucmd, mss_l4len_idx); 3372 3373 return 1; 3374 } 3375 3376 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) 3377 { 3378 unsigned int offset = 0; 3379 3380 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 3381 3382 return offset == skb_checksum_start_offset(skb); 3383 } 3384 3385 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3386 struct ixgbevf_tx_buffer *first) 3387 { 3388 struct sk_buff *skb = first->skb; 3389 u32 vlan_macip_lens = 0; 3390 u32 type_tucmd = 0; 3391 3392 if (skb->ip_summed != CHECKSUM_PARTIAL) 3393 goto no_csum; 3394 3395 switch (skb->csum_offset) { 3396 case offsetof(struct tcphdr, check): 3397 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3398 /* fall through */ 3399 case offsetof(struct udphdr, check): 3400 break; 3401 case offsetof(struct sctphdr, checksum): 3402 /* validate that this is actually an SCTP request */ 3403 if (((first->protocol == htons(ETH_P_IP)) && 3404 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 3405 ((first->protocol == htons(ETH_P_IPV6)) && 3406 ixgbevf_ipv6_csum_is_sctp(skb))) { 3407 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3408 break; 3409 } 3410 /* fall through */ 3411 default: 3412 skb_checksum_help(skb); 3413 goto no_csum; 3414 } 3415 /* update TX checksum flag */ 3416 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3417 vlan_macip_lens = skb_checksum_start_offset(skb) - 3418 skb_network_offset(skb); 3419 no_csum: 3420 /* vlan_macip_lens: MACLEN, VLAN tag */ 3421 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3422 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3423 3424 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0); 3425 } 3426 3427 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3428 { 3429 /* set type for advanced descriptor with frame checksum insertion */ 3430 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3431 IXGBE_ADVTXD_DCMD_IFCS | 3432 IXGBE_ADVTXD_DCMD_DEXT); 3433 3434 /* set HW VLAN bit if VLAN is present */ 3435 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3436 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3437 3438 /* set segmentation enable bits for TSO/FSO */ 3439 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3440 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3441 3442 return cmd_type; 3443 } 3444 3445 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3446 u32 tx_flags, unsigned int paylen) 3447 { 3448 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3449 3450 /* enable L4 checksum for TSO and TX checksum offload */ 3451 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3452 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3453 3454 /* enble IPv4 checksum for TSO */ 3455 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3456 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3457 3458 /* use index 1 context for TSO/FSO/FCOE */ 3459 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3460 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3461 3462 /* Check Context must be set if Tx switch is enabled, which it 3463 * always is for case where virtual functions are running 3464 */ 3465 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3466 3467 tx_desc->read.olinfo_status = olinfo_status; 3468 } 3469 3470 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3471 struct ixgbevf_tx_buffer *first, 3472 const u8 hdr_len) 3473 { 3474 dma_addr_t dma; 3475 struct sk_buff *skb = first->skb; 3476 struct ixgbevf_tx_buffer *tx_buffer; 3477 union ixgbe_adv_tx_desc *tx_desc; 3478 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 3479 unsigned int data_len = skb->data_len; 3480 unsigned int size = skb_headlen(skb); 3481 unsigned int paylen = skb->len - hdr_len; 3482 u32 tx_flags = first->tx_flags; 3483 __le32 cmd_type; 3484 u16 i = tx_ring->next_to_use; 3485 3486 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3487 3488 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen); 3489 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3490 3491 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3492 if (dma_mapping_error(tx_ring->dev, dma)) 3493 goto dma_error; 3494 3495 /* record length, and DMA address */ 3496 