1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 34 #include "ixgbevf.h" 35 36 const char ixgbevf_driver_name[] = "ixgbevf"; 37 static const char ixgbevf_driver_string[] = 38 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 39 40 #define DRV_VERSION "4.1.0-k" 41 const char ixgbevf_driver_version[] = DRV_VERSION; 42 static char ixgbevf_copyright[] = 43 "Copyright (c) 2009 - 2018 Intel Corporation."; 44 45 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 46 [board_82599_vf] = &ixgbevf_82599_vf_info, 47 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 48 [board_X540_vf] = &ixgbevf_X540_vf_info, 49 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 50 [board_X550_vf] = &ixgbevf_X550_vf_info, 51 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 52 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 53 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 54 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 55 }; 56 57 /* ixgbevf_pci_tbl - PCI Device ID Table 58 * 59 * Wildcard entries (PCI_ANY_ID) should come last 60 * Last entry must be all 0s 61 * 62 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 63 * Class, Class Mask, private data (not used) } 64 */ 65 static const struct pci_device_id ixgbevf_pci_tbl[] = { 66 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 74 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 75 /* required last entry */ 76 {0, } 77 }; 78 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 79 80 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 81 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 82 MODULE_LICENSE("GPL v2"); 83 MODULE_VERSION(DRV_VERSION); 84 85 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 86 static int debug = -1; 87 module_param(debug, int, 0); 88 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 89 90 static struct workqueue_struct *ixgbevf_wq; 91 92 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 93 { 94 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 95 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 96 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 97 queue_work(ixgbevf_wq, &adapter->service_task); 98 } 99 100 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 101 { 102 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 103 104 /* flush memory to make sure state is correct before next watchdog */ 105 smp_mb__before_atomic(); 106 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 107 } 108 109 /* forward decls */ 110 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 111 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 112 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 113 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 114 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 115 struct ixgbevf_rx_buffer *old_buff); 116 117 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 118 { 119 struct ixgbevf_adapter *adapter = hw->back; 120 121 if (!hw->hw_addr) 122 return; 123 hw->hw_addr = NULL; 124 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 125 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 126 ixgbevf_service_event_schedule(adapter); 127 } 128 129 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 130 { 131 u32 value; 132 133 /* The following check not only optimizes a bit by not 134 * performing a read on the status register when the 135 * register just read was a status register read that 136 * returned IXGBE_FAILED_READ_REG. It also blocks any 137 * potential recursion. 138 */ 139 if (reg == IXGBE_VFSTATUS) { 140 ixgbevf_remove_adapter(hw); 141 return; 142 } 143 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 144 if (value == IXGBE_FAILED_READ_REG) 145 ixgbevf_remove_adapter(hw); 146 } 147 148 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 149 { 150 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 151 u32 value; 152 153 if (IXGBE_REMOVED(reg_addr)) 154 return IXGBE_FAILED_READ_REG; 155 value = readl(reg_addr + reg); 156 if (unlikely(value == IXGBE_FAILED_READ_REG)) 157 ixgbevf_check_remove(hw, reg); 158 return value; 159 } 160 161 /** 162 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 163 * @adapter: pointer to adapter struct 164 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 165 * @queue: queue to map the corresponding interrupt to 166 * @msix_vector: the vector to map to the corresponding queue 167 **/ 168 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 169 u8 queue, u8 msix_vector) 170 { 171 u32 ivar, index; 172 struct ixgbe_hw *hw = &adapter->hw; 173 174 if (direction == -1) { 175 /* other causes */ 176 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 177 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 178 ivar &= ~0xFF; 179 ivar |= msix_vector; 180 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 181 } else { 182 /* Tx or Rx causes */ 183 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 184 index = ((16 * (queue & 1)) + (8 * direction)); 185 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 186 ivar &= ~(0xFF << index); 187 ivar |= (msix_vector << index); 188 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 189 } 190 } 191 192 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 193 { 194 return ring->stats.packets; 195 } 196 197 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 198 { 199 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 200 struct ixgbe_hw *hw = &adapter->hw; 201 202 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 203 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 204 205 if (head != tail) 206 return (head < tail) ? 207 tail - head : (tail + ring->count - head); 208 209 return 0; 210 } 211 212 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 213 { 214 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 215 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 216 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 217 218 clear_check_for_tx_hang(tx_ring); 219 220 /* Check for a hung queue, but be thorough. This verifies 221 * that a transmit has been completed since the previous 222 * check AND there is at least one packet pending. The 223 * ARMED bit is set to indicate a potential hang. 224 */ 225 if ((tx_done_old == tx_done) && tx_pending) { 226 /* make sure it is true for two checks in a row */ 227 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 228 &tx_ring->state); 229 } 230 /* reset the countdown */ 231 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 232 233 /* update completed stats and continue */ 234 tx_ring->tx_stats.tx_done_old = tx_done; 235 236 return false; 237 } 238 239 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 240 { 241 /* Do the reset outside of interrupt context */ 242 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 243 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 244 ixgbevf_service_event_schedule(adapter); 245 } 246 } 247 248 /** 249 * ixgbevf_tx_timeout - Respond to a Tx Hang 250 * @netdev: network interface device structure 251 **/ 252 static void ixgbevf_tx_timeout(struct net_device *netdev) 253 { 254 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 255 256 ixgbevf_tx_timeout_reset(adapter); 257 } 258 259 /** 260 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 261 * @q_vector: board private structure 262 * @tx_ring: tx ring to clean 263 * @napi_budget: Used to determine if we are in netpoll 264 **/ 265 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 266 struct ixgbevf_ring *tx_ring, int napi_budget) 267 { 268 struct ixgbevf_adapter *adapter = q_vector->adapter; 269 struct ixgbevf_tx_buffer *tx_buffer; 270 union ixgbe_adv_tx_desc *tx_desc; 271 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; 272 unsigned int budget = tx_ring->count / 2; 273 unsigned int i = tx_ring->next_to_clean; 274 275 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 276 return true; 277 278 tx_buffer = &tx_ring->tx_buffer_info[i]; 279 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 280 i -= tx_ring->count; 281 282 do { 283 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 284 285 /* if next_to_watch is not set then there is no work pending */ 286 if (!eop_desc) 287 break; 288 289 /* prevent any other reads prior to eop_desc */ 290 smp_rmb(); 291 292 /* if DD is not set pending work has not been completed */ 293 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 294 break; 295 296 /* clear next_to_watch to prevent false hangs */ 297 tx_buffer->next_to_watch = NULL; 298 299 /* update the statistics for this packet */ 300 total_bytes += tx_buffer->bytecount; 301 total_packets += tx_buffer->gso_segs; 302 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) 303 total_ipsec++; 304 305 /* free the skb */ 306 if (ring_is_xdp(tx_ring)) 307 page_frag_free(tx_buffer->data); 308 else 309 napi_consume_skb(tx_buffer->skb, napi_budget); 310 311 /* unmap skb header data */ 312 dma_unmap_single(tx_ring->dev, 313 dma_unmap_addr(tx_buffer, dma), 314 dma_unmap_len(tx_buffer, len), 315 DMA_TO_DEVICE); 316 317 /* clear tx_buffer data */ 318 dma_unmap_len_set(tx_buffer, len, 0); 319 320 /* unmap remaining buffers */ 321 while (tx_desc != eop_desc) { 322 tx_buffer++; 323 tx_desc++; 324 i++; 325 if (unlikely(!i)) { 326 i -= tx_ring->count; 327 tx_buffer = tx_ring->tx_buffer_info; 328 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 329 } 330 331 /* unmap any remaining paged data */ 332 if (dma_unmap_len(tx_buffer, len)) { 333 dma_unmap_page(tx_ring->dev, 334 dma_unmap_addr(tx_buffer, dma), 335 dma_unmap_len(tx_buffer, len), 336 DMA_TO_DEVICE); 337 dma_unmap_len_set(tx_buffer, len, 0); 338 } 339 } 340 341 /* move us one more past the eop_desc for start of next pkt */ 342 tx_buffer++; 343 tx_desc++; 344 i++; 345 if (unlikely(!i)) { 346 i -= tx_ring->count; 347 tx_buffer = tx_ring->tx_buffer_info; 348 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 349 } 350 351 /* issue prefetch for next Tx descriptor */ 352 prefetch(tx_desc); 353 354 /* update budget accounting */ 355 budget--; 356 } while (likely(budget)); 357 358 i += tx_ring->count; 359 tx_ring->next_to_clean = i; 360 u64_stats_update_begin(&tx_ring->syncp); 361 tx_ring->stats.bytes += total_bytes; 362 tx_ring->stats.packets += total_packets; 363 u64_stats_update_end(&tx_ring->syncp); 364 q_vector->tx.total_bytes += total_bytes; 365 q_vector->tx.total_packets += total_packets; 366 adapter->tx_ipsec += total_ipsec; 367 368 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 369 struct ixgbe_hw *hw = &adapter->hw; 370 union ixgbe_adv_tx_desc *eop_desc; 371 372 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 373 374 pr_err("Detected Tx Unit Hang%s\n" 375 " Tx Queue <%d>\n" 376 " TDH, TDT <%x>, <%x>\n" 377 " next_to_use <%x>\n" 378 " next_to_clean <%x>\n" 379 "tx_buffer_info[next_to_clean]\n" 380 " next_to_watch <%p>\n" 381 " eop_desc->wb.status <%x>\n" 382 " time_stamp <%lx>\n" 383 " jiffies <%lx>\n", 384 ring_is_xdp(tx_ring) ? " XDP" : "", 385 tx_ring->queue_index, 386 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 387 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 388 tx_ring->next_to_use, i, 389 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 390 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 391 392 if (!ring_is_xdp(tx_ring)) 393 netif_stop_subqueue(tx_ring->netdev, 394 tx_ring->queue_index); 395 396 /* schedule immediate reset if we believe we hung */ 397 ixgbevf_tx_timeout_reset(adapter); 398 399 return true; 400 } 401 402 if (ring_is_xdp(tx_ring)) 403 return !!budget; 404 405 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 406 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 407 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 408 /* Make sure that anybody stopping the queue after this 409 * sees the new next_to_clean. 410 */ 411 smp_mb(); 412 413 if (__netif_subqueue_stopped(tx_ring->netdev, 414 tx_ring->queue_index) && 415 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 416 netif_wake_subqueue(tx_ring->netdev, 417 tx_ring->queue_index); 418 ++tx_ring->tx_stats.restart_queue; 419 } 420 } 421 422 return !!budget; 423 } 424 425 /** 426 * ixgbevf_rx_skb - Helper function to determine proper Rx method 427 * @q_vector: structure containing interrupt and ring information 428 * @skb: packet to send up 429 **/ 430 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 431 struct sk_buff *skb) 432 { 433 napi_gro_receive(&q_vector->napi, skb); 434 } 435 436 #define IXGBE_RSS_L4_TYPES_MASK \ 437 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 438 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 439 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 440 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 441 442 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 443 union ixgbe_adv_rx_desc *rx_desc, 444 struct sk_buff *skb) 445 { 446 u16 rss_type; 447 448 if (!(ring->netdev->features & NETIF_F_RXHASH)) 449 return; 450 451 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 452 IXGBE_RXDADV_RSSTYPE_MASK; 453 454 if (!rss_type) 455 return; 456 457 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 458 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 459 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 460 } 461 462 /** 463 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 464 * @ring: structure containig ring specific data 465 * @rx_desc: current Rx descriptor being processed 466 * @skb: skb currently being received and modified 467 **/ 468 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 469 union ixgbe_adv_rx_desc *rx_desc, 470 struct sk_buff *skb) 471 { 472 skb_checksum_none_assert(skb); 473 474 /* Rx csum disabled */ 475 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 476 return; 477 478 /* if IP and error */ 479 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 480 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 481 ring->rx_stats.csum_err++; 482 return; 483 } 484 485 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 486 return; 487 488 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 489 ring->rx_stats.csum_err++; 490 return; 491 } 492 493 /* It must be a TCP or UDP packet with a valid checksum */ 494 skb->ip_summed = CHECKSUM_UNNECESSARY; 495 } 496 497 /** 498 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 499 * @rx_ring: rx descriptor ring packet is being transacted on 500 * @rx_desc: pointer to the EOP Rx descriptor 501 * @skb: pointer to current skb being populated 502 * 503 * This function checks the ring, descriptor, and packet information in 504 * order to populate the checksum, VLAN, protocol, and other fields within 505 * the skb. 506 **/ 507 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 508 union ixgbe_adv_rx_desc *rx_desc, 509 struct sk_buff *skb) 510 { 511 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 512 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 513 514 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 515 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 516 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 517 518 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 519 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 520 } 521 522 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) 523 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); 524 525 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 526 } 527 528 static 529 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 530 const unsigned int size) 531 { 532 struct ixgbevf_rx_buffer *rx_buffer; 533 534 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 535 prefetchw(rx_buffer->page); 536 537 /* we are reusing so sync this buffer for CPU use */ 538 dma_sync_single_range_for_cpu(rx_ring->dev, 539 rx_buffer->dma, 540 rx_buffer->page_offset, 541 size, 542 DMA_FROM_DEVICE); 543 544 rx_buffer->pagecnt_bias--; 545 546 return rx_buffer; 547 } 548 549 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 550 struct ixgbevf_rx_buffer *rx_buffer, 551 struct sk_buff *skb) 552 { 553 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 554 /* hand second half of page back to the ring */ 555 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 556 } else { 557 if (IS_ERR(skb)) 558 /* We are not reusing the buffer so unmap it and free 559 * any references we are holding to it 560 */ 561 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 562 ixgbevf_rx_pg_size(rx_ring), 563 DMA_FROM_DEVICE, 564 IXGBEVF_RX_DMA_ATTR); 565 __page_frag_cache_drain(rx_buffer->page, 566 rx_buffer->pagecnt_bias); 567 } 568 569 /* clear contents of rx_buffer */ 570 rx_buffer->page = NULL; 571 } 572 573 /** 574 * ixgbevf_is_non_eop - process handling of non-EOP buffers 575 * @rx_ring: Rx ring being processed 576 * @rx_desc: Rx descriptor for current buffer 577 * 578 * This function updates next to clean. If the buffer is an EOP buffer 579 * this function exits returning false, otherwise it will place the 580 * sk_buff in the next buffer to be chained and return true indicating 581 * that this is in fact a non-EOP buffer. 