1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 #include <net/xfrm.h> 34 35 #include "ixgbevf.h" 36 37 const char ixgbevf_driver_name[] = "ixgbevf"; 38 static const char ixgbevf_driver_string[] = 39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 40 41 static char ixgbevf_copyright[] = 42 "Copyright (c) 2009 - 2018 Intel Corporation."; 43 44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 45 [board_82599_vf] = &ixgbevf_82599_vf_info, 46 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 47 [board_X540_vf] = &ixgbevf_X540_vf_info, 48 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 49 [board_X550_vf] = &ixgbevf_X550_vf_info, 50 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 51 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 52 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 53 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 54 }; 55 56 /* ixgbevf_pci_tbl - PCI Device ID Table 57 * 58 * Wildcard entries (PCI_ANY_ID) should come last 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id ixgbevf_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 66 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 74 /* required last entry */ 75 {0, } 76 }; 77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 78 79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 80 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 81 MODULE_LICENSE("GPL v2"); 82 83 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 84 static int debug = -1; 85 module_param(debug, int, 0); 86 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 87 88 static struct workqueue_struct *ixgbevf_wq; 89 90 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 91 { 92 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 93 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 94 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 95 queue_work(ixgbevf_wq, &adapter->service_task); 96 } 97 98 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 99 { 100 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 101 102 /* flush memory to make sure state is correct before next watchdog */ 103 smp_mb__before_atomic(); 104 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 105 } 106 107 /* forward decls */ 108 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 109 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 110 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 111 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 112 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 113 struct ixgbevf_rx_buffer *old_buff); 114 115 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 116 { 117 struct ixgbevf_adapter *adapter = hw->back; 118 119 if (!hw->hw_addr) 120 return; 121 hw->hw_addr = NULL; 122 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 123 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 124 ixgbevf_service_event_schedule(adapter); 125 } 126 127 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 128 { 129 u32 value; 130 131 /* The following check not only optimizes a bit by not 132 * performing a read on the status register when the 133 * register just read was a status register read that 134 * returned IXGBE_FAILED_READ_REG. It also blocks any 135 * potential recursion. 136 */ 137 if (reg == IXGBE_VFSTATUS) { 138 ixgbevf_remove_adapter(hw); 139 return; 140 } 141 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 142 if (value == IXGBE_FAILED_READ_REG) 143 ixgbevf_remove_adapter(hw); 144 } 145 146 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 147 { 148 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 149 u32 value; 150 151 if (IXGBE_REMOVED(reg_addr)) 152 return IXGBE_FAILED_READ_REG; 153 value = readl(reg_addr + reg); 154 if (unlikely(value == IXGBE_FAILED_READ_REG)) 155 ixgbevf_check_remove(hw, reg); 156 return value; 157 } 158 159 /** 160 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 161 * @adapter: pointer to adapter struct 162 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 163 * @queue: queue to map the corresponding interrupt to 164 * @msix_vector: the vector to map to the corresponding queue 165 **/ 166 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 167 u8 queue, u8 msix_vector) 168 { 169 u32 ivar, index; 170 struct ixgbe_hw *hw = &adapter->hw; 171 172 if (direction == -1) { 173 /* other causes */ 174 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 175 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 176 ivar &= ~0xFF; 177 ivar |= msix_vector; 178 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 179 } else { 180 /* Tx or Rx causes */ 181 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 182 index = ((16 * (queue & 1)) + (8 * direction)); 183 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 184 ivar &= ~(0xFF << index); 185 ivar |= (msix_vector << index); 186 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 187 } 188 } 189 190 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 191 { 192 return ring->stats.packets; 193 } 194 195 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 196 { 197 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 198 struct ixgbe_hw *hw = &adapter->hw; 199 200 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 201 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 202 203 if (head != tail) 204 return (head < tail) ? 205 tail - head : (tail + ring->count - head); 206 207 return 0; 208 } 209 210 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 211 { 212 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 213 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 214 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 215 216 clear_check_for_tx_hang(tx_ring); 217 218 /* Check for a hung queue, but be thorough. This verifies 219 * that a transmit has been completed since the previous 220 * check AND there is at least one packet pending. The 221 * ARMED bit is set to indicate a potential hang. 222 */ 223 if ((tx_done_old == tx_done) && tx_pending) { 224 /* make sure it is true for two checks in a row */ 225 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 226 &tx_ring->state); 227 } 228 /* reset the countdown */ 229 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 230 231 /* update completed stats and continue */ 232 tx_ring->tx_stats.tx_done_old = tx_done; 233 234 return false; 235 } 236 237 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 238 { 239 /* Do the reset outside of interrupt context */ 240 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 241 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 242 ixgbevf_service_event_schedule(adapter); 243 } 244 } 245 246 /** 247 * ixgbevf_tx_timeout - Respond to a Tx Hang 248 * @netdev: network interface device structure 249 * @txqueue: transmit queue hanging (unused) 250 **/ 251 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue) 252 { 253 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 254 255 ixgbevf_tx_timeout_reset(adapter); 256 } 257 258 /** 259 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 260 * @q_vector: board private structure 261 * @tx_ring: tx ring to clean 262 * @napi_budget: Used to determine if we are in netpoll 263 **/ 264 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 265 struct ixgbevf_ring *tx_ring, int napi_budget) 266 { 267 struct ixgbevf_adapter *adapter = q_vector->adapter; 268 struct ixgbevf_tx_buffer *tx_buffer; 269 union ixgbe_adv_tx_desc *tx_desc; 270 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; 271 unsigned int budget = tx_ring->count / 2; 272 unsigned int i = tx_ring->next_to_clean; 273 274 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 275 return true; 276 277 tx_buffer = &tx_ring->tx_buffer_info[i]; 278 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 279 i -= tx_ring->count; 280 281 do { 282 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 283 284 /* if next_to_watch is not set then there is no work pending */ 285 if (!eop_desc) 286 break; 287 288 /* prevent any other reads prior to eop_desc */ 289 smp_rmb(); 290 291 /* if DD is not set pending work has not been completed */ 292 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 293 break; 294 295 /* clear next_to_watch to prevent false hangs */ 296 tx_buffer->next_to_watch = NULL; 297 298 /* update the statistics for this packet */ 299 total_bytes += tx_buffer->bytecount; 300 total_packets += tx_buffer->gso_segs; 301 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) 302 total_ipsec++; 303 304 /* free the skb */ 305 if (ring_is_xdp(tx_ring)) 306 page_frag_free(tx_buffer->data); 307 else 308 napi_consume_skb(tx_buffer->skb, napi_budget); 309 310 /* unmap skb header data */ 311 dma_unmap_single(tx_ring->dev, 312 dma_unmap_addr(tx_buffer, dma), 313 dma_unmap_len(tx_buffer, len), 314 DMA_TO_DEVICE); 315 316 /* clear tx_buffer data */ 317 dma_unmap_len_set(tx_buffer, len, 0); 318 319 /* unmap remaining buffers */ 320 while (tx_desc != eop_desc) { 321 tx_buffer++; 322 tx_desc++; 323 i++; 324 if (unlikely(!i)) { 325 i -= tx_ring->count; 326 tx_buffer = tx_ring->tx_buffer_info; 327 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 328 } 329 330 /* unmap any remaining paged data */ 331 if (dma_unmap_len(tx_buffer, len)) { 332 dma_unmap_page(tx_ring->dev, 333 dma_unmap_addr(tx_buffer, dma), 334 dma_unmap_len(tx_buffer, len), 335 DMA_TO_DEVICE); 336 dma_unmap_len_set(tx_buffer, len, 0); 337 } 338 } 339 340 /* move us one more past the eop_desc for start of next pkt */ 341 tx_buffer++; 342 tx_desc++; 343 i++; 344 if (unlikely(!i)) { 345 i -= tx_ring->count; 346 tx_buffer = tx_ring->tx_buffer_info; 347 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 348 } 349 350 /* issue prefetch for next Tx descriptor */ 351 prefetch(tx_desc); 352 353 /* update budget accounting */ 354 budget--; 355 } while (likely(budget)); 356 357 i += tx_ring->count; 358 tx_ring->next_to_clean = i; 359 u64_stats_update_begin(&tx_ring->syncp); 360 tx_ring->stats.bytes += total_bytes; 361 tx_ring->stats.packets += total_packets; 362 u64_stats_update_end(&tx_ring->syncp); 363 q_vector->tx.total_bytes += total_bytes; 364 q_vector->tx.total_packets += total_packets; 365 adapter->tx_ipsec += total_ipsec; 366 367 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 368 struct ixgbe_hw *hw = &adapter->hw; 369 union ixgbe_adv_tx_desc *eop_desc; 370 371 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 372 373 pr_err("Detected Tx Unit Hang%s\n" 374 " Tx Queue <%d>\n" 375 " TDH, TDT <%x>, <%x>\n" 376 " next_to_use <%x>\n" 377 " next_to_clean <%x>\n" 378 "tx_buffer_info[next_to_clean]\n" 379 " next_to_watch <%p>\n" 380 " eop_desc->wb.status <%x>\n" 381 " time_stamp <%lx>\n" 382 " jiffies <%lx>\n", 383 ring_is_xdp(tx_ring) ? " XDP" : "", 384 tx_ring->queue_index, 385 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 386 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 387 tx_ring->next_to_use, i, 388 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 389 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 390 391 if (!ring_is_xdp(tx_ring)) 392 netif_stop_subqueue(tx_ring->netdev, 393 tx_ring->queue_index); 394 395 /* schedule immediate reset if we believe we hung */ 396 ixgbevf_tx_timeout_reset(adapter); 397 398 return true; 399 } 400 401 if (ring_is_xdp(tx_ring)) 402 return !!budget; 403 404 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 405 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 406 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 407 /* Make sure that anybody stopping the queue after this 408 * sees the new next_to_clean. 409 */ 410 smp_mb(); 411 412 if (__netif_subqueue_stopped(tx_ring->netdev, 413 tx_ring->queue_index) && 414 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 415 netif_wake_subqueue(tx_ring->netdev, 416 tx_ring->queue_index); 417 ++tx_ring->tx_stats.restart_queue; 418 } 419 } 420 421 return !!budget; 422 } 423 424 /** 425 * ixgbevf_rx_skb - Helper function to determine proper Rx method 426 * @q_vector: structure containing interrupt and ring information 427 * @skb: packet to send up 428 **/ 429 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 430 struct sk_buff *skb) 431 { 432 napi_gro_receive(&q_vector->napi, skb); 433 } 434 435 #define IXGBE_RSS_L4_TYPES_MASK \ 436 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 437 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 438 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 439 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 440 441 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 442 union ixgbe_adv_rx_desc *rx_desc, 443 struct sk_buff *skb) 444 { 445 u16 rss_type; 446 447 if (!(ring->netdev->features & NETIF_F_RXHASH)) 448 return; 449 450 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 451 IXGBE_RXDADV_RSSTYPE_MASK; 452 453 if (!rss_type) 454 return; 455 456 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 457 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 458 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 459 } 460 461 /** 462 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 463 * @ring: structure containig ring specific data 464 * @rx_desc: current Rx descriptor being processed 465 * @skb: skb currently being received and modified 466 **/ 467 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 468 union ixgbe_adv_rx_desc *rx_desc, 469 struct sk_buff *skb) 470 { 471 skb_checksum_none_assert(skb); 472 473 /* Rx csum disabled */ 474 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 475 return; 476 477 /* if IP and error */ 478 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 479 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 480 ring->rx_stats.csum_err++; 481 return; 482 } 483 484 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 485 return; 486 487 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 488 ring->rx_stats.csum_err++; 489 return; 490 } 491 492 /* It must be a TCP or UDP packet with a valid checksum */ 493 skb->ip_summed = CHECKSUM_UNNECESSARY; 494 } 495 496 /** 497 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 498 * @rx_ring: rx descriptor ring packet is being transacted on 499 * @rx_desc: pointer to the EOP Rx descriptor 500 * @skb: pointer to current skb being populated 501 * 502 * This function checks the ring, descriptor, and packet information in 503 * order to populate the checksum, VLAN, protocol, and other fields within 504 * the skb. 505 **/ 506 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 507 union ixgbe_adv_rx_desc *rx_desc, 508 struct sk_buff *skb) 509 { 510 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 511 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 512 513 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 514 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 515 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 516 517 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 518 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 519 } 520 521 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) 522 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); 523 524 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 525 } 526 527 static 528 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 529 const unsigned int size) 530 { 531 struct ixgbevf_rx_buffer *rx_buffer; 532 533 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 534 prefetchw(rx_buffer->page); 535 536 /* we are reusing so sync this buffer for CPU use */ 537 dma_sync_single_range_for_cpu(rx_ring->dev, 538 rx_buffer->dma, 539 rx_buffer->page_offset, 540 size, 541 DMA_FROM_DEVICE); 542 543 rx_buffer->pagecnt_bias--; 544 545 return rx_buffer; 546 } 547 548 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 549 struct ixgbevf_rx_buffer *rx_buffer, 550 struct sk_buff *skb) 551 { 552 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 553 /* hand second half of page back to the ring */ 554 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 555 } else { 556 if (IS_ERR(skb)) 557 /* We are not reusing the buffer so unmap it and free 558 * any references we are holding to it 559 */ 560 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 561 ixgbevf_rx_pg_size(rx_ring), 562 DMA_FROM_DEVICE, 563 IXGBEVF_RX_DMA_ATTR); 564 __page_frag_cache_drain(rx_buffer->page, 565 rx_buffer->pagecnt_bias); 566 } 567 568 /* clear contents of rx_buffer */ 569 rx_buffer->page = NULL; 570 } 571 572 /** 573 * ixgbevf_is_non_eop - process handling of non-EOP buffers 574 * @rx_ring: Rx ring being processed 575 * @rx_desc: Rx descriptor for current buffer 576 * 577 * This function updates next to clean. If the buffer is an EOP buffer 578 * this function exits returning false, otherwise it will place the 579 * sk_buff in the next buffer to be chained and return true indicating 580 * that this is in fact a non-EOP buffer. 