1 /*******************************************************************************
2 
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2014 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32 
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 
35 #include <linux/types.h>
36 #include <linux/bitops.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/vmalloc.h>
41 #include <linux/string.h>
42 #include <linux/in.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/sctp.h>
46 #include <linux/ipv6.h>
47 #include <linux/slab.h>
48 #include <net/checksum.h>
49 #include <net/ip6_checksum.h>
50 #include <linux/ethtool.h>
51 #include <linux/if.h>
52 #include <linux/if_vlan.h>
53 #include <linux/prefetch.h>
54 
55 #include "ixgbevf.h"
56 
57 const char ixgbevf_driver_name[] = "ixgbevf";
58 static const char ixgbevf_driver_string[] =
59 	"Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver";
60 
61 #define DRV_VERSION "2.12.1-k"
62 const char ixgbevf_driver_version[] = DRV_VERSION;
63 static char ixgbevf_copyright[] =
64 	"Copyright (c) 2009 - 2012 Intel Corporation.";
65 
66 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
67 	[board_82599_vf] = &ixgbevf_82599_vf_info,
68 	[board_X540_vf]  = &ixgbevf_X540_vf_info,
69 	[board_X550_vf]  = &ixgbevf_X550_vf_info,
70 	[board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info,
71 };
72 
73 /* ixgbevf_pci_tbl - PCI Device ID Table
74  *
75  * Wildcard entries (PCI_ANY_ID) should come last
76  * Last entry must be all 0s
77  *
78  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
79  *   Class, Class Mask, private data (not used) }
80  */
81 static const struct pci_device_id ixgbevf_pci_tbl[] = {
82 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf },
83 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf },
84 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf },
85 	{PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf },
86 	/* required last entry */
87 	{0, }
88 };
89 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
90 
91 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
92 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_VERSION);
95 
96 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
97 static int debug = -1;
98 module_param(debug, int, 0);
99 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
100 
101 /* forward decls */
102 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter);
103 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector);
104 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter);
105 
106 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw)
107 {
108 	struct ixgbevf_adapter *adapter = hw->back;
109 
110 	if (!hw->hw_addr)
111 		return;
112 	hw->hw_addr = NULL;
113 	dev_err(&adapter->pdev->dev, "Adapter removed\n");
114 	if (test_bit(__IXGBEVF_WORK_INIT, &adapter->state))
115 		schedule_work(&adapter->watchdog_task);
116 }
117 
118 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg)
119 {
120 	u32 value;
121 
122 	/* The following check not only optimizes a bit by not
123 	 * performing a read on the status register when the
124 	 * register just read was a status register read that
125 	 * returned IXGBE_FAILED_READ_REG. It also blocks any
126 	 * potential recursion.
127 	 */
128 	if (reg == IXGBE_VFSTATUS) {
129 		ixgbevf_remove_adapter(hw);
130 		return;
131 	}
132 	value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS);
133 	if (value == IXGBE_FAILED_READ_REG)
134 		ixgbevf_remove_adapter(hw);
135 }
136 
137 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg)
138 {
139 	u8 __iomem *reg_addr = ACCESS_ONCE(hw->hw_addr);
140 	u32 value;
141 
142 	if (IXGBE_REMOVED(reg_addr))
143 		return IXGBE_FAILED_READ_REG;
144 	value = readl(reg_addr + reg);
145 	if (unlikely(value == IXGBE_FAILED_READ_REG))
146 		ixgbevf_check_remove(hw, reg);
147 	return value;
148 }
149 
150 /**
151  * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors
152  * @adapter: pointer to adapter struct
153  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
154  * @queue: queue to map the corresponding interrupt to
155  * @msix_vector: the vector to map to the corresponding queue
156  */
157 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
158 			     u8 queue, u8 msix_vector)
159 {
160 	u32 ivar, index;
161 	struct ixgbe_hw *hw = &adapter->hw;
162 	if (direction == -1) {
163 		/* other causes */
164 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
165 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
166 		ivar &= ~0xFF;
167 		ivar |= msix_vector;
168 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
169 	} else {
170 		/* tx or rx causes */
171 		msix_vector |= IXGBE_IVAR_ALLOC_VAL;
172 		index = ((16 * (queue & 1)) + (8 * direction));
173 		ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
174 		ivar &= ~(0xFF << index);
175 		ivar |= (msix_vector << index);
176 		IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
177 	}
178 }
179 
180 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring,
181 					struct ixgbevf_tx_buffer *tx_buffer)
182 {
183 	if (tx_buffer->skb) {
184 		dev_kfree_skb_any(tx_buffer->skb);
185 		if (dma_unmap_len(tx_buffer, len))
186 			dma_unmap_single(tx_ring->dev,
187 					 dma_unmap_addr(tx_buffer, dma),
188 					 dma_unmap_len(tx_buffer, len),
189 					 DMA_TO_DEVICE);
190 	} else if (dma_unmap_len(tx_buffer, len)) {
191 		dma_unmap_page(tx_ring->dev,
192 			       dma_unmap_addr(tx_buffer, dma),
193 			       dma_unmap_len(tx_buffer, len),
194 			       DMA_TO_DEVICE);
195 	}
196 	tx_buffer->next_to_watch = NULL;
197 	tx_buffer->skb = NULL;
198 	dma_unmap_len_set(tx_buffer, len, 0);
199 	/* tx_buffer must be completely set up in the transmit path */
200 }
201 
202 #define IXGBE_MAX_TXD_PWR	14
203 #define IXGBE_MAX_DATA_PER_TXD	(1 << IXGBE_MAX_TXD_PWR)
204 
205 /* Tx Descriptors needed, worst case */
206 #define TXD_USE_COUNT(S) DIV_ROUND_UP((S), IXGBE_MAX_DATA_PER_TXD)
207 #define DESC_NEEDED (MAX_SKB_FRAGS + 4)
208 
209 static void ixgbevf_tx_timeout(struct net_device *netdev);
210 
211 /**
212  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
213  * @q_vector: board private structure
214  * @tx_ring: tx ring to clean
215  **/
216 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector,
217 				 struct ixgbevf_ring *tx_ring)
218 {
219 	struct ixgbevf_adapter *adapter = q_vector->adapter;
220 	struct ixgbevf_tx_buffer *tx_buffer;
221 	union ixgbe_adv_tx_desc *tx_desc;
222 	unsigned int total_bytes = 0, total_packets = 0;
223 	unsigned int budget = tx_ring->count / 2;
224 	unsigned int i = tx_ring->next_to_clean;
225 
226 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
227 		return true;
228 
229 	tx_buffer = &tx_ring->tx_buffer_info[i];
230 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
231 	i -= tx_ring->count;
232 
233 	do {
234 		union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
235 
236 		/* if next_to_watch is not set then there is no work pending */
237 		if (!eop_desc)
238 			break;
239 
240 		/* prevent any other reads prior to eop_desc */
241 		read_barrier_depends();
242 
243 		/* if DD is not set pending work has not been completed */
244 		if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)))
245 			break;
246 
247 		/* clear next_to_watch to prevent false hangs */
248 		tx_buffer->next_to_watch = NULL;
249 
250 		/* update the statistics for this packet */
251 		total_bytes += tx_buffer->bytecount;
252 		total_packets += tx_buffer->gso_segs;
253 
254 		/* free the skb */
255 		dev_kfree_skb_any(tx_buffer->skb);
256 
257 		/* unmap skb header data */
258 		dma_unmap_single(tx_ring->dev,
259 				 dma_unmap_addr(tx_buffer, dma),
260 				 dma_unmap_len(tx_buffer, len),
261 				 DMA_TO_DEVICE);
262 
263 		/* clear tx_buffer data */
264 		tx_buffer->skb = NULL;
265 		dma_unmap_len_set(tx_buffer, len, 0);
266 
267 		/* unmap remaining buffers */
268 		while (tx_desc != eop_desc) {
269 			tx_buffer++;
270 			tx_desc++;
271 			i++;
272 			if (unlikely(!i)) {
273 				i -= tx_ring->count;
274 				tx_buffer = tx_ring->tx_buffer_info;
275 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
276 			}
277 
278 			/* unmap any remaining paged data */
279 			if (dma_unmap_len(tx_buffer, len)) {
280 				dma_unmap_page(tx_ring->dev,
281 					       dma_unmap_addr(tx_buffer, dma),
282 					       dma_unmap_len(tx_buffer, len),
283 					       DMA_TO_DEVICE);
284 				dma_unmap_len_set(tx_buffer, len, 0);
285 			}
286 		}
287 
288 		/* move us one more past the eop_desc for start of next pkt */
289 		tx_buffer++;
290 		tx_desc++;
291 		i++;
292 		if (unlikely(!i)) {
293 			i -= tx_ring->count;
294 			tx_buffer = tx_ring->tx_buffer_info;
295 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
296 		}
297 
298 		/* issue prefetch for next Tx descriptor */
299 		prefetch(tx_desc);
300 
301 		/* update budget accounting */
302 		budget--;
303 	} while (likely(budget));
304 
305 	i += tx_ring->count;
306 	tx_ring->next_to_clean = i;
307 	u64_stats_update_begin(&tx_ring->syncp);
308 	tx_ring->stats.bytes += total_bytes;
309 	tx_ring->stats.packets += total_packets;
310 	u64_stats_update_end(&tx_ring->syncp);
311 	q_vector->tx.total_bytes += total_bytes;
312 	q_vector->tx.total_packets += total_packets;
313 
314 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
315 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
316 		     (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
317 		/* Make sure that anybody stopping the queue after this
318 		 * sees the new next_to_clean.
319 		 */
320 		smp_mb();
321 
322 		if (__netif_subqueue_stopped(tx_ring->netdev,
323 					     tx_ring->queue_index) &&
324 		    !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
325 			netif_wake_subqueue(tx_ring->netdev,
326 					    tx_ring->queue_index);
327 			++tx_ring->tx_stats.restart_queue;
328 		}
329 	}
330 
331 	return !!budget;
332 }
333 
334 /**
335  * ixgbevf_rx_skb - Helper function to determine proper Rx method
336  * @q_vector: structure containing interrupt and ring information
337  * @skb: packet to send up
338  **/
339 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector,
340 			   struct sk_buff *skb)
341 {
342 #ifdef CONFIG_NET_RX_BUSY_POLL
343 	skb_mark_napi_id(skb, &q_vector->napi);
344 
345 	if (ixgbevf_qv_busy_polling(q_vector)) {
346 		netif_receive_skb(skb);
347 		/* exit early if we busy polled */
348 		return;
349 	}
350 #endif /* CONFIG_NET_RX_BUSY_POLL */
351 
352 	napi_gro_receive(&q_vector->napi, skb);
353 }
354 
355 /* ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
356  * @ring: structure containig ring specific data
357  * @rx_desc: current Rx descriptor being processed
358  * @skb: skb currently being received and modified
359  */
360 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring,
361 				       union ixgbe_adv_rx_desc *rx_desc,
362 				       struct sk_buff *skb)
363 {
364 	skb_checksum_none_assert(skb);
365 
366 	/* Rx csum disabled */
367 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
368 		return;
369 
370 	/* if IP and error */
371 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) &&
372 	    ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) {
373 		ring->rx_stats.csum_err++;
374 		return;
375 	}
376 
377 	if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS))
378 		return;
379 
380 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) {
381 		ring->rx_stats.csum_err++;
382 		return;
383 	}
384 
385 	/* It must be a TCP or UDP packet with a valid checksum */
386 	skb->ip_summed = CHECKSUM_UNNECESSARY;
387 }
388 
389 /* ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor
390  * @rx_ring: rx descriptor ring packet is being transacted on
391  * @rx_desc: pointer to the EOP Rx descriptor
392  * @skb: pointer to current skb being populated
393  *
394  * This function checks the ring, descriptor, and packet information in
395  * order to populate the checksum, VLAN, protocol, and other fields within
396  * the skb.
397  */
398 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring,
399 				       union ixgbe_adv_rx_desc *rx_desc,
400 				       struct sk_buff *skb)
401 {
402 	ixgbevf_rx_checksum(rx_ring, rx_desc, skb);
403 
404 	if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) {
405 		u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
406 		unsigned long *active_vlans = netdev_priv(rx_ring->netdev);
407 
408 		if (test_bit(vid & VLAN_VID_MASK, active_vlans))
409 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
410 	}
411 
412 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
413 }
414 
415 /**
416  * ixgbevf_is_non_eop - process handling of non-EOP buffers
417  * @rx_ring: Rx ring being processed
418  * @rx_desc: Rx descriptor for current buffer
419  * @skb: current socket buffer containing buffer in progress
420  *
421  * This function updates next to clean.  If the buffer is an EOP buffer
422  * this function exits returning false, otherwise it will place the
423  * sk_buff in the next buffer to be chained and return true indicating
424  * that this is in fact a non-EOP buffer.
425  **/
426 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring,
427 			       union ixgbe_adv_rx_desc *rx_desc)
428 {
429 	u32 ntc = rx_ring->next_to_clean + 1;
430 
431 	/* fetch, update, and store next to clean */
432 	ntc = (ntc < rx_ring->count) ? ntc : 0;
433 	rx_ring->next_to_clean = ntc;
434 
435 	prefetch(IXGBEVF_RX_DESC(rx_ring, ntc));
436 
437 	if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP)))
438 		return false;
439 
440 	return true;
441 }
442 
443 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring,
444 				      struct ixgbevf_rx_buffer *bi)
445 {
446 	struct page *page = bi->page;
447 	dma_addr_t dma = bi->dma;
448 
449 	/* since we are recycling buffers we should seldom need to alloc */
450 	if (likely(page))
451 		return true;
452 
453 	/* alloc new page for storage */
454 	page = dev_alloc_page();
455 	if (unlikely(!page)) {
456 		rx_ring->rx_stats.alloc_rx_page_failed++;
457 		return false;
458 	}
459 
460 	/* map page for use */
461 	dma = dma_map_page(rx_ring->dev, page, 0,
462 			   PAGE_SIZE, DMA_FROM_DEVICE);
463 
464 	/* if mapping failed free memory back to system since
465 	 * there isn't much point in holding memory we can't use
466 	 */
467 	if (dma_mapping_error(rx_ring->dev, dma)) {
468 		__free_page(page);
469 
470 		rx_ring->rx_stats.alloc_rx_buff_failed++;
471 		return false;
472 	}
473 
474 	bi->dma = dma;
475 	bi->page = page;
476 	bi->page_offset = 0;
477 
478 	return true;
479 }
480 
481 /**
482  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
483  * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on
484  * @cleaned_count: number of buffers to replace
485  **/
486 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring,
487 				     u16 cleaned_count)
488 {
489 	union ixgbe_adv_rx_desc *rx_desc;
490 	struct ixgbevf_rx_buffer *bi;
491 	unsigned int i = rx_ring->next_to_use;
492 
493 	/* nothing to do or no valid netdev defined */
494 	if (!cleaned_count || !rx_ring->netdev)
495 		return;
496 
497 	rx_desc = IXGBEVF_RX_DESC(rx_ring, i);
498 	bi = &rx_ring->rx_buffer_info[i];
499 	i -= rx_ring->count;
500 
501 	do {
502 		if (!ixgbevf_alloc_mapped_page(rx_ring, bi))
503 			break;
504 
505 		/* Refresh the desc even if pkt_addr didn't change
506 		 * because each write-back erases this info.
507 		 */
508 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
509 
510 		rx_desc++;
511 		bi++;
512 		i++;
513 		if (unlikely(!i)) {
514 			rx_desc = IXGBEVF_RX_DESC(rx_ring, 0);
515 			bi = rx_ring->rx_buffer_info;
516 			i -= rx_ring->count;
517 		}
518 
519 		/* clear the hdr_addr for the next_to_use descriptor */
520 		rx_desc->read.hdr_addr = 0;
521 
522 		cleaned_count--;
523 	} while (cleaned_count);
524 
525 	i += rx_ring->count;
526 
527 	if (rx_ring->next_to_use != i) {
528 		/* record the next descriptor to use */
529 		rx_ring->next_to_use = i;
530 
531 		/* update next to alloc since we have filled the ring */
532 		rx_ring->next_to_alloc = i;
533 
534 		/* Force memory writes to complete before letting h/w
535 		 * know there are new descriptors to fetch.  (Only
536 		 * applicable for weak-ordered memory model archs,
537 		 * such as IA-64).
538 		 */
539 		wmb();
540 		ixgbevf_write_tail(rx_ring, i);
541 	}
542 }
543 
544 /* ixgbevf_pull_tail - ixgbevf specific version of skb_pull_tail
545  * @rx_ring: rx descriptor ring packet is being transacted on
546  * @skb: pointer to current skb being adjusted
547  *
548  * This function is an ixgbevf specific version of __pskb_pull_tail.  The
549  * main difference between this version and the original function is that
550  * this function can make several assumptions about the state of things
551  * that allow for significant optimizations versus the standard function.