dma_unmap_len_set(first, len, size); 3497 dma_unmap_addr_set(first, dma, dma); 3498 3499 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3500 3501 for (;;) { 3502 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3503 tx_desc->read.cmd_type_len = 3504 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3505 3506 i++; 3507 tx_desc++; 3508 if (i == tx_ring->count) { 3509 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3510 i = 0; 3511 } 3512 3513 dma += IXGBE_MAX_DATA_PER_TXD; 3514 size -= IXGBE_MAX_DATA_PER_TXD; 3515 3516 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3517 tx_desc->read.olinfo_status = 0; 3518 } 3519 3520 if (likely(!data_len)) 3521 break; 3522 3523 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 3524 3525 i++; 3526 tx_desc++; 3527 if (i == tx_ring->count) { 3528 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3529 i = 0; 3530 } 3531 3532 size = skb_frag_size(frag); 3533 data_len -= size; 3534 3535 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 3536 DMA_TO_DEVICE); 3537 if (dma_mapping_error(tx_ring->dev, dma)) 3538 goto dma_error; 3539 3540 tx_buffer = &tx_ring->tx_buffer_info[i]; 3541 dma_unmap_len_set(tx_buffer, len, size); 3542 dma_unmap_addr_set(tx_buffer, dma, dma); 3543 3544 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3545 tx_desc->read.olinfo_status = 0; 3546 3547 frag++; 3548 } 3549 3550 /* write last descriptor with RS and EOP bits */ 3551 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 3552 tx_desc->read.cmd_type_len = cmd_type; 3553 3554 /* set the timestamp */ 3555 first->time_stamp = jiffies; 3556 3557 /* Force memory writes to complete before letting h/w know there 3558 * are new descriptors to fetch. (Only applicable for weak-ordered 3559 * memory model archs, such as IA-64). 3560 * 3561 * We also need this memory barrier (wmb) to make certain all of the 3562 * status bits have been updated before next_to_watch is written. 3563 */ 3564 wmb(); 3565 3566 /* set next_to_watch value indicating a packet is present */ 3567 first->next_to_watch = tx_desc; 3568 3569 i++; 3570 if (i == tx_ring->count) 3571 i = 0; 3572 3573 tx_ring->next_to_use = i; 3574 3575 /* notify HW of packet */ 3576 ixgbevf_write_tail(tx_ring, i); 3577 3578 return; 3579 dma_error: 3580 dev_err(tx_ring->dev, "TX DMA map failed\n"); 3581 3582 /* clear dma mappings for failed tx_buffer_info map */ 3583 for (;;) { 3584 tx_buffer = &tx_ring->tx_buffer_info[i]; 3585 ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer); 3586 if (tx_buffer == first) 3587 break; 3588 if (i == 0) 3589 i = tx_ring->count; 3590 i--; 3591 } 3592 3593 tx_ring->next_to_use = i; 3594 } 3595 3596 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 3597 { 3598 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 3599 /* Herbert's original patch had: 3600 * smp_mb__after_netif_stop_queue(); 3601 * but since that doesn't exist yet, just open code it. 3602 */ 3603 smp_mb(); 3604 3605 /* We need to check again in a case another CPU has just 3606 * made room available. 3607 */ 3608 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 3609 return -EBUSY; 3610 3611 /* A reprieve! - use start_queue because it doesn't call schedule */ 3612 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 3613 ++tx_ring->tx_stats.restart_queue; 3614 3615 return 0; 3616 } 3617 3618 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 3619 { 3620 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 3621 return 0; 3622 return __ixgbevf_maybe_stop_tx(tx_ring, size); 3623 } 3624 3625 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 3626 { 3627 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3628 struct ixgbevf_tx_buffer *first; 3629 struct ixgbevf_ring *tx_ring; 3630 int tso; 3631 u32 tx_flags = 0; 3632 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 3633 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 3634 unsigned short f; 3635 #endif 3636 u8 hdr_len = 0; 3637 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 3638 3639 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 3640 dev_kfree_skb_any(skb); 3641 return NETDEV_TX_OK; 3642 } 3643 3644 tx_ring = adapter->tx_ring[skb->queue_mapping]; 