581 **/ 582 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 583 union ixgbe_adv_rx_desc *rx_desc) 584 { 585 u32 ntc = rx_ring->next_to_clean + 1; 586 587 /* fetch, update, and store next to clean */ 588 ntc = (ntc < rx_ring->count) ? ntc : 0; 589 rx_ring->next_to_clean = ntc; 590 591 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 592 593 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 594 return false; 595 596 return true; 597 } 598 599 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 600 { 601 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 602 } 603 604 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 605 struct ixgbevf_rx_buffer *bi) 606 { 607 struct page *page = bi->page; 608 dma_addr_t dma; 609 610 /* since we are recycling buffers we should seldom need to alloc */ 611 if (likely(page)) 612 return true; 613 614 /* alloc new page for storage */ 615 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 616 if (unlikely(!page)) { 617 rx_ring->rx_stats.alloc_rx_page_failed++; 618 return false; 619 } 620 621 /* map page for use */ 622 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 623 ixgbevf_rx_pg_size(rx_ring), 624 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 625 626 /* if mapping failed free memory back to system since 627 * there isn't much point in holding memory we can't use 628 */ 629 if (dma_mapping_error(rx_ring->dev, dma)) { 630 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 631 632 rx_ring->rx_stats.alloc_rx_page_failed++; 633 return false; 634 } 635 636 bi->dma = dma; 637 bi->page = page; 638 bi->page_offset = ixgbevf_rx_offset(rx_ring); 639 bi->pagecnt_bias = 1; 640 rx_ring->rx_stats.alloc_rx_page++; 641 642 return true; 643 } 644 645 /** 646 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 647 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 648 * @cleaned_count: number of buffers to replace 649 **/ 650 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 651 u16 cleaned_count) 652 { 653 union ixgbe_adv_rx_desc *rx_desc; 654 struct ixgbevf_rx_buffer *bi; 655 unsigned int i = rx_ring->next_to_use; 656 657 /* nothing to do or no valid netdev defined */ 658 if (!cleaned_count || !rx_ring->netdev) 659 return; 660 661 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 662 bi = &rx_ring->rx_buffer_info[i]; 663 i -= rx_ring->count; 664 665 do { 666 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 667 break; 668 669 /* sync the buffer for use by the device */ 670 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 671 bi->page_offset, 672 ixgbevf_rx_bufsz(rx_ring), 673 DMA_FROM_DEVICE); 674 675 /* Refresh the desc even if pkt_addr didn't change 676 * because each write-back erases this info. 677 */ 678 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 679 680 rx_desc++; 681 bi++; 682 i++; 683 if (unlikely(!i)) { 684 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 685 bi = rx_ring->rx_buffer_info; 686 i -= rx_ring->count; 687 } 688 689 /* clear the length for the next_to_use descriptor */ 690 rx_desc->wb.upper.length = 0; 691 692 cleaned_count--; 693 } while (cleaned_count); 694 695 i += rx_ring->count; 696 697 if (rx_ring->next_to_use != i) { 698 /* record the next descriptor to use */ 699 rx_ring->next_to_use = i; 700 701 /* update next to alloc since we have filled the ring */ 702 rx_ring->next_to_alloc = i; 703 704 /* Force memory writes to complete before letting h/w 705 * know there are new descriptors to fetch. (Only 706 * applicable for weak-ordered memory model archs, 707 * such as IA-64). 708 */ 709 wmb(); 710 ixgbevf_write_tail(rx_ring, i); 711 } 712 } 713 714 /** 715 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 716 * @rx_ring: rx descriptor ring packet is being transacted on 717 * @rx_desc: pointer to the EOP Rx descriptor 718 * @skb: pointer to current skb being fixed 719 * 720 * Check for corrupted packet headers caused by senders on the local L2 721 * embedded NIC switch not setting up their Tx Descriptors right. These 722 * should be very rare. 723 * 724 * Also address the case where we are pulling data in on pages only 725 * and as such no data is present in the skb header. 726 * 727 * In addition if skb is not at least 60 bytes we need to pad it so that 728 * it is large enough to qualify as a valid Ethernet frame. 729 * 730 * Returns true if an error was encountered and skb was freed. 731 **/ 732 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 733 union ixgbe_adv_rx_desc *rx_desc, 734 struct sk_buff *skb) 735 { 736 /* XDP packets use error pointer so abort at this point */ 737 if (IS_ERR(skb)) 738 return true; 739 740 /* verify that the packet does not have any known errors */ 741 if (unlikely(ixgbevf_test_staterr(rx_desc, 742 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 743 struct net_device *netdev = rx_ring->netdev; 744 745 if (!(netdev->features & NETIF_F_RXALL)) { 746 dev_kfree_skb_any(skb); 747 return true; 748 } 749 } 750 751 /* if eth_skb_pad returns an error the skb was freed */ 752 if (eth_skb_pad(skb)) 753 return true; 754 755 return false; 756 } 757 758 /** 759 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 760 * @rx_ring: rx descriptor ring to store buffers on 761 * @old_buff: donor buffer to have page reused 762 * 763 * Synchronizes page for reuse by the adapter 764 **/ 765 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 766 struct ixgbevf_rx_buffer *old_buff) 767 { 768 struct ixgbevf_rx_buffer *new_buff; 769 u16 nta = rx_ring->next_to_alloc; 770 771 new_buff = &rx_ring->rx_buffer_info[nta]; 772 773 /* update, and store next to alloc */ 774 nta++; 775 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 776 777 /* transfer page from old buffer to new buffer */ 778 new_buff->page = old_buff->page; 779 new_buff->dma = old_buff->dma; 780 new_buff->page_offset = old_buff->page_offset; 781 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 782 } 783 784 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 785 { 786 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 787 struct page *page = rx_buffer->page; 788 789 /* avoid re-using remote and pfmemalloc pages */ 790 if (!dev_page_is_reusable(page)) 791 return false; 792 793 #if (PAGE_SIZE < 8192) 794 /* if we are only owner of page we can reuse it */ 795 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 796 return false; 797 #else 798 #define IXGBEVF_LAST_OFFSET \ 799 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 800 801 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 802 return false; 803 804 #endif 805 806 /* If we have drained the page fragment pool we need to update 807 * the pagecnt_bias and page count so that we fully restock the 808 * number of references the driver holds. 809 */ 810 if (unlikely(!pagecnt_bias)) { 811 page_ref_add(page, USHRT_MAX); 812 rx_buffer->pagecnt_bias = USHRT_MAX; 813 } 814 815 return true; 816 } 817 818 /** 819 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 820 * @rx_ring: rx descriptor ring to transact packets on 821 * @rx_buffer: buffer containing page to add 822 * @skb: sk_buff to place the data into 823 * @size: size of buffer to be added 824 * 825 * This function will add the data contained in rx_buffer->page to the skb. 826 **/ 827 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 828 struct ixgbevf_rx_buffer *rx_buffer, 829 struct sk_buff *skb, 830 unsigned int size) 831 { 832 #if (PAGE_SIZE < 8192) 833 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 834 #else 835 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 836 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 837 SKB_DATA_ALIGN(size); 838 #endif 839 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 840 rx_buffer->page_offset, size, truesize); 841 #if (PAGE_SIZE < 8192) 842 rx_buffer->page_offset ^= truesize; 843 #else 844 rx_buffer->page_offset += truesize; 845 #endif 846 } 847 848 static 849 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 850 struct ixgbevf_rx_buffer *rx_buffer, 851 struct xdp_buff *xdp, 852 union ixgbe_adv_rx_desc *rx_desc) 853 { 854 unsigned int size = xdp->data_end - xdp->data; 855 #if (PAGE_SIZE < 8192) 856 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 857 #else 858 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 859 xdp->data_hard_start); 860 #endif 861 unsigned int headlen; 862 struct sk_buff *skb; 863 864 /* prefetch first cache line of first page */ 865 net_prefetch(xdp->data); 866 867 /* Note, we get here by enabling legacy-rx via: 868 * 869 * ethtool --set-priv-flags <dev> legacy-rx on 870 * 871 * In this mode, we currently get 0 extra XDP headroom as 872 * opposed to having legacy-rx off, where we process XDP 873 * packets going to stack via ixgbevf_build_skb(). 874 * 875 * For ixgbevf_construct_skb() mode it means that the 876 * xdp->data_meta will always point to xdp->data, since 877 * the helper cannot expand the head. Should this ever 878 * changed in future for legacy-rx mode on, then lets also 879 * add xdp->data_meta handling here. 880 */ 881 882 /* allocate a skb to store the frags */ 883 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 884 if (unlikely(!skb)) 885 return NULL; 886 887 /* Determine available headroom for copy */ 888 headlen = size; 889 if (headlen > IXGBEVF_RX_HDR_SIZE) 890 headlen = eth_get_headlen(skb->dev, xdp->data, 891 IXGBEVF_RX_HDR_SIZE); 892 893 /* align pull length to size of long to optimize memcpy performance */ 894 memcpy(__skb_put(skb, headlen), xdp->data, 895 ALIGN(headlen, sizeof(long))); 896 897 /* update all of the pointers */ 898 size -= headlen; 899 if (size) { 900 skb_add_rx_frag(skb, 0, rx_buffer->page, 901 (xdp->data + headlen) - 902 page_address(rx_buffer->page), 903 size, truesize); 904 #if (PAGE_SIZE < 8192) 905 rx_buffer->page_offset ^= truesize; 906 #else 907 rx_buffer->page_offset += truesize; 908 #endif 909 } else { 910 rx_buffer->pagecnt_bias++; 911 } 912 913 return skb; 914 } 915 916 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 917 u32 qmask) 918 { 919 struct ixgbe_hw *hw = &adapter->hw; 920 921 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 922 } 923 924 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 925 struct ixgbevf_rx_buffer *rx_buffer, 926 struct xdp_buff *xdp, 927 union ixgbe_adv_rx_desc *rx_desc) 928 { 929 unsigned int metasize = xdp->data - xdp->data_meta; 930 #if (PAGE_SIZE < 8192) 931 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 932 #else 933 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 934 SKB_DATA_ALIGN(xdp->data_end - 935 xdp->data_hard_start); 936 #endif 937 struct sk_buff *skb; 938 939 /* Prefetch first cache line of first page. If xdp->data_meta 940 * is unused, this points to xdp->data, otherwise, we likely 941 * have a consumer accessing first few bytes of meta data, 942 * and then actual data. 943 */ 944 net_prefetch(xdp->data_meta); 945 946 /* build an skb around the page buffer */ 947 skb = build_skb(xdp->data_hard_start, truesize); 948 if (unlikely(!skb)) 949 return NULL; 950 951 /* update pointers within the skb to store the data */ 952 skb_reserve(skb, xdp->data - xdp->data_hard_start); 953 __skb_put(skb, xdp->data_end - xdp->data); 954 if (metasize) 955 skb_metadata_set(skb, metasize); 956 957 /* update buffer offset */ 958 #if (PAGE_SIZE < 8192) 959 rx_buffer->page_offset ^= truesize; 960 #else 961 rx_buffer->page_offset += truesize; 962 #endif 963 964 return skb; 965 } 966 967 #define IXGBEVF_XDP_PASS 0 968 #define IXGBEVF_XDP_CONSUMED 1 969 #define IXGBEVF_XDP_TX 2 970 971 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 972 struct xdp_buff *xdp) 973 { 974 struct ixgbevf_tx_buffer *tx_buffer; 975 union ixgbe_adv_tx_desc *tx_desc; 976 u32 len, cmd_type; 977 dma_addr_t dma; 978 u16 i; 979 980 len = xdp->data_end - xdp->data; 981 982 if (unlikely(!ixgbevf_desc_unused(ring))) 983 return IXGBEVF_XDP_CONSUMED; 984 985 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 986 if (dma_mapping_error(ring->dev, dma)) 987 return IXGBEVF_XDP_CONSUMED; 988 989 /* record the location of the first descriptor for this packet */ 990 i = ring->next_to_use; 991 tx_buffer = &ring->tx_buffer_info[i]; 992 993 dma_unmap_len_set(tx_buffer, len, len); 994 dma_unmap_addr_set(tx_buffer, dma, dma); 995 tx_buffer->data = xdp->data; 996 tx_buffer->bytecount = len; 997 tx_buffer->gso_segs = 1; 998 tx_buffer->protocol = 0; 999 1000 /* Populate minimal context descriptor that will provide for the 1001 * fact that we are expected to process Ethernet frames. 1002 */ 1003 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1004 struct ixgbe_adv_tx_context_desc *context_desc; 1005 1006 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1007 1008 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1009 context_desc->vlan_macip_lens = 1010 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1011 context_desc->fceof_saidx = 0; 1012 context_desc->type_tucmd_mlhl = 1013 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1014 IXGBE_ADVTXD_DTYP_CTXT); 1015 context_desc->mss_l4len_idx = 0; 1016 1017 i = 1; 1018 } 1019 1020 /* put descriptor type bits */ 1021 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1022 IXGBE_ADVTXD_DCMD_DEXT | 1023 IXGBE_ADVTXD_DCMD_IFCS; 1024 cmd_type |= len | IXGBE_TXD_CMD; 1025 1026 tx_desc = IXGBEVF_TX_DESC(ring, i); 1027 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1028 1029 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1030 tx_desc->read.olinfo_status = 1031 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1032 IXGBE_ADVTXD_CC); 1033 1034 /* Avoid any potential race with cleanup */ 1035 smp_wmb(); 1036 1037 /* set next_to_watch value indicating a packet is present */ 1038 i++; 1039 if (i == ring->count) 1040 i = 0; 1041 1042 tx_buffer->next_to_watch = tx_desc; 1043 ring->next_to_use = i; 1044 1045 return IXGBEVF_XDP_TX; 1046 } 1047 1048 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1049 struct ixgbevf_ring *rx_ring, 1050 struct xdp_buff *xdp) 1051 { 1052 int result = IXGBEVF_XDP_PASS; 1053 struct ixgbevf_ring *xdp_ring; 1054 struct bpf_prog *xdp_prog; 1055 u32 act; 1056 1057 rcu_read_lock(); 1058 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1059 1060 if (!xdp_prog) 1061 goto xdp_out; 1062 1063 act = bpf_prog_run_xdp(xdp_prog, xdp); 1064 switch (act) { 1065 case XDP_PASS: 1066 break; 1067 case XDP_TX: 1068 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1069 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1070 break; 1071 default: 1072 bpf_warn_invalid_xdp_action(act); 1073 fallthrough; 1074 case XDP_ABORTED: 1075 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1076 fallthrough; /* handle aborts by dropping packet */ 1077 case XDP_DROP: 1078 result = IXGBEVF_XDP_CONSUMED; 1079 break; 1080 } 1081 xdp_out: 1082 rcu_read_unlock(); 1083 return ERR_PTR(-result); 1084 } 1085 1086 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring, 1087 unsigned int size) 1088 { 1089 unsigned int truesize; 1090 1091 #if (PAGE_SIZE < 8192) 1092 truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 1093 #else 1094 truesize = ring_uses_build_skb(rx_ring) ? 1095 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) + 1096 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1097 SKB_DATA_ALIGN(size); 1098 #endif 1099 return truesize; 1100 } 1101 1102 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1103 struct ixgbevf_rx_buffer *rx_buffer, 1104 unsigned int size) 1105 { 1106 unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size); 1107 1108 #if (PAGE_SIZE < 8192) 1109 rx_buffer->page_offset ^= truesize; 1110 #else 1111 rx_buffer->page_offset += truesize; 1112 #endif 1113 } 1114 1115 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1116 struct ixgbevf_ring *rx_ring, 1117 int budget) 1118 { 1119 unsigned int total_rx_bytes = 0, total_rx_packets = 0, frame_sz = 0; 1120 struct ixgbevf_adapter *adapter = q_vector->adapter; 1121 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1122 struct sk_buff *skb = rx_ring->skb; 1123 bool xdp_xmit = false; 1124 struct xdp_buff xdp; 1125 1126 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1127 #if (PAGE_SIZE < 8192) 1128 frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0); 1129 #endif 1130 xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); 1131 1132 while (likely(total_rx_packets < budget)) { 1133 struct ixgbevf_rx_buffer *rx_buffer; 1134 union ixgbe_adv_rx_desc *rx_desc; 1135 unsigned int size; 1136 1137 /* return some buffers to hardware, one at a time is too slow */ 1138 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1139 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1140 cleaned_count = 0; 1141 } 1142 1143 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1144 size = le16_to_cpu(rx_desc->wb.upper.length); 1145 if (!size) 1146 break; 1147 1148 /* This memory barrier is needed to keep us from reading 1149 * any other fields out of the rx_desc until we know the 1150 * RXD_STAT_DD bit is set 1151 */ 1152 rmb(); 1153 1154 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1155 1156 /* retrieve a buffer from the ring */ 1157 if (!skb) { 1158 unsigned int offset = ixgbevf_rx_offset(rx_ring); 1159 unsigned char *hard_start; 1160 1161 hard_start = page_address(rx_buffer->page) + 1162 rx_buffer->page_offset - offset; 1163 xdp_prepare_buff(&xdp, hard_start, offset, size, true); 1164 #if (PAGE_SIZE > 4096) 1165 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1166 xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size); 1167 #endif 1168 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1169 } 1170 1171 if (IS_ERR(skb)) { 1172 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1173 xdp_xmit = true; 1174 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1175 size); 1176 } else { 1177 rx_buffer->pagecnt_bias++; 1178 } 1179 total_rx_packets++; 1180 total_rx_bytes += size; 1181 } else if (skb) { 1182 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1183 } else if (ring_uses_build_skb(rx_ring)) { 1184 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1185 &xdp, rx_desc); 1186 } else { 1187 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1188 &xdp, rx_desc); 1189 } 1190 1191 /* exit if we failed to retrieve a buffer */ 1192 if (!skb) { 1193 rx_ring->rx_stats.alloc_rx_buff_failed++; 1194 rx_buffer->pagecnt_bias++; 1195 break; 1196 } 1197 1198 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1199 cleaned_count++; 1200 1201 /* fetch next buffer in frame if non-eop */ 1202 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1203 continue; 1204 1205 /* verify the packet layout is correct */ 1206 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1207 skb = NULL; 1208 continue; 1209 } 1210 1211 /* probably a little skewed due to removing CRC */ 1212 total_rx_bytes += skb->len; 1213 1214 /* Workaround hardware that can't do proper VEPA multicast 1215 * source pruning. 1216 */ 1217 if ((skb->pkt_type == PACKET_BROADCAST || 1218 skb->pkt_type == PACKET_MULTICAST) && 1219 ether_addr_equal(rx_ring->netdev->dev_addr, 1220 eth_hdr(skb)->h_source)) { 1221 dev_kfree_skb_irq(skb); 1222 continue; 1223 } 1224 1225 /* populate checksum, VLAN, and protocol */ 1226 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1227 1228 ixgbevf_rx_skb(q_vector, skb); 1229 1230 /* reset skb pointer */ 1231 skb = NULL; 1232 1233 /* update budget accounting */ 1234 total_rx_packets++; 1235 } 1236 1237 /* place incomplete frames back on ring for completion */ 1238 rx_ring->skb = skb; 1239 1240 if (xdp_xmit) { 1241 struct ixgbevf_ring *xdp_ring = 1242 adapter->xdp_ring[rx_ring->queue_index]; 1243 1244 /* Force memory writes to complete before letting h/w 1245 * know there are new descriptors to fetch. 