1 /*******************************************************************************
2 
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/types.h>
36 #include <linux/bitops.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/vmalloc.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/ipv6.h>
46 #include <linux/slab.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/ethtool.h>
50 #include <linux/if.h>
51 #include <linux/if_vlan.h>
52 #include <linux/prefetch.h>
53 
54 #include "ixgbevf.h"
55 
56 const char ixgbevf_driver_name[] = "ixgbevf";
57 static const char ixgbevf_driver_string[] =
58 	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
59 
60 #define DRV_VERSION "2.2.0-k"
61 const char ixgbevf_driver_version[] = DRV_VERSION;
62 static char ixgbevf_copyright[] =
63 	"Copyright (c) 2009 - 2012 Intel Corporation.";
64 
65 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
66 	[board_82599_vf] = &ixgbevf_82599_vf_info,
67 	[board_X540_vf]  = &ixgbevf_X540_vf_info,
68 };
69 
70 /* ixgbevf_pci_tbl - PCI Device ID Table
71  *
72  * Wildcard entries (PCI_ANY_ID) should come last
73  * Last entry must be all 0s
74  *
75  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
76  *   Class, Class Mask, private data (not used) }
77  */
78 static struct pci_device_id ixgbevf_pci_tbl[] = {
79 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
80 	board_82599_vf},
81 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF),
82 	board_X540_vf},
83 
84 	/* required last entry */
85 	{0, }
86 };
87 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
88 
89 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
90 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_VERSION);
93 
94 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
95 
96 /* forward decls */
97 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
98 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
99 			       u32 itr_reg);
100 
101 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
102 					   struct ixgbevf_ring *rx_ring,
103 					   u32 val)
104 {
105 	/*
106 	 * Force memory writes to complete before letting h/w
107 	 * know there are new descriptors to fetch.  (Only
108 	 * applicable for weak-ordered memory model archs,
109 	 * such as IA-64).
110 	 */
111 	wmb();
112 	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
113 }
114 
115 /*
116  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
117  * @adapter: pointer to adapter struct
118  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
119  * @queue: queue to map the corresponding interrupt to
120  * @msix_vector: the vector to map to the corresponding queue
121  *
122  */
123 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
124 			     u8 queue, u8 msix_vector)
125 {
126 	u32 ivar, index;
127 	struct ixgbe_hw *hw = &adapter->hw;
128 	if (direction == -1) {
129 		/* other causes */
130 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
131 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
132 		ivar &= ~0xFF;
133 		ivar |= msix_vector;
134 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
135 	} else {
136 		/* tx or rx causes */
137 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
138 		index = ((16 * (queue & 1)) + (8 * direction));
139 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
140 		ivar &= ~(0xFF << index);
141 		ivar |= (msix_vector << index);
142 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
143 	}
144 }
145 
146 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
147 					       struct ixgbevf_tx_buffer
148 					       *tx_buffer_info)
149 {
150 	if (tx_buffer_info->dma) {
151 		if (tx_buffer_info->mapped_as_page)
152 			dma_unmap_page(&adapter->pdev->dev,
153 				       tx_buffer_info->dma,
154 				       tx_buffer_info->length,
155 				       DMA_TO_DEVICE);
156 		else
157 			dma_unmap_single(&adapter->pdev->dev,
158 					 tx_buffer_info->dma,
159 					 tx_buffer_info->length,
160 					 DMA_TO_DEVICE);
161 		tx_buffer_info->dma = 0;
162 	}
163 	if (tx_buffer_info->skb) {
164 		dev_kfree_skb_any(tx_buffer_info->skb);
165 		tx_buffer_info->skb = NULL;
166 	}
167 	tx_buffer_info->time_stamp = 0;
168 	/* tx_buffer_info must be completely set up in the transmit path */
169 }
170 
171 #define IXGBE_MAX_TXD_PWR	14
172 #define IXGBE_MAX_DATA_PER_TXD	(1 << IXGBE_MAX_TXD_PWR)
173 
174 /* Tx Descriptors needed, worst case */
175 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
176 			 (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
177 #ifdef MAX_SKB_FRAGS
178 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
179 	MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
180 #else
181 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
182 #endif
183 
184 static void ixgbevf_tx_timeout(struct net_device *netdev);
185 
186 /**
187  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
188  * @adapter: board private structure
189  * @tx_ring: tx ring to clean
190  **/
191 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
192 				 struct ixgbevf_ring *tx_ring)
193 {
194 	struct net_device *netdev = adapter->netdev;
195 	struct ixgbe_hw *hw = &adapter->hw;
196 	union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
197 	struct ixgbevf_tx_buffer *tx_buffer_info;
198 	unsigned int i, eop, count = 0;
199 	unsigned int total_bytes = 0, total_packets = 0;
200 
201 	i = tx_ring->next_to_clean;
202 	eop = tx_ring->tx_buffer_info[i].next_to_watch;
203 	eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
204 
205 	while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
206 	       (count < tx_ring->work_limit)) {
207 		bool cleaned = false;
208 		rmb(); /* read buffer_info after eop_desc */
209 		/* eop could change between read and DD-check */
210 		if (unlikely(eop != tx_ring->tx_buffer_info[i].next_to_watch))
211 			goto cont_loop;
212 		for ( ; !cleaned; count++) {
213 			struct sk_buff *skb;
214 			tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
215 			tx_buffer_info = &tx_ring->tx_buffer_info[i];
216 			cleaned = (i == eop);
217 			skb = tx_buffer_info->skb;
218 
219 			if (cleaned && skb) {
220 				unsigned int segs, bytecount;
221 
222 				/* gso_segs is currently only valid for tcp */
223 				segs = skb_shinfo(skb)->gso_segs ?: 1;
224 				/* multiply data chunks by size of headers */
225 				bytecount = ((segs - 1) * skb_headlen(skb)) +
226 					    skb->len;
227 				total_packets += segs;
228 				total_bytes += bytecount;
229 			}
230 
231 			ixgbevf_unmap_and_free_tx_resource(adapter,
232 							   tx_buffer_info);
233 
234 			tx_desc->wb.status = 0;
235 
236 			i++;
237 			if (i == tx_ring->count)
238 				i = 0;
239 		}
240 
241 cont_loop:
242 		eop = tx_ring->tx_buffer_info[i].next_to_watch;
243 		eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
244 	}
245 
246 	tx_ring->next_to_clean = i;
247 
248 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
249 	if (unlikely(count && netif_carrier_ok(netdev) &&
250 		     (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
251 		/* Make sure that anybody stopping the queue after this
252 		 * sees the new next_to_clean.
253 		 */
254 		smp_mb();
255 #ifdef HAVE_TX_MQ
256 		if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
257 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
258 			netif_wake_subqueue(netdev, tx_ring->queue_index);
259 			++adapter->restart_queue;
260 		}
261 #else
262 		if (netif_queue_stopped(netdev) &&
263 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
264 			netif_wake_queue(netdev);
265 			++adapter->restart_queue;
266 		}
267 #endif
268 	}
269 
270 	/* re-arm the interrupt */
271 	if ((count >= tx_ring->work_limit) &&
272 	    (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
273 		IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
274 	}
275 
276 	u64_stats_update_begin(&tx_ring->syncp);
277 	tx_ring->total_bytes += total_bytes;
278 	tx_ring->total_packets += total_packets;
279 	u64_stats_update_end(&tx_ring->syncp);
280 
281 	return count < tx_ring->work_limit;
282 }
283 
284 /**
285  * ixgbevf_receive_skb - Send a completed packet up the stack
286  * @q_vector: structure containing interrupt and ring information
287  * @skb: packet to send up
288  * @status: hardware indication of status of receive
289  * @rx_ring: rx descriptor ring (for a specific queue) to setup
290  * @rx_desc: rx descriptor
291  **/
292 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
293 				struct sk_buff *skb, u8 status,
294 				struct ixgbevf_ring *ring,
295 				union ixgbe_adv_rx_desc *rx_desc)
296 {
297 	struct ixgbevf_adapter *adapter = q_vector->adapter;
298 	bool is_vlan = (status & IXGBE_RXD_STAT_VP);
299 	u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
300 
301 	if (is_vlan && test_bit(tag, adapter->active_vlans))
302 		__vlan_hwaccel_put_tag(skb, tag);
303 
304 	if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL))
305 			napi_gro_receive(&q_vector->napi, skb);
306 	else
307 			netif_rx(skb);
308 }
309 
310 /**
311  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
312  * @adapter: address of board private structure
313  * @status_err: hardware indication of status of receive
314  * @skb: skb currently being received and modified
315  **/
316 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
317 				       u32 status_err, struct sk_buff *skb)
318 {
319 	skb_checksum_none_assert(skb);
320 
321 	/* Rx csum disabled */
322 	if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
323 		return;
324 
325 	/* if IP and error */
326 	if ((status_err & IXGBE_RXD_STAT_IPCS) &&
327 	    (status_err & IXGBE_RXDADV_ERR_IPE)) {
328 		adapter->hw_csum_rx_error++;
329 		return;
330 	}
331 
332 	if (!(status_err & IXGBE_RXD_STAT_L4CS))
333 		return;
334 
335 	if (status_err & IXGBE_RXDADV_ERR_TCPE) {
336 		adapter->hw_csum_rx_error++;
337 		return;
338 	}
339 
340 	/* It must be a TCP or UDP packet with a valid checksum */
341 	skb->ip_summed = CHECKSUM_UNNECESSARY;
342 	adapter->hw_csum_rx_good++;
343 }
344 
345 /**
346  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
347  * @adapter: address of board private structure
348  **/
349 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
350 				     struct ixgbevf_ring *rx_ring,
351 				     int cleaned_count)
352 {
353 	struct pci_dev *pdev = adapter->pdev;
354 	union ixgbe_adv_rx_desc *rx_desc;
355 	struct ixgbevf_rx_buffer *bi;
356 	struct sk_buff *skb;
357 	unsigned int i;
358 	unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
359 
360 	i = rx_ring->next_to_use;
361 	bi = &rx_ring->rx_buffer_info[i];
362 
363 	while (cleaned_count--) {
364 		rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
365 
366 		if (!bi->page_dma &&
367 		    (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
368 			if (!bi->page) {
369 				bi->page = alloc_page(GFP_ATOMIC | __GFP_COLD);
370 				if (!bi->page) {
371 					adapter->alloc_rx_page_failed++;
372 					goto no_buffers;
373 				}
374 				bi->page_offset = 0;
375 			} else {
376 				/* use a half page if we're re-using */
377 				bi->page_offset ^= (PAGE_SIZE / 2);
378 			}
379 
380 			bi->page_dma = dma_map_page(&pdev->dev, bi->page,
381 						    bi->page_offset,
382 						    (PAGE_SIZE / 2),
383 						    DMA_FROM_DEVICE);
384 		}
385 
386 		skb = bi->skb;
387 		if (!skb) {
388 			skb = netdev_alloc_skb(adapter->netdev,
389 							       bufsz);
390 
391 			if (!skb) {
392 				adapter->alloc_rx_buff_failed++;
393 				goto no_buffers;
394 			}
395 
396 			/*
397 			 * Make buffer alignment 2 beyond a 16 byte boundary
398 			 * this will result in a 16 byte aligned IP header after
399 			 * the 14 byte MAC header is removed
400 			 */
401 			skb_reserve(skb, NET_IP_ALIGN);
402 
403 			bi->skb = skb;
404 		}
405 		if (!bi->dma) {
406 			bi->dma = dma_map_single(&pdev->dev, skb->data,
407 						 rx_ring->rx_buf_len,
408 						 DMA_FROM_DEVICE);
409 		}
410 		/* Refresh the desc even if buffer_addrs didn't change because
411 		 * each write-back erases this info. */
412 		if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
413 			rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
414 			rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
415 		} else {
416 			rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
417 		}
418 
419 		i++;
420 		if (i == rx_ring->count)
421 			i = 0;
422 		bi = &rx_ring->rx_buffer_info[i];
423 	}
424 
425 no_buffers:
426 	if (rx_ring->next_to_use != i) {
427 		rx_ring->next_to_use = i;
428 		if (i-- == 0)
429 			i = (rx_ring->count - 1);
430 
431 		ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
432 	}
433 }
434 
435 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
436 					     u64 qmask)
437 {
438 	u32 mask;
439 	struct ixgbe_hw *hw = &adapter->hw;
440 
441 	mask = (qmask & 0xFFFFFFFF);
442 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
443 }
444 
445 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
446 {
447 	return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
448 }
449 
450 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
451 {
452 	return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
453 }
454 
455 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
456 				 struct ixgbevf_ring *rx_ring,
457 				 int *work_done, int work_to_do)
458 {
459 	struct ixgbevf_adapter *adapter = q_vector->adapter;
460 	struct pci_dev *pdev = adapter->pdev;
461 	union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
462 	struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
463 	struct sk_buff *skb;
464 	unsigned int i;
465 	u32 len, staterr;
466 	u16 hdr_info;
467 	bool cleaned = false;
468 	int cleaned_count = 0;
469 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
470 
471 	i = rx_ring->next_to_clean;
472 	rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
473 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
474 	rx_buffer_info = &rx_ring->rx_buffer_info[i];
475 
476 	while (staterr & IXGBE_RXD_STAT_DD) {
477 		u32 upper_len = 0;
478 		if (*work_done >= work_to_do)
479 			break;
480 		(*work_done)++;
481 
482 		rmb(); /* read descriptor and rx_buffer_info after status DD */
483 		if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
484 			hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
485 			len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
486 			       IXGBE_RXDADV_HDRBUFLEN_SHIFT;
487 			if (hdr_info & IXGBE_RXDADV_SPH)
488 				adapter->rx_hdr_split++;
489 			if (len > IXGBEVF_RX_HDR_SIZE)
490 				len = IXGBEVF_RX_HDR_SIZE;
491 			upper_len = le16_to_cpu(rx_desc->wb.upper.length);
492 		} else {
493 			len = le16_to_cpu(rx_desc->wb.upper.length);
494 		}
495 		cleaned = true;
496 		skb = rx_buffer_info->skb;
497 		prefetch(skb->data - NET_IP_ALIGN);
498 		rx_buffer_info->skb = NULL;
499 
500 		if (rx_buffer_info->dma) {
501 			dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
502 					 rx_ring->rx_buf_len,
503 					 DMA_FROM_DEVICE);
504 			rx_buffer_info->dma = 0;
505 			skb_put(skb, len);
506 		}
507 
508 		if (upper_len) {
509 			dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
510 				       PAGE_SIZE / 2, DMA_FROM_DEVICE);
511 			rx_buffer_info->page_dma = 0;
512 			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
513 					   rx_buffer_info->page,
514 					   rx_buffer_info->page_offset,
515 					   upper_len);
516 
517 			if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
518 			    (page_count(rx_buffer_info->page) != 1))
519 				rx_buffer_info->page = NULL;
520 			else
521 				get_page(rx_buffer_info->page);
522 
523 			skb->len += upper_len;
524 			skb->data_len += upper_len;
525 			skb->truesize += upper_len;
526 		}
527 
528 		i++;
529 		if (i == rx_ring->count)
530 			i = 0;
531 
532 		next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
533 		prefetch(next_rxd);
534 		cleaned_count++;
535 
536 		next_buffer = &rx_ring->rx_buffer_info[i];
537 
538 		if (!(staterr & IXGBE_RXD_STAT_EOP)) {
539 			if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
540 				rx_buffer_info->skb = next_buffer->skb;
541 				rx_buffer_info->dma = next_buffer->dma;
542 				next_buffer->skb = skb;
543 				next_buffer->dma = 0;
544 			} else {
545 				skb->next = next_buffer->skb;
546 				skb->next->prev = skb;
547 			}
548 			adapter->non_eop_descs++;
549 			goto next_desc;
550 		}
551 
552 		/* ERR_MASK will only have valid bits if EOP set */
553 		if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
554 			dev_kfree_skb_irq(skb);
555 			goto next_desc;
556 		}
557 
558 		ixgbevf_rx_checksum(adapter, staterr, skb);
559 
560 		/* probably a little skewed due to removing CRC */
561 		total_rx_bytes += skb->len;
562 		total_rx_packets++;
563 
564 		/*
565 		 * Work around issue of some types of VM to VM loop back
566 		 * packets not getting split correctly
567 		 */
568 		if (staterr & IXGBE_RXD_STAT_LB) {
569 			u32 header_fixup_len = skb_headlen(skb);
570 			if (header_fixup_len < 14)
571 				skb_push(skb, header_fixup_len);
572 		}
573 		skb->protocol = eth_type_trans(skb, adapter->netdev);
574 
575 		ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
576 
577 next_desc:
578 		rx_desc->wb.upper.status_error = 0;
579 
580 		/* return some buffers to hardware, one at a time is too slow */
581 		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
582 			ixgbevf_alloc_rx_buffers(adapter, rx_ring,
583 						 cleaned_count);
584 			cleaned_count = 0;
585 		}
586 
587 		/* use prefetched values */
588 		rx_desc = next_rxd;
589 		rx_buffer_info = &rx_ring->rx_buffer_info[i];
590 
591 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
592 	}
593 
594 	rx_ring->next_to_clean = i;
595 	cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
596 
597 	if (cleaned_count)
598 		ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
599 
600 	u64_stats_update_begin(&rx_ring->syncp);
601 	rx_ring->total_packets += total_rx_packets;
602 	rx_ring->total_bytes += total_rx_bytes;
603 	u64_stats_update_end(&rx_ring->syncp);
604 
605 	return cleaned;
606 }
607 
608 /**
609  * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
610  * @napi: napi struct with our devices info in it
611  * @budget: amount of work driver is allowed to do this pass, in packets
612  *
613  * This function is optimized for cleaning one queue only on a single
614  * q_vector!!!