552  * As a result we can do things like drop a frag and maintain an accurate
553  * truesize for the skb.
554  */
555 static void ixgbevf_pull_tail(struct ixgbevf_ring *rx_ring,
556 			      struct sk_buff *skb)
557 {
558 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
559 	unsigned char *va;
560 	unsigned int pull_len;
561 
562 	/* it is valid to use page_address instead of kmap since we are
563 	 * working with pages allocated out of the lomem pool per
564 	 * alloc_page(GFP_ATOMIC)
565 	 */
566 	va = skb_frag_address(frag);
567 
568 	/* we need the header to contain the greater of either ETH_HLEN or
569 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
570 	 */
571 	pull_len = eth_get_headlen(va, IXGBEVF_RX_HDR_SIZE);
572 
573 	/* align pull length to size of long to optimize memcpy performance */
574 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
575 
576 	/* update all of the pointers */
577 	skb_frag_size_sub(frag, pull_len);
578 	frag->page_offset += pull_len;
579 	skb->data_len -= pull_len;
580 	skb->tail += pull_len;
581 }
582 
583 /* ixgbevf_cleanup_headers - Correct corrupted or empty headers
584  * @rx_ring: rx descriptor ring packet is being transacted on
585  * @rx_desc: pointer to the EOP Rx descriptor
586  * @skb: pointer to current skb being fixed
587  *
588  * Check for corrupted packet headers caused by senders on the local L2
589  * embedded NIC switch not setting up their Tx Descriptors right.  These
590  * should be very rare.
591  *
592  * Also address the case where we are pulling data in on pages only
593  * and as such no data is present in the skb header.
594  *
595  * In addition if skb is not at least 60 bytes we need to pad it so that
596  * it is large enough to qualify as a valid Ethernet frame.
597  *
598  * Returns true if an error was encountered and skb was freed.
599  */
600 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring,
601 				    union ixgbe_adv_rx_desc *rx_desc,
602 				    struct sk_buff *skb)
603 {
604 	/* verify that the packet does not have any known errors */
605 	if (unlikely(ixgbevf_test_staterr(rx_desc,
606 					  IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) {
607 		struct net_device *netdev = rx_ring->netdev;
608 
609 		if (!(netdev->features & NETIF_F_RXALL)) {
610 			dev_kfree_skb_any(skb);
611 			return true;
612 		}
613 	}
614 
615 	/* place header in linear portion of buffer */
616 	if (skb_is_nonlinear(skb))
617 		ixgbevf_pull_tail(rx_ring, skb);
618 
619 	/* if eth_skb_pad returns an error the skb was freed */
620 	if (eth_skb_pad(skb))
621 		return true;
622 
623 	return false;
624 }
625 
626 /* ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring
627  * @rx_ring: rx descriptor ring to store buffers on
628  * @old_buff: donor buffer to have page reused
629  *
630  * Synchronizes page for reuse by the adapter
631  */
632 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring,
633 				  struct ixgbevf_rx_buffer *old_buff)
634 {
635 	struct ixgbevf_rx_buffer *new_buff;
636 	u16 nta = rx_ring->next_to_alloc;
637 
638 	new_buff = &rx_ring->rx_buffer_info[nta];
639 
640 	/* update, and store next to alloc */
641 	nta++;
642 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
643 
644 	/* transfer page from old buffer to new buffer */
645 	new_buff->page = old_buff->page;
646 	new_buff->dma = old_buff->dma;
647 	new_buff->page_offset = old_buff->page_offset;
648 
649 	/* sync the buffer for use by the device */
650 	dma_sync_single_range_for_device(rx_ring->dev, new_buff->dma,
651 					 new_buff->page_offset,
652 					 IXGBEVF_RX_BUFSZ,
653 					 DMA_FROM_DEVICE);
654 }
655 
656 static inline bool ixgbevf_page_is_reserved(struct page *page)
657 {
658 	return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc;
659 }
660 
661 /* ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff
662  * @rx_ring: rx descriptor ring to transact packets on
663  * @rx_buffer: buffer containing page to add
664  * @rx_desc: descriptor containing length of buffer written by hardware
665  * @skb: sk_buff to place the data into
666  *
667  * This function will add the data contained in rx_buffer->page to the skb.
668  * This is done either through a direct copy if the data in the buffer is
669  * less than the skb header size, otherwise it will just attach the page as
670  * a frag to the skb.
671  *
672  * The function will then update the page offset if necessary and return
673  * true if the buffer can be reused by the adapter.
674  */
675 static bool ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring,
676 				struct ixgbevf_rx_buffer *rx_buffer,
677 				union ixgbe_adv_rx_desc *rx_desc,
678 				struct sk_buff *skb)
679 {
680 	struct page *page = rx_buffer->page;
681 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
682 #if (PAGE_SIZE < 8192)
683 	unsigned int truesize = IXGBEVF_RX_BUFSZ;
684 #else
685 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
686 #endif
687 
688 	if ((size <= IXGBEVF_RX_HDR_SIZE) && !skb_is_nonlinear(skb)) {
689 		unsigned char *va = page_address(page) + rx_buffer->page_offset;
690 
691 		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
692 
693 		/* page is not reserved, we can reuse buffer as is */
694 		if (likely(!ixgbevf_page_is_reserved(page)))
695 			return true;
696 
697 		/* this page cannot be reused so discard it */
698 		put_page(page);
699 		return false;
700 	}
701 
702 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
703 			rx_buffer->page_offset, size, truesize);
704 
705 	/* avoid re-using remote pages */
706 	if (unlikely(ixgbevf_page_is_reserved(page)))
707 		return false;
708 
709 #if (PAGE_SIZE < 8192)
710 	/* if we are only owner of page we can reuse it */
711 	if (unlikely(page_count(page) != 1))
712 		return false;
713 
714 	/* flip page offset to other buffer */
715 	rx_buffer->page_offset ^= IXGBEVF_RX_BUFSZ;
716 
717 #else
718 	/* move offset up to the next cache line */
719 	rx_buffer->page_offset += truesize;
720 
721 	if (rx_buffer->page_offset > (PAGE_SIZE - IXGBEVF_RX_BUFSZ))
722 		return false;
723 
724 #endif
725 	/* Even if we own the page, we are not allowed to use atomic_set()
726 	 * This would break get_page_unless_zero() users.
727 	 */
728 	atomic_inc(&page->_count);
729 
730 	return true;
731 }
732 
733 static struct sk_buff *ixgbevf_fetch_rx_buffer(struct ixgbevf_ring *rx_ring,
734 					       union ixgbe_adv_rx_desc *rx_desc,
735 					       struct sk_buff *skb)
736 {
737 	struct ixgbevf_rx_buffer *rx_buffer;
738 	struct page *page;
739 
740 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
741 	page = rx_buffer->page;
742 	prefetchw(page);
743 
744 	if (likely(!skb)) {
745 		void *page_addr = page_address(page) +
746 				  rx_buffer->page_offset;
747 
748 		/* prefetch first cache line of first page */
749 		prefetch(page_addr);
750 #if L1_CACHE_BYTES < 128
751 		prefetch(page_addr + L1_CACHE_BYTES);
752 #endif
753 
754 		/* allocate a skb to store the frags */
755 		skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
756 						IXGBEVF_RX_HDR_SIZE);
757 		if (unlikely(!skb)) {
758 			rx_ring->rx_stats.alloc_rx_buff_failed++;
759 			return NULL;
760 		}
761 
762 		/* we will be copying header into skb->data in
763 		 * pskb_may_pull so it is in our interest to prefetch
764 		 * it now to avoid a possible cache miss
765 		 */
766 		prefetchw(skb->data);
767 	}
768 
769 	/* we are reusing so sync this buffer for CPU use */
770 	dma_sync_single_range_for_cpu(rx_ring->dev,
771 				      rx_buffer->dma,
772 				      rx_buffer->page_offset,
773 				      IXGBEVF_RX_BUFSZ,
774 				      DMA_FROM_DEVICE);
775 
776 	/* pull page into skb */
777 	if (ixgbevf_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
778 		/* hand second half of page back to the ring */
779 		ixgbevf_reuse_rx_page(rx_ring, rx_buffer);
780 	} else {
781 		/* we are not reusing the buffer so unmap it */
782 		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
783 			       PAGE_SIZE, DMA_FROM_DEVICE);
784 	}
785 
786 	/* clear contents of buffer_info */
787 	rx_buffer->dma = 0;
788 	rx_buffer->page = NULL;
789 
790 	return skb;
791 }
792 
793 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
794 					     u32 qmask)
795 {
796 	struct ixgbe_hw *hw = &adapter->hw;
797 
798 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask);
799 }
800 
801 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
802 				struct ixgbevf_ring *rx_ring,
803 				int budget)
804 {
805 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
806 	u16 cleaned_count = ixgbevf_desc_unused(rx_ring);
807 	struct sk_buff *skb = rx_ring->skb;
808 
809 	while (likely(total_rx_packets < budget)) {
810 		union ixgbe_adv_rx_desc *rx_desc;
811 
812 		/* return some buffers to hardware, one at a time is too slow */
813 		if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
814 			ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count);
815 			cleaned_count = 0;
816 		}
817 
818 		rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
819 
820 		if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_DD))
821 			break;
822 
823 		/* This memory barrier is needed to keep us from reading
824 		 * any other fields out of the rx_desc until we know the
825 		 * RXD_STAT_DD bit is set
826 		 */
827 		rmb();
828 
829 		/* retrieve a buffer from the ring */
830 		skb = ixgbevf_fetch_rx_buffer(rx_ring, rx_desc, skb);
831 
832 		/* exit if we failed to retrieve a buffer */
833 		if (!skb)
834 			break;
835 
836 		cleaned_count++;
837 
838 		/* fetch next buffer in frame if non-eop */
839 		if (ixgbevf_is_non_eop(rx_ring, rx_desc))
840 			continue;
841 
842 		/* verify the packet layout is correct */
843 		if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) {
844 			skb = NULL;
845 			continue;
846 		}
847 
848 		/* probably a little skewed due to removing CRC */
849 		total_rx_bytes += skb->len;
850 
851 		/* Workaround hardware that can't do proper VEPA multicast
852 		 * source pruning.
853 		 */
854 		if ((skb->pkt_type == PACKET_BROADCAST ||
855 		    skb->pkt_type == PACKET_MULTICAST) &&
856 		    ether_addr_equal(rx_ring->netdev->dev_addr,
857 				     eth_hdr(skb)->h_source)) {
858 			dev_kfree_skb_irq(skb);
859 			continue;
860 		}
861 
862 		/* populate checksum, VLAN, and protocol */
863 		ixgbevf_process_skb_fields(rx_ring, rx_desc, skb);
864 
865 		ixgbevf_rx_skb(q_vector, skb);
866 
867 		/* reset skb pointer */
868 		skb = NULL;
869 
870 		/* update budget accounting */
871 		total_rx_packets++;
872 	}
873 
874 	/* place incomplete frames back on ring for completion */
875 	rx_ring->skb = skb;
876 
877 	u64_stats_update_begin(&rx_ring->syncp);
878 	rx_ring->stats.packets += total_rx_packets;
879 	rx_ring->stats.bytes += total_rx_bytes;
880 	u64_stats_update_end(&rx_ring->syncp);
881 	q_vector->rx.total_packets += total_rx_packets;
882 	q_vector->rx.total_bytes += total_rx_bytes;
883 
884 	return total_rx_packets;
885 }
886 
887 /**
888  * ixgbevf_poll - NAPI polling calback
889  * @napi: napi struct with our devices info in it
890  * @budget: amount of work driver is allowed to do this pass, in packets
891  *
892  * This function will clean more than one or more rings associated with a
893  * q_vector.
894  **/
895 static int ixgbevf_poll(struct napi_struct *napi, int budget)
896 {
897 	struct ixgbevf_q_vector *q_vector =
898 		container_of(napi, struct ixgbevf_q_vector, napi);
899 	struct ixgbevf_adapter *adapter = q_vector->adapter;
900 	struct ixgbevf_ring *ring;
901 	int per_ring_budget;
902 	bool clean_complete = true;
903 
904 	ixgbevf_for_each_ring(ring, q_vector->tx)
905 		clean_complete &= ixgbevf_clean_tx_irq(q_vector, ring);
906 
907 #ifdef CONFIG_NET_RX_BUSY_POLL
908 	if (!ixgbevf_qv_lock_napi(q_vector))
909 		return budget;
910 #endif
911 
912 	/* attempt to distribute budget to each queue fairly, but don't allow
913 	 * the budget to go below 1 because we'll exit polling */
914 	if (q_vector->rx.count > 1)
915 		per_ring_budget = max(budget/q_vector->rx.count, 1);
916 	else
917 		per_ring_budget = budget;
918 
919 	ixgbevf_for_each_ring(ring, q_vector->rx)
920 		clean_complete &= (ixgbevf_clean_rx_irq(q_vector, ring,
921 							per_ring_budget)
922 				   < per_ring_budget);
923 
924 #ifdef CONFIG_NET_RX_BUSY_POLL
925 	ixgbevf_qv_unlock_napi(q_vector);
926 #endif
927 
928 	/* If all work not completed, return budget and keep polling */
929 	if (!clean_complete)
930 		return budget;
931 	/* all work done, exit the polling mode */
932 	napi_complete(napi);
933 	if (adapter->rx_itr_setting & 1)
934 		ixgbevf_set_itr(q_vector);
935 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
936 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state))
937 		ixgbevf_irq_enable_queues(adapter,
938 					  1 << q_vector->v_idx);
939 
940 	return 0;
941 }
942 
943 /**
944  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
945  * @q_vector: structure containing interrupt and ring information
946  */
947 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector)
948 {
949 	struct ixgbevf_adapter *adapter = q_vector->adapter;
950 	struct ixgbe_hw *hw = &adapter->hw;
951 	int v_idx = q_vector->v_idx;
952 	u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR;
953 
954 	/*
955 	 * set the WDIS bit to not clear the timer bits and cause an
956 	 * immediate assertion of the interrupt
957 	 */
958 	itr_reg |= IXGBE_EITR_CNT_WDIS;
959 
960 	IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
961 }
962 
963 #ifdef CONFIG_NET_RX_BUSY_POLL
964 /* must be called with local_bh_disable()d */
965 static int ixgbevf_busy_poll_recv(struct napi_struct *napi)
966 {
967 	struct ixgbevf_q_vector *q_vector =
968 			container_of(napi, struct ixgbevf_q_vector, napi);
969 	struct ixgbevf_adapter *adapter = q_vector->adapter;
970 	struct ixgbevf_ring  *ring;
971 	int found = 0;
972 
973 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
974 		return LL_FLUSH_FAILED;
975 
976 	if (!ixgbevf_qv_lock_poll(q_vector))
977 		return LL_FLUSH_BUSY;
978 
979 	ixgbevf_for_each_ring(ring, q_vector->rx) {
980 		found = ixgbevf_clean_rx_irq(q_vector, ring, 4);
981 #ifdef BP_EXTENDED_STATS
982 		if (found)
983 			ring->stats.cleaned += found;
984 		else
985 			ring->stats.misses++;
986 #endif
987 		if (found)
988 			break;
989 	}
990 
991 	ixgbevf_qv_unlock_poll(q_vector);
992 
993 	return found;
994 }
995 #endif /* CONFIG_NET_RX_BUSY_POLL */
996 
997 /**
998  * ixgbevf_configure_msix - Configure MSI-X hardware
999  * @adapter: board private structure
1000  *
1001  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
1002  * interrupts.
1003  **/
1004 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
1005 {
1006 	struct ixgbevf_q_vector *q_vector;
1007 	int q_vectors, v_idx;
1008 
1009 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1010 	adapter->eims_enable_mask = 0;
1011 
1012 	/*
1013 	 * Populate the IVAR table and set the ITR values to the
1014 	 * corresponding register.