1246 */ 1247 wmb(); 1248 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1249 } 1250 1251 u64_stats_update_begin(&rx_ring->syncp); 1252 rx_ring->stats.packets += total_rx_packets; 1253 rx_ring->stats.bytes += total_rx_bytes; 1254 u64_stats_update_end(&rx_ring->syncp); 1255 q_vector->rx.total_packets += total_rx_packets; 1256 q_vector->rx.total_bytes += total_rx_bytes; 1257 1258 return total_rx_packets; 1259 } 1260 1261 /** 1262 * ixgbevf_poll - NAPI polling calback 1263 * @napi: napi struct with our devices info in it 1264 * @budget: amount of work driver is allowed to do this pass, in packets 1265 * 1266 * This function will clean more than one or more rings associated with a 1267 * q_vector. 1268 **/ 1269 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1270 { 1271 struct ixgbevf_q_vector *q_vector = 1272 container_of(napi, struct ixgbevf_q_vector, napi); 1273 struct ixgbevf_adapter *adapter = q_vector->adapter; 1274 struct ixgbevf_ring *ring; 1275 int per_ring_budget, work_done = 0; 1276 bool clean_complete = true; 1277 1278 ixgbevf_for_each_ring(ring, q_vector->tx) { 1279 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1280 clean_complete = false; 1281 } 1282 1283 if (budget <= 0) 1284 return budget; 1285 1286 /* attempt to distribute budget to each queue fairly, but don't allow 1287 * the budget to go below 1 because we'll exit polling 1288 */ 1289 if (q_vector->rx.count > 1) 1290 per_ring_budget = max(budget/q_vector->rx.count, 1); 1291 else 1292 per_ring_budget = budget; 1293 1294 ixgbevf_for_each_ring(ring, q_vector->rx) { 1295 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1296 per_ring_budget); 1297 work_done += cleaned; 1298 if (cleaned >= per_ring_budget) 1299 clean_complete = false; 1300 } 1301 1302 /* If all work not completed, return budget and keep polling */ 1303 if (!clean_complete) 1304 return budget; 1305 1306 /* Exit the polling mode, but don't re-enable interrupts if stack might 1307 * poll us due to busy-polling 1308 */ 1309 if (likely(napi_complete_done(napi, work_done))) { 1310 if (adapter->rx_itr_setting == 1) 1311 ixgbevf_set_itr(q_vector); 1312 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1313 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1314 ixgbevf_irq_enable_queues(adapter, 1315 BIT(q_vector->v_idx)); 1316 } 1317 1318 return min(work_done, budget - 1); 1319 } 1320 1321 /** 1322 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1323 * @q_vector: structure containing interrupt and ring information 1324 **/ 1325 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1326 { 1327 struct ixgbevf_adapter *adapter = q_vector->adapter; 1328 struct ixgbe_hw *hw = &adapter->hw; 1329 int v_idx = q_vector->v_idx; 1330 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1331 1332 /* set the WDIS bit to not clear the timer bits and cause an 1333 * immediate assertion of the interrupt 1334 */ 1335 itr_reg |= IXGBE_EITR_CNT_WDIS; 1336 1337 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1338 } 1339 1340 /** 1341 * ixgbevf_configure_msix - Configure MSI-X hardware 1342 * @adapter: board private structure 1343 * 1344 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1345 * interrupts. 1346 **/ 1347 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1348 { 1349 struct ixgbevf_q_vector *q_vector; 1350 int q_vectors, v_idx; 1351 1352 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1353 adapter->eims_enable_mask = 0; 1354 1355 /* Populate the IVAR table and set the ITR values to the 1356 * corresponding register. 1357 */ 1358 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1359 struct ixgbevf_ring *ring; 1360 1361 q_vector = adapter->q_vector[v_idx]; 1362 1363 ixgbevf_for_each_ring(ring, q_vector->rx) 1364 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1365 1366 ixgbevf_for_each_ring(ring, q_vector->tx) 1367 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1368 1369 if (q_vector->tx.ring && !q_vector->rx.ring) { 1370 /* Tx only vector */ 1371 if (adapter->tx_itr_setting == 1) 1372 q_vector->itr = IXGBE_12K_ITR; 1373 else 1374 q_vector->itr = adapter->tx_itr_setting; 1375 } else { 1376 /* Rx or Rx/Tx vector */ 1377 if (adapter->rx_itr_setting == 1) 1378 q_vector->itr = IXGBE_20K_ITR; 1379 else 1380 q_vector->itr = adapter->rx_itr_setting; 1381 } 1382 1383 /* add q_vector eims value to global eims_enable_mask */ 1384 adapter->eims_enable_mask |= BIT(v_idx); 1385 1386 ixgbevf_write_eitr(q_vector); 1387 } 1388 1389 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1390 /* setup eims_other and add value to global eims_enable_mask */ 1391 adapter->eims_other = BIT(v_idx); 1392 adapter->eims_enable_mask |= adapter->eims_other; 1393 } 1394 1395 enum latency_range { 1396 lowest_latency = 0, 1397 low_latency = 1, 1398 bulk_latency = 2, 1399 latency_invalid = 255 1400 }; 1401 1402 /** 1403 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1404 * @q_vector: structure containing interrupt and ring information 1405 * @ring_container: structure containing ring performance data 1406 * 1407 * Stores a new ITR value based on packets and byte 1408 * counts during the last interrupt. The advantage of per interrupt 1409 * computation is faster updates and more accurate ITR for the current 1410 * traffic pattern. Constants in this function were computed 1411 * based on theoretical maximum wire speed and thresholds were set based 1412 * on testing data as well as attempting to minimize response time 1413 * while increasing bulk throughput. 1414 **/ 1415 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1416 struct ixgbevf_ring_container *ring_container) 1417 { 1418 int bytes = ring_container->total_bytes; 1419 int packets = ring_container->total_packets; 1420 u32 timepassed_us; 1421 u64 bytes_perint; 1422 u8 itr_setting = ring_container->itr; 1423 1424 if (packets == 0) 1425 return; 1426 1427 /* simple throttle rate management 1428 * 0-20MB/s lowest (100000 ints/s) 1429 * 20-100MB/s low (20000 ints/s) 1430 * 100-1249MB/s bulk (12000 ints/s) 1431 */ 1432 /* what was last interrupt timeslice? */ 1433 timepassed_us = q_vector->itr >> 2; 1434 if (timepassed_us == 0) 1435 return; 1436 1437 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1438 1439 switch (itr_setting) { 1440 case lowest_latency: 1441 if (bytes_perint > 10) 1442 itr_setting = low_latency; 1443 break; 1444 case low_latency: 1445 if (bytes_perint > 20) 1446 itr_setting = bulk_latency; 1447 else if (bytes_perint <= 10) 1448 itr_setting = lowest_latency; 1449 break; 1450 case bulk_latency: 1451 if (bytes_perint <= 20) 1452 itr_setting = low_latency; 1453 break; 1454 } 1455 1456 /* clear work counters since we have the values we need */ 1457 ring_container->total_bytes = 0; 1458 ring_container->total_packets = 0; 1459 1460 /* write updated itr to ring container */ 1461 ring_container->itr = itr_setting; 1462 } 1463 1464 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1465 { 1466 u32 new_itr = q_vector->itr; 1467 u8 current_itr; 1468 1469 ixgbevf_update_itr(q_vector, &q_vector->tx); 1470 ixgbevf_update_itr(q_vector, &q_vector->rx); 1471 1472 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1473 1474 switch (current_itr) { 1475 /* counts and packets in update_itr are dependent on these numbers */ 1476 case lowest_latency: 1477 new_itr = IXGBE_100K_ITR; 1478 break; 1479 case low_latency: 1480 new_itr = IXGBE_20K_ITR; 1481 break; 1482 case bulk_latency: 1483 new_itr = IXGBE_12K_ITR; 1484 break; 1485 default: 1486 break; 1487 } 1488 1489 if (new_itr != q_vector->itr) { 1490 /* do an exponential smoothing */ 1491 new_itr = (10 * new_itr * q_vector->itr) / 1492 ((9 * new_itr) + q_vector->itr); 1493 1494 /* save the algorithm value here */ 1495 q_vector->itr = new_itr; 1496 1497 ixgbevf_write_eitr(q_vector); 1498 } 1499 } 1500 1501 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1502 { 1503 struct ixgbevf_adapter *adapter = data; 1504 struct ixgbe_hw *hw = &adapter->hw; 1505 1506 hw->mac.get_link_status = 1; 1507 1508 ixgbevf_service_event_schedule(adapter); 1509 1510 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1511 1512 return IRQ_HANDLED; 1513 } 1514 1515 /** 1516 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1517 * @irq: unused 1518 * @data: pointer to our q_vector struct for this interrupt vector 1519 **/ 1520 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1521 { 1522 struct ixgbevf_q_vector *q_vector = data; 1523 1524 /* EIAM disabled interrupts (on this vector) for us */ 1525 if (q_vector->rx.ring || q_vector->tx.ring) 1526 napi_schedule_irqoff(&q_vector->napi); 1527 1528 return IRQ_HANDLED; 1529 } 1530 1531 /** 1532 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1533 * @adapter: board private structure 1534 * 1535 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1536 * interrupts from the kernel. 1537 **/ 1538 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1539 { 1540 struct net_device *netdev = adapter->netdev; 1541 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1542 unsigned int ri = 0, ti = 0; 1543 int vector, err; 1544 1545 for (vector = 0; vector < q_vectors; vector++) { 1546 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1547 struct msix_entry *entry = &adapter->msix_entries[vector]; 1548 1549 if (q_vector->tx.ring && q_vector->rx.ring) { 1550 snprintf(q_vector->name, sizeof(q_vector->name), 1551 "%s-TxRx-%u", netdev->name, ri++); 1552 ti++; 1553 } else if (q_vector->rx.ring) { 1554 snprintf(q_vector->name, sizeof(q_vector->name), 1555 "%s-rx-%u", netdev->name, ri++); 1556 } else if (q_vector->tx.ring) { 1557 snprintf(q_vector->name, sizeof(q_vector->name), 1558 "%s-tx-%u", netdev->name, ti++); 1559 } else { 1560 /* skip this unused q_vector */ 1561 continue; 1562 } 1563 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1564 q_vector->name, q_vector); 1565 if (err) { 1566 hw_dbg(&adapter->hw, 1567 "request_irq failed for MSIX interrupt Error: %d\n", 1568 err); 1569 goto free_queue_irqs; 1570 } 1571 } 1572 1573 err = request_irq(adapter->msix_entries[vector].vector, 1574 &ixgbevf_msix_other, 0, netdev->name, adapter); 1575 if (err) { 1576 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1577 err); 1578 goto free_queue_irqs; 1579 } 1580 1581 return 0; 1582 1583 free_queue_irqs: 1584 while (vector) { 1585 vector--; 1586 free_irq(adapter->msix_entries[vector].vector, 1587 adapter->q_vector[vector]); 1588 } 1589 /* This failure is non-recoverable - it indicates the system is 1590 * out of MSIX vector resources and the VF driver cannot run 1591 * without them. Set the number of msix vectors to zero 1592 * indicating that not enough can be allocated. The error 1593 * will be returned to the user indicating device open failed. 1594 * Any further attempts to force the driver to open will also 1595 * fail. The only way to recover is to unload the driver and 1596 * reload it again. If the system has recovered some MSIX 1597 * vectors then it may succeed. 1598 */ 1599 adapter->num_msix_vectors = 0; 1600 return err; 1601 } 1602 1603 /** 1604 * ixgbevf_request_irq - initialize interrupts 1605 * @adapter: board private structure 1606 * 1607 * Attempts to configure interrupts using the best available 1608 * capabilities of the hardware and kernel. 1609 **/ 1610 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1611 { 1612 int err = ixgbevf_request_msix_irqs(adapter); 1613 1614 if (err) 1615 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1616 1617 return err; 1618 } 1619 1620 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1621 { 1622 int i, q_vectors; 1623 1624 if (!adapter->msix_entries) 1625 return; 1626 1627 q_vectors = adapter->num_msix_vectors; 1628 i = q_vectors - 1; 1629 1630 free_irq(adapter->msix_entries[i].vector, adapter); 1631 i--; 1632 1633 for (; i >= 0; i--) { 1634 /* free only the irqs that were actually requested */ 1635 if (!adapter->q_vector[i]->rx.ring && 1636 !adapter->q_vector[i]->tx.ring) 1637 continue; 1638 1639 free_irq(adapter->msix_entries[i].vector, 1640 adapter->q_vector[i]); 1641 } 1642 } 1643 1644 /** 1645 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1646 * @adapter: board private structure 1647 **/ 1648 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1649 { 1650 struct ixgbe_hw *hw = &adapter->hw; 1651 int i; 1652 1653 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1654 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1655 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1656 1657 IXGBE_WRITE_FLUSH(hw); 1658 1659 for (i = 0; i < adapter->num_msix_vectors; i++) 1660 synchronize_irq(adapter->msix_entries[i].vector); 1661 } 1662 1663 /** 1664 * ixgbevf_irq_enable - Enable default interrupt generation settings 1665 * @adapter: board private structure 1666 **/ 1667 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1668 { 1669 struct ixgbe_hw *hw = &adapter->hw; 1670 1671 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1672 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1673 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1674 } 1675 1676 /** 1677 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1678 * @adapter: board private structure 1679 * @ring: structure containing ring specific data 1680 * 1681 * Configure the Tx descriptor ring after a reset. 1682 **/ 1683 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1684 struct ixgbevf_ring *ring) 1685 { 1686 struct ixgbe_hw *hw = &adapter->hw; 1687 u64 tdba = ring->dma; 1688 int wait_loop = 10; 1689 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1690 u8 reg_idx = ring->reg_idx; 1691 1692 /* disable queue to avoid issues while updating state */ 1693 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1694 IXGBE_WRITE_FLUSH(hw); 1695 1696 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1697 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1698 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1699 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1700 1701 /* disable head writeback */ 1702 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1703 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1704 1705 /* enable relaxed ordering */ 1706 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1707 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1708 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1709 1710 /* reset head and tail pointers */ 1711 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1712 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1713 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1714 1715 /* reset ntu and ntc to place SW in sync with hardwdare */ 1716 ring->next_to_clean = 0; 1717 ring->next_to_use = 0; 1718 1719 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1720 * to or less than the number of on chip descriptors, which is 1721 * currently 40. 1722 */ 1723 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1724 1725 /* Setting PTHRESH to 32 both improves performance */ 1726 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1727 32; /* PTHRESH = 32 */ 1728 1729 /* reinitialize tx_buffer_info */ 1730 memset(ring->tx_buffer_info, 0, 1731 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1732 1733 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1734 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1735 1736 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1737 1738 /* poll to verify queue is enabled */ 1739 do { 1740 usleep_range(1000, 2000); 1741 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1742 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1743 if (!wait_loop) 1744 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1745 } 1746 1747 /** 1748 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1749 * @adapter: board private structure 1750 * 1751 * Configure the Tx unit of the MAC after a reset. 1752 **/ 1753 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1754 { 1755 u32 i; 1756 1757 /* Setup the HW Tx Head and Tail descriptor pointers */ 1758 for (i = 0; i < adapter->num_tx_queues; i++) 1759 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1760 for (i = 0; i < adapter->num_xdp_queues; i++) 1761 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1762 } 1763 1764 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1765 1766 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1767 struct ixgbevf_ring *ring, int index) 1768 { 1769 struct ixgbe_hw *hw = &adapter->hw; 1770 u32 srrctl; 1771 1772 srrctl = IXGBE_SRRCTL_DROP_EN; 1773 1774 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1775 if (ring_uses_large_buffer(ring)) 1776 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1777 else 1778 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1779 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1780 1781 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1782 } 1783 1784 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1785 { 1786 struct ixgbe_hw *hw = &adapter->hw; 1787 1788 /* PSRTYPE must be initialized in 82599 */ 1789 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1790 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1791 IXGBE_PSRTYPE_L2HDR; 1792 1793 if (adapter->num_rx_queues > 1) 1794 psrtype |= BIT(29); 1795 1796 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1797 } 1798 1799 #define IXGBEVF_MAX_RX_DESC_POLL 10 1800 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1801 struct ixgbevf_ring *ring) 1802 { 1803 struct ixgbe_hw *hw = &adapter->hw; 1804 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1805 u32 rxdctl; 1806 u8 reg_idx = ring->reg_idx; 1807 1808 if (IXGBE_REMOVED(hw->hw_addr)) 1809 return; 1810 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1811 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1812 1813 /* write value back with RXDCTL.ENABLE bit cleared */ 1814 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1815 1816 /* the hardware may take up to 100us to really disable the Rx queue */ 1817 do { 1818 udelay(10); 1819 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1820 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1821 1822 if (!wait_loop) 1823 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1824 reg_idx); 1825 } 1826 1827 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1828 struct ixgbevf_ring *ring) 1829 { 1830 struct ixgbe_hw *hw = &adapter->hw; 1831 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1832 u32 rxdctl; 1833 u8 reg_idx = ring->reg_idx; 1834 1835 if (IXGBE_REMOVED(hw->hw_addr)) 1836 return; 1837 do { 1838 usleep_range(1000, 2000); 1839 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1840 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1841 1842 if (!wait_loop) 1843 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1844 reg_idx); 1845 } 1846 1847 /** 1848 * ixgbevf_init_rss_key - Initialize adapter RSS key 1849 * @adapter: device handle 1850 * 1851 * Allocates and initializes the RSS key if it is not allocated. 