1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /****************************************************************************** 5 Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code 6 ******************************************************************************/ 7 8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 9 10 #include <linux/types.h> 11 #include <linux/bitops.h> 12 #include <linux/module.h> 13 #include <linux/pci.h> 14 #include <linux/netdevice.h> 15 #include <linux/vmalloc.h> 16 #include <linux/string.h> 17 #include <linux/in.h> 18 #include <linux/ip.h> 19 #include <linux/tcp.h> 20 #include <linux/sctp.h> 21 #include <linux/ipv6.h> 22 #include <linux/slab.h> 23 #include <net/checksum.h> 24 #include <net/ip6_checksum.h> 25 #include <linux/ethtool.h> 26 #include <linux/if.h> 27 #include <linux/if_vlan.h> 28 #include <linux/prefetch.h> 29 #include <net/mpls.h> 30 #include <linux/bpf.h> 31 #include <linux/bpf_trace.h> 32 #include <linux/atomic.h> 33 #include <net/xfrm.h> 34 35 #include "ixgbevf.h" 36 37 const char ixgbevf_driver_name[] = "ixgbevf"; 38 static const char ixgbevf_driver_string[] = 39 "Intel(R) 10 Gigabit PCI Express Virtual Function Network Driver"; 40 41 static char ixgbevf_copyright[] = 42 "Copyright (c) 2009 - 2018 Intel Corporation."; 43 44 static const struct ixgbevf_info *ixgbevf_info_tbl[] = { 45 [board_82599_vf] = &ixgbevf_82599_vf_info, 46 [board_82599_vf_hv] = &ixgbevf_82599_vf_hv_info, 47 [board_X540_vf] = &ixgbevf_X540_vf_info, 48 [board_X540_vf_hv] = &ixgbevf_X540_vf_hv_info, 49 [board_X550_vf] = &ixgbevf_X550_vf_info, 50 [board_X550_vf_hv] = &ixgbevf_X550_vf_hv_info, 51 [board_X550EM_x_vf] = &ixgbevf_X550EM_x_vf_info, 52 [board_X550EM_x_vf_hv] = &ixgbevf_X550EM_x_vf_hv_info, 53 [board_x550em_a_vf] = &ixgbevf_x550em_a_vf_info, 54 }; 55 56 /* ixgbevf_pci_tbl - PCI Device ID Table 57 * 58 * Wildcard entries (PCI_ANY_ID) should come last 59 * Last entry must be all 0s 60 * 61 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 62 * Class, Class Mask, private data (not used) } 63 */ 64 static const struct pci_device_id ixgbevf_pci_tbl[] = { 65 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF), board_82599_vf }, 66 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF_HV), board_82599_vf_hv }, 67 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF), board_X540_vf }, 68 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X540_VF_HV), board_X540_vf_hv }, 69 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF), board_X550_vf }, 70 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550_VF_HV), board_X550_vf_hv }, 71 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF), board_X550EM_x_vf }, 72 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_X_VF_HV), board_X550EM_x_vf_hv}, 73 {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_X550EM_A_VF), board_x550em_a_vf }, 74 /* required last entry */ 75 {0, } 76 }; 77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl); 78 79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 80 MODULE_DESCRIPTION("Intel(R) 10 Gigabit Virtual Function Network Driver"); 81 MODULE_LICENSE("GPL v2"); 82 83 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 84 static int debug = -1; 85 module_param(debug, int, 0); 86 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 87 88 static struct workqueue_struct *ixgbevf_wq; 89 90 static void ixgbevf_service_event_schedule(struct ixgbevf_adapter *adapter) 91 { 92 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 93 !test_bit(__IXGBEVF_REMOVING, &adapter->state) && 94 !test_and_set_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)) 95 queue_work(ixgbevf_wq, &adapter->service_task); 96 } 97 98 static void ixgbevf_service_event_complete(struct ixgbevf_adapter *adapter) 99 { 100 BUG_ON(!test_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state)); 101 102 /* flush memory to make sure state is correct before next watchdog */ 103 smp_mb__before_atomic(); 104 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 105 } 106 107 /* forward decls */ 108 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter); 109 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector); 110 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter); 111 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer); 112 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 113 struct ixgbevf_rx_buffer *old_buff); 114 115 static void ixgbevf_remove_adapter(struct ixgbe_hw *hw) 116 { 117 struct ixgbevf_adapter *adapter = hw->back; 118 119 if (!hw->hw_addr) 120 return; 121 hw->hw_addr = NULL; 122 dev_err(&adapter->pdev->dev, "Adapter removed\n"); 123 if (test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 124 ixgbevf_service_event_schedule(adapter); 125 } 126 127 static void ixgbevf_check_remove(struct ixgbe_hw *hw, u32 reg) 128 { 129 u32 value; 130 131 /* The following check not only optimizes a bit by not 132 * performing a read on the status register when the 133 * register just read was a status register read that 134 * returned IXGBE_FAILED_READ_REG. It also blocks any 135 * potential recursion. 136 */ 137 if (reg == IXGBE_VFSTATUS) { 138 ixgbevf_remove_adapter(hw); 139 return; 140 } 141 value = ixgbevf_read_reg(hw, IXGBE_VFSTATUS); 142 if (value == IXGBE_FAILED_READ_REG) 143 ixgbevf_remove_adapter(hw); 144 } 145 146 u32 ixgbevf_read_reg(struct ixgbe_hw *hw, u32 reg) 147 { 148 u8 __iomem *reg_addr = READ_ONCE(hw->hw_addr); 149 u32 value; 150 151 if (IXGBE_REMOVED(reg_addr)) 152 return IXGBE_FAILED_READ_REG; 153 value = readl(reg_addr + reg); 154 if (unlikely(value == IXGBE_FAILED_READ_REG)) 155 ixgbevf_check_remove(hw, reg); 156 return value; 157 } 158 159 /** 160 * ixgbevf_set_ivar - set IVAR registers - maps interrupt causes to vectors 161 * @adapter: pointer to adapter struct 162 * @direction: 0 for Rx, 1 for Tx, -1 for other causes 163 * @queue: queue to map the corresponding interrupt to 164 * @msix_vector: the vector to map to the corresponding queue 165 **/ 166 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction, 167 u8 queue, u8 msix_vector) 168 { 169 u32 ivar, index; 170 struct ixgbe_hw *hw = &adapter->hw; 171 172 if (direction == -1) { 173 /* other causes */ 174 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 175 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC); 176 ivar &= ~0xFF; 177 ivar |= msix_vector; 178 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar); 179 } else { 180 /* Tx or Rx causes */ 181 msix_vector |= IXGBE_IVAR_ALLOC_VAL; 182 index = ((16 * (queue & 1)) + (8 * direction)); 183 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1)); 184 ivar &= ~(0xFF << index); 185 ivar |= (msix_vector << index); 186 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar); 187 } 188 } 189 190 static u64 ixgbevf_get_tx_completed(struct ixgbevf_ring *ring) 191 { 192 return ring->stats.packets; 193 } 194 195 static u32 ixgbevf_get_tx_pending(struct ixgbevf_ring *ring) 196 { 197 struct ixgbevf_adapter *adapter = netdev_priv(ring->netdev); 198 struct ixgbe_hw *hw = &adapter->hw; 199 200 u32 head = IXGBE_READ_REG(hw, IXGBE_VFTDH(ring->reg_idx)); 201 u32 tail = IXGBE_READ_REG(hw, IXGBE_VFTDT(ring->reg_idx)); 202 203 if (head != tail) 204 return (head < tail) ? 205 tail - head : (tail + ring->count - head); 206 207 return 0; 208 } 209 210 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_ring *tx_ring) 211 { 212 u32 tx_done = ixgbevf_get_tx_completed(tx_ring); 213 u32 tx_done_old = tx_ring->tx_stats.tx_done_old; 214 u32 tx_pending = ixgbevf_get_tx_pending(tx_ring); 215 216 clear_check_for_tx_hang(tx_ring); 217 218 /* Check for a hung queue, but be thorough. This verifies 219 * that a transmit has been completed since the previous 220 * check AND there is at least one packet pending. The 221 * ARMED bit is set to indicate a potential hang. 222 */ 223 if ((tx_done_old == tx_done) && tx_pending) { 224 /* make sure it is true for two checks in a row */ 225 return test_and_set_bit(__IXGBEVF_HANG_CHECK_ARMED, 226 &tx_ring->state); 227 } 228 /* reset the countdown */ 229 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &tx_ring->state); 230 231 /* update completed stats and continue */ 232 tx_ring->tx_stats.tx_done_old = tx_done; 233 234 return false; 235 } 236 237 static void ixgbevf_tx_timeout_reset(struct ixgbevf_adapter *adapter) 238 { 239 /* Do the reset outside of interrupt context */ 240 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 241 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 242 ixgbevf_service_event_schedule(adapter); 243 } 244 } 245 246 /** 247 * ixgbevf_tx_timeout - Respond to a Tx Hang 248 * @netdev: network interface device structure 249 **/ 250 static void ixgbevf_tx_timeout(struct net_device *netdev, unsigned int txqueue) 251 { 252 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 253 254 ixgbevf_tx_timeout_reset(adapter); 255 } 256 257 /** 258 * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes 259 * @q_vector: board private structure 260 * @tx_ring: tx ring to clean 261 * @napi_budget: Used to determine if we are in netpoll 262 **/ 263 static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector, 264 struct ixgbevf_ring *tx_ring, int napi_budget) 265 { 266 struct ixgbevf_adapter *adapter = q_vector->adapter; 267 struct ixgbevf_tx_buffer *tx_buffer; 268 union ixgbe_adv_tx_desc *tx_desc; 269 unsigned int total_bytes = 0, total_packets = 0, total_ipsec = 0; 270 unsigned int budget = tx_ring->count / 2; 271 unsigned int i = tx_ring->next_to_clean; 272 273 if (test_bit(__IXGBEVF_DOWN, &adapter->state)) 274 return true; 275 276 tx_buffer = &tx_ring->tx_buffer_info[i]; 277 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 278 i -= tx_ring->count; 279 280 do { 281 union ixgbe_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 282 283 /* if next_to_watch is not set then there is no work pending */ 284 if (!eop_desc) 285 break; 286 287 /* prevent any other reads prior to eop_desc */ 288 smp_rmb(); 289 290 /* if DD is not set pending work has not been completed */ 291 if (!(eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD))) 292 break; 293 294 /* clear next_to_watch to prevent false hangs */ 295 tx_buffer->next_to_watch = NULL; 296 297 /* update the statistics for this packet */ 298 total_bytes += tx_buffer->bytecount; 299 total_packets += tx_buffer->gso_segs; 300 if (tx_buffer->tx_flags & IXGBE_TX_FLAGS_IPSEC) 301 total_ipsec++; 302 303 /* free the skb */ 304 if (ring_is_xdp(tx_ring)) 305 page_frag_free(tx_buffer->data); 306 else 307 napi_consume_skb(tx_buffer->skb, napi_budget); 308 309 /* unmap skb header data */ 310 dma_unmap_single(tx_ring->dev, 311 dma_unmap_addr(tx_buffer, dma), 312 dma_unmap_len(tx_buffer, len), 313 DMA_TO_DEVICE); 314 315 /* clear tx_buffer data */ 316 dma_unmap_len_set(tx_buffer, len, 0); 317 318 /* unmap remaining buffers */ 319 while (tx_desc != eop_desc) { 320 tx_buffer++; 321 tx_desc++; 322 i++; 323 if (unlikely(!i)) { 324 i -= tx_ring->count; 325 tx_buffer = tx_ring->tx_buffer_info; 326 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 327 } 328 329 /* unmap any remaining paged data */ 330 if (dma_unmap_len(tx_buffer, len)) { 331 dma_unmap_page(tx_ring->dev, 332 dma_unmap_addr(tx_buffer, dma), 333 dma_unmap_len(tx_buffer, len), 334 DMA_TO_DEVICE); 335 dma_unmap_len_set(tx_buffer, len, 0); 336 } 337 } 338 339 /* move us one more past the eop_desc for start of next pkt */ 340 tx_buffer++; 341 tx_desc++; 342 i++; 343 if (unlikely(!i)) { 344 i -= tx_ring->count; 345 tx_buffer = tx_ring->tx_buffer_info; 346 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 347 } 348 349 /* issue prefetch for next Tx descriptor */ 350 prefetch(tx_desc); 351 352 /* update budget accounting */ 353 budget--; 354 } while (likely(budget)); 355 356 i += tx_ring->count; 357 tx_ring->next_to_clean = i; 358 u64_stats_update_begin(&tx_ring->syncp); 359 tx_ring->stats.bytes += total_bytes; 360 tx_ring->stats.packets += total_packets; 361 u64_stats_update_end(&tx_ring->syncp); 362 q_vector->tx.total_bytes += total_bytes; 363 q_vector->tx.total_packets += total_packets; 364 adapter->tx_ipsec += total_ipsec; 365 366 if (check_for_tx_hang(tx_ring) && ixgbevf_check_tx_hang(tx_ring)) { 367 struct ixgbe_hw *hw = &adapter->hw; 368 union ixgbe_adv_tx_desc *eop_desc; 369 370 eop_desc = tx_ring->tx_buffer_info[i].next_to_watch; 371 372 pr_err("Detected Tx Unit Hang%s\n" 373 " Tx Queue <%d>\n" 374 " TDH, TDT <%x>, <%x>\n" 375 " next_to_use <%x>\n" 376 " next_to_clean <%x>\n" 377 "tx_buffer_info[next_to_clean]\n" 378 " next_to_watch <%p>\n" 379 " eop_desc->wb.status <%x>\n" 380 " time_stamp <%lx>\n" 381 " jiffies <%lx>\n", 382 ring_is_xdp(tx_ring) ? " XDP" : "", 383 tx_ring->queue_index, 384 IXGBE_READ_REG(hw, IXGBE_VFTDH(tx_ring->reg_idx)), 385 IXGBE_READ_REG(hw, IXGBE_VFTDT(tx_ring->reg_idx)), 386 tx_ring->next_to_use, i, 387 eop_desc, (eop_desc ? eop_desc->wb.status : 0), 388 tx_ring->tx_buffer_info[i].time_stamp, jiffies); 389 390 if (!ring_is_xdp(tx_ring)) 391 netif_stop_subqueue(tx_ring->netdev, 392 tx_ring->queue_index); 393 394 /* schedule immediate reset if we believe we hung */ 395 ixgbevf_tx_timeout_reset(adapter); 396 397 return true; 398 } 399 400 if (ring_is_xdp(tx_ring)) 401 return !!budget; 402 403 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 404 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) && 405 (ixgbevf_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) { 406 /* Make sure that anybody stopping the queue after this 407 * sees the new next_to_clean. 408 */ 409 smp_mb(); 410 411 if (__netif_subqueue_stopped(tx_ring->netdev, 412 tx_ring->queue_index) && 413 !test_bit(__IXGBEVF_DOWN, &adapter->state)) { 414 netif_wake_subqueue(tx_ring->netdev, 415 tx_ring->queue_index); 416 ++tx_ring->tx_stats.restart_queue; 417 } 418 } 419 420 return !!budget; 421 } 422 423 /** 424 * ixgbevf_rx_skb - Helper function to determine proper Rx method 425 * @q_vector: structure containing interrupt and ring information 426 * @skb: packet to send up 427 **/ 428 static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector, 429 struct sk_buff *skb) 430 { 431 napi_gro_receive(&q_vector->napi, skb); 432 } 433 434 #define IXGBE_RSS_L4_TYPES_MASK \ 435 ((1ul << IXGBE_RXDADV_RSSTYPE_IPV4_TCP) | \ 436 (1ul << IXGBE_RXDADV_RSSTYPE_IPV4_UDP) | \ 437 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_TCP) | \ 438 (1ul << IXGBE_RXDADV_RSSTYPE_IPV6_UDP)) 439 440 static inline void ixgbevf_rx_hash(struct ixgbevf_ring *ring, 441 union ixgbe_adv_rx_desc *rx_desc, 442 struct sk_buff *skb) 443 { 444 u16 rss_type; 445 446 if (!(ring->netdev->features & NETIF_F_RXHASH)) 447 return; 448 449 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) & 450 IXGBE_RXDADV_RSSTYPE_MASK; 451 452 if (!rss_type) 453 return; 454 455 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 456 (IXGBE_RSS_L4_TYPES_MASK & (1ul << rss_type)) ? 457 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3); 458 } 459 460 /** 461 * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum 462 * @ring: structure containig ring specific data 463 * @rx_desc: current Rx descriptor being processed 464 * @skb: skb currently being received and modified 465 **/ 466 static inline void ixgbevf_rx_checksum(struct ixgbevf_ring *ring, 467 union ixgbe_adv_rx_desc *rx_desc, 468 struct sk_buff *skb) 469 { 470 skb_checksum_none_assert(skb); 471 472 /* Rx csum disabled */ 473 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 474 return; 475 476 /* if IP and error */ 477 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_IPCS) && 478 ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_IPE)) { 479 ring->rx_stats.csum_err++; 480 return; 481 } 482 483 if (!ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_L4CS)) 484 return; 485 486 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_ERR_TCPE)) { 487 ring->rx_stats.csum_err++; 488 return; 489 } 490 491 /* It must be a TCP or UDP packet with a valid checksum */ 492 skb->ip_summed = CHECKSUM_UNNECESSARY; 493 } 494 495 /** 496 * ixgbevf_process_skb_fields - Populate skb header fields from Rx descriptor 497 * @rx_ring: rx descriptor ring packet is being transacted on 498 * @rx_desc: pointer to the EOP Rx descriptor 499 * @skb: pointer to current skb being populated 500 * 501 * This function checks the ring, descriptor, and packet information in 502 * order to populate the checksum, VLAN, protocol, and other fields within 503 * the skb. 504 **/ 505 static void ixgbevf_process_skb_fields(struct ixgbevf_ring *rx_ring, 506 union ixgbe_adv_rx_desc *rx_desc, 507 struct sk_buff *skb) 508 { 509 ixgbevf_rx_hash(rx_ring, rx_desc, skb); 510 ixgbevf_rx_checksum(rx_ring, rx_desc, skb); 511 512 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_VP)) { 513 u16 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 514 unsigned long *active_vlans = netdev_priv(rx_ring->netdev); 515 516 if (test_bit(vid & VLAN_VID_MASK, active_vlans)) 517 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 518 } 519 520 if (ixgbevf_test_staterr(rx_desc, IXGBE_RXDADV_STAT_SECP)) 521 ixgbevf_ipsec_rx(rx_ring, rx_desc, skb); 522 523 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 524 } 525 526 static 527 struct ixgbevf_rx_buffer *ixgbevf_get_rx_buffer(struct ixgbevf_ring *rx_ring, 528 const unsigned int size) 529 { 530 struct ixgbevf_rx_buffer *rx_buffer; 531 532 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 533 prefetchw(rx_buffer->page); 534 535 /* we are reusing so sync this buffer for CPU use */ 536 dma_sync_single_range_for_cpu(rx_ring->dev, 537 rx_buffer->dma, 538 rx_buffer->page_offset, 539 size, 540 DMA_FROM_DEVICE); 541 542 rx_buffer->pagecnt_bias--; 543 544 return rx_buffer; 545 } 546 547 static void ixgbevf_put_rx_buffer(struct ixgbevf_ring *rx_ring, 548 struct ixgbevf_rx_buffer *rx_buffer, 549 struct sk_buff *skb) 550 { 551 if (ixgbevf_can_reuse_rx_page(rx_buffer)) { 552 /* hand second half of page back to the ring */ 553 ixgbevf_reuse_rx_page(rx_ring, rx_buffer); 554 } else { 555 if (IS_ERR(skb)) 556 /* We are not reusing the buffer so unmap it and free 557 * any references we are holding to it 558 */ 559 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma, 560 ixgbevf_rx_pg_size(rx_ring), 561 DMA_FROM_DEVICE, 562 IXGBEVF_RX_DMA_ATTR); 563 __page_frag_cache_drain(rx_buffer->page, 564 rx_buffer->pagecnt_bias); 565 } 566 567 /* clear contents of rx_buffer */ 568 rx_buffer->page = NULL; 569 } 570 571 /** 572 * ixgbevf_is_non_eop - process handling of non-EOP buffers 573 * @rx_ring: Rx ring being processed 574 * @rx_desc: Rx descriptor for current buffer 575 * 576 * This function updates next to clean. If the buffer is an EOP buffer 577 * this function exits returning false, otherwise it will place the 578 * sk_buff in the next buffer to be chained and return true indicating 579 * that this is in fact a non-EOP buffer. 