3645 3646 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 3647 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 3648 * + 2 desc gap to keep tail from touching head, 3649 * + 1 desc for context descriptor, 3650 * otherwise try next time 3651 */ 3652 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 3653 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 3654 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 3655 #else 3656 count += skb_shinfo(skb)->nr_frags; 3657 #endif 3658 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 3659 tx_ring->tx_stats.tx_busy++; 3660 return NETDEV_TX_BUSY; 3661 } 3662 3663 /* record the location of the first descriptor for this packet */ 3664 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 3665 first->skb = skb; 3666 first->bytecount = skb->len; 3667 first->gso_segs = 1; 3668 3669 if (skb_vlan_tag_present(skb)) { 3670 tx_flags |= skb_vlan_tag_get(skb); 3671 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 3672 tx_flags |= IXGBE_TX_FLAGS_VLAN; 3673 } 3674 3675 /* record initial flags and protocol */ 3676 first->tx_flags = tx_flags; 3677 first->protocol = vlan_get_protocol(skb); 3678 3679 tso = ixgbevf_tso(tx_ring, first, &hdr_len); 3680 if (tso < 0) 3681 goto out_drop; 3682 else if (!tso) 3683 ixgbevf_tx_csum(tx_ring, first); 3684 3685 ixgbevf_tx_map(tx_ring, first, hdr_len); 3686 3687 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 3688 3689 return NETDEV_TX_OK; 3690 3691 out_drop: 3692 dev_kfree_skb_any(first->skb); 3693 first->skb = NULL; 3694 3695 return NETDEV_TX_OK; 3696 } 3697 3698 /** 3699 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 3700 * @netdev: network interface device structure 3701 * @p: pointer to an address structure 3702 * 3703 * Returns 0 on success, negative on failure 3704 **/ 3705 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 3706 { 3707 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3708 struct ixgbe_hw *hw = &adapter->hw; 3709 struct sockaddr *addr = p; 3710 int err; 3711 3712 if (!is_valid_ether_addr(addr->sa_data)) 3713 return -EADDRNOTAVAIL; 3714 3715 spin_lock_bh(&adapter->mbx_lock); 3716 3717 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 3718 3719 spin_unlock_bh(&adapter->mbx_lock); 3720 3721 if (err) 3722 return -EPERM; 3723 3724 ether_addr_copy(hw->mac.addr, addr->sa_data); 3725 ether_addr_copy(netdev->dev_addr, addr->sa_data); 3726 3727 return 0; 3728 } 3729 3730 /** 3731 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 3732 * @netdev: network interface device structure 3733 * @new_mtu: new value for maximum frame size 3734 * 3735 * Returns 0 on success, negative on failure 3736 **/ 3737 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 3738 { 3739 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3740 struct ixgbe_hw *hw = &adapter->hw; 3741 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 3742 int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE; 3743 int ret; 3744 3745 switch (adapter->hw.api_version) { 3746 case ixgbe_mbox_api_11: 3747 case ixgbe_mbox_api_12: 3748 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE; 3749 break; 3750 default: 3751 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 3752 max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE; 3753 break; 3754 } 3755 3756 /* MTU < 68 is an error and causes problems on some kernels */ 3757 if ((new_mtu < 68) || (max_frame > max_possible_frame)) 3758 return -EINVAL; 3759 3760 /* notify the PF of our intent to use this size of frame */ 3761 ret = hw->mac.ops.set_rlpml(hw, max_frame); 3762 if (ret) 3763 return -EINVAL; 3764 3765 hw_dbg(hw, "changing MTU from %d to %d\n", 3766 netdev->mtu, new_mtu); 3767 3768 /* must set new MTU before calling down or up */ 3769 netdev->mtu = new_mtu; 3770 3771 return 0; 3772 } 3773 3774 #ifdef CONFIG_NET_POLL_CONTROLLER 3775 /* Polling 'interrupt' - used by things like netconsole to send skbs 3776 * without having to re-enable interrupts. It's not called while 3777 * the interrupt routine is executing. 