615  **/
616 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
617 {
618 	struct ixgbevf_q_vector *q_vector =
619 		container_of(napi, struct ixgbevf_q_vector, napi);
620 	struct ixgbevf_adapter *adapter = q_vector->adapter;
621 	struct ixgbevf_ring *rx_ring = NULL;
622 	int work_done = 0;
623 	long r_idx;
624 
625 	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
626 	rx_ring = &(adapter->rx_ring[r_idx]);
627 
628 	ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
629 
630 	/* If all Rx work done, exit the polling mode */
631 	if (work_done < budget) {
632 		napi_complete(napi);
633 		if (adapter->itr_setting & 1)
634 			ixgbevf_set_itr_msix(q_vector);
635 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
636 			ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
637 	}
638 
639 	return work_done;
640 }
641 
642 /**
643  * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
644  * @napi: napi struct with our devices info in it
645  * @budget: amount of work driver is allowed to do this pass, in packets
646  *
647  * This function will clean more than one rx queue associated with a
648  * q_vector.
649  **/
650 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
651 {
652 	struct ixgbevf_q_vector *q_vector =
653 		container_of(napi, struct ixgbevf_q_vector, napi);
654 	struct ixgbevf_adapter *adapter = q_vector->adapter;
655 	struct ixgbevf_ring *rx_ring = NULL;
656 	int work_done = 0, i;
657 	long r_idx;
658 	u64 enable_mask = 0;
659 
660 	/* attempt to distribute budget to each queue fairly, but don't allow
661 	 * the budget to go below 1 because we'll exit polling */
662 	budget /= (q_vector->rxr_count ?: 1);
663 	budget = max(budget, 1);
664 	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
665 	for (i = 0; i < q_vector->rxr_count; i++) {
666 		rx_ring = &(adapter->rx_ring[r_idx]);
667 		ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
668 		enable_mask |= rx_ring->v_idx;
669 		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
670 				      r_idx + 1);
671 	}
672 
673 #ifndef HAVE_NETDEV_NAPI_LIST
674 	if (!netif_running(adapter->netdev))
675 		work_done = 0;
676 
677 #endif
678 	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
679 	rx_ring = &(adapter->rx_ring[r_idx]);
680 
681 	/* If all Rx work done, exit the polling mode */
682 	if (work_done < budget) {
683 		napi_complete(napi);
684 		if (adapter->itr_setting & 1)
685 			ixgbevf_set_itr_msix(q_vector);
686 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
687 			ixgbevf_irq_enable_queues(adapter, enable_mask);
688 	}
689 
690 	return work_done;
691 }
692 
693 
694 /**
695  * ixgbevf_configure_msix - Configure MSI-X hardware
696  * @adapter: board private structure
697  *
698  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
699  * interrupts.
700  **/
701 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
702 {
703 	struct ixgbevf_q_vector *q_vector;
704 	struct ixgbe_hw *hw = &adapter->hw;
705 	int i, j, q_vectors, v_idx, r_idx;
706 	u32 mask;
707 
708 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
709 
710 	/*
711 	 * Populate the IVAR table and set the ITR values to the
712 	 * corresponding register.
713 	 */
714 	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
715 		q_vector = adapter->q_vector[v_idx];
716 		/* XXX for_each_set_bit(...) */
717 		r_idx = find_first_bit(q_vector->rxr_idx,
718 				       adapter->num_rx_queues);
719 
720 		for (i = 0; i < q_vector->rxr_count; i++) {
721 			j = adapter->rx_ring[r_idx].reg_idx;
722 			ixgbevf_set_ivar(adapter, 0, j, v_idx);
723 			r_idx = find_next_bit(q_vector->rxr_idx,
724 					      adapter->num_rx_queues,
725 					      r_idx + 1);
726 		}
727 		r_idx = find_first_bit(q_vector->txr_idx,
728 				       adapter->num_tx_queues);
729 
730 		for (i = 0; i < q_vector->txr_count; i++) {
731 			j = adapter->tx_ring[r_idx].reg_idx;
732 			ixgbevf_set_ivar(adapter, 1, j, v_idx);
733 			r_idx = find_next_bit(q_vector->txr_idx,
734 					      adapter->num_tx_queues,
735 					      r_idx + 1);
736 		}
737 
738 		/* if this is a tx only vector halve the interrupt rate */
739 		if (q_vector->txr_count && !q_vector->rxr_count)
740 			q_vector->eitr = (adapter->eitr_param >> 1);
741 		else if (q_vector->rxr_count)
742 			/* rx only */
743 			q_vector->eitr = adapter->eitr_param;
744 
745 		ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
746 	}
747 
748 	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
749 
750 	/* set up to autoclear timer, and the vectors */
751 	mask = IXGBE_EIMS_ENABLE_MASK;
752 	mask &= ~IXGBE_EIMS_OTHER;
753 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
754 }
755 
756 enum latency_range {
757 	lowest_latency = 0,
758 	low_latency = 1,
759 	bulk_latency = 2,
760 	latency_invalid = 255
761 };
762 
763 /**
764  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
765  * @adapter: pointer to adapter
766  * @eitr: eitr setting (ints per sec) to give last timeslice
767  * @itr_setting: current throttle rate in ints/second
768  * @packets: the number of packets during this measurement interval
769  * @bytes: the number of bytes during this measurement interval
770  *
771  *      Stores a new ITR value based on packets and byte
772  *      counts during the last interrupt.  The advantage of per interrupt
773  *      computation is faster updates and more accurate ITR for the current
774  *      traffic pattern.  Constants in this function were computed
775  *      based on theoretical maximum wire speed and thresholds were set based
776  *      on testing data as well as attempting to minimize response time
777  *      while increasing bulk throughput.
778  **/
779 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
780 			     u32 eitr, u8 itr_setting,
781 			     int packets, int bytes)
782 {
783 	unsigned int retval = itr_setting;
784 	u32 timepassed_us;
785 	u64 bytes_perint;
786 
787 	if (packets == 0)
788 		goto update_itr_done;
789 
790 
791 	/* simple throttlerate management
792 	 *    0-20MB/s lowest (100000 ints/s)
793 	 *   20-100MB/s low   (20000 ints/s)
794 	 *  100-1249MB/s bulk (8000 ints/s)
795 	 */
796 	/* what was last interrupt timeslice? */
797 	timepassed_us = 1000000/eitr;
798 	bytes_perint = bytes / timepassed_us; /* bytes/usec */
799 
800 	switch (itr_setting) {
801 	case lowest_latency:
802 		if (bytes_perint > adapter->eitr_low)
803 			retval = low_latency;
804 		break;
805 	case low_latency:
806 		if (bytes_perint > adapter->eitr_high)
807 			retval = bulk_latency;
808 		else if (bytes_perint <= adapter->eitr_low)
809 			retval = lowest_latency;
810 		break;
811 	case bulk_latency:
812 		if (bytes_perint <= adapter->eitr_high)
813 			retval = low_latency;
814 		break;
815 	}
816 
817 update_itr_done:
818 	return retval;
819 }
820 
821 /**
822  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
823  * @adapter: pointer to adapter struct
824  * @v_idx: vector index into q_vector array
825  * @itr_reg: new value to be written in *register* format, not ints/s
826  *
827  * This function is made to be called by ethtool and by the driver
828  * when it needs to update VTEITR registers at runtime.  Hardware
829  * specific quirks/differences are taken care of here.