580 **/ 581 static bool ixgbevf_is_non_eop(struct ixgbevf_ring *rx_ring, 582 union ixgbe_adv_rx_desc *rx_desc) 583 { 584 u32 ntc = rx_ring->next_to_clean + 1; 585 586 /* fetch, update, and store next to clean */ 587 ntc = (ntc < rx_ring->count) ? ntc : 0; 588 rx_ring->next_to_clean = ntc; 589 590 prefetch(IXGBEVF_RX_DESC(rx_ring, ntc)); 591 592 if (likely(ixgbevf_test_staterr(rx_desc, IXGBE_RXD_STAT_EOP))) 593 return false; 594 595 return true; 596 } 597 598 static inline unsigned int ixgbevf_rx_offset(struct ixgbevf_ring *rx_ring) 599 { 600 return ring_uses_build_skb(rx_ring) ? IXGBEVF_SKB_PAD : 0; 601 } 602 603 static bool ixgbevf_alloc_mapped_page(struct ixgbevf_ring *rx_ring, 604 struct ixgbevf_rx_buffer *bi) 605 { 606 struct page *page = bi->page; 607 dma_addr_t dma; 608 609 /* since we are recycling buffers we should seldom need to alloc */ 610 if (likely(page)) 611 return true; 612 613 /* alloc new page for storage */ 614 page = dev_alloc_pages(ixgbevf_rx_pg_order(rx_ring)); 615 if (unlikely(!page)) { 616 rx_ring->rx_stats.alloc_rx_page_failed++; 617 return false; 618 } 619 620 /* map page for use */ 621 dma = dma_map_page_attrs(rx_ring->dev, page, 0, 622 ixgbevf_rx_pg_size(rx_ring), 623 DMA_FROM_DEVICE, IXGBEVF_RX_DMA_ATTR); 624 625 /* if mapping failed free memory back to system since 626 * there isn't much point in holding memory we can't use 627 */ 628 if (dma_mapping_error(rx_ring->dev, dma)) { 629 __free_pages(page, ixgbevf_rx_pg_order(rx_ring)); 630 631 rx_ring->rx_stats.alloc_rx_page_failed++; 632 return false; 633 } 634 635 bi->dma = dma; 636 bi->page = page; 637 bi->page_offset = ixgbevf_rx_offset(rx_ring); 638 bi->pagecnt_bias = 1; 639 rx_ring->rx_stats.alloc_rx_page++; 640 641 return true; 642 } 643 644 /** 645 * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split 646 * @rx_ring: rx descriptor ring (for a specific queue) to setup buffers on 647 * @cleaned_count: number of buffers to replace 648 **/ 649 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring, 650 u16 cleaned_count) 651 { 652 union ixgbe_adv_rx_desc *rx_desc; 653 struct ixgbevf_rx_buffer *bi; 654 unsigned int i = rx_ring->next_to_use; 655 656 /* nothing to do or no valid netdev defined */ 657 if (!cleaned_count || !rx_ring->netdev) 658 return; 659 660 rx_desc = IXGBEVF_RX_DESC(rx_ring, i); 661 bi = &rx_ring->rx_buffer_info[i]; 662 i -= rx_ring->count; 663 664 do { 665 if (!ixgbevf_alloc_mapped_page(rx_ring, bi)) 666 break; 667 668 /* sync the buffer for use by the device */ 669 dma_sync_single_range_for_device(rx_ring->dev, bi->dma, 670 bi->page_offset, 671 ixgbevf_rx_bufsz(rx_ring), 672 DMA_FROM_DEVICE); 673 674 /* Refresh the desc even if pkt_addr didn't change 675 * because each write-back erases this info. 676 */ 677 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 678 679 rx_desc++; 680 bi++; 681 i++; 682 if (unlikely(!i)) { 683 rx_desc = IXGBEVF_RX_DESC(rx_ring, 0); 684 bi = rx_ring->rx_buffer_info; 685 i -= rx_ring->count; 686 } 687 688 /* clear the length for the next_to_use descriptor */ 689 rx_desc->wb.upper.length = 0; 690 691 cleaned_count--; 692 } while (cleaned_count); 693 694 i += rx_ring->count; 695 696 if (rx_ring->next_to_use != i) { 697 /* record the next descriptor to use */ 698 rx_ring->next_to_use = i; 699 700 /* update next to alloc since we have filled the ring */ 701 rx_ring->next_to_alloc = i; 702 703 /* Force memory writes to complete before letting h/w 704 * know there are new descriptors to fetch. (Only 705 * applicable for weak-ordered memory model archs, 706 * such as IA-64). 707 */ 708 wmb(); 709 ixgbevf_write_tail(rx_ring, i); 710 } 711 } 712 713 /** 714 * ixgbevf_cleanup_headers - Correct corrupted or empty headers 715 * @rx_ring: rx descriptor ring packet is being transacted on 716 * @rx_desc: pointer to the EOP Rx descriptor 717 * @skb: pointer to current skb being fixed 718 * 719 * Check for corrupted packet headers caused by senders on the local L2 720 * embedded NIC switch not setting up their Tx Descriptors right. These 721 * should be very rare. 722 * 723 * Also address the case where we are pulling data in on pages only 724 * and as such no data is present in the skb header. 725 * 726 * In addition if skb is not at least 60 bytes we need to pad it so that 727 * it is large enough to qualify as a valid Ethernet frame. 728 * 729 * Returns true if an error was encountered and skb was freed. 730 **/ 731 static bool ixgbevf_cleanup_headers(struct ixgbevf_ring *rx_ring, 732 union ixgbe_adv_rx_desc *rx_desc, 733 struct sk_buff *skb) 734 { 735 /* XDP packets use error pointer so abort at this point */ 736 if (IS_ERR(skb)) 737 return true; 738 739 /* verify that the packet does not have any known errors */ 740 if (unlikely(ixgbevf_test_staterr(rx_desc, 741 IXGBE_RXDADV_ERR_FRAME_ERR_MASK))) { 742 struct net_device *netdev = rx_ring->netdev; 743 744 if (!(netdev->features & NETIF_F_RXALL)) { 745 dev_kfree_skb_any(skb); 746 return true; 747 } 748 } 749 750 /* if eth_skb_pad returns an error the skb was freed */ 751 if (eth_skb_pad(skb)) 752 return true; 753 754 return false; 755 } 756 757 /** 758 * ixgbevf_reuse_rx_page - page flip buffer and store it back on the ring 759 * @rx_ring: rx descriptor ring to store buffers on 760 * @old_buff: donor buffer to have page reused 761 * 762 * Synchronizes page for reuse by the adapter 763 **/ 764 static void ixgbevf_reuse_rx_page(struct ixgbevf_ring *rx_ring, 765 struct ixgbevf_rx_buffer *old_buff) 766 { 767 struct ixgbevf_rx_buffer *new_buff; 768 u16 nta = rx_ring->next_to_alloc; 769 770 new_buff = &rx_ring->rx_buffer_info[nta]; 771 772 /* update, and store next to alloc */ 773 nta++; 774 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 775 776 /* transfer page from old buffer to new buffer */ 777 new_buff->page = old_buff->page; 778 new_buff->dma = old_buff->dma; 779 new_buff->page_offset = old_buff->page_offset; 780 new_buff->pagecnt_bias = old_buff->pagecnt_bias; 781 } 782 783 static inline bool ixgbevf_page_is_reserved(struct page *page) 784 { 785 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 786 } 787 788 static bool ixgbevf_can_reuse_rx_page(struct ixgbevf_rx_buffer *rx_buffer) 789 { 790 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias; 791 struct page *page = rx_buffer->page; 792 793 /* avoid re-using remote pages */ 794 if (unlikely(ixgbevf_page_is_reserved(page))) 795 return false; 796 797 #if (PAGE_SIZE < 8192) 798 /* if we are only owner of page we can reuse it */ 799 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1)) 800 return false; 801 #else 802 #define IXGBEVF_LAST_OFFSET \ 803 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IXGBEVF_RXBUFFER_2048) 804 805 if (rx_buffer->page_offset > IXGBEVF_LAST_OFFSET) 806 return false; 807 808 #endif 809 810 /* If we have drained the page fragment pool we need to update 811 * the pagecnt_bias and page count so that we fully restock the 812 * number of references the driver holds. 813 */ 814 if (unlikely(!pagecnt_bias)) { 815 page_ref_add(page, USHRT_MAX); 816 rx_buffer->pagecnt_bias = USHRT_MAX; 817 } 818 819 return true; 820 } 821 822 /** 823 * ixgbevf_add_rx_frag - Add contents of Rx buffer to sk_buff 824 * @rx_ring: rx descriptor ring to transact packets on 825 * @rx_buffer: buffer containing page to add 826 * @skb: sk_buff to place the data into 827 * @size: size of buffer to be added 828 * 829 * This function will add the data contained in rx_buffer->page to the skb. 830 **/ 831 static void ixgbevf_add_rx_frag(struct ixgbevf_ring *rx_ring, 832 struct ixgbevf_rx_buffer *rx_buffer, 833 struct sk_buff *skb, 834 unsigned int size) 835 { 836 #if (PAGE_SIZE < 8192) 837 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 838 #else 839 unsigned int truesize = ring_uses_build_skb(rx_ring) ? 840 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) : 841 SKB_DATA_ALIGN(size); 842 #endif 843 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page, 844 rx_buffer->page_offset, size, truesize); 845 #if (PAGE_SIZE < 8192) 846 rx_buffer->page_offset ^= truesize; 847 #else 848 rx_buffer->page_offset += truesize; 849 #endif 850 } 851 852 static 853 struct sk_buff *ixgbevf_construct_skb(struct ixgbevf_ring *rx_ring, 854 struct ixgbevf_rx_buffer *rx_buffer, 855 struct xdp_buff *xdp, 856 union ixgbe_adv_rx_desc *rx_desc) 857 { 858 unsigned int size = xdp->data_end - xdp->data; 859 #if (PAGE_SIZE < 8192) 860 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 861 #else 862 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end - 863 xdp->data_hard_start); 864 #endif 865 unsigned int headlen; 866 struct sk_buff *skb; 867 868 /* prefetch first cache line of first page */ 869 net_prefetch(xdp->data); 870 871 /* Note, we get here by enabling legacy-rx via: 872 * 873 * ethtool --set-priv-flags <dev> legacy-rx on 874 * 875 * In this mode, we currently get 0 extra XDP headroom as 876 * opposed to having legacy-rx off, where we process XDP 877 * packets going to stack via ixgbevf_build_skb(). 878 * 879 * For ixgbevf_construct_skb() mode it means that the 880 * xdp->data_meta will always point to xdp->data, since 881 * the helper cannot expand the head. Should this ever 882 * changed in future for legacy-rx mode on, then lets also 883 * add xdp->data_meta handling here. 884 */ 885 886 /* allocate a skb to store the frags */ 887 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IXGBEVF_RX_HDR_SIZE); 888 if (unlikely(!skb)) 889 return NULL; 890 891 /* Determine available headroom for copy */ 892 headlen = size; 893 if (headlen > IXGBEVF_RX_HDR_SIZE) 894 headlen = eth_get_headlen(skb->dev, xdp->data, 895 IXGBEVF_RX_HDR_SIZE); 896 897 /* align pull length to size of long to optimize memcpy performance */ 898 memcpy(__skb_put(skb, headlen), xdp->data, 899 ALIGN(headlen, sizeof(long))); 900 901 /* update all of the pointers */ 902 size -= headlen; 903 if (size) { 904 skb_add_rx_frag(skb, 0, rx_buffer->page, 905 (xdp->data + headlen) - 906 page_address(rx_buffer->page), 907 size, truesize); 908 #if (PAGE_SIZE < 8192) 909 rx_buffer->page_offset ^= truesize; 910 #else 911 rx_buffer->page_offset += truesize; 912 #endif 913 } else { 914 rx_buffer->pagecnt_bias++; 915 } 916 917 return skb; 918 } 919 920 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter, 921 u32 qmask) 922 { 923 struct ixgbe_hw *hw = &adapter->hw; 924 925 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, qmask); 926 } 927 928 static struct sk_buff *ixgbevf_build_skb(struct ixgbevf_ring *rx_ring, 929 struct ixgbevf_rx_buffer *rx_buffer, 930 struct xdp_buff *xdp, 931 union ixgbe_adv_rx_desc *rx_desc) 932 { 933 unsigned int metasize = xdp->data - xdp->data_meta; 934 #if (PAGE_SIZE < 8192) 935 unsigned int truesize = ixgbevf_rx_pg_size(rx_ring) / 2; 936 #else 937 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + 938 SKB_DATA_ALIGN(xdp->data_end - 939 xdp->data_hard_start); 940 #endif 941 struct sk_buff *skb; 942 943 /* Prefetch first cache line of first page. If xdp->data_meta 944 * is unused, this points to xdp->data, otherwise, we likely 945 * have a consumer accessing first few bytes of meta data, 946 * and then actual data. 947 */ 948 net_prefetch(xdp->data_meta); 949 950 /* build an skb around the page buffer */ 951 skb = build_skb(xdp->data_hard_start, truesize); 952 if (unlikely(!skb)) 953 return NULL; 954 955 /* update pointers within the skb to store the data */ 956 skb_reserve(skb, xdp->data - xdp->data_hard_start); 957 __skb_put(skb, xdp->data_end - xdp->data); 958 if (metasize) 959 skb_metadata_set(skb, metasize); 960 961 /* update buffer offset */ 962 #if (PAGE_SIZE < 8192) 963 rx_buffer->page_offset ^= truesize; 964 #else 965 rx_buffer->page_offset += truesize; 966 #endif 967 968 return skb; 969 } 970 971 #define IXGBEVF_XDP_PASS 0 972 #define IXGBEVF_XDP_CONSUMED 1 973 #define IXGBEVF_XDP_TX 2 974 975 static int ixgbevf_xmit_xdp_ring(struct ixgbevf_ring *ring, 976 struct xdp_buff *xdp) 977 { 978 struct ixgbevf_tx_buffer *tx_buffer; 979 union ixgbe_adv_tx_desc *tx_desc; 980 u32 len, cmd_type; 981 dma_addr_t dma; 982 u16 i; 983 984 len = xdp->data_end - xdp->data; 985 986 if (unlikely(!ixgbevf_desc_unused(ring))) 987 return IXGBEVF_XDP_CONSUMED; 988 989 dma = dma_map_single(ring->dev, xdp->data, len, DMA_TO_DEVICE); 990 if (dma_mapping_error(ring->dev, dma)) 991 return IXGBEVF_XDP_CONSUMED; 992 993 /* record the location of the first descriptor for this packet */ 994 i = ring->next_to_use; 995 tx_buffer = &ring->tx_buffer_info[i]; 996 997 dma_unmap_len_set(tx_buffer, len, len); 998 dma_unmap_addr_set(tx_buffer, dma, dma); 999 tx_buffer->data = xdp->data; 1000 tx_buffer->bytecount = len; 1001 tx_buffer->gso_segs = 1; 1002 tx_buffer->protocol = 0; 1003 1004 /* Populate minimal context descriptor that will provide for the 1005 * fact that we are expected to process Ethernet frames. 1006 */ 1007 if (!test_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state)) { 1008 struct ixgbe_adv_tx_context_desc *context_desc; 1009 1010 set_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1011 1012 context_desc = IXGBEVF_TX_CTXTDESC(ring, 0); 1013 context_desc->vlan_macip_lens = 1014 cpu_to_le32(ETH_HLEN << IXGBE_ADVTXD_MACLEN_SHIFT); 1015 context_desc->fceof_saidx = 0; 1016 context_desc->type_tucmd_mlhl = 1017 cpu_to_le32(IXGBE_TXD_CMD_DEXT | 1018 IXGBE_ADVTXD_DTYP_CTXT); 1019 context_desc->mss_l4len_idx = 0; 1020 1021 i = 1; 1022 } 1023 1024 /* put descriptor type bits */ 1025 cmd_type = IXGBE_ADVTXD_DTYP_DATA | 1026 IXGBE_ADVTXD_DCMD_DEXT | 1027 IXGBE_ADVTXD_DCMD_IFCS; 1028 cmd_type |= len | IXGBE_TXD_CMD; 1029 1030 tx_desc = IXGBEVF_TX_DESC(ring, i); 1031 tx_desc->read.buffer_addr = cpu_to_le64(dma); 1032 1033 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 1034 tx_desc->read.olinfo_status = 1035 cpu_to_le32((len << IXGBE_ADVTXD_PAYLEN_SHIFT) | 1036 IXGBE_ADVTXD_CC); 1037 1038 /* Avoid any potential race with cleanup */ 1039 smp_wmb(); 1040 1041 /* set next_to_watch value indicating a packet is present */ 1042 i++; 1043 if (i == ring->count) 1044 i = 0; 1045 1046 tx_buffer->next_to_watch = tx_desc; 1047 ring->next_to_use = i; 1048 1049 return IXGBEVF_XDP_TX; 1050 } 1051 1052 static struct sk_buff *ixgbevf_run_xdp(struct ixgbevf_adapter *adapter, 1053 struct ixgbevf_ring *rx_ring, 1054 struct xdp_buff *xdp) 1055 { 1056 int result = IXGBEVF_XDP_PASS; 1057 struct ixgbevf_ring *xdp_ring; 1058 struct bpf_prog *xdp_prog; 1059 u32 act; 1060 1061 rcu_read_lock(); 1062 xdp_prog = READ_ONCE(rx_ring->xdp_prog); 1063 1064 if (!xdp_prog) 1065 goto xdp_out; 1066 1067 act = bpf_prog_run_xdp(xdp_prog, xdp); 1068 switch (act) { 1069 case XDP_PASS: 1070 break; 1071 case XDP_TX: 1072 xdp_ring = adapter->xdp_ring[rx_ring->queue_index]; 1073 result = ixgbevf_xmit_xdp_ring(xdp_ring, xdp); 1074 break; 1075 default: 1076 bpf_warn_invalid_xdp_action(act); 1077 fallthrough; 1078 case XDP_ABORTED: 1079 trace_xdp_exception(rx_ring->netdev, xdp_prog, act); 1080 fallthrough; /* handle aborts by dropping packet */ 1081 case XDP_DROP: 1082 result = IXGBEVF_XDP_CONSUMED; 1083 break; 1084 } 1085 xdp_out: 1086 rcu_read_unlock(); 1087 return ERR_PTR(-result); 1088 } 1089 1090 static unsigned int ixgbevf_rx_frame_truesize(struct ixgbevf_ring *rx_ring, 1091 unsigned int size) 1092 { 1093 unsigned int truesize; 1094 1095 #if (PAGE_SIZE < 8192) 1096 truesize = ixgbevf_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */ 1097 #else 1098 truesize = ring_uses_build_skb(rx_ring) ? 1099 SKB_DATA_ALIGN(IXGBEVF_SKB_PAD + size) + 1100 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : 1101 SKB_DATA_ALIGN(size); 1102 #endif 1103 return truesize; 1104 } 1105 1106 static void ixgbevf_rx_buffer_flip(struct ixgbevf_ring *rx_ring, 1107 struct ixgbevf_rx_buffer *rx_buffer, 1108 unsigned int size) 1109 { 1110 unsigned int truesize = ixgbevf_rx_frame_truesize(rx_ring, size); 1111 1112 #if (PAGE_SIZE < 8192) 1113 rx_buffer->page_offset ^= truesize; 1114 #else 1115 rx_buffer->page_offset += truesize; 1116 #endif 1117 } 1118 1119 static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector, 1120 struct ixgbevf_ring *rx_ring, 1121 int budget) 1122 { 1123 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1124 struct ixgbevf_adapter *adapter = q_vector->adapter; 1125 u16 cleaned_count = ixgbevf_desc_unused(rx_ring); 1126 struct sk_buff *skb = rx_ring->skb; 1127 bool xdp_xmit = false; 1128 struct xdp_buff xdp; 1129 1130 xdp.rxq = &rx_ring->xdp_rxq; 1131 1132 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */ 1133 #if (PAGE_SIZE < 8192) 1134 xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, 0); 1135 #endif 1136 1137 while (likely(total_rx_packets < budget)) { 1138 struct ixgbevf_rx_buffer *rx_buffer; 1139 union ixgbe_adv_rx_desc *rx_desc; 1140 unsigned int size; 1141 1142 /* return some buffers to hardware, one at a time is too slow */ 1143 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) { 1144 ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); 1145 cleaned_count = 0; 1146 } 1147 1148 rx_desc = IXGBEVF_RX_DESC(rx_ring, rx_ring->next_to_clean); 1149 size = le16_to_cpu(rx_desc->wb.upper.length); 1150 if (!size) 1151 break; 1152 1153 /* This memory barrier is needed to keep us from reading 1154 * any other fields out of the rx_desc until we know the 1155 * RXD_STAT_DD bit is set 1156 */ 1157 rmb(); 1158 1159 rx_buffer = ixgbevf_get_rx_buffer(rx_ring, size); 1160 1161 /* retrieve a buffer from the ring */ 1162 if (!skb) { 1163 xdp.data = page_address(rx_buffer->page) + 1164 rx_buffer->page_offset; 1165 xdp.data_meta = xdp.data; 1166 xdp.data_hard_start = xdp.data - 1167 ixgbevf_rx_offset(rx_ring); 1168 xdp.data_end = xdp.data + size; 1169 #if (PAGE_SIZE > 4096) 1170 /* At larger PAGE_SIZE, frame_sz depend on len size */ 1171 xdp.frame_sz = ixgbevf_rx_frame_truesize(rx_ring, size); 1172 #endif 1173 skb = ixgbevf_run_xdp(adapter, rx_ring, &xdp); 1174 } 1175 1176 if (IS_ERR(skb)) { 1177 if (PTR_ERR(skb) == -IXGBEVF_XDP_TX) { 1178 xdp_xmit = true; 1179 ixgbevf_rx_buffer_flip(rx_ring, rx_buffer, 1180 size); 1181 } else { 1182 rx_buffer->pagecnt_bias++; 1183 } 1184 total_rx_packets++; 1185 total_rx_bytes += size; 1186 } else if (skb) { 1187 ixgbevf_add_rx_frag(rx_ring, rx_buffer, skb, size); 1188 } else if (ring_uses_build_skb(rx_ring)) { 1189 skb = ixgbevf_build_skb(rx_ring, rx_buffer, 1190 &xdp, rx_desc); 1191 } else { 1192 skb = ixgbevf_construct_skb(rx_ring, rx_buffer, 1193 &xdp, rx_desc); 1194 } 1195 1196 /* exit if we failed to retrieve a buffer */ 1197 if (!skb) { 1198 rx_ring->rx_stats.alloc_rx_buff_failed++; 1199 rx_buffer->pagecnt_bias++; 1200 break; 1201 } 1202 1203 ixgbevf_put_rx_buffer(rx_ring, rx_buffer, skb); 1204 cleaned_count++; 1205 1206 /* fetch next buffer in frame if non-eop */ 1207 if (ixgbevf_is_non_eop(rx_ring, rx_desc)) 1208 continue; 1209 1210 /* verify the packet layout is correct */ 1211 if (ixgbevf_cleanup_headers(rx_ring, rx_desc, skb)) { 1212 skb = NULL; 1213 continue; 1214 } 1215 1216 /* probably a little skewed due to removing CRC */ 1217 total_rx_bytes += skb->len; 1218 1219 /* Workaround hardware that can't do proper VEPA multicast 1220 * source pruning. 