1015 	 */
1016 	for (v_idx = 0; v_idx < q_vectors; v_idx++) {
1017 		struct ixgbevf_ring *ring;
1018 		q_vector = adapter->q_vector[v_idx];
1019 
1020 		ixgbevf_for_each_ring(ring, q_vector->rx)
1021 			ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx);
1022 
1023 		ixgbevf_for_each_ring(ring, q_vector->tx)
1024 			ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx);
1025 
1026 		if (q_vector->tx.ring && !q_vector->rx.ring) {
1027 			/* tx only vector */
1028 			if (adapter->tx_itr_setting == 1)
1029 				q_vector->itr = IXGBE_10K_ITR;
1030 			else
1031 				q_vector->itr = adapter->tx_itr_setting;
1032 		} else {
1033 			/* rx or rx/tx vector */
1034 			if (adapter->rx_itr_setting == 1)
1035 				q_vector->itr = IXGBE_20K_ITR;
1036 			else
1037 				q_vector->itr = adapter->rx_itr_setting;
1038 		}
1039 
1040 		/* add q_vector eims value to global eims_enable_mask */
1041 		adapter->eims_enable_mask |= 1 << v_idx;
1042 
1043 		ixgbevf_write_eitr(q_vector);
1044 	}
1045 
1046 	ixgbevf_set_ivar(adapter, -1, 1, v_idx);
1047 	/* setup eims_other and add value to global eims_enable_mask */
1048 	adapter->eims_other = 1 << v_idx;
1049 	adapter->eims_enable_mask |= adapter->eims_other;
1050 }
1051 
1052 enum latency_range {
1053 	lowest_latency = 0,
1054 	low_latency = 1,
1055 	bulk_latency = 2,
1056 	latency_invalid = 255
1057 };
1058 
1059 /**
1060  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
1061  * @q_vector: structure containing interrupt and ring information
1062  * @ring_container: structure containing ring performance data
1063  *
1064  *      Stores a new ITR value based on packets and byte
1065  *      counts during the last interrupt.  The advantage of per interrupt
1066  *      computation is faster updates and more accurate ITR for the current
1067  *      traffic pattern.  Constants in this function were computed
1068  *      based on theoretical maximum wire speed and thresholds were set based
1069  *      on testing data as well as attempting to minimize response time
1070  *      while increasing bulk throughput.
1071  **/
1072 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector,
1073 			       struct ixgbevf_ring_container *ring_container)
1074 {
1075 	int bytes = ring_container->total_bytes;
1076 	int packets = ring_container->total_packets;
1077 	u32 timepassed_us;
1078 	u64 bytes_perint;
1079 	u8 itr_setting = ring_container->itr;
1080 
1081 	if (packets == 0)
1082 		return;
1083 
1084 	/* simple throttlerate management
1085 	 *    0-20MB/s lowest (100000 ints/s)
1086 	 *   20-100MB/s low   (20000 ints/s)
1087 	 *  100-1249MB/s bulk (8000 ints/s)
1088 	 */
1089 	/* what was last interrupt timeslice? */
1090 	timepassed_us = q_vector->itr >> 2;
1091 	bytes_perint = bytes / timepassed_us; /* bytes/usec */
1092 
1093 	switch (itr_setting) {
1094 	case lowest_latency:
1095 		if (bytes_perint > 10)
1096 			itr_setting = low_latency;
1097 		break;
1098 	case low_latency:
1099 		if (bytes_perint > 20)
1100 			itr_setting = bulk_latency;
1101 		else if (bytes_perint <= 10)
1102 			itr_setting = lowest_latency;
1103 		break;
1104 	case bulk_latency:
1105 		if (bytes_perint <= 20)
1106 			itr_setting = low_latency;
1107 		break;
1108 	}
1109 
1110 	/* clear work counters since we have the values we need */
1111 	ring_container->total_bytes = 0;
1112 	ring_container->total_packets = 0;
1113 
1114 	/* write updated itr to ring container */
1115 	ring_container->itr = itr_setting;
1116 }
1117 
1118 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector)
1119 {
1120 	u32 new_itr = q_vector->itr;
1121 	u8 current_itr;
1122 
1123 	ixgbevf_update_itr(q_vector, &q_vector->tx);
1124 	ixgbevf_update_itr(q_vector, &q_vector->rx);
1125 
1126 	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
1127 
1128 	switch (current_itr) {
1129 	/* counts and packets in update_itr are dependent on these numbers */
1130 	case lowest_latency:
1131 		new_itr = IXGBE_100K_ITR;
1132 		break;
1133 	case low_latency:
1134 		new_itr = IXGBE_20K_ITR;
1135 		break;
1136 	case bulk_latency:
1137 	default:
1138 		new_itr = IXGBE_8K_ITR;
1139 		break;
1140 	}
1141 
1142 	if (new_itr != q_vector->itr) {
1143 		/* do an exponential smoothing */
1144 		new_itr = (10 * new_itr * q_vector->itr) /
1145 			  ((9 * new_itr) + q_vector->itr);
1146 
1147 		/* save the algorithm value here */
1148 		q_vector->itr = new_itr;
1149 
1150 		ixgbevf_write_eitr(q_vector);
1151 	}
1152 }
1153 
1154 static irqreturn_t ixgbevf_msix_other(int irq, void *data)
1155 {
1156 	struct ixgbevf_adapter *adapter = data;
1157 	struct ixgbe_hw *hw = &adapter->hw;
1158 
1159 	hw->mac.get_link_status = 1;
1160 
1161 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
1162 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state))
1163 		mod_timer(&adapter->watchdog_timer, jiffies);
1164 
1165 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other);
1166 
1167 	return IRQ_HANDLED;
1168 }
1169 
1170 /**
1171  * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues)
1172  * @irq: unused
1173  * @data: pointer to our q_vector struct for this interrupt vector
1174  **/
1175 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data)
1176 {
1177 	struct ixgbevf_q_vector *q_vector = data;
1178 
1179 	/* EIAM disabled interrupts (on this vector) for us */
1180 	if (q_vector->rx.ring || q_vector->tx.ring)
1181 		napi_schedule(&q_vector->napi);
1182 
1183 	return IRQ_HANDLED;
1184 }
1185 
1186 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1187 				     int r_idx)
1188 {
1189 	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1190 
1191 	a->rx_ring[r_idx]->next = q_vector->rx.ring;
1192 	q_vector->rx.ring = a->rx_ring[r_idx];
1193 	q_vector->rx.count++;
1194 }
1195 
1196 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1197 				     int t_idx)
1198 {
1199 	struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1200 
1201 	a->tx_ring[t_idx]->next = q_vector->tx.ring;
1202 	q_vector->tx.ring = a->tx_ring[t_idx];
1203 	q_vector->tx.count++;
1204 }
1205 
1206 /**
1207  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1208  * @adapter: board private structure to initialize
1209  *
1210  * This function maps descriptor rings to the queue-specific vectors
1211  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1212  * one vector per ring/queue, but on a constrained vector budget, we
1213  * group the rings as "efficiently" as possible.  You would add new
1214  * mapping configurations in here.
1215  **/
1216 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1217 {
1218 	int q_vectors;
1219 	int v_start = 0;
1220 	int rxr_idx = 0, txr_idx = 0;
1221 	int rxr_remaining = adapter->num_rx_queues;
1222 	int txr_remaining = adapter->num_tx_queues;
1223 	int i, j;
1224 	int rqpv, tqpv;
1225 	int err = 0;
1226 
1227 	q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1228 
1229 	/*
1230 	 * The ideal configuration...
1231 	 * We have enough vectors to map one per queue.
1232 	 */
1233 	if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1234 		for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1235 			map_vector_to_rxq(adapter, v_start, rxr_idx);
1236 
1237 		for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1238 			map_vector_to_txq(adapter, v_start, txr_idx);
1239 		goto out;
1240 	}
1241 
1242 	/*
1243 	 * If we don't have enough vectors for a 1-to-1
1244 	 * mapping, we'll have to group them so there are
1245 	 * multiple queues per vector.
1246 	 */
1247 	/* Re-adjusting *qpv takes care of the remainder. */
1248 	for (i = v_start; i < q_vectors; i++) {
1249 		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1250 		for (j = 0; j < rqpv; j++) {
1251 			map_vector_to_rxq(adapter, i, rxr_idx);
1252 			rxr_idx++;
1253 			rxr_remaining--;
1254 		}
1255 	}
1256 	for (i = v_start; i < q_vectors; i++) {
1257 		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1258 		for (j = 0; j < tqpv; j++) {
1259 			map_vector_to_txq(adapter, i, txr_idx);
1260 			txr_idx++;
1261 			txr_remaining--;
1262 		}
1263 	}
1264 
1265 out:
1266 	return err;
1267 }
1268 
1269 /**
1270  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1271  * @adapter: board private structure
1272  *
1273  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1274  * interrupts from the kernel.
1275  **/
1276 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1277 {
1278 	struct net_device *netdev = adapter->netdev;
1279 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1280 	int vector, err;
1281 	int ri = 0, ti = 0;
1282 
1283 	for (vector = 0; vector < q_vectors; vector++) {
1284 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector];
1285 		struct msix_entry *entry = &adapter->msix_entries[vector];
1286 
1287 		if (q_vector->tx.ring && q_vector->rx.ring) {
1288 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1289 				 "%s-%s-%d", netdev->name, "TxRx", ri++);
1290 			ti++;
1291 		} else if (q_vector->rx.ring) {
1292 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1293 				 "%s-%s-%d", netdev->name, "rx", ri++);
1294 		} else if (q_vector->tx.ring) {
1295 			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1296 				 "%s-%s-%d", netdev->name, "tx", ti++);
1297 		} else {
1298 			/* skip this unused q_vector */
1299 			continue;
1300 		}
1301 		err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0,
1302 				  q_vector->name, q_vector);
1303 		if (err) {
1304 			hw_dbg(&adapter->hw,
1305 			       "request_irq failed for MSIX interrupt "
1306 			       "Error: %d\n", err);
1307 			goto free_queue_irqs;
1308 		}
1309 	}
1310 
1311 	err = request_irq(adapter->msix_entries[vector].vector,
1312 			  &ixgbevf_msix_other, 0, netdev->name, adapter);
1313 	if (err) {
1314 		hw_dbg(&adapter->hw,
1315 		       "request_irq for msix_other failed: %d\n", err);
1316 		goto free_queue_irqs;
1317 	}
1318 
1319 	return 0;
1320 
1321 free_queue_irqs:
1322 	while (vector) {
1323 		vector--;
1324 		free_irq(adapter->msix_entries[vector].vector,
1325 			 adapter->q_vector[vector]);
1326 	}
1327 	/* This failure is non-recoverable - it indicates the system is
1328 	 * out of MSIX vector resources and the VF driver cannot run
1329 	 * without them.  Set the number of msix vectors to zero
1330 	 * indicating that not enough can be allocated.  The error
1331 	 * will be returned to the user indicating device open failed.
1332 	 * Any further attempts to force the driver to open will also
1333 	 * fail.  The only way to recover is to unload the driver and
1334 	 * reload it again.  If the system has recovered some MSIX
1335 	 * vectors then it may succeed.
1336 	 */
1337 	adapter->num_msix_vectors = 0;
1338 	return err;
1339 }
1340 
1341 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1342 {
1343 	int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1344 
1345 	for (i = 0; i < q_vectors; i++) {
1346 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1347 		q_vector->rx.ring = NULL;
1348 		q_vector->tx.ring = NULL;
1349 		q_vector->rx.count = 0;
1350 		q_vector->tx.count = 0;
1351 	}
1352 }
1353 
1354 /**
1355  * ixgbevf_request_irq - initialize interrupts
1356  * @adapter: board private structure
1357  *
1358  * Attempts to configure interrupts using the best available
1359  * capabilities of the hardware and kernel.
1360  **/
1361 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1362 {
1363 	int err = 0;
1364 
1365 	err = ixgbevf_request_msix_irqs(adapter);
1366 
1367 	if (err)
1368 		hw_dbg(&adapter->hw,
1369 		       "request_irq failed, Error %d\n", err);
1370 
1371 	return err;
1372 }
1373 
1374 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1375 {
1376 	int i, q_vectors;
1377 
1378 	q_vectors = adapter->num_msix_vectors;
1379 	i = q_vectors - 1;
1380 
1381 	free_irq(adapter->msix_entries[i].vector, adapter);
1382 	i--;
1383 
1384 	for (; i >= 0; i--) {
1385 		/* free only the irqs that were actually requested */
1386 		if (!adapter->q_vector[i]->rx.ring &&
1387 		    !adapter->q_vector[i]->tx.ring)
1388 			continue;
1389 
1390 		free_irq(adapter->msix_entries[i].vector,
1391 			 adapter->q_vector[i]);
1392 	}
1393 
1394 	ixgbevf_reset_q_vectors(adapter);
1395 }
1396 
1397 /**
1398  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1399  * @adapter: board private structure
1400  **/
1401 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1402 {
1403 	struct ixgbe_hw *hw = &adapter->hw;
1404 	int i;
1405 
1406 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0);
1407 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1408 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0);
1409 
1410 	IXGBE_WRITE_FLUSH(hw);
1411 
1412 	for (i = 0; i < adapter->num_msix_vectors; i++)
1413 		synchronize_irq(adapter->msix_entries[i].vector);
1414 }
1415 
1416 /**
1417  * ixgbevf_irq_enable - Enable default interrupt generation settings
1418  * @adapter: board private structure
1419  **/
1420 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter)
1421 {
1422 	struct ixgbe_hw *hw = &adapter->hw;
1423 
1424 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask);
1425 	IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask);
1426 	IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask);
1427 }
1428 
1429 /**
1430  * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset
1431  * @adapter: board private structure
1432  * @ring: structure containing ring specific data
1433  *
1434  * Configure the Tx descriptor ring after a reset.
1435  **/
1436 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter,
1437 				      struct ixgbevf_ring *ring)
1438 {
1439 	struct ixgbe_hw *hw = &adapter->hw;
1440 	u64 tdba = ring->dma;
1441 	int wait_loop = 10;
1442 	u32 txdctl = IXGBE_TXDCTL_ENABLE;
1443 	u8 reg_idx = ring->reg_idx;
1444 
1445 	/* disable queue to avoid issues while updating state */
1446 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH);
1447 	IXGBE_WRITE_FLUSH(hw);
1448 
1449 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
1450 	IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32);
1451 	IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx),
1452 			ring->count * sizeof(union ixgbe_adv_tx_desc));
1453 
1454 	/* disable head writeback */
1455 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0);
1456 	IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0);
1457 
1458 	/* enable relaxed ordering */
1459 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx),
1460 			(IXGBE_DCA_TXCTRL_DESC_RRO_EN |
1461 			 IXGBE_DCA_TXCTRL_DATA_RRO_EN));
1462 
1463 	/* reset head and tail pointers */
1464 	IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0);
1465 	IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0);
1466 	ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx);
1467 
1468 	/* reset ntu and ntc to place SW in sync with hardwdare */
1469 	ring->next_to_clean = 0;
1470 	ring->next_to_use = 0;
1471 
1472 	/* In order to avoid issues WTHRESH + PTHRESH should always be equal
1473 	 * to or less than the number of on chip descriptors, which is
1474 	 * currently 40.
1475 	 */
1476 	txdctl |= (8 << 16);    /* WTHRESH = 8 */
1477 
1478 	/* Setting PTHRESH to 32 both improves performance */
1479 	txdctl |= (1 << 8) |    /* HTHRESH = 1 */
1480 		  32;          /* PTHRESH = 32 */
1481 
1482 	IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl);
1483 
1484 	/* poll to verify queue is enabled */
1485 	do {
1486 		usleep_range(1000, 2000);
1487 		txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx));
1488 	}  while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE));
1489 	if (!wait_loop)
1490 		pr_err("Could not enable Tx Queue %d\n", reg_idx);
1491 }
1492 
1493 /**
1494  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1495  * @adapter: board private structure
1496  *
1497  * Configure the Tx unit of the MAC after a reset.