582 **/ 583 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 584 union ixgbe_adv_rx_desc *rx_desc) 585 { 586 u32 ntc = rx_ring->next_to_clean + 1; 587 588 /* fetch, update, and store next to clean */ 589 ntc = (ntc < rx_ring->count) ? ntc : 0; 590 rx_ring->next_to_clean = ntc; 591 592 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 593 594 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 595 return false; 596 597 return true; 598 } 599 600 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 601 { 602 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 603 } 604 605 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 606 struct ixgbevf_rx_buffer *bi) 607 { 608 struct page *page = bi->page; 609 dma_addr_t dma; 610 611 /* since we are recycling buffers we should seldom need to alloc */ 612 if (likely(page)) 613 return true; 614 615 /* alloc new page for storage */ 616 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 617 if (unlikely(!page)) { 618 rx_ring->rx_stats.alloc_rx_page_failed++; 619 return false; 620 } 621 622 /* map page for use */ 623 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 624 ixgbevf_rx_pg_size(rx_ring), 625 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 626 627 /* if mapping failed free memory back to system since 628 * there isn't much point in holding memory we can't use 629 */ 630 if (dma_mapping_error(rx_ring->dev, dma)) { 631 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 632 633 rx_ring->rx_stats.alloc_rx_page_failed++; 634 return false; 635 } 636 637 bi->dma = dma; 638 bi->page = page; 639 bi->page_offset = ixgbevf_rx_offset(rx_ring); 640 bi->pagecnt_bias = 1; 641 rx_ring->rx_stats.alloc_rx_page++; 642 643 return true; 644 } 645 646 /** 647 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 648 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 649 * @cleaned_count: number of buffers to replace 650 **/ 651 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 652 u16 cleaned_count) 653 { 654 union ixgbe_adv_rx_desc *rx_desc; 655 struct ixgbevf_rx_buffer *bi; 656 unsigned int i = rx_ring->next_to_use; 657 658 /* nothing to do or no valid netdev defined */ 659 if (!cleaned_count || !rx_ring->netdev) 660 return; 661 662 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 663 bi = &rx_ring->rx_buffer_info[i]; 664 i -= rx_ring->count; 665 666 do { 667 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 668 break; 669 670 /* sync the buffer for use by the device */ 671 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 672 bi->page_offset, 673 ixgbevf_rx_bufsz(rx_ring), 674 DMA_FROM_DEVICE); 675 676 /* Refresh the desc even if pkt_addr didn't change 677 * because each write-back erases this info. 678 */ 679 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 680 681 rx_desc++; 682 bi++; 683 i++; 684 if (unlikely(!i)) { 685 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 686 bi = rx_ring->rx_buffer_info; 687 i -= rx_ring->count; 688 } 689 690 /* clear the length for the next_to_use descriptor */ 691 rx_desc->wb.upper.length = 0; 692 693 cleaned_count--; 694 } while (cleaned_count); 695 696 i += rx_ring->count; 697 698 if (rx_ring->next_to_use != i) { 699 /* record the next descriptor to use */ 700 rx_ring->next_to_use = i; 701 702 /* update next to alloc since we have filled the ring */ 703 rx_ring->next_to_alloc = i; 704 705 /* Force memory writes to complete before letting h/w 706 * know there are new descriptors to fetch. (Only 707 * applicable for weak-ordered memory model archs, 708 * such as IA-64). 709 */ 710 wmb(); 711 ixgbevf_write_tail(rx_ring, i); 712 } 713 } 714 715 /** 716 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 717 * @rx_ring: rx descriptor ring packet is being transacted on 718 * @rx_desc: pointer to the EOP Rx descriptor 719 * @skb: pointer to current skb being fixed 720 * 721 * Check for corrupted packet headers caused by senders on the local L2 722 * embedded NIC switch not setting up their Tx Descriptors right. These 723 * should be very rare. 724 * 725 * Also address the case where we are pulling data in on pages only 726 * and as such no data is present in the skb header. 727 * 728 * In addition if skb is not at least 60 bytes we need to pad it so that 729 * it is large enough to qualify as a valid Ethernet frame. 730 * 731 * Returns true if an error was encountered and skb was freed. 732 **/ 733 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 734 union ixgbe_adv_rx_desc *rx_desc, 735 struct sk_buff *skb) 736 { 737 /* XDP packets use error pointer so abort at this point */ 738 if (IS_ERR(skb)) 739 return true; 740 741 /* verify that the packet does not have any known errors */ 742 if (unlikely(ixgbevf_test_staterr(rx_desc, 743 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 744 struct net_device *netdev = rx_ring->netdev; 745 746 if (!(netdev->features & NETIF_F_RXALL)) { 747 dev_kfree_skb_any(skb); 748 return true; 749 } 750 } 751 752 /* if eth_skb_pad returns an error the skb was freed */ 753 if (eth_skb_pad(skb)) 754 return true; 755 756 return false; 757 } 758 759 /** 760 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 761 * @rx_ring: rx descriptor ring to store buffers on 762 * @old_buff: donor buffer to have page reused 763 * 764 * Synchronizes page for reuse by the adapter 765 **/ 766 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 767 struct ixgbevf_rx_buffer *old_buff) 768 { 769 struct ixgbevf_rx_buffer *new_buff; 770 u16 nta = rx_ring->next_to_alloc; 771 772 new_buff = &rx_ring->rx_buffer_info[nta]; 773 774 /* update, and store next to alloc */ 775 nta++; 776 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 777 778 /* transfer page from old buffer to new buffer */ 779 new_buff->page = old_buff->page; 780 new_buff->dma = old_buff->dma; 781 new_buff->page_offset = old_buff->page_offset; 782 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 783 } 784 785 static inline bool ixgbevf_page_is_reserved(struct page *page) 786 { 787 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 788 } 789 790 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 791 { 792 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 793 struct page *page = rx_buffer->page; 794 795 /* avoid re-using remote pages */ 796 if (unlikely(ixgbevf_page_is_reserved(page))) 797 return false; 798 799 #if (PAGE_SIZE < 8192) 800 /* if we are only owner of page we can reuse it */ 801 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 802 return false; 803 #else 804 #define IXGBEVF_LAST_OFFSET \ 805 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 806 807 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 808 return false; 809 810 #endif 811 812 /* If we have drained the page fragment pool we need to update 813 * the pagecnt_bias and page count so that we fully restock the 814 * number of references the driver holds. 815 */ 816 if (unlikely(!pagecnt_bias)) { 817 page_ref_add(page, USHRT_MAX); 818 rx_buffer->pagecnt_bias = USHRT_MAX; 819 } 820 821 return true; 822 } 823 824 /** 825 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 826 * @rx_ring: rx descriptor ring to transact packets on 827 * @rx_buffer: buffer containing page to add 828 * @skb: sk_buff to place the data into 829 * @size: size of buffer to be added 830 * 831 * This function will add the data contained in rx_buffer->page to the skb. 832 **/ 833 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 834 struct ixgbevf_rx_buffer *rx_buffer, 835 struct sk_buff *skb, 836 unsigned int size) 837 { 838 #if (PAGE_SIZE < 8192) 839 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 840 #else 841 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 842 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 843 SKB_DATA_ALIGN(size); 844 #endif 845 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 846 rx_buffer->page_offset, size, truesize); 847 #if (PAGE_SIZE < 8192) 848 rx_buffer->page_offset ^= truesize; 849 #else 850 rx_buffer->page_offset += truesize; 851 #endif 852 } 853 854 static 855 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 856 struct ixgbevf_rx_buffer *rx_buffer, 857 struct xdp_buff *xdp, 858 union ixgbe_adv_rx_desc *rx_desc) 859 { 860 unsigned int size = xdp->data_end - xdp->data; 861 #if (PAGE_SIZE < 8192) 862 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 863 #else 864 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 865 xdp->data_hard_start); 866 #endif 867 unsigned int headlen; 868 struct sk_buff *skb; 869 870 /* prefetch first cache line of first page */ 871 prefetch(xdp->data); 872 #if L1_CACHE_BYTES < 128 873 prefetch(xdp->data + L1_CACHE_BYTES); 874 #endif 875 /* Note, we get here by enabling legacy-rx via: 876 * 877 * ethtool --set-priv-flags <dev> legacy-rx on 878 * 879 * In this mode, we currently get 0 extra XDP headroom as 880 * opposed to having legacy-rx off, where we process XDP 881 * packets going to stack via ixgbevf_build_skb(). 882 * 883 * For ixgbevf_construct_skb() mode it means that the 884 * xdp->data_meta will always point to xdp->data, since 885 * the helper cannot expand the head. Should this ever 886 * changed in future for legacy-rx mode on, then lets also 887 * add xdp->data_meta handling here. 888 */ 889 890 /* allocate a skb to store the frags */ 891 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 892 if (unlikely(!skb)) 893 return NULL; 894 895 /* Determine available headroom for copy */ 896 headlen = size; 897 if (headlen > IXGBEVF_RX_HDR_SIZE) 898 headlen = eth_get_headlen(xdp->data, IXGBEVF_RX_HDR_SIZE); 899 900 /* align pull length to size of long to optimize memcpy performance */ 901 memcpy(__skb_put(skb, headlen), xdp->data, 902 ALIGN(headlen, sizeof(long))); 903 904 /* update all of the pointers */ 905 size -= headlen; 906 if (size) { 907 skb_add_rx_frag(skb, 0, rx_buffer->page, 908 (xdp->data + headlen) - 909 page_address(rx_buffer->page), 910 size, truesize); 911 #if (PAGE_SIZE < 8192) 912 rx_buffer->page_offset ^= truesize; 913 #else 914 rx_buffer->page_offset += truesize; 915 #endif 916 } else { 917 rx_buffer->pagecnt_bias++; 918 } 919 920 return skb; 921 } 922 923 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 924 u32 qmask) 925 { 926 struct ixgbe_hw *hw = &adapter->hw; 927 928 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 929 } 930 931 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 932 struct ixgbevf_rx_buffer *rx_buffer, 933 struct xdp_buff *xdp, 934 union ixgbe_adv_rx_desc *rx_desc) 935 { 936 unsigned int metasize = xdp->data - xdp->data_meta; 937 #if (PAGE_SIZE < 8192) 938 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 939 #else 940 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 941 SKB_DATA_ALIGN(xdp->data_end - 942 xdp->data_hard_start); 943 #endif 944 struct sk_buff *skb; 945 946 /* Prefetch first cache line of first page. If xdp->data_meta 947 * is unused, this points to xdp->data, otherwise, we likely 948 * have a consumer accessing first few bytes of meta data, 949 * and then actual data. 950 */ 951 prefetch(xdp->data_meta); 952 #if L1_CACHE_BYTES < 128 953 prefetch(xdp->data_meta + L1_CACHE_BYTES); 954 #endif 955 956 /* build an skb around the page buffer */ 957 skb = build_skb(xdp->data_hard_start, truesize); 958 if (unlikely(!skb)) 959 return NULL; 960 961 /* update pointers within the skb to store the data */ 962 skb_reserve(skb, xdp->data - xdp->data_hard_start); 963 __skb_put(skb, xdp->data_end - xdp->data); 964 if (metasize) 965 skb_metadata_set(skb, metasize); 966 967 /* update buffer offset */ 968 #if (PAGE_SIZE < 8192) 969 rx_buffer->page_offset ^= truesize; 970 #else 971 rx_buffer->page_offset += truesize; 972 #endif 973 974 return skb; 975 } 976 977 #define IXGBEVF_XDP_PASS 0 978 #define IXGBEVF_XDP_CONSUMED 1 979 #define IXGBEVF_XDP_TX 2 980 981 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 982 struct xdp_buff *xdp) 983 { 984 struct ixgbevf_tx_buffer *tx_buffer; 985 union ixgbe_adv_tx_desc *tx_desc; 986 u32 len, cmd_type; 987 dma_addr_t dma; 988 u16 i; 989 990 len = xdp->data_end - xdp->data; 991 992 if (unlikely(!ixgbevf_desc_unused(ring))) 993 return IXGBEVF_XDP_CONSUMED; 994 995 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 996 if (dma_mapping_error(ring->dev, dma)) 997 return IXGBEVF_XDP_CONSUMED; 998 999 /* record the location of the first descriptor for this packet */ 1000 i = ring->next_to_use; 1001 tx_buffer = &ring->tx_buffer_info[i]; 1002 1003 dma_unmap_len_set(tx_buffer, len, len); 1004 dma_unmap_addr_set(tx_buffer, dma, dma); 1005 tx_buffer->data = xdp->data; 1006 tx_buffer->bytecount = len; 1007 tx_buffer->gso_segs = 1; 1008 tx_buffer->protocol = 0; 1009 1010 /* Populate minimal context descriptor that will provide for the 1011 * fact that we are expected to process Ethernet frames. 1012 */ 1013 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1014 struct ixgbe_adv_tx_context_desc *context_desc; 1015 1016 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1017 1018 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1019 context_desc->vlan_macip_lens = 1020 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1021 context_desc->fceof_saidx = 0; 1022 context_desc->type_tucmd_mlhl = 1023 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1024 IXGBE_ADVTXD_DTYP_CTXT); 1025 context_desc->mss_l4len_idx = 0; 1026 1027 i = 1; 1028 } 1029 1030 /* put descriptor type bits */ 1031 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1032 IXGBE_ADVTXD_DCMD_DEXT | 1033 IXGBE_ADVTXD_DCMD_IFCS; 1034 cmd_type |= len | IXGBE_TXD_CMD; 1035 1036 tx_desc = IXGBEVF_TX_DESC(ring, i); 1037 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1038 1039 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1040 tx_desc->read.olinfo_status = 1041 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1042 IXGBE_ADVTXD_CC); 1043 1044 /* Avoid any potential race with cleanup */ 1045 smp_wmb(); 1046 1047 /* set next_to_watch value indicating a packet is present */ 1048 i++; 1049 if (i == ring->count) 1050 i = 0; 1051 1052 tx_buffer->next_to_watch = tx_desc; 1053 ring->next_to_use = i; 1054 1055 return IXGBEVF_XDP_TX; 1056 } 1057 1058 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1059 struct ixgbevf_ring *rx_ring, 1060 struct xdp_buff *xdp) 1061 { 1062 int result = IXGBEVF_XDP_PASS; 1063 struct ixgbevf_ring *xdp_ring; 1064 struct bpf_prog *xdp_prog; 1065 u32 act; 1066 1067 rcu_read_lock(); 1068 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1069 1070 if (!xdp_prog) 1071 goto xdp_out; 1072 1073 act = bpf_prog_run_xdp(xdp_prog, xdp); 1074 switch (act) { 1075 case XDP_PASS: 1076 break; 1077 case XDP_TX: 1078 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1079 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1080 break; 1081 default: 1082 bpf_warn_invalid_xdp_action(act); 1083 /* fallthrough */ 1084 case XDP_ABORTED: 1085 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1086 /* fallthrough -- handle aborts by dropping packet */ 1087 case XDP_DROP: 1088 result = IXGBEVF_XDP_CONSUMED; 1089 break; 1090 } 1091 xdp_out: 1092 rcu_read_unlock(); 1093 return ERR_PTR(-result); 1094 } 1095 1096 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1097 struct ixgbevf_rx_buffer *rx_buffer, 1098 unsigned int size) 1099 { 1100 #if (PAGE_SIZE < 8192) 1101 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 1102 1103 rx_buffer->page_offset ^= truesize; 1104 #else 1105 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 1106 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 1107 SKB_DATA_ALIGN(size); 1108 1109 rx_buffer->page_offset += truesize; 1110 #endif 1111 } 1112 1113 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1114 struct ixgbevf_ring *rx_ring, 1115 int budget) 1116 { 1117 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1118 struct ixgbevf_adapter *adapter = q_vector->adapter; 1119 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1120 struct sk_buff *skb = rx_ring->skb; 1121 bool xdp_xmit = false; 1122 struct xdp_buff xdp; 1123 1124 xdp.rxq = &rx_ring->xdp_rxq; 1125 1126 while (likely(total_rx_packets < budget)) { 1127 struct ixgbevf_rx_buffer *rx_buffer; 1128 union ixgbe_adv_rx_desc *rx_desc; 1129 unsigned int size; 1130 1131 /* return some buffers to hardware, one at a time is too slow */ 1132 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1133 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1134 cleaned_count = 0; 1135 } 1136 1137 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1138 size = le16_to_cpu(rx_desc->wb.upper.length); 1139 if (!size) 1140 break; 1141 1142 /* This memory barrier is needed to keep us from reading 1143 * any other fields out of the rx_desc until we know the 1144 * RXD_STAT_DD bit is set 1145 */ 1146 rmb(); 1147 1148 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1149 1150 /* retrieve a buffer from the ring */ 1151 if (!skb) { 1152 xdp.data = page_address(rx_buffer->page) + 1153 rx_buffer->page_offset; 1154 xdp.data_meta = xdp.data; 1155 xdp.data_hard_start = xdp.data - 1156 ixgbevf_rx_offset(rx_ring); 1157 xdp.data_end = xdp.data + size; 1158 1159 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1160 } 1161 1162 if (IS_ERR(skb)) { 1163 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1164 xdp_xmit = true; 1165 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1166 size); 1167 } else { 1168 rx_buffer->pagecnt_bias++; 1169 } 1170 total_rx_packets++; 1171 total_rx_bytes += size; 1172 } else if (skb) { 1173 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1174 } else if (ring_uses_build_skb(rx_ring)) { 1175 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1176 &xdp, rx_desc); 1177 } else { 1178 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1179 &xdp, rx_desc); 1180 } 1181 1182 /* exit if we failed to retrieve a buffer */ 1183 if (!skb) { 1184 rx_ring->rx_stats.alloc_rx_buff_failed++; 1185 rx_buffer->pagecnt_bias++; 1186 break; 1187 } 1188 1189 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1190 cleaned_count++; 1191 1192 /* fetch next buffer in frame if non-eop */ 1193 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1194 continue; 1195 1196 /* verify the packet layout is correct */ 1197 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1198 skb = NULL; 1199 continue; 1200 } 1201 1202 /* probably a little skewed due to removing CRC */ 1203 total_rx_bytes += skb->len; 1204 1205 /* Workaround hardware that can't do proper VEPA multicast 1206 * source pruning. 1207 */ 1208 if ((skb->pkt_type == PACKET_BROADCAST || 1209 skb->pkt_type == PACKET_MULTICAST) && 1210 ether_addr_equal(rx_ring->netdev->dev_addr, 1211 eth_hdr(skb)->h_source)) { 1212 dev_kfree_skb_irq(skb); 1213 continue; 1214 } 1215 1216 /* populate checksum, VLAN, and protocol */ 1217 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1218 1219 ixgbevf_rx_skb(q_vector, skb); 1220 1221 /* reset skb pointer */ 1222 skb = NULL; 1223 1224 /* update budget accounting */ 1225 total_rx_packets++; 1226 } 1227 1228 /* place incomplete frames back on ring for completion */ 1229 rx_ring->skb = skb; 1230 1231 if (xdp_xmit) { 1232 struct ixgbevf_ring *xdp_ring = 1233 adapter->xdp_ring[rx_ring->queue_index]; 1234 1235 /* Force memory writes to complete before letting h/w 1236 * know there are new descriptors to fetch. 1237 */ 1238 wmb(); 1239 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1240 } 1241 1242 u64_stats_update_begin(&rx_ring->syncp); 1243 rx_ring->stats.packets += total_rx_packets; 1244 rx_ring->stats.bytes += total_rx_bytes; 1245 u64_stats_update_end(&rx_ring->syncp); 1246 q_vector->rx.total_packets += total_rx_packets; 1247 q_vector->rx.total_bytes += total_rx_bytes; 1248 1249 return total_rx_packets; 1250 } 1251 1252 /** 1253 * ixgbevf_poll - NAPI polling calback 1254 * @napi: napi struct with our devices info in it 1255 * @budget: amount of work driver is allowed to do this pass, in packets 1256 * 1257 * This function will clean more than one or more rings associated with a 1258 * q_vector. 