3778 */ 3779 static void ixgbevf_netpoll(struct net_device *netdev) 3780 { 3781 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3782 int i; 3783 3784 /* if interface is down do nothing */ 3785 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 3786 return; 3787 for (i = 0; i < adapter->num_rx_queues; i++) 3788 ixgbevf_msix_clean_rings(0, adapter->q_vector[i]); 3789 } 3790 #endif /* CONFIG_NET_POLL_CONTROLLER */ 3791 3792 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state) 3793 { 3794 struct net_device *netdev = pci_get_drvdata(pdev); 3795 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3796 #ifdef CONFIG_PM 3797 int retval = 0; 3798 #endif 3799 3800 netif_device_detach(netdev); 3801 3802 if (netif_running(netdev)) { 3803 rtnl_lock(); 3804 ixgbevf_down(adapter); 3805 ixgbevf_free_irq(adapter); 3806 ixgbevf_free_all_tx_resources(adapter); 3807 ixgbevf_free_all_rx_resources(adapter); 3808 rtnl_unlock(); 3809 } 3810 3811 ixgbevf_clear_interrupt_scheme(adapter); 3812 3813 #ifdef CONFIG_PM 3814 retval = pci_save_state(pdev); 3815 if (retval) 3816 return retval; 3817 3818 #endif 3819 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 3820 pci_disable_device(pdev); 3821 3822 return 0; 3823 } 3824 3825 #ifdef CONFIG_PM 3826 static int ixgbevf_resume(struct pci_dev *pdev) 3827 { 3828 struct net_device *netdev = pci_get_drvdata(pdev); 3829 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3830 u32 err; 3831 3832 pci_restore_state(pdev); 3833 /* pci_restore_state clears dev->state_saved so call 3834 * pci_save_state to restore it. 3835 */ 3836 pci_save_state(pdev); 3837 3838 err = pci_enable_device_mem(pdev); 3839 if (err) { 3840 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 3841 return err; 3842 } 3843 smp_mb__before_atomic(); 3844 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 3845 pci_set_master(pdev); 3846 3847 ixgbevf_reset(adapter); 3848 3849 rtnl_lock(); 3850 err = ixgbevf_init_interrupt_scheme(adapter); 3851 rtnl_unlock(); 3852 if (err) { 3853 dev_err(&pdev->dev, "Cannot initialize interrupts\n"); 3854 return err; 3855 } 3856 3857 if (netif_running(netdev)) { 3858 err = ixgbevf_open(netdev); 3859 if (err) 3860 return err; 3861 } 3862 3863 netif_device_attach(netdev); 3864 3865 return err; 3866 } 3867 3868 #endif /* CONFIG_PM */ 3869 static void ixgbevf_shutdown(struct pci_dev *pdev) 3870 { 3871 ixgbevf_suspend(pdev, PMSG_SUSPEND); 3872 } 3873 3874 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev, 3875 struct rtnl_link_stats64 *stats) 3876 { 3877 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3878 unsigned int start; 3879 u64 bytes, packets; 3880 const struct ixgbevf_ring *ring; 3881 int i; 3882 3883 ixgbevf_update_stats(adapter); 3884 3885 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 3886 3887 for (i = 0; i < adapter->num_rx_queues; i++) { 3888 ring = adapter->rx_ring[i]; 3889 do { 3890 start = u64_stats_fetch_begin_irq(&ring->syncp); 3891 bytes = ring->stats.bytes; 3892 packets = ring->stats.packets; 3893 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3894 stats->rx_bytes += bytes; 3895 stats->rx_packets += packets; 3896 } 3897 3898 for (i = 0; i < adapter->num_tx_queues; i++) { 3899 ring = adapter->tx_ring[i]; 3900 do { 3901 start = u64_stats_fetch_begin_irq(&ring->syncp); 3902 bytes = ring->stats.bytes; 3903 packets = ring->stats.packets; 3904 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 3905 stats->tx_bytes += bytes; 3906 stats->tx_packets += packets; 3907 } 3908 3909 return stats; 3910 } 3911 3912 #define IXGBEVF_MAX_MAC_HDR_LEN 127 3913 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 3914 3915 static netdev_features_t 3916 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 3917 netdev_features_t features) 3918 { 3919 unsigned int network_hdr_len, mac_hdr_len; 3920 3921 /* Make certain the headers can be described by a context descriptor */ 3922 mac_hdr_len = skb_network_header(skb) - skb->data; 3923 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 3924 return features & ~(NETIF_F_HW_CSUM | 3925 NETIF_F_SCTP_CRC | 3926 NETIF_F_HW_VLAN_CTAG_TX | 3927 NETIF_F_TSO | 3928 NETIF_F_TSO6); 3929 3930 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 3931 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 3932 return features & ~(NETIF_F_HW_CSUM | 3933 NETIF_F_SCTP_CRC | 3934 NETIF_F_TSO | 3935 NETIF_F_TSO6); 3936 3937 /* We can only support IPV4 TSO in tunnels if we can mangle the 3938 * inner IP ID field, so strip TSO if MANGLEID is not supported. 