1221 */ 1222 if ((skb->pkt_type == PACKET_BROADCAST || 1223 skb->pkt_type == PACKET_MULTICAST) && 1224 ether_addr_equal(rx_ring->netdev->dev_addr, 1225 eth_hdr(skb)->h_source)) { 1226 dev_kfree_skb_irq(skb); 1227 continue; 1228 } 1229 1230 /* populate checksum, VLAN, and protocol */ 1231 ixgbevf_process_skb_fields(rx_ring, rx_desc, skb); 1232 1233 ixgbevf_rx_skb(q_vector, skb); 1234 1235 /* reset skb pointer */ 1236 skb = NULL; 1237 1238 /* update budget accounting */ 1239 total_rx_packets++; 1240 } 1241 1242 /* place incomplete frames back on ring for completion */ 1243 rx_ring->skb = skb; 1244 1245 if (xdp_xmit) { 1246 struct ixgbevf_ring *xdp_ring = 1247 adapter->xdp_ring[rx_ring->queue_index]; 1248 1249 /* Force memory writes to complete before letting h/w 1250 * know there are new descriptors to fetch. 1251 */ 1252 wmb(); 1253 ixgbevf_write_tail(xdp_ring, xdp_ring->next_to_use); 1254 } 1255 1256 u64_stats_update_begin(&rx_ring->syncp); 1257 rx_ring->stats.packets += total_rx_packets; 1258 rx_ring->stats.bytes += total_rx_bytes; 1259 u64_stats_update_end(&rx_ring->syncp); 1260 q_vector->rx.total_packets += total_rx_packets; 1261 q_vector->rx.total_bytes += total_rx_bytes; 1262 1263 return total_rx_packets; 1264 } 1265 1266 /** 1267 * ixgbevf_poll - NAPI polling calback 1268 * @napi: napi struct with our devices info in it 1269 * @budget: amount of work driver is allowed to do this pass, in packets 1270 * 1271 * This function will clean more than one or more rings associated with a 1272 * q_vector. 1273 **/ 1274 static int ixgbevf_poll(struct napi_struct *napi, int budget) 1275 { 1276 struct ixgbevf_q_vector *q_vector = 1277 container_of(napi, struct ixgbevf_q_vector, napi); 1278 struct ixgbevf_adapter *adapter = q_vector->adapter; 1279 struct ixgbevf_ring *ring; 1280 int per_ring_budget, work_done = 0; 1281 bool clean_complete = true; 1282 1283 ixgbevf_for_each_ring(ring, q_vector->tx) { 1284 if (!ixgbevf_clean_tx_irq(q_vector, ring, budget)) 1285 clean_complete = false; 1286 } 1287 1288 if (budget <= 0) 1289 return budget; 1290 1291 /* attempt to distribute budget to each queue fairly, but don't allow 1292 * the budget to go below 1 because we'll exit polling 1293 */ 1294 if (q_vector->rx.count > 1) 1295 per_ring_budget = max(budget/q_vector->rx.count, 1); 1296 else 1297 per_ring_budget = budget; 1298 1299 ixgbevf_for_each_ring(ring, q_vector->rx) { 1300 int cleaned = ixgbevf_clean_rx_irq(q_vector, ring, 1301 per_ring_budget); 1302 work_done += cleaned; 1303 if (cleaned >= per_ring_budget) 1304 clean_complete = false; 1305 } 1306 1307 /* If all work not completed, return budget and keep polling */ 1308 if (!clean_complete) 1309 return budget; 1310 1311 /* Exit the polling mode, but don't re-enable interrupts if stack might 1312 * poll us due to busy-polling 1313 */ 1314 if (likely(napi_complete_done(napi, work_done))) { 1315 if (adapter->rx_itr_setting == 1) 1316 ixgbevf_set_itr(q_vector); 1317 if (!test_bit(__IXGBEVF_DOWN, &adapter->state) && 1318 !test_bit(__IXGBEVF_REMOVING, &adapter->state)) 1319 ixgbevf_irq_enable_queues(adapter, 1320 BIT(q_vector->v_idx)); 1321 } 1322 1323 return min(work_done, budget - 1); 1324 } 1325 1326 /** 1327 * ixgbevf_write_eitr - write VTEITR register in hardware specific way 1328 * @q_vector: structure containing interrupt and ring information 1329 **/ 1330 void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector) 1331 { 1332 struct ixgbevf_adapter *adapter = q_vector->adapter; 1333 struct ixgbe_hw *hw = &adapter->hw; 1334 int v_idx = q_vector->v_idx; 1335 u32 itr_reg = q_vector->itr & IXGBE_MAX_EITR; 1336 1337 /* set the WDIS bit to not clear the timer bits and cause an 1338 * immediate assertion of the interrupt 1339 */ 1340 itr_reg |= IXGBE_EITR_CNT_WDIS; 1341 1342 IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg); 1343 } 1344 1345 /** 1346 * ixgbevf_configure_msix - Configure MSI-X hardware 1347 * @adapter: board private structure 1348 * 1349 * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X 1350 * interrupts. 1351 **/ 1352 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter) 1353 { 1354 struct ixgbevf_q_vector *q_vector; 1355 int q_vectors, v_idx; 1356 1357 q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1358 adapter->eims_enable_mask = 0; 1359 1360 /* Populate the IVAR table and set the ITR values to the 1361 * corresponding register. 1362 */ 1363 for (v_idx = 0; v_idx < q_vectors; v_idx++) { 1364 struct ixgbevf_ring *ring; 1365 1366 q_vector = adapter->q_vector[v_idx]; 1367 1368 ixgbevf_for_each_ring(ring, q_vector->rx) 1369 ixgbevf_set_ivar(adapter, 0, ring->reg_idx, v_idx); 1370 1371 ixgbevf_for_each_ring(ring, q_vector->tx) 1372 ixgbevf_set_ivar(adapter, 1, ring->reg_idx, v_idx); 1373 1374 if (q_vector->tx.ring && !q_vector->rx.ring) { 1375 /* Tx only vector */ 1376 if (adapter->tx_itr_setting == 1) 1377 q_vector->itr = IXGBE_12K_ITR; 1378 else 1379 q_vector->itr = adapter->tx_itr_setting; 1380 } else { 1381 /* Rx or Rx/Tx vector */ 1382 if (adapter->rx_itr_setting == 1) 1383 q_vector->itr = IXGBE_20K_ITR; 1384 else 1385 q_vector->itr = adapter->rx_itr_setting; 1386 } 1387 1388 /* add q_vector eims value to global eims_enable_mask */ 1389 adapter->eims_enable_mask |= BIT(v_idx); 1390 1391 ixgbevf_write_eitr(q_vector); 1392 } 1393 1394 ixgbevf_set_ivar(adapter, -1, 1, v_idx); 1395 /* setup eims_other and add value to global eims_enable_mask */ 1396 adapter->eims_other = BIT(v_idx); 1397 adapter->eims_enable_mask |= adapter->eims_other; 1398 } 1399 1400 enum latency_range { 1401 lowest_latency = 0, 1402 low_latency = 1, 1403 bulk_latency = 2, 1404 latency_invalid = 255 1405 }; 1406 1407 /** 1408 * ixgbevf_update_itr - update the dynamic ITR value based on statistics 1409 * @q_vector: structure containing interrupt and ring information 1410 * @ring_container: structure containing ring performance data 1411 * 1412 * Stores a new ITR value based on packets and byte 1413 * counts during the last interrupt. The advantage of per interrupt 1414 * computation is faster updates and more accurate ITR for the current 1415 * traffic pattern. Constants in this function were computed 1416 * based on theoretical maximum wire speed and thresholds were set based 1417 * on testing data as well as attempting to minimize response time 1418 * while increasing bulk throughput. 1419 **/ 1420 static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector, 1421 struct ixgbevf_ring_container *ring_container) 1422 { 1423 int bytes = ring_container->total_bytes; 1424 int packets = ring_container->total_packets; 1425 u32 timepassed_us; 1426 u64 bytes_perint; 1427 u8 itr_setting = ring_container->itr; 1428 1429 if (packets == 0) 1430 return; 1431 1432 /* simple throttle rate management 1433 * 0-20MB/s lowest (100000 ints/s) 1434 * 20-100MB/s low (20000 ints/s) 1435 * 100-1249MB/s bulk (12000 ints/s) 1436 */ 1437 /* what was last interrupt timeslice? */ 1438 timepassed_us = q_vector->itr >> 2; 1439 if (timepassed_us == 0) 1440 return; 1441 1442 bytes_perint = bytes / timepassed_us; /* bytes/usec */ 1443 1444 switch (itr_setting) { 1445 case lowest_latency: 1446 if (bytes_perint > 10) 1447 itr_setting = low_latency; 1448 break; 1449 case low_latency: 1450 if (bytes_perint > 20) 1451 itr_setting = bulk_latency; 1452 else if (bytes_perint <= 10) 1453 itr_setting = lowest_latency; 1454 break; 1455 case bulk_latency: 1456 if (bytes_perint <= 20) 1457 itr_setting = low_latency; 1458 break; 1459 } 1460 1461 /* clear work counters since we have the values we need */ 1462 ring_container->total_bytes = 0; 1463 ring_container->total_packets = 0; 1464 1465 /* write updated itr to ring container */ 1466 ring_container->itr = itr_setting; 1467 } 1468 1469 static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector) 1470 { 1471 u32 new_itr = q_vector->itr; 1472 u8 current_itr; 1473 1474 ixgbevf_update_itr(q_vector, &q_vector->tx); 1475 ixgbevf_update_itr(q_vector, &q_vector->rx); 1476 1477 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 1478 1479 switch (current_itr) { 1480 /* counts and packets in update_itr are dependent on these numbers */ 1481 case lowest_latency: 1482 new_itr = IXGBE_100K_ITR; 1483 break; 1484 case low_latency: 1485 new_itr = IXGBE_20K_ITR; 1486 break; 1487 case bulk_latency: 1488 new_itr = IXGBE_12K_ITR; 1489 break; 1490 default: 1491 break; 1492 } 1493 1494 if (new_itr != q_vector->itr) { 1495 /* do an exponential smoothing */ 1496 new_itr = (10 * new_itr * q_vector->itr) / 1497 ((9 * new_itr) + q_vector->itr); 1498 1499 /* save the algorithm value here */ 1500 q_vector->itr = new_itr; 1501 1502 ixgbevf_write_eitr(q_vector); 1503 } 1504 } 1505 1506 static irqreturn_t ixgbevf_msix_other(int irq, void *data) 1507 { 1508 struct ixgbevf_adapter *adapter = data; 1509 struct ixgbe_hw *hw = &adapter->hw; 1510 1511 hw->mac.get_link_status = 1; 1512 1513 ixgbevf_service_event_schedule(adapter); 1514 1515 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_other); 1516 1517 return IRQ_HANDLED; 1518 } 1519 1520 /** 1521 * ixgbevf_msix_clean_rings - single unshared vector rx clean (all queues) 1522 * @irq: unused 1523 * @data: pointer to our q_vector struct for this interrupt vector 1524 **/ 1525 static irqreturn_t ixgbevf_msix_clean_rings(int irq, void *data) 1526 { 1527 struct ixgbevf_q_vector *q_vector = data; 1528 1529 /* EIAM disabled interrupts (on this vector) for us */ 1530 if (q_vector->rx.ring || q_vector->tx.ring) 1531 napi_schedule_irqoff(&q_vector->napi); 1532 1533 return IRQ_HANDLED; 1534 } 1535 1536 /** 1537 * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts 1538 * @adapter: board private structure 1539 * 1540 * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests 1541 * interrupts from the kernel. 1542 **/ 1543 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter) 1544 { 1545 struct net_device *netdev = adapter->netdev; 1546 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 1547 unsigned int ri = 0, ti = 0; 1548 int vector, err; 1549 1550 for (vector = 0; vector < q_vectors; vector++) { 1551 struct ixgbevf_q_vector *q_vector = adapter->q_vector[vector]; 1552 struct msix_entry *entry = &adapter->msix_entries[vector]; 1553 1554 if (q_vector->tx.ring && q_vector->rx.ring) { 1555 snprintf(q_vector->name, sizeof(q_vector->name), 1556 "%s-TxRx-%u", netdev->name, ri++); 1557 ti++; 1558 } else if (q_vector->rx.ring) { 1559 snprintf(q_vector->name, sizeof(q_vector->name), 1560 "%s-rx-%u", netdev->name, ri++); 1561 } else if (q_vector->tx.ring) { 1562 snprintf(q_vector->name, sizeof(q_vector->name), 1563 "%s-tx-%u", netdev->name, ti++); 1564 } else { 1565 /* skip this unused q_vector */ 1566 continue; 1567 } 1568 err = request_irq(entry->vector, &ixgbevf_msix_clean_rings, 0, 1569 q_vector->name, q_vector); 1570 if (err) { 1571 hw_dbg(&adapter->hw, 1572 "request_irq failed for MSIX interrupt Error: %d\n", 1573 err); 1574 goto free_queue_irqs; 1575 } 1576 } 1577 1578 err = request_irq(adapter->msix_entries[vector].vector, 1579 &ixgbevf_msix_other, 0, netdev->name, adapter); 1580 if (err) { 1581 hw_dbg(&adapter->hw, "request_irq for msix_other failed: %d\n", 1582 err); 1583 goto free_queue_irqs; 1584 } 1585 1586 return 0; 1587 1588 free_queue_irqs: 1589 while (vector) { 1590 vector--; 1591 free_irq(adapter->msix_entries[vector].vector, 1592 adapter->q_vector[vector]); 1593 } 1594 /* This failure is non-recoverable - it indicates the system is 1595 * out of MSIX vector resources and the VF driver cannot run 1596 * without them. Set the number of msix vectors to zero 1597 * indicating that not enough can be allocated. The error 1598 * will be returned to the user indicating device open failed. 1599 * Any further attempts to force the driver to open will also 1600 * fail. The only way to recover is to unload the driver and 1601 * reload it again. If the system has recovered some MSIX 1602 * vectors then it may succeed. 1603 */ 1604 adapter->num_msix_vectors = 0; 1605 return err; 1606 } 1607 1608 /** 1609 * ixgbevf_request_irq - initialize interrupts 1610 * @adapter: board private structure 1611 * 1612 * Attempts to configure interrupts using the best available 1613 * capabilities of the hardware and kernel. 1614 **/ 1615 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter) 1616 { 1617 int err = ixgbevf_request_msix_irqs(adapter); 1618 1619 if (err) 1620 hw_dbg(&adapter->hw, "request_irq failed, Error %d\n", err); 1621 1622 return err; 1623 } 1624 1625 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter) 1626 { 1627 int i, q_vectors; 1628 1629 if (!adapter->msix_entries) 1630 return; 1631 1632 q_vectors = adapter->num_msix_vectors; 1633 i = q_vectors - 1; 1634 1635 free_irq(adapter->msix_entries[i].vector, adapter); 1636 i--; 1637 1638 for (; i >= 0; i--) { 1639 /* free only the irqs that were actually requested */ 1640 if (!adapter->q_vector[i]->rx.ring && 1641 !adapter->q_vector[i]->tx.ring) 1642 continue; 1643 1644 free_irq(adapter->msix_entries[i].vector, 1645 adapter->q_vector[i]); 1646 } 1647 } 1648 1649 /** 1650 * ixgbevf_irq_disable - Mask off interrupt generation on the NIC 1651 * @adapter: board private structure 1652 **/ 1653 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter) 1654 { 1655 struct ixgbe_hw *hw = &adapter->hw; 1656 int i; 1657 1658 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, 0); 1659 IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0); 1660 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, 0); 1661 1662 IXGBE_WRITE_FLUSH(hw); 1663 1664 for (i = 0; i < adapter->num_msix_vectors; i++) 1665 synchronize_irq(adapter->msix_entries[i].vector); 1666 } 1667 1668 /** 1669 * ixgbevf_irq_enable - Enable default interrupt generation settings 1670 * @adapter: board private structure 1671 **/ 1672 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter) 1673 { 1674 struct ixgbe_hw *hw = &adapter->hw; 1675 1676 IXGBE_WRITE_REG(hw, IXGBE_VTEIAM, adapter->eims_enable_mask); 1677 IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, adapter->eims_enable_mask); 1678 IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, adapter->eims_enable_mask); 1679 } 1680 1681 /** 1682 * ixgbevf_configure_tx_ring - Configure 82599 VF Tx ring after Reset 1683 * @adapter: board private structure 1684 * @ring: structure containing ring specific data 1685 * 1686 * Configure the Tx descriptor ring after a reset. 1687 **/ 1688 static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter, 1689 struct ixgbevf_ring *ring) 1690 { 1691 struct ixgbe_hw *hw = &adapter->hw; 1692 u64 tdba = ring->dma; 1693 int wait_loop = 10; 1694 u32 txdctl = IXGBE_TXDCTL_ENABLE; 1695 u8 reg_idx = ring->reg_idx; 1696 1697 /* disable queue to avoid issues while updating state */ 1698 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), IXGBE_TXDCTL_SWFLSH); 1699 IXGBE_WRITE_FLUSH(hw); 1700 1701 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(reg_idx), tdba & DMA_BIT_MASK(32)); 1702 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(reg_idx), tdba >> 32); 1703 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(reg_idx), 1704 ring->count * sizeof(union ixgbe_adv_tx_desc)); 1705 1706 /* disable head writeback */ 1707 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAH(reg_idx), 0); 1708 IXGBE_WRITE_REG(hw, IXGBE_VFTDWBAL(reg_idx), 0); 1709 1710 /* enable relaxed ordering */ 1711 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(reg_idx), 1712 (IXGBE_DCA_TXCTRL_DESC_RRO_EN | 1713 IXGBE_DCA_TXCTRL_DATA_RRO_EN)); 1714 1715 /* reset head and tail pointers */ 1716 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(reg_idx), 0); 1717 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(reg_idx), 0); 1718 ring->tail = adapter->io_addr + IXGBE_VFTDT(reg_idx); 1719 1720 /* reset ntu and ntc to place SW in sync with hardwdare */ 1721 ring->next_to_clean = 0; 1722 ring->next_to_use = 0; 1723 1724 /* In order to avoid issues WTHRESH + PTHRESH should always be equal 1725 * to or less than the number of on chip descriptors, which is 1726 * currently 40. 1727 */ 1728 txdctl |= (8 << 16); /* WTHRESH = 8 */ 1729 1730 /* Setting PTHRESH to 32 both improves performance */ 1731 txdctl |= (1u << 8) | /* HTHRESH = 1 */ 1732 32; /* PTHRESH = 32 */ 1733 1734 /* reinitialize tx_buffer_info */ 1735 memset(ring->tx_buffer_info, 0, 1736 sizeof(struct ixgbevf_tx_buffer) * ring->count); 1737 1738 clear_bit(__IXGBEVF_HANG_CHECK_ARMED, &ring->state); 1739 clear_bit(__IXGBEVF_TX_XDP_RING_PRIMED, &ring->state); 1740 1741 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), txdctl); 1742 1743 /* poll to verify queue is enabled */ 1744 do { 1745 usleep_range(1000, 2000); 1746 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(reg_idx)); 1747 } while (--wait_loop && !(txdctl & IXGBE_TXDCTL_ENABLE)); 1748 if (!wait_loop) 1749 hw_dbg(hw, "Could not enable Tx Queue %d\n", reg_idx); 1750 } 1751 1752 /** 1753 * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset 1754 * @adapter: board private structure 1755 * 1756 * Configure the Tx unit of the MAC after a reset. 1757 **/ 1758 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter) 1759 { 1760 u32 i; 1761 1762 /* Setup the HW Tx Head and Tail descriptor pointers */ 1763 for (i = 0; i < adapter->num_tx_queues; i++) 1764 ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); 1765 for (i = 0; i < adapter->num_xdp_queues; i++) 1766 ixgbevf_configure_tx_ring(adapter, adapter->xdp_ring[i]); 1767 } 1768 1769 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2 1770 1771 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, 1772 struct ixgbevf_ring *ring, int index) 1773 { 1774 struct ixgbe_hw *hw = &adapter->hw; 1775 u32 srrctl; 1776 1777 srrctl = IXGBE_SRRCTL_DROP_EN; 1778 1779 srrctl |= IXGBEVF_RX_HDR_SIZE << IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT; 1780 if (ring_uses_large_buffer(ring)) 1781 srrctl |= IXGBEVF_RXBUFFER_3072 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1782 else 1783 srrctl |= IXGBEVF_RXBUFFER_2048 >> IXGBE_SRRCTL_BSIZEPKT_SHIFT; 1784 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF; 1785 1786 IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl); 1787 } 1788 1789 static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter) 1790 { 1791 struct ixgbe_hw *hw = &adapter->hw; 1792 1793 /* PSRTYPE must be initialized in 82599 */ 1794 u32 psrtype = IXGBE_PSRTYPE_TCPHDR | IXGBE_PSRTYPE_UDPHDR | 1795 IXGBE_PSRTYPE_IPV4HDR | IXGBE_PSRTYPE_IPV6HDR | 1796 IXGBE_PSRTYPE_L2HDR; 1797 1798 if (adapter->num_rx_queues > 1) 1799 psrtype |= BIT(29); 1800 1801 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype); 1802 } 1803 1804 #define IXGBEVF_MAX_RX_DESC_POLL 10 1805 static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter, 1806 struct ixgbevf_ring *ring) 1807 { 1808 struct ixgbe_hw *hw = &adapter->hw; 1809 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1810 u32 rxdctl; 1811 u8 reg_idx = ring->reg_idx; 1812 1813 if (IXGBE_REMOVED(hw->hw_addr)) 1814 return; 1815 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1816 rxdctl &= ~IXGBE_RXDCTL_ENABLE; 1817 1818 /* write value back with RXDCTL.ENABLE bit cleared */ 1819 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1820 1821 /* the hardware may take up to 100us to really disable the Rx queue */ 1822 do { 1823 udelay(10); 1824 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1825 } while (--wait_loop && (rxdctl & IXGBE_RXDCTL_ENABLE)); 1826 1827 if (!wait_loop) 1828 pr_err("RXDCTL.ENABLE queue %d not cleared while polling\n", 1829 reg_idx); 1830 } 1831 1832 static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter, 1833 struct ixgbevf_ring *ring) 1834 { 1835 struct ixgbe_hw *hw = &adapter->hw; 1836 int wait_loop = IXGBEVF_MAX_RX_DESC_POLL; 1837 u32 rxdctl; 1838 u8 reg_idx = ring->reg_idx; 1839 1840 if (IXGBE_REMOVED(hw->hw_addr)) 1841 return; 1842 do { 1843 usleep_range(1000, 2000); 1844 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1845 } while (--wait_loop && !