1498  **/
1499 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1500 {
1501 	u32 i;
1502 
1503 	/* Setup the HW Tx Head and Tail descriptor pointers */
1504 	for (i = 0; i < adapter->num_tx_queues; i++)
1505 		ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]);
1506 }
1507 
1508 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT	2
1509 
1510 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1511 {
1512 	struct ixgbe_hw *hw = &adapter->hw;
1513 	u32 srrctl;
1514 
1515 	srrctl = IXGBE_SRRCTL_DROP_EN;
1516 
1517 	srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT;
1518 	srrctl |= IXGBEVF_RX_BUFSZ >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1519 	srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1520 
1521 	IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1522 }
1523 
1524 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter)
1525 {
1526 	struct ixgbe_hw *hw = &adapter->hw;
1527 
1528 	/* PSRTYPE must be initialized in 82599 */
1529 	u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR |
1530 		      IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR |
1531 		      IXGBE_PSRTYPE_L2HDR;
1532 
1533 	if (adapter->num_rx_queues > 1)
1534 		psrtype |= 1 << 29;
1535 
1536 	IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1537 }
1538 
1539 #define IXGBEVF_MAX_RX_DESC_POLL 10
1540 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter,
1541 				     struct ixgbevf_ring *ring)
1542 {
1543 	struct ixgbe_hw *hw = &adapter->hw;
1544 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1545 	u32 rxdctl;
1546 	u8 reg_idx = ring->reg_idx;
1547 
1548 	if (IXGBE_REMOVED(hw->hw_addr))
1549 		return;
1550 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1551 	rxdctl &= ~IXGBE_RXDCTL_ENABLE;
1552 
1553 	/* write value back with RXDCTL.ENABLE bit cleared */
1554 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1555 
1556 	/* the hardware may take up to 100us to really disable the rx queue */
1557 	do {
1558 		udelay(10);
1559 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1560 	} while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE));
1561 
1562 	if (!wait_loop)
1563 		pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n",
1564 		       reg_idx);
1565 }
1566 
1567 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1568 					 struct ixgbevf_ring *ring)
1569 {
1570 	struct ixgbe_hw *hw = &adapter->hw;
1571 	int wait_loop = IXGBEVF_MAX_RX_DESC_POLL;
1572 	u32 rxdctl;
1573 	u8 reg_idx = ring->reg_idx;
1574 
1575 	if (IXGBE_REMOVED(hw->hw_addr))
1576 		return;
1577 	do {
1578 		usleep_range(1000, 2000);
1579 		rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1580 	} while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE));
1581 
1582 	if (!wait_loop)
1583 		pr_err("RXDCTL.ENABLE queue %d not set while polling\n",
1584 		       reg_idx);
1585 }
1586 
1587 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter,
1588 				      struct ixgbevf_ring *ring)
1589 {
1590 	struct ixgbe_hw *hw = &adapter->hw;
1591 	u64 rdba = ring->dma;
1592 	u32 rxdctl;
1593 	u8 reg_idx = ring->reg_idx;
1594 
1595 	/* disable queue to avoid issues while updating state */
1596 	rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx));
1597 	ixgbevf_disable_rx_queue(adapter, ring);
1598 
1599 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1600 	IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32);
1601 	IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx),
1602 			ring->count * sizeof(union ixgbe_adv_rx_desc));
1603 
1604 	/* enable relaxed ordering */
1605 	IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx),
1606 			IXGBE_DCA_RXCTRL_DESC_RRO_EN);
1607 
1608 	/* reset head and tail pointers */
1609 	IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0);
1610 	IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0);
1611 	ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx);
1612 
1613 	/* reset ntu and ntc to place SW in sync with hardwdare */
1614 	ring->next_to_clean = 0;
1615 	ring->next_to_use = 0;
1616 	ring->next_to_alloc = 0;
1617 
1618 	ixgbevf_configure_srrctl(adapter, reg_idx);
1619 
1620 	/* allow any size packet since we can handle overflow */
1621 	rxdctl &= ~IXGBE_RXDCTL_RLPML_EN;
1622 
1623 	rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME;
1624 	IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl);
1625 
1626 	ixgbevf_rx_desc_queue_enable(adapter, ring);
1627 	ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring));
1628 }
1629 
1630 /**
1631  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1632  * @adapter: board private structure
1633  *
1634  * Configure the Rx unit of the MAC after a reset.
1635  **/
1636 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1637 {
1638 	int i;
1639 	struct ixgbe_hw *hw = &adapter->hw;
1640 	struct net_device *netdev = adapter->netdev;
1641 
1642 	ixgbevf_setup_psrtype(adapter);
1643 
1644 	/* notify the PF of our intent to use this size of frame */
1645 	ixgbevf_rlpml_set_vf(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN);
1646 
1647 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1648 	 * the Base and Length of the Rx Descriptor Ring */
1649 	for (i = 0; i < adapter->num_rx_queues; i++)
1650 		ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]);
1651 }
1652 
1653 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev,
1654 				   __be16 proto, u16 vid)
1655 {
1656 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1657 	struct ixgbe_hw *hw = &adapter->hw;
1658 	int err;
1659 
1660 	spin_lock_bh(&adapter->mbx_lock);
1661 
1662 	/* add VID to filter table */
1663 	err = hw->mac.ops.set_vfta(hw, vid, 0, true);
1664 
1665 	spin_unlock_bh(&adapter->mbx_lock);
1666 
1667 	/* translate error return types so error makes sense */
1668 	if (err == IXGBE_ERR_MBX)
1669 		return -EIO;
1670 
1671 	if (err == IXGBE_ERR_INVALID_ARGUMENT)
1672 		return -EACCES;
1673 
1674 	set_bit(vid, adapter->active_vlans);
1675 
1676 	return err;
1677 }
1678 
1679 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev,
1680 				    __be16 proto, u16 vid)
1681 {
1682 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1683 	struct ixgbe_hw *hw = &adapter->hw;
1684 	int err = -EOPNOTSUPP;
1685 
1686 	spin_lock_bh(&adapter->mbx_lock);
1687 
1688 	/* remove VID from filter table */
1689 	err = hw->mac.ops.set_vfta(hw, vid, 0, false);
1690 
1691 	spin_unlock_bh(&adapter->mbx_lock);
1692 
1693 	clear_bit(vid, adapter->active_vlans);
1694 
1695 	return err;
1696 }
1697 
1698 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1699 {
1700 	u16 vid;
1701 
1702 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1703 		ixgbevf_vlan_rx_add_vid(adapter->netdev,
1704 					htons(ETH_P_8021Q), vid);
1705 }
1706 
1707 static int ixgbevf_write_uc_addr_list(struct net_device *netdev)
1708 {
1709 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1710 	struct ixgbe_hw *hw = &adapter->hw;
1711 	int count = 0;
1712 
1713 	if ((netdev_uc_count(netdev)) > 10) {
1714 		pr_err("Too many unicast filters - No Space\n");
1715 		return -ENOSPC;
1716 	}
1717 
1718 	if (!netdev_uc_empty(netdev)) {
1719 		struct netdev_hw_addr *ha;
1720 		netdev_for_each_uc_addr(ha, netdev) {
1721 			hw->mac.ops.set_uc_addr(hw, ++count, ha->addr);
1722 			udelay(200);
1723 		}
1724 	} else {
1725 		/*
1726 		 * If the list is empty then send message to PF driver to
1727 		 * clear all macvlans on this VF.
1728 		 */
1729 		hw->mac.ops.set_uc_addr(hw, 0, NULL);
1730 	}
1731 
1732 	return count;
1733 }
1734 
1735 /**
1736  * ixgbevf_set_rx_mode - Multicast and unicast set
1737  * @netdev: network interface device structure
1738  *
1739  * The set_rx_method entry point is called whenever the multicast address
1740  * list, unicast address list or the network interface flags are updated.
1741  * This routine is responsible for configuring the hardware for proper
1742  * multicast mode and configuring requested unicast filters.
1743  **/
1744 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1745 {
1746 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1747 	struct ixgbe_hw *hw = &adapter->hw;
1748 
1749 	spin_lock_bh(&adapter->mbx_lock);
1750 
1751 	/* reprogram multicast list */
1752 	hw->mac.ops.update_mc_addr_list(hw, netdev);
1753 
1754 	ixgbevf_write_uc_addr_list(netdev);
1755 
1756 	spin_unlock_bh(&adapter->mbx_lock);
1757 }
1758 
1759 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1760 {
1761 	int q_idx;
1762 	struct ixgbevf_q_vector *q_vector;
1763 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1764 
1765 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1766 		q_vector = adapter->q_vector[q_idx];
1767 #ifdef CONFIG_NET_RX_BUSY_POLL
1768 		ixgbevf_qv_init_lock(adapter->q_vector[q_idx]);
1769 #endif
1770 		napi_enable(&q_vector->napi);
1771 	}
1772 }
1773 
1774 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1775 {
1776 	int q_idx;
1777 	struct ixgbevf_q_vector *q_vector;
1778 	int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1779 
1780 	for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1781 		q_vector = adapter->q_vector[q_idx];
1782 		napi_disable(&q_vector->napi);
1783 #ifdef CONFIG_NET_RX_BUSY_POLL
1784 		while (!ixgbevf_qv_disable(adapter->q_vector[q_idx])) {
1785 			pr_info("QV %d locked\n", q_idx);
1786 			usleep_range(1000, 20000);
1787 		}
1788 #endif /* CONFIG_NET_RX_BUSY_POLL */
1789 	}
1790 }
1791 
1792 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter)
1793 {
1794 	struct ixgbe_hw *hw = &adapter->hw;
1795 	unsigned int def_q = 0;
1796 	unsigned int num_tcs = 0;
1797 	unsigned int num_rx_queues = 1;
1798 	int err;
1799 
1800 	spin_lock_bh(&adapter->mbx_lock);
1801 
1802 	/* fetch queue configuration from the PF */
1803 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
1804 
1805 	spin_unlock_bh(&adapter->mbx_lock);
1806 
1807 	if (err)
1808 		return err;
1809 
1810 	if (num_tcs > 1) {
1811 		/* update default Tx ring register index */
1812 		adapter->tx_ring[0]->reg_idx = def_q;
1813 
1814 		/* we need as many queues as traffic classes */
1815 		num_rx_queues = num_tcs;
1816 	}
1817 
1818 	/* if we have a bad config abort request queue reset */
1819 	if (adapter->num_rx_queues != num_rx_queues) {
1820 		/* force mailbox timeout to prevent further messages */
1821 		hw->mbx.timeout = 0;
1822 
1823 		/* wait for watchdog to come around and bail us out */
1824 		adapter->flags |= IXGBEVF_FLAG_QUEUE_RESET_REQUESTED;
1825 	}
1826 
1827 	return 0;
1828 }
1829 
1830 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1831 {
1832 	ixgbevf_configure_dcb(adapter);
1833 
1834 	ixgbevf_set_rx_mode(adapter->netdev);
1835 
1836 	ixgbevf_restore_vlan(adapter);
1837 
1838 	ixgbevf_configure_tx(adapter);
1839 	ixgbevf_configure_rx(adapter);
1840 }
1841 
1842 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1843 {
1844 	/* Only save pre-reset stats if there are some */
1845 	if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1846 		adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1847 			adapter->stats.base_vfgprc;
1848 		adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1849 			adapter->stats.base_vfgptc;
1850 		adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1851 			adapter->stats.base_vfgorc;
1852 		adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1853 			adapter->stats.base_vfgotc;
1854 		adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1855 			adapter->stats.base_vfmprc;
1856 	}
1857 }
1858 
1859 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1860 {
1861 	struct ixgbe_hw *hw = &adapter->hw;
1862 
1863 	adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1864 	adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1865 	adapter->stats.last_vfgorc |=
1866 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1867 	adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1868 	adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1869 	adapter->stats.last_vfgotc |=
1870 		(((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1871 	adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1872 
1873 	adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1874 	adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1875 	adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1876 	adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1877 	adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1878 }
1879 
1880 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter)
1881 {
1882 	struct ixgbe_hw *hw = &adapter->hw;
1883 	int api[] = { ixgbe_mbox_api_11,
1884 		      ixgbe_mbox_api_10,
1885 		      ixgbe_mbox_api_unknown };
1886 	int err = 0, idx = 0;
1887 
1888 	spin_lock_bh(&adapter->mbx_lock);
1889 
1890 	while (api[idx] != ixgbe_mbox_api_unknown) {
1891 		err = ixgbevf_negotiate_api_version(hw, api[idx]);
1892 		if (!err)
1893 			break;
1894 		idx++;
1895 	}
1896 
1897 	spin_unlock_bh(&adapter->mbx_lock);
1898 }
1899 
1900 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1901 {
1902 	struct net_device *netdev = adapter->netdev;
1903 	struct ixgbe_hw *hw = &adapter->hw;
1904 
1905 	ixgbevf_configure_msix(adapter);
1906 
1907 	spin_lock_bh(&adapter->mbx_lock);
1908 
1909 	if (is_valid_ether_addr(hw->mac.addr))
1910 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1911 	else
1912 		hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1913 
1914 	spin_unlock_bh(&adapter->mbx_lock);
1915 
1916 	smp_mb__before_atomic();
1917 	clear_bit(__IXGBEVF_DOWN, &adapter->state);
1918 	ixgbevf_napi_enable_all(adapter);
1919 
1920 	/* enable transmits */
1921 	netif_tx_start_all_queues(netdev);
1922 
1923 	ixgbevf_save_reset_stats(adapter);
1924 	ixgbevf_init_last_counter_stats(adapter);
1925 
1926 	hw->mac.get_link_status = 1;
1927 	mod_timer(&adapter->watchdog_timer, jiffies);
1928 }
1929 
1930 void ixgbevf_up(struct ixgbevf_adapter *adapter)
1931 {
1932 	struct ixgbe_hw *hw = &adapter->hw;
1933 
1934 	ixgbevf_configure(adapter);
1935 
1936 	ixgbevf_up_complete(adapter);
1937 
1938 	/* clear any pending interrupts, may auto mask */
1939 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
1940 
1941 	ixgbevf_irq_enable(adapter);
1942 }
1943 
1944 /**
1945  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1946  * @rx_ring: ring to free buffers from
1947  **/
1948 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring)
1949 {
1950 	struct device *dev = rx_ring->dev;
1951 	unsigned long size;
1952 	unsigned int i;
1953 
1954 	/* Free Rx ring sk_buff */
1955 	if (rx_ring->skb) {
1956 		dev_kfree_skb(rx_ring->skb);
1957 		rx_ring->skb = NULL;
1958 	}
1959 
1960 	/* ring already cleared, nothing to do */
1961 	if (!rx_ring->rx_buffer_info)
1962 		return;
1963 
1964 	/* Free all the Rx ring pages */
1965 	for (i = 0; i < rx_ring->count; i++) {
1966 		struct ixgbevf_rx_buffer *rx_buffer;
1967 
1968 		rx_buffer = &rx_ring->rx_buffer_info[i];
1969 		if (rx_buffer->dma)
1970 			dma_unmap_page(dev, rx_buffer->dma,
1971 				       PAGE_SIZE, DMA_FROM_DEVICE);
1972 		rx_buffer->dma = 0;
1973 		if (rx_buffer->page)
1974 			__free_page(rx_buffer->page);
1975 		rx_buffer->page = NULL;
1976 	}
1977 
1978 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1979 	memset(rx_ring->rx_buffer_info, 0, size);
1980 
1981 	/* Zero out the descriptor ring */
1982 	memset(rx_ring->desc, 0, rx_ring->size);
1983 }
1984 
1985 /**
1986  * ixgbevf_clean_tx_ring - Free Tx Buffers
1987  * @tx_ring: ring to be cleaned
1988  **/
1989 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring)
1990 {
1991 	struct ixgbevf_tx_buffer *tx_buffer_info;
1992 	unsigned long size;
1993 	unsigned int i;
1994 
1995 	if (!tx_ring->tx_buffer_info)
1996 		return;
1997 
1998 	/* Free all the Tx ring sk_buffs */
1999 	for (i = 0; i < tx_ring->count; i++) {
2000 		tx_buffer_info = &tx_ring->tx_buffer_info[i];
2001 		ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
2002 	}
2003 
2004 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2005 	memset(tx_ring->tx_buffer_info, 0, size);
2006 
2007 	memset(tx_ring->desc, 0, tx_ring->size);
2008 }
2009 
2010 /**
2011  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
2012  * @adapter: board private structure
2013  **/
2014 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
2015 {
2016 	int i;
2017 
2018 	for (i = 0; i < adapter->num_rx_queues; i++)
2019 		ixgbevf_clean_rx_ring(adapter->rx_ring[i]);
2020 }
2021 
2022 /**
2023  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
2024  * @adapter: board private structure
2025  **/
2026 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
2027 {
2028 	int i;
2029 
2030 	for (i = 0; i < adapter->num_tx_queues; i++)
2031 		ixgbevf_clean_tx_ring(adapter->tx_ring[i]);
2032 }
2033 
2034 void ixgbevf_down(struct ixgbevf_adapter *adapter)
2035 {
2036 	struct net_device *netdev = adapter->netdev;
2037 	struct ixgbe_hw *hw = &adapter->hw;
2038 	int i;
2039 
2040 	/* signal that we are down to the interrupt handler */
2041 	if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state))
2042 		return; /* do nothing if already down */
2043 
2044 	/* disable all enabled rx queues */
2045 	for (i = 0; i < adapter->num_rx_queues; i++)
2046 		ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]);
2047 
2048 	netif_tx_disable(netdev);
2049 
2050 	msleep(10);
2051 
2052 	netif_tx_stop_all_queues(netdev);
2053 
2054 	ixgbevf_irq_disable(adapter);
2055 
2056 	ixgbevf_napi_disable_all(adapter);
2057 
2058 	del_timer_sync(&adapter->watchdog_timer);
2059 	/* can't call flush scheduled work here because it can deadlock
2060 	 * if linkwatch_event tries to acquire the rtnl_lock which we are
2061 	 * holding */
2062 	while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
2063 		msleep(1);
2064 
2065 	/* disable transmits in the hardware now that interrupts are off */
2066 	for (i = 0; i < adapter->num_tx_queues; i++) {
2067 		u8 reg_idx = adapter->tx_ring[i]->reg_idx;
2068 
2069 		IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx),
2070 				IXGBE_TXDCTL_SWFLSH);
2071 	}
2072 
2073 	netif_carrier_off(netdev);
2074 
2075 	if (!pci_channel_offline(adapter->pdev))
2076 		ixgbevf_reset(adapter);
2077 
2078 	ixgbevf_clean_all_tx_rings(adapter);
2079 	ixgbevf_clean_all_rx_rings(adapter);
2080 }
2081 
2082 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
2083 {
2084 	WARN_ON(in_interrupt());
2085 
2086 	while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
2087 		msleep(1);
2088 
2089 	ixgbevf_down(adapter);
2090 	ixgbevf_up(adapter);
2091 
2092 	clear_bit(__IXGBEVF_RESETTING, &adapter->state);
2093 }
2094 
2095 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
2096 {
2097 	struct ixgbe_hw *hw = &adapter->hw;
2098 	struct net_device *netdev = adapter->netdev;
2099 
2100 	if (hw->mac.ops.reset_hw(hw)) {
2101 		hw_dbg(hw, "PF still resetting\n");
2102 	} else {
2103 		hw->mac.ops.init_hw(hw);
2104 		ixgbevf_negotiate_api(adapter);
2105 	}
2106 
2107 	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
2108 		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2109 		       netdev->addr_len);
2110 		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
2111 		       netdev->addr_len);
2112 	}
2113 }
2114 
2115 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
2116 					int vectors)
2117 {
2118 	int vector_threshold;
2119 
2120 	/* We'll want at least 2 (vector_threshold):
2121 	 * 1) TxQ[0] + RxQ[0] handler
2122 	 * 2) Other (Link Status Change, etc.)