1852 **/ 1853 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1854 { 1855 u32 *rss_key; 1856 1857 if (!adapter->rss_key) { 1858 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1859 if (unlikely(!rss_key)) 1860 return -ENOMEM; 1861 1862 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1863 adapter->rss_key = rss_key; 1864 } 1865 1866 return 0; 1867 } 1868 1869 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1870 { 1871 struct ixgbe_hw *hw = &adapter->hw; 1872 u32 vfmrqc = 0, vfreta = 0; 1873 u16 rss_i = adapter->num_rx_queues; 1874 u8 i, j; 1875 1876 /* Fill out hash function seeds */ 1877 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1878 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1879 1880 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1881 if (j == rss_i) 1882 j = 0; 1883 1884 adapter->rss_indir_tbl[i] = j; 1885 1886 vfreta |= j << (i & 0x3) * 8; 1887 if ((i & 3) == 3) { 1888 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1889 vfreta = 0; 1890 } 1891 } 1892 1893 /* Perform hash on these packet types */ 1894 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1895 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1896 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1897 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1898 1899 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1900 1901 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1902 } 1903 1904 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1905 struct ixgbevf_ring *ring) 1906 { 1907 struct ixgbe_hw *hw = &adapter->hw; 1908 union ixgbe_adv_rx_desc *rx_desc; 1909 u64 rdba = ring->dma; 1910 u32 rxdctl; 1911 u8 reg_idx = ring->reg_idx; 1912 1913 /* disable queue to avoid issues while updating state */ 1914 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1915 ixgbevf_disable_rx_queue(adapter, ring); 1916 1917 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1918 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1919 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1920 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1921 1922 #ifndef CONFIG_SPARC 1923 /* enable relaxed ordering */ 1924 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1925 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1926 #else 1927 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1928 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1929 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1930 #endif 1931 1932 /* reset head and tail pointers */ 1933 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1934 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1935 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1936 1937 /* initialize rx_buffer_info */ 1938 memset(ring->rx_buffer_info, 0, 1939 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1940 1941 /* initialize Rx descriptor 0 */ 1942 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1943 rx_desc->wb.upper.length = 0; 1944 1945 /* reset ntu and ntc to place SW in sync with hardwdare */ 1946 ring->next_to_clean = 0; 1947 ring->next_to_use = 0; 1948 ring->next_to_alloc = 0; 1949 1950 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1951 1952 /* RXDCTL.RLPML does not work on 82599 */ 1953 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1954 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1955 IXGBE_RXDCTL_RLPML_EN); 1956 1957 #if (PAGE_SIZE < 8192) 1958 /* Limit the maximum frame size so we don't overrun the skb */ 1959 if (ring_uses_build_skb(ring) && 1960 !ring_uses_large_buffer(ring)) 1961 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1962 IXGBE_RXDCTL_RLPML_EN; 1963 #endif 1964 } 1965 1966 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1967 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1968 1969 ixgbevf_rx_desc_queue_enable(adapter, ring); 1970 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1971 } 1972 1973 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1974 struct ixgbevf_ring *rx_ring) 1975 { 1976 struct net_device *netdev = adapter->netdev; 1977 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1978 1979 /* set build_skb and buffer size flags */ 1980 clear_ring_build_skb_enabled(rx_ring); 1981 clear_ring_uses_large_buffer(rx_ring); 1982 1983 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1984 return; 1985 1986 set_ring_build_skb_enabled(rx_ring); 1987 1988 if (PAGE_SIZE < 8192) { 1989 if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB) 1990 return; 1991 1992 set_ring_uses_large_buffer(rx_ring); 1993 } 1994 } 1995 1996 /** 1997 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1998 * @adapter: board private structure 1999 * 2000 * Configure the Rx unit of the MAC after a reset. 2001 **/ 2002 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 2003 { 2004 struct ixgbe_hw *hw = &adapter->hw; 2005 struct net_device *netdev = adapter->netdev; 2006 int i, ret; 2007 2008 ixgbevf_setup_psrtype(adapter); 2009 if (hw->mac.type >= ixgbe_mac_X550_vf) 2010 ixgbevf_setup_vfmrqc(adapter); 2011 2012 spin_lock_bh(&adapter->mbx_lock); 2013 /* notify the PF of our intent to use this size of frame */ 2014 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 2015 spin_unlock_bh(&adapter->mbx_lock); 2016 if (ret) 2017 dev_err(&adapter->pdev->dev, 2018 "Failed to set MTU at %d\n", netdev->mtu); 2019 2020 /* Setup the HW Rx Head and Tail Descriptor Pointers and 2021 * the Base and Length of the Rx Descriptor Ring 2022 */ 2023 for (i = 0; i < adapter->num_rx_queues; i++) { 2024 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2025 2026 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2027 ixgbevf_configure_rx_ring(adapter, rx_ring); 2028 } 2029 } 2030 2031 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2032 __be16 proto, u16 vid) 2033 { 2034 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2035 struct ixgbe_hw *hw = &adapter->hw; 2036 int err; 2037 2038 spin_lock_bh(&adapter->mbx_lock); 2039 2040 /* add VID to filter table */ 2041 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2042 2043 spin_unlock_bh(&adapter->mbx_lock); 2044 2045 /* translate error return types so error makes sense */ 2046 if (err == IXGBE_ERR_MBX) 2047 return -EIO; 2048 2049 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2050 return -EACCES; 2051 2052 set_bit(vid, adapter->active_vlans); 2053 2054 return err; 2055 } 2056 2057 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2058 __be16 proto, u16 vid) 2059 { 2060 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2061 struct ixgbe_hw *hw = &adapter->hw; 2062 int err; 2063 2064 spin_lock_bh(&adapter->mbx_lock); 2065 2066 /* remove VID from filter table */ 2067 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2068 2069 spin_unlock_bh(&adapter->mbx_lock); 2070 2071 clear_bit(vid, adapter->active_vlans); 2072 2073 return err; 2074 } 2075 2076 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2077 { 2078 u16 vid; 2079 2080 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2081 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2082 htons(ETH_P_8021Q), vid); 2083 } 2084 2085 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2086 { 2087 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2088 struct ixgbe_hw *hw = &adapter->hw; 2089 int count = 0; 2090 2091 if (!netdev_uc_empty(netdev)) { 2092 struct netdev_hw_addr *ha; 2093 2094 netdev_for_each_uc_addr(ha, netdev) { 2095 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2096 udelay(200); 2097 } 2098 } else { 2099 /* If the list is empty then send message to PF driver to 2100 * clear all MAC VLANs on this VF. 2101 */ 2102 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2103 } 2104 2105 return count; 2106 } 2107 2108 /** 2109 * ixgbevf_set_rx_mode - Multicast and unicast set 2110 * @netdev: network interface device structure 2111 * 2112 * The set_rx_method entry point is called whenever the multicast address 2113 * list, unicast address list or the network interface flags are updated. 2114 * This routine is responsible for configuring the hardware for proper 2115 * multicast mode and configuring requested unicast filters. 2116 **/ 2117 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2118 { 2119 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2120 struct ixgbe_hw *hw = &adapter->hw; 2121 unsigned int flags = netdev->flags; 2122 int xcast_mode; 2123 2124 /* request the most inclusive mode we need */ 2125 if (flags & IFF_PROMISC) 2126 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2127 else if (flags & IFF_ALLMULTI) 2128 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2129 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2130 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2131 else 2132 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2133 2134 spin_lock_bh(&adapter->mbx_lock); 2135 2136 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2137 2138 /* reprogram multicast list */ 2139 hw->mac.ops.update_mc_addr_list(hw, netdev); 2140 2141 ixgbevf_write_uc_addr_list(netdev); 2142 2143 spin_unlock_bh(&adapter->mbx_lock); 2144 } 2145 2146 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2147 { 2148 int q_idx; 2149 struct ixgbevf_q_vector *q_vector; 2150 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2151 2152 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2153 q_vector = adapter->q_vector[q_idx]; 2154 napi_enable(&q_vector->napi); 2155 } 2156 } 2157 2158 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2159 { 2160 int q_idx; 2161 struct ixgbevf_q_vector *q_vector; 2162 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2163 2164 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2165 q_vector = adapter->q_vector[q_idx]; 2166 napi_disable(&q_vector->napi); 2167 } 2168 } 2169 2170 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2171 { 2172 struct ixgbe_hw *hw = &adapter->hw; 2173 unsigned int def_q = 0; 2174 unsigned int num_tcs = 0; 2175 unsigned int num_rx_queues = adapter->num_rx_queues; 2176 unsigned int num_tx_queues = adapter->num_tx_queues; 2177 int err; 2178 2179 spin_lock_bh(&adapter->mbx_lock); 2180 2181 /* fetch queue configuration from the PF */ 2182 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2183 2184 spin_unlock_bh(&adapter->mbx_lock); 2185 2186 if (err) 2187 return err; 2188 2189 if (num_tcs > 1) { 2190 /* we need only one Tx queue */ 2191 num_tx_queues = 1; 2192 2193 /* update default Tx ring register index */ 2194 adapter->tx_ring[0]->reg_idx = def_q; 2195 2196 /* we need as many queues as traffic classes */ 2197 num_rx_queues = num_tcs; 2198 } 2199 2200 /* if we have a bad config abort request queue reset */ 2201 if ((adapter->num_rx_queues != num_rx_queues) || 2202 (adapter->num_tx_queues != num_tx_queues)) { 2203 /* force mailbox timeout to prevent further messages */ 2204 hw->mbx.timeout = 0; 2205 2206 /* wait for watchdog to come around and bail us out */ 2207 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2208 } 2209 2210 return 0; 2211 } 2212 2213 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2214 { 2215 ixgbevf_configure_dcb(adapter); 2216 2217 ixgbevf_set_rx_mode(adapter->netdev); 2218 2219 ixgbevf_restore_vlan(adapter); 2220 ixgbevf_ipsec_restore(adapter); 2221 2222 ixgbevf_configure_tx(adapter); 2223 ixgbevf_configure_rx(adapter); 2224 } 2225 2226 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2227 { 2228 /* Only save pre-reset stats if there are some */ 2229 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2230 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2231 adapter->stats.base_vfgprc; 2232 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2233 adapter->stats.base_vfgptc; 2234 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2235 adapter->stats.base_vfgorc; 2236 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2237 adapter->stats.base_vfgotc; 2238 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2239 adapter->stats.base_vfmprc; 2240 } 2241 } 2242 2243 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2244 { 2245 struct ixgbe_hw *hw = &adapter->hw; 2246 2247 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2248 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2249 adapter->stats.last_vfgorc |= 2250 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2251 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2252 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2253 adapter->stats.last_vfgotc |= 2254 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2255 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2256 2257 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2258 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2259 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2260 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2261 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2262 } 2263 2264 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2265 { 2266 struct ixgbe_hw *hw = &adapter->hw; 2267 static const int api[] = { 2268 ixgbe_mbox_api_14, 2269 ixgbe_mbox_api_13, 2270 ixgbe_mbox_api_12, 2271 ixgbe_mbox_api_11, 2272 ixgbe_mbox_api_10, 2273 ixgbe_mbox_api_unknown 2274 }; 2275 int err, idx = 0; 2276 2277 spin_lock_bh(&adapter->mbx_lock); 2278 2279 while (api[idx] != ixgbe_mbox_api_unknown) { 2280 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2281 if (!err) 2282 break; 2283 idx++; 2284 } 2285 2286 spin_unlock_bh(&adapter->mbx_lock); 2287 } 2288 2289 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2290 { 2291 struct net_device *netdev = adapter->netdev; 2292 struct ixgbe_hw *hw = &adapter->hw; 2293 2294 ixgbevf_configure_msix(adapter); 2295 2296 spin_lock_bh(&adapter->mbx_lock); 2297 2298 if (is_valid_ether_addr(hw->mac.addr)) 2299 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2300 else 2301 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2302 2303 spin_unlock_bh(&adapter->mbx_lock); 2304 2305 smp_mb__before_atomic(); 2306 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2307 ixgbevf_napi_enable_all(adapter); 2308 2309 /* clear any pending interrupts, may auto mask */ 2310 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2311 ixgbevf_irq_enable(adapter); 2312 2313 /* enable transmits */ 2314 netif_tx_start_all_queues(netdev); 2315 2316 ixgbevf_save_reset_stats(adapter); 2317 ixgbevf_init_last_counter_stats(adapter); 2318 2319 hw->mac.get_link_status = 1; 2320 mod_timer(&adapter->service_timer, jiffies); 2321 } 2322 2323 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2324 { 2325 ixgbevf_configure(adapter); 2326 2327 ixgbevf_up_complete(adapter); 2328 } 2329 2330 /** 2331 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2332 * @rx_ring: ring to free buffers from 2333 **/ 2334 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2335 { 2336 u16 i = rx_ring->next_to_clean; 2337 2338 /* Free Rx ring sk_buff */ 2339 if (rx_ring->skb) { 2340 dev_kfree_skb(rx_ring->skb); 2341 rx_ring->skb = NULL; 2342 } 2343 2344 /* Free all the Rx ring pages */ 2345 while (i != rx_ring->next_to_alloc) { 2346 struct ixgbevf_rx_buffer *rx_buffer; 2347 2348 rx_buffer = &rx_ring->rx_buffer_info[i]; 2349 2350 /* Invalidate cache lines that may have been written to by 2351 * device so that we avoid corrupting memory. 