830  */
831 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
832 			       u32 itr_reg)
833 {
834 	struct ixgbe_hw *hw = &adapter->hw;
835 
836 	itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
837 
838 	/*
839 	 * set the WDIS bit to not clear the timer bits and cause an
840 	 * immediate assertion of the interrupt
841 	 */
842 	itr_reg |= IXGBE_EITR_CNT_WDIS;
843 
844 	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
845 }
846 
847 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
848 {
849 	struct ixgbevf_adapter *adapter = q_vector->adapter;
850 	u32 new_itr;
851 	u8 current_itr, ret_itr;
852 	int i, r_idx, v_idx = q_vector->v_idx;
853 	struct ixgbevf_ring *rx_ring, *tx_ring;
854 
855 	r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
856 	for (i = 0; i < q_vector->txr_count; i++) {
857 		tx_ring = &(adapter->tx_ring[r_idx]);
858 		ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
859 					     q_vector->tx_itr,
860 					     tx_ring->total_packets,
861 					     tx_ring->total_bytes);
862 		/* if the result for this queue would decrease interrupt
863 		 * rate for this vector then use that result */
864 		q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
865 				    q_vector->tx_itr - 1 : ret_itr);
866 		r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
867 				      r_idx + 1);
868 	}
869 
870 	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
871 	for (i = 0; i < q_vector->rxr_count; i++) {
872 		rx_ring = &(adapter->rx_ring[r_idx]);
873 		ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
874 					     q_vector->rx_itr,
875 					     rx_ring->total_packets,
876 					     rx_ring->total_bytes);
877 		/* if the result for this queue would decrease interrupt
878 		 * rate for this vector then use that result */
879 		q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
880 				    q_vector->rx_itr - 1 : ret_itr);
881 		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
882 				      r_idx + 1);
883 	}
884 
885 	current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
886 
887 	switch (current_itr) {
888 	/* counts and packets in update_itr are dependent on these numbers */
889 	case lowest_latency:
890 		new_itr = 100000;
891 		break;
892 	case low_latency:
893 		new_itr = 20000; /* aka hwitr = ~200 */
894 		break;
895 	case bulk_latency:
896 	default:
897 		new_itr = 8000;
898 		break;
899 	}
900 
901 	if (new_itr != q_vector->eitr) {
902 		u32 itr_reg;
903 
904 		/* save the algorithm value here, not the smoothed one */
905 		q_vector->eitr = new_itr;
906 		/* do an exponential smoothing */
907 		new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
908 		itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
909 		ixgbevf_write_eitr(adapter, v_idx, itr_reg);
910 	}
911 }
912 
913 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
914 {
915 	struct net_device *netdev = data;
916 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
917 	struct ixgbe_hw *hw = &adapter->hw;
918 	u32 eicr;
919 	u32 msg;
920 	bool got_ack = false;
921 
922 	eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
923 	IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
924 
925 	if (!hw->mbx.ops.check_for_ack(hw))
926 		got_ack = true;
927 
928 	if (!hw->mbx.ops.check_for_msg(hw)) {
929 		hw->mbx.ops.read(hw, &msg, 1);
930 
931 		if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
932 			mod_timer(&adapter->watchdog_timer,
933 				  round_jiffies(jiffies + 1));
934 
935 		if (msg & IXGBE_VT_MSGTYPE_NACK)
936 			pr_warn("Last Request of type %2.2x to PF Nacked\n",
937 				msg & 0xFF);
938 		/*
939 		 * Restore the PFSTS bit in case someone is polling for a
940 		 * return message from the PF
941 		 */
942 		hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFSTS;
943 	}
944 
945 	/*
946 	 * checking for the ack clears the PFACK bit.  Place
947 	 * it back in the v2p_mailbox cache so that anyone
948 	 * polling for an ack will not miss it
949 	 */
950 	if (got_ack)
951 		hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
952 
953 	return IRQ_HANDLED;
954 }
955 
956 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
957 {
958 	struct ixgbevf_q_vector *q_vector = data;
959 	struct ixgbevf_adapter  *adapter = q_vector->adapter;
960 	struct ixgbevf_ring     *tx_ring;
961 	int i, r_idx;
962 
963 	if (!q_vector->txr_count)
964 		return IRQ_HANDLED;
965 
966 	r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
967 	for (i = 0; i < q_vector->txr_count; i++) {
968 		tx_ring = &(adapter->tx_ring[r_idx]);
969 		tx_ring->total_bytes = 0;
970 		tx_ring->total_packets = 0;
971 		ixgbevf_clean_tx_irq(adapter, tx_ring);
972 		r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
973 				      r_idx + 1);
974 	}
975 
976 	if (adapter->itr_setting & 1)
977 		ixgbevf_set_itr_msix(q_vector);
978 
979 	return IRQ_HANDLED;
980 }
981 
982 /**
983  * ixgbevf_msix_clean_rx - single unshared vector rx clean (all queues)
984  * @irq: unused
985  * @data: pointer to our q_vector struct for this interrupt vector
986  **/
987 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
988 {
989 	struct ixgbevf_q_vector *q_vector = data;
990 	struct ixgbevf_adapter  *adapter = q_vector->adapter;
991 	struct ixgbe_hw *hw = &adapter->hw;
992 	struct ixgbevf_ring  *rx_ring;
993 	int r_idx;
994 	int i;
995 
996 	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
997 	for (i = 0; i < q_vector->rxr_count; i++) {
998 		rx_ring = &(adapter->rx_ring[r_idx]);
999 		rx_ring->total_bytes = 0;
1000 		rx_ring->total_packets = 0;
1001 		r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
1002 				      r_idx + 1);
1003 	}
1004 
1005 	if (!q_vector->rxr_count)
1006 		return IRQ_HANDLED;
1007 
1008 	r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1009 	rx_ring = &(adapter->rx_ring[r_idx]);
1010 	/* disable interrupts on this vector only */
1011 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1012 	napi_schedule(&q_vector->napi);
1013 
1014 
1015 	return IRQ_HANDLED;
1016 }
1017 
1018 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1019 {
1020 	ixgbevf_msix_clean_rx(irq, data);
1021 	ixgbevf_msix_clean_tx(irq, data);
1022 
1023 	return IRQ_HANDLED;
1024 }
1025 
1026 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1027 				     int r_idx)
1028 {
1029 	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1030 
1031 	set_bit(r_idx, q_vector->rxr_idx);
1032 	q_vector->rxr_count++;
1033 	a->rx_ring[r_idx].v_idx = 1 << v_idx;
1034 }
1035 
1036 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1037 				     int t_idx)
1038 {
1039 	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1040 
1041 	set_bit(t_idx, q_vector->txr_idx);
1042 	q_vector->txr_count++;
1043 	a->tx_ring[t_idx].v_idx = 1 << v_idx;
1044 }
1045 
1046 /**
1047  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1048  * @adapter: board private structure to initialize
1049  *
1050  * This function maps descriptor rings to the queue-specific vectors
1051  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1052  * one vector per ring/queue, but on a constrained vector budget, we
1053  * group the rings as "efficiently" as possible.  You would add new
1054  * mapping configurations in here.
1055  **/
1056 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1057 {
1058 	int q_vectors;
1059 	int v_start = 0;
1060 	int rxr_idx = 0, txr_idx = 0;
1061 	int rxr_remaining = adapter->num_rx_queues;
1062 	int txr_remaining = adapter->num_tx_queues;
1063 	int i, j;
1064 	int rqpv, tqpv;
1065 	int err = 0;
1066 
1067 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1068 
1069 	/*
1070 	 * The ideal configuration...
1071 	 * We have enough vectors to map one per queue.
1072 	 */
1073 	if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1074 		for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1075 			map_vector_to_rxq(adapter, v_start, rxr_idx);
1076 
1077 		for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1078 			map_vector_to_txq(adapter, v_start, txr_idx);
1079 		goto out;
1080 	}
1081 
1082 	/*
1083 	 * If we don't have enough vectors for a 1-to-1
1084 	 * mapping, we'll have to group them so there are
1085 	 * multiple queues per vector.
1086 	 */
1087 	/* Re-adjusting *qpv takes care of the remainder. */
1088 	for (i = v_start; i < q_vectors; i++) {
1089 		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1090 		for (j = 0; j < rqpv; j++) {
1091 			map_vector_to_rxq(adapter, i, rxr_idx);
1092 			rxr_idx++;
1093 			rxr_remaining--;
1094 		}
1095 	}
1096 	for (i = v_start; i < q_vectors; i++) {
1097 		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1098 		for (j = 0; j < tqpv; j++) {
1099 			map_vector_to_txq(adapter, i, txr_idx);
1100 			txr_idx++;
1101 			txr_remaining--;
1102 		}
1103 	}
1104 
1105 out:
1106 	return err;
1107 }
1108 
1109 /**
1110  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1111  * @adapter: board private structure
1112  *
1113  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1114  * interrupts from the kernel.
1115  **/
1116 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1117 {
1118 	struct net_device *netdev = adapter->netdev;
1119 	irqreturn_t (*handler)(int, void *);
1120 	int i, vector, q_vectors, err;
1121 	int ri = 0, ti = 0;
1122 
1123 	/* Decrement for Other and TCP Timer vectors */
1124 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1125 
1126 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1127 					  ? &ixgbevf_msix_clean_many : \
1128 			  (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1129 			  (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1130 			  NULL)
1131 	for (vector = 0; vector < q_vectors; vector++) {
1132 		handler = SET_HANDLER(adapter->q_vector[vector]);
1133 
1134 		if (handler == &ixgbevf_msix_clean_rx) {
1135 			sprintf(adapter->name[vector], "%s-%s-%d",
1136 				netdev->name, "rx", ri++);
1137 		} else if (handler == &ixgbevf_msix_clean_tx) {
1138 			sprintf(adapter->name[vector], "%s-%s-%d",
1139 				netdev->name, "tx", ti++);
1140 		} else if (handler == &ixgbevf_msix_clean_many) {
1141 			sprintf(adapter->name[vector], "%s-%s-%d",
1142 				netdev->name, "TxRx", vector);
1143 		} else {
1144 			/* skip this unused q_vector */
1145 			continue;
1146 		}
1147 		err = request_irq(adapter->msix_entries[vector].vector,
1148 				  handler, 0, adapter->name[vector],
1149 				  adapter->q_vector[vector]);
1150 		if (err) {
1151 			hw_dbg(&adapter->hw,
1152 			       "request_irq failed for MSIX interrupt "
1153 			       "Error: %d\n", err);
1154 			goto free_queue_irqs;
1155 		}
1156 	}
1157 
1158 	sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1159 	err = request_irq(adapter->msix_entries[vector].vector,
1160 			  &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1161 	if (err) {
1162 		hw_dbg(&adapter->hw,
1163 		       "request_irq for msix_mbx failed: %d\n", err);
1164 		goto free_queue_irqs;
1165 	}
1166 
1167 	return 0;
1168 
1169 free_queue_irqs:
1170 	for (i = vector - 1; i >= 0; i--)
1171 		free_irq(adapter->msix_entries[--vector].vector,
1172 			 &(adapter->q_vector[i]));
1173 	pci_disable_msix(adapter->pdev);
1174 	kfree(adapter->msix_entries);
1175 	adapter->msix_entries = NULL;
1176 	return err;
1177 }
1178 
1179 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1180 {
1181 	int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1182 
1183 	for (i = 0; i < q_vectors; i++) {
1184 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1185 		bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1186 		bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1187 		q_vector->rxr_count = 0;
1188 		q_vector->txr_count = 0;
1189 		q_vector->eitr = adapter->eitr_param;
1190 	}
1191 }
1192 
1193 /**
1194  * ixgbevf_request_irq - initialize interrupts
1195  * @adapter: board private structure
1196  *
1197  * Attempts to configure interrupts using the best available
1198  * capabilities of the hardware and kernel.
1199  **/
1200 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1201 {
1202 	int err = 0;
1203 
1204 	err = ixgbevf_request_msix_irqs(adapter);
1205 
1206 	if (err)
1207 		hw_dbg(&adapter->hw,
1208 		       "request_irq failed, Error %d\n", err);
1209 
1210 	return err;
1211 }
1212 
1213 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1214 {
1215 	struct net_device *netdev = adapter->netdev;
1216 	int i, q_vectors;
1217 
1218 	q_vectors = adapter->num_msix_vectors;
1219 
1220 	i = q_vectors - 1;
1221 
1222 	free_irq(adapter->msix_entries[i].vector, netdev);
1223 	i--;
1224 
1225 	for (; i >= 0; i--) {
1226 		free_irq(adapter->msix_entries[i].vector,
1227 			 adapter->q_vector[i]);
1228 	}
1229 
1230 	ixgbevf_reset_q_vectors(adapter);
1231 }
1232 
1233 /**
1234  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1235  * @adapter: board private structure
1236  **/
1237 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1238 {
1239 	int i;
1240 	struct ixgbe_hw *hw = &adapter->hw;
1241 
1242 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1243 
1244 	IXGBE_WRITE_FLUSH(hw);
1245 
1246 	for (i = 0; i < adapter->num_msix_vectors; i++)
1247 		synchronize_irq(adapter->msix_entries[i].vector);
1248 }
1249 
1250 /**
1251  * ixgbevf_irq_enable - Enable default interrupt generation settings
1252  * @adapter: board private structure
1253  **/
1254 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1255 				      bool queues, bool flush)
1256 {
1257 	struct ixgbe_hw *hw = &adapter->hw;
1258 	u32 mask;
1259 	u64 qmask;
1260 
1261 	mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1262 	qmask = ~0;
1263 
1264 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1265 
1266 	if (queues)
1267 		ixgbevf_irq_enable_queues(adapter, qmask);
1268 
1269 	if (flush)
1270 		IXGBE_WRITE_FLUSH(hw);
1271 }
1272 
1273 /**
1274  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1275  * @adapter: board private structure
1276  *
1277  * Configure the Tx unit of the MAC after a reset.
1278  **/
1279 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1280 {
1281 	u64 tdba;
1282 	struct ixgbe_hw *hw = &adapter->hw;
1283 	u32 i, j, tdlen, txctrl;
1284 
1285 	/* Setup the HW Tx Head and Tail descriptor pointers */
1286 	for (i = 0; i < adapter->num_tx_queues; i++) {
1287 		struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1288 		j = ring->reg_idx;
1289 		tdba = ring->dma;
1290 		tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1291 		IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1292 				(tdba & DMA_BIT_MASK(32)));
1293 		IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1294 		IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1295 		IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1296 		IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1297 		adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1298 		adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1299 		/* Disable Tx Head Writeback RO bit, since this hoses
1300 		 * bookkeeping if things aren't delivered in order.
1301 		 */
1302 		txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1303 		txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1304 		IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1305 	}
1306 }
1307 
1308 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1309 
1310 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1311 {
1312 	struct ixgbevf_ring *rx_ring;
1313 	struct ixgbe_hw *hw = &adapter->hw;
1314 	u32 srrctl;
1315 
1316 	rx_ring = &adapter->rx_ring[index];
1317 
1318 	srrctl = IXGBE_SRRCTL_DROP_EN;
1319 
1320 	if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1321 		u16 bufsz = IXGBEVF_RXBUFFER_2048;
1322 		/* grow the amount we can receive on large page machines */
1323 		if (bufsz < (PAGE_SIZE / 2))
1324 			bufsz = (PAGE_SIZE / 2);
1325 		/* cap the bufsz at our largest descriptor size */
1326 		bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1327 
1328 		srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1329 		srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1330 		srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1331 			   IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1332 			   IXGBE_SRRCTL_BSIZEHDR_MASK);
1333 	} else {
1334 		srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1335 
1336 		if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1337 			srrctl |= IXGBEVF_RXBUFFER_2048 >>
1338 				IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1339 		else
1340 			srrctl |= rx_ring->rx_buf_len >>
1341 				IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1342 	}
1343 	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1344 }
1345 
1346 /**
1347  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1348  * @adapter: board private structure
1349  *
1350  * Configure the Rx unit of the MAC after a reset.