2123 	 */
2124 	vector_threshold = MIN_MSIX_COUNT;
2125 
2126 	/* The more we get, the more we will assign to Tx/Rx Cleanup
2127 	 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
2128 	 * Right now, we simply care about how many we'll get; we'll
2129 	 * set them up later while requesting irq's.
2130 	 */
2131 	vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
2132 					vector_threshold, vectors);
2133 
2134 	if (vectors < 0) {
2135 		dev_err(&adapter->pdev->dev,
2136 			"Unable to allocate MSI-X interrupts\n");
2137 		kfree(adapter->msix_entries);
2138 		adapter->msix_entries = NULL;
2139 		return vectors;
2140 	}
2141 
2142 	/* Adjust for only the vectors we'll use, which is minimum
2143 	 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
2144 	 * vectors we were allocated.
2145 	 */
2146 	adapter->num_msix_vectors = vectors;
2147 
2148 	return 0;
2149 }
2150 
2151 /**
2152  * ixgbevf_set_num_queues - Allocate queues for device, feature dependent
2153  * @adapter: board private structure to initialize
2154  *
2155  * This is the top level queue allocation routine.  The order here is very
2156  * important, starting with the "most" number of features turned on at once,
2157  * and ending with the smallest set of features.  This way large combinations
2158  * can be allocated if they're turned on, and smaller combinations are the
2159  * fallthrough conditions.
2160  *
2161  **/
2162 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
2163 {
2164 	struct ixgbe_hw *hw = &adapter->hw;
2165 	unsigned int def_q = 0;
2166 	unsigned int num_tcs = 0;
2167 	int err;
2168 
2169 	/* Start with base case */
2170 	adapter->num_rx_queues = 1;
2171 	adapter->num_tx_queues = 1;
2172 
2173 	spin_lock_bh(&adapter->mbx_lock);
2174 
2175 	/* fetch queue configuration from the PF */
2176 	err = ixgbevf_get_queues(hw, &num_tcs, &def_q);
2177 
2178 	spin_unlock_bh(&adapter->mbx_lock);
2179 
2180 	if (err)
2181 		return;
2182 
2183 	/* we need as many queues as traffic classes */
2184 	if (num_tcs > 1)
2185 		adapter->num_rx_queues = num_tcs;
2186 }
2187 
2188 /**
2189  * ixgbevf_alloc_queues - Allocate memory for all rings
2190  * @adapter: board private structure to initialize
2191  *
2192  * We allocate one ring per queue at run-time since we don't know the
2193  * number of queues at compile-time.  The polling_netdev array is
2194  * intended for Multiqueue, but should work fine with a single queue.
2195  **/
2196 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2197 {
2198 	struct ixgbevf_ring *ring;
2199 	int rx = 0, tx = 0;
2200 
2201 	for (; tx < adapter->num_tx_queues; tx++) {
2202 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2203 		if (!ring)
2204 			goto err_allocation;
2205 
2206 		ring->dev = &adapter->pdev->dev;
2207 		ring->netdev = adapter->netdev;
2208 		ring->count = adapter->tx_ring_count;
2209 		ring->queue_index = tx;
2210 		ring->reg_idx = tx;
2211 
2212 		adapter->tx_ring[tx] = ring;
2213 	}
2214 
2215 	for (; rx < adapter->num_rx_queues; rx++) {
2216 		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
2217 		if (!ring)
2218 			goto err_allocation;
2219 
2220 		ring->dev = &adapter->pdev->dev;
2221 		ring->netdev = adapter->netdev;
2222 
2223 		ring->count = adapter->rx_ring_count;
2224 		ring->queue_index = rx;
2225 		ring->reg_idx = rx;
2226 
2227 		adapter->rx_ring[rx] = ring;
2228 	}
2229 
2230 	return 0;
2231 
2232 err_allocation:
2233 	while (tx) {
2234 		kfree(adapter->tx_ring[--tx]);
2235 		adapter->tx_ring[tx] = NULL;
2236 	}
2237 
2238 	while (rx) {
2239 		kfree(adapter->rx_ring[--rx]);
2240 		adapter->rx_ring[rx] = NULL;
2241 	}
2242 	return -ENOMEM;
2243 }
2244 
2245 /**
2246  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2247  * @adapter: board private structure to initialize
2248  *
2249  * Attempt to configure the interrupts using the best available
2250  * capabilities of the hardware and the kernel.
2251  **/
2252 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2253 {
2254 	struct net_device *netdev = adapter->netdev;
2255 	int err = 0;
2256 	int vector, v_budget;
2257 
2258 	/*
2259 	 * It's easy to be greedy for MSI-X vectors, but it really
2260 	 * doesn't do us much good if we have a lot more vectors
2261 	 * than CPU's.  So let's be conservative and only ask for
2262 	 * (roughly) the same number of vectors as there are CPU's.
2263 	 * The default is to use pairs of vectors.
2264 	 */
2265 	v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues);
2266 	v_budget = min_t(int, v_budget, num_online_cpus());
2267 	v_budget += NON_Q_VECTORS;
2268 
2269 	/* A failure in MSI-X entry allocation isn't fatal, but it does
2270 	 * mean we disable MSI-X capabilities of the adapter. */
2271 	adapter->msix_entries = kcalloc(v_budget,
2272 					sizeof(struct msix_entry), GFP_KERNEL);
2273 	if (!adapter->msix_entries) {
2274 		err = -ENOMEM;
2275 		goto out;
2276 	}
2277 
2278 	for (vector = 0; vector < v_budget; vector++)
2279 		adapter->msix_entries[vector].entry = vector;
2280 
2281 	err = ixgbevf_acquire_msix_vectors(adapter, v_budget);
2282 	if (err)
2283 		goto out;
2284 
2285 	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
2286 	if (err)
2287 		goto out;
2288 
2289 	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
2290 
2291 out:
2292 	return err;
2293 }
2294 
2295 /**
2296  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2297  * @adapter: board private structure to initialize
2298  *
2299  * We allocate one q_vector per queue interrupt.  If allocation fails we
2300  * return -ENOMEM.
2301  **/
2302 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2303 {
2304 	int q_idx, num_q_vectors;
2305 	struct ixgbevf_q_vector *q_vector;
2306 
2307 	num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2308 
2309 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2310 		q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2311 		if (!q_vector)
2312 			goto err_out;
2313 		q_vector->adapter = adapter;
2314 		q_vector->v_idx = q_idx;
2315 		netif_napi_add(adapter->netdev, &q_vector->napi,
2316 			       ixgbevf_poll, 64);
2317 #ifdef CONFIG_NET_RX_BUSY_POLL
2318 		napi_hash_add(&q_vector->napi);
2319 #endif
2320 		adapter->q_vector[q_idx] = q_vector;
2321 	}
2322 
2323 	return 0;
2324 
2325 err_out:
2326 	while (q_idx) {
2327 		q_idx--;
2328 		q_vector = adapter->q_vector[q_idx];
2329 #ifdef CONFIG_NET_RX_BUSY_POLL
2330 		napi_hash_del(&q_vector->napi);
2331 #endif
2332 		netif_napi_del(&q_vector->napi);
2333 		kfree(q_vector);
2334 		adapter->q_vector[q_idx] = NULL;
2335 	}
2336 	return -ENOMEM;
2337 }
2338 
2339 /**
2340  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2341  * @adapter: board private structure to initialize
2342  *
2343  * This function frees the memory allocated to the q_vectors.  In addition if
2344  * NAPI is enabled it will delete any references to the NAPI struct prior
2345  * to freeing the q_vector.
2346  **/
2347 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2348 {
2349 	int q_idx, num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2350 
2351 	for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2352 		struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2353 
2354 		adapter->q_vector[q_idx] = NULL;
2355 #ifdef CONFIG_NET_RX_BUSY_POLL
2356 		napi_hash_del(&q_vector->napi);
2357 #endif
2358 		netif_napi_del(&q_vector->napi);
2359 		kfree(q_vector);
2360 	}
2361 }
2362 
2363 /**
2364  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2365  * @adapter: board private structure
2366  *
2367  **/
2368 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2369 {
2370 	pci_disable_msix(adapter->pdev);
2371 	kfree(adapter->msix_entries);
2372 	adapter->msix_entries = NULL;
2373 }
2374 
2375 /**
2376  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2377  * @adapter: board private structure to initialize
2378  *
2379  **/
2380 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2381 {
2382 	int err;
2383 
2384 	/* Number of supported queues */
2385 	ixgbevf_set_num_queues(adapter);
2386 
2387 	err = ixgbevf_set_interrupt_capability(adapter);
2388 	if (err) {
2389 		hw_dbg(&adapter->hw,
2390 		       "Unable to setup interrupt capabilities\n");
2391 		goto err_set_interrupt;
2392 	}
2393 
2394 	err = ixgbevf_alloc_q_vectors(adapter);
2395 	if (err) {
2396 		hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2397 		       "vectors\n");
2398 		goto err_alloc_q_vectors;
2399 	}
2400 
2401 	err = ixgbevf_alloc_queues(adapter);
2402 	if (err) {
2403 		pr_err("Unable to allocate memory for queues\n");
2404 		goto err_alloc_queues;
2405 	}
2406 
2407 	hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2408 	       "Tx Queue count = %u\n",
2409 	       (adapter->num_rx_queues > 1) ? "Enabled" :
2410 	       "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2411 
2412 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2413 
2414 	return 0;
2415 err_alloc_queues:
2416 	ixgbevf_free_q_vectors(adapter);
2417 err_alloc_q_vectors:
2418 	ixgbevf_reset_interrupt_capability(adapter);
2419 err_set_interrupt:
2420 	return err;
2421 }
2422 
2423 /**
2424  * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings
2425  * @adapter: board private structure to clear interrupt scheme on
2426  *
2427  * We go through and clear interrupt specific resources and reset the structure
2428  * to pre-load conditions
2429  **/
2430 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter)
2431 {
2432 	int i;
2433 
2434 	for (i = 0; i < adapter->num_tx_queues; i++) {
2435 		kfree(adapter->tx_ring[i]);
2436 		adapter->tx_ring[i] = NULL;
2437 	}
2438 	for (i = 0; i < adapter->num_rx_queues; i++) {
2439 		kfree(adapter->rx_ring[i]);
2440 		adapter->rx_ring[i] = NULL;
2441 	}
2442 
2443 	adapter->num_tx_queues = 0;
2444 	adapter->num_rx_queues = 0;
2445 
2446 	ixgbevf_free_q_vectors(adapter);
2447 	ixgbevf_reset_interrupt_capability(adapter);
2448 }
2449 
2450 /**
2451  * ixgbevf_sw_init - Initialize general software structures
2452  * (struct ixgbevf_adapter)
2453  * @adapter: board private structure to initialize
2454  *
2455  * ixgbevf_sw_init initializes the Adapter private data structure.
2456  * Fields are initialized based on PCI device information and
2457  * OS network device settings (MTU size).
2458  **/
2459 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2460 {
2461 	struct ixgbe_hw *hw = &adapter->hw;
2462 	struct pci_dev *pdev = adapter->pdev;
2463 	struct net_device *netdev = adapter->netdev;
2464 	int err;
2465 
2466 	/* PCI config space info */
2467 
2468 	hw->vendor_id = pdev->vendor;
2469 	hw->device_id = pdev->device;
2470 	hw->revision_id = pdev->revision;
2471 	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2472 	hw->subsystem_device_id = pdev->subsystem_device;
2473 
2474 	hw->mbx.ops.init_params(hw);
2475 
2476 	/* assume legacy case in which PF would only give VF 2 queues */
2477 	hw->mac.max_tx_queues = 2;
2478 	hw->mac.max_rx_queues = 2;
2479 
2480 	/* lock to protect mailbox accesses */
2481 	spin_lock_init(&adapter->mbx_lock);
2482 
2483 	err = hw->mac.ops.reset_hw(hw);
2484 	if (err) {
2485 		dev_info(&pdev->dev,
2486 			 "PF still in reset state.  Is the PF interface up?\n");
2487 	} else {
2488 		err = hw->mac.ops.init_hw(hw);
2489 		if (err) {
2490 			pr_err("init_shared_code failed: %d\n", err);
2491 			goto out;
2492 		}
2493 		ixgbevf_negotiate_api(adapter);
2494 		err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
2495 		if (err)
2496 			dev_info(&pdev->dev, "Error reading MAC address\n");
2497 		else if (is_zero_ether_addr(adapter->hw.mac.addr))
2498 			dev_info(&pdev->dev,
2499 				 "MAC address not assigned by administrator.\n");
2500 		memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2501 	}
2502 
2503 	if (!is_valid_ether_addr(netdev->dev_addr)) {
2504 		dev_info(&pdev->dev, "Assigning random MAC address\n");
2505 		eth_hw_addr_random(netdev);
2506 		memcpy(hw->mac.addr, netdev->dev_addr, netdev->addr_len);
2507 	}
2508 
2509 	/* Enable dynamic interrupt throttling rates */
2510 	adapter->rx_itr_setting = 1;
2511 	adapter->tx_itr_setting = 1;
2512 
2513 	/* set default ring sizes */
2514 	adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2515 	adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2516 
2517 	set_bit(__IXGBEVF_DOWN, &adapter->state);
2518 	return 0;
2519 
2520 out:
2521 	return err;
2522 }
2523 
2524 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)	\
2525 	{							\
2526 		u32 current_counter = IXGBE_READ_REG(hw, reg);	\
2527 		if (current_counter < last_counter)		\
2528 			counter += 0x100000000LL;		\
2529 		last_counter = current_counter;			\
2530 		counter &= 0xFFFFFFFF00000000LL;		\
2531 		counter |= current_counter;			\
2532 	}
2533 
2534 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2535 	{								 \
2536 		u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);	 \
2537 		u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);	 \
2538 		u64 current_counter = (current_counter_msb << 32) |      \
2539 			current_counter_lsb;                             \
2540 		if (current_counter < last_counter)			 \
2541 			counter += 0x1000000000LL;			 \
2542 		last_counter = current_counter;				 \
2543 		counter &= 0xFFFFFFF000000000LL;			 \
2544 		counter |= current_counter;				 \
2545 	}
2546 /**
2547  * ixgbevf_update_stats - Update the board statistics counters.