1259 **/ 1260 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1261 { 1262 struct ixgbevf_q_vector *q_vector = 1263 container_of(napi, struct ixgbevf_q_vector, napi); 1264 struct ixgbevf_adapter *adapter = q_vector->adapter; 1265 struct ixgbevf_ring *ring; 1266 int per_ring_budget, work_done = 0; 1267 bool clean_complete = true; 1268 1269 ixgbevf_for_each_ring(ring, q_vector->tx) { 1270 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1271 clean_complete = false; 1272 } 1273 1274 if (budget <= 0) 1275 return budget; 1276 1277 /* attempt to distribute budget to each queue fairly, but don't allow 1278 * the budget to go below 1 because we'll exit polling 1279 */ 1280 if (q_vector->rx.count > 1) 1281 per_ring_budget = max(budget/q_vector->rx.count, 1); 1282 else 1283 per_ring_budget = budget; 1284 1285 ixgbevf_for_each_ring(ring, q_vector->rx) { 1286 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1287 per_ring_budget); 1288 work_done += cleaned; 1289 if (cleaned >= per_ring_budget) 1290 clean_complete = false; 1291 } 1292 1293 /* If all work not completed, return budget and keep polling */ 1294 if (!clean_complete) 1295 return budget; 1296 1297 /* Exit the polling mode, but don't re-enable interrupts if stack might 1298 * poll us due to busy-polling 1299 */ 1300 if (likely(napi_complete_done(napi, work_done))) { 1301 if (adapter->rx_itr_setting == 1) 1302 ixgbevf_set_itr(q_vector); 1303 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1304 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1305 ixgbevf_irq_enable_queues(adapter, 1306 BIT(q_vector->v_idx)); 1307 } 1308 1309 return min(work_done, budget - 1); 1310 } 1311 1312 /** 1313 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1314 * @q_vector: structure containing interrupt and ring information 1315 **/ 1316 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1317 { 1318 struct ixgbevf_adapter *adapter = q_vector->adapter; 1319 struct ixgbe_hw *hw = &adapter->hw; 1320 int v_idx = q_vector->v_idx; 1321 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1322 1323 /* set the WDIS bit to not clear the timer bits and cause an 1324 * immediate assertion of the interrupt 1325 */ 1326 itr_reg |= IXGBE_EITR_CNT_WDIS; 1327 1328 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1329 } 1330 1331 /** 1332 * ixgbevf_configure_msix - Configure MSI-X hardware 1333 * @adapter: board private structure 1334 * 1335 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1336 * interrupts. 1337 **/ 1338 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1339 { 1340 struct ixgbevf_q_vector *q_vector; 1341 int q_vectors, v_idx; 1342 1343 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1344 adapter->eims_enable_mask = 0; 1345 1346 /* Populate the IVAR table and set the ITR values to the 1347 * corresponding register. 1348 */ 1349 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1350 struct ixgbevf_ring *ring; 1351 1352 q_vector = adapter->q_vector[v_idx]; 1353 1354 ixgbevf_for_each_ring(ring, q_vector->rx) 1355 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1356 1357 ixgbevf_for_each_ring(ring, q_vector->tx) 1358 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1359 1360 if (q_vector->tx.ring && !q_vector->rx.ring) { 1361 /* Tx only vector */ 1362 if (adapter->tx_itr_setting == 1) 1363 q_vector->itr = IXGBE_12K_ITR; 1364 else 1365 q_vector->itr = adapter->tx_itr_setting; 1366 } else { 1367 /* Rx or Rx/Tx vector */ 1368 if (adapter->rx_itr_setting == 1) 1369 q_vector->itr = IXGBE_20K_ITR; 1370 else 1371 q_vector->itr = adapter->rx_itr_setting; 1372 } 1373 1374 /* add q_vector eims value to global eims_enable_mask */ 1375 adapter->eims_enable_mask |= BIT(v_idx); 1376 1377 ixgbevf_write_eitr(q_vector); 1378 } 1379 1380 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1381 /* setup eims_other and add value to global eims_enable_mask */ 1382 adapter->eims_other = BIT(v_idx); 1383 adapter->eims_enable_mask |= adapter->eims_other; 1384 } 1385 1386 enum latency_range { 1387 lowest_latency = 0, 1388 low_latency = 1, 1389 bulk_latency = 2, 1390 latency_invalid = 255 1391 }; 1392 1393 /** 1394 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1395 * @q_vector: structure containing interrupt and ring information 1396 * @ring_container: structure containing ring performance data 1397 * 1398 * Stores a new ITR value based on packets and byte 1399 * counts during the last interrupt. The advantage of per interrupt 1400 * computation is faster updates and more accurate ITR for the current 1401 * traffic pattern. Constants in this function were computed 1402 * based on theoretical maximum wire speed and thresholds were set based 1403 * on testing data as well as attempting to minimize response time 1404 * while increasing bulk throughput. 1405 **/ 1406 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1407 struct ixgbevf_ring_container *ring_container) 1408 { 1409 int bytes = ring_container->total_bytes; 1410 int packets = ring_container->total_packets; 1411 u32 timepassed_us; 1412 u64 bytes_perint; 1413 u8 itr_setting = ring_container->itr; 1414 1415 if (packets == 0) 1416 return; 1417 1418 /* simple throttle rate management 1419 * 0-20MB/s lowest (100000 ints/s) 1420 * 20-100MB/s low (20000 ints/s) 1421 * 100-1249MB/s bulk (12000 ints/s) 1422 */ 1423 /* what was last interrupt timeslice? */ 1424 timepassed_us = q_vector->itr >> 2; 1425 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1426 1427 switch (itr_setting) { 1428 case lowest_latency: 1429 if (bytes_perint > 10) 1430 itr_setting = low_latency; 1431 break; 1432 case low_latency: 1433 if (bytes_perint > 20) 1434 itr_setting = bulk_latency; 1435 else if (bytes_perint <= 10) 1436 itr_setting = lowest_latency; 1437 break; 1438 case bulk_latency: 1439 if (bytes_perint <= 20) 1440 itr_setting = low_latency; 1441 break; 1442 } 1443 1444 /* clear work counters since we have the values we need */ 1445 ring_container->total_bytes = 0; 1446 ring_container->total_packets = 0; 1447 1448 /* write updated itr to ring container */ 1449 ring_container->itr = itr_setting; 1450 } 1451 1452 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1453 { 1454 u32 new_itr = q_vector->itr; 1455 u8 current_itr; 1456 1457 ixgbevf_update_itr(q_vector, &q_vector->tx); 1458 ixgbevf_update_itr(q_vector, &q_vector->rx); 1459 1460 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1461 1462 switch (current_itr) { 1463 /* counts and packets in update_itr are dependent on these numbers */ 1464 case lowest_latency: 1465 new_itr = IXGBE_100K_ITR; 1466 break; 1467 case low_latency: 1468 new_itr = IXGBE_20K_ITR; 1469 break; 1470 case bulk_latency: 1471 new_itr = IXGBE_12K_ITR; 1472 break; 1473 default: 1474 break; 1475 } 1476 1477 if (new_itr != q_vector->itr) { 1478 /* do an exponential smoothing */ 1479 new_itr = (10 * new_itr * q_vector->itr) / 1480 ((9 * new_itr) + q_vector->itr); 1481 1482 /* save the algorithm value here */ 1483 q_vector->itr = new_itr; 1484 1485 ixgbevf_write_eitr(q_vector); 1486 } 1487 } 1488 1489 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1490 { 1491 struct ixgbevf_adapter *adapter = data; 1492 struct ixgbe_hw *hw = &adapter->hw; 1493 1494 hw->mac.get_link_status = 1; 1495 1496 ixgbevf_service_event_schedule(adapter); 1497 1498 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1499 1500 return IRQ_HANDLED; 1501 } 1502 1503 /** 1504 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1505 * @irq: unused 1506 * @data: pointer to our q_vector struct for this interrupt vector 1507 **/ 1508 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1509 { 1510 struct ixgbevf_q_vector *q_vector = data; 1511 1512 /* EIAM disabled interrupts (on this vector) for us */ 1513 if (q_vector->rx.ring || q_vector->tx.ring) 1514 napi_schedule_irqoff(&q_vector->napi); 1515 1516 return IRQ_HANDLED; 1517 } 1518 1519 /** 1520 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1521 * @adapter: board private structure 1522 * 1523 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1524 * interrupts from the kernel. 1525 **/ 1526 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1527 { 1528 struct net_device *netdev = adapter->netdev; 1529 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1530 unsigned int ri = 0, ti = 0; 1531 int vector, err; 1532 1533 for (vector = 0; vector < q_vectors; vector++) { 1534 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1535 struct msix_entry *entry = &adapter->msix_entries[vector]; 1536 1537 if (q_vector->tx.ring && q_vector->rx.ring) { 1538 snprintf(q_vector->name, sizeof(q_vector->name), 1539 "%s-TxRx-%u", netdev->name, ri++); 1540 ti++; 1541 } else if (q_vector->rx.ring) { 1542 snprintf(q_vector->name, sizeof(q_vector->name), 1543 "%s-rx-%u", netdev->name, ri++); 1544 } else if (q_vector->tx.ring) { 1545 snprintf(q_vector->name, sizeof(q_vector->name), 1546 "%s-tx-%u", netdev->name, ti++); 1547 } else { 1548 /* skip this unused q_vector */ 1549 continue; 1550 } 1551 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1552 q_vector->name, q_vector); 1553 if (err) { 1554 hw_dbg(&adapter->hw, 1555 "request_irq failed for MSIX interrupt Error: %d\n", 1556 err); 1557 goto free_queue_irqs; 1558 } 1559 } 1560 1561 err = request_irq(adapter->msix_entries[vector].vector, 1562 &ixgbevf_msix_other, 0, netdev->name, adapter); 1563 if (err) { 1564 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1565 err); 1566 goto free_queue_irqs; 1567 } 1568 1569 return 0; 1570 1571 free_queue_irqs: 1572 while (vector) { 1573 vector--; 1574 free_irq(adapter->msix_entries[vector].vector, 1575 adapter->q_vector[vector]); 1576 } 1577 /* This failure is non-recoverable - it indicates the system is 1578 * out of MSIX vector resources and the VF driver cannot run 1579 * without them. Set the number of msix vectors to zero 1580 * indicating that not enough can be allocated. The error 1581 * will be returned to the user indicating device open failed. 1582 * Any further attempts to force the driver to open will also 1583 * fail. The only way to recover is to unload the driver and 1584 * reload it again. If the system has recovered some MSIX 1585 * vectors then it may succeed. 1586 */ 1587 adapter->num_msix_vectors = 0; 1588 return err; 1589 } 1590 1591 /** 1592 * ixgbevf_request_irq - initialize interrupts 1593 * @adapter: board private structure 1594 * 1595 * Attempts to configure interrupts using the best available 1596 * capabilities of the hardware and kernel. 1597 **/ 1598 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1599 { 1600 int err = ixgbevf_request_msix_irqs(adapter); 1601 1602 if (err) 1603 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1604 1605 return err; 1606 } 1607 1608 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1609 { 1610 int i, q_vectors; 1611 1612 if (!adapter->msix_entries) 1613 return; 1614 1615 q_vectors = adapter->num_msix_vectors; 1616 i = q_vectors - 1; 1617 1618 free_irq(adapter->msix_entries[i].vector, adapter); 1619 i--; 1620 1621 for (; i >= 0; i--) { 1622 /* free only the irqs that were actually requested */ 1623 if (!adapter->q_vector[i]->rx.ring && 1624 !adapter->q_vector[i]->tx.ring) 1625 continue; 1626 1627 free_irq(adapter->msix_entries[i].vector, 1628 adapter->q_vector[i]); 1629 } 1630 } 1631 1632 /** 1633 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1634 * @adapter: board private structure 1635 **/ 1636 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1637 { 1638 struct ixgbe_hw *hw = &adapter->hw; 1639 int i; 1640 1641 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1642 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1643 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1644 1645 IXGBE_WRITE_FLUSH(hw); 1646 1647 for (i = 0; i < adapter->num_msix_vectors; i++) 1648 synchronize_irq(adapter->msix_entries[i].vector); 1649 } 1650 1651 /** 1652 * ixgbevf_irq_enable - Enable default interrupt generation settings 1653 * @adapter: board private structure 1654 **/ 1655 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1656 { 1657 struct ixgbe_hw *hw = &adapter->hw; 1658 1659 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1660 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1661 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1662 } 1663 1664 /** 1665 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1666 * @adapter: board private structure 1667 * @ring: structure containing ring specific data 1668 * 1669 * Configure the Tx descriptor ring after a reset. 1670 **/ 1671 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1672 struct ixgbevf_ring *ring) 1673 { 1674 struct ixgbe_hw *hw = &adapter->hw; 1675 u64 tdba = ring->dma; 1676 int wait_loop = 10; 1677 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1678 u8 reg_idx = ring->reg_idx; 1679 1680 /* disable queue to avoid issues while updating state */ 1681 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1682 IXGBE_WRITE_FLUSH(hw); 1683 1684 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1685 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1686 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1687 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1688 1689 /* disable head writeback */ 1690 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1691 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1692 1693 /* enable relaxed ordering */ 1694 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1695 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1696 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1697 1698 /* reset head and tail pointers */ 1699 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1700 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1701 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1702 1703 /* reset ntu and ntc to place SW in sync with hardwdare */ 1704 ring->next_to_clean = 0; 1705 ring->next_to_use = 0; 1706 1707 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1708 * to or less than the number of on chip descriptors, which is 1709 * currently 40. 1710 */ 1711 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1712 1713 /* Setting PTHRESH to 32 both improves performance */ 1714 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1715 32; /* PTHRESH = 32 */ 1716 1717 /* reinitialize tx_buffer_info */ 1718 memset(ring->tx_buffer_info, 0, 1719 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1720 1721 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1722 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1723 1724 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1725 1726 /* poll to verify queue is enabled */ 1727 do { 1728 usleep_range(1000, 2000); 1729 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1730 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1731 if (!wait_loop) 1732 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1733 } 1734 1735 /** 1736 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1737 * @adapter: board private structure 1738 * 1739 * Configure the Tx unit of the MAC after a reset. 1740 **/ 1741 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1742 { 1743 u32 i; 1744 1745 /* Setup the HW Tx Head and Tail descriptor pointers */ 1746 for (i = 0; i < adapter->num_tx_queues; i++) 1747 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1748 for (i = 0; i < adapter->num_xdp_queues; i++) 1749 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1750 } 1751 1752 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1753 1754 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1755 struct ixgbevf_ring *ring, int index) 1756 { 1757 struct ixgbe_hw *hw = &adapter->hw; 1758 u32 srrctl; 1759 1760 srrctl = IXGBE_SRRCTL_DROP_EN; 1761 1762 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1763 if (ring_uses_large_buffer(ring)) 1764 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1765 else 1766 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1767 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1768 1769 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1770 } 1771 1772 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1773 { 1774 struct ixgbe_hw *hw = &adapter->hw; 1775 1776 /* PSRTYPE must be initialized in 82599 */ 1777 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1778 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1779 IXGBE_PSRTYPE_L2HDR; 1780 1781 if (adapter->num_rx_queues > 1) 1782 psrtype |= BIT(29); 1783 1784 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1785 } 1786 1787 #define IXGBEVF_MAX_RX_DESC_POLL 10 1788 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1789 struct ixgbevf_ring *ring) 1790 { 1791 struct ixgbe_hw *hw = &adapter->hw; 1792 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1793 u32 rxdctl; 1794 u8 reg_idx = ring->reg_idx; 1795 1796 if (IXGBE_REMOVED(hw->hw_addr)) 1797 return; 1798 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1799 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1800 1801 /* write value back with RXDCTL.ENABLE bit cleared */ 1802 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1803 1804 /* the hardware may take up to 100us to really disable the Rx queue */ 1805 do { 1806 udelay(10); 1807 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1808 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1809 1810 if (!wait_loop) 1811 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1812 reg_idx); 1813 } 1814 1815 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1816 struct ixgbevf_ring *ring) 1817 { 1818 struct ixgbe_hw *hw = &adapter->hw; 1819 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1820 u32 rxdctl; 1821 u8 reg_idx = ring->reg_idx; 1822 1823 if (IXGBE_REMOVED(hw->hw_addr)) 1824 return; 1825 do { 1826 usleep_range(1000, 2000); 1827 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1828 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1829 1830 if (!wait_loop) 1831 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1832 reg_idx); 1833 } 1834 1835 /** 1836 * ixgbevf_init_rss_key - Initialize adapter RSS key 1837 * @adapter: device handle 1838 * 1839 * Allocates and initializes the RSS key if it is not allocated. 