1351  **/
1352 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1353 {
1354 	u64 rdba;
1355 	struct ixgbe_hw *hw = &adapter->hw;
1356 	struct net_device *netdev = adapter->netdev;
1357 	int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1358 	int i, j;
1359 	u32 rdlen;
1360 	int rx_buf_len;
1361 
1362 	/* Decide whether to use packet split mode or not */
1363 	if (netdev->mtu > ETH_DATA_LEN) {
1364 		if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1365 			adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1366 		else
1367 			adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1368 	} else {
1369 		if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1370 			adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1371 		else
1372 			adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1373 	}
1374 
1375 	/* Set the RX buffer length according to the mode */
1376 	if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1377 		/* PSRTYPE must be initialized in 82599 */
1378 		u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1379 			IXGBE_PSRTYPE_UDPHDR |
1380 			IXGBE_PSRTYPE_IPV4HDR |
1381 			IXGBE_PSRTYPE_IPV6HDR |
1382 			IXGBE_PSRTYPE_L2HDR;
1383 		IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1384 		rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1385 	} else {
1386 		IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1387 		if (netdev->mtu <= ETH_DATA_LEN)
1388 			rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1389 		else
1390 			rx_buf_len = ALIGN(max_frame, 1024);
1391 	}
1392 
1393 	rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1394 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1395 	 * the Base and Length of the Rx Descriptor Ring */
1396 	for (i = 0; i < adapter->num_rx_queues; i++) {
1397 		rdba = adapter->rx_ring[i].dma;
1398 		j = adapter->rx_ring[i].reg_idx;
1399 		IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1400 				(rdba & DMA_BIT_MASK(32)));
1401 		IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1402 		IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1403 		IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1404 		IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1405 		adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1406 		adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1407 		adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1408 
1409 		ixgbevf_configure_srrctl(adapter, j);
1410 	}
1411 }
1412 
1413 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1414 {
1415 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1416 	struct ixgbe_hw *hw = &adapter->hw;
1417 
1418 	/* add VID to filter table */
1419 	if (hw->mac.ops.set_vfta)
1420 		hw->mac.ops.set_vfta(hw, vid, 0, true);
1421 	set_bit(vid, adapter->active_vlans);
1422 
1423 	return 0;
1424 }
1425 
1426 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1427 {
1428 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1429 	struct ixgbe_hw *hw = &adapter->hw;
1430 
1431 	/* remove VID from filter table */
1432 	if (hw->mac.ops.set_vfta)
1433 		hw->mac.ops.set_vfta(hw, vid, 0, false);
1434 	clear_bit(vid, adapter->active_vlans);
1435 
1436 	return 0;
1437 }
1438 
1439 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1440 {
1441 	u16 vid;
1442 
1443 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1444 		ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1445 }
1446 
1447 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1448 {
1449 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1450 	struct ixgbe_hw *hw = &adapter->hw;
1451 	int count = 0;
1452 
1453 	if ((netdev_uc_count(netdev)) > 10) {
1454 		pr_err("Too many unicast filters - No Space\n");
1455 		return -ENOSPC;
1456 	}
1457 
1458 	if (!netdev_uc_empty(netdev)) {
1459 		struct netdev_hw_addr *ha;
1460 		netdev_for_each_uc_addr(ha, netdev) {
1461 			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1462 			udelay(200);
1463 		}
1464 	} else {
1465 		/*
1466 		 * If the list is empty then send message to PF driver to
1467 		 * clear all macvlans on this VF.
1468 		 */
1469 		hw->mac.ops.set_uc_addr(hw, 0, NULL);
1470 	}
1471 
1472 	return count;
1473 }
1474 
1475 /**
1476  * ixgbevf_set_rx_mode - Multicast set
1477  * @netdev: network interface device structure
1478  *
1479  * The set_rx_method entry point is called whenever the multicast address
1480  * list or the network interface flags are updated.  This routine is
1481  * responsible for configuring the hardware for proper multicast mode.
1482  **/
1483 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1484 {
1485 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1486 	struct ixgbe_hw *hw = &adapter->hw;
1487 
1488 	/* reprogram multicast list */
1489 	if (hw->mac.ops.update_mc_addr_list)
1490 		hw->mac.ops.update_mc_addr_list(hw, netdev);
1491 
1492 	ixgbevf_write_uc_addr_list(netdev);
1493 }
1494 
1495 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1496 {
1497 	int q_idx;
1498 	struct ixgbevf_q_vector *q_vector;
1499 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1500 
1501 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1502 		struct napi_struct *napi;
1503 		q_vector = adapter->q_vector[q_idx];
1504 		if (!q_vector->rxr_count)
1505 			continue;
1506 		napi = &q_vector->napi;
1507 		if (q_vector->rxr_count > 1)
1508 			napi->poll = &ixgbevf_clean_rxonly_many;
1509 
1510 		napi_enable(napi);
1511 	}
1512 }
1513 
1514 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1515 {
1516 	int q_idx;
1517 	struct ixgbevf_q_vector *q_vector;
1518 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1519 
1520 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1521 		q_vector = adapter->q_vector[q_idx];
1522 		if (!q_vector->rxr_count)
1523 			continue;
1524 		napi_disable(&q_vector->napi);
1525 	}
1526 }
1527 
1528 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1529 {
1530 	struct net_device *netdev = adapter->netdev;
1531 	int i;
1532 
1533 	ixgbevf_set_rx_mode(netdev);
1534 
1535 	ixgbevf_restore_vlan(adapter);
1536 
1537 	ixgbevf_configure_tx(adapter);
1538 	ixgbevf_configure_rx(adapter);
1539 	for (i = 0; i < adapter->num_rx_queues; i++) {
1540 		struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1541 		ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1542 		ring->next_to_use = ring->count - 1;
1543 		writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1544 	}
1545 }
1546 
1547 #define IXGBE_MAX_RX_DESC_POLL 10
1548 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1549 						int rxr)
1550 {
1551 	struct ixgbe_hw *hw = &adapter->hw;
1552 	int j = adapter->rx_ring[rxr].reg_idx;
1553 	int k;
1554 
1555 	for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1556 		if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1557 			break;
1558 		else
1559 			msleep(1);
1560 	}
1561 	if (k >= IXGBE_MAX_RX_DESC_POLL) {
1562 		hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1563 		       "not set within the polling period\n", rxr);
1564 	}
1565 
1566 	ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1567 				(adapter->rx_ring[rxr].count - 1));
1568 }
1569 
1570 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1571 {
1572 	/* Only save pre-reset stats if there are some */
1573 	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1574 		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1575 			adapter->stats.base_vfgprc;
1576 		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1577 			adapter->stats.base_vfgptc;
1578 		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1579 			adapter->stats.base_vfgorc;
1580 		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1581 			adapter->stats.base_vfgotc;
1582 		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1583 			adapter->stats.base_vfmprc;
1584 	}
1585 }
1586 
1587 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1588 {
1589 	struct ixgbe_hw *hw = &adapter->hw;
1590 
1591 	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1592 	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1593 	adapter->stats.last_vfgorc |=
1594 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1595 	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1596 	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1597 	adapter->stats.last_vfgotc |=
1598 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1599 	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1600 
1601 	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1602 	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1603 	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1604 	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1605 	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1606 }
1607 
1608 static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1609 {
1610 	struct net_device *netdev = adapter->netdev;
1611 	struct ixgbe_hw *hw = &adapter->hw;
1612 	int i, j = 0;
1613 	int num_rx_rings = adapter->num_rx_queues;
1614 	u32 txdctl, rxdctl;
1615 
1616 	for (i = 0; i < adapter->num_tx_queues; i++) {
1617 		j = adapter->tx_ring[i].reg_idx;
1618 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1619 		/* enable WTHRESH=8 descriptors, to encourage burst writeback */
1620 		txdctl |= (8 << 16);
1621 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1622 	}
1623 
1624 	for (i = 0; i < adapter->num_tx_queues; i++) {
1625 		j = adapter->tx_ring[i].reg_idx;
1626 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1627 		txdctl |= IXGBE_TXDCTL_ENABLE;
1628 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1629 	}
1630 
1631 	for (i = 0; i < num_rx_rings; i++) {
1632 		j = adapter->rx_ring[i].reg_idx;
1633 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1634 		rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1635 		if (hw->mac.type == ixgbe_mac_X540_vf) {
1636 			rxdctl &= ~IXGBE_RXDCTL_RLPMLMASK;
1637 			rxdctl |= ((netdev->mtu + ETH_HLEN + ETH_FCS_LEN) |
1638 				   IXGBE_RXDCTL_RLPML_EN);
1639 		}
1640 		IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1641 		ixgbevf_rx_desc_queue_enable(adapter, i);
1642 	}
1643 
1644 	ixgbevf_configure_msix(adapter);
1645 
1646 	if (hw->mac.ops.set_rar) {
1647 		if (is_valid_ether_addr(hw->mac.addr))
1648 			hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1649 		else
1650 			hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1651 	}
1652 
1653 	clear_bit(__IXGBEVF_DOWN, &adapter->state);
1654 	ixgbevf_napi_enable_all(adapter);
1655 
1656 	/* enable transmits */
1657 	netif_tx_start_all_queues(netdev);
1658 
1659 	ixgbevf_save_reset_stats(adapter);
1660 	ixgbevf_init_last_counter_stats(adapter);
1661 
1662 	/* bring the link up in the watchdog, this could race with our first
1663 	 * link up interrupt but shouldn't be a problem */
1664 	adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1665 	adapter->link_check_timeout = jiffies;
1666 	mod_timer(&adapter->watchdog_timer, jiffies);
1667 	return 0;
1668 }
1669 
1670 int ixgbevf_up(struct ixgbevf_adapter *adapter)
1671 {
1672 	int err;
1673 	struct ixgbe_hw *hw = &adapter->hw;
1674 
1675 	ixgbevf_configure(adapter);
1676 
1677 	err = ixgbevf_up_complete(adapter);
1678 
1679 	/* clear any pending interrupts, may auto mask */
1680 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
1681 
1682 	ixgbevf_irq_enable(adapter, true, true);
1683 
1684 	return err;
1685 }
1686 
1687 /**
1688  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1689  * @adapter: board private structure
1690  * @rx_ring: ring to free buffers from
1691  **/
1692 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1693 				  struct ixgbevf_ring *rx_ring)
1694 {
1695 	struct pci_dev *pdev = adapter->pdev;
1696 	unsigned long size;
1697 	unsigned int i;
1698 
1699 	if (!rx_ring->rx_buffer_info)
1700 		return;
1701 
1702 	/* Free all the Rx ring sk_buffs */
1703 	for (i = 0; i < rx_ring->count; i++) {
1704 		struct ixgbevf_rx_buffer *rx_buffer_info;
1705 
1706 		rx_buffer_info = &rx_ring->rx_buffer_info[i];
1707 		if (rx_buffer_info->dma) {
1708 			dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1709 					 rx_ring->rx_buf_len,
1710 					 DMA_FROM_DEVICE);
1711 			rx_buffer_info->dma = 0;
1712 		}
1713 		if (rx_buffer_info->skb) {
1714 			struct sk_buff *skb = rx_buffer_info->skb;
1715 			rx_buffer_info->skb = NULL;
1716 			do {
1717 				struct sk_buff *this = skb;
1718 				skb = skb->prev;
1719 				dev_kfree_skb(this);
1720 			} while (skb);
1721 		}
1722 		if (!rx_buffer_info->page)
1723 			continue;
1724 		dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1725 			       PAGE_SIZE / 2, DMA_FROM_DEVICE);
1726 		rx_buffer_info->page_dma = 0;
1727 		put_page(rx_buffer_info->page);
1728 		rx_buffer_info->page = NULL;
1729 		rx_buffer_info->page_offset = 0;
1730 	}
1731 
1732 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1733 	memset(rx_ring->rx_buffer_info, 0, size);
1734 
1735 	/* Zero out the descriptor ring */
1736 	memset(rx_ring->desc, 0, rx_ring->size);
1737 
1738 	rx_ring->next_to_clean = 0;
1739 	rx_ring->next_to_use = 0;
1740 
1741 	if (rx_ring->head)
1742 		writel(0, adapter->hw.hw_addr + rx_ring->head);
1743 	if (rx_ring->tail)
1744 		writel(0, adapter->hw.hw_addr + rx_ring->tail);
1745 }
1746 
1747 /**
1748  * ixgbevf_clean_tx_ring - Free Tx Buffers
1749  * @adapter: board private structure
1750  * @tx_ring: ring to be cleaned
1751  **/
1752 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1753 				  struct ixgbevf_ring *tx_ring)
1754 {
1755 	struct ixgbevf_tx_buffer *tx_buffer_info;
1756 	unsigned long size;
1757 	unsigned int i;
1758 
1759 	if (!tx_ring->tx_buffer_info)
1760 		return;
1761 
1762 	/* Free all the Tx ring sk_buffs */
1763 
1764 	for (i = 0; i < tx_ring->count; i++) {
1765 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
1766 		ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1767 	}
1768 
1769 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1770 	memset(tx_ring->tx_buffer_info, 0, size);
1771 
1772 	memset(tx_ring->desc, 0, tx_ring->size);
1773 
1774 	tx_ring->next_to_use = 0;
1775 	tx_ring->next_to_clean = 0;
1776 
1777 	if (tx_ring->head)
1778 		writel(0, adapter->hw.hw_addr + tx_ring->head);
1779 	if (tx_ring->tail)
1780 		writel(0, adapter->hw.hw_addr + tx_ring->tail);
1781 }
1782 
1783 /**
1784  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1785  * @adapter: board private structure
1786  **/
1787 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1788 {
1789 	int i;
1790 
1791 	for (i = 0; i < adapter->num_rx_queues; i++)
1792 		ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1793 }
1794 
1795 /**
1796  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1797  * @adapter: board private structure
1798  **/
1799 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1800 {
1801 	int i;
1802 
1803 	for (i = 0; i < adapter->num_tx_queues; i++)
1804 		ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1805 }
1806 
1807 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1808 {
1809 	struct net_device *netdev = adapter->netdev;
1810 	struct ixgbe_hw *hw = &adapter->hw;
1811 	u32 txdctl;
1812 	int i, j;
1813 
1814 	/* signal that we are down to the interrupt handler */
1815 	set_bit(__IXGBEVF_DOWN, &adapter->state);
1816 	/* disable receives */
1817 
1818 	netif_tx_disable(netdev);
1819 
1820 	msleep(10);
1821 
1822 	netif_tx_stop_all_queues(netdev);
1823 
1824 	ixgbevf_irq_disable(adapter);
1825 
1826 	ixgbevf_napi_disable_all(adapter);
1827 
1828 	del_timer_sync(&adapter->watchdog_timer);
1829 	/* can't call flush scheduled work here because it can deadlock
1830 	 * if linkwatch_event tries to acquire the rtnl_lock which we are
1831 	 * holding */
1832 	while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1833 		msleep(1);
1834 
1835 	/* disable transmits in the hardware now that interrupts are off */
1836 	for (i = 0; i < adapter->num_tx_queues; i++) {
1837 		j = adapter->tx_ring[i].reg_idx;
1838 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1839 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1840 				(txdctl & ~IXGBE_TXDCTL_ENABLE));
1841 	}
1842 
1843 	netif_carrier_off(netdev);
1844 
1845 	if (!pci_channel_offline(adapter->pdev))
1846 		ixgbevf_reset(adapter);
1847 
1848 	ixgbevf_clean_all_tx_rings(adapter);
1849 	ixgbevf_clean_all_rx_rings(adapter);
1850 }
1851 
1852 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1853 {
1854 	struct ixgbe_hw *hw = &adapter->hw;
1855 
1856 	WARN_ON(in_interrupt());
1857 
1858 	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1859 		msleep(1);
1860 
1861 	/*
1862 	 * Check if PF is up before re-init.  If not then skip until
1863 	 * later when the PF is up and ready to service requests from
1864 	 * the VF via mailbox.  If the VF is up and running then the
1865 	 * watchdog task will continue to schedule reset tasks until
1866 	 * the PF is up and running.