2548  * @adapter: board private structure
2549  **/
2550 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2551 {
2552 	struct ixgbe_hw *hw = &adapter->hw;
2553 	int i;
2554 
2555 	if (!adapter->link_up)
2556 		return;
2557 
2558 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2559 				adapter->stats.vfgprc);
2560 	UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2561 				adapter->stats.vfgptc);
2562 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2563 				adapter->stats.last_vfgorc,
2564 				adapter->stats.vfgorc);
2565 	UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2566 				adapter->stats.last_vfgotc,
2567 				adapter->stats.vfgotc);
2568 	UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2569 				adapter->stats.vfmprc);
2570 
2571 	for (i = 0;  i  < adapter->num_rx_queues;  i++) {
2572 		adapter->hw_csum_rx_error +=
2573 			adapter->rx_ring[i]->hw_csum_rx_error;
2574 		adapter->rx_ring[i]->hw_csum_rx_error = 0;
2575 	}
2576 }
2577 
2578 /**
2579  * ixgbevf_watchdog - Timer Call-back
2580  * @data: pointer to adapter cast into an unsigned long
2581  **/
2582 static void ixgbevf_watchdog(unsigned long data)
2583 {
2584 	struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2585 	struct ixgbe_hw *hw = &adapter->hw;
2586 	u32 eics = 0;
2587 	int i;
2588 
2589 	/*
2590 	 * Do the watchdog outside of interrupt context due to the lovely
2591 	 * delays that some of the newer hardware requires
2592 	 */
2593 
2594 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2595 		goto watchdog_short_circuit;
2596 
2597 	/* get one bit for every active tx/rx interrupt vector */
2598 	for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2599 		struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2600 		if (qv->rx.ring || qv->tx.ring)
2601 			eics |= 1 << i;
2602 	}
2603 
2604 	IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics);
2605 
2606 watchdog_short_circuit:
2607 	schedule_work(&adapter->watchdog_task);
2608 }
2609 
2610 /**
2611  * ixgbevf_tx_timeout - Respond to a Tx Hang
2612  * @netdev: network interface device structure
2613  **/
2614 static void ixgbevf_tx_timeout(struct net_device *netdev)
2615 {
2616 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2617 
2618 	/* Do the reset outside of interrupt context */
2619 	schedule_work(&adapter->reset_task);
2620 }
2621 
2622 static void ixgbevf_reset_task(struct work_struct *work)
2623 {
2624 	struct ixgbevf_adapter *adapter;
2625 	adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2626 
2627 	/* If we're already down or resetting, just bail */
2628 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2629 	    test_bit(__IXGBEVF_REMOVING, &adapter->state) ||
2630 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
2631 		return;
2632 
2633 	adapter->tx_timeout_count++;
2634 
2635 	ixgbevf_reinit_locked(adapter);
2636 }
2637 
2638 /**
2639  * ixgbevf_watchdog_task - worker thread to bring link up
2640  * @work: pointer to work_struct containing our data
2641  **/
2642 static void ixgbevf_watchdog_task(struct work_struct *work)
2643 {
2644 	struct ixgbevf_adapter *adapter = container_of(work,
2645 						       struct ixgbevf_adapter,
2646 						       watchdog_task);
2647 	struct net_device *netdev = adapter->netdev;
2648 	struct ixgbe_hw *hw = &adapter->hw;
2649 	u32 link_speed = adapter->link_speed;
2650 	bool link_up = adapter->link_up;
2651 	s32 need_reset;
2652 
2653 	if (IXGBE_REMOVED(hw->hw_addr)) {
2654 		if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) {
2655 			rtnl_lock();
2656 			ixgbevf_down(adapter);
2657 			rtnl_unlock();
2658 		}
2659 		return;
2660 	}
2661 	ixgbevf_queue_reset_subtask(adapter);
2662 
2663 	adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2664 
2665 	/*
2666 	 * Always check the link on the watchdog because we have
2667 	 * no LSC interrupt
2668 	 */
2669 	spin_lock_bh(&adapter->mbx_lock);
2670 
2671 	need_reset = hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
2672 
2673 	spin_unlock_bh(&adapter->mbx_lock);
2674 
2675 	if (need_reset) {
2676 		adapter->link_up = link_up;
2677 		adapter->link_speed = link_speed;
2678 		netif_carrier_off(netdev);
2679 		netif_tx_stop_all_queues(netdev);
2680 		schedule_work(&adapter->reset_task);
2681 		goto pf_has_reset;
2682 	}
2683 	adapter->link_up = link_up;
2684 	adapter->link_speed = link_speed;
2685 
2686 	if (link_up) {
2687 		if (!netif_carrier_ok(netdev)) {
2688 			char *link_speed_string;
2689 			switch (link_speed) {
2690 			case IXGBE_LINK_SPEED_10GB_FULL:
2691 				link_speed_string = "10 Gbps";
2692 				break;
2693 			case IXGBE_LINK_SPEED_1GB_FULL:
2694 				link_speed_string = "1 Gbps";
2695 				break;
2696 			case IXGBE_LINK_SPEED_100_FULL:
2697 				link_speed_string = "100 Mbps";
2698 				break;
2699 			default:
2700 				link_speed_string = "unknown speed";
2701 				break;
2702 			}
2703 			dev_info(&adapter->pdev->dev,
2704 				"NIC Link is Up, %s\n", link_speed_string);
2705 			netif_carrier_on(netdev);
2706 			netif_tx_wake_all_queues(netdev);
2707 		}
2708 	} else {
2709 		adapter->link_up = false;
2710 		adapter->link_speed = 0;
2711 		if (netif_carrier_ok(netdev)) {
2712 			dev_info(&adapter->pdev->dev, "NIC Link is Down\n");
2713 			netif_carrier_off(netdev);
2714 			netif_tx_stop_all_queues(netdev);
2715 		}
2716 	}
2717 
2718 	ixgbevf_update_stats(adapter);
2719 
2720 pf_has_reset:
2721 	/* Reset the timer */
2722 	if (!test_bit(__IXGBEVF_DOWN, &adapter->state) &&
2723 	    !test_bit(__IXGBEVF_REMOVING, &adapter->state))
2724 		mod_timer(&adapter->watchdog_timer,
2725 			  round_jiffies(jiffies + (2 * HZ)));
2726 
2727 	adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2728 }
2729 
2730 /**
2731  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2732  * @tx_ring: Tx descriptor ring for a specific queue
2733  *
2734  * Free all transmit software resources
2735  **/
2736 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring)
2737 {
2738 	ixgbevf_clean_tx_ring(tx_ring);
2739 
2740 	vfree(tx_ring->tx_buffer_info);
2741 	tx_ring->tx_buffer_info = NULL;
2742 
2743 	/* if not set, then don't free */
2744 	if (!tx_ring->desc)
2745 		return;
2746 
2747 	dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc,
2748 			  tx_ring->dma);
2749 
2750 	tx_ring->desc = NULL;
2751 }
2752 
2753 /**
2754  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2755  * @adapter: board private structure
2756  *
2757  * Free all transmit software resources
2758  **/
2759 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2760 {
2761 	int i;
2762 
2763 	for (i = 0; i < adapter->num_tx_queues; i++)
2764 		if (adapter->tx_ring[i]->desc)
2765 			ixgbevf_free_tx_resources(adapter->tx_ring[i]);
2766 }
2767 
2768 /**
2769  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2770  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2771  *
2772  * Return 0 on success, negative on failure
2773  **/
2774 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring)
2775 {
2776 	int size;
2777 
2778 	size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2779 	tx_ring->tx_buffer_info = vzalloc(size);
2780 	if (!tx_ring->tx_buffer_info)
2781 		goto err;
2782 
2783 	/* round up to nearest 4K */
2784 	tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2785 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2786 
2787 	tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size,
2788 					   &tx_ring->dma, GFP_KERNEL);
2789 	if (!tx_ring->desc)
2790 		goto err;
2791 
2792 	return 0;
2793 
2794 err:
2795 	vfree(tx_ring->tx_buffer_info);
2796 	tx_ring->tx_buffer_info = NULL;
2797 	hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2798 	       "descriptor ring\n");
2799 	return -ENOMEM;
2800 }
2801 
2802 /**
2803  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2804  * @adapter: board private structure
2805  *
2806  * If this function returns with an error, then it's possible one or
2807  * more of the rings is populated (while the rest are not).  It is the
2808  * callers duty to clean those orphaned rings.
2809  *
2810  * Return 0 on success, negative on failure
2811  **/
2812 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2813 {
2814 	int i, err = 0;
2815 
2816 	for (i = 0; i < adapter->num_tx_queues; i++) {
2817 		err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]);
2818 		if (!err)
2819 			continue;
2820 		hw_dbg(&adapter->hw,
2821 		       "Allocation for Tx Queue %u failed\n", i);
2822 		break;
2823 	}
2824 
2825 	return err;
2826 }
2827 
2828 /**
2829  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2830  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2831  *
2832  * Returns 0 on success, negative on failure
2833  **/
2834 int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring)
2835 {
2836 	int size;
2837 
2838 	size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2839 	rx_ring->rx_buffer_info = vzalloc(size);
2840 	if (!rx_ring->rx_buffer_info)
2841 		goto err;
2842 
2843 	/* Round up to nearest 4K */
2844 	rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2845 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2846 
2847 	rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size,
2848 					   &rx_ring->dma, GFP_KERNEL);
2849 
2850 	if (!rx_ring->desc)
2851 		goto err;
2852 
2853 	return 0;
2854 err:
2855 	vfree(rx_ring->rx_buffer_info);
2856 	rx_ring->rx_buffer_info = NULL;
2857 	dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n");
2858 	return -ENOMEM;
2859 }
2860 
2861 /**
2862  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2863  * @adapter: board private structure
2864  *
2865  * If this function returns with an error, then it's possible one or
2866  * more of the rings is populated (while the rest are not).  It is the
2867  * callers duty to clean those orphaned rings.
2868  *
2869  * Return 0 on success, negative on failure
2870  **/
2871 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2872 {
2873 	int i, err = 0;
2874 
2875 	for (i = 0; i < adapter->num_rx_queues; i++) {
2876 		err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]);
2877 		if (!err)
2878 			continue;
2879 		hw_dbg(&adapter->hw,
2880 		       "Allocation for Rx Queue %u failed\n", i);
2881 		break;
2882 	}
2883 	return err;
2884 }
2885 
2886 /**
2887  * ixgbevf_free_rx_resources - Free Rx Resources
2888  * @rx_ring: ring to clean the resources from
2889  *
2890  * Free all receive software resources
2891  **/
2892 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring)
2893 {
2894 	ixgbevf_clean_rx_ring(rx_ring);
2895 
2896 	vfree(rx_ring->rx_buffer_info);
2897 	rx_ring->rx_buffer_info = NULL;
2898 
2899 	dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc,
2900 			  rx_ring->dma);
2901 
2902 	rx_ring->desc = NULL;
2903 }
2904 
2905 /**
2906  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2907  * @adapter: board private structure
2908  *
2909  * Free all receive software resources
2910  **/
2911 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2912 {
2913 	int i;
2914 
2915 	for (i = 0; i < adapter->num_rx_queues; i++)
2916 		if (adapter->rx_ring[i]->desc)
2917 			ixgbevf_free_rx_resources(adapter->rx_ring[i]);
2918 }
2919 
2920 /**
2921  * ixgbevf_open - Called when a network interface is made active
2922  * @netdev: network interface device structure
2923  *
2924  * Returns 0 on success, negative value on failure
2925  *
2926  * The open entry point is called when a network interface is made
2927  * active by the system (IFF_UP).  At this point all resources needed
2928  * for transmit and receive operations are allocated, the interrupt
2929  * handler is registered with the OS, the watchdog timer is started,
2930  * and the stack is notified that the interface is ready.
2931  **/
2932 static int ixgbevf_open(struct net_device *netdev)
2933 {
2934 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2935 	struct ixgbe_hw *hw = &adapter->hw;
2936 	int err;
2937 
2938 	/* A previous failure to open the device because of a lack of
2939 	 * available MSIX vector resources may have reset the number
2940 	 * of msix vectors variable to zero.  The only way to recover
2941 	 * is to unload/reload the driver and hope that the system has
2942 	 * been able to recover some MSIX vector resources.
2943 	 */
2944 	if (!adapter->num_msix_vectors)
2945 		return -ENOMEM;
2946 
2947 	/* disallow open during test */
2948 	if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2949 		return -EBUSY;
2950 
2951 	if (hw->adapter_stopped) {
2952 		ixgbevf_reset(adapter);
2953 		/* if adapter is still stopped then PF isn't up and
2954 		 * the vf can't start. */
2955 		if (hw->adapter_stopped) {
2956 			err = IXGBE_ERR_MBX;
2957 			pr_err("Unable to start - perhaps the PF Driver isn't "
2958 			       "up yet\n");
2959 			goto err_setup_reset;
2960 		}
2961 	}
2962 
2963 	/* allocate transmit descriptors */
2964 	err = ixgbevf_setup_all_tx_resources(adapter);
2965 	if (err)
2966 		goto err_setup_tx;
2967 
2968 	/* allocate receive descriptors */
2969 	err = ixgbevf_setup_all_rx_resources(adapter);
2970 	if (err)
2971 		goto err_setup_rx;
2972 
2973 	ixgbevf_configure(adapter);
2974 
2975 	/*
2976 	 * Map the Tx/Rx rings to the vectors we were allotted.
2977 	 * if request_irq will be called in this function map_rings
2978 	 * must be called *before* up_complete
2979 	 */
2980 	ixgbevf_map_rings_to_vectors(adapter);
2981 
2982 	ixgbevf_up_complete(adapter);
2983 
2984 	/* clear any pending interrupts, may auto mask */
2985 	IXGBE_READ_REG(hw, IXGBE_VTEICR);
2986 	err = ixgbevf_request_irq(adapter);
2987 	if (err)
2988 		goto err_req_irq;
2989 
2990 	ixgbevf_irq_enable(adapter);
2991 
2992 	return 0;
2993 
2994 err_req_irq:
2995 	ixgbevf_down(adapter);
2996 err_setup_rx:
2997 	ixgbevf_free_all_rx_resources(adapter);
2998 err_setup_tx:
2999 	ixgbevf_free_all_tx_resources(adapter);
3000 	ixgbevf_reset(adapter);
3001 
3002 err_setup_reset:
3003 
3004 	return err;
3005 }
3006 
3007 /**
3008  * ixgbevf_close - Disables a network interface
3009  * @netdev: network interface device structure
3010  *
3011  * Returns 0, this is not allowed to fail
3012  *
3013  * The close entry point is called when an interface is de-activated
3014  * by the OS.  The hardware is still under the drivers control, but
3015  * needs to be disabled.  A global MAC reset is issued to stop the
3016  * hardware, and all transmit and receive resources are freed.
3017  **/
3018 static int ixgbevf_close(struct net_device *netdev)
3019 {
3020 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3021 
3022 	ixgbevf_down(adapter);
3023 	ixgbevf_free_irq(adapter);
3024 
3025 	ixgbevf_free_all_tx_resources(adapter);
3026 	ixgbevf_free_all_rx_resources(adapter);
3027 
3028 	return 0;
3029 }
3030 
3031 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter)
3032 {
3033 	struct net_device *dev = adapter->netdev;
3034 
3035 	if (!(adapter->flags & IXGBEVF_FLAG_QUEUE_RESET_REQUESTED))
3036 		return;
3037 
3038 	adapter->flags &= ~IXGBEVF_FLAG_QUEUE_RESET_REQUESTED;
3039 
3040 	/* if interface is down do nothing */
3041 	if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
3042 	    test_bit(__IXGBEVF_RESETTING, &adapter->state))
3043 		return;
3044 
3045 	/* Hardware has to reinitialize queues and interrupts to
3046 	 * match packet buffer alignment. Unfortunately, the
3047 	 * hardware is not flexible enough to do this dynamically.