(rxdctl & IXGBE_RXDCTL_ENABLE)); 1846 1847 if (!wait_loop) 1848 pr_err("RXDCTL.ENABLE queue %d not set while polling\n", 1849 reg_idx); 1850 } 1851 1852 /** 1853 * ixgbevf_init_rss_key - Initialize adapter RSS key 1854 * @adapter: device handle 1855 * 1856 * Allocates and initializes the RSS key if it is not allocated. 1857 **/ 1858 static inline int ixgbevf_init_rss_key(struct ixgbevf_adapter *adapter) 1859 { 1860 u32 *rss_key; 1861 1862 if (!adapter->rss_key) { 1863 rss_key = kzalloc(IXGBEVF_RSS_HASH_KEY_SIZE, GFP_KERNEL); 1864 if (unlikely(!rss_key)) 1865 return -ENOMEM; 1866 1867 netdev_rss_key_fill(rss_key, IXGBEVF_RSS_HASH_KEY_SIZE); 1868 adapter->rss_key = rss_key; 1869 } 1870 1871 return 0; 1872 } 1873 1874 static void ixgbevf_setup_vfmrqc(struct ixgbevf_adapter *adapter) 1875 { 1876 struct ixgbe_hw *hw = &adapter->hw; 1877 u32 vfmrqc = 0, vfreta = 0; 1878 u16 rss_i = adapter->num_rx_queues; 1879 u8 i, j; 1880 1881 /* Fill out hash function seeds */ 1882 for (i = 0; i < IXGBEVF_VFRSSRK_REGS; i++) 1883 IXGBE_WRITE_REG(hw, IXGBE_VFRSSRK(i), *(adapter->rss_key + i)); 1884 1885 for (i = 0, j = 0; i < IXGBEVF_X550_VFRETA_SIZE; i++, j++) { 1886 if (j == rss_i) 1887 j = 0; 1888 1889 adapter->rss_indir_tbl[i] = j; 1890 1891 vfreta |= j << (i & 0x3) * 8; 1892 if ((i & 3) == 3) { 1893 IXGBE_WRITE_REG(hw, IXGBE_VFRETA(i >> 2), vfreta); 1894 vfreta = 0; 1895 } 1896 } 1897 1898 /* Perform hash on these packet types */ 1899 vfmrqc |= IXGBE_VFMRQC_RSS_FIELD_IPV4 | 1900 IXGBE_VFMRQC_RSS_FIELD_IPV4_TCP | 1901 IXGBE_VFMRQC_RSS_FIELD_IPV6 | 1902 IXGBE_VFMRQC_RSS_FIELD_IPV6_TCP; 1903 1904 vfmrqc |= IXGBE_VFMRQC_RSSEN; 1905 1906 IXGBE_WRITE_REG(hw, IXGBE_VFMRQC, vfmrqc); 1907 } 1908 1909 static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter, 1910 struct ixgbevf_ring *ring) 1911 { 1912 struct ixgbe_hw *hw = &adapter->hw; 1913 union ixgbe_adv_rx_desc *rx_desc; 1914 u64 rdba = ring->dma; 1915 u32 rxdctl; 1916 u8 reg_idx = ring->reg_idx; 1917 1918 /* disable queue to avoid issues while updating state */ 1919 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(reg_idx)); 1920 ixgbevf_disable_rx_queue(adapter, ring); 1921 1922 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(reg_idx), rdba & DMA_BIT_MASK(32)); 1923 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(reg_idx), rdba >> 32); 1924 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(reg_idx), 1925 ring->count * sizeof(union ixgbe_adv_rx_desc)); 1926 1927 #ifndef CONFIG_SPARC 1928 /* enable relaxed ordering */ 1929 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1930 IXGBE_DCA_RXCTRL_DESC_RRO_EN); 1931 #else 1932 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_RXCTRL(reg_idx), 1933 IXGBE_DCA_RXCTRL_DESC_RRO_EN | 1934 IXGBE_DCA_RXCTRL_DATA_WRO_EN); 1935 #endif 1936 1937 /* reset head and tail pointers */ 1938 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(reg_idx), 0); 1939 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(reg_idx), 0); 1940 ring->tail = adapter->io_addr + IXGBE_VFRDT(reg_idx); 1941 1942 /* initialize rx_buffer_info */ 1943 memset(ring->rx_buffer_info, 0, 1944 sizeof(struct ixgbevf_rx_buffer) * ring->count); 1945 1946 /* initialize Rx descriptor 0 */ 1947 rx_desc = IXGBEVF_RX_DESC(ring, 0); 1948 rx_desc->wb.upper.length = 0; 1949 1950 /* reset ntu and ntc to place SW in sync with hardwdare */ 1951 ring->next_to_clean = 0; 1952 ring->next_to_use = 0; 1953 ring->next_to_alloc = 0; 1954 1955 ixgbevf_configure_srrctl(adapter, ring, reg_idx); 1956 1957 /* RXDCTL.RLPML does not work on 82599 */ 1958 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) { 1959 rxdctl &= ~(IXGBE_RXDCTL_RLPMLMASK | 1960 IXGBE_RXDCTL_RLPML_EN); 1961 1962 #if (PAGE_SIZE < 8192) 1963 /* Limit the maximum frame size so we don't overrun the skb */ 1964 if (ring_uses_build_skb(ring) && 1965 !ring_uses_large_buffer(ring)) 1966 rxdctl |= IXGBEVF_MAX_FRAME_BUILD_SKB | 1967 IXGBE_RXDCTL_RLPML_EN; 1968 #endif 1969 } 1970 1971 rxdctl |= IXGBE_RXDCTL_ENABLE | IXGBE_RXDCTL_VME; 1972 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(reg_idx), rxdctl); 1973 1974 ixgbevf_rx_desc_queue_enable(adapter, ring); 1975 ixgbevf_alloc_rx_buffers(ring, ixgbevf_desc_unused(ring)); 1976 } 1977 1978 static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter, 1979 struct ixgbevf_ring *rx_ring) 1980 { 1981 struct net_device *netdev = adapter->netdev; 1982 unsigned int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 1983 1984 /* set build_skb and buffer size flags */ 1985 clear_ring_build_skb_enabled(rx_ring); 1986 clear_ring_uses_large_buffer(rx_ring); 1987 1988 if (adapter->flags & IXGBEVF_FLAGS_LEGACY_RX) 1989 return; 1990 1991 set_ring_build_skb_enabled(rx_ring); 1992 1993 if (PAGE_SIZE < 8192) { 1994 if (max_frame <= IXGBEVF_MAX_FRAME_BUILD_SKB) 1995 return; 1996 1997 set_ring_uses_large_buffer(rx_ring); 1998 } 1999 } 2000 2001 /** 2002 * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset 2003 * @adapter: board private structure 2004 * 2005 * Configure the Rx unit of the MAC after a reset. 2006 **/ 2007 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter) 2008 { 2009 struct ixgbe_hw *hw = &adapter->hw; 2010 struct net_device *netdev = adapter->netdev; 2011 int i, ret; 2012 2013 ixgbevf_setup_psrtype(adapter); 2014 if (hw->mac.type >= ixgbe_mac_X550_vf) 2015 ixgbevf_setup_vfmrqc(adapter); 2016 2017 spin_lock_bh(&adapter->mbx_lock); 2018 /* notify the PF of our intent to use this size of frame */ 2019 ret = hw->mac.ops.set_rlpml(hw, netdev->mtu + ETH_HLEN + ETH_FCS_LEN); 2020 spin_unlock_bh(&adapter->mbx_lock); 2021 if (ret) 2022 dev_err(&adapter->pdev->dev, 2023 "Failed to set MTU at %d\n", netdev->mtu); 2024 2025 /* Setup the HW Rx Head and Tail Descriptor Pointers and 2026 * the Base and Length of the Rx Descriptor Ring 2027 */ 2028 for (i = 0; i < adapter->num_rx_queues; i++) { 2029 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 2030 2031 ixgbevf_set_rx_buffer_len(adapter, rx_ring); 2032 ixgbevf_configure_rx_ring(adapter, rx_ring); 2033 } 2034 } 2035 2036 static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev, 2037 __be16 proto, u16 vid) 2038 { 2039 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2040 struct ixgbe_hw *hw = &adapter->hw; 2041 int err; 2042 2043 spin_lock_bh(&adapter->mbx_lock); 2044 2045 /* add VID to filter table */ 2046 err = hw->mac.ops.set_vfta(hw, vid, 0, true); 2047 2048 spin_unlock_bh(&adapter->mbx_lock); 2049 2050 /* translate error return types so error makes sense */ 2051 if (err == IXGBE_ERR_MBX) 2052 return -EIO; 2053 2054 if (err == IXGBE_ERR_INVALID_ARGUMENT) 2055 return -EACCES; 2056 2057 set_bit(vid, adapter->active_vlans); 2058 2059 return err; 2060 } 2061 2062 static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, 2063 __be16 proto, u16 vid) 2064 { 2065 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2066 struct ixgbe_hw *hw = &adapter->hw; 2067 int err; 2068 2069 spin_lock_bh(&adapter->mbx_lock); 2070 2071 /* remove VID from filter table */ 2072 err = hw->mac.ops.set_vfta(hw, vid, 0, false); 2073 2074 spin_unlock_bh(&adapter->mbx_lock); 2075 2076 clear_bit(vid, adapter->active_vlans); 2077 2078 return err; 2079 } 2080 2081 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter) 2082 { 2083 u16 vid; 2084 2085 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2086 ixgbevf_vlan_rx_add_vid(adapter->netdev, 2087 htons(ETH_P_8021Q), vid); 2088 } 2089 2090 static int ixgbevf_write_uc_addr_list(struct net_device *netdev) 2091 { 2092 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2093 struct ixgbe_hw *hw = &adapter->hw; 2094 int count = 0; 2095 2096 if (!netdev_uc_empty(netdev)) { 2097 struct netdev_hw_addr *ha; 2098 2099 netdev_for_each_uc_addr(ha, netdev) { 2100 hw->mac.ops.set_uc_addr(hw, ++count, ha->addr); 2101 udelay(200); 2102 } 2103 } else { 2104 /* If the list is empty then send message to PF driver to 2105 * clear all MAC VLANs on this VF. 2106 */ 2107 hw->mac.ops.set_uc_addr(hw, 0, NULL); 2108 } 2109 2110 return count; 2111 } 2112 2113 /** 2114 * ixgbevf_set_rx_mode - Multicast and unicast set 2115 * @netdev: network interface device structure 2116 * 2117 * The set_rx_method entry point is called whenever the multicast address 2118 * list, unicast address list or the network interface flags are updated. 2119 * This routine is responsible for configuring the hardware for proper 2120 * multicast mode and configuring requested unicast filters. 2121 **/ 2122 static void ixgbevf_set_rx_mode(struct net_device *netdev) 2123 { 2124 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 2125 struct ixgbe_hw *hw = &adapter->hw; 2126 unsigned int flags = netdev->flags; 2127 int xcast_mode; 2128 2129 /* request the most inclusive mode we need */ 2130 if (flags & IFF_PROMISC) 2131 xcast_mode = IXGBEVF_XCAST_MODE_PROMISC; 2132 else if (flags & IFF_ALLMULTI) 2133 xcast_mode = IXGBEVF_XCAST_MODE_ALLMULTI; 2134 else if (flags & (IFF_BROADCAST | IFF_MULTICAST)) 2135 xcast_mode = IXGBEVF_XCAST_MODE_MULTI; 2136 else 2137 xcast_mode = IXGBEVF_XCAST_MODE_NONE; 2138 2139 spin_lock_bh(&adapter->mbx_lock); 2140 2141 hw->mac.ops.update_xcast_mode(hw, xcast_mode); 2142 2143 /* reprogram multicast list */ 2144 hw->mac.ops.update_mc_addr_list(hw, netdev); 2145 2146 ixgbevf_write_uc_addr_list(netdev); 2147 2148 spin_unlock_bh(&adapter->mbx_lock); 2149 } 2150 2151 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter) 2152 { 2153 int q_idx; 2154 struct ixgbevf_q_vector *q_vector; 2155 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2156 2157 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2158 q_vector = adapter->q_vector[q_idx]; 2159 napi_enable(&q_vector->napi); 2160 } 2161 } 2162 2163 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter) 2164 { 2165 int q_idx; 2166 struct ixgbevf_q_vector *q_vector; 2167 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2168 2169 for (q_idx = 0; q_idx < q_vectors; q_idx++) { 2170 q_vector = adapter->q_vector[q_idx]; 2171 napi_disable(&q_vector->napi); 2172 } 2173 } 2174 2175 static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter) 2176 { 2177 struct ixgbe_hw *hw = &adapter->hw; 2178 unsigned int def_q = 0; 2179 unsigned int num_tcs = 0; 2180 unsigned int num_rx_queues = adapter->num_rx_queues; 2181 unsigned int num_tx_queues = adapter->num_tx_queues; 2182 int err; 2183 2184 spin_lock_bh(&adapter->mbx_lock); 2185 2186 /* fetch queue configuration from the PF */ 2187 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2188 2189 spin_unlock_bh(&adapter->mbx_lock); 2190 2191 if (err) 2192 return err; 2193 2194 if (num_tcs > 1) { 2195 /* we need only one Tx queue */ 2196 num_tx_queues = 1; 2197 2198 /* update default Tx ring register index */ 2199 adapter->tx_ring[0]->reg_idx = def_q; 2200 2201 /* we need as many queues as traffic classes */ 2202 num_rx_queues = num_tcs; 2203 } 2204 2205 /* if we have a bad config abort request queue reset */ 2206 if ((adapter->num_rx_queues != num_rx_queues) || 2207 (adapter->num_tx_queues != num_tx_queues)) { 2208 /* force mailbox timeout to prevent further messages */ 2209 hw->mbx.timeout = 0; 2210 2211 /* wait for watchdog to come around and bail us out */ 2212 set_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, &adapter->state); 2213 } 2214 2215 return 0; 2216 } 2217 2218 static void ixgbevf_configure(struct ixgbevf_adapter *adapter) 2219 { 2220 ixgbevf_configure_dcb(adapter); 2221 2222 ixgbevf_set_rx_mode(adapter->netdev); 2223 2224 ixgbevf_restore_vlan(adapter); 2225 ixgbevf_ipsec_restore(adapter); 2226 2227 ixgbevf_configure_tx(adapter); 2228 ixgbevf_configure_rx(adapter); 2229 } 2230 2231 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter) 2232 { 2233 /* Only save pre-reset stats if there are some */ 2234 if (adapter->stats.vfgprc || adapter->stats.vfgptc) { 2235 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc - 2236 adapter->stats.base_vfgprc; 2237 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc - 2238 adapter->stats.base_vfgptc; 2239 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc - 2240 adapter->stats.base_vfgorc; 2241 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc - 2242 adapter->stats.base_vfgotc; 2243 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc - 2244 adapter->stats.base_vfmprc; 2245 } 2246 } 2247 2248 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter) 2249 { 2250 struct ixgbe_hw *hw = &adapter->hw; 2251 2252 adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC); 2253 adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB); 2254 adapter->stats.last_vfgorc |= 2255 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32); 2256 adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC); 2257 adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB); 2258 adapter->stats.last_vfgotc |= 2259 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32); 2260 adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC); 2261 2262 adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; 2263 adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; 2264 adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; 2265 adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; 2266 adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; 2267 } 2268 2269 static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter) 2270 { 2271 struct ixgbe_hw *hw = &adapter->hw; 2272 static const int api[] = { 2273 ixgbe_mbox_api_14, 2274 ixgbe_mbox_api_13, 2275 ixgbe_mbox_api_12, 2276 ixgbe_mbox_api_11, 2277 ixgbe_mbox_api_10, 2278 ixgbe_mbox_api_unknown 2279 }; 2280 int err, idx = 0; 2281 2282 spin_lock_bh(&adapter->mbx_lock); 2283 2284 while (api[idx] != ixgbe_mbox_api_unknown) { 2285 err = hw->mac.ops.negotiate_api_version(hw, api[idx]); 2286 if (!err) 2287 break; 2288 idx++; 2289 } 2290 2291 spin_unlock_bh(&adapter->mbx_lock); 2292 } 2293 2294 static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter) 2295 { 2296 struct net_device *netdev = adapter->netdev; 2297 struct ixgbe_hw *hw = &adapter->hw; 2298 2299 ixgbevf_configure_msix(adapter); 2300 2301 spin_lock_bh(&adapter->mbx_lock); 2302 2303 if (is_valid_ether_addr(hw->mac.addr)) 2304 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0); 2305 else 2306 hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0); 2307 2308 spin_unlock_bh(&adapter->mbx_lock); 2309 2310 smp_mb__before_atomic(); 2311 clear_bit(__IXGBEVF_DOWN, &adapter->state); 2312 ixgbevf_napi_enable_all(adapter); 2313 2314 /* clear any pending interrupts, may auto mask */ 2315 IXGBE_READ_REG(hw, IXGBE_VTEICR); 2316 ixgbevf_irq_enable(adapter); 2317 2318 /* enable transmits */ 2319 netif_tx_start_all_queues(netdev); 2320 2321 ixgbevf_save_reset_stats(adapter); 2322 ixgbevf_init_last_counter_stats(adapter); 2323 2324 hw->mac.get_link_status = 1; 2325 mod_timer(&adapter->service_timer, jiffies); 2326 } 2327 2328 void ixgbevf_up(struct ixgbevf_adapter *adapter) 2329 { 2330 ixgbevf_configure(adapter); 2331 2332 ixgbevf_up_complete(adapter); 2333 } 2334 2335 /** 2336 * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue 2337 * @rx_ring: ring to free buffers from 2338 **/ 2339 static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring) 2340 { 2341 u16 i = rx_ring->next_to_clean; 2342 2343 /* Free Rx ring sk_buff */ 2344 if (rx_ring->skb) { 2345 dev_kfree_skb(rx_ring->skb); 2346 rx_ring->skb = NULL; 2347 } 2348 2349 /* Free all the Rx ring pages */ 2350 while (i != rx_ring->next_to_alloc) { 2351 struct ixgbevf_rx_buffer *rx_buffer; 2352 2353 rx_buffer = &rx_ring->rx_buffer_info[i]; 2354 2355 /* Invalidate cache lines that may have been written to by 2356 * device so that we avoid corrupting memory. 