1867 	 */
1868 	if (!hw->mac.ops.reset_hw(hw)) {
1869 		ixgbevf_down(adapter);
1870 		ixgbevf_up(adapter);
1871 	}
1872 
1873 	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1874 }
1875 
1876 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1877 {
1878 	struct ixgbe_hw *hw = &adapter->hw;
1879 	struct net_device *netdev = adapter->netdev;
1880 
1881 	if (hw->mac.ops.reset_hw(hw))
1882 		hw_dbg(hw, "PF still resetting\n");
1883 	else
1884 		hw->mac.ops.init_hw(hw);
1885 
1886 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1887 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1888 		       netdev->addr_len);
1889 		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1890 		       netdev->addr_len);
1891 	}
1892 }
1893 
1894 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1895 					 int vectors)
1896 {
1897 	int err, vector_threshold;
1898 
1899 	/* We'll want at least 3 (vector_threshold):
1900 	 * 1) TxQ[0] Cleanup
1901 	 * 2) RxQ[0] Cleanup
1902 	 * 3) Other (Link Status Change, etc.)
1903 	 */
1904 	vector_threshold = MIN_MSIX_COUNT;
1905 
1906 	/* The more we get, the more we will assign to Tx/Rx Cleanup
1907 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1908 	 * Right now, we simply care about how many we'll get; we'll
1909 	 * set them up later while requesting irq's.
1910 	 */
1911 	while (vectors >= vector_threshold) {
1912 		err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1913 				      vectors);
1914 		if (!err) /* Success in acquiring all requested vectors. */
1915 			break;
1916 		else if (err < 0)
1917 			vectors = 0; /* Nasty failure, quit now */
1918 		else /* err == number of vectors we should try again with */
1919 			vectors = err;
1920 	}
1921 
1922 	if (vectors < vector_threshold) {
1923 		/* Can't allocate enough MSI-X interrupts?  Oh well.
1924 		 * This just means we'll go with either a single MSI
1925 		 * vector or fall back to legacy interrupts.
1926 		 */
1927 		hw_dbg(&adapter->hw,
1928 		       "Unable to allocate MSI-X interrupts\n");
1929 		kfree(adapter->msix_entries);
1930 		adapter->msix_entries = NULL;
1931 	} else {
1932 		/*
1933 		 * Adjust for only the vectors we'll use, which is minimum
1934 		 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1935 		 * vectors we were allocated.
1936 		 */
1937 		adapter->num_msix_vectors = vectors;
1938 	}
1939 }
1940 
1941 /*
1942  * ixgbevf_set_num_queues: Allocate queues for device, feature dependent
1943  * @adapter: board private structure to initialize
1944  *
1945  * This is the top level queue allocation routine.  The order here is very
1946  * important, starting with the "most" number of features turned on at once,
1947  * and ending with the smallest set of features.  This way large combinations
1948  * can be allocated if they're turned on, and smaller combinations are the
1949  * fallthrough conditions.
1950  *
1951  **/
1952 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1953 {
1954 	/* Start with base case */
1955 	adapter->num_rx_queues = 1;
1956 	adapter->num_tx_queues = 1;
1957 	adapter->num_rx_pools = adapter->num_rx_queues;
1958 	adapter->num_rx_queues_per_pool = 1;
1959 }
1960 
1961 /**
1962  * ixgbevf_alloc_queues - Allocate memory for all rings
1963  * @adapter: board private structure to initialize
1964  *
1965  * We allocate one ring per queue at run-time since we don't know the
1966  * number of queues at compile-time.  The polling_netdev array is
1967  * intended for Multiqueue, but should work fine with a single queue.
1968  **/
1969 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
1970 {
1971 	int i;
1972 
1973 	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1974 				   sizeof(struct ixgbevf_ring), GFP_KERNEL);
1975 	if (!adapter->tx_ring)
1976 		goto err_tx_ring_allocation;
1977 
1978 	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1979 				   sizeof(struct ixgbevf_ring), GFP_KERNEL);
1980 	if (!adapter->rx_ring)
1981 		goto err_rx_ring_allocation;
1982 
1983 	for (i = 0; i < adapter->num_tx_queues; i++) {
1984 		adapter->tx_ring[i].count = adapter->tx_ring_count;
1985 		adapter->tx_ring[i].queue_index = i;
1986 		adapter->tx_ring[i].reg_idx = i;
1987 	}
1988 
1989 	for (i = 0; i < adapter->num_rx_queues; i++) {
1990 		adapter->rx_ring[i].count = adapter->rx_ring_count;
1991 		adapter->rx_ring[i].queue_index = i;
1992 		adapter->rx_ring[i].reg_idx = i;
1993 	}
1994 
1995 	return 0;
1996 
1997 err_rx_ring_allocation:
1998 	kfree(adapter->tx_ring);
1999 err_tx_ring_allocation:
2000 	return -ENOMEM;
2001 }
2002 
2003 /**
2004  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2005  * @adapter: board private structure to initialize
2006  *
2007  * Attempt to configure the interrupts using the best available
2008  * capabilities of the hardware and the kernel.
2009  **/
2010 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2011 {
2012 	int err = 0;
2013 	int vector, v_budget;
2014 
2015 	/*
2016 	 * It's easy to be greedy for MSI-X vectors, but it really
2017 	 * doesn't do us much good if we have a lot more vectors
2018 	 * than CPU's.  So let's be conservative and only ask for
2019 	 * (roughly) twice the number of vectors as there are CPU's.
2020 	 */
2021 	v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2022 		       (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2023 
2024 	/* A failure in MSI-X entry allocation isn't fatal, but it does
2025 	 * mean we disable MSI-X capabilities of the adapter. */
2026 	adapter->msix_entries = kcalloc(v_budget,
2027 					sizeof(struct msix_entry), GFP_KERNEL);
2028 	if (!adapter->msix_entries) {
2029 		err = -ENOMEM;
2030 		goto out;
2031 	}
2032 
2033 	for (vector = 0; vector < v_budget; vector++)
2034 		adapter->msix_entries[vector].entry = vector;
2035 
2036 	ixgbevf_acquire_msix_vectors(adapter, v_budget);
2037 
2038 out:
2039 	return err;
2040 }
2041 
2042 /**
2043  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2044  * @adapter: board private structure to initialize
2045  *
2046  * We allocate one q_vector per queue interrupt.  If allocation fails we
2047  * return -ENOMEM.
2048  **/
2049 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2050 {
2051 	int q_idx, num_q_vectors;
2052 	struct ixgbevf_q_vector *q_vector;
2053 	int napi_vectors;
2054 	int (*poll)(struct napi_struct *, int);
2055 
2056 	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2057 	napi_vectors = adapter->num_rx_queues;
2058 	poll = &ixgbevf_clean_rxonly;
2059 
2060 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2061 		q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2062 		if (!q_vector)
2063 			goto err_out;
2064 		q_vector->adapter = adapter;
2065 		q_vector->v_idx = q_idx;
2066 		q_vector->eitr = adapter->eitr_param;
2067 		if (q_idx < napi_vectors)
2068 			netif_napi_add(adapter->netdev, &q_vector->napi,
2069 				       (*poll), 64);
2070 		adapter->q_vector[q_idx] = q_vector;
2071 	}
2072 
2073 	return 0;
2074 
2075 err_out:
2076 	while (q_idx) {
2077 		q_idx--;
2078 		q_vector = adapter->q_vector[q_idx];
2079 		netif_napi_del(&q_vector->napi);
2080 		kfree(q_vector);
2081 		adapter->q_vector[q_idx] = NULL;
2082 	}
2083 	return -ENOMEM;
2084 }
2085 
2086 /**
2087  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2088  * @adapter: board private structure to initialize
2089  *
2090  * This function frees the memory allocated to the q_vectors.  In addition if
2091  * NAPI is enabled it will delete any references to the NAPI struct prior
2092  * to freeing the q_vector.
2093  **/
2094 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2095 {
2096 	int q_idx, num_q_vectors;
2097 	int napi_vectors;
2098 
2099 	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2100 	napi_vectors = adapter->num_rx_queues;
2101 
2102 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2103 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2104 
2105 		adapter->q_vector[q_idx] = NULL;
2106 		if (q_idx < napi_vectors)
2107 			netif_napi_del(&q_vector->napi);
2108 		kfree(q_vector);
2109 	}
2110 }
2111 
2112 /**
2113  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2114  * @adapter: board private structure
2115  *
2116  **/
2117 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2118 {
2119 	pci_disable_msix(adapter->pdev);
2120 	kfree(adapter->msix_entries);
2121 	adapter->msix_entries = NULL;
2122 }
2123 
2124 /**
2125  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2126  * @adapter: board private structure to initialize
2127  *
2128  **/
2129 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2130 {
2131 	int err;
2132 
2133 	/* Number of supported queues */
2134 	ixgbevf_set_num_queues(adapter);
2135 
2136 	err = ixgbevf_set_interrupt_capability(adapter);
2137 	if (err) {
2138 		hw_dbg(&adapter->hw,
2139 		       "Unable to setup interrupt capabilities\n");
2140 		goto err_set_interrupt;
2141 	}
2142 
2143 	err = ixgbevf_alloc_q_vectors(adapter);
2144 	if (err) {
2145 		hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2146 		       "vectors\n");
2147 		goto err_alloc_q_vectors;
2148 	}
2149 
2150 	err = ixgbevf_alloc_queues(adapter);
2151 	if (err) {
2152 		pr_err("Unable to allocate memory for queues\n");
2153 		goto err_alloc_queues;
2154 	}
2155 
2156 	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2157 	       "Tx Queue count = %u\n",
2158 	       (adapter->num_rx_queues > 1) ? "Enabled" :
2159 	       "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2160 
2161 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2162 
2163 	return 0;
2164 err_alloc_queues:
2165 	ixgbevf_free_q_vectors(adapter);
2166 err_alloc_q_vectors:
2167 	ixgbevf_reset_interrupt_capability(adapter);
2168 err_set_interrupt:
2169 	return err;
2170 }
2171 
2172 /**
2173  * ixgbevf_sw_init - Initialize general software structures
2174  * (struct ixgbevf_adapter)
2175  * @adapter: board private structure to initialize
2176  *
2177  * ixgbevf_sw_init initializes the Adapter private data structure.
2178  * Fields are initialized based on PCI device information and
2179  * OS network device settings (MTU size).
2180  **/
2181 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2182 {
2183 	struct ixgbe_hw *hw = &adapter->hw;
2184 	struct pci_dev *pdev = adapter->pdev;
2185 	int err;
2186 
2187 	/* PCI config space info */
2188 
2189 	hw->vendor_id = pdev->vendor;
2190 	hw->device_id = pdev->device;
2191 	hw->revision_id = pdev->revision;
2192 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2193 	hw->subsystem_device_id = pdev->subsystem_device;
2194 
2195 	hw->mbx.ops.init_params(hw);
2196 	hw->mac.max_tx_queues = MAX_TX_QUEUES;
2197 	hw->mac.max_rx_queues = MAX_RX_QUEUES;
2198 	err = hw->mac.ops.reset_hw(hw);
2199 	if (err) {
2200 		dev_info(&pdev->dev,
2201 		         "PF still in reset state, assigning new address\n");
2202 		eth_hw_addr_random(adapter->netdev);
2203 		memcpy(adapter->hw.mac.addr, adapter->netdev->dev_addr,
2204 			adapter->netdev->addr_len);
2205 	} else {
2206 		err = hw->mac.ops.init_hw(hw);
2207 		if (err) {
2208 			pr_err("init_shared_code failed: %d\n", err);
2209 			goto out;
2210 		}
2211 		memcpy(adapter->netdev->dev_addr, adapter->hw.mac.addr,
2212 			adapter->netdev->addr_len);
2213 	}
2214 
2215 	/* Enable dynamic interrupt throttling rates */
2216 	adapter->eitr_param = 20000;
2217 	adapter->itr_setting = 1;
2218 
2219 	/* set defaults for eitr in MegaBytes */
2220 	adapter->eitr_low = 10;
2221 	adapter->eitr_high = 20;
2222 
2223 	/* set default ring sizes */
2224 	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2225 	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2226 
2227 	/* enable rx csum by default */
2228 	adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2229 
2230 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2231 	return 0;
2232 
2233 out:
2234 	return err;
2235 }
2236 
2237 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
2238 	{							\
2239 		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
2240 		if (current_counter < last_counter)		\
2241 			counter += 0x100000000LL;		\
2242 		last_counter = current_counter;			\
2243 		counter &= 0xFFFFFFFF00000000LL;		\
2244 		counter |= current_counter;			\
2245 	}
2246 
2247 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2248 	{								 \
2249 		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
2250 		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
2251 		u64 current_counter = (current_counter_msb << 32) |      \
2252 			current_counter_lsb;                             \
2253 		if (current_counter < last_counter)			 \
2254 			counter += 0x1000000000LL;			 \
2255 		last_counter = current_counter;				 \
2256 		counter &= 0xFFFFFFF000000000LL;			 \
2257 		counter |= current_counter;				 \
2258 	}
2259 /**
2260  * ixgbevf_update_stats - Update the board statistics counters.