1840 **/ 1841 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1842 { 1843 u32 *rss_key; 1844 1845 if (!adapter->rss_key) { 1846 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1847 if (unlikely(!rss_key)) 1848 return -ENOMEM; 1849 1850 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1851 adapter->rss_key = rss_key; 1852 } 1853 1854 return 0; 1855 } 1856 1857 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1858 { 1859 struct ixgbe_hw *hw = &adapter->hw; 1860 u32 vfmrqc = 0, vfreta = 0; 1861 u16 rss_i = adapter->num_rx_queues; 1862 u8 i, j; 1863 1864 /* Fill out hash function seeds */ 1865 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1866 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1867 1868 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1869 if (j == rss_i) 1870 j = 0; 1871 1872 adapter->rss_indir_tbl[i] = j; 1873 1874 vfreta |= j << (i & 0x3) * 8; 1875 if ((i & 3) == 3) { 1876 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1877 vfreta = 0; 1878 } 1879 } 1880 1881 /* Perform hash on these packet types */ 1882 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1883 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1884 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1885 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1886 1887 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1888 1889 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1890 } 1891 1892 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1893 struct ixgbevf_ring *ring) 1894 { 1895 struct ixgbe_hw *hw = &adapter->hw; 1896 union ixgbe_adv_rx_desc *rx_desc; 1897 u64 rdba = ring->dma; 1898 u32 rxdctl; 1899 u8 reg_idx = ring->reg_idx; 1900 1901 /* disable queue to avoid issues while updating state */ 1902 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1903 ixgbevf_disable_rx_queue(adapter, ring); 1904 1905 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1906 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1907 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1908 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1909 1910 #ifndef CONFIG_SPARC 1911 /* enable relaxed ordering */ 1912 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1913 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1914 #else 1915 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1916 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1917 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1918 #endif 1919 1920 /* reset head and tail pointers */ 1921 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1922 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1923 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1924 1925 /* initialize rx_buffer_info */ 1926 memset(ring->rx_buffer_info, 0, 1927 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1928 1929 /* initialize Rx descriptor 0 */ 1930 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1931 rx_desc->wb.upper.length = 0; 1932 1933 /* reset ntu and ntc to place SW in sync with hardwdare */ 1934 ring->next_to_clean = 0; 1935 ring->next_to_use = 0; 1936 ring->next_to_alloc = 0; 1937 1938 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1939 1940 /* RXDCTL.RLPML does not work on 82599 */ 1941 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1942 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1943 IXGBE_RXDCTL_RLPML_EN); 1944 1945 #if (PAGE_SIZE < 8192) 1946 /* Limit the maximum frame size so we don't overrun the skb */ 1947 if (ring_uses_build_skb(ring) && 1948 !ring_uses_large_buffer(ring)) 1949 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1950 IXGBE_RXDCTL_RLPML_EN; 1951 #endif 1952 } 1953 1954 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1955 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1956 1957 ixgbevf_rx_desc_queue_enable(adapter, ring); 1958 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1959 } 1960 1961 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1962 struct ixgbevf_ring *rx_ring) 1963 { 1964 struct net_device *netdev = adapter->netdev; 1965 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1966 1967 /* set build_skb and buffer size flags */ 1968 clear_ring_build_skb_enabled(rx_ring); 1969 clear_ring_uses_large_buffer(rx_ring); 1970 1971 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1972 return; 1973 1974 set_ring_build_skb_enabled(rx_ring); 1975 1976 if (PAGE_SIZE < 8192) { 1977 if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB) 1978 return; 1979 1980 set_ring_uses_large_buffer(rx_ring); 1981 } 1982 } 1983 1984 /** 1985 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 1986 * @adapter: board private structure 1987 * 1988 * Configure the Rx unit of the MAC after a reset. 1989 **/ 1990 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 1991 { 1992 struct ixgbe_hw *hw = &adapter->hw; 1993 struct net_device *netdev = adapter->netdev; 1994 int i, ret; 1995 1996 ixgbevf_setup_psrtype(adapter); 1997 if (hw->mac.type >= ixgbe_mac_X550_vf) 1998 ixgbevf_setup_vfmrqc(adapter); 1999 2000 spin_lock_bh(&adapter->mbx_lock); 2001 /* notify the PF of our intent to use this size of frame */ 2002 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 2003 spin_unlock_bh(&adapter->mbx_lock); 2004 if (ret) 2005 dev_err(&adapter->pdev->dev, 2006 "Failed to set MTU at %d\n", netdev->mtu); 2007 2008 /* Setup the HW Rx Head and Tail Descriptor Pointers and 2009 * the Base and Length of the Rx Descriptor Ring 2010 */ 2011 for (i = 0; i < adapter->num_rx_queues; i++) { 2012 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2013 2014 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2015 ixgbevf_configure_rx_ring(adapter, rx_ring); 2016 } 2017 } 2018 2019 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2020 __be16 proto, u16 vid) 2021 { 2022 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2023 struct ixgbe_hw *hw = &adapter->hw; 2024 int err; 2025 2026 spin_lock_bh(&adapter->mbx_lock); 2027 2028 /* add VID to filter table */ 2029 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2030 2031 spin_unlock_bh(&adapter->mbx_lock); 2032 2033 /* translate error return types so error makes sense */ 2034 if (err == IXGBE_ERR_MBX) 2035 return -EIO; 2036 2037 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2038 return -EACCES; 2039 2040 set_bit(vid, adapter->active_vlans); 2041 2042 return err; 2043 } 2044 2045 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2046 __be16 proto, u16 vid) 2047 { 2048 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2049 struct ixgbe_hw *hw = &adapter->hw; 2050 int err; 2051 2052 spin_lock_bh(&adapter->mbx_lock); 2053 2054 /* remove VID from filter table */ 2055 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2056 2057 spin_unlock_bh(&adapter->mbx_lock); 2058 2059 clear_bit(vid, adapter->active_vlans); 2060 2061 return err; 2062 } 2063 2064 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2065 { 2066 u16 vid; 2067 2068 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2069 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2070 htons(ETH_P_8021Q), vid); 2071 } 2072 2073 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2074 { 2075 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2076 struct ixgbe_hw *hw = &adapter->hw; 2077 int count = 0; 2078 2079 if ((netdev_uc_count(netdev)) > 10) { 2080 pr_err("Too many unicast filters - No Space\n"); 2081 return -ENOSPC; 2082 } 2083 2084 if (!netdev_uc_empty(netdev)) { 2085 struct netdev_hw_addr *ha; 2086 2087 netdev_for_each_uc_addr(ha, netdev) { 2088 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2089 udelay(200); 2090 } 2091 } else { 2092 /* If the list is empty then send message to PF driver to 2093 * clear all MAC VLANs on this VF. 2094 */ 2095 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2096 } 2097 2098 return count; 2099 } 2100 2101 /** 2102 * ixgbevf_set_rx_mode - Multicast and unicast set 2103 * @netdev: network interface device structure 2104 * 2105 * The set_rx_method entry point is called whenever the multicast address 2106 * list, unicast address list or the network interface flags are updated. 2107 * This routine is responsible for configuring the hardware for proper 2108 * multicast mode and configuring requested unicast filters. 2109 **/ 2110 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2111 { 2112 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2113 struct ixgbe_hw *hw = &adapter->hw; 2114 unsigned int flags = netdev->flags; 2115 int xcast_mode; 2116 2117 /* request the most inclusive mode we need */ 2118 if (flags & IFF_PROMISC) 2119 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2120 else if (flags & IFF_ALLMULTI) 2121 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2122 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2123 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2124 else 2125 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2126 2127 spin_lock_bh(&adapter->mbx_lock); 2128 2129 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2130 2131 /* reprogram multicast list */ 2132 hw->mac.ops.update_mc_addr_list(hw, netdev); 2133 2134 ixgbevf_write_uc_addr_list(netdev); 2135 2136 spin_unlock_bh(&adapter->mbx_lock); 2137 } 2138 2139 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2140 { 2141 int q_idx; 2142 struct ixgbevf_q_vector *q_vector; 2143 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2144 2145 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2146 q_vector = adapter->q_vector[q_idx]; 2147 napi_enable(&q_vector->napi); 2148 } 2149 } 2150 2151 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2152 { 2153 int q_idx; 2154 struct ixgbevf_q_vector *q_vector; 2155 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2156 2157 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2158 q_vector = adapter->q_vector[q_idx]; 2159 napi_disable(&q_vector->napi); 2160 } 2161 } 2162 2163 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2164 { 2165 struct ixgbe_hw *hw = &adapter->hw; 2166 unsigned int def_q = 0; 2167 unsigned int num_tcs = 0; 2168 unsigned int num_rx_queues = adapter->num_rx_queues; 2169 unsigned int num_tx_queues = adapter->num_tx_queues; 2170 int err; 2171 2172 spin_lock_bh(&adapter->mbx_lock); 2173 2174 /* fetch queue configuration from the PF */ 2175 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2176 2177 spin_unlock_bh(&adapter->mbx_lock); 2178 2179 if (err) 2180 return err; 2181 2182 if (num_tcs > 1) { 2183 /* we need only one Tx queue */ 2184 num_tx_queues = 1; 2185 2186 /* update default Tx ring register index */ 2187 adapter->tx_ring[0]->reg_idx = def_q; 2188 2189 /* we need as many queues as traffic classes */ 2190 num_rx_queues = num_tcs; 2191 } 2192 2193 /* if we have a bad config abort request queue reset */ 2194 if ((adapter->num_rx_queues != num_rx_queues) || 2195 (adapter->num_tx_queues != num_tx_queues)) { 2196 /* force mailbox timeout to prevent further messages */ 2197 hw->mbx.timeout = 0; 2198 2199 /* wait for watchdog to come around and bail us out */ 2200 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2201 } 2202 2203 return 0; 2204 } 2205 2206 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2207 { 2208 ixgbevf_configure_dcb(adapter); 2209 2210 ixgbevf_set_rx_mode(adapter->netdev); 2211 2212 ixgbevf_restore_vlan(adapter); 2213 ixgbevf_ipsec_restore(adapter); 2214 2215 ixgbevf_configure_tx(adapter); 2216 ixgbevf_configure_rx(adapter); 2217 } 2218 2219 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2220 { 2221 /* Only save pre-reset stats if there are some */ 2222 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2223 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2224 adapter->stats.base_vfgprc; 2225 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2226 adapter->stats.base_vfgptc; 2227 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2228 adapter->stats.base_vfgorc; 2229 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2230 adapter->stats.base_vfgotc; 2231 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2232 adapter->stats.base_vfmprc; 2233 } 2234 } 2235 2236 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2237 { 2238 struct ixgbe_hw *hw = &adapter->hw; 2239 2240 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2241 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2242 adapter->stats.last_vfgorc |= 2243 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2244 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2245 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2246 adapter->stats.last_vfgotc |= 2247 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2248 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2249 2250 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2251 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2252 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2253 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2254 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2255 } 2256 2257 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2258 { 2259 struct ixgbe_hw *hw = &adapter->hw; 2260 int api[] = { ixgbe_mbox_api_14, 2261 ixgbe_mbox_api_13, 2262 ixgbe_mbox_api_12, 2263 ixgbe_mbox_api_11, 2264 ixgbe_mbox_api_10, 2265 ixgbe_mbox_api_unknown }; 2266 int err, idx = 0; 2267 2268 spin_lock_bh(&adapter->mbx_lock); 2269 2270 while (api[idx] != ixgbe_mbox_api_unknown) { 2271 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2272 if (!err) 2273 break; 2274 idx++; 2275 } 2276 2277 spin_unlock_bh(&adapter->mbx_lock); 2278 } 2279 2280 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2281 { 2282 struct net_device *netdev = adapter->netdev; 2283 struct ixgbe_hw *hw = &adapter->hw; 2284 2285 ixgbevf_configure_msix(adapter); 2286 2287 spin_lock_bh(&adapter->mbx_lock); 2288 2289 if (is_valid_ether_addr(hw->mac.addr)) 2290 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2291 else 2292 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2293 2294 spin_unlock_bh(&adapter->mbx_lock); 2295 2296 smp_mb__before_atomic(); 2297 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2298 ixgbevf_napi_enable_all(adapter); 2299 2300 /* clear any pending interrupts, may auto mask */ 2301 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2302 ixgbevf_irq_enable(adapter); 2303 2304 /* enable transmits */ 2305 netif_tx_start_all_queues(netdev); 2306 2307 ixgbevf_save_reset_stats(adapter); 2308 ixgbevf_init_last_counter_stats(adapter); 2309 2310 hw->mac.get_link_status = 1; 2311 mod_timer(&adapter->service_timer, jiffies); 2312 } 2313 2314 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2315 { 2316 ixgbevf_configure(adapter); 2317 2318 ixgbevf_up_complete(adapter); 2319 } 2320 2321 /** 2322 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2323 * @rx_ring: ring to free buffers from 2324 **/ 2325 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2326 { 2327 u16 i = rx_ring->next_to_clean; 2328 2329 /* Free Rx ring sk_buff */ 2330 if (rx_ring->skb) { 2331 dev_kfree_skb(rx_ring->skb); 2332 rx_ring->skb = NULL; 2333 } 2334 2335 /* Free all the Rx ring pages */ 2336 while (i != rx_ring->next_to_alloc) { 2337 struct ixgbevf_rx_buffer *rx_buffer; 2338 2339 rx_buffer = &rx_ring->rx_buffer_info[i]; 2340 2341 /* Invalidate cache lines that may have been written to by 2342 * device so that we avoid corrupting memory. 2343 */ 2344 dma_sync_single_range_for_cpu(rx_ring->dev, 2345 rx_buffer->dma, 2346 rx_buffer->page_offset, 2347 ixgbevf_rx_bufsz(rx_ring), 2348 DMA_FROM_DEVICE); 2349 2350 /* free resources associated with mapping */ 2351 dma_unmap_page_attrs(rx_ring->dev, 2352 rx_buffer->dma, 2353 ixgbevf_rx_pg_size(rx_ring), 2354 DMA_FROM_DEVICE, 2355 IXGBEVF_RX_DMA_ATTR); 2356 2357 __page_frag_cache_drain(rx_buffer->page, 2358 rx_buffer->pagecnt_bias); 2359 2360 i++; 2361 if (i == rx_ring->count) 2362 i = 0; 2363 } 2364 2365 rx_ring->next_to_alloc = 0; 2366 rx_ring->next_to_clean = 0; 2367 rx_ring->next_to_use = 0; 2368 } 2369 2370 /** 2371 * ixgbevf_clean_tx_ring - Free Tx Buffers 2372 * @tx_ring: ring to be cleaned 2373 **/ 2374 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2375 { 2376 u16 i = tx_ring->next_to_clean; 2377 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2378 2379 while (i != tx_ring->next_to_use) { 2380 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2381 2382 /* Free all the Tx ring sk_buffs */ 2383 if (ring_is_xdp(tx_ring)) 2384 page_frag_free(tx_buffer->data); 2385 else 2386 dev_kfree_skb_any(tx_buffer->skb); 2387 2388 /* unmap skb header data */ 2389 dma_unmap_single(tx_ring->dev, 2390 dma_unmap_addr(tx_buffer, dma), 2391 dma_unmap_len(tx_buffer, len), 2392 DMA_TO_DEVICE); 2393 2394 /* check for eop_desc to determine the end of the packet */ 2395 eop_desc = tx_buffer->next_to_watch; 2396 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2397 2398 /* unmap remaining buffers */ 2399 while (tx_desc != eop_desc) { 2400 tx_buffer++; 2401 tx_desc++; 2402 i++; 2403 if (unlikely(i == tx_ring->count)) { 2404 i = 0; 2405 tx_buffer = tx_ring->tx_buffer_info; 2406 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2407 } 2408 2409 /* unmap any remaining paged data */ 2410 if (dma_unmap_len(tx_buffer, len)) 2411 dma_unmap_page(tx_ring->dev, 2412 dma_unmap_addr(tx_buffer, dma), 2413 dma_unmap_len(tx_buffer, len), 2414 DMA_TO_DEVICE); 2415 } 2416 2417 /* move us one more past the eop_desc for start of next pkt */ 2418 tx_buffer++; 2419 i++; 2420 if (unlikely(i == tx_ring->count)) { 2421 i = 0; 2422 tx_buffer = tx_ring->tx_buffer_info; 2423 } 2424 } 2425 2426 /* reset next_to_use and next_to_clean */ 2427 tx_ring->next_to_use = 0; 2428 tx_ring->next_to_clean = 0; 2429 2430 } 2431 2432 /** 2433 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2434 * @adapter: board private structure 2435 **/ 2436 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2437 { 2438 int i; 2439 2440 for (i = 0; i < adapter->num_rx_queues; i++) 2441 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2442 } 2443 2444 /** 2445 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2446 * @adapter: board private structure 2447 **/ 2448 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2449 { 2450 int i; 2451 2452 for (i = 0; i < adapter->num_tx_queues; i++) 2453 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2454 