3939 */ 3940 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 3941 features &= ~NETIF_F_TSO; 3942 3943 return features; 3944 } 3945 3946 static const struct net_device_ops ixgbevf_netdev_ops = { 3947 .ndo_open = ixgbevf_open, 3948 .ndo_stop = ixgbevf_close, 3949 .ndo_start_xmit = ixgbevf_xmit_frame, 3950 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 3951 .ndo_get_stats64 = ixgbevf_get_stats, 3952 .ndo_validate_addr = eth_validate_addr, 3953 .ndo_set_mac_address = ixgbevf_set_mac, 3954 .ndo_change_mtu = ixgbevf_change_mtu, 3955 .ndo_tx_timeout = ixgbevf_tx_timeout, 3956 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 3957 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 3958 #ifdef CONFIG_NET_RX_BUSY_POLL 3959 .ndo_busy_poll = ixgbevf_busy_poll_recv, 3960 #endif 3961 #ifdef CONFIG_NET_POLL_CONTROLLER 3962 .ndo_poll_controller = ixgbevf_netpoll, 3963 #endif 3964 .ndo_features_check = ixgbevf_features_check, 3965 }; 3966 3967 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 3968 { 3969 dev->netdev_ops = &ixgbevf_netdev_ops; 3970 ixgbevf_set_ethtool_ops(dev); 3971 dev->watchdog_timeo = 5 * HZ; 3972 } 3973 3974 /** 3975 * ixgbevf_probe - Device Initialization Routine 3976 * @pdev: PCI device information struct 3977 * @ent: entry in ixgbevf_pci_tbl 3978 * 3979 * Returns 0 on success, negative on failure 3980 * 3981 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 3982 * The OS initialization, configuring of the adapter private structure, 3983 * and a hardware reset occur. 3984 **/ 3985 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3986 { 3987 struct net_device *netdev; 3988 struct ixgbevf_adapter *adapter = NULL; 3989 struct ixgbe_hw *hw = NULL; 3990 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 3991 int err, pci_using_dac; 3992 bool disable_dev = false; 3993 3994 err = pci_enable_device(pdev); 3995 if (err) 3996 return err; 3997 3998 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 3999 pci_using_dac = 1; 4000 } else { 4001 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4002 if (err) { 4003 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4004 goto err_dma; 4005 } 4006 pci_using_dac = 0; 4007 } 4008 4009 err = pci_request_regions(pdev, ixgbevf_driver_name); 4010 if (err) { 4011 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4012 goto err_pci_reg; 4013 } 4014 4015 pci_set_master(pdev); 4016 4017 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4018 MAX_TX_QUEUES); 4019 if (!netdev) { 4020 err = -ENOMEM; 4021 goto err_alloc_etherdev; 4022 } 4023 4024 SET_NETDEV_DEV(netdev, &pdev->dev); 4025 4026 adapter = netdev_priv(netdev); 4027 4028 adapter->netdev = netdev; 4029 adapter->pdev = pdev; 4030 hw = &adapter->hw; 4031 hw->back = adapter; 4032 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4033 4034 /* call save state here in standalone driver because it relies on 4035 * adapter struct to exist, and needs to call netdev_priv 4036 */ 4037 pci_save_state(pdev); 4038 4039 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4040 pci_resource_len(pdev, 0)); 4041 adapter->io_addr = hw->hw_addr; 4042 if (!hw->hw_addr) { 4043 err = -EIO; 4044 goto err_ioremap; 4045 } 4046 4047 ixgbevf_assign_netdev_ops(netdev); 4048 4049 /* Setup HW API */ 4050 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4051 hw->mac.type = ii->mac; 4052 4053 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4054 sizeof(struct ixgbe_mbx_operations)); 4055 4056 /* setup the private structure */ 4057 err = ixgbevf_sw_init(adapter); 4058 if (err) 4059 goto err_sw_init; 4060 4061 /* The HW MAC address was set and/or determined in sw_init */ 4062 if (!is_valid_ether_addr(netdev->dev_addr)) { 4063 pr_err("invalid MAC address\n"); 4064 err = -EIO; 4065 goto err_sw_init; 4066 } 4067 4068 netdev->hw_features = NETIF_F_SG | 4069 NETIF_F_TSO | 4070 NETIF_F_TSO6 | 4071 NETIF_F_RXCSUM | 4072 NETIF_F_HW_CSUM | 4073 NETIF_F_SCTP_CRC; 4074 4075 