2261  * @adapter: board private structure
2262  **/
2263 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2264 {
2265 	struct ixgbe_hw *hw = &adapter->hw;
2266 
2267 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2268 				adapter->stats.vfgprc);
2269 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2270 				adapter->stats.vfgptc);
2271 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2272 				adapter->stats.last_vfgorc,
2273 				adapter->stats.vfgorc);
2274 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2275 				adapter->stats.last_vfgotc,
2276 				adapter->stats.vfgotc);
2277 	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2278 				adapter->stats.vfmprc);
2279 }
2280 
2281 /**
2282  * ixgbevf_watchdog - Timer Call-back
2283  * @data: pointer to adapter cast into an unsigned long
2284  **/
2285 static void ixgbevf_watchdog(unsigned long data)
2286 {
2287 	struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2288 	struct ixgbe_hw *hw = &adapter->hw;
2289 	u64 eics = 0;
2290 	int i;
2291 
2292 	/*
2293 	 * Do the watchdog outside of interrupt context due to the lovely
2294 	 * delays that some of the newer hardware requires
2295 	 */
2296 
2297 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2298 		goto watchdog_short_circuit;
2299 
2300 	/* get one bit for every active tx/rx interrupt vector */
2301 	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2302 		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2303 		if (qv->rxr_count || qv->txr_count)
2304 			eics |= (1 << i);
2305 	}
2306 
2307 	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2308 
2309 watchdog_short_circuit:
2310 	schedule_work(&adapter->watchdog_task);
2311 }
2312 
2313 /**
2314  * ixgbevf_tx_timeout - Respond to a Tx Hang
2315  * @netdev: network interface device structure
2316  **/
2317 static void ixgbevf_tx_timeout(struct net_device *netdev)
2318 {
2319 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2320 
2321 	/* Do the reset outside of interrupt context */
2322 	schedule_work(&adapter->reset_task);
2323 }
2324 
2325 static void ixgbevf_reset_task(struct work_struct *work)
2326 {
2327 	struct ixgbevf_adapter *adapter;
2328 	adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2329 
2330 	/* If we're already down or resetting, just bail */
2331 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2332 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2333 		return;
2334 
2335 	adapter->tx_timeout_count++;
2336 
2337 	ixgbevf_reinit_locked(adapter);
2338 }
2339 
2340 /**
2341  * ixgbevf_watchdog_task - worker thread to bring link up
2342  * @work: pointer to work_struct containing our data
2343  **/
2344 static void ixgbevf_watchdog_task(struct work_struct *work)
2345 {
2346 	struct ixgbevf_adapter *adapter = container_of(work,
2347 						       struct ixgbevf_adapter,
2348 						       watchdog_task);
2349 	struct net_device *netdev = adapter->netdev;
2350 	struct ixgbe_hw *hw = &adapter->hw;
2351 	u32 link_speed = adapter->link_speed;
2352 	bool link_up = adapter->link_up;
2353 
2354 	adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2355 
2356 	/*
2357 	 * Always check the link on the watchdog because we have
2358 	 * no LSC interrupt
2359 	 */
2360 	if (hw->mac.ops.check_link) {
2361 		if ((hw->mac.ops.check_link(hw, &link_speed,
2362 					    &link_up, false)) != 0) {
2363 			adapter->link_up = link_up;
2364 			adapter->link_speed = link_speed;
2365 			netif_carrier_off(netdev);
2366 			netif_tx_stop_all_queues(netdev);
2367 			schedule_work(&adapter->reset_task);
2368 			goto pf_has_reset;
2369 		}
2370 	} else {
2371 		/* always assume link is up, if no check link
2372 		 * function */
2373 		link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2374 		link_up = true;
2375 	}
2376 	adapter->link_up = link_up;
2377 	adapter->link_speed = link_speed;
2378 
2379 	if (link_up) {
2380 		if (!netif_carrier_ok(netdev)) {
2381 			hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2382 			       (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2383 			       10 : 1);
2384 			netif_carrier_on(netdev);
2385 			netif_tx_wake_all_queues(netdev);
2386 		}
2387 	} else {
2388 		adapter->link_up = false;
2389 		adapter->link_speed = 0;
2390 		if (netif_carrier_ok(netdev)) {
2391 			hw_dbg(&adapter->hw, "NIC Link is Down\n");
2392 			netif_carrier_off(netdev);
2393 			netif_tx_stop_all_queues(netdev);
2394 		}
2395 	}
2396 
2397 	ixgbevf_update_stats(adapter);
2398 
2399 pf_has_reset:
2400 	/* Reset the timer */
2401 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2402 		mod_timer(&adapter->watchdog_timer,
2403 			  round_jiffies(jiffies + (2 * HZ)));
2404 
2405 	adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2406 }
2407 
2408 /**
2409  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2410  * @adapter: board private structure
2411  * @tx_ring: Tx descriptor ring for a specific queue
2412  *
2413  * Free all transmit software resources
2414  **/
2415 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2416 			       struct ixgbevf_ring *tx_ring)
2417 {
2418 	struct pci_dev *pdev = adapter->pdev;
2419 
2420 	ixgbevf_clean_tx_ring(adapter, tx_ring);
2421 
2422 	vfree(tx_ring->tx_buffer_info);
2423 	tx_ring->tx_buffer_info = NULL;
2424 
2425 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2426 			  tx_ring->dma);
2427 
2428 	tx_ring->desc = NULL;
2429 }
2430 
2431 /**
2432  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2433  * @adapter: board private structure
2434  *
2435  * Free all transmit software resources
2436  **/
2437 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2438 {
2439 	int i;
2440 
2441 	for (i = 0; i < adapter->num_tx_queues; i++)
2442 		if (adapter->tx_ring[i].desc)
2443 			ixgbevf_free_tx_resources(adapter,
2444 						  &adapter->tx_ring[i]);
2445 
2446 }
2447 
2448 /**
2449  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2450  * @adapter: board private structure
2451  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2452  *
2453  * Return 0 on success, negative on failure
2454  **/
2455 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2456 			       struct ixgbevf_ring *tx_ring)
2457 {
2458 	struct pci_dev *pdev = adapter->pdev;
2459 	int size;
2460 
2461 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2462 	tx_ring->tx_buffer_info = vzalloc(size);
2463 	if (!tx_ring->tx_buffer_info)
2464 		goto err;
2465 
2466 	/* round up to nearest 4K */
2467 	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2468 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2469 
2470 	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2471 					   &tx_ring->dma, GFP_KERNEL);
2472 	if (!tx_ring->desc)
2473 		goto err;
2474 
2475 	tx_ring->next_to_use = 0;
2476 	tx_ring->next_to_clean = 0;
2477 	tx_ring->work_limit = tx_ring->count;
2478 	return 0;
2479 
2480 err:
2481 	vfree(tx_ring->tx_buffer_info);
2482 	tx_ring->tx_buffer_info = NULL;
2483 	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2484 	       "descriptor ring\n");
2485 	return -ENOMEM;
2486 }
2487 
2488 /**
2489  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2490  * @adapter: board private structure
2491  *
2492  * If this function returns with an error, then it's possible one or
2493  * more of the rings is populated (while the rest are not).  It is the
2494  * callers duty to clean those orphaned rings.
2495  *
2496  * Return 0 on success, negative on failure
2497  **/
2498 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2499 {
2500 	int i, err = 0;
2501 
2502 	for (i = 0; i < adapter->num_tx_queues; i++) {
2503 		err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2504 		if (!err)
2505 			continue;
2506 		hw_dbg(&adapter->hw,
2507 		       "Allocation for Tx Queue %u failed\n", i);
2508 		break;
2509 	}
2510 
2511 	return err;
2512 }
2513 
2514 /**
2515  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2516  * @adapter: board private structure
2517  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2518  *
2519  * Returns 0 on success, negative on failure
2520  **/
2521 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2522 			       struct ixgbevf_ring *rx_ring)
2523 {
2524 	struct pci_dev *pdev = adapter->pdev;
2525 	int size;
2526 
2527 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2528 	rx_ring->rx_buffer_info = vzalloc(size);
2529 	if (!rx_ring->rx_buffer_info)
2530 		goto alloc_failed;
2531 
2532 	/* Round up to nearest 4K */
2533 	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2534 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2535 
2536 	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2537 					   &rx_ring->dma, GFP_KERNEL);
2538 
2539 	if (!rx_ring->desc) {
2540 		hw_dbg(&adapter->hw,
2541 		       "Unable to allocate memory for "
2542 		       "the receive descriptor ring\n");
2543 		vfree(rx_ring->rx_buffer_info);
2544 		rx_ring->rx_buffer_info = NULL;
2545 		goto alloc_failed;
2546 	}
2547 
2548 	rx_ring->next_to_clean = 0;
2549 	rx_ring->next_to_use = 0;
2550 
2551 	return 0;
2552 alloc_failed:
2553 	return -ENOMEM;
2554 }
2555 
2556 /**
2557  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2558  * @adapter: board private structure
2559  *
2560  * If this function returns with an error, then it's possible one or
2561  * more of the rings is populated (while the rest are not).  It is the
2562  * callers duty to clean those orphaned rings.
2563  *
2564  * Return 0 on success, negative on failure
2565  **/
2566 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2567 {
2568 	int i, err = 0;
2569 
2570 	for (i = 0; i < adapter->num_rx_queues; i++) {
2571 		err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2572 		if (!err)
2573 			continue;
2574 		hw_dbg(&adapter->hw,
2575 		       "Allocation for Rx Queue %u failed\n", i);
2576 		break;
2577 	}
2578 	return err;
2579 }
2580 
2581 /**
2582  * ixgbevf_free_rx_resources - Free Rx Resources
2583  * @adapter: board private structure
2584  * @rx_ring: ring to clean the resources from
2585  *
2586  * Free all receive software resources
2587  **/
2588 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2589 			       struct ixgbevf_ring *rx_ring)
2590 {
2591 	struct pci_dev *pdev = adapter->pdev;
2592 
2593 	ixgbevf_clean_rx_ring(adapter, rx_ring);
2594 
2595 	vfree(rx_ring->rx_buffer_info);
2596 	rx_ring->rx_buffer_info = NULL;
2597 
2598 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2599 			  rx_ring->dma);
2600 
2601 	rx_ring->desc = NULL;
2602 }
2603 
2604 /**
2605  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2606  * @adapter: board private structure
2607  *
2608  * Free all receive software resources
2609  **/
2610 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2611 {
2612 	int i;
2613 
2614 	for (i = 0; i < adapter->num_rx_queues; i++)
2615 		if (adapter->rx_ring[i].desc)
2616 			ixgbevf_free_rx_resources(adapter,
2617 						  &adapter->rx_ring[i]);
2618 }
2619 
2620 /**
2621  * ixgbevf_open - Called when a network interface is made active
2622  * @netdev: network interface device structure
2623  *
2624  * Returns 0 on success, negative value on failure
2625  *
2626  * The open entry point is called when a network interface is made
2627  * active by the system (IFF_UP).  At this point all resources needed
2628  * for transmit and receive operations are allocated, the interrupt
2629  * handler is registered with the OS, the watchdog timer is started,
2630  * and the stack is notified that the interface is ready.
2631  **/
2632 static int ixgbevf_open(struct net_device *netdev)
2633 {
2634 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2635 	struct ixgbe_hw *hw = &adapter->hw;
2636 	int err;
2637 
2638 	/* disallow open during test */
2639 	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2640 		return -EBUSY;
2641 
2642 	if (hw->adapter_stopped) {
2643 		ixgbevf_reset(adapter);
2644 		/* if adapter is still stopped then PF isn't up and
2645 		 * the vf can't start. */
2646 		if (hw->adapter_stopped) {
2647 			err = IXGBE_ERR_MBX;
2648 			pr_err("Unable to start - perhaps the PF Driver isn't "
2649 			       "up yet\n");
2650 			goto err_setup_reset;
2651 		}
2652 	}
2653 
2654 	/* allocate transmit descriptors */
2655 	err = ixgbevf_setup_all_tx_resources(adapter);
2656 	if (err)
2657 		goto err_setup_tx;
2658 
2659 	/* allocate receive descriptors */
2660 	err = ixgbevf_setup_all_rx_resources(adapter);
2661 	if (err)
2662 		goto err_setup_rx;
2663 
2664 	ixgbevf_configure(adapter);
2665 
2666 	/*
2667 	 * Map the Tx/Rx rings to the vectors we were allotted.
2668 	 * if request_irq will be called in this function map_rings
2669 	 * must be called *before* up_complete
2670 	 */
2671 	ixgbevf_map_rings_to_vectors(adapter);
2672 
2673 	err = ixgbevf_up_complete(adapter);
2674 	if (err)
2675 		goto err_up;
2676 
2677 	/* clear any pending interrupts, may auto mask */
2678 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2679 	err = ixgbevf_request_irq(adapter);
2680 	if (err)
2681 		goto err_req_irq;
2682 
2683 	ixgbevf_irq_enable(adapter, true, true);
2684 
2685 	return 0;
2686 
2687 err_req_irq:
2688 	ixgbevf_down(adapter);
2689 err_up:
2690 	ixgbevf_free_irq(adapter);
2691 err_setup_rx:
2692 	ixgbevf_free_all_rx_resources(adapter);
2693 err_setup_tx:
2694 	ixgbevf_free_all_tx_resources(adapter);
2695 	ixgbevf_reset(adapter);
2696 
2697 err_setup_reset:
2698 
2699 	return err;
2700 }
2701 
2702 /**
2703  * ixgbevf_close - Disables a network interface
2704  * @netdev: network interface device structure
2705  *
2706  * Returns 0, this is not allowed to fail
2707  *
2708  * The close entry point is called when an interface is de-activated
2709  * by the OS.  The hardware is still under the drivers control, but
2710  * needs to be disabled.  A global MAC reset is issued to stop the
2711  * hardware, and all transmit and receive resources are freed.