for (i = 0; i < adapter->num_xdp_queues; i++) 2455 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2456 } 2457 2458 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2459 { 2460 struct net_device *netdev = adapter->netdev; 2461 struct ixgbe_hw *hw = &adapter->hw; 2462 int i; 2463 2464 /* signal that we are down to the interrupt handler */ 2465 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2466 return; /* do nothing if already down */ 2467 2468 /* disable all enabled Rx queues */ 2469 for (i = 0; i < adapter->num_rx_queues; i++) 2470 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2471 2472 usleep_range(10000, 20000); 2473 2474 netif_tx_stop_all_queues(netdev); 2475 2476 /* call carrier off first to avoid false dev_watchdog timeouts */ 2477 netif_carrier_off(netdev); 2478 netif_tx_disable(netdev); 2479 2480 ixgbevf_irq_disable(adapter); 2481 2482 ixgbevf_napi_disable_all(adapter); 2483 2484 del_timer_sync(&adapter->service_timer); 2485 2486 /* disable transmits in the hardware now that interrupts are off */ 2487 for (i = 0; i < adapter->num_tx_queues; i++) { 2488 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2489 2490 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2491 IXGBE_TXDCTL_SWFLSH); 2492 } 2493 2494 for (i = 0; i < adapter->num_xdp_queues; i++) { 2495 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2496 2497 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2498 IXGBE_TXDCTL_SWFLSH); 2499 } 2500 2501 if (!pci_channel_offline(adapter->pdev)) 2502 ixgbevf_reset(adapter); 2503 2504 ixgbevf_clean_all_tx_rings(adapter); 2505 ixgbevf_clean_all_rx_rings(adapter); 2506 } 2507 2508 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2509 { 2510 WARN_ON(in_interrupt()); 2511 2512 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2513 msleep(1); 2514 2515 ixgbevf_down(adapter); 2516 ixgbevf_up(adapter); 2517 2518 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2519 } 2520 2521 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2522 { 2523 struct ixgbe_hw *hw = &adapter->hw; 2524 struct net_device *netdev = adapter->netdev; 2525 2526 if (hw->mac.ops.reset_hw(hw)) { 2527 hw_dbg(hw, "PF still resetting\n"); 2528 } else { 2529 hw->mac.ops.init_hw(hw); 2530 ixgbevf_negotiate_api(adapter); 2531 } 2532 2533 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2534 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2535 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2536 } 2537 2538 adapter->last_reset = jiffies; 2539 } 2540 2541 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2542 int vectors) 2543 { 2544 int vector_threshold; 2545 2546 /* We'll want at least 2 (vector_threshold): 2547 * 1) TxQ[0] + RxQ[0] handler 2548 * 2) Other (Link Status Change, etc.) 2549 */ 2550 vector_threshold = MIN_MSIX_COUNT; 2551 2552 /* The more we get, the more we will assign to Tx/Rx Cleanup 2553 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2554 * Right now, we simply care about how many we'll get; we'll 2555 * set them up later while requesting irq's. 2556 */ 2557 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2558 vector_threshold, vectors); 2559 2560 if (vectors < 0) { 2561 dev_err(&adapter->pdev->dev, 2562 "Unable to allocate MSI-X interrupts\n"); 2563 kfree(adapter->msix_entries); 2564 adapter->msix_entries = NULL; 2565 return vectors; 2566 } 2567 2568 /* Adjust for only the vectors we'll use, which is minimum 2569 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2570 * vectors we were allocated. 2571 */ 2572 adapter->num_msix_vectors = vectors; 2573 2574 return 0; 2575 } 2576 2577 /** 2578 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2579 * @adapter: board private structure to initialize 2580 * 2581 * This is the top level queue allocation routine. The order here is very 2582 * important, starting with the "most" number of features turned on at once, 2583 * and ending with the smallest set of features. This way large combinations 2584 * can be allocated if they're turned on, and smaller combinations are the 2585 * fallthrough conditions. 2586 * 2587 **/ 2588 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2589 { 2590 struct ixgbe_hw *hw = &adapter->hw; 2591 unsigned int def_q = 0; 2592 unsigned int num_tcs = 0; 2593 int err; 2594 2595 /* Start with base case */ 2596 adapter->num_rx_queues = 1; 2597 adapter->num_tx_queues = 1; 2598 adapter->num_xdp_queues = 0; 2599 2600 spin_lock_bh(&adapter->mbx_lock); 2601 2602 /* fetch queue configuration from the PF */ 2603 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2604 2605 spin_unlock_bh(&adapter->mbx_lock); 2606 2607 if (err) 2608 return; 2609 2610 /* we need as many queues as traffic classes */ 2611 if (num_tcs > 1) { 2612 adapter->num_rx_queues = num_tcs; 2613 } else { 2614 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2615 2616 switch (hw->api_version) { 2617 case ixgbe_mbox_api_11: 2618 case ixgbe_mbox_api_12: 2619 case ixgbe_mbox_api_13: 2620 case ixgbe_mbox_api_14: 2621 if (adapter->xdp_prog && 2622 hw->mac.max_tx_queues == rss) 2623 rss = rss > 3 ? 2 : 1; 2624 2625 adapter->num_rx_queues = rss; 2626 adapter->num_tx_queues = rss; 2627 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2628 default: 2629 break; 2630 } 2631 } 2632 } 2633 2634 /** 2635 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2636 * @adapter: board private structure to initialize 2637 * 2638 * Attempt to configure the interrupts using the best available 2639 * capabilities of the hardware and the kernel. 2640 **/ 2641 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2642 { 2643 int vector, v_budget; 2644 2645 /* It's easy to be greedy for MSI-X vectors, but it really 2646 * doesn't do us much good if we have a lot more vectors 2647 * than CPU's. So let's be conservative and only ask for 2648 * (roughly) the same number of vectors as there are CPU's. 2649 * The default is to use pairs of vectors. 2650 */ 2651 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2652 v_budget = min_t(int, v_budget, num_online_cpus()); 2653 v_budget += NON_Q_VECTORS; 2654 2655 adapter->msix_entries = kcalloc(v_budget, 2656 sizeof(struct msix_entry), GFP_KERNEL); 2657 if (!adapter->msix_entries) 2658 return -ENOMEM; 2659 2660 for (vector = 0; vector < v_budget; vector++) 2661 adapter->msix_entries[vector].entry = vector; 2662 2663 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2664 * does not support any other modes, so we will simply fail here. Note 2665 * that we clean up the msix_entries pointer else-where. 2666 */ 2667 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2668 } 2669 2670 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2671 struct ixgbevf_ring_container *head) 2672 { 2673 ring->next = head->ring; 2674 head->ring = ring; 2675 head->count++; 2676 } 2677 2678 /** 2679 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2680 * @adapter: board private structure to initialize 2681 * @v_idx: index of vector in adapter struct 2682 * @txr_count: number of Tx rings for q vector 2683 * @txr_idx: index of first Tx ring to assign 2684 * @xdp_count: total number of XDP rings to allocate 2685 * @xdp_idx: index of first XDP ring to allocate 2686 * @rxr_count: number of Rx rings for q vector 2687 * @rxr_idx: index of first Rx ring to assign 2688 * 2689 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2690 **/ 2691 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2692 int txr_count, int txr_idx, 2693 int xdp_count, int xdp_idx, 2694 int rxr_count, int rxr_idx) 2695 { 2696 struct ixgbevf_q_vector *q_vector; 2697 int reg_idx = txr_idx + xdp_idx; 2698 struct ixgbevf_ring *ring; 2699 int ring_count, size; 2700 2701 ring_count = txr_count + xdp_count + rxr_count; 2702 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2703 2704 /* allocate q_vector and rings */ 2705 q_vector = kzalloc(size, GFP_KERNEL); 2706 if (!q_vector) 2707 return -ENOMEM; 2708 2709 /* initialize NAPI */ 2710 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64); 2711 2712 /* tie q_vector and adapter together */ 2713 adapter->q_vector[v_idx] = q_vector; 2714 q_vector->adapter = adapter; 2715 q_vector->v_idx = v_idx; 2716 2717 /* initialize pointer to rings */ 2718 ring = q_vector->ring; 2719 2720 while (txr_count) { 2721 /* assign generic ring traits */ 2722 ring->dev = &adapter->pdev->dev; 2723 ring->netdev = adapter->netdev; 2724 2725 /* configure backlink on ring */ 2726 ring->q_vector = q_vector; 2727 2728 /* update q_vector Tx values */ 2729 ixgbevf_add_ring(ring, &q_vector->tx); 2730 2731 /* apply Tx specific ring traits */ 2732 ring->count = adapter->tx_ring_count; 2733 ring->queue_index = txr_idx; 2734 ring->reg_idx = reg_idx; 2735 2736 /* assign ring to adapter */ 2737 adapter->tx_ring[txr_idx] = ring; 2738 2739 /* update count and index */ 2740 txr_count--; 2741 txr_idx++; 2742 reg_idx++; 2743 2744 /* push pointer to next ring */ 2745 ring++; 2746 } 2747 2748 while (xdp_count) { 2749 /* assign generic ring traits */ 2750 ring->dev = &adapter->pdev->dev; 2751 ring->netdev = adapter->netdev; 2752 2753 /* configure backlink on ring */ 2754 ring->q_vector = q_vector; 2755 2756 /* update q_vector Tx values */ 2757 ixgbevf_add_ring(ring, &q_vector->tx); 2758 2759 /* apply Tx specific ring traits */ 2760 ring->count = adapter->tx_ring_count; 2761 ring->queue_index = xdp_idx; 2762 ring->reg_idx = reg_idx; 2763 set_ring_xdp(ring); 2764 2765 /* assign ring to adapter */ 2766 adapter->xdp_ring[xdp_idx] = ring; 2767 2768 /* update count and index */ 2769 xdp_count--; 2770 xdp_idx++; 2771 reg_idx++; 2772 2773 /* push pointer to next ring */ 2774 ring++; 2775 } 2776 2777 while (rxr_count) { 2778 /* assign generic ring traits */ 2779 ring->dev = &adapter->pdev->dev; 2780 ring->netdev = adapter->netdev; 2781 2782 /* configure backlink on ring */ 2783 ring->q_vector = q_vector; 2784 2785 /* update q_vector Rx values */ 2786 ixgbevf_add_ring(ring, &q_vector->rx); 2787 2788 /* apply Rx specific ring traits */ 2789 ring->count = adapter->rx_ring_count; 2790 ring->queue_index = rxr_idx; 2791 ring->reg_idx = rxr_idx; 2792 2793 /* assign ring to adapter */ 2794 adapter->rx_ring[rxr_idx] = ring; 2795 2796 /* update count and index */ 2797 rxr_count--; 2798 rxr_idx++; 2799 2800 /* push pointer to next ring */ 2801 ring++; 2802 } 2803 2804 return 0; 2805 } 2806 2807 /** 2808 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2809 * @adapter: board private structure to initialize 2810 * @v_idx: index of vector in adapter struct 2811 * 2812 * This function frees the memory allocated to the q_vector. In addition if 2813 * NAPI is enabled it will delete any references to the NAPI struct prior 2814 * to freeing the q_vector. 2815 **/ 2816 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2817 { 2818 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2819 struct ixgbevf_ring *ring; 2820 2821 ixgbevf_for_each_ring(ring, q_vector->tx) { 2822 if (ring_is_xdp(ring)) 2823 adapter->xdp_ring[ring->queue_index] = NULL; 2824 else 2825 adapter->tx_ring[ring->queue_index] = NULL; 2826 } 2827 2828 ixgbevf_for_each_ring(ring, q_vector->rx) 2829 adapter->rx_ring[ring->queue_index] = NULL; 2830 2831 adapter->q_vector[v_idx] = NULL; 2832 netif_napi_del(&q_vector->napi); 2833 2834 /* ixgbevf_get_stats() might access the rings on this vector, 2835 * we must wait a grace period before freeing it. 2836 */ 2837 kfree_rcu(q_vector, rcu); 2838 } 2839 2840 /** 2841 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2842 * @adapter: board private structure to initialize 2843 * 2844 * We allocate one q_vector per queue interrupt. If allocation fails we 2845 * return -ENOMEM. 2846 **/ 2847 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2848 { 2849 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2850 int rxr_remaining = adapter->num_rx_queues; 2851 int txr_remaining = adapter->num_tx_queues; 2852 int xdp_remaining = adapter->num_xdp_queues; 2853 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2854 int err; 2855 2856 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2857 for (; rxr_remaining; v_idx++, q_vectors--) { 2858 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2859 2860 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2861 0, 0, 0, 0, rqpv, rxr_idx); 2862 if (err) 2863 goto err_out; 2864 2865 /* update counts and index */ 2866 rxr_remaining -= rqpv; 2867 rxr_idx += rqpv; 2868 } 2869 } 2870 2871 for (; q_vectors; v_idx++, q_vectors--) { 2872 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2873 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2874 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2875 2876 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2877 tqpv, txr_idx, 2878 xqpv, xdp_idx, 2879 rqpv, rxr_idx); 2880 2881 if (err) 2882 goto err_out; 2883 2884 /* update counts and index */ 2885 rxr_remaining -= rqpv; 2886 rxr_idx += rqpv; 2887 txr_remaining -= tqpv; 2888 txr_idx += tqpv; 2889 xdp_remaining -= xqpv; 2890 xdp_idx += xqpv; 2891 } 2892 2893 return 0; 2894 2895 err_out: 2896 while (v_idx) { 2897 v_idx--; 2898 ixgbevf_free_q_vector(adapter, v_idx); 2899 } 2900 2901 return -ENOMEM; 2902 } 2903 2904 /** 2905 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2906 * @adapter: board private structure to initialize 2907 * 2908 * This function frees the memory allocated to the q_vectors. In addition if 2909 * NAPI is enabled it will delete any references to the NAPI struct prior 2910 * to freeing the q_vector. 2911 **/ 2912 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2913 { 2914 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2915 2916 while (q_vectors) { 2917 q_vectors--; 2918 ixgbevf_free_q_vector(adapter, q_vectors); 2919 } 2920 } 2921 2922 /** 2923 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2924 * @adapter: board private structure 2925 * 2926 **/ 2927 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2928 { 2929 if (!adapter->msix_entries) 2930 return; 2931 2932 pci_disable_msix(adapter->pdev); 2933 kfree(adapter->msix_entries); 2934 adapter->msix_entries = NULL; 2935 } 2936 2937 /** 2938 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2939 * @adapter: board private structure to initialize 2940 * 2941 **/ 2942 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2943 { 2944 int err; 2945 2946 /* Number of supported queues */ 2947 ixgbevf_set_num_queues(adapter); 2948 2949 err = ixgbevf_set_interrupt_capability(adapter); 2950 if (err) { 2951 hw_dbg(&adapter->hw, 2952 "Unable to setup interrupt capabilities\n"); 2953 goto err_set_interrupt; 2954 } 2955 2956 err = ixgbevf_alloc_q_vectors(adapter); 2957 if (err) { 2958 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2959 goto err_alloc_q_vectors; 2960 } 2961 2962 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2963 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2964 adapter->num_rx_queues, adapter->num_tx_queues, 2965 adapter->num_xdp_queues); 2966 2967 set_bit(__IXGBEVF_DOWN, &adapter->state); 2968 2969 return 0; 2970 err_alloc_q_vectors: 2971 ixgbevf_reset_interrupt_capability(adapter); 2972 err_set_interrupt: 2973 return err; 2974 } 2975 2976 /** 2977 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2978 * @adapter: board private structure to clear interrupt scheme on 2979 * 2980 * We go through and clear interrupt specific resources and reset the structure 2981 * to pre-load conditions 2982 **/ 2983 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2984 { 2985 adapter->num_tx_queues = 0; 2986 adapter->num_xdp_queues = 0; 2987 adapter->num_rx_queues = 0; 2988 2989 ixgbevf_free_q_vectors(adapter); 2990 ixgbevf_reset_interrupt_capability(adapter); 2991 } 2992 2993 /** 2994 * ixgbevf_sw_init - Initialize general software structures 2995 * @adapter: board private structure to initialize 2996 * 2997 * ixgbevf_sw_init initializes the Adapter private data structure. 2998 * Fields are initialized based on PCI device information and 2999 * OS network device settings (MTU size). 3000 **/ 3001 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 3002 { 3003 struct ixgbe_hw *hw = &adapter->hw; 3004 struct pci_dev *pdev = adapter->pdev; 3005 struct net_device *netdev = adapter->netdev; 3006 int err; 3007 3008 /* PCI config space info */ 3009 hw->vendor_id = pdev->vendor; 3010 hw->device_id = pdev->device; 3011 hw->revision_id = pdev->revision; 3012 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3013 hw->subsystem_device_id = pdev->subsystem_device; 3014 3015 hw->mbx.ops.init_params(hw); 3016 3017 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3018 err = ixgbevf_init_rss_key(adapter); 3019 if (err) 3020 goto out; 3021 } 3022 3023 /* assume legacy case in which PF would only give VF 2 queues */ 3024 hw->mac.max_tx_queues = 2; 3025 hw->mac.max_rx_queues = 2; 3026 3027 /* lock to protect mailbox accesses */ 3028 spin_lock_init(&adapter->mbx_lock); 3029 3030 err = hw->mac.ops.reset_hw(hw); 3031 if (err) { 3032 dev_info(&pdev->dev, 3033 "PF still in reset state. Is the PF interface up?\n"); 3034 } else { 3035 err = hw->mac.ops.init_hw(hw); 3036 if (err) { 3037 pr_err("init_shared_code failed: %d\n", err); 3038 goto out; 3039 } 3040 ixgbevf_negotiate_api(adapter); 3041 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3042 if (err) 3043 dev_info(&pdev->dev, "Error reading MAC address\n"); 3044 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3045 dev_info(&pdev->dev, 3046 "MAC address not assigned by administrator.\n"); 3047 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 3048 } 3049 3050 if (!is_valid_ether_addr(netdev->dev_addr)) { 3051 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3052 eth_hw_addr_random(netdev); 3053 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3054 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3055 } 3056 3057 /* Enable dynamic interrupt throttling rates */ 3058 adapter->rx_itr_setting = 1; 3059 adapter->tx_itr_setting = 1; 3060 3061 /* set default ring sizes */ 3062 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3063 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3064 3065 set_bit(__IXGBEVF_DOWN, &adapter->state); 3066 return 0; 3067 3068 out: 3069 return err; 3070 } 3071 3072 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3073 { \ 3074 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3075 if (current_counter < last_counter) \ 3076 counter += 0x100000000LL; \ 3077 last_counter = current_counter; \ 3078 counter &= 0xFFFFFFFF00000000LL; \ 3079 counter |= current_counter; \ 3080 } 3081 3082 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3083 { \ 3084 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3085 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3086 u64 current_counter = (current_counter_msb << 32) | \ 3087 current_counter_lsb; \ 3088 if (current_counter < last_counter) \ 3089 counter += 0x1000000000LL; \ 3090 last_counter = current_counter; \ 3091 counter &= 0xFFFFFFF000000000LL; \ 3092 counter |= current_counter; \ 3093 } 3094 /** 3095 * ixgbevf_update_stats - Update the board statistics counters. 