3048 	 */
3049 	if (netif_running(dev))
3050 		ixgbevf_close(dev);
3051 
3052 	ixgbevf_clear_interrupt_scheme(adapter);
3053 	ixgbevf_init_interrupt_scheme(adapter);
3054 
3055 	if (netif_running(dev))
3056 		ixgbevf_open(dev);
3057 }
3058 
3059 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring,
3060 				u32 vlan_macip_lens, u32 type_tucmd,
3061 				u32 mss_l4len_idx)
3062 {
3063 	struct ixgbe_adv_tx_context_desc *context_desc;
3064 	u16 i = tx_ring->next_to_use;
3065 
3066 	context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i);
3067 
3068 	i++;
3069 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3070 
3071 	/* set bits to identify this as an advanced context descriptor */
3072 	type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
3073 
3074 	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
3075 	context_desc->seqnum_seed	= 0;
3076 	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
3077 	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
3078 }
3079 
3080 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring,
3081 		       struct ixgbevf_tx_buffer *first,
3082 		       u8 *hdr_len)
3083 {
3084 	struct sk_buff *skb = first->skb;
3085 	u32 vlan_macip_lens, type_tucmd;
3086 	u32 mss_l4len_idx, l4len;
3087 	int err;
3088 
3089 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3090 		return 0;
3091 
3092 	if (!skb_is_gso(skb))
3093 		return 0;
3094 
3095 	err = skb_cow_head(skb, 0);
3096 	if (err < 0)
3097 		return err;
3098 
3099 	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
3100 	type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP;
3101 
3102 	if (skb->protocol == htons(ETH_P_IP)) {
3103 		struct iphdr *iph = ip_hdr(skb);
3104 		iph->tot_len = 0;
3105 		iph->check = 0;
3106 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3107 							 iph->daddr, 0,
3108 							 IPPROTO_TCP,
3109 							 0);
3110 		type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3111 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3112 				   IXGBE_TX_FLAGS_CSUM |
3113 				   IXGBE_TX_FLAGS_IPV4;
3114 	} else if (skb_is_gso_v6(skb)) {
3115 		ipv6_hdr(skb)->payload_len = 0;
3116 		tcp_hdr(skb)->check =
3117 		    ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3118 				     &ipv6_hdr(skb)->daddr,
3119 				     0, IPPROTO_TCP, 0);
3120 		first->tx_flags |= IXGBE_TX_FLAGS_TSO |
3121 				   IXGBE_TX_FLAGS_CSUM;
3122 	}
3123 
3124 	/* compute header lengths */
3125 	l4len = tcp_hdrlen(skb);
3126 	*hdr_len += l4len;
3127 	*hdr_len = skb_transport_offset(skb) + l4len;
3128 
3129 	/* update gso size and bytecount with header size */
3130 	first->gso_segs = skb_shinfo(skb)->gso_segs;
3131 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3132 
3133 	/* mss_l4len_id: use 1 as index for TSO */
3134 	mss_l4len_idx = l4len << IXGBE_ADVTXD_L4LEN_SHIFT;
3135 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT;
3136 	mss_l4len_idx |= 1 << IXGBE_ADVTXD_IDX_SHIFT;
3137 
3138 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
3139 	vlan_macip_lens = skb_network_header_len(skb);
3140 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3141 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3142 
3143 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3144 			    type_tucmd, mss_l4len_idx);
3145 
3146 	return 1;
3147 }
3148 
3149 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring,
3150 			    struct ixgbevf_tx_buffer *first)
3151 {
3152 	struct sk_buff *skb = first->skb;
3153 	u32 vlan_macip_lens = 0;
3154 	u32 mss_l4len_idx = 0;
3155 	u32 type_tucmd = 0;
3156 
3157 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3158 		u8 l4_hdr = 0;
3159 		switch (skb->protocol) {
3160 		case htons(ETH_P_IP):
3161 			vlan_macip_lens |= skb_network_header_len(skb);
3162 			type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4;
3163 			l4_hdr = ip_hdr(skb)->protocol;
3164 			break;
3165 		case htons(ETH_P_IPV6):
3166 			vlan_macip_lens |= skb_network_header_len(skb);
3167 			l4_hdr = ipv6_hdr(skb)->nexthdr;
3168 			break;
3169 		default:
3170 			if (unlikely(net_ratelimit())) {
3171 				dev_warn(tx_ring->dev,
3172 				 "partial checksum but proto=%x!\n",
3173 				 first->protocol);
3174 			}
3175 			break;
3176 		}
3177 
3178 		switch (l4_hdr) {
3179 		case IPPROTO_TCP:
3180 			type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
3181 			mss_l4len_idx = tcp_hdrlen(skb) <<
3182 					IXGBE_ADVTXD_L4LEN_SHIFT;
3183 			break;
3184 		case IPPROTO_SCTP:
3185 			type_tucmd |= IXGBE_ADVTXD_TUCMD_L4T_SCTP;
3186 			mss_l4len_idx = sizeof(struct sctphdr) <<
3187 					IXGBE_ADVTXD_L4LEN_SHIFT;
3188 			break;
3189 		case IPPROTO_UDP:
3190 			mss_l4len_idx = sizeof(struct udphdr) <<
3191 					IXGBE_ADVTXD_L4LEN_SHIFT;
3192 			break;
3193 		default:
3194 			if (unlikely(net_ratelimit())) {
3195 				dev_warn(tx_ring->dev,
3196 				 "partial checksum but l4 proto=%x!\n",
3197 				 l4_hdr);
3198 			}
3199 			break;
3200 		}
3201 
3202 		/* update TX checksum flag */
3203 		first->tx_flags |= IXGBE_TX_FLAGS_CSUM;
3204 	}
3205 
3206 	/* vlan_macip_lens: MACLEN, VLAN tag */
3207 	vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT;
3208 	vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK;
3209 
3210 	ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens,
3211 			    type_tucmd, mss_l4len_idx);
3212 }
3213 
3214 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags)
3215 {
3216 	/* set type for advanced descriptor with frame checksum insertion */
3217 	__le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA |
3218 				      IXGBE_ADVTXD_DCMD_IFCS |
3219 				      IXGBE_ADVTXD_DCMD_DEXT);
3220 
3221 	/* set HW vlan bit if vlan is present */
3222 	if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3223 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE);
3224 
3225 	/* set segmentation enable bits for TSO/FSO */
3226 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3227 		cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE);
3228 
3229 	return cmd_type;
3230 }
3231 
3232 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc,
3233 				     u32 tx_flags, unsigned int paylen)
3234 {
3235 	__le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT);
3236 
3237 	/* enable L4 checksum for TSO and TX checksum offload */
3238 	if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3239 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM);
3240 
3241 	/* enble IPv4 checksum for TSO */
3242 	if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3243 		olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM);
3244 
3245 	/* use index 1 context for TSO/FSO/FCOE */
3246 	if (tx_flags & IXGBE_TX_FLAGS_TSO)
3247 		olinfo_status |= cpu_to_le32(1 << IXGBE_ADVTXD_IDX_SHIFT);
3248 
3249 	/* Check Context must be set if Tx switch is enabled, which it
3250 	 * always is for case where virtual functions are running
3251 	 */
3252 	olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC);
3253 
3254 	tx_desc->read.olinfo_status = olinfo_status;
3255 }
3256 
3257 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring,
3258 			   struct ixgbevf_tx_buffer *first,
3259 			   const u8 hdr_len)
3260 {
3261 	dma_addr_t dma;
3262 	struct sk_buff *skb = first->skb;
3263 	struct ixgbevf_tx_buffer *tx_buffer;
3264 	union ixgbe_adv_tx_desc *tx_desc;
3265 	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
3266 	unsigned int data_len = skb->data_len;
3267 	unsigned int size = skb_headlen(skb);
3268 	unsigned int paylen = skb->len - hdr_len;
3269 	u32 tx_flags = first->tx_flags;
3270 	__le32 cmd_type;
3271 	u16 i = tx_ring->next_to_use;
3272 
3273 	tx_desc = IXGBEVF_TX_DESC(tx_ring, i);
3274 
3275 	ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen);
3276 	cmd_type = ixgbevf_tx_cmd_type(tx_flags);
3277 
3278 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3279 	if (dma_mapping_error(tx_ring->dev, dma))
3280 		goto dma_error;
3281 
3282 	/* record length, and DMA address */
3283 	dma_unmap_len_set(first, len, size);
3284 	dma_unmap_addr_set(first, dma, dma);
3285 
3286 	tx_desc->read.buffer_addr = cpu_to_le64(dma);
3287 
3288 	for (;;) {
3289 		while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) {
3290 			tx_desc->read.cmd_type_len =
3291 				cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD);
3292 
3293 			i++;
3294 			tx_desc++;
3295 			if (i == tx_ring->count) {
3296 				tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3297 				i = 0;
3298 			}
3299 
3300 			dma += IXGBE_MAX_DATA_PER_TXD;
3301 			size -= IXGBE_MAX_DATA_PER_TXD;
3302 
3303 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
3304 			tx_desc->read.olinfo_status = 0;
3305 		}
3306 
3307 		if (likely(!data_len))
3308 			break;
3309 
3310 		tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size);
3311 
3312 		i++;
3313 		tx_desc++;
3314 		if (i == tx_ring->count) {
3315 			tx_desc = IXGBEVF_TX_DESC(tx_ring, 0);
3316 			i = 0;
3317 		}
3318 
3319 		size = skb_frag_size(frag);
3320 		data_len -= size;
3321 
3322 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3323 				       DMA_TO_DEVICE);
3324 		if (dma_mapping_error(tx_ring->dev, dma))
3325 			goto dma_error;
3326 
3327 		tx_buffer = &tx_ring->tx_buffer_info[i];
3328 		dma_unmap_len_set(tx_buffer, len, size);
3329 		dma_unmap_addr_set(tx_buffer, dma, dma);
3330 
3331 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
3332 		tx_desc->read.olinfo_status = 0;
3333 
3334 		frag++;
3335 	}
3336 
3337 	/* write last descriptor with RS and EOP bits */
3338 	cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD);
3339 	tx_desc->read.cmd_type_len = cmd_type;
3340 
3341 	/* set the timestamp */
3342 	first->time_stamp = jiffies;
3343 
3344 	/* Force memory writes to complete before letting h/w know there
3345 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
3346 	 * memory model archs, such as IA-64).
3347 	 *
3348 	 * We also need this memory barrier (wmb) to make certain all of the
3349 	 * status bits have been updated before next_to_watch is written.
3350 	 */
3351 	wmb();
3352 
3353 	/* set next_to_watch value indicating a packet is present */
3354 	first->next_to_watch = tx_desc;
3355 
3356 	i++;
3357 	if (i == tx_ring->count)
3358 		i = 0;
3359 
3360 	tx_ring->next_to_use = i;
3361 
3362 	/* notify HW of packet */
3363 	ixgbevf_write_tail(tx_ring, i);
3364 
3365 	return;
3366 dma_error:
3367 	dev_err(tx_ring->dev, "TX DMA map failed\n");
3368 
3369 	/* clear dma mappings for failed tx_buffer_info map */
3370 	for (;;) {
3371 		tx_buffer = &tx_ring->tx_buffer_info[i];
3372 		ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer);
3373 		if (tx_buffer == first)
3374 			break;
3375 		if (i == 0)
3376 			i = tx_ring->count;
3377 		i--;
3378 	}
3379 
3380 	tx_ring->next_to_use = i;
3381 }
3382 
3383 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3384 {
3385 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3386 	/* Herbert's original patch had:
3387 	 *  smp_mb__after_netif_stop_queue();
3388 	 * but since that doesn't exist yet, just open code it. */
3389 	smp_mb();
3390 
3391 	/* We need to check again in a case another CPU has just
3392 	 * made room available. */
3393 	if (likely(ixgbevf_desc_unused(tx_ring) < size))
3394 		return -EBUSY;
3395 
3396 	/* A reprieve! - use start_queue because it doesn't call schedule */
3397 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3398 	++tx_ring->tx_stats.restart_queue;
3399 
3400 	return 0;
3401 }
3402 
3403 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size)
3404 {
3405 	if (likely(ixgbevf_desc_unused(tx_ring) >= size))
3406 		return 0;
3407 	return __ixgbevf_maybe_stop_tx(tx_ring, size);
3408 }
3409 
3410 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3411 {
3412 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3413 	struct ixgbevf_tx_buffer *first;
3414 	struct ixgbevf_ring *tx_ring;
3415 	int tso;
3416 	u32 tx_flags = 0;
3417 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
3418 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3419 	unsigned short f;
3420 #endif
3421 	u8 hdr_len = 0;
3422 	u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL);
3423 
3424 	if (!dst_mac || is_link_local_ether_addr(dst_mac)) {
3425 		dev_kfree_skb(skb);
3426 		return NETDEV_TX_OK;
3427 	}
3428 
3429 	tx_ring = adapter->tx_ring[skb->queue_mapping];
3430 
3431 	/*
3432 	 * need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD,
3433 	 *       + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD,
3434 	 *       + 2 desc gap to keep tail from touching head,
3435 	 *       + 1 desc for context descriptor,
3436 	 * otherwise try next time
3437 	 */
3438 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD
3439 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3440 		count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3441 #else
3442 	count += skb_shinfo(skb)->nr_frags;
3443 #endif
3444 	if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) {
3445 		tx_ring->tx_stats.tx_busy++;
3446 		return NETDEV_TX_BUSY;
3447 	}
3448 
3449 	/* record the location of the first descriptor for this packet */
3450 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
3451 	first->skb = skb;
3452 	first->bytecount = skb->len;
3453 	first->gso_segs = 1;
3454 
3455 	if (vlan_tx_tag_present(skb)) {
3456 		tx_flags |= vlan_tx_tag_get(skb);
3457 		tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3458 		tx_flags |= IXGBE_TX_FLAGS_VLAN;
3459 	}
3460 
3461 	/* record initial flags and protocol */
3462 	first->tx_flags = tx_flags;
3463 	first->protocol = vlan_get_protocol(skb);
3464 
3465 	tso = ixgbevf_tso(tx_ring, first, &hdr_len);
3466 	if (tso < 0)
3467 		goto out_drop;
3468 	else if (!tso)
3469 		ixgbevf_tx_csum(tx_ring, first);
3470 
3471 	ixgbevf_tx_map(tx_ring, first, hdr_len);
3472 
3473 	ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED);
3474 
3475 	return NETDEV_TX_OK;
3476 
3477 out_drop:
3478 	dev_kfree_skb_any(first->skb);
3479 	first->skb = NULL;
3480 
3481 	return NETDEV_TX_OK;
3482 }
3483 
3484 /**
3485  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3486  * @netdev: network interface device structure
3487  * @p: pointer to an address structure
3488  *
3489  * Returns 0 on success, negative on failure
3490  **/
3491 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3492 {
3493 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3494 	struct ixgbe_hw *hw = &adapter->hw;
3495 	struct sockaddr *addr = p;
3496 
3497 	if (!is_valid_ether_addr(addr->sa_data))
3498 		return -EADDRNOTAVAIL;
3499 
3500 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3501 	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3502 
3503 	spin_lock_bh(&adapter->mbx_lock);
3504 
3505 	hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3506 
3507 	spin_unlock_bh(&adapter->mbx_lock);
3508 
3509 	return 0;
3510 }
3511 
3512 /**
3513  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3514  * @netdev: network interface device structure
3515  * @new_mtu: new value for maximum frame size
3516  *
3517  * Returns 0 on success, negative on failure
3518  **/
3519 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3520 {
3521 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3522 	struct ixgbe_hw *hw = &adapter->hw;
3523 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3524 	int max_possible_frame = MAXIMUM_ETHERNET_VLAN_SIZE;
3525 
3526 	switch (adapter->hw.api_version) {
3527 	case ixgbe_mbox_api_11:
3528 		max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3529 		break;
3530 	default:
3531 		if (adapter->hw.mac.type != ixgbe_mac_82599_vf)
3532 			max_possible_frame = IXGBE_MAX_JUMBO_FRAME_SIZE;
3533 		break;
3534 	}
3535 
3536 	/* MTU < 68 is an error and causes problems on some kernels */
3537 	if ((new_mtu < 68) || (max_frame > max_possible_frame))
3538 		return -EINVAL;
3539 
3540 	hw_dbg(hw, "changing MTU from %d to %d\n",
3541 	       netdev->mtu, new_mtu);
3542 	/* must set new MTU before calling down or up */
3543 	netdev->mtu = new_mtu;
3544 
3545 	/* notify the PF of our intent to use this size of frame */
3546 	ixgbevf_rlpml_set_vf(hw, max_frame);
3547 
3548 	return 0;
3549 }
3550 
3551 #ifdef CONFIG_NET_POLL_CONTROLLER
3552 /* Polling 'interrupt' - used by things like netconsole to send skbs
3553  * without having to re-enable interrupts. It's not called while
3554  * the interrupt routine is executing.
3555  */
3556 static void ixgbevf_netpoll(struct net_device *netdev)
3557 {
3558 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3559 	int i;
3560 
3561 	/* if interface is down do nothing */
3562 	if (test_bit(__IXGBEVF_DOWN, &adapter->state))
3563 		return;
3564 	for (i = 0; i < adapter->num_rx_queues; i++)
3565 		ixgbevf_msix_clean_rings(0, adapter->q_vector[i]);
3566 }
3567 #endif /* CONFIG_NET_POLL_CONTROLLER */
3568 
3569 static int ixgbevf_suspend(struct pci_dev *pdev, pm_message_t state)
3570 {
3571 	struct net_device *netdev = pci_get_drvdata(pdev);
3572 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3573 #ifdef CONFIG_PM
3574 	int retval = 0;
3575 #endif
3576 
3577 	netif_device_detach(netdev);
3578 
3579 	if (netif_running(netdev)) {
3580 		rtnl_lock();
3581 		ixgbevf_down(adapter);
3582 		ixgbevf_free_irq(adapter);
3583 		ixgbevf_free_all_tx_resources(adapter);
3584 		ixgbevf_free_all_rx_resources(adapter);
3585 		rtnl_unlock();
3586 	}
3587 
3588 	ixgbevf_clear_interrupt_scheme(adapter);
3589 
3590 #ifdef CONFIG_PM
3591 	retval = pci_save_state(pdev);
3592 	if (retval)
3593 		return retval;
3594 
3595 #endif
3596 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3597 		pci_disable_device(pdev);
3598 
3599 	return 0;
3600 }
3601 
3602 #ifdef CONFIG_PM
3603 static int ixgbevf_resume(struct pci_dev *pdev)
3604 {
3605 	struct net_device *netdev = pci_get_drvdata(pdev);
3606 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3607 	u32 err;
3608 
3609 	pci_restore_state(pdev);
3610 	/*
3611 	 * pci_restore_state clears dev->state_saved so call
3612 	 * pci_save_state to restore it.