2357 */ 2358 dma_sync_single_range_for_cpu(rx_ring->dev, 2359 rx_buffer->dma, 2360 rx_buffer->page_offset, 2361 ixgbevf_rx_bufsz(rx_ring), 2362 DMA_FROM_DEVICE); 2363 2364 /* free resources associated with mapping */ 2365 dma_unmap_page_attrs(rx_ring->dev, 2366 rx_buffer->dma, 2367 ixgbevf_rx_pg_size(rx_ring), 2368 DMA_FROM_DEVICE, 2369 IXGBEVF_RX_DMA_ATTR); 2370 2371 __page_frag_cache_drain(rx_buffer->page, 2372 rx_buffer->pagecnt_bias); 2373 2374 i++; 2375 if (i == rx_ring->count) 2376 i = 0; 2377 } 2378 2379 rx_ring->next_to_alloc = 0; 2380 rx_ring->next_to_clean = 0; 2381 rx_ring->next_to_use = 0; 2382 } 2383 2384 /** 2385 * ixgbevf_clean_tx_ring - Free Tx Buffers 2386 * @tx_ring: ring to be cleaned 2387 **/ 2388 static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring) 2389 { 2390 u16 i = tx_ring->next_to_clean; 2391 struct ixgbevf_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i]; 2392 2393 while (i != tx_ring->next_to_use) { 2394 union ixgbe_adv_tx_desc *eop_desc, *tx_desc; 2395 2396 /* Free all the Tx ring sk_buffs */ 2397 if (ring_is_xdp(tx_ring)) 2398 page_frag_free(tx_buffer->data); 2399 else 2400 dev_kfree_skb_any(tx_buffer->skb); 2401 2402 /* unmap skb header data */ 2403 dma_unmap_single(tx_ring->dev, 2404 dma_unmap_addr(tx_buffer, dma), 2405 dma_unmap_len(tx_buffer, len), 2406 DMA_TO_DEVICE); 2407 2408 /* check for eop_desc to determine the end of the packet */ 2409 eop_desc = tx_buffer->next_to_watch; 2410 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 2411 2412 /* unmap remaining buffers */ 2413 while (tx_desc != eop_desc) { 2414 tx_buffer++; 2415 tx_desc++; 2416 i++; 2417 if (unlikely(i == tx_ring->count)) { 2418 i = 0; 2419 tx_buffer = tx_ring->tx_buffer_info; 2420 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 2421 } 2422 2423 /* unmap any remaining paged data */ 2424 if (dma_unmap_len(tx_buffer, len)) 2425 dma_unmap_page(tx_ring->dev, 2426 dma_unmap_addr(tx_buffer, dma), 2427 dma_unmap_len(tx_buffer, len), 2428 DMA_TO_DEVICE); 2429 } 2430 2431 /* move us one more past the eop_desc for start of next pkt */ 2432 tx_buffer++; 2433 i++; 2434 if (unlikely(i == tx_ring->count)) { 2435 i = 0; 2436 tx_buffer = tx_ring->tx_buffer_info; 2437 } 2438 } 2439 2440 /* reset next_to_use and next_to_clean */ 2441 tx_ring->next_to_use = 0; 2442 tx_ring->next_to_clean = 0; 2443 2444 } 2445 2446 /** 2447 * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues 2448 * @adapter: board private structure 2449 **/ 2450 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter) 2451 { 2452 int i; 2453 2454 for (i = 0; i < adapter->num_rx_queues; i++) 2455 ixgbevf_clean_rx_ring(adapter->rx_ring[i]); 2456 } 2457 2458 /** 2459 * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues 2460 * @adapter: board private structure 2461 **/ 2462 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter) 2463 { 2464 int i; 2465 2466 for (i = 0; i < adapter->num_tx_queues; i++) 2467 ixgbevf_clean_tx_ring(adapter->tx_ring[i]); 2468 for (i = 0; i < adapter->num_xdp_queues; i++) 2469 ixgbevf_clean_tx_ring(adapter->xdp_ring[i]); 2470 } 2471 2472 void ixgbevf_down(struct ixgbevf_adapter *adapter) 2473 { 2474 struct net_device *netdev = adapter->netdev; 2475 struct ixgbe_hw *hw = &adapter->hw; 2476 int i; 2477 2478 /* signal that we are down to the interrupt handler */ 2479 if (test_and_set_bit(__IXGBEVF_DOWN, &adapter->state)) 2480 return; /* do nothing if already down */ 2481 2482 /* disable all enabled Rx queues */ 2483 for (i = 0; i < adapter->num_rx_queues; i++) 2484 ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); 2485 2486 usleep_range(10000, 20000); 2487 2488 netif_tx_stop_all_queues(netdev); 2489 2490 /* call carrier off first to avoid false dev_watchdog timeouts */ 2491 netif_carrier_off(netdev); 2492 netif_tx_disable(netdev); 2493 2494 ixgbevf_irq_disable(adapter); 2495 2496 ixgbevf_napi_disable_all(adapter); 2497 2498 del_timer_sync(&adapter->service_timer); 2499 2500 /* disable transmits in the hardware now that interrupts are off */ 2501 for (i = 0; i < adapter->num_tx_queues; i++) { 2502 u8 reg_idx = adapter->tx_ring[i]->reg_idx; 2503 2504 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2505 IXGBE_TXDCTL_SWFLSH); 2506 } 2507 2508 for (i = 0; i < adapter->num_xdp_queues; i++) { 2509 u8 reg_idx = adapter->xdp_ring[i]->reg_idx; 2510 2511 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(reg_idx), 2512 IXGBE_TXDCTL_SWFLSH); 2513 } 2514 2515 if (!pci_channel_offline(adapter->pdev)) 2516 ixgbevf_reset(adapter); 2517 2518 ixgbevf_clean_all_tx_rings(adapter); 2519 ixgbevf_clean_all_rx_rings(adapter); 2520 } 2521 2522 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter) 2523 { 2524 WARN_ON(in_interrupt()); 2525 2526 while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state)) 2527 msleep(1); 2528 2529 ixgbevf_down(adapter); 2530 pci_set_master(adapter->pdev); 2531 ixgbevf_up(adapter); 2532 2533 clear_bit(__IXGBEVF_RESETTING, &adapter->state); 2534 } 2535 2536 void ixgbevf_reset(struct ixgbevf_adapter *adapter) 2537 { 2538 struct ixgbe_hw *hw = &adapter->hw; 2539 struct net_device *netdev = adapter->netdev; 2540 2541 if (hw->mac.ops.reset_hw(hw)) { 2542 hw_dbg(hw, "PF still resetting\n"); 2543 } else { 2544 hw->mac.ops.init_hw(hw); 2545 ixgbevf_negotiate_api(adapter); 2546 } 2547 2548 if (is_valid_ether_addr(adapter->hw.mac.addr)) { 2549 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr); 2550 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr); 2551 } 2552 2553 adapter->last_reset = jiffies; 2554 } 2555 2556 static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter, 2557 int vectors) 2558 { 2559 int vector_threshold; 2560 2561 /* We'll want at least 2 (vector_threshold): 2562 * 1) TxQ[0] + RxQ[0] handler 2563 * 2) Other (Link Status Change, etc.) 2564 */ 2565 vector_threshold = MIN_MSIX_COUNT; 2566 2567 /* The more we get, the more we will assign to Tx/Rx Cleanup 2568 * for the separate queues...where Rx Cleanup >= Tx Cleanup. 2569 * Right now, we simply care about how many we'll get; we'll 2570 * set them up later while requesting irq's. 2571 */ 2572 vectors = pci_enable_msix_range(adapter->pdev, adapter->msix_entries, 2573 vector_threshold, vectors); 2574 2575 if (vectors < 0) { 2576 dev_err(&adapter->pdev->dev, 2577 "Unable to allocate MSI-X interrupts\n"); 2578 kfree(adapter->msix_entries); 2579 adapter->msix_entries = NULL; 2580 return vectors; 2581 } 2582 2583 /* Adjust for only the vectors we'll use, which is minimum 2584 * of max_msix_q_vectors + NON_Q_VECTORS, or the number of 2585 * vectors we were allocated. 2586 */ 2587 adapter->num_msix_vectors = vectors; 2588 2589 return 0; 2590 } 2591 2592 /** 2593 * ixgbevf_set_num_queues - Allocate queues for device, feature dependent 2594 * @adapter: board private structure to initialize 2595 * 2596 * This is the top level queue allocation routine. The order here is very 2597 * important, starting with the "most" number of features turned on at once, 2598 * and ending with the smallest set of features. This way large combinations 2599 * can be allocated if they're turned on, and smaller combinations are the 2600 * fall through conditions. 2601 * 2602 **/ 2603 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter) 2604 { 2605 struct ixgbe_hw *hw = &adapter->hw; 2606 unsigned int def_q = 0; 2607 unsigned int num_tcs = 0; 2608 int err; 2609 2610 /* Start with base case */ 2611 adapter->num_rx_queues = 1; 2612 adapter->num_tx_queues = 1; 2613 adapter->num_xdp_queues = 0; 2614 2615 spin_lock_bh(&adapter->mbx_lock); 2616 2617 /* fetch queue configuration from the PF */ 2618 err = ixgbevf_get_queues(hw, &num_tcs, &def_q); 2619 2620 spin_unlock_bh(&adapter->mbx_lock); 2621 2622 if (err) 2623 return; 2624 2625 /* we need as many queues as traffic classes */ 2626 if (num_tcs > 1) { 2627 adapter->num_rx_queues = num_tcs; 2628 } else { 2629 u16 rss = min_t(u16, num_online_cpus(), IXGBEVF_MAX_RSS_QUEUES); 2630 2631 switch (hw->api_version) { 2632 case ixgbe_mbox_api_11: 2633 case ixgbe_mbox_api_12: 2634 case ixgbe_mbox_api_13: 2635 case ixgbe_mbox_api_14: 2636 if (adapter->xdp_prog && 2637 hw->mac.max_tx_queues == rss) 2638 rss = rss > 3 ? 2 : 1; 2639 2640 adapter->num_rx_queues = rss; 2641 adapter->num_tx_queues = rss; 2642 adapter->num_xdp_queues = adapter->xdp_prog ? rss : 0; 2643 default: 2644 break; 2645 } 2646 } 2647 } 2648 2649 /** 2650 * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported 2651 * @adapter: board private structure to initialize 2652 * 2653 * Attempt to configure the interrupts using the best available 2654 * capabilities of the hardware and the kernel. 2655 **/ 2656 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter) 2657 { 2658 int vector, v_budget; 2659 2660 /* It's easy to be greedy for MSI-X vectors, but it really 2661 * doesn't do us much good if we have a lot more vectors 2662 * than CPU's. So let's be conservative and only ask for 2663 * (roughly) the same number of vectors as there are CPU's. 2664 * The default is to use pairs of vectors. 2665 */ 2666 v_budget = max(adapter->num_rx_queues, adapter->num_tx_queues); 2667 v_budget = min_t(int, v_budget, num_online_cpus()); 2668 v_budget += NON_Q_VECTORS; 2669 2670 adapter->msix_entries = kcalloc(v_budget, 2671 sizeof(struct msix_entry), GFP_KERNEL); 2672 if (!adapter->msix_entries) 2673 return -ENOMEM; 2674 2675 for (vector = 0; vector < v_budget; vector++) 2676 adapter->msix_entries[vector].entry = vector; 2677 2678 /* A failure in MSI-X entry allocation isn't fatal, but the VF driver 2679 * does not support any other modes, so we will simply fail here. Note 2680 * that we clean up the msix_entries pointer else-where. 2681 */ 2682 return ixgbevf_acquire_msix_vectors(adapter, v_budget); 2683 } 2684 2685 static void ixgbevf_add_ring(struct ixgbevf_ring *ring, 2686 struct ixgbevf_ring_container *head) 2687 { 2688 ring->next = head->ring; 2689 head->ring = ring; 2690 head->count++; 2691 } 2692 2693 /** 2694 * ixgbevf_alloc_q_vector - Allocate memory for a single interrupt vector 2695 * @adapter: board private structure to initialize 2696 * @v_idx: index of vector in adapter struct 2697 * @txr_count: number of Tx rings for q vector 2698 * @txr_idx: index of first Tx ring to assign 2699 * @xdp_count: total number of XDP rings to allocate 2700 * @xdp_idx: index of first XDP ring to allocate 2701 * @rxr_count: number of Rx rings for q vector 2702 * @rxr_idx: index of first Rx ring to assign 2703 * 2704 * We allocate one q_vector. If allocation fails we return -ENOMEM. 2705 **/ 2706 static int ixgbevf_alloc_q_vector(struct ixgbevf_adapter *adapter, int v_idx, 2707 int txr_count, int txr_idx, 2708 int xdp_count, int xdp_idx, 2709 int rxr_count, int rxr_idx) 2710 { 2711 struct ixgbevf_q_vector *q_vector; 2712 int reg_idx = txr_idx + xdp_idx; 2713 struct ixgbevf_ring *ring; 2714 int ring_count, size; 2715 2716 ring_count = txr_count + xdp_count + rxr_count; 2717 size = sizeof(*q_vector) + (sizeof(*ring) * ring_count); 2718 2719 /* allocate q_vector and rings */ 2720 q_vector = kzalloc(size, GFP_KERNEL); 2721 if (!q_vector) 2722 return -ENOMEM; 2723 2724 /* initialize NAPI */ 2725 netif_napi_add(adapter->netdev, &q_vector->napi, ixgbevf_poll, 64); 2726 2727 /* tie q_vector and adapter together */ 2728 adapter->q_vector[v_idx] = q_vector; 2729 q_vector->adapter = adapter; 2730 q_vector->v_idx = v_idx; 2731 2732 /* initialize pointer to rings */ 2733 ring = q_vector->ring; 2734 2735 while (txr_count) { 2736 /* assign generic ring traits */ 2737 ring->dev = &adapter->pdev->dev; 2738 ring->netdev = adapter->netdev; 2739 2740 /* configure backlink on ring */ 2741 ring->q_vector = q_vector; 2742 2743 /* update q_vector Tx values */ 2744 ixgbevf_add_ring(ring, &q_vector->tx); 2745 2746 /* apply Tx specific ring traits */ 2747 ring->count = adapter->tx_ring_count; 2748 ring->queue_index = txr_idx; 2749 ring->reg_idx = reg_idx; 2750 2751 /* assign ring to adapter */ 2752 adapter->tx_ring[txr_idx] = ring; 2753 2754 /* update count and index */ 2755 txr_count--; 2756 txr_idx++; 2757 reg_idx++; 2758 2759 /* push pointer to next ring */ 2760 ring++; 2761 } 2762 2763 while (xdp_count) { 2764 /* assign generic ring traits */ 2765 ring->dev = &adapter->pdev->dev; 2766 ring->netdev = adapter->netdev; 2767 2768 /* configure backlink on ring */ 2769 ring->q_vector = q_vector; 2770 2771 /* update q_vector Tx values */ 2772 ixgbevf_add_ring(ring, &q_vector->tx); 2773 2774 /* apply Tx specific ring traits */ 2775 ring->count = adapter->tx_ring_count; 2776 ring->queue_index = xdp_idx; 2777 ring->reg_idx = reg_idx; 2778 set_ring_xdp(ring); 2779 2780 /* assign ring to adapter */ 2781 adapter->xdp_ring[xdp_idx] = ring; 2782 2783 /* update count and index */ 2784 xdp_count--; 2785 xdp_idx++; 2786 reg_idx++; 2787 2788 /* push pointer to next ring */ 2789 ring++; 2790 } 2791 2792 while (rxr_count) { 2793 /* assign generic ring traits */ 2794 ring->dev = &adapter->pdev->dev; 2795 ring->netdev = adapter->netdev; 2796 2797 /* configure backlink on ring */ 2798 ring->q_vector = q_vector; 2799 2800 /* update q_vector Rx values */ 2801 ixgbevf_add_ring(ring, &q_vector->rx); 2802 2803 /* apply Rx specific ring traits */ 2804 ring->count = adapter->rx_ring_count; 2805 ring->queue_index = rxr_idx; 2806 ring->reg_idx = rxr_idx; 2807 2808 /* assign ring to adapter */ 2809 adapter->rx_ring[rxr_idx] = ring; 2810 2811 /* update count and index */ 2812 rxr_count--; 2813 rxr_idx++; 2814 2815 /* push pointer to next ring */ 2816 ring++; 2817 } 2818 2819 return 0; 2820 } 2821 2822 /** 2823 * ixgbevf_free_q_vector - Free memory allocated for specific interrupt vector 2824 * @adapter: board private structure to initialize 2825 * @v_idx: index of vector in adapter struct 2826 * 2827 * This function frees the memory allocated to the q_vector. In addition if 2828 * NAPI is enabled it will delete any references to the NAPI struct prior 2829 * to freeing the q_vector. 2830 **/ 2831 static void ixgbevf_free_q_vector(struct ixgbevf_adapter *adapter, int v_idx) 2832 { 2833 struct ixgbevf_q_vector *q_vector = adapter->q_vector[v_idx]; 2834 struct ixgbevf_ring *ring; 2835 2836 ixgbevf_for_each_ring(ring, q_vector->tx) { 2837 if (ring_is_xdp(ring)) 2838 adapter->xdp_ring[ring->queue_index] = NULL; 2839 else 2840 adapter->tx_ring[ring->queue_index] = NULL; 2841 } 2842 2843 ixgbevf_for_each_ring(ring, q_vector->rx) 2844 adapter->rx_ring[ring->queue_index] = NULL; 2845 2846 adapter->q_vector[v_idx] = NULL; 2847 netif_napi_del(&q_vector->napi); 2848 2849 /* ixgbevf_get_stats() might access the rings on this vector, 2850 * we must wait a grace period before freeing it. 2851 */ 2852 kfree_rcu(q_vector, rcu); 2853 } 2854 2855 /** 2856 * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors 2857 * @adapter: board private structure to initialize 2858 * 2859 * We allocate one q_vector per queue interrupt. If allocation fails we 2860 * return -ENOMEM. 2861 **/ 2862 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter) 2863 { 2864 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2865 int rxr_remaining = adapter->num_rx_queues; 2866 int txr_remaining = adapter->num_tx_queues; 2867 int xdp_remaining = adapter->num_xdp_queues; 2868 int rxr_idx = 0, txr_idx = 0, xdp_idx = 0, v_idx = 0; 2869 int err; 2870 2871 if (q_vectors >= (rxr_remaining + txr_remaining + xdp_remaining)) { 2872 for (; rxr_remaining; v_idx++, q_vectors--) { 2873 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2874 2875 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2876 0, 0, 0, 0, rqpv, rxr_idx); 2877 if (err) 2878 goto err_out; 2879 2880 /* update counts and index */ 2881 rxr_remaining -= rqpv; 2882 rxr_idx += rqpv; 2883 } 2884 } 2885 2886 for (; q_vectors; v_idx++, q_vectors--) { 2887 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors); 2888 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors); 2889 int xqpv = DIV_ROUND_UP(xdp_remaining, q_vectors); 2890 2891 err = ixgbevf_alloc_q_vector(adapter, v_idx, 2892 tqpv, txr_idx, 2893 xqpv, xdp_idx, 2894 rqpv, rxr_idx); 2895 2896 if (err) 2897 goto err_out; 2898 2899 /* update counts and index */ 2900 rxr_remaining -= rqpv; 2901 rxr_idx += rqpv; 2902 txr_remaining -= tqpv; 2903 txr_idx += tqpv; 2904 xdp_remaining -= xqpv; 2905 xdp_idx += xqpv; 2906 } 2907 2908 return 0; 2909 2910 err_out: 2911 while (v_idx) { 2912 v_idx--; 2913 ixgbevf_free_q_vector(adapter, v_idx); 2914 } 2915 2916 return -ENOMEM; 2917 } 2918 2919 /** 2920 * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors 2921 * @adapter: board private structure to initialize 2922 * 2923 * This function frees the memory allocated to the q_vectors. In addition if 2924 * NAPI is enabled it will delete any references to the NAPI struct prior 2925 * to freeing the q_vector. 2926 **/ 2927 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter) 2928 { 2929 int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS; 2930 2931 while (q_vectors) { 2932 q_vectors--; 2933 ixgbevf_free_q_vector(adapter, q_vectors); 2934 } 2935 } 2936 2937 /** 2938 * ixgbevf_reset_interrupt_capability - Reset MSIX setup 2939 * @adapter: board private structure 2940 * 2941 **/ 2942 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter) 2943 { 2944 if (!adapter->msix_entries) 2945 return; 2946 2947 pci_disable_msix(adapter->pdev); 2948 kfree(adapter->msix_entries); 2949 adapter->msix_entries = NULL; 2950 } 2951 2952 /** 2953 * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init 2954 * @adapter: board private structure to initialize 2955 * 2956 **/ 2957 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter) 2958 { 2959 int err; 2960 2961 /* Number of supported queues */ 2962 ixgbevf_set_num_queues(adapter); 2963 2964 err = ixgbevf_set_interrupt_capability(adapter); 2965 if (err) { 2966 hw_dbg(&adapter->hw, 2967 "Unable to setup interrupt capabilities\n"); 2968 goto err_set_interrupt; 2969 } 2970 2971 err = ixgbevf_alloc_q_vectors(adapter); 2972 if (err) { 2973 hw_dbg(&adapter->hw, "Unable to allocate memory for queue vectors\n"); 2974 goto err_alloc_q_vectors; 2975 } 2976 2977 hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, Tx Queue count = %u XDP Queue count %u\n", 2978 (adapter->num_rx_queues > 1) ? "Enabled" : "Disabled", 2979 adapter->num_rx_queues, adapter->num_tx_queues, 2980 adapter->num_xdp_queues); 2981 2982 set_bit(__IXGBEVF_DOWN, &adapter->state); 2983 2984 return 0; 2985 err_alloc_q_vectors: 2986 ixgbevf_reset_interrupt_capability(adapter); 2987 err_set_interrupt: 2988 return err; 2989 } 2990 2991 /** 2992 * ixgbevf_clear_interrupt_scheme - Clear the current interrupt scheme settings 2993 * @adapter: board private structure to clear interrupt scheme on 2994 * 2995 * We go through and clear interrupt specific resources and reset the structure 2996 * to pre-load conditions 2997 **/ 2998 static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter) 2999 { 3000 adapter->num_tx_queues = 0; 3001 adapter->num_xdp_queues = 0; 3002 adapter->num_rx_queues = 0; 3003 3004 ixgbevf_free_q_vectors(adapter); 3005 ixgbevf_reset_interrupt_capability(adapter); 3006 } 3007 3008 /** 3009 * ixgbevf_sw_init - Initialize general software structures 3010 * @adapter: board private structure to initialize 3011 * 3012 * ixgbevf_sw_init initializes the Adapter private data structure. 3013 * Fields are initialized based on PCI device information and 3014 * OS network device settings (MTU size). 3015 **/ 3016 static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter) 3017 { 3018 struct ixgbe_hw *hw = &adapter->hw; 3019 struct pci_dev *pdev = adapter->pdev; 3020 struct net_device *netdev = adapter->netdev; 3021 int err; 3022 3023 /* PCI config space info */ 3024 hw->vendor_id = pdev->vendor; 3025 hw->device_id = pdev->device; 3026 hw->revision_id = pdev->revision; 3027 hw->subsystem_vendor_id = pdev->subsystem_vendor; 3028 hw->subsystem_device_id = pdev->subsystem_device; 3029 3030 hw->mbx.ops.init_params(hw); 3031 3032 if (hw->mac.type >= ixgbe_mac_X550_vf) { 3033 err = ixgbevf_init_rss_key(adapter); 3034 if (err) 3035 goto out; 3036 } 3037 3038 /* assume legacy case in which PF would only give VF 2 queues */ 3039 hw->mac.max_tx_queues = 2; 3040 hw->mac.max_rx_queues = 2; 3041 3042 /* lock to protect mailbox accesses */ 3043 spin_lock_init(&adapter->mbx_lock); 3044 3045 err = hw->mac.ops.reset_hw(hw); 3046 if (err) { 3047 dev_info(&pdev->dev, 3048 "PF still in reset state. Is the PF interface up?\n"); 3049 } else { 3050 err = hw->mac.ops.init_hw(hw); 3051 if (err) { 3052 pr_err("init_shared_code failed: %d\n", err); 3053 goto out; 3054 } 3055 ixgbevf_negotiate_api(adapter); 3056 err = hw->mac.ops.get_mac_addr(hw, hw->mac.addr); 3057 if (err) 3058 dev_info(&pdev->dev, "Error reading MAC address\n"); 3059 else if (is_zero_ether_addr(adapter->hw.mac.addr)) 3060 dev_info(&pdev->dev, 3061 "MAC address not assigned by administrator.