2352 */ 2353 dma_sync_single_range_for_cpu(rx_ring->dev, 2354 rx_buffer->dma, 2355 rx_buffer->page_offset, 2356 ixgbevf_rx_bufsz(rx_ring), 2357 DMA_FROM_DEVICE); 2358 2359 /* free resources associated with mapping */ 2360 dma_unmap_page_attrs(rx_ring->dev, 2361 rx_buffer->dma, 2362 ixgbevf_rx_pg_size(rx_ring), 2363 DMA_FROM_DEVICE, 2364 IXGBEVF_RX_DMA_ATTR); 2365 2366 __page_frag_cache_drain(rx_buffer->page, 2367 rx_buffer->pagecnt_bias); 2368 2369 i++; 2370 if (i == rx_ring->count) 2371 i = 0; 2372 } 2373 2374 rx_ring->next_to_alloc = 0; 2375 rx_ring->next_to_clean = 0; 2376 rx_ring->next_to_use = 0; 2377 } 2378 2379 /** 2380 * ixgbevf_clean_tx_ring - Free Tx Buffers 2381 * @tx_ring: ring to be cleaned 2382 **/ 2383 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2384 { 2385 u16 i = tx_ring->next_to_clean; 2386 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2387 2388 while (i != tx_ring->next_to_use) { 2389 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2390 2391 /* Free all the Tx ring sk_buffs */ 2392 if (ring_is_xdp(tx_ring)) 2393 page_frag_free(tx_buffer->data); 2394 else 2395 dev_kfree_skb_any(tx_buffer->skb); 2396 2397 /* unmap skb header data */ 2398 dma_unmap_single(tx_ring->dev, 2399 dma_unmap_addr(tx_buffer, dma), 2400 dma_unmap_len(tx_buffer, len), 2401 DMA_TO_DEVICE); 2402 2403 /* check for eop_desc to determine the end of the packet */ 2404 eop_desc = tx_buffer->next_to_watch; 2405 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2406 2407 /* unmap remaining buffers */ 2408 while (tx_desc != eop_desc) { 2409 tx_buffer++; 2410 tx_desc++; 2411 i++; 2412 if (unlikely(i == tx_ring->count)) { 2413 i = 0; 2414 tx_buffer = tx_ring->tx_buffer_info; 2415 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2416 } 2417 2418 /* unmap any remaining paged data */ 2419 if (dma_unmap_len(tx_buffer, len)) 2420 dma_unmap_page(tx_ring->dev, 2421 dma_unmap_addr(tx_buffer, dma), 2422 dma_unmap_len(tx_buffer, len), 2423 DMA_TO_DEVICE); 2424 } 2425 2426 /* move us one more past the eop_desc for start of next pkt */ 2427 tx_buffer++; 2428 i++; 2429 if (unlikely(i == tx_ring->count)) { 2430 i = 0; 2431 tx_buffer = tx_ring->tx_buffer_info; 2432 } 2433 } 2434 2435 /* reset next_to_use and next_to_clean */ 2436 tx_ring->next_to_use = 0; 2437 tx_ring->next_to_clean = 0; 2438 2439 } 2440 2441 /** 2442 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2443 * @adapter: board private structure 2444 **/ 2445 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2446 { 2447 int i; 2448 2449 for (i = 0; i < adapter->num_rx_queues; i++) 2450 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2451 } 2452 2453 /** 2454 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2455 * @adapter: board private structure 2456 **/ 2457 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2458 { 2459 int i; 2460 2461 for (i = 0; i < adapter->num_tx_queues; i++) 2462 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2463 for (i = 0; i < adapter->num_xdp_queues; i++) 2464 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2465 } 2466 2467 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2468 { 2469 struct net_device *netdev = adapter->netdev; 2470 struct ixgbe_hw *hw = &adapter->hw; 2471 int i; 2472 2473 /* signal that we are down to the interrupt handler */ 2474 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2475 return; /* do nothing if already down */ 2476 2477 /* disable all enabled Rx queues */ 2478 for (i = 0; i < adapter->num_rx_queues; i++) 2479 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2480 2481 usleep_range(10000, 20000); 2482 2483 netif_tx_stop_all_queues(netdev); 2484 2485 /* call carrier off first to avoid false dev_watchdog timeouts */ 2486 netif_carrier_off(netdev); 2487 netif_tx_disable(netdev); 2488 2489 ixgbevf_irq_disable(adapter); 2490 2491 ixgbevf_napi_disable_all(adapter); 2492 2493 del_timer_sync(&adapter->service_timer); 2494 2495 /* disable transmits in the hardware now that interrupts are off */ 2496 for (i = 0; i < adapter->num_tx_queues; i++) { 2497 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2498 2499 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2500 IXGBE_TXDCTL_SWFLSH); 2501 } 2502 2503 for (i = 0; i < adapter->num_xdp_queues; i++) { 2504 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2505 2506 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2507 IXGBE_TXDCTL_SWFLSH); 2508 } 2509 2510 if (!pci_channel_offline(adapter->pdev)) 2511 ixgbevf_reset(adapter); 2512 2513 ixgbevf_clean_all_tx_rings(adapter); 2514 ixgbevf_clean_all_rx_rings(adapter); 2515 } 2516 2517 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2518 { 2519 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2520 msleep(1); 2521 2522 ixgbevf_down(adapter); 2523 pci_set_master(adapter->pdev); 2524 ixgbevf_up(adapter); 2525 2526 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2527 } 2528 2529 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2530 { 2531 struct ixgbe_hw *hw = &adapter->hw; 2532 struct net_device *netdev = adapter->netdev; 2533 2534 if (hw->mac.ops.reset_hw(hw)) { 2535 hw_dbg(hw, "PF still resetting\n"); 2536 } else { 2537 hw->mac.ops.init_hw(hw); 2538 ixgbevf_negotiate_api(adapter); 2539 } 2540 2541 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2542 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2543 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2544 } 2545 2546 adapter->last_reset = jiffies; 2547 } 2548 2549 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2550 int vectors) 2551 { 2552 int vector_threshold; 2553 2554 /* We'll want at least 2 (vector_threshold): 2555 * 1) TxQ[0] + RxQ[0] handler 2556 * 2) Other (Link Status Change, etc.) 2557 */ 2558 vector_threshold = MIN_MSIX_COUNT; 2559 2560 /* The more we get, the more we will assign to Tx/Rx Cleanup 2561 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2562 * Right now, we simply care about how many we'll get; we'll 2563 * set them up later while requesting irq's. 2564 */ 2565 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2566 vector_threshold, vectors); 2567 2568 if (vectors < 0) { 2569 dev_err(&adapter->pdev->dev, 2570 "Unable to allocate MSI-X interrupts\n"); 2571 kfree(adapter->msix_entries); 2572 adapter->msix_entries = NULL; 2573 return vectors; 2574 } 2575 2576 /* Adjust for only the vectors we'll use, which is minimum 2577 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2578 * vectors we were allocated. 2579 */ 2580 adapter->num_msix_vectors = vectors; 2581 2582 return 0; 2583 } 2584 2585 /** 2586 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2587 * @adapter: board private structure to initialize 2588 * 2589 * This is the top level queue allocation routine. The order here is very 2590 * important, starting with the "most" number of features turned on at once, 2591 * and ending with the smallest set of features. This way large combinations 2592 * can be allocated if they're turned on, and smaller combinations are the 2593 * fall through conditions. 2594 * 2595 **/ 2596 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2597 { 2598 struct ixgbe_hw *hw = &adapter->hw; 2599 unsigned int def_q = 0; 2600 unsigned int num_tcs = 0; 2601 int err; 2602 2603 /* Start with base case */ 2604 adapter->num_rx_queues = 1; 2605 adapter->num_tx_queues = 1; 2606 adapter->num_xdp_queues = 0; 2607 2608 spin_lock_bh(&adapter->mbx_lock); 2609 2610 /* fetch queue configuration from the PF */ 2611 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2612 2613 spin_unlock_bh(&adapter->mbx_lock); 2614 2615 if (err) 2616 return; 2617 2618 /* we need as many queues as traffic classes */ 2619 if (num_tcs > 1) { 2620 adapter->num_rx_queues = num_tcs; 2621 } else { 2622 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2623 2624 switch (hw->api_version) { 2625 case ixgbe_mbox_api_11: 2626 case ixgbe_mbox_api_12: 2627 case ixgbe_mbox_api_13: 2628 case ixgbe_mbox_api_14: 2629 if (adapter->xdp_prog && 2630 hw->mac.max_tx_queues == rss) 2631 rss = rss > 3 ? 2 : 1; 2632 2633 adapter->num_rx_queues = rss; 2634 adapter->num_tx_queues = rss; 2635 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2636 break; 2637 default: 2638 break; 2639 } 2640 } 2641 } 2642 2643 /** 2644 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2645 * @adapter: board private structure to initialize 2646 * 2647 * Attempt to configure the interrupts using the best available 2648 * capabilities of the hardware and the kernel. 2649 **/ 2650 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2651 { 2652 int vector, v_budget; 2653 2654 /* It's easy to be greedy for MSI-X vectors, but it really 2655 * doesn't do us much good if we have a lot more vectors 2656 * than CPU's. So let's be conservative and only ask for 2657 * (roughly) the same number of vectors as there are CPU's. 2658 * The default is to use pairs of vectors. 2659 */ 2660 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2661 v_budget = min_t(int, v_budget, num_online_cpus()); 2662 v_budget += NON_Q_VECTORS; 2663 2664 adapter->msix_entries = kcalloc(v_budget, 2665 sizeof(struct msix_entry), GFP_KERNEL); 2666 if (!adapter->msix_entries) 2667 return -ENOMEM; 2668 2669 for (vector = 0; vector < v_budget; vector++) 2670 adapter->msix_entries[vector].entry = vector; 2671 2672 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2673 * does not support any other modes, so we will simply fail here. Note 2674 * that we clean up the msix_entries pointer else-where. 2675 */ 2676 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2677 } 2678 2679 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2680 struct ixgbevf_ring_container *head) 2681 { 2682 ring->next = head->ring; 2683 head->ring = ring; 2684 head->count++; 2685 } 2686 2687 /** 2688 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2689 * @adapter: board private structure to initialize 2690 * @v_idx: index of vector in adapter struct 2691 * @txr_count: number of Tx rings for q vector 2692 * @txr_idx: index of first Tx ring to assign 2693 * @xdp_count: total number of XDP rings to allocate 2694 * @xdp_idx: index of first XDP ring to allocate 2695 * @rxr_count: number of Rx rings for q vector 2696 * @rxr_idx: index of first Rx ring to assign 2697 * 2698 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2699 **/ 2700 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2701 int txr_count, int txr_idx, 2702 int xdp_count, int xdp_idx, 2703 int rxr_count, int rxr_idx) 2704 { 2705 struct ixgbevf_q_vector *q_vector; 2706 int reg_idx = txr_idx + xdp_idx; 2707 struct ixgbevf_ring *ring; 2708 int ring_count, size; 2709 2710 ring_count = txr_count + xdp_count + rxr_count; 2711 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2712 2713 /* allocate q_vector and rings */ 2714 q_vector = kzalloc(size, GFP_KERNEL); 2715 if (!q_vector) 2716 return -ENOMEM; 2717 2718 /* initialize NAPI */ 2719 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64); 2720 2721 /* tie q_vector and adapter together */ 2722 adapter->q_vector[v_idx] = q_vector; 2723 q_vector->adapter = adapter; 2724 q_vector->v_idx = v_idx; 2725 2726 /* initialize pointer to rings */ 2727 ring = q_vector->ring; 2728 2729 while (txr_count) { 2730 /* assign generic ring traits */ 2731 ring->dev = &adapter->pdev->dev; 2732 ring->netdev = adapter->netdev; 2733 2734 /* configure backlink on ring */ 2735 ring->q_vector = q_vector; 2736 2737 /* update q_vector Tx values */ 2738 ixgbevf_add_ring(ring, &q_vector->tx); 2739 2740 /* apply Tx specific ring traits */ 2741 ring->count = adapter->tx_ring_count; 2742 ring->queue_index = txr_idx; 2743 ring->reg_idx = reg_idx; 2744 2745 /* assign ring to adapter */ 2746 adapter->tx_ring[txr_idx] = ring; 2747 2748 /* update count and index */ 2749 txr_count--; 2750 txr_idx++; 2751 reg_idx++; 2752 2753 /* push pointer to next ring */ 2754 ring++; 2755 } 2756 2757 while (xdp_count) { 2758 /* assign generic ring traits */ 2759 ring->dev = &adapter->pdev->dev; 2760 ring->netdev = adapter->netdev; 2761 2762 /* configure backlink on ring */ 2763 ring->q_vector = q_vector; 2764 2765 /* update q_vector Tx values */ 2766 ixgbevf_add_ring(ring, &q_vector->tx); 2767 2768 /* apply Tx specific ring traits */ 2769 ring->count = adapter->tx_ring_count; 2770 ring->queue_index = xdp_idx; 2771 ring->reg_idx = reg_idx; 2772 set_ring_xdp(ring); 2773 2774 /* assign ring to adapter */ 2775 adapter->xdp_ring[xdp_idx] = ring; 2776 2777 /* update count and index */ 2778 xdp_count--; 2779 xdp_idx++; 2780 reg_idx++; 2781 2782 /* push pointer to next ring */ 2783 ring++; 2784 } 2785 2786 while (rxr_count) { 2787 /* assign generic ring traits */ 2788 ring->dev = &adapter->pdev->dev; 2789 ring->netdev = adapter->netdev; 2790 2791 /* configure backlink on ring */ 2792 ring->q_vector = q_vector; 2793 2794 /* update q_vector Rx values */ 2795 ixgbevf_add_ring(ring, &q_vector->rx); 2796 2797 /* apply Rx specific ring traits */ 2798 ring->count = adapter->rx_ring_count; 2799 ring->queue_index = rxr_idx; 2800 ring->reg_idx = rxr_idx; 2801 2802 /* assign ring to adapter */ 2803 adapter->rx_ring[rxr_idx] = ring; 2804 2805 /* update count and index */ 2806 rxr_count--; 2807 rxr_idx++; 2808 2809 /* push pointer to next ring */ 2810 ring++; 2811 } 2812 2813 return 0; 2814 } 2815 2816 /** 2817 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2818 * @adapter: board private structure to initialize 2819 * @v_idx: index of vector in adapter struct 2820 * 2821 * This function frees the memory allocated to the q_vector. In addition if 2822 * NAPI is enabled it will delete any references to the NAPI struct prior 2823 * to freeing the q_vector. 2824 **/ 2825 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2826 { 2827 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2828 struct ixgbevf_ring *ring; 2829 2830 ixgbevf_for_each_ring(ring, q_vector->tx) { 2831 if (ring_is_xdp(ring)) 2832 adapter->xdp_ring[ring->queue_index] = NULL; 2833 else 2834 adapter->tx_ring[ring->queue_index] = NULL; 2835 } 2836 2837 ixgbevf_for_each_ring(ring, q_vector->rx) 2838 adapter->rx_ring[ring->queue_index] = NULL; 2839 2840 adapter->q_vector[v_idx] = NULL; 2841 netif_napi_del(&q_vector->napi); 2842 2843 /* ixgbevf_get_stats() might access the rings on this vector, 2844 * we must wait a grace period before freeing it. 2845 */ 2846 kfree_rcu(q_vector, rcu); 2847 } 2848 2849 /** 2850 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2851 * @adapter: board private structure to initialize 2852 * 2853 * We allocate one q_vector per queue interrupt. If allocation fails we 2854 * return -ENOMEM. 2855 **/ 2856 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2857 { 2858 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2859 int rxr_remaining = adapter->num_rx_queues; 2860 int txr_remaining = adapter->num_tx_queues; 2861 int xdp_remaining = adapter->num_xdp_queues; 2862 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2863 int err; 2864 2865 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2866 for (; rxr_remaining; v_idx++, q_vectors--) { 2867 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2868 2869 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2870 0, 0, 0, 0, rqpv, rxr_idx); 2871 if (err) 2872 goto err_out; 2873 2874 /* update counts and index */ 2875 rxr_remaining -= rqpv; 2876 rxr_idx += rqpv; 2877 } 2878 } 2879 2880 for (; q_vectors; v_idx++, q_vectors--) { 2881 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2882 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2883 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2884 2885 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2886 tqpv, txr_idx, 2887 xqpv, xdp_idx, 2888 rqpv, rxr_idx); 2889 2890 if (err) 2891 goto err_out; 2892 2893 /* update counts and index */ 2894 rxr_remaining -= rqpv; 2895 rxr_idx += rqpv; 2896 txr_remaining -= tqpv; 2897 txr_idx += tqpv; 2898 xdp_remaining -= xqpv; 2899 xdp_idx += xqpv; 2900 } 2901 2902 return 0; 2903 2904 err_out: 2905 while (v_idx) { 2906 v_idx--; 2907 ixgbevf_free_q_vector(adapter, v_idx); 2908 } 2909 2910 return -ENOMEM; 2911 } 2912 2913 /** 2914 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2915 * @adapter: board private structure to initialize 2916 * 2917 * This function frees the memory allocated to the q_vectors. In addition if 2918 * NAPI is enabled it will delete any references to the NAPI struct prior 2919 * to freeing the q_vector. 2920 **/ 2921 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2922 { 2923 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2924 2925 while (q_vectors) { 2926 q_vectors--; 2927 ixgbevf_free_q_vector(adapter, q_vectors); 2928 } 2929 } 2930 2931 /** 2932 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2933 * @adapter: board private structure 2934 * 2935 **/ 2936 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2937 { 2938 if (!adapter->msix_entries) 2939 return; 2940 2941 pci_disable_msix(adapter->pdev); 2942 kfree(adapter->msix_entries); 2943 adapter->msix_entries = NULL; 2944 } 2945 2946 /** 2947 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2948 * @adapter: board private structure to initialize 2949 * 2950 **/ 2951 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2952 { 2953 int err; 2954 2955 /* Number of supported queues */ 2956 ixgbevf_set_num_queues(adapter); 2957 2958 err = ixgbevf_set_interrupt_capability(adapter); 2959 if (err) { 2960 hw_dbg(&adapter->hw, 2961 "Unable to setup interrupt capabilities\n"); 2962 goto err_set_interrupt; 2963 } 2964 2965 err = ixgbevf_alloc_q_vectors(adapter); 2966 if (err) { 2967 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2968 goto err_alloc_q_vectors; 2969 } 2970 2971 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2972 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2973 adapter->num_rx_queues, adapter->num_tx_queues, 2974 adapter->num_xdp_queues); 2975 2976 set_bit(__IXGBEVF_DOWN, &adapter->state); 2977 2978 return 0; 2979 err_alloc_q_vectors: 2980 ixgbevf_reset_interrupt_capability(adapter); 2981 err_set_interrupt: 2982 return err; 2983 } 2984 2985 /** 2986 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2987 * @adapter: board private structure to clear interrupt scheme on 2988 * 2989 * We go through and clear interrupt specific resources and reset the structure 2990 * to pre-load conditions 2991 **/ 2992 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2993 { 2994 adapter->num_tx_queues = 0; 2995 adapter->num_xdp_queues = 0; 2996 adapter->num_rx_queues = 0; 2997 2998 ixgbevf_free_q_vectors(adapter); 2999 ixgbevf_reset_interrupt_capability(adapter); 3000 } 3001 3002 /** 3003 * ixgbevf_sw_init - Initialize general software structures 3004 * @adapter: board private structure to initialize 3005 * 3006 * ixgbevf_sw_init initializes the Adapter private data structure. 3007 * Fields are initialized based on PCI device information and 3008 * OS network device settings (MTU size). 3009 **/ 3010 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 3011 { 3012 struct ixgbe_hw *hw = &adapter->hw; 3013 struct pci_dev *pdev = adapter->pdev; 3014 struct net_device *netdev = adapter->netdev; 3015 int err; 3016 3017 /* PCI config space info */ 3018 hw->vendor_id = pdev->vendor; 3019 hw->device_id = pdev->device; 3020 hw->revision_id = pdev->revision; 3021 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3022 hw->subsystem_device_id = pdev->subsystem_device; 3023 3024 hw->mbx.ops.init_params(hw); 3025 3026 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3027 err = ixgbevf_init_rss_key(adapter); 3028 if (err) 3029 goto out; 3030 } 3031 3032 /* assume legacy case in which PF would only give VF 2 queues */ 3033 hw->mac.max_tx_queues = 2; 3034 hw->mac.max_rx_queues = 2; 3035 3036 /* lock to protect mailbox accesses */ 3037 spin_lock_init(&adapter->mbx_lock); 3038 3039 err = hw->mac.ops.reset_hw(hw); 3040 if (err) { 3041 dev_info(&pdev->dev, 3042 "PF still in reset state. Is the PF interface up?\n"); 3043 } else { 3044 err = hw->mac.ops.init_hw(hw); 3045 if (err) { 3046 pr_err("init_shared_code failed: %d\n", err); 3047 goto out; 3048 } 3049 ixgbevf_negotiate_api(adapter); 3050 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3051 if (err) 3052 dev_info(&pdev->dev, "Error reading MAC address\n"); 3053 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3054 dev_info(&pdev->dev, 3055 "MAC address not assigned by administrator.