3096 * @adapter: board private structure 3097 **/ 3098 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3099 { 3100 struct ixgbe_hw *hw = &adapter->hw; 3101 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3102 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3103 int i; 3104 3105 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3106 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3107 return; 3108 3109 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3110 adapter->stats.vfgprc); 3111 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3112 adapter->stats.vfgptc); 3113 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3114 adapter->stats.last_vfgorc, 3115 adapter->stats.vfgorc); 3116 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3117 adapter->stats.last_vfgotc, 3118 adapter->stats.vfgotc); 3119 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3120 adapter->stats.vfmprc); 3121 3122 for (i = 0; i < adapter->num_rx_queues; i++) { 3123 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3124 3125 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3126 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3127 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3128 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3129 } 3130 3131 adapter->hw_csum_rx_error = hw_csum_rx_error; 3132 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3133 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3134 adapter->alloc_rx_page = alloc_rx_page; 3135 } 3136 3137 /** 3138 * ixgbevf_service_timer - Timer Call-back 3139 * @t: pointer to timer_list struct 3140 **/ 3141 static void ixgbevf_service_timer(struct timer_list *t) 3142 { 3143 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3144 service_timer); 3145 3146 /* Reset the timer */ 3147 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3148 3149 ixgbevf_service_event_schedule(adapter); 3150 } 3151 3152 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3153 { 3154 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3155 return; 3156 3157 rtnl_lock(); 3158 /* If we're already down or resetting, just bail */ 3159 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3160 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3161 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3162 rtnl_unlock(); 3163 return; 3164 } 3165 3166 adapter->tx_timeout_count++; 3167 3168 ixgbevf_reinit_locked(adapter); 3169 rtnl_unlock(); 3170 } 3171 3172 /** 3173 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3174 * @adapter: pointer to the device adapter structure 3175 * 3176 * This function serves two purposes. First it strobes the interrupt lines 3177 * in order to make certain interrupts are occurring. Secondly it sets the 3178 * bits needed to check for TX hangs. As a result we should immediately 3179 * determine if a hang has occurred. 3180 **/ 3181 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3182 { 3183 struct ixgbe_hw *hw = &adapter->hw; 3184 u32 eics = 0; 3185 int i; 3186 3187 /* If we're down or resetting, just bail */ 3188 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3189 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3190 return; 3191 3192 /* Force detection of hung controller */ 3193 if (netif_carrier_ok(adapter->netdev)) { 3194 for (i = 0; i < adapter->num_tx_queues; i++) 3195 set_check_for_tx_hang(adapter->tx_ring[i]); 3196 for (i = 0; i < adapter->num_xdp_queues; i++) 3197 set_check_for_tx_hang(adapter->xdp_ring[i]); 3198 } 3199 3200 /* get one bit for every active Tx/Rx interrupt vector */ 3201 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3202 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3203 3204 if (qv->rx.ring || qv->tx.ring) 3205 eics |= BIT(i); 3206 } 3207 3208 /* Cause software interrupt to ensure rings are cleaned */ 3209 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3210 } 3211 3212 /** 3213 * ixgbevf_watchdog_update_link - update the link status 3214 * @adapter: pointer to the device adapter structure 3215 **/ 3216 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3217 { 3218 struct ixgbe_hw *hw = &adapter->hw; 3219 u32 link_speed = adapter->link_speed; 3220 bool link_up = adapter->link_up; 3221 s32 err; 3222 3223 spin_lock_bh(&adapter->mbx_lock); 3224 3225 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3226 3227 spin_unlock_bh(&adapter->mbx_lock); 3228 3229 /* if check for link returns error we will need to reset */ 3230 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3231 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3232 link_up = false; 3233 } 3234 3235 adapter->link_up = link_up; 3236 adapter->link_speed = link_speed; 3237 } 3238 3239 /** 3240 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3241 * print link up message 3242 * @adapter: pointer to the device adapter structure 3243 **/ 3244 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3245 { 3246 struct net_device *netdev = adapter->netdev; 3247 3248 /* only continue if link was previously down */ 3249 if (netif_carrier_ok(netdev)) 3250 return; 3251 3252 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3253 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3254 "10 Gbps" : 3255 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3256 "1 Gbps" : 3257 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3258 "100 Mbps" : 3259 "unknown speed"); 3260 3261 netif_carrier_on(netdev); 3262 } 3263 3264 /** 3265 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3266 * print link down message 3267 * @adapter: pointer to the adapter structure 3268 **/ 3269 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3270 { 3271 struct net_device *netdev = adapter->netdev; 3272 3273 adapter->link_speed = 0; 3274 3275 /* only continue if link was up previously */ 3276 if (!netif_carrier_ok(netdev)) 3277 return; 3278 3279 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3280 3281 netif_carrier_off(netdev); 3282 } 3283 3284 /** 3285 * ixgbevf_watchdog_subtask - worker thread to bring link up 3286 * @adapter: board private structure 3287 **/ 3288 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3289 { 3290 /* if interface is down do nothing */ 3291 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3292 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3293 return; 3294 3295 ixgbevf_watchdog_update_link(adapter); 3296 3297 if (adapter->link_up) 3298 ixgbevf_watchdog_link_is_up(adapter); 3299 else 3300 ixgbevf_watchdog_link_is_down(adapter); 3301 3302 ixgbevf_update_stats(adapter); 3303 } 3304 3305 /** 3306 * ixgbevf_service_task - manages and runs subtasks 3307 * @work: pointer to work_struct containing our data 3308 **/ 3309 static void ixgbevf_service_task(struct work_struct *work) 3310 { 3311 struct ixgbevf_adapter *adapter = container_of(work, 3312 struct ixgbevf_adapter, 3313 service_task); 3314 struct ixgbe_hw *hw = &adapter->hw; 3315 3316 if (IXGBE_REMOVED(hw->hw_addr)) { 3317 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3318 rtnl_lock(); 3319 ixgbevf_down(adapter); 3320 rtnl_unlock(); 3321 } 3322 return; 3323 } 3324 3325 ixgbevf_queue_reset_subtask(adapter); 3326 ixgbevf_reset_subtask(adapter); 3327 ixgbevf_watchdog_subtask(adapter); 3328 ixgbevf_check_hang_subtask(adapter); 3329 3330 ixgbevf_service_event_complete(adapter); 3331 } 3332 3333 /** 3334 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3335 * @tx_ring: Tx descriptor ring for a specific queue 3336 * 3337 * Free all transmit software resources 3338 **/ 3339 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3340 { 3341 ixgbevf_clean_tx_ring(tx_ring); 3342 3343 vfree(tx_ring->tx_buffer_info); 3344 tx_ring->tx_buffer_info = NULL; 3345 3346 /* if not set, then don't free */ 3347 if (!tx_ring->desc) 3348 return; 3349 3350 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3351 tx_ring->dma); 3352 3353 tx_ring->desc = NULL; 3354 } 3355 3356 /** 3357 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3358 * @adapter: board private structure 3359 * 3360 * Free all transmit software resources 3361 **/ 3362 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3363 { 3364 int i; 3365 3366 for (i = 0; i < adapter->num_tx_queues; i++) 3367 if (adapter->tx_ring[i]->desc) 3368 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3369 for (i = 0; i < adapter->num_xdp_queues; i++) 3370 if (adapter->xdp_ring[i]->desc) 3371 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3372 } 3373 3374 /** 3375 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3376 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3377 * 3378 * Return 0 on success, negative on failure 3379 **/ 3380 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3381 { 3382 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3383 int size; 3384 3385 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3386 tx_ring->tx_buffer_info = vmalloc(size); 3387 if (!tx_ring->tx_buffer_info) 3388 goto err; 3389 3390 u64_stats_init(&tx_ring->syncp); 3391 3392 /* round up to nearest 4K */ 3393 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3394 tx_ring->size = ALIGN(tx_ring->size, 4096); 3395 3396 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3397 &tx_ring->dma, GFP_KERNEL); 3398 if (!tx_ring->desc) 3399 goto err; 3400 3401 return 0; 3402 3403 err: 3404 vfree(tx_ring->tx_buffer_info); 3405 tx_ring->tx_buffer_info = NULL; 3406 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3407 return -ENOMEM; 3408 } 3409 3410 /** 3411 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3412 * @adapter: board private structure 3413 * 3414 * If this function returns with an error, then it's possible one or 3415 * more of the rings is populated (while the rest are not). It is the 3416 * callers duty to clean those orphaned rings. 3417 * 3418 * Return 0 on success, negative on failure 3419 **/ 3420 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3421 { 3422 int i, j = 0, err = 0; 3423 3424 for (i = 0; i < adapter->num_tx_queues; i++) { 3425 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3426 if (!err) 3427 continue; 3428 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3429 goto err_setup_tx; 3430 } 3431 3432 for (j = 0; j < adapter->num_xdp_queues; j++) { 3433 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3434 if (!err) 3435 continue; 3436 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3437 goto err_setup_tx; 3438 } 3439 3440 return 0; 3441 err_setup_tx: 3442 /* rewind the index freeing the rings as we go */ 3443 while (j--) 3444 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3445 while (i--) 3446 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3447 3448 return err; 3449 } 3450 3451 /** 3452 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3453 * @adapter: board private structure 3454 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3455 * 3456 * Returns 0 on success, negative on failure 3457 **/ 3458 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3459 struct ixgbevf_ring *rx_ring) 3460 { 3461 int size; 3462 3463 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3464 rx_ring->rx_buffer_info = vmalloc(size); 3465 if (!rx_ring->rx_buffer_info) 3466 goto err; 3467 3468 u64_stats_init(&rx_ring->syncp); 3469 3470 /* Round up to nearest 4K */ 3471 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3472 rx_ring->size = ALIGN(rx_ring->size, 4096); 3473 3474 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3475 &rx_ring->dma, GFP_KERNEL); 3476 3477 if (!rx_ring->desc) 3478 goto err; 3479 3480 /* XDP RX-queue info */ 3481 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3482 rx_ring->queue_index) < 0) 3483 goto err; 3484 3485 rx_ring->xdp_prog = adapter->xdp_prog; 3486 3487 return 0; 3488 err: 3489 vfree(rx_ring->rx_buffer_info); 3490 rx_ring->rx_buffer_info = NULL; 3491 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3492 return -ENOMEM; 3493 } 3494 3495 /** 3496 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3497 * @adapter: board private structure 3498 * 3499 * If this function returns with an error, then it's possible one or 3500 * more of the rings is populated (while the rest are not). It is the 3501 * callers duty to clean those orphaned rings. 3502 * 3503 * Return 0 on success, negative on failure 3504 **/ 3505 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3506 { 3507 int i, err = 0; 3508 3509 for (i = 0; i < adapter->num_rx_queues; i++) { 3510 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3511 if (!err) 3512 continue; 3513 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3514 goto err_setup_rx; 3515 } 3516 3517 return 0; 3518 err_setup_rx: 3519 /* rewind the index freeing the rings as we go */ 3520 while (i--) 3521 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3522 return err; 3523 } 3524 3525 /** 3526 * ixgbevf_free_rx_resources - Free Rx Resources 3527 * @rx_ring: ring to clean the resources from 3528 * 3529 * Free all receive software resources 3530 **/ 3531 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3532 { 3533 ixgbevf_clean_rx_ring(rx_ring); 3534 3535 rx_ring->xdp_prog = NULL; 3536 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3537 vfree(rx_ring->rx_buffer_info); 3538 rx_ring->rx_buffer_info = NULL; 3539 3540 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3541 rx_ring->dma); 3542 3543 rx_ring->desc = NULL; 3544 } 3545 3546 /** 3547 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3548 * @adapter: board private structure 3549 * 3550 * Free all receive software resources 3551 **/ 3552 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3553 { 3554 int i; 3555 3556 for (i = 0; i < adapter->num_rx_queues; i++) 3557 if (adapter->rx_ring[i]->desc) 3558 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3559 } 3560 3561 /** 3562 * ixgbevf_open - Called when a network interface is made active 3563 * @netdev: network interface device structure 3564 * 3565 * Returns 0 on success, negative value on failure 3566 * 3567 * The open entry point is called when a network interface is made 3568 * active by the system (IFF_UP). At this point all resources needed 3569 * for transmit and receive operations are allocated, the interrupt 3570 * handler is registered with the OS, the watchdog timer is started, 3571 * and the stack is notified that the interface is ready. 3572 **/ 3573 int ixgbevf_open(struct net_device *netdev) 3574 { 3575 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3576 struct ixgbe_hw *hw = &adapter->hw; 3577 int err; 3578 3579 /* A previous failure to open the device because of a lack of 3580 * available MSIX vector resources may have reset the number 3581 * of msix vectors variable to zero. The only way to recover 3582 * is to unload/reload the driver and hope that the system has 3583 * been able to recover some MSIX vector resources. 3584 */ 3585 if (!adapter->num_msix_vectors) 3586 return -ENOMEM; 3587 3588 if (hw->adapter_stopped) { 3589 ixgbevf_reset(adapter); 3590 /* if adapter is still stopped then PF isn't up and 3591 * the VF can't start. 3592 */ 3593 if (hw->adapter_stopped) { 3594 err = IXGBE_ERR_MBX; 3595 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3596 goto err_setup_reset; 3597 } 3598 } 3599 3600 /* disallow open during test */ 3601 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3602 return -EBUSY; 3603 3604 netif_carrier_off(netdev); 3605 3606 /* allocate transmit descriptors */ 3607 err = ixgbevf_setup_all_tx_resources(adapter); 3608 if (err) 3609 goto err_setup_tx; 3610 3611 /* allocate receive descriptors */ 3612 err = ixgbevf_setup_all_rx_resources(adapter); 3613 if (err) 3614 goto err_setup_rx; 3615 3616 ixgbevf_configure(adapter); 3617 3618 err = ixgbevf_request_irq(adapter); 3619 if (err) 3620 goto err_req_irq; 3621 3622 /* Notify the stack of the actual queue counts. */ 3623 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3624 if (err) 3625 goto err_set_queues; 3626 3627 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3628 if (err) 3629 goto err_set_queues; 3630 3631 ixgbevf_up_complete(adapter); 3632 3633 return 0; 3634 3635 err_set_queues: 3636 ixgbevf_free_irq(adapter); 3637 err_req_irq: 3638 ixgbevf_free_all_rx_resources(adapter); 3639 err_setup_rx: 3640 ixgbevf_free_all_tx_resources(adapter); 3641 err_setup_tx: 3642 ixgbevf_reset(adapter); 3643 err_setup_reset: 3644 3645 return err; 3646 } 3647 3648 /** 3649 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3650 * @adapter: the private adapter struct 3651 * 3652 * This function should contain the necessary work common to both suspending 3653 * and closing of the device. 3654 */ 3655 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3656 { 3657 ixgbevf_down(adapter); 3658 ixgbevf_free_irq(adapter); 3659 ixgbevf_free_all_tx_resources(adapter); 3660 ixgbevf_free_all_rx_resources(adapter); 3661 } 3662 3663 /** 3664 * ixgbevf_close - Disables a network interface 3665 * @netdev: network interface device structure 3666 * 3667 * Returns 0, this is not allowed to fail 3668 * 3669 * The close entry point is called when an interface is de-activated 3670 * by the OS. The hardware is still under the drivers control, but 3671 * needs to be disabled. A global MAC reset is issued to stop the 3672 * hardware, and all transmit and receive resources are freed. 3673 **/ 3674 int ixgbevf_close(struct net_device *netdev) 3675 { 3676 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3677 3678 if (netif_device_present(netdev)) 3679 ixgbevf_close_suspend(adapter); 3680 3681 return 0; 3682 } 3683 3684 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3685 { 3686 struct net_device *dev = adapter->netdev; 3687 3688 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3689 &adapter->state)) 3690 return; 3691 3692 /* if interface is down do nothing */ 3693 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3694 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3695 return; 3696 3697 /* Hardware has to reinitialize queues and interrupts to 3698 * match packet buffer alignment. Unfortunately, the 3699 * hardware is not flexible enough to do this dynamically. 