\n"); 3062 ether_addr_copy(netdev->dev_addr, hw->mac.addr); 3063 } 3064 3065 if (!is_valid_ether_addr(netdev->dev_addr)) { 3066 dev_info(&pdev->dev, "Assigning random MAC address\n"); 3067 eth_hw_addr_random(netdev); 3068 ether_addr_copy(hw->mac.addr, netdev->dev_addr); 3069 ether_addr_copy(hw->mac.perm_addr, netdev->dev_addr); 3070 } 3071 3072 /* Enable dynamic interrupt throttling rates */ 3073 adapter->rx_itr_setting = 1; 3074 adapter->tx_itr_setting = 1; 3075 3076 /* set default ring sizes */ 3077 adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD; 3078 adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD; 3079 3080 set_bit(__IXGBEVF_DOWN, &adapter->state); 3081 return 0; 3082 3083 out: 3084 return err; 3085 } 3086 3087 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter) \ 3088 { \ 3089 u32 current_counter = IXGBE_READ_REG(hw, reg); \ 3090 if (current_counter < last_counter) \ 3091 counter += 0x100000000LL; \ 3092 last_counter = current_counter; \ 3093 counter &= 0xFFFFFFFF00000000LL; \ 3094 counter |= current_counter; \ 3095 } 3096 3097 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \ 3098 { \ 3099 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb); \ 3100 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb); \ 3101 u64 current_counter = (current_counter_msb << 32) | \ 3102 current_counter_lsb; \ 3103 if (current_counter < last_counter) \ 3104 counter += 0x1000000000LL; \ 3105 last_counter = current_counter; \ 3106 counter &= 0xFFFFFFF000000000LL; \ 3107 counter |= current_counter; \ 3108 } 3109 /** 3110 * ixgbevf_update_stats - Update the board statistics counters. 3111 * @adapter: board private structure 3112 **/ 3113 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter) 3114 { 3115 struct ixgbe_hw *hw = &adapter->hw; 3116 u64 alloc_rx_page_failed = 0, alloc_rx_buff_failed = 0; 3117 u64 alloc_rx_page = 0, hw_csum_rx_error = 0; 3118 int i; 3119 3120 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3121 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3122 return; 3123 3124 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc, 3125 adapter->stats.vfgprc); 3126 UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc, 3127 adapter->stats.vfgptc); 3128 UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB, 3129 adapter->stats.last_vfgorc, 3130 adapter->stats.vfgorc); 3131 UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB, 3132 adapter->stats.last_vfgotc, 3133 adapter->stats.vfgotc); 3134 UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc, 3135 adapter->stats.vfmprc); 3136 3137 for (i = 0; i < adapter->num_rx_queues; i++) { 3138 struct ixgbevf_ring *rx_ring = adapter->rx_ring[i]; 3139 3140 hw_csum_rx_error += rx_ring->rx_stats.csum_err; 3141 alloc_rx_page_failed += rx_ring->rx_stats.alloc_rx_page_failed; 3142 alloc_rx_buff_failed += rx_ring->rx_stats.alloc_rx_buff_failed; 3143 alloc_rx_page += rx_ring->rx_stats.alloc_rx_page; 3144 } 3145 3146 adapter->hw_csum_rx_error = hw_csum_rx_error; 3147 adapter->alloc_rx_page_failed = alloc_rx_page_failed; 3148 adapter->alloc_rx_buff_failed = alloc_rx_buff_failed; 3149 adapter->alloc_rx_page = alloc_rx_page; 3150 } 3151 3152 /** 3153 * ixgbevf_service_timer - Timer Call-back 3154 * @t: pointer to timer_list struct 3155 **/ 3156 static void ixgbevf_service_timer(struct timer_list *t) 3157 { 3158 struct ixgbevf_adapter *adapter = from_timer(adapter, t, 3159 service_timer); 3160 3161 /* Reset the timer */ 3162 mod_timer(&adapter->service_timer, (HZ * 2) + jiffies); 3163 3164 ixgbevf_service_event_schedule(adapter); 3165 } 3166 3167 static void ixgbevf_reset_subtask(struct ixgbevf_adapter *adapter) 3168 { 3169 if (!test_and_clear_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state)) 3170 return; 3171 3172 rtnl_lock(); 3173 /* If we're already down or resetting, just bail */ 3174 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3175 test_bit(__IXGBEVF_REMOVING, &adapter->state) || 3176 test_bit(__IXGBEVF_RESETTING, &adapter->state)) { 3177 rtnl_unlock(); 3178 return; 3179 } 3180 3181 adapter->tx_timeout_count++; 3182 3183 ixgbevf_reinit_locked(adapter); 3184 rtnl_unlock(); 3185 } 3186 3187 /** 3188 * ixgbevf_check_hang_subtask - check for hung queues and dropped interrupts 3189 * @adapter: pointer to the device adapter structure 3190 * 3191 * This function serves two purposes. First it strobes the interrupt lines 3192 * in order to make certain interrupts are occurring. Secondly it sets the 3193 * bits needed to check for TX hangs. As a result we should immediately 3194 * determine if a hang has occurred. 3195 **/ 3196 static void ixgbevf_check_hang_subtask(struct ixgbevf_adapter *adapter) 3197 { 3198 struct ixgbe_hw *hw = &adapter->hw; 3199 u32 eics = 0; 3200 int i; 3201 3202 /* If we're down or resetting, just bail */ 3203 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3204 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3205 return; 3206 3207 /* Force detection of hung controller */ 3208 if (netif_carrier_ok(adapter->netdev)) { 3209 for (i = 0; i < adapter->num_tx_queues; i++) 3210 set_check_for_tx_hang(adapter->tx_ring[i]); 3211 for (i = 0; i < adapter->num_xdp_queues; i++) 3212 set_check_for_tx_hang(adapter->xdp_ring[i]); 3213 } 3214 3215 /* get one bit for every active Tx/Rx interrupt vector */ 3216 for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) { 3217 struct ixgbevf_q_vector *qv = adapter->q_vector[i]; 3218 3219 if (qv->rx.ring || qv->tx.ring) 3220 eics |= BIT(i); 3221 } 3222 3223 /* Cause software interrupt to ensure rings are cleaned */ 3224 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, eics); 3225 } 3226 3227 /** 3228 * ixgbevf_watchdog_update_link - update the link status 3229 * @adapter: pointer to the device adapter structure 3230 **/ 3231 static void ixgbevf_watchdog_update_link(struct ixgbevf_adapter *adapter) 3232 { 3233 struct ixgbe_hw *hw = &adapter->hw; 3234 u32 link_speed = adapter->link_speed; 3235 bool link_up = adapter->link_up; 3236 s32 err; 3237 3238 spin_lock_bh(&adapter->mbx_lock); 3239 3240 err = hw->mac.ops.check_link(hw, &link_speed, &link_up, false); 3241 3242 spin_unlock_bh(&adapter->mbx_lock); 3243 3244 /* if check for link returns error we will need to reset */ 3245 if (err && time_after(jiffies, adapter->last_reset + (10 * HZ))) { 3246 set_bit(__IXGBEVF_RESET_REQUESTED, &adapter->state); 3247 link_up = false; 3248 } 3249 3250 adapter->link_up = link_up; 3251 adapter->link_speed = link_speed; 3252 } 3253 3254 /** 3255 * ixgbevf_watchdog_link_is_up - update netif_carrier status and 3256 * print link up message 3257 * @adapter: pointer to the device adapter structure 3258 **/ 3259 static void ixgbevf_watchdog_link_is_up(struct ixgbevf_adapter *adapter) 3260 { 3261 struct net_device *netdev = adapter->netdev; 3262 3263 /* only continue if link was previously down */ 3264 if (netif_carrier_ok(netdev)) 3265 return; 3266 3267 dev_info(&adapter->pdev->dev, "NIC Link is Up %s\n", 3268 (adapter->link_speed == IXGBE_LINK_SPEED_10GB_FULL) ? 3269 "10 Gbps" : 3270 (adapter->link_speed == IXGBE_LINK_SPEED_1GB_FULL) ? 3271 "1 Gbps" : 3272 (adapter->link_speed == IXGBE_LINK_SPEED_100_FULL) ? 3273 "100 Mbps" : 3274 "unknown speed"); 3275 3276 netif_carrier_on(netdev); 3277 } 3278 3279 /** 3280 * ixgbevf_watchdog_link_is_down - update netif_carrier status and 3281 * print link down message 3282 * @adapter: pointer to the adapter structure 3283 **/ 3284 static void ixgbevf_watchdog_link_is_down(struct ixgbevf_adapter *adapter) 3285 { 3286 struct net_device *netdev = adapter->netdev; 3287 3288 adapter->link_speed = 0; 3289 3290 /* only continue if link was up previously */ 3291 if (!netif_carrier_ok(netdev)) 3292 return; 3293 3294 dev_info(&adapter->pdev->dev, "NIC Link is Down\n"); 3295 3296 netif_carrier_off(netdev); 3297 } 3298 3299 /** 3300 * ixgbevf_watchdog_subtask - worker thread to bring link up 3301 * @adapter: board private structure 3302 **/ 3303 static void ixgbevf_watchdog_subtask(struct ixgbevf_adapter *adapter) 3304 { 3305 /* if interface is down do nothing */ 3306 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3307 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3308 return; 3309 3310 ixgbevf_watchdog_update_link(adapter); 3311 3312 if (adapter->link_up) 3313 ixgbevf_watchdog_link_is_up(adapter); 3314 else 3315 ixgbevf_watchdog_link_is_down(adapter); 3316 3317 ixgbevf_update_stats(adapter); 3318 } 3319 3320 /** 3321 * ixgbevf_service_task - manages and runs subtasks 3322 * @work: pointer to work_struct containing our data 3323 **/ 3324 static void ixgbevf_service_task(struct work_struct *work) 3325 { 3326 struct ixgbevf_adapter *adapter = container_of(work, 3327 struct ixgbevf_adapter, 3328 service_task); 3329 struct ixgbe_hw *hw = &adapter->hw; 3330 3331 if (IXGBE_REMOVED(hw->hw_addr)) { 3332 if (!test_bit(__IXGBEVF_DOWN, &adapter->state)) { 3333 rtnl_lock(); 3334 ixgbevf_down(adapter); 3335 rtnl_unlock(); 3336 } 3337 return; 3338 } 3339 3340 ixgbevf_queue_reset_subtask(adapter); 3341 ixgbevf_reset_subtask(adapter); 3342 ixgbevf_watchdog_subtask(adapter); 3343 ixgbevf_check_hang_subtask(adapter); 3344 3345 ixgbevf_service_event_complete(adapter); 3346 } 3347 3348 /** 3349 * ixgbevf_free_tx_resources - Free Tx Resources per Queue 3350 * @tx_ring: Tx descriptor ring for a specific queue 3351 * 3352 * Free all transmit software resources 3353 **/ 3354 void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring) 3355 { 3356 ixgbevf_clean_tx_ring(tx_ring); 3357 3358 vfree(tx_ring->tx_buffer_info); 3359 tx_ring->tx_buffer_info = NULL; 3360 3361 /* if not set, then don't free */ 3362 if (!tx_ring->desc) 3363 return; 3364 3365 dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, 3366 tx_ring->dma); 3367 3368 tx_ring->desc = NULL; 3369 } 3370 3371 /** 3372 * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues 3373 * @adapter: board private structure 3374 * 3375 * Free all transmit software resources 3376 **/ 3377 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter) 3378 { 3379 int i; 3380 3381 for (i = 0; i < adapter->num_tx_queues; i++) 3382 if (adapter->tx_ring[i]->desc) 3383 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3384 for (i = 0; i < adapter->num_xdp_queues; i++) 3385 if (adapter->xdp_ring[i]->desc) 3386 ixgbevf_free_tx_resources(adapter->xdp_ring[i]); 3387 } 3388 3389 /** 3390 * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors) 3391 * @tx_ring: Tx descriptor ring (for a specific queue) to setup 3392 * 3393 * Return 0 on success, negative on failure 3394 **/ 3395 int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring) 3396 { 3397 struct ixgbevf_adapter *adapter = netdev_priv(tx_ring->netdev); 3398 int size; 3399 3400 size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count; 3401 tx_ring->tx_buffer_info = vmalloc(size); 3402 if (!tx_ring->tx_buffer_info) 3403 goto err; 3404 3405 u64_stats_init(&tx_ring->syncp); 3406 3407 /* round up to nearest 4K */ 3408 tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc); 3409 tx_ring->size = ALIGN(tx_ring->size, 4096); 3410 3411 tx_ring->desc = dma_alloc_coherent(tx_ring->dev, tx_ring->size, 3412 &tx_ring->dma, GFP_KERNEL); 3413 if (!tx_ring->desc) 3414 goto err; 3415 3416 return 0; 3417 3418 err: 3419 vfree(tx_ring->tx_buffer_info); 3420 tx_ring->tx_buffer_info = NULL; 3421 hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit descriptor ring\n"); 3422 return -ENOMEM; 3423 } 3424 3425 /** 3426 * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources 3427 * @adapter: board private structure 3428 * 3429 * If this function returns with an error, then it's possible one or 3430 * more of the rings is populated (while the rest are not). It is the 3431 * callers duty to clean those orphaned rings. 3432 * 3433 * Return 0 on success, negative on failure 3434 **/ 3435 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter) 3436 { 3437 int i, j = 0, err = 0; 3438 3439 for (i = 0; i < adapter->num_tx_queues; i++) { 3440 err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); 3441 if (!err) 3442 continue; 3443 hw_dbg(&adapter->hw, "Allocation for Tx Queue %u failed\n", i); 3444 goto err_setup_tx; 3445 } 3446 3447 for (j = 0; j < adapter->num_xdp_queues; j++) { 3448 err = ixgbevf_setup_tx_resources(adapter->xdp_ring[j]); 3449 if (!err) 3450 continue; 3451 hw_dbg(&adapter->hw, "Allocation for XDP Queue %u failed\n", j); 3452 goto err_setup_tx; 3453 } 3454 3455 return 0; 3456 err_setup_tx: 3457 /* rewind the index freeing the rings as we go */ 3458 while (j--) 3459 ixgbevf_free_tx_resources(adapter->xdp_ring[j]); 3460 while (i--) 3461 ixgbevf_free_tx_resources(adapter->tx_ring[i]); 3462 3463 return err; 3464 } 3465 3466 /** 3467 * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors) 3468 * @adapter: board private structure 3469 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3470 * 3471 * Returns 0 on success, negative on failure 3472 **/ 3473 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter, 3474 struct ixgbevf_ring *rx_ring) 3475 { 3476 int size; 3477 3478 size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count; 3479 rx_ring->rx_buffer_info = vmalloc(size); 3480 if (!rx_ring->rx_buffer_info) 3481 goto err; 3482 3483 u64_stats_init(&rx_ring->syncp); 3484 3485 /* Round up to nearest 4K */ 3486 rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc); 3487 rx_ring->size = ALIGN(rx_ring->size, 4096); 3488 3489 rx_ring->desc = dma_alloc_coherent(rx_ring->dev, rx_ring->size, 3490 &rx_ring->dma, GFP_KERNEL); 3491 3492 if (!rx_ring->desc) 3493 goto err; 3494 3495 /* XDP RX-queue info */ 3496 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, adapter->netdev, 3497 rx_ring->queue_index) < 0) 3498 goto err; 3499 3500 rx_ring->xdp_prog = adapter->xdp_prog; 3501 3502 return 0; 3503 err: 3504 vfree(rx_ring->rx_buffer_info); 3505 rx_ring->rx_buffer_info = NULL; 3506 dev_err(rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3507 return -ENOMEM; 3508 } 3509 3510 /** 3511 * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources 3512 * @adapter: board private structure 3513 * 3514 * If this function returns with an error, then it's possible one or 3515 * more of the rings is populated (while the rest are not). It is the 3516 * callers duty to clean those orphaned rings. 3517 * 3518 * Return 0 on success, negative on failure 3519 **/ 3520 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter) 3521 { 3522 int i, err = 0; 3523 3524 for (i = 0; i < adapter->num_rx_queues; i++) { 3525 err = ixgbevf_setup_rx_resources(adapter, adapter->rx_ring[i]); 3526 if (!err) 3527 continue; 3528 hw_dbg(&adapter->hw, "Allocation for Rx Queue %u failed\n", i); 3529 goto err_setup_rx; 3530 } 3531 3532 return 0; 3533 err_setup_rx: 3534 /* rewind the index freeing the rings as we go */ 3535 while (i--) 3536 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3537 return err; 3538 } 3539 3540 /** 3541 * ixgbevf_free_rx_resources - Free Rx Resources 3542 * @rx_ring: ring to clean the resources from 3543 * 3544 * Free all receive software resources 3545 **/ 3546 void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring) 3547 { 3548 ixgbevf_clean_rx_ring(rx_ring); 3549 3550 rx_ring->xdp_prog = NULL; 3551 xdp_rxq_info_unreg(&rx_ring->xdp_rxq); 3552 vfree(rx_ring->rx_buffer_info); 3553 rx_ring->rx_buffer_info = NULL; 3554 3555 dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, 3556 rx_ring->dma); 3557 3558 rx_ring->desc = NULL; 3559 } 3560 3561 /** 3562 * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues 3563 * @adapter: board private structure 3564 * 3565 * Free all receive software resources 3566 **/ 3567 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter) 3568 { 3569 int i; 3570 3571 for (i = 0; i < adapter->num_rx_queues; i++) 3572 if (adapter->rx_ring[i]->desc) 3573 ixgbevf_free_rx_resources(adapter->rx_ring[i]); 3574 } 3575 3576 /** 3577 * ixgbevf_open - Called when a network interface is made active 3578 * @netdev: network interface device structure 3579 * 3580 * Returns 0 on success, negative value on failure 3581 * 3582 * The open entry point is called when a network interface is made 3583 * active by the system (IFF_UP). At this point all resources needed 3584 * for transmit and receive operations are allocated, the interrupt 3585 * handler is registered with the OS, the watchdog timer is started, 3586 * and the stack is notified that the interface is ready. 3587 **/ 3588 int ixgbevf_open(struct net_device *netdev) 3589 { 3590 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3591 struct ixgbe_hw *hw = &adapter->hw; 3592 int err; 3593 3594 /* A previous failure to open the device because of a lack of 3595 * available MSIX vector resources may have reset the number 3596 * of msix vectors variable to zero. The only way to recover 3597 * is to unload/reload the driver and hope that the system has 3598 * been able to recover some MSIX vector resources. 3599 */ 3600 if (!adapter->num_msix_vectors) 3601 return -ENOMEM; 3602 3603 if (hw->adapter_stopped) { 3604 ixgbevf_reset(adapter); 3605 /* if adapter is still stopped then PF isn't up and 3606 * the VF can't start. 3607 */ 3608 if (hw->adapter_stopped) { 3609 err = IXGBE_ERR_MBX; 3610 pr_err("Unable to start - perhaps the PF Driver isn't up yet\n"); 3611 goto err_setup_reset; 3612 } 3613 } 3614 3615 /* disallow open during test */ 3616 if (test_bit(__IXGBEVF_TESTING, &adapter->state)) 3617 return -EBUSY; 3618 3619 netif_carrier_off(netdev); 3620 3621 /* allocate transmit descriptors */ 3622 err = ixgbevf_setup_all_tx_resources(adapter); 3623 if (err) 3624 goto err_setup_tx; 3625 3626 /* allocate receive descriptors */ 3627 err = ixgbevf_setup_all_rx_resources(adapter); 3628 if (err) 3629 goto err_setup_rx; 3630 3631 ixgbevf_configure(adapter); 3632 3633 err = ixgbevf_request_irq(adapter); 3634 if (err) 3635 goto err_req_irq; 3636 3637 /* Notify the stack of the actual queue counts. */ 3638 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues); 3639 if (err) 3640 goto err_set_queues; 3641 3642 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues); 3643 if (err) 3644 goto err_set_queues; 3645 3646 ixgbevf_up_complete(adapter); 3647 3648 return 0; 3649 3650 err_set_queues: 3651 ixgbevf_free_irq(adapter); 3652 err_req_irq: 3653 ixgbevf_free_all_rx_resources(adapter); 3654 err_setup_rx: 3655 ixgbevf_free_all_tx_resources(adapter); 3656 err_setup_tx: 3657 ixgbevf_reset(adapter); 3658 err_setup_reset: 3659 3660 return err; 3661 } 3662 3663 /** 3664 * ixgbevf_close_suspend - actions necessary to both suspend and close flows 3665 * @adapter: the private adapter struct 3666 * 3667 * This function should contain the necessary work common to both suspending 3668 * and closing of the device. 