\n"); 3056 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 3057 } 3058 3059 if (!is_valid_ether_addr(netdev->dev_addr)) { 3060 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3061 eth_hw_addr_random(netdev); 3062 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3063 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3064 } 3065 3066 /* Enable dynamic interrupt throttling rates */ 3067 adapter->rx_itr_setting = 1; 3068 adapter->tx_itr_setting = 1; 3069 3070 /* set default ring sizes */ 3071 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3072 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3073 3074 set_bit(__IXGBEVF_DOWN, &adapter->state); 3075 return 0; 3076 3077 out: 3078 return err; 3079 } 3080 3081 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3082 { \ 3083 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3084 if (current_counter < last_counter) \ 3085 counter += 0x100000000LL; \ 3086 last_counter = current_counter; \ 3087 counter &= 0xFFFFFFFF00000000LL; \ 3088 counter |= current_counter; \ 3089 } 3090 3091 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3092 { \ 3093 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3094 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3095 u64 current_counter = (current_counter_msb << 32) | \ 3096 current_counter_lsb; \ 3097 if (current_counter < last_counter) \ 3098 counter += 0x1000000000LL; \ 3099 last_counter = current_counter; \ 3100 counter &= 0xFFFFFFF000000000LL; \ 3101 counter |= current_counter; \ 3102 } 3103 /** 3104 * ixgbevf_update_stats - Update the board statistics counters. 3105 * @adapter: board private structure 3106 **/ 3107 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3108 { 3109 struct ixgbe_hw *hw = &adapter->hw; 3110 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3111 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3112 int i; 3113 3114 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3115 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3116 return; 3117 3118 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3119 adapter->stats.vfgprc); 3120 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3121 adapter->stats.vfgptc); 3122 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3123 adapter->stats.last_vfgorc, 3124 adapter->stats.vfgorc); 3125 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3126 adapter->stats.last_vfgotc, 3127 adapter->stats.vfgotc); 3128 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3129 adapter->stats.vfmprc); 3130 3131 for (i = 0; i < adapter->num_rx_queues; i++) { 3132 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3133 3134 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3135 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3136 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3137 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3138 } 3139 3140 adapter->hw_csum_rx_error = hw_csum_rx_error; 3141 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3142 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3143 adapter->alloc_rx_page = alloc_rx_page; 3144 } 3145 3146 /** 3147 * ixgbevf_service_timer - Timer Call-back 3148 * @t: pointer to timer_list struct 3149 **/ 3150 static void ixgbevf_service_timer(struct timer_list *t) 3151 { 3152 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3153 service_timer); 3154 3155 /* Reset the timer */ 3156 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3157 3158 ixgbevf_service_event_schedule(adapter); 3159 } 3160 3161 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3162 { 3163 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3164 return; 3165 3166 rtnl_lock(); 3167 /* If we're already down or resetting, just bail */ 3168 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3169 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3170 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3171 rtnl_unlock(); 3172 return; 3173 } 3174 3175 adapter->tx_timeout_count++; 3176 3177 ixgbevf_reinit_locked(adapter); 3178 rtnl_unlock(); 3179 } 3180 3181 /** 3182 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3183 * @adapter: pointer to the device adapter structure 3184 * 3185 * This function serves two purposes. First it strobes the interrupt lines 3186 * in order to make certain interrupts are occurring. Secondly it sets the 3187 * bits needed to check for TX hangs. As a result we should immediately 3188 * determine if a hang has occurred. 3189 **/ 3190 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3191 { 3192 struct ixgbe_hw *hw = &adapter->hw; 3193 u32 eics = 0; 3194 int i; 3195 3196 /* If we're down or resetting, just bail */ 3197 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3198 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3199 return; 3200 3201 /* Force detection of hung controller */ 3202 if (netif_carrier_ok(adapter->netdev)) { 3203 for (i = 0; i < adapter->num_tx_queues; i++) 3204 set_check_for_tx_hang(adapter->tx_ring[i]); 3205 for (i = 0; i < adapter->num_xdp_queues; i++) 3206 set_check_for_tx_hang(adapter->xdp_ring[i]); 3207 } 3208 3209 /* get one bit for every active Tx/Rx interrupt vector */ 3210 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3211 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3212 3213 if (qv->rx.ring || qv->tx.ring) 3214 eics |= BIT(i); 3215 } 3216 3217 /* Cause software interrupt to ensure rings are cleaned */ 3218 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3219 } 3220 3221 /** 3222 * ixgbevf_watchdog_update_link - update the link status 3223 * @adapter: pointer to the device adapter structure 3224 **/ 3225 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3226 { 3227 struct ixgbe_hw *hw = &adapter->hw; 3228 u32 link_speed = adapter->link_speed; 3229 bool link_up = adapter->link_up; 3230 s32 err; 3231 3232 spin_lock_bh(&adapter->mbx_lock); 3233 3234 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3235 3236 spin_unlock_bh(&adapter->mbx_lock); 3237 3238 /* if check for link returns error we will need to reset */ 3239 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3240 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3241 link_up = false; 3242 } 3243 3244 adapter->link_up = link_up; 3245 adapter->link_speed = link_speed; 3246 } 3247 3248 /** 3249 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3250 * print link up message 3251 * @adapter: pointer to the device adapter structure 3252 **/ 3253 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3254 { 3255 struct net_device *netdev = adapter->netdev; 3256 3257 /* only continue if link was previously down */ 3258 if (netif_carrier_ok(netdev)) 3259 return; 3260 3261 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3262 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3263 "10 Gbps" : 3264 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3265 "1 Gbps" : 3266 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3267 "100 Mbps" : 3268 "unknown speed"); 3269 3270 netif_carrier_on(netdev); 3271 } 3272 3273 /** 3274 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3275 * print link down message 3276 * @adapter: pointer to the adapter structure 3277 **/ 3278 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3279 { 3280 struct net_device *netdev = adapter->netdev; 3281 3282 adapter->link_speed = 0; 3283 3284 /* only continue if link was up previously */ 3285 if (!netif_carrier_ok(netdev)) 3286 return; 3287 3288 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3289 3290 netif_carrier_off(netdev); 3291 } 3292 3293 /** 3294 * ixgbevf_watchdog_subtask - worker thread to bring link up 3295 * @adapter: board private structure 3296 **/ 3297 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3298 { 3299 /* if interface is down do nothing */ 3300 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3301 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3302 return; 3303 3304 ixgbevf_watchdog_update_link(adapter); 3305 3306 if (adapter->link_up) 3307 ixgbevf_watchdog_link_is_up(adapter); 3308 else 3309 ixgbevf_watchdog_link_is_down(adapter); 3310 3311 ixgbevf_update_stats(adapter); 3312 } 3313 3314 /** 3315 * ixgbevf_service_task - manages and runs subtasks 3316 * @work: pointer to work_struct containing our data 3317 **/ 3318 static void ixgbevf_service_task(struct work_struct *work) 3319 { 3320 struct ixgbevf_adapter *adapter = container_of(work, 3321 struct ixgbevf_adapter, 3322 service_task); 3323 struct ixgbe_hw *hw = &adapter->hw; 3324 3325 if (IXGBE_REMOVED(hw->hw_addr)) { 3326 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3327 rtnl_lock(); 3328 ixgbevf_down(adapter); 3329 rtnl_unlock(); 3330 } 3331 return; 3332 } 3333 3334 ixgbevf_queue_reset_subtask(adapter); 3335 ixgbevf_reset_subtask(adapter); 3336 ixgbevf_watchdog_subtask(adapter); 3337 ixgbevf_check_hang_subtask(adapter); 3338 3339 ixgbevf_service_event_complete(adapter); 3340 } 3341 3342 /** 3343 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3344 * @tx_ring: Tx descriptor ring for a specific queue 3345 * 3346 * Free all transmit software resources 3347 **/ 3348 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3349 { 3350 ixgbevf_clean_tx_ring(tx_ring); 3351 3352 vfree(tx_ring->tx_buffer_info); 3353 tx_ring->tx_buffer_info = NULL; 3354 3355 /* if not set, then don't free */ 3356 if (!tx_ring->desc) 3357 return; 3358 3359 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3360 tx_ring->dma); 3361 3362 tx_ring->desc = NULL; 3363 } 3364 3365 /** 3366 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3367 * @adapter: board private structure 3368 * 3369 * Free all transmit software resources 3370 **/ 3371 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3372 { 3373 int i; 3374 3375 for (i = 0; i < adapter->num_tx_queues; i++) 3376 if (adapter->tx_ring[i]->desc) 3377 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3378 for (i = 0; i < adapter->num_xdp_queues; i++) 3379 if (adapter->xdp_ring[i]->desc) 3380 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3381 } 3382 3383 /** 3384 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3385 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3386 * 3387 * Return 0 on success, negative on failure 3388 **/ 3389 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3390 { 3391 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3392 int size; 3393 3394 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3395 tx_ring->tx_buffer_info = vmalloc(size); 3396 if (!tx_ring->tx_buffer_info) 3397 goto err; 3398 3399 u64_stats_init(&tx_ring->syncp); 3400 3401 /* round up to nearest 4K */ 3402 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3403 tx_ring->size = ALIGN(tx_ring->size, 4096); 3404 3405 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3406 &tx_ring->dma, GFP_KERNEL); 3407 if (!tx_ring->desc) 3408 goto err; 3409 3410 return 0; 3411 3412 err: 3413 vfree(tx_ring->tx_buffer_info); 3414 tx_ring->tx_buffer_info = NULL; 3415 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3416 return -ENOMEM; 3417 } 3418 3419 /** 3420 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3421 * @adapter: board private structure 3422 * 3423 * If this function returns with an error, then it's possible one or 3424 * more of the rings is populated (while the rest are not). It is the 3425 * callers duty to clean those orphaned rings. 3426 * 3427 * Return 0 on success, negative on failure 3428 **/ 3429 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3430 { 3431 int i, j = 0, err = 0; 3432 3433 for (i = 0; i < adapter->num_tx_queues; i++) { 3434 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3435 if (!err) 3436 continue; 3437 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3438 goto err_setup_tx; 3439 } 3440 3441 for (j = 0; j < adapter->num_xdp_queues; j++) { 3442 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3443 if (!err) 3444 continue; 3445 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3446 goto err_setup_tx; 3447 } 3448 3449 return 0; 3450 err_setup_tx: 3451 /* rewind the index freeing the rings as we go */ 3452 while (j--) 3453 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3454 while (i--) 3455 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3456 3457 return err; 3458 } 3459 3460 /** 3461 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3462 * @adapter: board private structure 3463 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3464 * 3465 * Returns 0 on success, negative on failure 3466 **/ 3467 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3468 struct ixgbevf_ring *rx_ring) 3469 { 3470 int size; 3471 3472 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3473 rx_ring->rx_buffer_info = vmalloc(size); 3474 if (!rx_ring->rx_buffer_info) 3475 goto err; 3476 3477 u64_stats_init(&rx_ring->syncp); 3478 3479 /* Round up to nearest 4K */ 3480 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3481 rx_ring->size = ALIGN(rx_ring->size, 4096); 3482 3483 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3484 &rx_ring->dma, GFP_KERNEL); 3485 3486 if (!rx_ring->desc) 3487 goto err; 3488 3489 /* XDP RX-queue info */ 3490 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3491 rx_ring->queue_index, 0) < 0) 3492 goto err; 3493 3494 rx_ring->xdp_prog = adapter->xdp_prog; 3495 3496 return 0; 3497 err: 3498 vfree(rx_ring->rx_buffer_info); 3499 rx_ring->rx_buffer_info = NULL; 3500 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3501 return -ENOMEM; 3502 } 3503 3504 /** 3505 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3506 * @adapter: board private structure 3507 * 3508 * If this function returns with an error, then it's possible one or 3509 * more of the rings is populated (while the rest are not). It is the 3510 * callers duty to clean those orphaned rings. 3511 * 3512 * Return 0 on success, negative on failure 3513 **/ 3514 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3515 { 3516 int i, err = 0; 3517 3518 for (i = 0; i < adapter->num_rx_queues; i++) { 3519 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3520 if (!err) 3521 continue; 3522 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3523 goto err_setup_rx; 3524 } 3525 3526 return 0; 3527 err_setup_rx: 3528 /* rewind the index freeing the rings as we go */ 3529 while (i--) 3530 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3531 return err; 3532 } 3533 3534 /** 3535 * ixgbevf_free_rx_resources - Free Rx Resources 3536 * @rx_ring: ring to clean the resources from 3537 * 3538 * Free all receive software resources 3539 **/ 3540 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3541 { 3542 ixgbevf_clean_rx_ring(rx_ring); 3543 3544 rx_ring->xdp_prog = NULL; 3545 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3546 vfree(rx_ring->rx_buffer_info); 3547 rx_ring->rx_buffer_info = NULL; 3548 3549 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3550 rx_ring->dma); 3551 3552 rx_ring->desc = NULL; 3553 } 3554 3555 /** 3556 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3557 * @adapter: board private structure 3558 * 3559 * Free all receive software resources 3560 **/ 3561 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3562 { 3563 int i; 3564 3565 for (i = 0; i < adapter->num_rx_queues; i++) 3566 if (adapter->rx_ring[i]->desc) 3567 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3568 } 3569 3570 /** 3571 * ixgbevf_open - Called when a network interface is made active 3572 * @netdev: network interface device structure 3573 * 3574 * Returns 0 on success, negative value on failure 3575 * 3576 * The open entry point is called when a network interface is made 3577 * active by the system (IFF_UP). At this point all resources needed 3578 * for transmit and receive operations are allocated, the interrupt 3579 * handler is registered with the OS, the watchdog timer is started, 3580 * and the stack is notified that the interface is ready. 3581 **/ 3582 int ixgbevf_open(struct net_device *netdev) 3583 { 3584 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3585 struct ixgbe_hw *hw = &adapter->hw; 3586 int err; 3587 3588 /* A previous failure to open the device because of a lack of 3589 * available MSIX vector resources may have reset the number 3590 * of msix vectors variable to zero. The only way to recover 3591 * is to unload/reload the driver and hope that the system has 3592 * been able to recover some MSIX vector resources. 3593 */ 3594 if (!adapter->num_msix_vectors) 3595 return -ENOMEM; 3596 3597 if (hw->adapter_stopped) { 3598 ixgbevf_reset(adapter); 3599 /* if adapter is still stopped then PF isn't up and 3600 * the VF can't start. 3601 */ 3602 if (hw->adapter_stopped) { 3603 err = IXGBE_ERR_MBX; 3604 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3605 goto err_setup_reset; 3606 } 3607 } 3608 3609 /* disallow open during test */ 3610 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3611 return -EBUSY; 3612 3613 netif_carrier_off(netdev); 3614 3615 /* allocate transmit descriptors */ 3616 err = ixgbevf_setup_all_tx_resources(adapter); 3617 if (err) 3618 goto err_setup_tx; 3619 3620 /* allocate receive descriptors */ 3621 err = ixgbevf_setup_all_rx_resources(adapter); 3622 if (err) 3623 goto err_setup_rx; 3624 3625 ixgbevf_configure(adapter); 3626 3627 err = ixgbevf_request_irq(adapter); 3628 if (err) 3629 goto err_req_irq; 3630 3631 /* Notify the stack of the actual queue counts. */ 3632 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3633 if (err) 3634 goto err_set_queues; 3635 3636 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3637 if (err) 3638 goto err_set_queues; 3639 3640 ixgbevf_up_complete(adapter); 3641 3642 return 0; 3643 3644 err_set_queues: 3645 ixgbevf_free_irq(adapter); 3646 err_req_irq: 3647 ixgbevf_free_all_rx_resources(adapter); 3648 err_setup_rx: 3649 ixgbevf_free_all_tx_resources(adapter); 3650 err_setup_tx: 3651 ixgbevf_reset(adapter); 3652 err_setup_reset: 3653 3654 return err; 3655 } 3656 3657 /** 3658 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3659 * @adapter: the private adapter struct 3660 * 3661 * This function should contain the necessary work common to both suspending 3662 * and closing of the device. 