2712  **/
2713 static int ixgbevf_close(struct net_device *netdev)
2714 {
2715 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2716 
2717 	ixgbevf_down(adapter);
2718 	ixgbevf_free_irq(adapter);
2719 
2720 	ixgbevf_free_all_tx_resources(adapter);
2721 	ixgbevf_free_all_rx_resources(adapter);
2722 
2723 	return 0;
2724 }
2725 
2726 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2727 		       struct ixgbevf_ring *tx_ring,
2728 		       struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2729 {
2730 	struct ixgbe_adv_tx_context_desc *context_desc;
2731 	unsigned int i;
2732 	int err;
2733 	struct ixgbevf_tx_buffer *tx_buffer_info;
2734 	u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2735 	u32 mss_l4len_idx, l4len;
2736 
2737 	if (skb_is_gso(skb)) {
2738 		if (skb_header_cloned(skb)) {
2739 			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2740 			if (err)
2741 				return err;
2742 		}
2743 		l4len = tcp_hdrlen(skb);
2744 		*hdr_len += l4len;
2745 
2746 		if (skb->protocol == htons(ETH_P_IP)) {
2747 			struct iphdr *iph = ip_hdr(skb);
2748 			iph->tot_len = 0;
2749 			iph->check = 0;
2750 			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2751 								 iph->daddr, 0,
2752 								 IPPROTO_TCP,
2753 								 0);
2754 			adapter->hw_tso_ctxt++;
2755 		} else if (skb_is_gso_v6(skb)) {
2756 			ipv6_hdr(skb)->payload_len = 0;
2757 			tcp_hdr(skb)->check =
2758 			    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2759 					     &ipv6_hdr(skb)->daddr,
2760 					     0, IPPROTO_TCP, 0);
2761 			adapter->hw_tso6_ctxt++;
2762 		}
2763 
2764 		i = tx_ring->next_to_use;
2765 
2766 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2767 		context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2768 
2769 		/* VLAN MACLEN IPLEN */
2770 		if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2771 			vlan_macip_lens |=
2772 				(tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2773 		vlan_macip_lens |= ((skb_network_offset(skb)) <<
2774 				    IXGBE_ADVTXD_MACLEN_SHIFT);
2775 		*hdr_len += skb_network_offset(skb);
2776 		vlan_macip_lens |=
2777 			(skb_transport_header(skb) - skb_network_header(skb));
2778 		*hdr_len +=
2779 			(skb_transport_header(skb) - skb_network_header(skb));
2780 		context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2781 		context_desc->seqnum_seed = 0;
2782 
2783 		/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2784 		type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2785 				    IXGBE_ADVTXD_DTYP_CTXT);
2786 
2787 		if (skb->protocol == htons(ETH_P_IP))
2788 			type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2789 		type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2790 		context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2791 
2792 		/* MSS L4LEN IDX */
2793 		mss_l4len_idx =
2794 			(skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2795 		mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2796 		/* use index 1 for TSO */
2797 		mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2798 		context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2799 
2800 		tx_buffer_info->time_stamp = jiffies;
2801 		tx_buffer_info->next_to_watch = i;
2802 
2803 		i++;
2804 		if (i == tx_ring->count)
2805 			i = 0;
2806 		tx_ring->next_to_use = i;
2807 
2808 		return true;
2809 	}
2810 
2811 	return false;
2812 }
2813 
2814 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2815 			    struct ixgbevf_ring *tx_ring,
2816 			    struct sk_buff *skb, u32 tx_flags)
2817 {
2818 	struct ixgbe_adv_tx_context_desc *context_desc;
2819 	unsigned int i;
2820 	struct ixgbevf_tx_buffer *tx_buffer_info;
2821 	u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2822 
2823 	if (skb->ip_summed == CHECKSUM_PARTIAL ||
2824 	    (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2825 		i = tx_ring->next_to_use;
2826 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2827 		context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2828 
2829 		if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2830 			vlan_macip_lens |= (tx_flags &
2831 					    IXGBE_TX_FLAGS_VLAN_MASK);
2832 		vlan_macip_lens |= (skb_network_offset(skb) <<
2833 				    IXGBE_ADVTXD_MACLEN_SHIFT);
2834 		if (skb->ip_summed == CHECKSUM_PARTIAL)
2835 			vlan_macip_lens |= (skb_transport_header(skb) -
2836 					    skb_network_header(skb));
2837 
2838 		context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2839 		context_desc->seqnum_seed = 0;
2840 
2841 		type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2842 				    IXGBE_ADVTXD_DTYP_CTXT);
2843 
2844 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2845 			switch (skb->protocol) {
2846 			case __constant_htons(ETH_P_IP):
2847 				type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2848 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2849 					type_tucmd_mlhl |=
2850 					    IXGBE_ADVTXD_TUCMD_L4T_TCP;
2851 				break;
2852 			case __constant_htons(ETH_P_IPV6):
2853 				/* XXX what about other V6 headers?? */
2854 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2855 					type_tucmd_mlhl |=
2856 						IXGBE_ADVTXD_TUCMD_L4T_TCP;
2857 				break;
2858 			default:
2859 				if (unlikely(net_ratelimit())) {
2860 					pr_warn("partial checksum but "
2861 						"proto=%x!\n", skb->protocol);
2862 				}
2863 				break;
2864 			}
2865 		}
2866 
2867 		context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2868 		/* use index zero for tx checksum offload */
2869 		context_desc->mss_l4len_idx = 0;
2870 
2871 		tx_buffer_info->time_stamp = jiffies;
2872 		tx_buffer_info->next_to_watch = i;
2873 
2874 		adapter->hw_csum_tx_good++;
2875 		i++;
2876 		if (i == tx_ring->count)
2877 			i = 0;
2878 		tx_ring->next_to_use = i;
2879 
2880 		return true;
2881 	}
2882 
2883 	return false;
2884 }
2885 
2886 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2887 			  struct ixgbevf_ring *tx_ring,
2888 			  struct sk_buff *skb, u32 tx_flags,
2889 			  unsigned int first)
2890 {
2891 	struct pci_dev *pdev = adapter->pdev;
2892 	struct ixgbevf_tx_buffer *tx_buffer_info;
2893 	unsigned int len;
2894 	unsigned int total = skb->len;
2895 	unsigned int offset = 0, size;
2896 	int count = 0;
2897 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2898 	unsigned int f;
2899 	int i;
2900 
2901 	i = tx_ring->next_to_use;
2902 
2903 	len = min(skb_headlen(skb), total);
2904 	while (len) {
2905 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2906 		size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2907 
2908 		tx_buffer_info->length = size;
2909 		tx_buffer_info->mapped_as_page = false;
2910 		tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2911 						     skb->data + offset,
2912 						     size, DMA_TO_DEVICE);
2913 		if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2914 			goto dma_error;
2915 		tx_buffer_info->time_stamp = jiffies;
2916 		tx_buffer_info->next_to_watch = i;
2917 
2918 		len -= size;
2919 		total -= size;
2920 		offset += size;
2921 		count++;
2922 		i++;
2923 		if (i == tx_ring->count)
2924 			i = 0;
2925 	}
2926 
2927 	for (f = 0; f < nr_frags; f++) {
2928 		const struct skb_frag_struct *frag;
2929 
2930 		frag = &skb_shinfo(skb)->frags[f];
2931 		len = min((unsigned int)skb_frag_size(frag), total);
2932 		offset = 0;
2933 
2934 		while (len) {
2935 			tx_buffer_info = &tx_ring->tx_buffer_info[i];
2936 			size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2937 
2938 			tx_buffer_info->length = size;
2939 			tx_buffer_info->dma =
2940 				skb_frag_dma_map(&adapter->pdev->dev, frag,
2941 						 offset, size, DMA_TO_DEVICE);
2942 			tx_buffer_info->mapped_as_page = true;
2943 			if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2944 				goto dma_error;
2945 			tx_buffer_info->time_stamp = jiffies;
2946 			tx_buffer_info->next_to_watch = i;
2947 
2948 			len -= size;
2949 			total -= size;
2950 			offset += size;
2951 			count++;
2952 			i++;
2953 			if (i == tx_ring->count)
2954 				i = 0;
2955 		}
2956 		if (total == 0)
2957 			break;
2958 	}
2959 
2960 	if (i == 0)
2961 		i = tx_ring->count - 1;
2962 	else
2963 		i = i - 1;
2964 	tx_ring->tx_buffer_info[i].skb = skb;
2965 	tx_ring->tx_buffer_info[first].next_to_watch = i;
2966 
2967 	return count;
2968 
2969 dma_error:
2970 	dev_err(&pdev->dev, "TX DMA map failed\n");
2971 
2972 	/* clear timestamp and dma mappings for failed tx_buffer_info map */
2973 	tx_buffer_info->dma = 0;
2974 	tx_buffer_info->time_stamp = 0;
2975 	tx_buffer_info->next_to_watch = 0;
2976 	count--;
2977 
2978 	/* clear timestamp and dma mappings for remaining portion of packet */
2979 	while (count >= 0) {
2980 		count--;
2981 		i--;
2982 		if (i < 0)
2983 			i += tx_ring->count;
2984 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2985 		ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
2986 	}
2987 
2988 	return count;
2989 }
2990 
2991 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
2992 			     struct ixgbevf_ring *tx_ring, int tx_flags,
2993 			     int count, u32 paylen, u8 hdr_len)
2994 {
2995 	union ixgbe_adv_tx_desc *tx_desc = NULL;
2996 	struct ixgbevf_tx_buffer *tx_buffer_info;
2997 	u32 olinfo_status = 0, cmd_type_len = 0;
2998 	unsigned int i;
2999 
3000 	u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
3001 
3002 	cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
3003 
3004 	cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3005 
3006 	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3007 		cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3008 
3009 	if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3010 		cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3011 
3012 		olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3013 			IXGBE_ADVTXD_POPTS_SHIFT;
3014 
3015 		/* use index 1 context for tso */
3016 		olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3017 		if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3018 			olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3019 				IXGBE_ADVTXD_POPTS_SHIFT;
3020 
3021 	} else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3022 		olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3023 			IXGBE_ADVTXD_POPTS_SHIFT;
3024 
3025 	olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3026 
3027 	i = tx_ring->next_to_use;
3028 	while (count--) {
3029 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
3030 		tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3031 		tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3032 		tx_desc->read.cmd_type_len =
3033 			cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3034 		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3035 		i++;
3036 		if (i == tx_ring->count)
3037 			i = 0;
3038 	}
3039 
3040 	tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3041 
3042 	/*
3043 	 * Force memory writes to complete before letting h/w
3044 	 * know there are new descriptors to fetch.  (Only
3045 	 * applicable for weak-ordered memory model archs,
3046 	 * such as IA-64).