3669 */ 3670 static void ixgbevf_close_suspend(struct ixgbevf_adapter *adapter) 3671 { 3672 ixgbevf_down(adapter); 3673 ixgbevf_free_irq(adapter); 3674 ixgbevf_free_all_tx_resources(adapter); 3675 ixgbevf_free_all_rx_resources(adapter); 3676 } 3677 3678 /** 3679 * ixgbevf_close - Disables a network interface 3680 * @netdev: network interface device structure 3681 * 3682 * Returns 0, this is not allowed to fail 3683 * 3684 * The close entry point is called when an interface is de-activated 3685 * by the OS. The hardware is still under the drivers control, but 3686 * needs to be disabled. A global MAC reset is issued to stop the 3687 * hardware, and all transmit and receive resources are freed. 3688 **/ 3689 int ixgbevf_close(struct net_device *netdev) 3690 { 3691 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 3692 3693 if (netif_device_present(netdev)) 3694 ixgbevf_close_suspend(adapter); 3695 3696 return 0; 3697 } 3698 3699 static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter) 3700 { 3701 struct net_device *dev = adapter->netdev; 3702 3703 if (!test_and_clear_bit(__IXGBEVF_QUEUE_RESET_REQUESTED, 3704 &adapter->state)) 3705 return; 3706 3707 /* if interface is down do nothing */ 3708 if (test_bit(__IXGBEVF_DOWN, &adapter->state) || 3709 test_bit(__IXGBEVF_RESETTING, &adapter->state)) 3710 return; 3711 3712 /* Hardware has to reinitialize queues and interrupts to 3713 * match packet buffer alignment. Unfortunately, the 3714 * hardware is not flexible enough to do this dynamically. 3715 */ 3716 rtnl_lock(); 3717 3718 if (netif_running(dev)) 3719 ixgbevf_close(dev); 3720 3721 ixgbevf_clear_interrupt_scheme(adapter); 3722 ixgbevf_init_interrupt_scheme(adapter); 3723 3724 if (netif_running(dev)) 3725 ixgbevf_open(dev); 3726 3727 rtnl_unlock(); 3728 } 3729 3730 static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring, 3731 u32 vlan_macip_lens, u32 fceof_saidx, 3732 u32 type_tucmd, u32 mss_l4len_idx) 3733 { 3734 struct ixgbe_adv_tx_context_desc *context_desc; 3735 u16 i = tx_ring->next_to_use; 3736 3737 context_desc = IXGBEVF_TX_CTXTDESC(tx_ring, i); 3738 3739 i++; 3740 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 3741 3742 /* set bits to identify this as an advanced context descriptor */ 3743 type_tucmd |= IXGBE_TXD_CMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT; 3744 3745 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 3746 context_desc->fceof_saidx = cpu_to_le32(fceof_saidx); 3747 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 3748 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 3749 } 3750 3751 static int ixgbevf_tso(struct ixgbevf_ring *tx_ring, 3752 struct ixgbevf_tx_buffer *first, 3753 u8 *hdr_len, 3754 struct ixgbevf_ipsec_tx_data *itd) 3755 { 3756 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx; 3757 struct sk_buff *skb = first->skb; 3758 union { 3759 struct iphdr *v4; 3760 struct ipv6hdr *v6; 3761 unsigned char *hdr; 3762 } ip; 3763 union { 3764 struct tcphdr *tcp; 3765 unsigned char *hdr; 3766 } l4; 3767 u32 paylen, l4_offset; 3768 u32 fceof_saidx = 0; 3769 int err; 3770 3771 if (skb->ip_summed != CHECKSUM_PARTIAL) 3772 return 0; 3773 3774 if (!skb_is_gso(skb)) 3775 return 0; 3776 3777 err = skb_cow_head(skb, 0); 3778 if (err < 0) 3779 return err; 3780 3781 if (eth_p_mpls(first->protocol)) 3782 ip.hdr = skb_inner_network_header(skb); 3783 else 3784 ip.hdr = skb_network_header(skb); 3785 l4.hdr = skb_checksum_start(skb); 3786 3787 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 3788 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3789 3790 /* initialize outer IP header fields */ 3791 if (ip.v4->version == 4) { 3792 unsigned char *csum_start = skb_checksum_start(skb); 3793 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4); 3794 int len = csum_start - trans_start; 3795 3796 /* IP header will have to cancel out any data that 3797 * is not a part of the outer IP header, so set to 3798 * a reverse csum if needed, else init check to 0. 3799 */ 3800 ip.v4->check = (skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) ? 3801 csum_fold(csum_partial(trans_start, 3802 len, 0)) : 0; 3803 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3804 3805 ip.v4->tot_len = 0; 3806 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3807 IXGBE_TX_FLAGS_CSUM | 3808 IXGBE_TX_FLAGS_IPV4; 3809 } else { 3810 ip.v6->payload_len = 0; 3811 first->tx_flags |= IXGBE_TX_FLAGS_TSO | 3812 IXGBE_TX_FLAGS_CSUM; 3813 } 3814 3815 /* determine offset of inner transport header */ 3816 l4_offset = l4.hdr - skb->data; 3817 3818 /* compute length of segmentation header */ 3819 *hdr_len = (l4.tcp->doff * 4) + l4_offset; 3820 3821 /* remove payload length from inner checksum */ 3822 paylen = skb->len - l4_offset; 3823 csum_replace_by_diff(&l4.tcp->check, htonl(paylen)); 3824 3825 /* update gso size and bytecount with header size */ 3826 first->gso_segs = skb_shinfo(skb)->gso_segs; 3827 first->bytecount += (first->gso_segs - 1) * *hdr_len; 3828 3829 /* mss_l4len_id: use 1 as index for TSO */ 3830 mss_l4len_idx = (*hdr_len - l4_offset) << IXGBE_ADVTXD_L4LEN_SHIFT; 3831 mss_l4len_idx |= skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT; 3832 mss_l4len_idx |= (1u << IXGBE_ADVTXD_IDX_SHIFT); 3833 3834 fceof_saidx |= itd->pfsa; 3835 type_tucmd |= itd->flags | itd->trailer_len; 3836 3837 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */ 3838 vlan_macip_lens = l4.hdr - ip.hdr; 3839 vlan_macip_lens |= (ip.hdr - skb->data) << IXGBE_ADVTXD_MACLEN_SHIFT; 3840 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3841 3842 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, fceof_saidx, type_tucmd, 3843 mss_l4len_idx); 3844 3845 return 1; 3846 } 3847 3848 static inline bool ixgbevf_ipv6_csum_is_sctp(struct sk_buff *skb) 3849 { 3850 unsigned int offset = 0; 3851 3852 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL); 3853 3854 return offset == skb_checksum_start_offset(skb); 3855 } 3856 3857 static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring, 3858 struct ixgbevf_tx_buffer *first, 3859 struct ixgbevf_ipsec_tx_data *itd) 3860 { 3861 struct sk_buff *skb = first->skb; 3862 u32 vlan_macip_lens = 0; 3863 u32 fceof_saidx = 0; 3864 u32 type_tucmd = 0; 3865 3866 if (skb->ip_summed != CHECKSUM_PARTIAL) 3867 goto no_csum; 3868 3869 switch (skb->csum_offset) { 3870 case offsetof(struct tcphdr, check): 3871 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_TCP; 3872 fallthrough; 3873 case offsetof(struct udphdr, check): 3874 break; 3875 case offsetof(struct sctphdr, checksum): 3876 /* validate that this is actually an SCTP request */ 3877 if (((first->protocol == htons(ETH_P_IP)) && 3878 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) || 3879 ((first->protocol == htons(ETH_P_IPV6)) && 3880 ixgbevf_ipv6_csum_is_sctp(skb))) { 3881 type_tucmd = IXGBE_ADVTXD_TUCMD_L4T_SCTP; 3882 break; 3883 } 3884 fallthrough; 3885 default: 3886 skb_checksum_help(skb); 3887 goto no_csum; 3888 } 3889 3890 if (first->protocol == htons(ETH_P_IP)) 3891 type_tucmd |= IXGBE_ADVTXD_TUCMD_IPV4; 3892 3893 /* update TX checksum flag */ 3894 first->tx_flags |= IXGBE_TX_FLAGS_CSUM; 3895 vlan_macip_lens = skb_checksum_start_offset(skb) - 3896 skb_network_offset(skb); 3897 no_csum: 3898 /* vlan_macip_lens: MACLEN, VLAN tag */ 3899 vlan_macip_lens |= skb_network_offset(skb) << IXGBE_ADVTXD_MACLEN_SHIFT; 3900 vlan_macip_lens |= first->tx_flags & IXGBE_TX_FLAGS_VLAN_MASK; 3901 3902 fceof_saidx |= itd->pfsa; 3903 type_tucmd |= itd->flags | itd->trailer_len; 3904 3905 ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, 3906 fceof_saidx, type_tucmd, 0); 3907 } 3908 3909 static __le32 ixgbevf_tx_cmd_type(u32 tx_flags) 3910 { 3911 /* set type for advanced descriptor with frame checksum insertion */ 3912 __le32 cmd_type = cpu_to_le32(IXGBE_ADVTXD_DTYP_DATA | 3913 IXGBE_ADVTXD_DCMD_IFCS | 3914 IXGBE_ADVTXD_DCMD_DEXT); 3915 3916 /* set HW VLAN bit if VLAN is present */ 3917 if (tx_flags & IXGBE_TX_FLAGS_VLAN) 3918 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_VLE); 3919 3920 /* set segmentation enable bits for TSO/FSO */ 3921 if (tx_flags & IXGBE_TX_FLAGS_TSO) 3922 cmd_type |= cpu_to_le32(IXGBE_ADVTXD_DCMD_TSE); 3923 3924 return cmd_type; 3925 } 3926 3927 static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc, 3928 u32 tx_flags, unsigned int paylen) 3929 { 3930 __le32 olinfo_status = cpu_to_le32(paylen << IXGBE_ADVTXD_PAYLEN_SHIFT); 3931 3932 /* enable L4 checksum for TSO and TX checksum offload */ 3933 if (tx_flags & IXGBE_TX_FLAGS_CSUM) 3934 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_TXSM); 3935 3936 /* enble IPv4 checksum for TSO */ 3937 if (tx_flags & IXGBE_TX_FLAGS_IPV4) 3938 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IXSM); 3939 3940 /* enable IPsec */ 3941 if (tx_flags & IXGBE_TX_FLAGS_IPSEC) 3942 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_POPTS_IPSEC); 3943 3944 /* use index 1 context for TSO/FSO/FCOE/IPSEC */ 3945 if (tx_flags & (IXGBE_TX_FLAGS_TSO | IXGBE_TX_FLAGS_IPSEC)) 3946 olinfo_status |= cpu_to_le32(1u << IXGBE_ADVTXD_IDX_SHIFT); 3947 3948 /* Check Context must be set if Tx switch is enabled, which it 3949 * always is for case where virtual functions are running 3950 */ 3951 olinfo_status |= cpu_to_le32(IXGBE_ADVTXD_CC); 3952 3953 tx_desc->read.olinfo_status = olinfo_status; 3954 } 3955 3956 static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring, 3957 struct ixgbevf_tx_buffer *first, 3958 const u8 hdr_len) 3959 { 3960 struct sk_buff *skb = first->skb; 3961 struct ixgbevf_tx_buffer *tx_buffer; 3962 union ixgbe_adv_tx_desc *tx_desc; 3963 skb_frag_t *frag; 3964 dma_addr_t dma; 3965 unsigned int data_len, size; 3966 u32 tx_flags = first->tx_flags; 3967 __le32 cmd_type = ixgbevf_tx_cmd_type(tx_flags); 3968 u16 i = tx_ring->next_to_use; 3969 3970 tx_desc = IXGBEVF_TX_DESC(tx_ring, i); 3971 3972 ixgbevf_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len); 3973 3974 size = skb_headlen(skb); 3975 data_len = skb->data_len; 3976 3977 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 3978 3979 tx_buffer = first; 3980 3981 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 3982 if (dma_mapping_error(tx_ring->dev, dma)) 3983 goto dma_error; 3984 3985 /* record length, and DMA address */ 3986 dma_unmap_len_set(tx_buffer, len, size); 3987 dma_unmap_addr_set(tx_buffer, dma, dma); 3988 3989 tx_desc->read.buffer_addr = cpu_to_le64(dma); 3990 3991 while (unlikely(size > IXGBE_MAX_DATA_PER_TXD)) { 3992 tx_desc->read.cmd_type_len = 3993 cmd_type | cpu_to_le32(IXGBE_MAX_DATA_PER_TXD); 3994 3995 i++; 3996 tx_desc++; 3997 if (i == tx_ring->count) { 3998 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 3999 i = 0; 4000 } 4001 tx_desc->read.olinfo_status = 0; 4002 4003 dma += IXGBE_MAX_DATA_PER_TXD; 4004 size -= IXGBE_MAX_DATA_PER_TXD; 4005 4006 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4007 } 4008 4009 if (likely(!data_len)) 4010 break; 4011 4012 tx_desc->read.cmd_type_len = cmd_type | cpu_to_le32(size); 4013 4014 i++; 4015 tx_desc++; 4016 if (i == tx_ring->count) { 4017 tx_desc = IXGBEVF_TX_DESC(tx_ring, 0); 4018 i = 0; 4019 } 4020 tx_desc->read.olinfo_status = 0; 4021 4022 size = skb_frag_size(frag); 4023 data_len -= size; 4024 4025 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size, 4026 DMA_TO_DEVICE); 4027 4028 tx_buffer = &tx_ring->tx_buffer_info[i]; 4029 } 4030 4031 /* write last descriptor with RS and EOP bits */ 4032 cmd_type |= cpu_to_le32(size) | cpu_to_le32(IXGBE_TXD_CMD); 4033 tx_desc->read.cmd_type_len = cmd_type; 4034 4035 /* set the timestamp */ 4036 first->time_stamp = jiffies; 4037 4038 skb_tx_timestamp(skb); 4039 4040 /* Force memory writes to complete before letting h/w know there 4041 * are new descriptors to fetch. (Only applicable for weak-ordered 4042 * memory model archs, such as IA-64). 4043 * 4044 * We also need this memory barrier (wmb) to make certain all of the 4045 * status bits have been updated before next_to_watch is written. 4046 */ 4047 wmb(); 4048 4049 /* set next_to_watch value indicating a packet is present */ 4050 first->next_to_watch = tx_desc; 4051 4052 i++; 4053 if (i == tx_ring->count) 4054 i = 0; 4055 4056 tx_ring->next_to_use = i; 4057 4058 /* notify HW of packet */ 4059 ixgbevf_write_tail(tx_ring, i); 4060 4061 return; 4062 dma_error: 4063 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4064 tx_buffer = &tx_ring->tx_buffer_info[i]; 4065 4066 /* clear dma mappings for failed tx_buffer_info map */ 4067 while (tx_buffer != first) { 4068 if (dma_unmap_len(tx_buffer, len)) 4069 dma_unmap_page(tx_ring->dev, 4070 dma_unmap_addr(tx_buffer, dma), 4071 dma_unmap_len(tx_buffer, len), 4072 DMA_TO_DEVICE); 4073 dma_unmap_len_set(tx_buffer, len, 0); 4074 4075 if (i-- == 0) 4076 i += tx_ring->count; 4077 tx_buffer = &tx_ring->tx_buffer_info[i]; 4078 } 4079 4080 if (dma_unmap_len(tx_buffer, len)) 4081 dma_unmap_single(tx_ring->dev, 4082 dma_unmap_addr(tx_buffer, dma), 4083 dma_unmap_len(tx_buffer, len), 4084 DMA_TO_DEVICE); 4085 dma_unmap_len_set(tx_buffer, len, 0); 4086 4087 dev_kfree_skb_any(tx_buffer->skb); 4088 tx_buffer->skb = NULL; 4089 4090 tx_ring->next_to_use = i; 4091 } 4092 4093 static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4094 { 4095 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index); 4096 /* Herbert's original patch had: 4097 * smp_mb__after_netif_stop_queue(); 4098 * but since that doesn't exist yet, just open code it. 4099 */ 4100 smp_mb(); 4101 4102 /* We need to check again in a case another CPU has just 4103 * made room available. 4104 */ 4105 if (likely(ixgbevf_desc_unused(tx_ring) < size)) 4106 return -EBUSY; 4107 4108 /* A reprieve! - use start_queue because it doesn't call schedule */ 4109 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index); 4110 ++tx_ring->tx_stats.restart_queue; 4111 4112 return 0; 4113 } 4114 4115 static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring, int size) 4116 { 4117 if (likely(ixgbevf_desc_unused(tx_ring) >= size)) 4118 return 0; 4119 return __ixgbevf_maybe_stop_tx(tx_ring, size); 4120 } 4121 4122 static int ixgbevf_xmit_frame_ring(struct sk_buff *skb, 4123 struct ixgbevf_ring *tx_ring) 4124 { 4125 struct ixgbevf_tx_buffer *first; 4126 int tso; 4127 u32 tx_flags = 0; 4128 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 4129 struct ixgbevf_ipsec_tx_data ipsec_tx = { 0 }; 4130 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4131 unsigned short f; 4132 #endif 4133 u8 hdr_len = 0; 4134 u8 *dst_mac = skb_header_pointer(skb, 0, 0, NULL); 4135 4136 if (!dst_mac || is_link_local_ether_addr(dst_mac)) { 4137 dev_kfree_skb_any(skb); 4138 return NETDEV_TX_OK; 4139 } 4140 4141 /* need: 1 descriptor per page * PAGE_SIZE/IXGBE_MAX_DATA_PER_TXD, 4142 * + 1 desc for skb_headlen/IXGBE_MAX_DATA_PER_TXD, 4143 * + 2 desc gap to keep tail from touching head, 4144 * + 1 desc for context descriptor, 4145 * otherwise try next time 4146 */ 4147 #if PAGE_SIZE > IXGBE_MAX_DATA_PER_TXD 4148 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) { 4149 skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; 4150 4151 count += TXD_USE_COUNT(skb_frag_size(frag)); 4152 } 4153 #else 4154 count += skb_shinfo(skb)->nr_frags; 4155 #endif 4156 if (ixgbevf_maybe_stop_tx(tx_ring, count + 3)) { 4157 tx_ring->tx_stats.tx_busy++; 4158 return NETDEV_TX_BUSY; 4159 } 4160 4161 /* record the location of the first descriptor for this packet */ 4162 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 4163 first->skb = skb; 4164 first->bytecount = skb->len; 4165 first->gso_segs = 1; 4166 4167 if (skb_vlan_tag_present(skb)) { 4168 tx_flags |= skb_vlan_tag_get(skb); 4169 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT; 4170 tx_flags |= IXGBE_TX_FLAGS_VLAN; 4171 } 4172 4173 /* record initial flags and protocol */ 4174 first->tx_flags = tx_flags; 4175 first->protocol = vlan_get_protocol(skb); 4176 4177 #ifdef CONFIG_IXGBEVF_IPSEC 4178 if (xfrm_offload(skb) && !ixgbevf_ipsec_tx(tx_ring, first, &ipsec_tx)) 4179 goto out_drop; 4180 #endif 4181 tso = ixgbevf_tso(tx_ring, first, &hdr_len, &ipsec_tx); 4182 if (tso < 0) 4183 goto out_drop; 4184 else if (!tso) 4185 ixgbevf_tx_csum(tx_ring, first, &ipsec_tx); 4186 4187 ixgbevf_tx_map(tx_ring, first, hdr_len); 4188 4189 ixgbevf_maybe_stop_tx(tx_ring, DESC_NEEDED); 4190 4191 return NETDEV_TX_OK; 4192 4193 out_drop: 4194 dev_kfree_skb_any(first->skb); 4195 first->skb = NULL; 4196 4197 return NETDEV_TX_OK; 4198 } 4199 4200 static netdev_tx_t ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 4201 { 4202 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4203 struct ixgbevf_ring *tx_ring; 4204 4205 if (skb->len <= 0) { 4206 dev_kfree_skb_any(skb); 4207 return NETDEV_TX_OK; 4208 } 4209 4210 /* The minimum packet size for olinfo paylen is 17 so pad the skb 4211 * in order to meet this minimum size requirement. 