3663 */ 3664 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3665 { 3666 ixgbevf_down(adapter); 3667 ixgbevf_free_irq(adapter); 3668 ixgbevf_free_all_tx_resources(adapter); 3669 ixgbevf_free_all_rx_resources(adapter); 3670 } 3671 3672 /** 3673 * ixgbevf_close - Disables a network interface 3674 * @netdev: network interface device structure 3675 * 3676 * Returns 0, this is not allowed to fail 3677 * 3678 * The close entry point is called when an interface is de-activated 3679 * by the OS. The hardware is still under the drivers control, but 3680 * needs to be disabled. A global MAC reset is issued to stop the 3681 * hardware, and all transmit and receive resources are freed. 3682 **/ 3683 int ixgbevf_close(struct net_device *netdev) 3684 { 3685 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3686 3687 if (netif_device_present(netdev)) 3688 ixgbevf_close_suspend(adapter); 3689 3690 return 0; 3691 } 3692 3693 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3694 { 3695 struct net_device *dev = adapter->netdev; 3696 3697 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3698 &adapter->state)) 3699 return; 3700 3701 /* if interface is down do nothing */ 3702 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3703 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3704 return; 3705 3706 /* Hardware has to reinitialize queues and interrupts to 3707 * match packet buffer alignment. Unfortunately, the 3708 * hardware is not flexible enough to do this dynamically. 3709 */ 3710 rtnl_lock(); 3711 3712 if (netif_running(dev)) 3713 ixgbevf_close(dev); 3714 3715 ixgbevf_clear_interrupt_scheme(adapter); 3716 ixgbevf_init_interrupt_scheme(adapter); 3717 3718 if (netif_running(dev)) 3719 ixgbevf_open(dev); 3720 3721 rtnl_unlock(); 3722 } 3723 3724 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3725 u32 vlan_macip_lens, u32 fceof_saidx, 3726 u32 type_tucmd, u32 mss_l4len_idx) 3727 { 3728 struct ixgbe_adv_tx_context_desc *context_desc; 3729 u16 i = tx_ring->next_to_use; 3730 3731 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3732 3733 i++; 3734 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3735 3736 /* set bits to identify this as an advanced context descriptor */ 3737 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3738 3739 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3740 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); 3741 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3742 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3743 } 3744 3745 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3746 struct ixgbevf_tx_buffer *first, 3747 u8 *hdr_len, 3748 struct ixgbevf_ipsec_tx_data *itd) 3749 { 3750 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3751 struct sk_buff *skb = first->skb; 3752 union { 3753 struct iphdr *v4; 3754 struct ipv6hdr *v6; 3755 unsigned char *hdr; 3756 } ip; 3757 union { 3758 struct tcphdr *tcp; 3759 unsigned char *hdr; 3760 } l4; 3761 u32 paylen, l4_offset; 3762 u32 fceof_saidx = 0; 3763 int err; 3764 3765 if (skb->ip_summed != CHECKSUM_PARTIAL) 3766 return 0; 3767 3768 if (!skb_is_gso(skb)) 3769 return 0; 3770 3771 err = skb_cow_head(skb, 0); 3772 if (err < 0) 3773 return err; 3774 3775 if (eth_p_mpls(first->protocol)) 3776 ip.hdr = skb_inner_network_header(skb); 3777 else 3778 ip.hdr = skb_network_header(skb); 3779 l4.hdr = skb_checksum_start(skb); 3780 3781 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3782 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3783 3784 /* initialize outer IP header fields */ 3785 if (ip.v4->version == 4) { 3786 unsigned char *csum_start = skb_checksum_start(skb); 3787 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3788 int len = csum_start - trans_start; 3789 3790 /* IP header will have to cancel out any data that 3791 * is not a part of the outer IP header, so set to 3792 * a reverse csum if needed, else init check to 0. 3793 */ 3794 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? 3795 csum_fold(csum_partial(trans_start, 3796 len, 0)) : 0; 3797 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3798 3799 ip.v4->tot_len = 0; 3800 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3801 IXGBE_TX_FLAGS_CSUM | 3802 IXGBE_TX_FLAGS_IPV4; 3803 } else { 3804 ip.v6->payload_len = 0; 3805 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3806 IXGBE_TX_FLAGS_CSUM; 3807 } 3808 3809 /* determine offset of inner transport header */ 3810 l4_offset = l4.hdr - skb->data; 3811 3812 /* compute length of segmentation header */ 3813 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3814 3815 /* remove payload length from inner checksum */ 3816 paylen = skb->len - l4_offset; 3817 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3818 3819 /* update gso size and bytecount with header size */ 3820 first->gso_segs = skb_shinfo(skb)->gso_segs; 3821 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3822 3823 /* mss_l4len_id: use 1 as index for TSO */ 3824 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3825 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3826 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3827 3828 fceof_saidx |= itd->pfsa; 3829 type_tucmd |= itd->flags | itd->trailer_len; 3830 3831 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3832 vlan_macip_lens = l4.hdr - ip.hdr; 3833 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3834 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3835 3836 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 3837 mss_l4len_idx); 3838 3839 return 1; 3840 } 3841 3842 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3843 struct ixgbevf_tx_buffer *first, 3844 struct ixgbevf_ipsec_tx_data *itd) 3845 { 3846 struct sk_buff *skb = first->skb; 3847 u32 vlan_macip_lens = 0; 3848 u32 fceof_saidx = 0; 3849 u32 type_tucmd = 0; 3850 3851 if (skb->ip_summed != CHECKSUM_PARTIAL) 3852 goto no_csum; 3853 3854 switch (skb->csum_offset) { 3855 case offsetof(struct tcphdr, check): 3856 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3857 fallthrough; 3858 case offsetof(struct udphdr, check): 3859 break; 3860 case offsetof(struct sctphdr, checksum): 3861 /* validate that this is actually an SCTP request */ 3862 if (skb_csum_is_sctp(skb)) { 3863 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3864 break; 3865 } 3866 fallthrough; 3867 default: 3868 skb_checksum_help(skb); 3869 goto no_csum; 3870 } 3871 3872 if (first->protocol == htons(ETH_P_IP)) 3873 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3874 3875 /* update TX checksum flag */ 3876 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3877 vlan_macip_lens = skb_checksum_start_offset(skb) - 3878 skb_network_offset(skb); 3879 no_csum: 3880 /* vlan_macip_lens: MACLEN, VLAN tag */ 3881 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3882 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3883 3884 fceof_saidx |= itd->pfsa; 3885 type_tucmd |= itd->flags | itd->trailer_len; 3886 3887 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3888 fceof_saidx, type_tucmd, 0); 3889 } 3890 3891 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3892 { 3893 /* set type for advanced descriptor with frame checksum insertion */ 3894 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3895 IXGBE_ADVTXD_DCMD_IFCS | 3896 IXGBE_ADVTXD_DCMD_DEXT); 3897 3898 /* set HW VLAN bit if VLAN is present */ 3899 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3900 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3901 3902 /* set segmentation enable bits for TSO/FSO */ 3903 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3904 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3905 3906 return cmd_type; 3907 } 3908 3909 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3910 u32 tx_flags, unsigned int paylen) 3911 { 3912 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3913 3914 /* enable L4 checksum for TSO and TX checksum offload */ 3915 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3916 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3917 3918 /* enble IPv4 checksum for TSO */ 3919 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3920 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3921 3922 /* enable IPsec */ 3923 if (tx_flags & IXGBE_TX_FLAGS_IPSEC) 3924 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); 3925 3926 /* use index 1 context for TSO/FSO/FCOE/IPSEC */ 3927 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) 3928 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3929 3930 /* Check Context must be set if Tx switch is enabled, which it 3931 * always is for case where virtual functions are running 3932 */ 3933 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3934 3935 tx_desc->read.olinfo_status = olinfo_status; 3936 } 3937 3938 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3939 struct ixgbevf_tx_buffer *first, 3940 const u8 hdr_len) 3941 { 3942 struct sk_buff *skb = first->skb; 3943 struct ixgbevf_tx_buffer *tx_buffer; 3944 union ixgbe_adv_tx_desc *tx_desc; 3945 skb_frag_t *frag; 3946 dma_addr_t dma; 3947 unsigned int data_len, size; 3948 u32 tx_flags = first->tx_flags; 3949 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3950 u16 i = tx_ring->next_to_use; 3951 3952 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3953 3954 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3955 3956 size = skb_headlen(skb); 3957 data_len = skb->data_len; 3958 3959 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3960 3961 tx_buffer = first; 3962 3963 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3964 if (dma_mapping_error(tx_ring->dev, dma)) 3965 goto dma_error; 3966 3967 /* record length, and DMA address */ 3968 dma_unmap_len_set(tx_buffer, len, size); 3969 dma_unmap_addr_set(tx_buffer, dma, dma); 3970 3971 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3972 3973 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3974 tx_desc->read.cmd_type_len = 3975 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3976 3977 i++; 3978 tx_desc++; 3979 if (i == tx_ring->count) { 3980 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3981 i = 0; 3982 } 3983 tx_desc->read.olinfo_status = 0; 3984 3985 dma += IXGBE_MAX_DATA_PER_TXD; 3986 size -= IXGBE_MAX_DATA_PER_TXD; 3987 3988 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3989 } 3990 3991 if (likely(!data_len)) 3992 break; 3993 3994 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 3995 3996 i++; 3997 tx_desc++; 3998 if (i == tx_ring->count) { 3999 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4000 i = 0; 4001 } 4002 tx_desc->read.olinfo_status = 0; 4003 4004 size = skb_frag_size(frag); 4005 data_len -= size; 4006 4007 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 4008 DMA_TO_DEVICE); 4009 4010 tx_buffer = &tx_ring->tx_buffer_info[i]; 4011 } 4012 4013 /* write last descriptor with RS and EOP bits */ 4014 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 4015 tx_desc->read.cmd_type_len = cmd_type; 4016 4017 /* set the timestamp */ 4018 first->time_stamp = jiffies; 4019 4020 skb_tx_timestamp(skb); 4021 4022 /* Force memory writes to complete before letting h/w know there 4023 * are new descriptors to fetch. (Only applicable for weak-ordered 4024 * memory model archs, such as IA-64). 4025 * 4026 * We also need this memory barrier (wmb) to make certain all of the 4027 * status bits have been updated before next_to_watch is written. 4028 */ 4029 wmb(); 4030 4031 /* set next_to_watch value indicating a packet is present */ 4032 first->next_to_watch = tx_desc; 4033 4034 i++; 4035 if (i == tx_ring->count) 4036 i = 0; 4037 4038 tx_ring->next_to_use = i; 4039 4040 /* notify HW of packet */ 4041 ixgbevf_write_tail(tx_ring, i); 4042 4043 return; 4044 dma_error: 4045 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4046 tx_buffer = &tx_ring->tx_buffer_info[i]; 4047 4048 /* clear dma mappings for failed tx_buffer_info map */ 4049 while (tx_buffer != first) { 4050 if (dma_unmap_len(tx_buffer, len)) 4051 dma_unmap_page(tx_ring->dev, 4052 dma_unmap_addr(tx_buffer, dma), 4053 dma_unmap_len(tx_buffer, len), 4054 DMA_TO_DEVICE); 4055 dma_unmap_len_set(tx_buffer, len, 0); 4056 4057 if (i-- == 0) 4058 i += tx_ring->count; 4059 tx_buffer = &tx_ring->tx_buffer_info[i]; 4060 } 4061 4062 if (dma_unmap_len(tx_buffer, len)) 4063 dma_unmap_single(tx_ring->dev, 4064 dma_unmap_addr(tx_buffer, dma), 4065 dma_unmap_len(tx_buffer, len), 4066 DMA_TO_DEVICE); 4067 dma_unmap_len_set(tx_buffer, len, 0); 4068 4069 dev_kfree_skb_any(tx_buffer->skb); 4070 tx_buffer->skb = NULL; 4071 4072 tx_ring->next_to_use = i; 4073 } 4074 4075 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4076 { 4077 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4078 /* Herbert's original patch had: 4079 * smp_mb__after_netif_stop_queue(); 4080 * but since that doesn't exist yet, just open code it. 4081 */ 4082 smp_mb(); 4083 4084 /* We need to check again in a case another CPU has just 4085 * made room available. 4086 */ 4087 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4088 return -EBUSY; 4089 4090 /* A reprieve! - use start_queue because it doesn't call schedule */ 4091 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4092 ++tx_ring->tx_stats.restart_queue; 4093 4094 return 0; 4095 } 4096 4097 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4098 { 4099 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4100 return 0; 4101 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4102 } 4103 4104 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4105 struct ixgbevf_ring *tx_ring) 4106 { 4107 struct ixgbevf_tx_buffer *first; 4108 int tso; 4109 u32 tx_flags = 0; 4110 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4111 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; 4112 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4113 unsigned short f; 4114 #endif 4115 u8 hdr_len = 0; 4116 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4117 4118 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4119 dev_kfree_skb_any(skb); 4120 return NETDEV_TX_OK; 4121 } 4122 4123 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4124 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4125 * + 2 desc gap to keep tail from touching head, 4126 * + 1 desc for context descriptor, 4127 * otherwise try next time 4128 */ 4129 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4130 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 4131 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 4132 4133 count += TXD_USE_COUNT(skb_frag_size(frag)); 4134 } 4135 #else 4136 count += skb_shinfo(skb)->nr_frags; 4137 #endif 4138 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4139 tx_ring->tx_stats.tx_busy++; 4140 return NETDEV_TX_BUSY; 4141 } 4142 4143 /* record the location of the first descriptor for this packet */ 4144 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4145 first->skb = skb; 4146 first->bytecount = skb->len; 4147 first->gso_segs = 1; 4148 4149 if (skb_vlan_tag_present(skb)) { 4150 tx_flags |= skb_vlan_tag_get(skb); 4151 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4152 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4153 } 4154 4155 /* record initial flags and protocol */ 4156 first->tx_flags = tx_flags; 4157 first->protocol = vlan_get_protocol(skb); 4158 4159 #ifdef CONFIG_IXGBEVF_IPSEC 4160 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) 4161 goto out_drop; 4162 #endif 4163 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); 4164 if (tso < 0) 4165 goto out_drop; 4166 else if (!tso) 4167 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); 4168 4169 ixgbevf_tx_map(tx_ring, first, hdr_len); 4170 4171 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4172 4173 return NETDEV_TX_OK; 4174 4175 out_drop: 4176 dev_kfree_skb_any(first->skb); 4177 first->skb = NULL; 4178 4179 return NETDEV_TX_OK; 4180 } 4181 4182 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4183 { 4184 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4185 struct ixgbevf_ring *tx_ring; 4186 4187 if (skb->len <= 0) { 4188 dev_kfree_skb_any(skb); 4189 return NETDEV_TX_OK; 4190 } 4191 4192 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4193 * in order to meet this minimum size requirement. 