3700 */ 3701 rtnl_lock(); 3702 3703 if (netif_running(dev)) 3704 ixgbevf_close(dev); 3705 3706 ixgbevf_clear_interrupt_scheme(adapter); 3707 ixgbevf_init_interrupt_scheme(adapter); 3708 3709 if (netif_running(dev)) 3710 ixgbevf_open(dev); 3711 3712 rtnl_unlock(); 3713 } 3714 3715 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3716 u32 vlan_macip_lens, u32 fceof_saidx, 3717 u32 type_tucmd, u32 mss_l4len_idx) 3718 { 3719 struct ixgbe_adv_tx_context_desc *context_desc; 3720 u16 i = tx_ring->next_to_use; 3721 3722 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3723 3724 i++; 3725 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3726 3727 /* set bits to identify this as an advanced context descriptor */ 3728 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3729 3730 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3731 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); 3732 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3733 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3734 } 3735 3736 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3737 struct ixgbevf_tx_buffer *first, 3738 u8 *hdr_len, 3739 struct ixgbevf_ipsec_tx_data *itd) 3740 { 3741 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3742 struct sk_buff *skb = first->skb; 3743 union { 3744 struct iphdr *v4; 3745 struct ipv6hdr *v6; 3746 unsigned char *hdr; 3747 } ip; 3748 union { 3749 struct tcphdr *tcp; 3750 unsigned char *hdr; 3751 } l4; 3752 u32 paylen, l4_offset; 3753 u32 fceof_saidx = 0; 3754 int err; 3755 3756 if (skb->ip_summed != CHECKSUM_PARTIAL) 3757 return 0; 3758 3759 if (!skb_is_gso(skb)) 3760 return 0; 3761 3762 err = skb_cow_head(skb, 0); 3763 if (err < 0) 3764 return err; 3765 3766 if (eth_p_mpls(first->protocol)) 3767 ip.hdr = skb_inner_network_header(skb); 3768 else 3769 ip.hdr = skb_network_header(skb); 3770 l4.hdr = skb_checksum_start(skb); 3771 3772 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3773 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3774 3775 /* initialize outer IP header fields */ 3776 if (ip.v4->version == 4) { 3777 unsigned char *csum_start = skb_checksum_start(skb); 3778 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3779 int len = csum_start - trans_start; 3780 3781 /* IP header will have to cancel out any data that 3782 * is not a part of the outer IP header, so set to 3783 * a reverse csum if needed, else init check to 0. 3784 */ 3785 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? 3786 csum_fold(csum_partial(trans_start, 3787 len, 0)) : 0; 3788 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3789 3790 ip.v4->tot_len = 0; 3791 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3792 IXGBE_TX_FLAGS_CSUM | 3793 IXGBE_TX_FLAGS_IPV4; 3794 } else { 3795 ip.v6->payload_len = 0; 3796 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3797 IXGBE_TX_FLAGS_CSUM; 3798 } 3799 3800 /* determine offset of inner transport header */ 3801 l4_offset = l4.hdr - skb->data; 3802 3803 /* compute length of segmentation header */ 3804 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3805 3806 /* remove payload length from inner checksum */ 3807 paylen = skb->len - l4_offset; 3808 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3809 3810 /* update gso size and bytecount with header size */ 3811 first->gso_segs = skb_shinfo(skb)->gso_segs; 3812 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3813 3814 /* mss_l4len_id: use 1 as index for TSO */ 3815 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3816 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3817 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3818 3819 fceof_saidx |= itd->pfsa; 3820 type_tucmd |= itd->flags | itd->trailer_len; 3821 3822 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3823 vlan_macip_lens = l4.hdr - ip.hdr; 3824 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3825 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3826 3827 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 3828 mss_l4len_idx); 3829 3830 return 1; 3831 } 3832 3833 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) 3834 { 3835 unsigned int offset = 0; 3836 3837 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 3838 3839 return offset == skb_checksum_start_offset(skb); 3840 } 3841 3842 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3843 struct ixgbevf_tx_buffer *first, 3844 struct ixgbevf_ipsec_tx_data *itd) 3845 { 3846 struct sk_buff *skb = first->skb; 3847 u32 vlan_macip_lens = 0; 3848 u32 fceof_saidx = 0; 3849 u32 type_tucmd = 0; 3850 3851 if (skb->ip_summed != CHECKSUM_PARTIAL) 3852 goto no_csum; 3853 3854 switch (skb->csum_offset) { 3855 case offsetof(struct tcphdr, check): 3856 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3857 /* fall through */ 3858 case offsetof(struct udphdr, check): 3859 break; 3860 case offsetof(struct sctphdr, checksum): 3861 /* validate that this is actually an SCTP request */ 3862 if (((first->protocol == htons(ETH_P_IP)) && 3863 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 3864 ((first->protocol == htons(ETH_P_IPV6)) && 3865 ixgbevf_ipv6_csum_is_sctp(skb))) { 3866 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3867 break; 3868 } 3869 /* fall through */ 3870 default: 3871 skb_checksum_help(skb); 3872 goto no_csum; 3873 } 3874 3875 if (first->protocol == htons(ETH_P_IP)) 3876 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3877 3878 /* update TX checksum flag */ 3879 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3880 vlan_macip_lens = skb_checksum_start_offset(skb) - 3881 skb_network_offset(skb); 3882 no_csum: 3883 /* vlan_macip_lens: MACLEN, VLAN tag */ 3884 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3885 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3886 3887 fceof_saidx |= itd->pfsa; 3888 type_tucmd |= itd->flags | itd->trailer_len; 3889 3890 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3891 fceof_saidx, type_tucmd, 0); 3892 } 3893 3894 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3895 { 3896 /* set type for advanced descriptor with frame checksum insertion */ 3897 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3898 IXGBE_ADVTXD_DCMD_IFCS | 3899 IXGBE_ADVTXD_DCMD_DEXT); 3900 3901 /* set HW VLAN bit if VLAN is present */ 3902 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3903 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3904 3905 /* set segmentation enable bits for TSO/FSO */ 3906 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3907 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3908 3909 return cmd_type; 3910 } 3911 3912 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3913 u32 tx_flags, unsigned int paylen) 3914 { 3915 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3916 3917 /* enable L4 checksum for TSO and TX checksum offload */ 3918 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3919 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3920 3921 /* enble IPv4 checksum for TSO */ 3922 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3923 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3924 3925 /* enable IPsec */ 3926 if (tx_flags & IXGBE_TX_FLAGS_IPSEC) 3927 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); 3928 3929 /* use index 1 context for TSO/FSO/FCOE/IPSEC */ 3930 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) 3931 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3932 3933 /* Check Context must be set if Tx switch is enabled, which it 3934 * always is for case where virtual functions are running 3935 */ 3936 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3937 3938 tx_desc->read.olinfo_status = olinfo_status; 3939 } 3940 3941 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3942 struct ixgbevf_tx_buffer *first, 3943 const u8 hdr_len) 3944 { 3945 struct sk_buff *skb = first->skb; 3946 struct ixgbevf_tx_buffer *tx_buffer; 3947 union ixgbe_adv_tx_desc *tx_desc; 3948 struct skb_frag_struct *frag; 3949 dma_addr_t dma; 3950 unsigned int data_len, size; 3951 u32 tx_flags = first->tx_flags; 3952 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3953 u16 i = tx_ring->next_to_use; 3954 3955 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3956 3957 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3958 3959 size = skb_headlen(skb); 3960 data_len = skb->data_len; 3961 3962 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3963 3964 tx_buffer = first; 3965 3966 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3967 if (dma_mapping_error(tx_ring->dev, dma)) 3968 goto dma_error; 3969 3970 /* record length, and DMA address */ 3971 dma_unmap_len_set(tx_buffer, len, size); 3972 dma_unmap_addr_set(tx_buffer, dma, dma); 3973 3974 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3975 3976 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3977 tx_desc->read.cmd_type_len = 3978 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3979 3980 i++; 3981 tx_desc++; 3982 if (i == tx_ring->count) { 3983 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3984 i = 0; 3985 } 3986 tx_desc->read.olinfo_status = 0; 3987 3988 dma += IXGBE_MAX_DATA_PER_TXD; 3989 size -= IXGBE_MAX_DATA_PER_TXD; 3990 3991 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3992 } 3993 3994 if (likely(!data_len)) 3995 break; 3996 3997 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 3998 3999 i++; 4000 tx_desc++; 4001 if (i == tx_ring->count) { 4002 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4003 i = 0; 4004 } 4005 tx_desc->read.olinfo_status = 0; 4006 4007 size = skb_frag_size(frag); 4008 data_len -= size; 4009 4010 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 4011 DMA_TO_DEVICE); 4012 4013 tx_buffer = &tx_ring->tx_buffer_info[i]; 4014 } 4015 4016 /* write last descriptor with RS and EOP bits */ 4017 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 4018 tx_desc->read.cmd_type_len = cmd_type; 4019 4020 /* set the timestamp */ 4021 first->time_stamp = jiffies; 4022 4023 skb_tx_timestamp(skb); 4024 4025 /* Force memory writes to complete before letting h/w know there 4026 * are new descriptors to fetch. (Only applicable for weak-ordered 4027 * memory model archs, such as IA-64). 4028 * 4029 * We also need this memory barrier (wmb) to make certain all of the 4030 * status bits have been updated before next_to_watch is written. 4031 */ 4032 wmb(); 4033 4034 /* set next_to_watch value indicating a packet is present */ 4035 first->next_to_watch = tx_desc; 4036 4037 i++; 4038 if (i == tx_ring->count) 4039 i = 0; 4040 4041 tx_ring->next_to_use = i; 4042 4043 /* notify HW of packet */ 4044 ixgbevf_write_tail(tx_ring, i); 4045 4046 return; 4047 dma_error: 4048 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4049 tx_buffer = &tx_ring->tx_buffer_info[i]; 4050 4051 /* clear dma mappings for failed tx_buffer_info map */ 4052 while (tx_buffer != first) { 4053 if (dma_unmap_len(tx_buffer, len)) 4054 dma_unmap_page(tx_ring->dev, 4055 dma_unmap_addr(tx_buffer, dma), 4056 dma_unmap_len(tx_buffer, len), 4057 DMA_TO_DEVICE); 4058 dma_unmap_len_set(tx_buffer, len, 0); 4059 4060 if (i-- == 0) 4061 i += tx_ring->count; 4062 tx_buffer = &tx_ring->tx_buffer_info[i]; 4063 } 4064 4065 if (dma_unmap_len(tx_buffer, len)) 4066 dma_unmap_single(tx_ring->dev, 4067 dma_unmap_addr(tx_buffer, dma), 4068 dma_unmap_len(tx_buffer, len), 4069 DMA_TO_DEVICE); 4070 dma_unmap_len_set(tx_buffer, len, 0); 4071 4072 dev_kfree_skb_any(tx_buffer->skb); 4073 tx_buffer->skb = NULL; 4074 4075 tx_ring->next_to_use = i; 4076 } 4077 4078 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4079 { 4080 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4081 /* Herbert's original patch had: 4082 * smp_mb__after_netif_stop_queue(); 4083 * but since that doesn't exist yet, just open code it. 4084 */ 4085 smp_mb(); 4086 4087 /* We need to check again in a case another CPU has just 4088 * made room available. 4089 */ 4090 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4091 return -EBUSY; 4092 4093 /* A reprieve! - use start_queue because it doesn't call schedule */ 4094 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4095 ++tx_ring->tx_stats.restart_queue; 4096 4097 return 0; 4098 } 4099 4100 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4101 { 4102 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4103 return 0; 4104 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4105 } 4106 4107 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4108 struct ixgbevf_ring *tx_ring) 4109 { 4110 struct ixgbevf_tx_buffer *first; 4111 int tso; 4112 u32 tx_flags = 0; 4113 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4114 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; 4115 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4116 unsigned short f; 4117 #endif 4118 u8 hdr_len = 0; 4119 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4120 4121 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4122 dev_kfree_skb_any(skb); 4123 return NETDEV_TX_OK; 4124 } 4125 4126 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4127 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4128 * + 2 desc gap to keep tail from touching head, 4129 * + 1 desc for context descriptor, 4130 * otherwise try next time 4131 */ 4132 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4133 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 4134 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 4135 #else 4136 count += skb_shinfo(skb)->nr_frags; 4137 #endif 4138 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4139 tx_ring->tx_stats.tx_busy++; 4140 return NETDEV_TX_BUSY; 4141 } 4142 4143 /* record the location of the first descriptor for this packet */ 4144 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4145 first->skb = skb; 4146 first->bytecount = skb->len; 4147 first->gso_segs = 1; 4148 4149 if (skb_vlan_tag_present(skb)) { 4150 tx_flags |= skb_vlan_tag_get(skb); 4151 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4152 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4153 } 4154 4155 /* record initial flags and protocol */ 4156 first->tx_flags = tx_flags; 4157 first->protocol = vlan_get_protocol(skb); 4158 4159 #ifdef CONFIG_IXGBEVF_IPSEC 4160 if (secpath_exists(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) 4161 goto out_drop; 4162 #endif 4163 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); 4164 if (tso < 0) 4165 goto out_drop; 4166 else if (!tso) 4167 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); 4168 4169 ixgbevf_tx_map(tx_ring, first, hdr_len); 4170 4171 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4172 4173 return NETDEV_TX_OK; 4174 4175 out_drop: 4176 dev_kfree_skb_any(first->skb); 4177 first->skb = NULL; 4178 4179 return NETDEV_TX_OK; 4180 } 4181 4182 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4183 { 4184 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4185 struct ixgbevf_ring *tx_ring; 4186 4187 if (skb->len <= 0) { 4188 dev_kfree_skb_any(skb); 4189 return NETDEV_TX_OK; 4190 } 4191 4192 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4193 * in order to meet this minimum size requirement. 4194 */ 4195 if (skb->len < 17) { 4196 if (skb_padto(skb, 17)) 4197 return NETDEV_TX_OK; 4198 skb->len = 17; 4199 } 4200 4201 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4202 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4203 } 4204 4205 /** 4206 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4207 * @netdev: network interface device structure 4208 * @p: pointer to an address structure 4209 * 4210 * Returns 0 on success, negative on failure 4211 **/ 4212 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4213 { 4214 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4215 struct ixgbe_hw *hw = &adapter->hw; 4216 struct sockaddr *addr = p; 4217 int err; 4218 4219 if (!is_valid_ether_addr(addr->sa_data)) 4220 return -EADDRNOTAVAIL; 4221 4222 spin_lock_bh(&adapter->mbx_lock); 4223 4224 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4225 4226 spin_unlock_bh(&adapter->mbx_lock); 4227 4228 if (err) 4229 return -EPERM; 4230 4231 ether_addr_copy(hw->mac.addr, addr->sa_data); 4232 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4233 ether_addr_copy(netdev->dev_addr, addr->sa_data); 4234 4235 return 0; 4236 } 4237 4238 /** 4239 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4240 * @netdev: network interface device structure 4241 * @new_mtu: new value for maximum frame size 4242 * 4243 * Returns 0 on success, negative on failure 4244 **/ 4245 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4246 { 4247 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4248 struct ixgbe_hw *hw = &adapter->hw; 4249 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4250 int ret; 4251 4252 /* prevent MTU being changed to a size unsupported by XDP */ 4253 if (adapter->xdp_prog) { 4254 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4255 return -EPERM; 4256 } 4257 4258 spin_lock_bh(&adapter->mbx_lock); 4259 /* notify the PF of our intent to use this size of frame */ 4260 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4261 spin_unlock_bh(&adapter->mbx_lock); 4262 if (ret) 4263 return -EINVAL; 4264 4265 hw_dbg(hw, "changing MTU from %d to %d\n", 4266 netdev->mtu, new_mtu); 4267 4268 /* must set new MTU before calling down or up */ 4269 netdev->mtu = new_mtu; 4270 4271 if (netif_running(netdev)) 4272 ixgbevf_reinit_locked(adapter); 4273 4274 return 0; 4275 } 4276 4277 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state) 4278 { 4279 struct net_device *netdev = pci_get_drvdata(pdev); 4280 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4281 #ifdef CONFIG_PM 4282 int retval = 0; 4283 #endif 4284 4285 rtnl_lock(); 4286 netif_device_detach(netdev); 4287 4288 if (netif_running(netdev)) 4289 ixgbevf_close_suspend(adapter); 4290 4291 ixgbevf_clear_interrupt_scheme(adapter); 4292 rtnl_unlock(); 4293 4294 #ifdef CONFIG_PM 4295 retval = pci_save_state(pdev); 4296 if (retval) 4297 return retval; 4298 4299 #endif 4300 