4212 */ 4213 if (skb->len < 17) { 4214 if (skb_padto(skb, 17)) 4215 return NETDEV_TX_OK; 4216 skb->len = 17; 4217 } 4218 4219 tx_ring = adapter->tx_ring[skb->queue_mapping]; 4220 return ixgbevf_xmit_frame_ring(skb, tx_ring); 4221 } 4222 4223 /** 4224 * ixgbevf_set_mac - Change the Ethernet Address of the NIC 4225 * @netdev: network interface device structure 4226 * @p: pointer to an address structure 4227 * 4228 * Returns 0 on success, negative on failure 4229 **/ 4230 static int ixgbevf_set_mac(struct net_device *netdev, void *p) 4231 { 4232 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4233 struct ixgbe_hw *hw = &adapter->hw; 4234 struct sockaddr *addr = p; 4235 int err; 4236 4237 if (!is_valid_ether_addr(addr->sa_data)) 4238 return -EADDRNOTAVAIL; 4239 4240 spin_lock_bh(&adapter->mbx_lock); 4241 4242 err = hw->mac.ops.set_rar(hw, 0, addr->sa_data, 0); 4243 4244 spin_unlock_bh(&adapter->mbx_lock); 4245 4246 if (err) 4247 return -EPERM; 4248 4249 ether_addr_copy(hw->mac.addr, addr->sa_data); 4250 ether_addr_copy(hw->mac.perm_addr, addr->sa_data); 4251 ether_addr_copy(netdev->dev_addr, addr->sa_data); 4252 4253 return 0; 4254 } 4255 4256 /** 4257 * ixgbevf_change_mtu - Change the Maximum Transfer Unit 4258 * @netdev: network interface device structure 4259 * @new_mtu: new value for maximum frame size 4260 * 4261 * Returns 0 on success, negative on failure 4262 **/ 4263 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu) 4264 { 4265 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4266 struct ixgbe_hw *hw = &adapter->hw; 4267 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; 4268 int ret; 4269 4270 /* prevent MTU being changed to a size unsupported by XDP */ 4271 if (adapter->xdp_prog) { 4272 dev_warn(&adapter->pdev->dev, "MTU cannot be changed while XDP program is loaded\n"); 4273 return -EPERM; 4274 } 4275 4276 spin_lock_bh(&adapter->mbx_lock); 4277 /* notify the PF of our intent to use this size of frame */ 4278 ret = hw->mac.ops.set_rlpml(hw, max_frame); 4279 spin_unlock_bh(&adapter->mbx_lock); 4280 if (ret) 4281 return -EINVAL; 4282 4283 hw_dbg(hw, "changing MTU from %d to %d\n", 4284 netdev->mtu, new_mtu); 4285 4286 /* must set new MTU before calling down or up */ 4287 netdev->mtu = new_mtu; 4288 4289 if (netif_running(netdev)) 4290 ixgbevf_reinit_locked(adapter); 4291 4292 return 0; 4293 } 4294 4295 static int __maybe_unused ixgbevf_suspend(struct device *dev_d) 4296 { 4297 struct net_device *netdev = dev_get_drvdata(dev_d); 4298 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4299 4300 rtnl_lock(); 4301 netif_device_detach(netdev); 4302 4303 if (netif_running(netdev)) 4304 ixgbevf_close_suspend(adapter); 4305 4306 ixgbevf_clear_interrupt_scheme(adapter); 4307 rtnl_unlock(); 4308 4309 return 0; 4310 } 4311 4312 static int __maybe_unused ixgbevf_resume(struct device *dev_d) 4313 { 4314 struct pci_dev *pdev = to_pci_dev(dev_d); 4315 struct net_device *netdev = pci_get_drvdata(pdev); 4316 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4317 u32 err; 4318 4319 adapter->hw.hw_addr = adapter->io_addr; 4320 smp_mb__before_atomic(); 4321 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4322 pci_set_master(pdev); 4323 4324 ixgbevf_reset(adapter); 4325 4326 rtnl_lock(); 4327 err = ixgbevf_init_interrupt_scheme(adapter); 4328 if (!err && netif_running(netdev)) 4329 err = ixgbevf_open(netdev); 4330 rtnl_unlock(); 4331 if (err) 4332 return err; 4333 4334 netif_device_attach(netdev); 4335 4336 return err; 4337 } 4338 4339 static void ixgbevf_shutdown(struct pci_dev *pdev) 4340 { 4341 ixgbevf_suspend(&pdev->dev); 4342 } 4343 4344 static void ixgbevf_get_tx_ring_stats(struct rtnl_link_stats64 *stats, 4345 const struct ixgbevf_ring *ring) 4346 { 4347 u64 bytes, packets; 4348 unsigned int start; 4349 4350 if (ring) { 4351 do { 4352 start = u64_stats_fetch_begin_irq(&ring->syncp); 4353 bytes = ring->stats.bytes; 4354 packets = ring->stats.packets; 4355 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4356 stats->tx_bytes += bytes; 4357 stats->tx_packets += packets; 4358 } 4359 } 4360 4361 static void ixgbevf_get_stats(struct net_device *netdev, 4362 struct rtnl_link_stats64 *stats) 4363 { 4364 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4365 unsigned int start; 4366 u64 bytes, packets; 4367 const struct ixgbevf_ring *ring; 4368 int i; 4369 4370 ixgbevf_update_stats(adapter); 4371 4372 stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; 4373 4374 rcu_read_lock(); 4375 for (i = 0; i < adapter->num_rx_queues; i++) { 4376 ring = adapter->rx_ring[i]; 4377 do { 4378 start = u64_stats_fetch_begin_irq(&ring->syncp); 4379 bytes = ring->stats.bytes; 4380 packets = ring->stats.packets; 4381 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 4382 stats->rx_bytes += bytes; 4383 stats->rx_packets += packets; 4384 } 4385 4386 for (i = 0; i < adapter->num_tx_queues; i++) { 4387 ring = adapter->tx_ring[i]; 4388 ixgbevf_get_tx_ring_stats(stats, ring); 4389 } 4390 4391 for (i = 0; i < adapter->num_xdp_queues; i++) { 4392 ring = adapter->xdp_ring[i]; 4393 ixgbevf_get_tx_ring_stats(stats, ring); 4394 } 4395 rcu_read_unlock(); 4396 } 4397 4398 #define IXGBEVF_MAX_MAC_HDR_LEN 127 4399 #define IXGBEVF_MAX_NETWORK_HDR_LEN 511 4400 4401 static netdev_features_t 4402 ixgbevf_features_check(struct sk_buff *skb, struct net_device *dev, 4403 netdev_features_t features) 4404 { 4405 unsigned int network_hdr_len, mac_hdr_len; 4406 4407 /* Make certain the headers can be described by a context descriptor */ 4408 mac_hdr_len = skb_network_header(skb) - skb->data; 4409 if (unlikely(mac_hdr_len > IXGBEVF_MAX_MAC_HDR_LEN)) 4410 return features & ~(NETIF_F_HW_CSUM | 4411 NETIF_F_SCTP_CRC | 4412 NETIF_F_HW_VLAN_CTAG_TX | 4413 NETIF_F_TSO | 4414 NETIF_F_TSO6); 4415 4416 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb); 4417 if (unlikely(network_hdr_len > IXGBEVF_MAX_NETWORK_HDR_LEN)) 4418 return features & ~(NETIF_F_HW_CSUM | 4419 NETIF_F_SCTP_CRC | 4420 NETIF_F_TSO | 4421 NETIF_F_TSO6); 4422 4423 /* We can only support IPV4 TSO in tunnels if we can mangle the 4424 * inner IP ID field, so strip TSO if MANGLEID is not supported. 4425 */ 4426 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID)) 4427 features &= ~NETIF_F_TSO; 4428 4429 return features; 4430 } 4431 4432 static int ixgbevf_xdp_setup(struct net_device *dev, struct bpf_prog *prog) 4433 { 4434 int i, frame_size = dev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 4435 struct ixgbevf_adapter *adapter = netdev_priv(dev); 4436 struct bpf_prog *old_prog; 4437 4438 /* verify ixgbevf ring attributes are sufficient for XDP */ 4439 for (i = 0; i < adapter->num_rx_queues; i++) { 4440 struct ixgbevf_ring *ring = adapter->rx_ring[i]; 4441 4442 if (frame_size > ixgbevf_rx_bufsz(ring)) 4443 return -EINVAL; 4444 } 4445 4446 old_prog = xchg(&adapter->xdp_prog, prog); 4447 4448 /* If transitioning XDP modes reconfigure rings */ 4449 if (!!prog != !!old_prog) { 4450 /* Hardware has to reinitialize queues and interrupts to 4451 * match packet buffer alignment. Unfortunately, the 4452 * hardware is not flexible enough to do this dynamically. 4453 */ 4454 if (netif_running(dev)) 4455 ixgbevf_close(dev); 4456 4457 ixgbevf_clear_interrupt_scheme(adapter); 4458 ixgbevf_init_interrupt_scheme(adapter); 4459 4460 if (netif_running(dev)) 4461 ixgbevf_open(dev); 4462 } else { 4463 for (i = 0; i < adapter->num_rx_queues; i++) 4464 xchg(&adapter->rx_ring[i]->xdp_prog, adapter->xdp_prog); 4465 } 4466 4467 if (old_prog) 4468 bpf_prog_put(old_prog); 4469 4470 return 0; 4471 } 4472 4473 static int ixgbevf_xdp(struct net_device *dev, struct netdev_bpf *xdp) 4474 { 4475 switch (xdp->command) { 4476 case XDP_SETUP_PROG: 4477 return ixgbevf_xdp_setup(dev, xdp->prog); 4478 default: 4479 return -EINVAL; 4480 } 4481 } 4482 4483 static const struct net_device_ops ixgbevf_netdev_ops = { 4484 .ndo_open = ixgbevf_open, 4485 .ndo_stop = ixgbevf_close, 4486 .ndo_start_xmit = ixgbevf_xmit_frame, 4487 .ndo_set_rx_mode = ixgbevf_set_rx_mode, 4488 .ndo_get_stats64 = ixgbevf_get_stats, 4489 .ndo_validate_addr = eth_validate_addr, 4490 .ndo_set_mac_address = ixgbevf_set_mac, 4491 .ndo_change_mtu = ixgbevf_change_mtu, 4492 .ndo_tx_timeout = ixgbevf_tx_timeout, 4493 .ndo_vlan_rx_add_vid = ixgbevf_vlan_rx_add_vid, 4494 .ndo_vlan_rx_kill_vid = ixgbevf_vlan_rx_kill_vid, 4495 .ndo_features_check = ixgbevf_features_check, 4496 .ndo_bpf = ixgbevf_xdp, 4497 }; 4498 4499 static void ixgbevf_assign_netdev_ops(struct net_device *dev) 4500 { 4501 dev->netdev_ops = &ixgbevf_netdev_ops; 4502 ixgbevf_set_ethtool_ops(dev); 4503 dev->watchdog_timeo = 5 * HZ; 4504 } 4505 4506 /** 4507 * ixgbevf_probe - Device Initialization Routine 4508 * @pdev: PCI device information struct 4509 * @ent: entry in ixgbevf_pci_tbl 4510 * 4511 * Returns 0 on success, negative on failure 4512 * 4513 * ixgbevf_probe initializes an adapter identified by a pci_dev structure. 4514 * The OS initialization, configuring of the adapter private structure, 4515 * and a hardware reset occur. 4516 **/ 4517 static int ixgbevf_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 4518 { 4519 struct net_device *netdev; 4520 struct ixgbevf_adapter *adapter = NULL; 4521 struct ixgbe_hw *hw = NULL; 4522 const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data]; 4523 int err, pci_using_dac; 4524 bool disable_dev = false; 4525 4526 err = pci_enable_device(pdev); 4527 if (err) 4528 return err; 4529 4530 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 4531 pci_using_dac = 1; 4532 } else { 4533 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 4534 if (err) { 4535 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n"); 4536 goto err_dma; 4537 } 4538 pci_using_dac = 0; 4539 } 4540 4541 err = pci_request_regions(pdev, ixgbevf_driver_name); 4542 if (err) { 4543 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err); 4544 goto err_pci_reg; 4545 } 4546 4547 pci_set_master(pdev); 4548 4549 netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter), 4550 MAX_TX_QUEUES); 4551 if (!netdev) { 4552 err = -ENOMEM; 4553 goto err_alloc_etherdev; 4554 } 4555 4556 SET_NETDEV_DEV(netdev, &pdev->dev); 4557 4558 adapter = netdev_priv(netdev); 4559 4560 adapter->netdev = netdev; 4561 adapter->pdev = pdev; 4562 hw = &adapter->hw; 4563 hw->back = adapter; 4564 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 4565 4566 /* call save state here in standalone driver because it relies on 4567 * adapter struct to exist, and needs to call netdev_priv 4568 */ 4569 pci_save_state(pdev); 4570 4571 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), 4572 pci_resource_len(pdev, 0)); 4573 adapter->io_addr = hw->hw_addr; 4574 if (!hw->hw_addr) { 4575 err = -EIO; 4576 goto err_ioremap; 4577 } 4578 4579 ixgbevf_assign_netdev_ops(netdev); 4580 4581 /* Setup HW API */ 4582 memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops)); 4583 hw->mac.type = ii->mac; 4584 4585 memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops, 4586 sizeof(struct ixgbe_mbx_operations)); 4587 4588 /* setup the private structure */ 4589 err = ixgbevf_sw_init(adapter); 4590 if (err) 4591 goto err_sw_init; 4592 4593 /* The HW MAC address was set and/or determined in sw_init */ 4594 if (!is_valid_ether_addr(netdev->dev_addr)) { 4595 pr_err("invalid MAC address\n"); 4596 err = -EIO; 4597 goto err_sw_init; 4598 } 4599 4600 netdev->hw_features = NETIF_F_SG | 4601 NETIF_F_TSO | 4602 NETIF_F_TSO6 | 4603 NETIF_F_RXCSUM | 4604 NETIF_F_HW_CSUM | 4605 NETIF_F_SCTP_CRC; 4606 4607 #define IXGBEVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \ 4608 NETIF_F_GSO_GRE_CSUM | \ 4609 NETIF_F_GSO_IPXIP4 | \ 4610 NETIF_F_GSO_IPXIP6 | \ 4611 NETIF_F_GSO_UDP_TUNNEL | \ 4612 NETIF_F_GSO_UDP_TUNNEL_CSUM) 4613 4614 netdev->gso_partial_features = IXGBEVF_GSO_PARTIAL_FEATURES; 4615 netdev->hw_features |= NETIF_F_GSO_PARTIAL | 4616 IXGBEVF_GSO_PARTIAL_FEATURES; 4617 4618 netdev->features = netdev->hw_features; 4619 4620 if (pci_using_dac) 4621 netdev->features |= NETIF_F_HIGHDMA; 4622 4623 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID; 4624 netdev->mpls_features |= NETIF_F_SG | 4625 NETIF_F_TSO | 4626 NETIF_F_TSO6 | 4627 NETIF_F_HW_CSUM; 4628 netdev->mpls_features |= IXGBEVF_GSO_PARTIAL_FEATURES; 4629 netdev->hw_enc_features |= netdev->vlan_features; 4630 4631 /* set this bit last since it cannot be part of vlan_features */ 4632 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 4633 NETIF_F_HW_VLAN_CTAG_RX | 4634 NETIF_F_HW_VLAN_CTAG_TX; 4635 4636 netdev->priv_flags |= IFF_UNICAST_FLT; 4637 4638 /* MTU range: 68 - 1504 or 9710 */ 4639 netdev->min_mtu = ETH_MIN_MTU; 4640 switch (adapter->hw.api_version) { 4641 case ixgbe_mbox_api_11: 4642 case ixgbe_mbox_api_12: 4643 case ixgbe_mbox_api_13: 4644 case ixgbe_mbox_api_14: 4645 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4646 (ETH_HLEN + ETH_FCS_LEN); 4647 break; 4648 default: 4649 if (adapter->hw.mac.type != ixgbe_mac_82599_vf) 4650 netdev->max_mtu = IXGBE_MAX_JUMBO_FRAME_SIZE - 4651 (ETH_HLEN + ETH_FCS_LEN); 4652 else 4653 netdev->max_mtu = ETH_DATA_LEN + ETH_FCS_LEN; 4654 break; 4655 } 4656 4657 if (IXGBE_REMOVED(hw->hw_addr)) { 4658 err = -EIO; 4659 goto err_sw_init; 4660 } 4661 4662 timer_setup(&adapter->service_timer, ixgbevf_service_timer, 0); 4663 4664 INIT_WORK(&adapter->service_task, ixgbevf_service_task); 4665 set_bit(__IXGBEVF_SERVICE_INITED, &adapter->state); 4666 clear_bit(__IXGBEVF_SERVICE_SCHED, &adapter->state); 4667 4668 err = ixgbevf_init_interrupt_scheme(adapter); 4669 if (err) 4670 goto err_sw_init; 4671 4672 strcpy(netdev->name, "eth%d"); 4673 4674 err = register_netdev(netdev); 4675 if (err) 4676 goto err_register; 4677 4678 pci_set_drvdata(pdev, netdev); 4679 netif_carrier_off(netdev); 4680 ixgbevf_init_ipsec_offload(adapter); 4681 4682 ixgbevf_init_last_counter_stats(adapter); 4683 4684 /* print the VF info */ 4685 dev_info(&pdev->dev, "%pM\n", netdev->dev_addr); 4686 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type); 4687 4688 switch (hw->mac.type) { 4689 case ixgbe_mac_X550_vf: 4690 dev_info(&pdev->dev, "Intel(R) X550 Virtual Function\n"); 4691 break; 4692 case ixgbe_mac_X540_vf: 4693 dev_info(&pdev->dev, "Intel(R) X540 Virtual Function\n"); 4694 break; 4695 case ixgbe_mac_82599_vf: 4696 default: 4697 dev_info(&pdev->dev, "Intel(R) 82599 Virtual Function\n"); 4698 break; 4699 } 4700 4701 return 0; 4702 4703 err_register: 4704 ixgbevf_clear_interrupt_scheme(adapter); 4705 err_sw_init: 4706 ixgbevf_reset_interrupt_capability(adapter); 4707 iounmap(adapter->io_addr); 4708 kfree(adapter->rss_key); 4709 err_ioremap: 4710 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4711 free_netdev(netdev); 4712 err_alloc_etherdev: 4713 pci_release_regions(pdev); 4714 err_pci_reg: 4715 err_dma: 4716 if (!adapter || disable_dev) 4717 pci_disable_device(pdev); 4718 return err; 4719 } 4720 4721 /** 4722 * ixgbevf_remove - Device Removal Routine 4723 * @pdev: PCI device information struct 4724 * 4725 * ixgbevf_remove is called by the PCI subsystem to alert the driver 4726 * that it should release a PCI device. The could be caused by a 4727 * Hot-Plug event, or because the driver is going to be removed from 4728 * memory. 4729 **/ 4730 static void ixgbevf_remove(struct pci_dev *pdev) 4731 { 4732 struct net_device *netdev = pci_get_drvdata(pdev); 4733 struct ixgbevf_adapter *adapter; 4734 bool disable_dev; 4735 4736 if (!netdev) 4737 return; 4738 4739 adapter = netdev_priv(netdev); 4740 4741 set_bit(__IXGBEVF_REMOVING, &adapter->state); 4742 cancel_work_sync(&adapter->service_task); 4743 4744 if (netdev->reg_state == NETREG_REGISTERED) 4745 unregister_netdev(netdev); 4746 4747 ixgbevf_stop_ipsec_offload(adapter); 4748 ixgbevf_clear_interrupt_scheme(adapter); 4749 ixgbevf_reset_interrupt_capability(adapter); 4750 4751 iounmap(adapter->io_addr); 4752 pci_release_regions(pdev); 4753 4754 hw_dbg(&adapter->hw, "Remove complete\n"); 4755 4756 kfree(adapter->rss_key); 4757 disable_dev = !test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state); 4758 free_netdev(netdev); 4759 4760 if (disable_dev) 4761 pci_disable_device(pdev); 4762 } 4763 4764 /** 4765 * ixgbevf_io_error_detected - called when PCI error is detected 4766 * @pdev: Pointer to PCI device 4767 * @state: The current pci connection state 4768 * 4769 * This function is called after a PCI bus error affecting 4770 * this device has been detected. 4771 **/ 4772 static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev, 4773 pci_channel_state_t state) 4774 { 4775 struct net_device *netdev = pci_get_drvdata(pdev); 4776 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4777 4778 if (!test_bit(__IXGBEVF_SERVICE_INITED, &adapter->state)) 4779 return PCI_ERS_RESULT_DISCONNECT; 4780 4781 rtnl_lock(); 4782 netif_device_detach(netdev); 4783 4784 if (netif_running(netdev)) 4785 ixgbevf_close_suspend(adapter); 4786 4787 if (state == pci_channel_io_perm_failure) { 4788 rtnl_unlock(); 4789 return PCI_ERS_RESULT_DISCONNECT; 4790 } 4791 4792 if (!test_and_set_bit(__IXGBEVF_DISABLED, &adapter->state)) 4793 pci_disable_device(pdev); 4794 rtnl_unlock(); 4795 4796 /* Request a slot slot reset. */ 4797 return PCI_ERS_RESULT_NEED_RESET; 4798 } 4799 4800 /** 4801 * ixgbevf_io_slot_reset - called after the pci bus has been reset. 4802 * @pdev: Pointer to PCI device 4803 * 4804 * Restart the card from scratch, as if from a cold-boot. Implementation 4805 * resembles the first-half of the ixgbevf_resume routine. 4806 **/ 4807 static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev) 4808 { 4809 struct net_device *netdev = pci_get_drvdata(pdev); 4810 struct ixgbevf_adapter *adapter = netdev_priv(netdev); 4811 4812 if (pci_enable_device_mem(pdev)) { 4813 dev_err(&pdev->dev, 4814 "Cannot re-enable PCI device after reset.\n"); 4815 return PCI_ERS_RESULT_DISCONNECT; 4816 } 4817 4818 adapter->hw.hw_addr = adapter->io_addr; 4819 smp_mb__before_atomic(); 4820 clear_bit(__IXGBEVF_DISABLED, &adapter->state); 4821 pci_set_master(pdev); 4822 4823 ixgbevf_reset(adapter); 4824 4825 return PCI_ERS_RESULT_RECOVERED; 4826 } 4827 4828 /** 4829 * ixgbevf_io_resume - called when traffic can start flowing again. 4830 * @pdev: Pointer to PCI device 4831 * 4832 * This callback is called when the error recovery driver tells us that 4833 * its OK to resume normal operation. Implementation resembles the 4834 * second-half of the ixgbevf_resume routine. 4835 **/ 4836 static void ixgbevf_io_resume(struct pci_dev *pdev) 4837 { 4838 struct net_device *netdev = pci_get_drvdata(pdev); 4839 4840 rtnl_lock(); 4841 if (netif_running(netdev)) 4842 ixgbevf_open(netdev); 4843 4844 netif_device_attach(netdev); 4845 rtnl_unlock(); 4846 } 4847 4848 /* PCI Error Recovery (ERS) */ 4849 static const struct pci_error_handlers ixgbevf_err_handler = { 4850 .error_detected = ixgbevf_io_error_detected, 4851 .slot_reset = ixgbevf_io_slot_reset, 4852 .resume = ixgbevf_io_resume, 4853 }; 4854 4855 static SIMPLE_DEV_PM_OPS(ixgbevf_pm_ops, ixgbevf_suspend, ixgbevf_resume); 4856 4857 static struct pci_driver ixgbevf_driver = { 4858 .name = ixgbevf_driver_name, 4859 .id_table = ixgbevf_pci_tbl, 4860 .probe = ixgbevf_probe, 4861 .remove = ixgbevf_remove, 4862 4863 /* Power Management Hooks */ 4864 .driver.pm = &ixgbevf_pm_ops, 4865 4866 .shutdown = ixgbevf_shutdown, 4867 .err_handler = &ixgbevf_err_handler 4868 }; 4869 4870 /** 4871 * ixgbevf_init_module - Driver Registration Routine 4872 * 4873 * ixgbevf_init_module is the first routine called when the driver is 4874 * loaded. All it does is register with the PCI subsystem. 4875 **/ 4876 static int __init ixgbevf_init_module(void) 4877 { 4878 pr_info("%s\n", ixgbevf_driver_string); 4879 pr_info("%s\n", ixgbevf_copyright); 4880 ixgbevf_wq = create_singlethread_workqueue(ixgbevf_driver_name); 4881 if (!ixgbevf_wq) { 4882 pr_err("%s: Failed to create workqueue\n", ixgbevf_driver_name); 4883 return -ENOMEM; 4884 } 4885 4886 return pci_register_driver(&ixgbevf_driver); 4887 } 4888 4889 module_init(ixgbevf_init_module); 4890 4891 /** 4892 * ixgbevf_exit_module - Driver Exit Cleanup Routine 4893 * 4894 * ixgbevf_exit_module is called just before the driver is removed 4895 * from memory. 4896 **/ 4897 static void __exit ixgbevf_exit_module(void) 4898 { 4899 pci_unregister_driver(&ixgbevf_driver); 4900 if (ixgbevf_wq) { 4901 destroy_workqueue(ixgbevf_wq); 4902 ixgbevf_wq = NULL; 4903 } 4904 } 4905 4906 #ifdef DEBUG 4907 /** 4908 * ixgbevf_get_hw_dev_name - return device name string 4909 * used by hardware layer to print debugging information 4910 * @hw: pointer to private hardware struct 4911 **/ 4912 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw) 4913 { 4914 struct ixgbevf_adapter *adapter = hw->back; 4915 4916 return adapter->netdev->name; 4917 } 4918 4919 #endif 4920 module_exit(ixgbevf_exit_module); 4921 4922 /* ixgbevf_main.c */ 4923