4194 */ 4195 if (skb->len < 17) { 4196 if (skb_padto(skb, 17)) 4197 return NETDEV_TX_OK; 4198 skb->len = 17; 4199 } 4200 4201 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4202 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4203 } 4204 4205 /** 4206 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4207 * @netdev: network interface device structure 4208 * @p: pointer to an address structure 4209 * 4210 * Returns 0 on success, negative on failure 4211 **/ 4212 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4213 { 4214 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4215 struct ixgbe_hw *hw = &adapter->hw; 4216 struct sockaddr *addr = p; 4217 int err; 4218 4219 if (!is_valid_ether_addr(addr->sa_data)) 4220 return -EADDRNOTAVAIL; 4221 4222 spin_lock_bh(&adapter->mbx_lock); 4223 4224 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4225 4226 spin_unlock_bh(&adapter->mbx_lock); 4227 4228 if (err) 4229 return -EPERM; 4230 4231 ether_addr_copy(hw->mac.addr, addr->sa_data); 4232 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4233 ether_addr_copy(netdev->dev_addr, addr->sa_data); 4234 4235 return 0; 4236 } 4237 4238 /** 4239 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4240 * @netdev: network interface device structure 4241 * @new_mtu: new value for maximum frame size 4242 * 4243 * Returns 0 on success, negative on failure 4244 **/ 4245 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4246 { 4247 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4248 struct ixgbe_hw *hw = &adapter->hw; 4249 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4250 int ret; 4251 4252 /* prevent MTU being changed to a size unsupported by XDP */ 4253 if (adapter->xdp_prog) { 4254 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4255 return -EPERM; 4256 } 4257 4258 spin_lock_bh(&adapter->mbx_lock); 4259 /* notify the PF of our intent to use this size of frame */ 4260 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4261 spin_unlock_bh(&adapter->mbx_lock); 4262 if (ret) 4263 return -EINVAL; 4264 4265 hw_dbg(hw, "changing MTU from %d to %d\n", 4266 netdev->mtu, new_mtu); 4267 4268 /* must set new MTU before calling down or up */ 4269 netdev->mtu = new_mtu; 4270 4271 if (netif_running(netdev)) 4272 ixgbevf_reinit_locked(adapter); 4273 4274 return 0; 4275 } 4276 4277 static int __maybe_unused ixgbevf_suspend(struct device *dev_d) 4278 { 4279 struct net_device *netdev = dev_get_drvdata(dev_d); 4280 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4281 4282 rtnl_lock(); 4283 netif_device_detach(netdev); 4284 4285 if (netif_running(netdev)) 4286 ixgbevf_close_suspend(adapter); 4287 4288 ixgbevf_clear_interrupt_scheme(adapter); 4289 rtnl_unlock(); 4290 4291 return 0; 4292 } 4293 4294 static int __maybe_unused ixgbevf_resume(struct device *dev_d) 4295 { 4296 struct pci_dev *pdev = to_pci_dev(dev_d); 4297 struct net_device *netdev = pci_get_drvdata(pdev); 4298 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4299 u32 err; 4300 4301 adapter->hw.hw_addr = adapter->io_addr; 4302 smp_mb__before_atomic(); 4303 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4304 pci_set_master(pdev); 4305 4306 ixgbevf_reset(adapter); 4307 4308 rtnl_lock(); 4309 err = ixgbevf_init_interrupt_scheme(adapter); 4310 if (!err && netif_running(netdev)) 4311 err = ixgbevf_open(netdev); 4312 rtnl_unlock(); 4313 if (err) 4314 return err; 4315 4316 netif_device_attach(netdev); 4317 4318 return err; 4319 } 4320 4321 static void ixgbevf_shutdown(struct pci_dev *pdev) 4322 { 4323 ixgbevf_suspend(&pdev->dev); 4324 } 4325 4326 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4327 const struct ixgbevf_ring *ring) 4328 { 4329 u64 bytes, packets; 4330 unsigned int start; 4331 4332 if (ring) { 4333 do { 4334 start = u64_stats_fetch_begin_irq(&ring->syncp); 4335 bytes = ring->stats.bytes; 4336 packets = ring->stats.packets; 4337 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4338 stats->tx_bytes += bytes; 4339 stats->tx_packets += packets; 4340 } 4341 } 4342 4343 static void ixgbevf_get_stats(struct net_device *netdev, 4344 struct rtnl_link_stats64 *stats) 4345 { 4346 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4347 unsigned int start; 4348 u64 bytes, packets; 4349 const struct ixgbevf_ring *ring; 4350 int i; 4351 4352 ixgbevf_update_stats(adapter); 4353 4354 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4355 4356 rcu_read_lock(); 4357 for (i = 0; i < adapter->num_rx_queues; i++) { 4358 ring = adapter->rx_ring[i]; 4359 do { 4360 start = u64_stats_fetch_begin_irq(&ring->syncp); 4361 bytes = ring->stats.bytes; 4362 packets = ring->stats.packets; 4363 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4364 stats->rx_bytes += bytes; 4365 stats->rx_packets += packets; 4366 } 4367 4368 for (i = 0; i < adapter->num_tx_queues; i++) { 4369 ring = adapter->tx_ring[i]; 4370 ixgbevf_get_tx_ring_stats(stats, ring); 4371 } 4372 4373 for (i = 0; i < adapter->num_xdp_queues; i++) { 4374 ring = adapter->xdp_ring[i]; 4375 ixgbevf_get_tx_ring_stats(stats, ring); 4376 } 4377 rcu_read_unlock(); 4378 } 4379 4380 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4381 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4382 4383 static netdev_features_t 4384 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4385 netdev_features_t features) 4386 { 4387 unsigned int network_hdr_len, mac_hdr_len; 4388 4389 /* Make certain the headers can be described by a context descriptor */ 4390 mac_hdr_len = skb_network_header(skb) - skb->data; 4391 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4392 return features & ~(NETIF_F_HW_CSUM | 4393 NETIF_F_SCTP_CRC | 4394 NETIF_F_HW_VLAN_CTAG_TX | 4395 NETIF_F_TSO | 4396 NETIF_F_TSO6); 4397 4398 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4399 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4400 return features & ~(NETIF_F_HW_CSUM | 4401 NETIF_F_SCTP_CRC | 4402 NETIF_F_TSO | 4403 NETIF_F_TSO6); 4404 4405 /* We can only support IPV4 TSO in tunnels if we can mangle the 4406 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4407 */ 4408 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4409 features &= ~NETIF_F_TSO; 4410 4411 return features; 4412 } 4413 4414 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4415 { 4416 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4417 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4418 struct bpf_prog *old_prog; 4419 4420 /* verify ixgbevf ring attributes are sufficient for XDP */ 4421 for (i = 0; i < adapter->num_rx_queues; i++) { 4422 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4423 4424 if (frame_size > ixgbevf_rx_bufsz(ring)) 4425 return -EINVAL; 4426 } 4427 4428 old_prog = xchg(&adapter->xdp_prog, prog); 4429 4430 /* If transitioning XDP modes reconfigure rings */ 4431 if (!!prog != !!old_prog) { 4432 /* Hardware has to reinitialize queues and interrupts to 4433 * match packet buffer alignment. Unfortunately, the 4434 * hardware is not flexible enough to do this dynamically. 4435 */ 4436 if (netif_running(dev)) 4437 ixgbevf_close(dev); 4438 4439 ixgbevf_clear_interrupt_scheme(adapter); 4440 ixgbevf_init_interrupt_scheme(adapter); 4441 4442 if (netif_running(dev)) 4443 ixgbevf_open(dev); 4444 } else { 4445 for (i = 0; i < adapter->num_rx_queues; i++) 4446 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4447 } 4448 4449 if (old_prog) 4450 bpf_prog_put(old_prog); 4451 4452 return 0; 4453 } 4454 4455 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4456 { 4457 switch (xdp->command) { 4458 case XDP_SETUP_PROG: 4459 return ixgbevf_xdp_setup(dev, xdp->prog); 4460 default: 4461 return -EINVAL; 4462 } 4463 } 4464 4465 static const struct net_device_ops ixgbevf_netdev_ops = { 4466 .ndo_open = ixgbevf_open, 4467 .ndo_stop = ixgbevf_close, 4468 .ndo_start_xmit = ixgbevf_xmit_frame, 4469 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4470 .ndo_get_stats64 = ixgbevf_get_stats, 4471 .ndo_validate_addr = eth_validate_addr, 4472 .ndo_set_mac_address = ixgbevf_set_mac, 4473 .ndo_change_mtu = ixgbevf_change_mtu, 4474 .ndo_tx_timeout = ixgbevf_tx_timeout, 4475 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4476 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4477 .ndo_features_check = ixgbevf_features_check, 4478 .ndo_bpf = ixgbevf_xdp, 4479 }; 4480 4481 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4482 { 4483 dev->netdev_ops = &ixgbevf_netdev_ops; 4484 ixgbevf_set_ethtool_ops(dev); 4485 dev->watchdog_timeo = 5 * HZ; 4486 } 4487 4488 /** 4489 * ixgbevf_probe - Device Initialization Routine 4490 * @pdev: PCI device information struct 4491 * @ent: entry in ixgbevf_pci_tbl 4492 * 4493 * Returns 0 on success, negative on failure 4494 * 4495 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4496 * The OS initialization, configuring of the adapter private structure, 4497 * and a hardware reset occur. 4498 **/ 4499 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4500 { 4501 struct net_device *netdev; 4502 struct ixgbevf_adapter *adapter = NULL; 4503 struct ixgbe_hw *hw = NULL; 4504 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4505 int err, pci_using_dac; 4506 bool disable_dev = false; 4507 4508 err = pci_enable_device(pdev); 4509 if (err) 4510 return err; 4511 4512 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 4513 pci_using_dac = 1; 4514 } else { 4515 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4516 if (err) { 4517 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4518 goto err_dma; 4519 } 4520 pci_using_dac = 0; 4521 } 4522 4523 err = pci_request_regions(pdev, ixgbevf_driver_name); 4524 if (err) { 4525 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4526 goto err_pci_reg; 4527 } 4528 4529 pci_set_master(pdev); 4530 4531 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4532 MAX_TX_QUEUES); 4533 if (!netdev) { 4534 err = -ENOMEM; 4535 goto err_alloc_etherdev; 4536 } 4537 4538 SET_NETDEV_DEV(netdev, &pdev->dev); 4539 4540 adapter = netdev_priv(netdev); 4541 4542 adapter->netdev = netdev; 4543 adapter->pdev = pdev; 4544 hw = &adapter->hw; 4545 hw->back = adapter; 4546 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4547 4548 /* call save state here in standalone driver because it relies on 4549 * adapter struct to exist, and needs to call netdev_priv 4550 */ 4551 pci_save_state(pdev); 4552 4553 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4554 pci_resource_len(pdev, 0)); 4555 adapter->io_addr = hw->hw_addr; 4556 if (!hw->hw_addr) { 4557 err = -EIO; 4558 goto err_ioremap; 4559 } 4560 4561 ixgbevf_assign_netdev_ops(netdev); 4562 4563 /* Setup HW API */ 4564 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4565 hw->mac.type = ii->mac; 4566 4567 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4568 sizeof(struct ixgbe_mbx_operations)); 4569 4570 /* setup the private structure */ 4571 err = ixgbevf_sw_init(adapter); 4572 if (err) 4573 goto err_sw_init; 4574 4575 /* The HW MAC address was set and/or determined in sw_init */ 4576 if (!is_valid_ether_addr(netdev->dev_addr)) { 4577 pr_err("invalid MAC address\n"); 4578 err = -EIO; 4579 goto err_sw_init; 4580 } 4581 4582 netdev->hw_features = NETIF_F_SG | 4583 NETIF_F_TSO | 4584 NETIF_F_TSO6 | 4585 NETIF_F_RXCSUM | 4586 NETIF_F_HW_CSUM | 4587 NETIF_F_SCTP_CRC; 4588 4589 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4590 NETIF_F_GSO_GRE_CSUM | \ 4591 NETIF_F_GSO_IPXIP4 | \ 4592 NETIF_F_GSO_IPXIP6 | \ 4593 NETIF_F_GSO_UDP_TUNNEL | \ 4594 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4595 4596 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4597 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4598 IXGBEVF_GSO_PARTIAL_FEATURES; 4599 4600 netdev->features = netdev->hw_features; 4601 4602 if (pci_using_dac) 4603 netdev->features |= NETIF_F_HIGHDMA; 4604 4605 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4606 netdev->mpls_features |= NETIF_F_SG | 4607 NETIF_F_TSO | 4608 NETIF_F_TSO6 | 4609 NETIF_F_HW_CSUM; 4610 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4611 netdev->hw_enc_features |= netdev->vlan_features; 4612 4613 /* set this bit last since it cannot be part of vlan_features */ 4614 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4615 NETIF_F_HW_VLAN_CTAG_RX | 4616 NETIF_F_HW_VLAN_CTAG_TX; 4617 4618 netdev->priv_flags |= IFF_UNICAST_FLT; 4619 4620 /* MTU range: 68 - 1504 or 9710 */ 4621 netdev->min_mtu = ETH_MIN_MTU; 4622 switch (adapter->hw.api_version) { 4623 case ixgbe_mbox_api_11: 4624 case ixgbe_mbox_api_12: 4625 case ixgbe_mbox_api_13: 4626 case ixgbe_mbox_api_14: 4627 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4628 (ETH_HLEN + ETH_FCS_LEN); 4629 break; 4630 default: 4631 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4632 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4633 (ETH_HLEN + ETH_FCS_LEN); 4634 else 4635 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4636 break; 4637 } 4638 4639 if (IXGBE_REMOVED(hw->hw_addr)) { 4640 err = -EIO; 4641 goto err_sw_init; 4642 } 4643 4644 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4645 4646 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4647 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4648 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4649 4650 err = ixgbevf_init_interrupt_scheme(adapter); 4651 if (err) 4652 goto err_sw_init; 4653 4654 strcpy(netdev->name, "eth%d"); 4655 4656 err = register_netdev(netdev); 4657 if (err) 4658 goto err_register; 4659 4660 pci_set_drvdata(pdev, netdev); 4661 netif_carrier_off(netdev); 4662 ixgbevf_init_ipsec_offload(adapter); 4663 4664 ixgbevf_init_last_counter_stats(adapter); 4665 4666 /* print the VF info */ 4667 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4668 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4669 4670 switch (hw->mac.type) { 4671 case ixgbe_mac_X550_vf: 4672 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4673 break; 4674 case ixgbe_mac_X540_vf: 4675 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4676 break; 4677 case ixgbe_mac_82599_vf: 4678 default: 4679 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4680 break; 4681 } 4682 4683 return 0; 4684 4685 err_register: 4686 ixgbevf_clear_interrupt_scheme(adapter); 4687 err_sw_init: 4688 ixgbevf_reset_interrupt_capability(adapter); 4689 iounmap(adapter->io_addr); 4690 kfree(adapter->rss_key); 4691 err_ioremap: 4692 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4693 free_netdev(netdev); 4694 err_alloc_etherdev: 4695 pci_release_regions(pdev); 4696 err_pci_reg: 4697 err_dma: 4698 if (!adapter || disable_dev) 4699 pci_disable_device(pdev); 4700 return err; 4701 } 4702 4703 /** 4704 * ixgbevf_remove - Device Removal Routine 4705 * @pdev: PCI device information struct 4706 * 4707 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4708 * that it should release a PCI device. The could be caused by a 4709 * Hot-Plug event, or because the driver is going to be removed from 4710 * memory. 4711 **/ 4712 static void ixgbevf_remove(struct pci_dev *pdev) 4713 { 4714 struct net_device *netdev = pci_get_drvdata(pdev); 4715 struct ixgbevf_adapter *adapter; 4716 bool disable_dev; 4717 4718 if (!netdev) 4719 return; 4720 4721 adapter = netdev_priv(netdev); 4722 4723 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4724 cancel_work_sync(&adapter->service_task); 4725 4726 if (netdev->reg_state == NETREG_REGISTERED) 4727 unregister_netdev(netdev); 4728 4729 ixgbevf_stop_ipsec_offload(adapter); 4730 ixgbevf_clear_interrupt_scheme(adapter); 4731 ixgbevf_reset_interrupt_capability(adapter); 4732 4733 iounmap(adapter->io_addr); 4734 pci_release_regions(pdev); 4735 4736 hw_dbg(&adapter->hw, "Remove complete\n"); 4737 4738 kfree(adapter->rss_key); 4739 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4740 free_netdev(netdev); 4741 4742 if (disable_dev) 4743 pci_disable_device(pdev); 4744 } 4745 4746 /** 4747 * ixgbevf_io_error_detected - called when PCI error is detected 4748 * @pdev: Pointer to PCI device 4749 * @state: The current pci connection state 4750 * 4751 * This function is called after a PCI bus error affecting 4752 * this device has been detected. 4753 **/ 4754 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4755 pci_channel_state_t state) 4756 { 4757 struct net_device *netdev = pci_get_drvdata(pdev); 4758 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4759 4760 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4761 return PCI_ERS_RESULT_DISCONNECT; 4762 4763 rtnl_lock(); 4764 netif_device_detach(netdev); 4765 4766 if (netif_running(netdev)) 4767 ixgbevf_close_suspend(adapter); 4768 4769 if (state == pci_channel_io_perm_failure) { 4770 rtnl_unlock(); 4771 return PCI_ERS_RESULT_DISCONNECT; 4772 } 4773 4774 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4775 pci_disable_device(pdev); 4776 rtnl_unlock(); 4777 4778 /* Request a slot slot reset. */ 4779 return PCI_ERS_RESULT_NEED_RESET; 4780 } 4781 4782 /** 4783 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4784 * @pdev: Pointer to PCI device 4785 * 4786 * Restart the card from scratch, as if from a cold-boot. Implementation 4787 * resembles the first-half of the ixgbevf_resume routine. 4788 **/ 4789 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4790 { 4791 struct net_device *netdev = pci_get_drvdata(pdev); 4792 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4793 4794 if (pci_enable_device_mem(pdev)) { 4795 dev_err(&pdev->dev, 4796 "Cannot re-enable PCI device after reset.\n"); 4797 return PCI_ERS_RESULT_DISCONNECT; 4798 } 4799 4800 adapter->hw.hw_addr = adapter->io_addr; 4801 smp_mb__before_atomic(); 4802 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4803 pci_set_master(pdev); 4804 4805 ixgbevf_reset(adapter); 4806 4807 return PCI_ERS_RESULT_RECOVERED; 4808 } 4809 4810 /** 4811 * ixgbevf_io_resume - called when traffic can start flowing again. 4812 * @pdev: Pointer to PCI device 4813 * 4814 * This callback is called when the error recovery driver tells us that 4815 * its OK to resume normal operation. Implementation resembles the 4816 * second-half of the ixgbevf_resume routine. 4817 **/ 4818 static void ixgbevf_io_resume(struct pci_dev *pdev) 4819 { 4820 struct net_device *netdev = pci_get_drvdata(pdev); 4821 4822 rtnl_lock(); 4823 if (netif_running(netdev)) 4824 ixgbevf_open(netdev); 4825 4826 netif_device_attach(netdev); 4827 rtnl_unlock(); 4828 } 4829 4830 /* PCI Error Recovery (ERS) */ 4831 static const struct pci_error_handlers ixgbevf_err_handler = { 4832 .error_detected = ixgbevf_io_error_detected, 4833 .slot_reset = ixgbevf_io_slot_reset, 4834 .resume = ixgbevf_io_resume, 4835 }; 4836 4837 static SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume); 4838 4839 static struct pci_driver ixgbevf_driver = { 4840 .name = ixgbevf_driver_name, 4841 .id_table = ixgbevf_pci_tbl, 4842 .probe = ixgbevf_probe, 4843 .remove = ixgbevf_remove, 4844 4845 /* Power Management Hooks */ 4846 .driver.pm = &ixgbevf_pm_ops, 4847 4848 .shutdown = ixgbevf_shutdown, 4849 .err_handler = &ixgbevf_err_handler 4850 }; 4851 4852 /** 4853 * ixgbevf_init_module - Driver Registration Routine 4854 * 4855 * ixgbevf_init_module is the first routine called when the driver is 4856 * loaded. All it does is register with the PCI subsystem. 4857 **/ 4858 static int __init ixgbevf_init_module(void) 4859 { 4860 pr_info("%s\n", ixgbevf_driver_string); 4861 pr_info("%s\n", ixgbevf_copyright); 4862 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4863 if (!ixgbevf_wq) { 4864 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4865 return -ENOMEM; 4866 } 4867 4868 return pci_register_driver(&ixgbevf_driver); 4869 } 4870 4871 module_init(ixgbevf_init_module); 4872 4873 /** 4874 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4875 * 4876 * ixgbevf_exit_module is called just before the driver is removed 4877 * from memory. 4878 **/ 4879 static void __exit ixgbevf_exit_module(void) 4880 { 4881 pci_unregister_driver(&ixgbevf_driver); 4882 if (ixgbevf_wq) { 4883 destroy_workqueue(ixgbevf_wq); 4884 ixgbevf_wq = NULL; 4885 } 4886 } 4887 4888 #ifdef DEBUG 4889 /** 4890 * ixgbevf_get_hw_dev_name - return device name string 4891 * used by hardware layer to print debugging information 4892 * @hw: pointer to private hardware struct 4893 **/ 4894 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4895 { 4896 struct ixgbevf_adapter *adapter = hw->back; 4897 4898 return adapter->netdev->name; 4899 } 4900 4901 #endif 4902 module_exit(ixgbevf_exit_module); 4903 4904 /* ixgbevf_main.c */ 4905