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4301 pci_disable_device(pdev); 4302 4303 return 0; 4304 } 4305 4306 #ifdef CONFIG_PM 4307 static int ixgbevf_resume(struct pci_dev *pdev) 4308 { 4309 struct net_device *netdev = pci_get_drvdata(pdev); 4310 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4311 u32 err; 4312 4313 pci_restore_state(pdev); 4314 /* pci_restore_state clears dev->state_saved so call 4315 * pci_save_state to restore it. 4316 */ 4317 pci_save_state(pdev); 4318 4319 err = pci_enable_device_mem(pdev); 4320 if (err) { 4321 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n"); 4322 return err; 4323 } 4324 4325 adapter->hw.hw_addr = adapter->io_addr; 4326 smp_mb__before_atomic(); 4327 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4328 pci_set_master(pdev); 4329 4330 ixgbevf_reset(adapter); 4331 4332 rtnl_lock(); 4333 err = ixgbevf_init_interrupt_scheme(adapter); 4334 if (!err && netif_running(netdev)) 4335 err = ixgbevf_open(netdev); 4336 rtnl_unlock(); 4337 if (err) 4338 return err; 4339 4340 netif_device_attach(netdev); 4341 4342 return err; 4343 } 4344 4345 #endif /* CONFIG_PM */ 4346 static void ixgbevf_shutdown(struct pci_dev *pdev) 4347 { 4348 ixgbevf_suspend(pdev, PMSG_SUSPEND); 4349 } 4350 4351 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4352 const struct ixgbevf_ring *ring) 4353 { 4354 u64 bytes, packets; 4355 unsigned int start; 4356 4357 if (ring) { 4358 do { 4359 start = u64_stats_fetch_begin_irq(&ring->syncp); 4360 bytes = ring->stats.bytes; 4361 packets = ring->stats.packets; 4362 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4363 stats->tx_bytes += bytes; 4364 stats->tx_packets += packets; 4365 } 4366 } 4367 4368 static void ixgbevf_get_stats(struct net_device *netdev, 4369 struct rtnl_link_stats64 *stats) 4370 { 4371 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4372 unsigned int start; 4373 u64 bytes, packets; 4374 const struct ixgbevf_ring *ring; 4375 int i; 4376 4377 ixgbevf_update_stats(adapter); 4378 4379 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4380 4381 rcu_read_lock(); 4382 for (i = 0; i < adapter->num_rx_queues; i++) { 4383 ring = adapter->rx_ring[i]; 4384 do { 4385 start = u64_stats_fetch_begin_irq(&ring->syncp); 4386 bytes = ring->stats.bytes; 4387 packets = ring->stats.packets; 4388 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4389 stats->rx_bytes += bytes; 4390 stats->rx_packets += packets; 4391 } 4392 4393 for (i = 0; i < adapter->num_tx_queues; i++) { 4394 ring = adapter->tx_ring[i]; 4395 ixgbevf_get_tx_ring_stats(stats, ring); 4396 } 4397 4398 for (i = 0; i < adapter->num_xdp_queues; i++) { 4399 ring = adapter->xdp_ring[i]; 4400 ixgbevf_get_tx_ring_stats(stats, ring); 4401 } 4402 rcu_read_unlock(); 4403 } 4404 4405 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4406 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4407 4408 static netdev_features_t 4409 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4410 netdev_features_t features) 4411 { 4412 unsigned int network_hdr_len, mac_hdr_len; 4413 4414 /* Make certain the headers can be described by a context descriptor */ 4415 mac_hdr_len = skb_network_header(skb) - skb->data; 4416 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4417 return features & ~(NETIF_F_HW_CSUM | 4418 NETIF_F_SCTP_CRC | 4419 NETIF_F_HW_VLAN_CTAG_TX | 4420 NETIF_F_TSO | 4421 NETIF_F_TSO6); 4422 4423 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4424 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4425 return features & ~(NETIF_F_HW_CSUM | 4426 NETIF_F_SCTP_CRC | 4427 NETIF_F_TSO | 4428 NETIF_F_TSO6); 4429 4430 /* We can only support IPV4 TSO in tunnels if we can mangle the 4431 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4432 */ 4433 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4434 features &= ~NETIF_F_TSO; 4435 4436 return features; 4437 } 4438 4439 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4440 { 4441 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4442 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4443 struct bpf_prog *old_prog; 4444 4445 /* verify ixgbevf ring attributes are sufficient for XDP */ 4446 for (i = 0; i < adapter->num_rx_queues; i++) { 4447 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4448 4449 if (frame_size > ixgbevf_rx_bufsz(ring)) 4450 return -EINVAL; 4451 } 4452 4453 old_prog = xchg(&adapter->xdp_prog, prog); 4454 4455 /* If transitioning XDP modes reconfigure rings */ 4456 if (!!prog != !!old_prog) { 4457 /* Hardware has to reinitialize queues and interrupts to 4458 * match packet buffer alignment. Unfortunately, the 4459 * hardware is not flexible enough to do this dynamically. 4460 */ 4461 if (netif_running(dev)) 4462 ixgbevf_close(dev); 4463 4464 ixgbevf_clear_interrupt_scheme(adapter); 4465 ixgbevf_init_interrupt_scheme(adapter); 4466 4467 if (netif_running(dev)) 4468 ixgbevf_open(dev); 4469 } else { 4470 for (i = 0; i < adapter->num_rx_queues; i++) 4471 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4472 } 4473 4474 if (old_prog) 4475 bpf_prog_put(old_prog); 4476 4477 return 0; 4478 } 4479 4480 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4481 { 4482 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4483 4484 switch (xdp->command) { 4485 case XDP_SETUP_PROG: 4486 return ixgbevf_xdp_setup(dev, xdp->prog); 4487 case XDP_QUERY_PROG: 4488 xdp->prog_id = adapter->xdp_prog ? 4489 adapter->xdp_prog->aux->id : 0; 4490 return 0; 4491 default: 4492 return -EINVAL; 4493 } 4494 } 4495 4496 static const struct net_device_ops ixgbevf_netdev_ops = { 4497 .ndo_open = ixgbevf_open, 4498 .ndo_stop = ixgbevf_close, 4499 .ndo_start_xmit = ixgbevf_xmit_frame, 4500 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4501 .ndo_get_stats64 = ixgbevf_get_stats, 4502 .ndo_validate_addr = eth_validate_addr, 4503 .ndo_set_mac_address = ixgbevf_set_mac, 4504 .ndo_change_mtu = ixgbevf_change_mtu, 4505 .ndo_tx_timeout = ixgbevf_tx_timeout, 4506 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4507 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4508 .ndo_features_check = ixgbevf_features_check, 4509 .ndo_bpf = ixgbevf_xdp, 4510 }; 4511 4512 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4513 { 4514 dev->netdev_ops = &ixgbevf_netdev_ops; 4515 ixgbevf_set_ethtool_ops(dev); 4516 dev->watchdog_timeo = 5 * HZ; 4517 } 4518 4519 /** 4520 * ixgbevf_probe - Device Initialization Routine 4521 * @pdev: PCI device information struct 4522 * @ent: entry in ixgbevf_pci_tbl 4523 * 4524 * Returns 0 on success, negative on failure 4525 * 4526 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4527 * The OS initialization, configuring of the adapter private structure, 4528 * and a hardware reset occur. 4529 **/ 4530 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4531 { 4532 struct net_device *netdev; 4533 struct ixgbevf_adapter *adapter = NULL; 4534 struct ixgbe_hw *hw = NULL; 4535 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4536 int err, pci_using_dac; 4537 bool disable_dev = false; 4538 4539 err = pci_enable_device(pdev); 4540 if (err) 4541 return err; 4542 4543 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 4544 pci_using_dac = 1; 4545 } else { 4546 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4547 if (err) { 4548 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4549 goto err_dma; 4550 } 4551 pci_using_dac = 0; 4552 } 4553 4554 err = pci_request_regions(pdev, ixgbevf_driver_name); 4555 if (err) { 4556 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4557 goto err_pci_reg; 4558 } 4559 4560 pci_set_master(pdev); 4561 4562 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4563 MAX_TX_QUEUES); 4564 if (!netdev) { 4565 err = -ENOMEM; 4566 goto err_alloc_etherdev; 4567 } 4568 4569 SET_NETDEV_DEV(netdev, &pdev->dev); 4570 4571 adapter = netdev_priv(netdev); 4572 4573 adapter->netdev = netdev; 4574 adapter->pdev = pdev; 4575 hw = &adapter->hw; 4576 hw->back = adapter; 4577 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4578 4579 /* call save state here in standalone driver because it relies on 4580 * adapter struct to exist, and needs to call netdev_priv 4581 */ 4582 pci_save_state(pdev); 4583 4584 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4585 pci_resource_len(pdev, 0)); 4586 adapter->io_addr = hw->hw_addr; 4587 if (!hw->hw_addr) { 4588 err = -EIO; 4589 goto err_ioremap; 4590 } 4591 4592 ixgbevf_assign_netdev_ops(netdev); 4593 4594 /* Setup HW API */ 4595 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4596 hw->mac.type = ii->mac; 4597 4598 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4599 sizeof(struct ixgbe_mbx_operations)); 4600 4601 /* setup the private structure */ 4602 err = ixgbevf_sw_init(adapter); 4603 if (err) 4604 goto err_sw_init; 4605 4606 /* The HW MAC address was set and/or determined in sw_init */ 4607 if (!is_valid_ether_addr(netdev->dev_addr)) { 4608 pr_err("invalid MAC address\n"); 4609 err = -EIO; 4610 goto err_sw_init; 4611 } 4612 4613 netdev->hw_features = NETIF_F_SG | 4614 NETIF_F_TSO | 4615 NETIF_F_TSO6 | 4616 NETIF_F_RXCSUM | 4617 NETIF_F_HW_CSUM | 4618 NETIF_F_SCTP_CRC; 4619 4620 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4621 NETIF_F_GSO_GRE_CSUM | \ 4622 NETIF_F_GSO_IPXIP4 | \ 4623 NETIF_F_GSO_IPXIP6 | \ 4624 NETIF_F_GSO_UDP_TUNNEL | \ 4625 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4626 4627 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4628 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4629 IXGBEVF_GSO_PARTIAL_FEATURES; 4630 4631 netdev->features = netdev->hw_features; 4632 4633 if (pci_using_dac) 4634 netdev->features |= NETIF_F_HIGHDMA; 4635 4636 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4637 netdev->mpls_features |= NETIF_F_SG | 4638 NETIF_F_TSO | 4639 NETIF_F_TSO6 | 4640 NETIF_F_HW_CSUM; 4641 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4642 netdev->hw_enc_features |= netdev->vlan_features; 4643 4644 /* set this bit last since it cannot be part of vlan_features */ 4645 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4646 NETIF_F_HW_VLAN_CTAG_RX | 4647 NETIF_F_HW_VLAN_CTAG_TX; 4648 4649 netdev->priv_flags |= IFF_UNICAST_FLT; 4650 4651 /* MTU range: 68 - 1504 or 9710 */ 4652 netdev->min_mtu = ETH_MIN_MTU; 4653 switch (adapter->hw.api_version) { 4654 case ixgbe_mbox_api_11: 4655 case ixgbe_mbox_api_12: 4656 case ixgbe_mbox_api_13: 4657 case ixgbe_mbox_api_14: 4658 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4659 (ETH_HLEN + ETH_FCS_LEN); 4660 break; 4661 default: 4662 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4663 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4664 (ETH_HLEN + ETH_FCS_LEN); 4665 else 4666 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4667 break; 4668 } 4669 4670 if (IXGBE_REMOVED(hw->hw_addr)) { 4671 err = -EIO; 4672 goto err_sw_init; 4673 } 4674 4675 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4676 4677 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4678 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4679 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4680 4681 err = ixgbevf_init_interrupt_scheme(adapter); 4682 if (err) 4683 goto err_sw_init; 4684 4685 strcpy(netdev->name, "eth%d"); 4686 4687 err = register_netdev(netdev); 4688 if (err) 4689 goto err_register; 4690 4691 pci_set_drvdata(pdev, netdev); 4692 netif_carrier_off(netdev); 4693 ixgbevf_init_ipsec_offload(adapter); 4694 4695 ixgbevf_init_last_counter_stats(adapter); 4696 4697 /* print the VF info */ 4698 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4699 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4700 4701 switch (hw->mac.type) { 4702 case ixgbe_mac_X550_vf: 4703 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4704 break; 4705 case ixgbe_mac_X540_vf: 4706 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4707 break; 4708 case ixgbe_mac_82599_vf: 4709 default: 4710 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4711 break; 4712 } 4713 4714 return 0; 4715 4716 err_register: 4717 ixgbevf_clear_interrupt_scheme(adapter); 4718 err_sw_init: 4719 ixgbevf_reset_interrupt_capability(adapter); 4720 iounmap(adapter->io_addr); 4721 kfree(adapter->rss_key); 4722 err_ioremap: 4723 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4724 free_netdev(netdev); 4725 err_alloc_etherdev: 4726 pci_release_regions(pdev); 4727 err_pci_reg: 4728 err_dma: 4729 if (!adapter || disable_dev) 4730 pci_disable_device(pdev); 4731 return err; 4732 } 4733 4734 /** 4735 * ixgbevf_remove - Device Removal Routine 4736 * @pdev: PCI device information struct 4737 * 4738 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4739 * that it should release a PCI device. The could be caused by a 4740 * Hot-Plug event, or because the driver is going to be removed from 4741 * memory. 4742 **/ 4743 static void ixgbevf_remove(struct pci_dev *pdev) 4744 { 4745 struct net_device *netdev = pci_get_drvdata(pdev); 4746 struct ixgbevf_adapter *adapter; 4747 bool disable_dev; 4748 4749 if (!netdev) 4750 return; 4751 4752 adapter = netdev_priv(netdev); 4753 4754 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4755 cancel_work_sync(&adapter->service_task); 4756 4757 if (netdev->reg_state == NETREG_REGISTERED) 4758 unregister_netdev(netdev); 4759 4760 ixgbevf_stop_ipsec_offload(adapter); 4761 ixgbevf_clear_interrupt_scheme(adapter); 4762 ixgbevf_reset_interrupt_capability(adapter); 4763 4764 iounmap(adapter->io_addr); 4765 pci_release_regions(pdev); 4766 4767 hw_dbg(&adapter->hw, "Remove complete\n"); 4768 4769 kfree(adapter->rss_key); 4770 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4771 free_netdev(netdev); 4772 4773 if (disable_dev) 4774 pci_disable_device(pdev); 4775 } 4776 4777 /** 4778 * ixgbevf_io_error_detected - called when PCI error is detected 4779 * @pdev: Pointer to PCI device 4780 * @state: The current pci connection state 4781 * 4782 * This function is called after a PCI bus error affecting 4783 * this device has been detected. 4784 **/ 4785 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4786 pci_channel_state_t state) 4787 { 4788 struct net_device *netdev = pci_get_drvdata(pdev); 4789 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4790 4791 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4792 return PCI_ERS_RESULT_DISCONNECT; 4793 4794 rtnl_lock(); 4795 netif_device_detach(netdev); 4796 4797 if (netif_running(netdev)) 4798 ixgbevf_close_suspend(adapter); 4799 4800 if (state == pci_channel_io_perm_failure) { 4801 rtnl_unlock(); 4802 return PCI_ERS_RESULT_DISCONNECT; 4803 } 4804 4805 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4806 pci_disable_device(pdev); 4807 rtnl_unlock(); 4808 4809 /* Request a slot slot reset. */ 4810 return PCI_ERS_RESULT_NEED_RESET; 4811 } 4812 4813 /** 4814 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4815 * @pdev: Pointer to PCI device 4816 * 4817 * Restart the card from scratch, as if from a cold-boot. Implementation 4818 * resembles the first-half of the ixgbevf_resume routine. 4819 **/ 4820 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4821 { 4822 struct net_device *netdev = pci_get_drvdata(pdev); 4823 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4824 4825 if (pci_enable_device_mem(pdev)) { 4826 dev_err(&pdev->dev, 4827 "Cannot re-enable PCI device after reset.\n"); 4828 return PCI_ERS_RESULT_DISCONNECT; 4829 } 4830 4831 adapter->hw.hw_addr = adapter->io_addr; 4832 smp_mb__before_atomic(); 4833 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4834 pci_set_master(pdev); 4835 4836 ixgbevf_reset(adapter); 4837 4838 return PCI_ERS_RESULT_RECOVERED; 4839 } 4840 4841 /** 4842 * ixgbevf_io_resume - called when traffic can start flowing again. 4843 * @pdev: Pointer to PCI device 4844 * 4845 * This callback is called when the error recovery driver tells us that 4846 * its OK to resume normal operation. Implementation resembles the 4847 * second-half of the ixgbevf_resume routine. 4848 **/ 4849 static void ixgbevf_io_resume(struct pci_dev *pdev) 4850 { 4851 struct net_device *netdev = pci_get_drvdata(pdev); 4852 4853 rtnl_lock(); 4854 if (netif_running(netdev)) 4855 ixgbevf_open(netdev); 4856 4857 netif_device_attach(netdev); 4858 rtnl_unlock(); 4859 } 4860 4861 /* PCI Error Recovery (ERS) */ 4862 static const struct pci_error_handlers ixgbevf_err_handler = { 4863 .error_detected = ixgbevf_io_error_detected, 4864 .slot_reset = ixgbevf_io_slot_reset, 4865 .resume = ixgbevf_io_resume, 4866 }; 4867 4868 static struct pci_driver ixgbevf_driver = { 4869 .name = ixgbevf_driver_name, 4870 .id_table = ixgbevf_pci_tbl, 4871 .probe = ixgbevf_probe, 4872 .remove = ixgbevf_remove, 4873 #ifdef CONFIG_PM 4874 /* Power Management Hooks */ 4875 .suspend = ixgbevf_suspend, 4876 .resume = ixgbevf_resume, 4877 #endif 4878 .shutdown = ixgbevf_shutdown, 4879 .err_handler = &ixgbevf_err_handler 4880 }; 4881 4882 /** 4883 * ixgbevf_init_module - Driver Registration Routine 4884 * 4885 * ixgbevf_init_module is the first routine called when the driver is 4886 * loaded. All it does is register with the PCI subsystem. 4887 **/ 4888 static int __init ixgbevf_init_module(void) 4889 { 4890 pr_info("%s - version %s\n", ixgbevf_driver_string, 4891 ixgbevf_driver_version); 4892 4893 pr_info("%s\n", ixgbevf_copyright); 4894 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4895 if (!ixgbevf_wq) { 4896 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4897 return -ENOMEM; 4898 } 4899 4900 return pci_register_driver(&ixgbevf_driver); 4901 } 4902 4903 module_init(ixgbevf_init_module); 4904 4905 /** 4906 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4907 * 4908 * ixgbevf_exit_module is called just before the driver is removed 4909 * from memory. 4910 **/ 4911 static void __exit ixgbevf_exit_module(void) 4912 { 4913 pci_unregister_driver(&ixgbevf_driver); 4914 if (ixgbevf_wq) { 4915 destroy_workqueue(ixgbevf_wq); 4916 ixgbevf_wq = NULL; 4917 } 4918 } 4919 4920 #ifdef DEBUG 4921 /** 4922 * ixgbevf_get_hw_dev_name - return device name string 4923 * used by hardware layer to print debugging information 4924 * @hw: pointer to private hardware struct 4925 **/ 4926 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4927 { 4928 struct ixgbevf_adapter *adapter = hw->back; 4929 4930 return adapter->netdev->name; 4931 } 4932 4933 #endif 4934 module_exit(ixgbevf_exit_module); 4935 4936 /* ixgbevf_main.c */ 4937