3047 	 */
3048 	wmb();
3049 
3050 	tx_ring->next_to_use = i;
3051 	writel(i, adapter->hw.hw_addr + tx_ring->tail);
3052 }
3053 
3054 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3055 				   struct ixgbevf_ring *tx_ring, int size)
3056 {
3057 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3058 
3059 	netif_stop_subqueue(netdev, tx_ring->queue_index);
3060 	/* Herbert's original patch had:
3061 	 *  smp_mb__after_netif_stop_queue();
3062 	 * but since that doesn't exist yet, just open code it. */
3063 	smp_mb();
3064 
3065 	/* We need to check again in a case another CPU has just
3066 	 * made room available. */
3067 	if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3068 		return -EBUSY;
3069 
3070 	/* A reprieve! - use start_queue because it doesn't call schedule */
3071 	netif_start_subqueue(netdev, tx_ring->queue_index);
3072 	++adapter->restart_queue;
3073 	return 0;
3074 }
3075 
3076 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3077 				 struct ixgbevf_ring *tx_ring, int size)
3078 {
3079 	if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3080 		return 0;
3081 	return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3082 }
3083 
3084 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3085 {
3086 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3087 	struct ixgbevf_ring *tx_ring;
3088 	unsigned int first;
3089 	unsigned int tx_flags = 0;
3090 	u8 hdr_len = 0;
3091 	int r_idx = 0, tso;
3092 	int count = 0;
3093 
3094 	unsigned int f;
3095 
3096 	tx_ring = &adapter->tx_ring[r_idx];
3097 
3098 	if (vlan_tx_tag_present(skb)) {
3099 		tx_flags |= vlan_tx_tag_get(skb);
3100 		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3101 		tx_flags |= IXGBE_TX_FLAGS_VLAN;
3102 	}
3103 
3104 	/* four things can cause us to need a context descriptor */
3105 	if (skb_is_gso(skb) ||
3106 	    (skb->ip_summed == CHECKSUM_PARTIAL) ||
3107 	    (tx_flags & IXGBE_TX_FLAGS_VLAN))
3108 		count++;
3109 
3110 	count += TXD_USE_COUNT(skb_headlen(skb));
3111 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3112 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]));
3113 
3114 	if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3115 		adapter->tx_busy++;
3116 		return NETDEV_TX_BUSY;
3117 	}
3118 
3119 	first = tx_ring->next_to_use;
3120 
3121 	if (skb->protocol == htons(ETH_P_IP))
3122 		tx_flags |= IXGBE_TX_FLAGS_IPV4;
3123 	tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3124 	if (tso < 0) {
3125 		dev_kfree_skb_any(skb);
3126 		return NETDEV_TX_OK;
3127 	}
3128 
3129 	if (tso)
3130 		tx_flags |= IXGBE_TX_FLAGS_TSO;
3131 	else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3132 		 (skb->ip_summed == CHECKSUM_PARTIAL))
3133 		tx_flags |= IXGBE_TX_FLAGS_CSUM;
3134 
3135 	ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3136 			 ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3137 			 skb->len, hdr_len);
3138 
3139 	ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3140 
3141 	return NETDEV_TX_OK;
3142 }
3143 
3144 /**
3145  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3146  * @netdev: network interface device structure
3147  * @p: pointer to an address structure
3148  *
3149  * Returns 0 on success, negative on failure
3150  **/
3151 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3152 {
3153 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3154 	struct ixgbe_hw *hw = &adapter->hw;
3155 	struct sockaddr *addr = p;
3156 
3157 	if (!is_valid_ether_addr(addr->sa_data))
3158 		return -EADDRNOTAVAIL;
3159 
3160 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3161 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3162 
3163 	if (hw->mac.ops.set_rar)
3164 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3165 
3166 	return 0;
3167 }
3168 
3169 /**
3170  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3171  * @netdev: network interface device structure
3172  * @new_mtu: new value for maximum frame size
3173  *
3174  * Returns 0 on success, negative on failure
3175  **/
3176 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3177 {
3178 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3179 	struct ixgbe_hw *hw = &adapter->hw;
3180 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3181 	int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3182 	u32 msg[2];
3183 
3184 	if (adapter->hw.mac.type == ixgbe_mac_X540_vf)
3185 		max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3186 
3187 	/* MTU < 68 is an error and causes problems on some kernels */
3188 	if ((new_mtu < 68) || (max_frame > max_possible_frame))
3189 		return -EINVAL;
3190 
3191 	hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3192 	       netdev->mtu, new_mtu);
3193 	/* must set new MTU before calling down or up */
3194 	netdev->mtu = new_mtu;
3195 
3196 	msg[0] = IXGBE_VF_SET_LPE;
3197 	msg[1] = max_frame;
3198 	hw->mbx.ops.write_posted(hw, msg, 2);
3199 
3200 	if (netif_running(netdev))
3201 		ixgbevf_reinit_locked(adapter);
3202 
3203 	return 0;
3204 }
3205 
3206 static void ixgbevf_shutdown(struct pci_dev *pdev)
3207 {
3208 	struct net_device *netdev = pci_get_drvdata(pdev);
3209 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3210 
3211 	netif_device_detach(netdev);
3212 
3213 	if (netif_running(netdev)) {
3214 		ixgbevf_down(adapter);
3215 		ixgbevf_free_irq(adapter);
3216 		ixgbevf_free_all_tx_resources(adapter);
3217 		ixgbevf_free_all_rx_resources(adapter);
3218 	}
3219 
3220 #ifdef CONFIG_PM
3221 	pci_save_state(pdev);
3222 #endif
3223 
3224 	pci_disable_device(pdev);
3225 }
3226 
3227 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3228 						struct rtnl_link_stats64 *stats)
3229 {
3230 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3231 	unsigned int start;
3232 	u64 bytes, packets;
3233 	const struct ixgbevf_ring *ring;
3234 	int i;
3235 
3236 	ixgbevf_update_stats(adapter);
3237 
3238 	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3239 
3240 	for (i = 0; i < adapter->num_rx_queues; i++) {
3241 		ring = &adapter->rx_ring[i];
3242 		do {
3243 			start = u64_stats_fetch_begin_bh(&ring->syncp);
3244 			bytes = ring->total_bytes;
3245 			packets = ring->total_packets;
3246 		} while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3247 		stats->rx_bytes += bytes;
3248 		stats->rx_packets += packets;
3249 	}
3250 
3251 	for (i = 0; i < adapter->num_tx_queues; i++) {
3252 		ring = &adapter->tx_ring[i];
3253 		do {
3254 			start = u64_stats_fetch_begin_bh(&ring->syncp);
3255 			bytes = ring->total_bytes;
3256 			packets = ring->total_packets;
3257 		} while (u64_stats_fetch_retry_bh(&ring->syncp, start));
3258 		stats->tx_bytes += bytes;
3259 		stats->tx_packets += packets;
3260 	}
3261 
3262 	return stats;
3263 }
3264 
3265 static int ixgbevf_set_features(struct net_device *netdev,
3266 	netdev_features_t features)
3267 {
3268 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3269 
3270 	if (features & NETIF_F_RXCSUM)
3271 		adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
3272 	else
3273 		adapter->flags &= ~IXGBE_FLAG_RX_CSUM_ENABLED;
3274 
3275 	return 0;
3276 }
3277 
3278 static const struct net_device_ops ixgbe_netdev_ops = {
3279 	.ndo_open		= ixgbevf_open,
3280 	.ndo_stop		= ixgbevf_close,
3281 	.ndo_start_xmit		= ixgbevf_xmit_frame,
3282 	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
3283 	.ndo_get_stats64	= ixgbevf_get_stats,
3284 	.ndo_validate_addr	= eth_validate_addr,
3285 	.ndo_set_mac_address	= ixgbevf_set_mac,
3286 	.ndo_change_mtu		= ixgbevf_change_mtu,
3287 	.ndo_tx_timeout		= ixgbevf_tx_timeout,
3288 	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
3289 	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
3290 	.ndo_set_features	= ixgbevf_set_features,
3291 };
3292 
3293 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3294 {
3295 	dev->netdev_ops = &ixgbe_netdev_ops;
3296 	ixgbevf_set_ethtool_ops(dev);
3297 	dev->watchdog_timeo = 5 * HZ;
3298 }
3299 
3300 /**
3301  * ixgbevf_probe - Device Initialization Routine
3302  * @pdev: PCI device information struct
3303  * @ent: entry in ixgbevf_pci_tbl
3304  *
3305  * Returns 0 on success, negative on failure
3306  *
3307  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3308  * The OS initialization, configuring of the adapter private structure,
3309  * and a hardware reset occur.
3310  **/
3311 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3312 				   const struct pci_device_id *ent)
3313 {
3314 	struct net_device *netdev;
3315 	struct ixgbevf_adapter *adapter = NULL;
3316 	struct ixgbe_hw *hw = NULL;
3317 	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3318 	static int cards_found;
3319 	int err, pci_using_dac;
3320 
3321 	err = pci_enable_device(pdev);
3322 	if (err)
3323 		return err;
3324 
3325 	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3326 	    !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3327 		pci_using_dac = 1;
3328 	} else {
3329 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3330 		if (err) {
3331 			err = dma_set_coherent_mask(&pdev->dev,
3332 						    DMA_BIT_MASK(32));
3333 			if (err) {
3334 				dev_err(&pdev->dev, "No usable DMA "
3335 					"configuration, aborting\n");
3336 				goto err_dma;
3337 			}
3338 		}
3339 		pci_using_dac = 0;
3340 	}
3341 
3342 	err = pci_request_regions(pdev, ixgbevf_driver_name);
3343 	if (err) {
3344 		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3345 		goto err_pci_reg;
3346 	}
3347 
3348 	pci_set_master(pdev);
3349 
3350 #ifdef HAVE_TX_MQ
3351 	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3352 				   MAX_TX_QUEUES);
3353 #else
3354 	netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3355 #endif
3356 	if (!netdev) {
3357 		err = -ENOMEM;
3358 		goto err_alloc_etherdev;
3359 	}
3360 
3361 	SET_NETDEV_DEV(netdev, &pdev->dev);
3362 
3363 	pci_set_drvdata(pdev, netdev);
3364 	adapter = netdev_priv(netdev);
3365 
3366 	adapter->netdev = netdev;
3367 	adapter->pdev = pdev;
3368 	hw = &adapter->hw;
3369 	hw->back = adapter;
3370 	adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3371 
3372 	/*
3373 	 * call save state here in standalone driver because it relies on
3374 	 * adapter struct to exist, and needs to call netdev_priv
3375 	 */
3376 	pci_save_state(pdev);
3377 
3378 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3379 			      pci_resource_len(pdev, 0));
3380 	if (!hw->hw_addr) {
3381 		err = -EIO;
3382 		goto err_ioremap;
3383 	}
3384 
3385 	ixgbevf_assign_netdev_ops(netdev);
3386 
3387 	adapter->bd_number = cards_found;
3388 
3389 	/* Setup hw api */
3390 	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3391 	hw->mac.type  = ii->mac;
3392 
3393 	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3394 	       sizeof(struct ixgbe_mbx_operations));
3395 
3396 	adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3397 	adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3398 	adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3399 
3400 	/* setup the private structure */
3401 	err = ixgbevf_sw_init(adapter);
3402 	if (err)
3403 		goto err_sw_init;
3404 
3405 	/* The HW MAC address was set and/or determined in sw_init */
3406 	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3407 
3408 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3409 		pr_err("invalid MAC address\n");
3410 		err = -EIO;
3411 		goto err_sw_init;
3412 	}
3413 
3414 	netdev->hw_features = NETIF_F_SG |
3415 			   NETIF_F_IP_CSUM |
3416 			   NETIF_F_IPV6_CSUM |
3417 			   NETIF_F_TSO |
3418 			   NETIF_F_TSO6 |
3419 			   NETIF_F_RXCSUM;
3420 
3421 	netdev->features = netdev->hw_features |
3422 			   NETIF_F_HW_VLAN_TX |
3423 			   NETIF_F_HW_VLAN_RX |
3424 			   NETIF_F_HW_VLAN_FILTER;
3425 
3426 	netdev->vlan_features |= NETIF_F_TSO;
3427 	netdev->vlan_features |= NETIF_F_TSO6;
3428 	netdev->vlan_features |= NETIF_F_IP_CSUM;
3429 	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3430 	netdev->vlan_features |= NETIF_F_SG;
3431 
3432 	if (pci_using_dac)
3433 		netdev->features |= NETIF_F_HIGHDMA;
3434 
3435 	netdev->priv_flags |= IFF_UNICAST_FLT;
3436 
3437 	init_timer(&adapter->watchdog_timer);
3438 	adapter->watchdog_timer.function = ixgbevf_watchdog;
3439 	adapter->watchdog_timer.data = (unsigned long)adapter;
3440 
3441 	INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3442 	INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3443 
3444 	err = ixgbevf_init_interrupt_scheme(adapter);
3445 	if (err)
3446 		goto err_sw_init;
3447 
3448 	/* pick up the PCI bus settings for reporting later */
3449 	if (hw->mac.ops.get_bus_info)
3450 		hw->mac.ops.get_bus_info(hw);
3451 
3452 	strcpy(netdev->name, "eth%d");
3453 
3454 	err = register_netdev(netdev);
3455 	if (err)
3456 		goto err_register;
3457 
3458 	adapter->netdev_registered = true;
3459 
3460 	netif_carrier_off(netdev);
3461 
3462 	ixgbevf_init_last_counter_stats(adapter);
3463 
3464 	/* print the MAC address */
3465 	hw_dbg(hw, "%pM\n", netdev->dev_addr);
3466 
3467 	hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3468 
3469 	hw_dbg(hw, "LRO is disabled\n");
3470 
3471 	hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3472 	cards_found++;
3473 	return 0;
3474 
3475 err_register:
3476 err_sw_init:
3477 	ixgbevf_reset_interrupt_capability(adapter);
3478 	iounmap(hw->hw_addr);
3479 err_ioremap:
3480 	free_netdev(netdev);
3481 err_alloc_etherdev:
3482 	pci_release_regions(pdev);
3483 err_pci_reg:
3484 err_dma:
3485 	pci_disable_device(pdev);
3486 	return err;
3487 }
3488 
3489 /**
3490  * ixgbevf_remove - Device Removal Routine
3491  * @pdev: PCI device information struct
3492  *
3493  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3494  * that it should release a PCI device.  The could be caused by a
3495  * Hot-Plug event, or because the driver is going to be removed from
3496  * memory.
3497  **/
3498 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3499 {
3500 	struct net_device *netdev = pci_get_drvdata(pdev);
3501 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3502 
3503 	set_bit(__IXGBEVF_DOWN, &adapter->state);
3504 
3505 	del_timer_sync(&adapter->watchdog_timer);
3506 
3507 	cancel_work_sync(&adapter->reset_task);
3508 	cancel_work_sync(&adapter->watchdog_task);
3509 
3510 	if (adapter->netdev_registered) {
3511 		unregister_netdev(netdev);
3512 		adapter->netdev_registered = false;
3513 	}
3514 
3515 	ixgbevf_reset_interrupt_capability(adapter);
3516 
3517 	iounmap(adapter->hw.hw_addr);
3518 	pci_release_regions(pdev);
3519 
3520 	hw_dbg(&adapter->hw, "Remove complete\n");
3521 
3522 	kfree(adapter->tx_ring);
3523 	kfree(adapter->rx_ring);
3524 
3525 	free_netdev(netdev);
3526 
3527 	pci_disable_device(pdev);
3528 }
3529 
3530 static struct pci_driver ixgbevf_driver = {
3531 	.name     = ixgbevf_driver_name,
3532 	.id_table = ixgbevf_pci_tbl,
3533 	.probe    = ixgbevf_probe,
3534 	.remove   = __devexit_p(ixgbevf_remove),
3535 	.shutdown = ixgbevf_shutdown,
3536 };
3537 
3538 /**
3539  * ixgbevf_init_module - Driver Registration Routine
3540  *
3541  * ixgbevf_init_module is the first routine called when the driver is
3542  * loaded. All it does is register with the PCI subsystem.
3543  **/
3544 static int __init ixgbevf_init_module(void)
3545 {
3546 	int ret;
3547 	pr_info("%s - version %s\n", ixgbevf_driver_string,
3548 		ixgbevf_driver_version);
3549 
3550 	pr_info("%s\n", ixgbevf_copyright);
3551 
3552 	ret = pci_register_driver(&ixgbevf_driver);
3553 	return ret;
3554 }
3555 
3556 module_init(ixgbevf_init_module);
3557 
3558 /**
3559  * ixgbevf_exit_module - Driver Exit Cleanup Routine
3560  *
3561  * ixgbevf_exit_module is called just before the driver is removed
3562  * from memory.
3563  **/
3564 static void __exit ixgbevf_exit_module(void)
3565 {
3566 	pci_unregister_driver(&ixgbevf_driver);
3567 }
3568 
3569 #ifdef DEBUG
3570 /**
3571  * ixgbevf_get_hw_dev_name - return device name string
3572  * used by hardware layer to print debugging information
3573  **/
3574 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3575 {
3576 	struct ixgbevf_adapter *adapter = hw->back;
3577 	return adapter->netdev->name;
3578 }
3579 
3580 #endif
3581 module_exit(ixgbevf_exit_module);
3582 
3583 /* ixgbevf_main.c */
3584