3613 	 */
3614 	pci_save_state(pdev);
3615 
3616 	err = pci_enable_device_mem(pdev);
3617 	if (err) {
3618 		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
3619 		return err;
3620 	}
3621 	smp_mb__before_atomic();
3622 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
3623 	pci_set_master(pdev);
3624 
3625 	ixgbevf_reset(adapter);
3626 
3627 	rtnl_lock();
3628 	err = ixgbevf_init_interrupt_scheme(adapter);
3629 	rtnl_unlock();
3630 	if (err) {
3631 		dev_err(&pdev->dev, "Cannot initialize interrupts\n");
3632 		return err;
3633 	}
3634 
3635 	if (netif_running(netdev)) {
3636 		err = ixgbevf_open(netdev);
3637 		if (err)
3638 			return err;
3639 	}
3640 
3641 	netif_device_attach(netdev);
3642 
3643 	return err;
3644 }
3645 
3646 #endif /* CONFIG_PM */
3647 static void ixgbevf_shutdown(struct pci_dev *pdev)
3648 {
3649 	ixgbevf_suspend(pdev, PMSG_SUSPEND);
3650 }
3651 
3652 static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev,
3653 						struct rtnl_link_stats64 *stats)
3654 {
3655 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3656 	unsigned int start;
3657 	u64 bytes, packets;
3658 	const struct ixgbevf_ring *ring;
3659 	int i;
3660 
3661 	ixgbevf_update_stats(adapter);
3662 
3663 	stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc;
3664 
3665 	for (i = 0; i < adapter->num_rx_queues; i++) {
3666 		ring = adapter->rx_ring[i];
3667 		do {
3668 			start = u64_stats_fetch_begin_irq(&ring->syncp);
3669 			bytes = ring->stats.bytes;
3670 			packets = ring->stats.packets;
3671 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3672 		stats->rx_bytes += bytes;
3673 		stats->rx_packets += packets;
3674 	}
3675 
3676 	for (i = 0; i < adapter->num_tx_queues; i++) {
3677 		ring = adapter->tx_ring[i];
3678 		do {
3679 			start = u64_stats_fetch_begin_irq(&ring->syncp);
3680 			bytes = ring->stats.bytes;
3681 			packets = ring->stats.packets;
3682 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
3683 		stats->tx_bytes += bytes;
3684 		stats->tx_packets += packets;
3685 	}
3686 
3687 	return stats;
3688 }
3689 
3690 static const struct net_device_ops ixgbevf_netdev_ops = {
3691 	.ndo_open		= ixgbevf_open,
3692 	.ndo_stop		= ixgbevf_close,
3693 	.ndo_start_xmit		= ixgbevf_xmit_frame,
3694 	.ndo_set_rx_mode	= ixgbevf_set_rx_mode,
3695 	.ndo_get_stats64	= ixgbevf_get_stats,
3696 	.ndo_validate_addr	= eth_validate_addr,
3697 	.ndo_set_mac_address	= ixgbevf_set_mac,
3698 	.ndo_change_mtu		= ixgbevf_change_mtu,
3699 	.ndo_tx_timeout		= ixgbevf_tx_timeout,
3700 	.ndo_vlan_rx_add_vid	= ixgbevf_vlan_rx_add_vid,
3701 	.ndo_vlan_rx_kill_vid	= ixgbevf_vlan_rx_kill_vid,
3702 #ifdef CONFIG_NET_RX_BUSY_POLL
3703 	.ndo_busy_poll		= ixgbevf_busy_poll_recv,
3704 #endif
3705 #ifdef CONFIG_NET_POLL_CONTROLLER
3706 	.ndo_poll_controller	= ixgbevf_netpoll,
3707 #endif
3708 };
3709 
3710 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3711 {
3712 	dev->netdev_ops = &ixgbevf_netdev_ops;
3713 	ixgbevf_set_ethtool_ops(dev);
3714 	dev->watchdog_timeo = 5 * HZ;
3715 }
3716 
3717 /**
3718  * ixgbevf_probe - Device Initialization Routine
3719  * @pdev: PCI device information struct
3720  * @ent: entry in ixgbevf_pci_tbl
3721  *
3722  * Returns 0 on success, negative on failure
3723  *
3724  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3725  * The OS initialization, configuring of the adapter private structure,
3726  * and a hardware reset occur.
3727  **/
3728 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3729 {
3730 	struct net_device *netdev;
3731 	struct ixgbevf_adapter *adapter = NULL;
3732 	struct ixgbe_hw *hw = NULL;
3733 	const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3734 	int err, pci_using_dac;
3735 	bool disable_dev = false;
3736 
3737 	err = pci_enable_device(pdev);
3738 	if (err)
3739 		return err;
3740 
3741 	if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3742 		pci_using_dac = 1;
3743 	} else {
3744 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3745 		if (err) {
3746 			dev_err(&pdev->dev, "No usable DMA "
3747 				"configuration, aborting\n");
3748 			goto err_dma;
3749 		}
3750 		pci_using_dac = 0;
3751 	}
3752 
3753 	err = pci_request_regions(pdev, ixgbevf_driver_name);
3754 	if (err) {
3755 		dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3756 		goto err_pci_reg;
3757 	}
3758 
3759 	pci_set_master(pdev);
3760 
3761 	netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3762 				   MAX_TX_QUEUES);
3763 	if (!netdev) {
3764 		err = -ENOMEM;
3765 		goto err_alloc_etherdev;
3766 	}
3767 
3768 	SET_NETDEV_DEV(netdev, &pdev->dev);
3769 
3770 	adapter = netdev_priv(netdev);
3771 
3772 	adapter->netdev = netdev;
3773 	adapter->pdev = pdev;
3774 	hw = &adapter->hw;
3775 	hw->back = adapter;
3776 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3777 
3778 	/*
3779 	 * call save state here in standalone driver because it relies on
3780 	 * adapter struct to exist, and needs to call netdev_priv
3781 	 */
3782 	pci_save_state(pdev);
3783 
3784 	hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3785 			      pci_resource_len(pdev, 0));
3786 	adapter->io_addr = hw->hw_addr;
3787 	if (!hw->hw_addr) {
3788 		err = -EIO;
3789 		goto err_ioremap;
3790 	}
3791 
3792 	ixgbevf_assign_netdev_ops(netdev);
3793 
3794 	/* Setup hw api */
3795 	memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3796 	hw->mac.type  = ii->mac;
3797 
3798 	memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3799 	       sizeof(struct ixgbe_mbx_operations));
3800 
3801 	/* setup the private structure */
3802 	err = ixgbevf_sw_init(adapter);
3803 	if (err)
3804 		goto err_sw_init;
3805 
3806 	/* The HW MAC address was set and/or determined in sw_init */
3807 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3808 		pr_err("invalid MAC address\n");
3809 		err = -EIO;
3810 		goto err_sw_init;
3811 	}
3812 
3813 	netdev->hw_features = NETIF_F_SG |
3814 			   NETIF_F_IP_CSUM |
3815 			   NETIF_F_IPV6_CSUM |
3816 			   NETIF_F_TSO |
3817 			   NETIF_F_TSO6 |
3818 			   NETIF_F_RXCSUM;
3819 
3820 	netdev->features = netdev->hw_features |
3821 			   NETIF_F_HW_VLAN_CTAG_TX |
3822 			   NETIF_F_HW_VLAN_CTAG_RX |
3823 			   NETIF_F_HW_VLAN_CTAG_FILTER;
3824 
3825 	netdev->vlan_features |= NETIF_F_TSO;
3826 	netdev->vlan_features |= NETIF_F_TSO6;
3827 	netdev->vlan_features |= NETIF_F_IP_CSUM;
3828 	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
3829 	netdev->vlan_features |= NETIF_F_SG;
3830 
3831 	if (pci_using_dac)
3832 		netdev->features |= NETIF_F_HIGHDMA;
3833 
3834 	netdev->priv_flags |= IFF_UNICAST_FLT;
3835 
3836 	init_timer(&adapter->watchdog_timer);
3837 	adapter->watchdog_timer.function = ixgbevf_watchdog;
3838 	adapter->watchdog_timer.data = (unsigned long)adapter;
3839 
3840 	if (IXGBE_REMOVED(hw->hw_addr)) {
3841 		err = -EIO;
3842 		goto err_sw_init;
3843 	}
3844 	INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3845 	INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3846 	set_bit(__IXGBEVF_WORK_INIT, &adapter->state);
3847 
3848 	err = ixgbevf_init_interrupt_scheme(adapter);
3849 	if (err)
3850 		goto err_sw_init;
3851 
3852 	strcpy(netdev->name, "eth%d");
3853 
3854 	err = register_netdev(netdev);
3855 	if (err)
3856 		goto err_register;
3857 
3858 	pci_set_drvdata(pdev, netdev);
3859 	netif_carrier_off(netdev);
3860 
3861 	ixgbevf_init_last_counter_stats(adapter);
3862 
3863 	/* print the VF info */
3864 	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
3865 	dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
3866 
3867 	switch (hw->mac.type) {
3868 	case ixgbe_mac_X550_vf:
3869 		dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n");
3870 		break;
3871 	case ixgbe_mac_X540_vf:
3872 		dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n");
3873 		break;
3874 	case ixgbe_mac_82599_vf:
3875 	default:
3876 		dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n");
3877 		break;
3878 	}
3879 
3880 	return 0;
3881 
3882 err_register:
3883 	ixgbevf_clear_interrupt_scheme(adapter);
3884 err_sw_init:
3885 	ixgbevf_reset_interrupt_capability(adapter);
3886 	iounmap(adapter->io_addr);
3887 err_ioremap:
3888 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
3889 	free_netdev(netdev);
3890 err_alloc_etherdev:
3891 	pci_release_regions(pdev);
3892 err_pci_reg:
3893 err_dma:
3894 	if (!adapter || disable_dev)
3895 		pci_disable_device(pdev);
3896 	return err;
3897 }
3898 
3899 /**
3900  * ixgbevf_remove - Device Removal Routine
3901  * @pdev: PCI device information struct
3902  *
3903  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3904  * that it should release a PCI device.  The could be caused by a
3905  * Hot-Plug event, or because the driver is going to be removed from
3906  * memory.
3907  **/
3908 static void ixgbevf_remove(struct pci_dev *pdev)
3909 {
3910 	struct net_device *netdev = pci_get_drvdata(pdev);
3911 	struct ixgbevf_adapter *adapter;
3912 	bool disable_dev;
3913 
3914 	if (!netdev)
3915 		return;
3916 
3917 	adapter = netdev_priv(netdev);
3918 
3919 	set_bit(__IXGBEVF_REMOVING, &adapter->state);
3920 
3921 	del_timer_sync(&adapter->watchdog_timer);
3922 
3923 	cancel_work_sync(&adapter->reset_task);
3924 	cancel_work_sync(&adapter->watchdog_task);
3925 
3926 	if (netdev->reg_state == NETREG_REGISTERED)
3927 		unregister_netdev(netdev);
3928 
3929 	ixgbevf_clear_interrupt_scheme(adapter);
3930 	ixgbevf_reset_interrupt_capability(adapter);
3931 
3932 	iounmap(adapter->io_addr);
3933 	pci_release_regions(pdev);
3934 
3935 	hw_dbg(&adapter->hw, "Remove complete\n");
3936 
3937 	disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state);
3938 	free_netdev(netdev);
3939 
3940 	if (disable_dev)
3941 		pci_disable_device(pdev);
3942 }
3943 
3944 /**
3945  * ixgbevf_io_error_detected - called when PCI error is detected
3946  * @pdev: Pointer to PCI device
3947  * @state: The current pci connection state
3948  *
3949  * This function is called after a PCI bus error affecting
3950  * this device has been detected.
3951  */
3952 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev,
3953 						  pci_channel_state_t state)
3954 {
3955 	struct net_device *netdev = pci_get_drvdata(pdev);
3956 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3957 
3958 	if (!test_bit(__IXGBEVF_WORK_INIT, &adapter->state))
3959 		return PCI_ERS_RESULT_DISCONNECT;
3960 
3961 	rtnl_lock();
3962 	netif_device_detach(netdev);
3963 
3964 	if (state == pci_channel_io_perm_failure) {
3965 		rtnl_unlock();
3966 		return PCI_ERS_RESULT_DISCONNECT;
3967 	}
3968 
3969 	if (netif_running(netdev))
3970 		ixgbevf_down(adapter);
3971 
3972 	if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state))
3973 		pci_disable_device(pdev);
3974 	rtnl_unlock();
3975 
3976 	/* Request a slot slot reset. */
3977 	return PCI_ERS_RESULT_NEED_RESET;
3978 }
3979 
3980 /**
3981  * ixgbevf_io_slot_reset - called after the pci bus has been reset.
3982  * @pdev: Pointer to PCI device
3983  *
3984  * Restart the card from scratch, as if from a cold-boot. Implementation
3985  * resembles the first-half of the ixgbevf_resume routine.
3986  */
3987 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev)
3988 {
3989 	struct net_device *netdev = pci_get_drvdata(pdev);
3990 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3991 
3992 	if (pci_enable_device_mem(pdev)) {
3993 		dev_err(&pdev->dev,
3994 			"Cannot re-enable PCI device after reset.\n");
3995 		return PCI_ERS_RESULT_DISCONNECT;
3996 	}
3997 
3998 	smp_mb__before_atomic();
3999 	clear_bit(__IXGBEVF_DISABLED, &adapter->state);
4000 	pci_set_master(pdev);
4001 
4002 	ixgbevf_reset(adapter);
4003 
4004 	return PCI_ERS_RESULT_RECOVERED;
4005 }
4006 
4007 /**
4008  * ixgbevf_io_resume - called when traffic can start flowing again.
4009  * @pdev: Pointer to PCI device
4010  *
4011  * This callback is called when the error recovery driver tells us that
4012  * its OK to resume normal operation. Implementation resembles the
4013  * second-half of the ixgbevf_resume routine.
4014  */
4015 static void ixgbevf_io_resume(struct pci_dev *pdev)
4016 {
4017 	struct net_device *netdev = pci_get_drvdata(pdev);
4018 	struct ixgbevf_adapter *adapter = netdev_priv(netdev);
4019 
4020 	if (netif_running(netdev))
4021 		ixgbevf_up(adapter);
4022 
4023 	netif_device_attach(netdev);
4024 }
4025 
4026 /* PCI Error Recovery (ERS) */
4027 static const struct pci_error_handlers ixgbevf_err_handler = {
4028 	.error_detected = ixgbevf_io_error_detected,
4029 	.slot_reset = ixgbevf_io_slot_reset,
4030 	.resume = ixgbevf_io_resume,
4031 };
4032 
4033 static struct pci_driver ixgbevf_driver = {
4034 	.name     = ixgbevf_driver_name,
4035 	.id_table = ixgbevf_pci_tbl,
4036 	.probe    = ixgbevf_probe,
4037 	.remove   = ixgbevf_remove,
4038 #ifdef CONFIG_PM
4039 	/* Power Management Hooks */
4040 	.suspend  = ixgbevf_suspend,
4041 	.resume   = ixgbevf_resume,
4042 #endif
4043 	.shutdown = ixgbevf_shutdown,
4044 	.err_handler = &ixgbevf_err_handler
4045 };
4046 
4047 /**
4048  * ixgbevf_init_module - Driver Registration Routine
4049  *
4050  * ixgbevf_init_module is the first routine called when the driver is
4051  * loaded. All it does is register with the PCI subsystem.
4052  **/
4053 static int __init ixgbevf_init_module(void)
4054 {
4055 	int ret;
4056 	pr_info("%s - version %s\n", ixgbevf_driver_string,
4057 		ixgbevf_driver_version);
4058 
4059 	pr_info("%s\n", ixgbevf_copyright);
4060 
4061 	ret = pci_register_driver(&ixgbevf_driver);
4062 	return ret;
4063 }
4064 
4065 module_init(ixgbevf_init_module);
4066 
4067 /**
4068  * ixgbevf_exit_module - Driver Exit Cleanup Routine
4069  *
4070  * ixgbevf_exit_module is called just before the driver is removed
4071  * from memory.
4072  **/
4073 static void __exit ixgbevf_exit_module(void)
4074 {
4075 	pci_unregister_driver(&ixgbevf_driver);
4076 }
4077 
4078 #ifdef DEBUG
4079 /**
4080  * ixgbevf_get_hw_dev_name - return device name string
4081  * used by hardware layer to print debugging information
4082  **/
4083 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
4084 {
4085 	struct ixgbevf_adapter *adapter = hw->back;
4086 	return adapter->netdev->name;
4087 }
4088 
4089 #endif
4090 module_exit(ixgbevf_exit_module);
4091 
4092 /* ixgbevf_main.c */
4093