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4076 NETIF_F_GSO_GRE_CSUM | \ 4077 NETIF_F_GSO_IPXIP4 | \ 4078 NETIF_F_GSO_IPXIP6 | \ 4079 NETIF_F_GSO_UDP_TUNNEL | \ 4080 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4081 4082 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4083 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4084 IXGBEVF_GSO_PARTIAL_FEATURES; 4085 4086 netdev->features = netdev->hw_features; 4087 4088 if (pci_using_dac) 4089 netdev->features |= NETIF_F_HIGHDMA; 4090 4091 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4092 netdev->mpls_features |= NETIF_F_HW_CSUM; 4093 netdev->hw_enc_features |= netdev->vlan_features; 4094 4095 /* set this bit last since it cannot be part of vlan_features */ 4096 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4097 NETIF_F_HW_VLAN_CTAG_RX | 4098 NETIF_F_HW_VLAN_CTAG_TX; 4099 4100 netdev->priv_flags |= IFF_UNICAST_FLT; 4101 4102 if (IXGBE_REMOVED(hw->hw_addr)) { 4103 err = -EIO; 4104 goto err_sw_init; 4105 } 4106 4107 setup_timer(&adapter->service_timer, &ixgbevf_service_timer, 4108 (unsigned long)adapter); 4109 4110 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4111 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4112 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4113 4114 err = ixgbevf_init_interrupt_scheme(adapter); 4115 if (err) 4116 goto err_sw_init; 4117 4118 strcpy(netdev->name, "eth%d"); 4119 4120 err = register_netdev(netdev); 4121 if (err) 4122 goto err_register; 4123 4124 pci_set_drvdata(pdev, netdev); 4125 netif_carrier_off(netdev); 4126 4127 ixgbevf_init_last_counter_stats(adapter); 4128 4129 /* print the VF info */ 4130 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4131 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4132 4133 switch (hw->mac.type) { 4134 case ixgbe_mac_X550_vf: 4135 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4136 break; 4137 case ixgbe_mac_X540_vf: 4138 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4139 break; 4140 case ixgbe_mac_82599_vf: 4141 default: 4142 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4143 break; 4144 } 4145 4146 return 0; 4147 4148 err_register: 4149 ixgbevf_clear_interrupt_scheme(adapter); 4150 err_sw_init: 4151 ixgbevf_reset_interrupt_capability(adapter); 4152 iounmap(adapter->io_addr); 4153 err_ioremap: 4154 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4155 free_netdev(netdev); 4156 err_alloc_etherdev: 4157 pci_release_regions(pdev); 4158 err_pci_reg: 4159 err_dma: 4160 if (!adapter || disable_dev) 4161 pci_disable_device(pdev); 4162 return err; 4163 } 4164 4165 /** 4166 * ixgbevf_remove - Device Removal Routine 4167 * @pdev: PCI device information struct 4168 * 4169 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4170 * that it should release a PCI device. The could be caused by a 4171 * Hot-Plug event, or because the driver is going to be removed from 4172 * memory. 4173 **/ 4174 static void ixgbevf_remove(struct pci_dev *pdev) 4175 { 4176 struct net_device *netdev = pci_get_drvdata(pdev); 4177 struct ixgbevf_adapter *adapter; 4178 bool disable_dev; 4179 4180 if (!netdev) 4181 return; 4182 4183 adapter = netdev_priv(netdev); 4184 4185 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4186 cancel_work_sync(&adapter->service_task); 4187 4188 if (netdev->reg_state == NETREG_REGISTERED) 4189 unregister_netdev(netdev); 4190 4191 ixgbevf_clear_interrupt_scheme(adapter); 4192 ixgbevf_reset_interrupt_capability(adapter); 4193 4194 iounmap(adapter->io_addr); 4195 pci_release_regions(pdev); 4196 4197 hw_dbg(&adapter->hw, "Remove complete\n"); 4198 4199 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4200 free_netdev(netdev); 4201 4202 if (disable_dev) 4203 pci_disable_device(pdev); 4204 } 4205 4206 /** 4207 * ixgbevf_io_error_detected - called when PCI error is detected 4208 * @pdev: Pointer to PCI device 4209 * @state: The current pci connection state 4210 * 4211 * This function is called after a PCI bus error affecting 4212 * this device has been detected. 4213 **/ 4214 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4215 pci_channel_state_t state) 4216 { 4217 struct net_device *netdev = pci_get_drvdata(pdev); 4218 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4219 4220 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4221 return PCI_ERS_RESULT_DISCONNECT; 4222 4223 rtnl_lock(); 4224 netif_device_detach(netdev); 4225 4226 if (state == pci_channel_io_perm_failure) { 4227 rtnl_unlock(); 4228 return PCI_ERS_RESULT_DISCONNECT; 4229 } 4230 4231 if (netif_running(netdev)) 4232 ixgbevf_down(adapter); 4233 4234 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4235 pci_disable_device(pdev); 4236 rtnl_unlock(); 4237 4238 /* Request a slot slot reset. */ 4239 return PCI_ERS_RESULT_NEED_RESET; 4240 } 4241 4242 /** 4243 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4244 * @pdev: Pointer to PCI device 4245 * 4246 * Restart the card from scratch, as if from a cold-boot. Implementation 4247 * resembles the first-half of the ixgbevf_resume routine. 4248 **/ 4249 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4250 { 4251 struct net_device *netdev = pci_get_drvdata(pdev); 4252 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4253 4254 if (pci_enable_device_mem(pdev)) { 4255 dev_err(&pdev->dev, 4256 "Cannot re-enable PCI device after reset.\n"); 4257 return PCI_ERS_RESULT_DISCONNECT; 4258 } 4259 4260 smp_mb__before_atomic(); 4261 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4262 pci_set_master(pdev); 4263 4264 ixgbevf_reset(adapter); 4265 4266 return PCI_ERS_RESULT_RECOVERED; 4267 } 4268 4269 /** 4270 * ixgbevf_io_resume - called when traffic can start flowing again. 4271 * @pdev: Pointer to PCI device 4272 * 4273 * This callback is called when the error recovery driver tells us that 4274 * its OK to resume normal operation. Implementation resembles the 4275 * second-half of the ixgbevf_resume routine. 4276 **/ 4277 static void ixgbevf_io_resume(struct pci_dev *pdev) 4278 { 4279 struct net_device *netdev = pci_get_drvdata(pdev); 4280 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4281 4282 if (netif_running(netdev)) 4283 ixgbevf_up(adapter); 4284 4285 netif_device_attach(netdev); 4286 } 4287 4288 /* PCI Error Recovery (ERS) */ 4289 static const struct pci_error_handlers ixgbevf_err_handler = { 4290 .error_detected = ixgbevf_io_error_detected, 4291 .slot_reset = ixgbevf_io_slot_reset, 4292 .resume = ixgbevf_io_resume, 4293 }; 4294 4295 static struct pci_driver ixgbevf_driver = { 4296 .name = ixgbevf_driver_name, 4297 .id_table = ixgbevf_pci_tbl, 4298 .probe = ixgbevf_probe, 4299 .remove = ixgbevf_remove, 4300 #ifdef CONFIG_PM 4301 /* Power Management Hooks */ 4302 .suspend = ixgbevf_suspend, 4303 .resume = ixgbevf_resume, 4304 #endif 4305 .shutdown = ixgbevf_shutdown, 4306 .err_handler = &ixgbevf_err_handler 4307 }; 4308 4309 /** 4310 * ixgbevf_init_module - Driver Registration Routine 4311 * 4312 * ixgbevf_init_module is the first routine called when the driver is 4313 * loaded. All it does is register with the PCI subsystem. 4314 **/ 4315 static int __init ixgbevf_init_module(void) 4316 { 4317 pr_info("%s - version %s\n", ixgbevf_driver_string, 4318 ixgbevf_driver_version); 4319 4320 pr_info("%s\n", ixgbevf_copyright); 4321 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4322 if (!ixgbevf_wq) { 4323 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4324 return -ENOMEM; 4325 } 4326 4327 return pci_register_driver(&ixgbevf_driver); 4328 } 4329 4330 module_init(ixgbevf_init_module); 4331 4332 /** 4333 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4334 * 4335 * ixgbevf_exit_module is called just before the driver is removed 4336 * from memory. 4337 **/ 4338 static void __exit ixgbevf_exit_module(void) 4339 { 4340 pci_unregister_driver(&ixgbevf_driver); 4341 if (ixgbevf_wq) { 4342 destroy_workqueue(ixgbevf_wq); 4343 ixgbevf_wq = NULL; 4344 } 4345 } 4346 4347 #ifdef DEBUG 4348 /** 4349 * ixgbevf_get_hw_dev_name - return device name string 4350 * used by hardware layer to print debugging information 4351 **/ 4352 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4353 { 4354 struct ixgbevf_adapter *adapter = hw->back; 4355 4356 return adapter->netdev->name; 4357 } 4358 4359 #endif 4360 module_exit(ixgbevf_exit_module); 4361 4362 /* ixgbevf_main.c */ 4363