1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #include "ixgbe.h"
5 #include <linux/ptp_classify.h>
6 #include <linux/clocksource.h>
7 
8 /*
9  * The 82599 and the X540 do not have true 64bit nanosecond scale
10  * counter registers. Instead, SYSTIME is defined by a fixed point
11  * system which allows the user to define the scale counter increment
12  * value at every level change of the oscillator driving the SYSTIME
13  * value. For both devices the TIMINCA:IV field defines this
14  * increment. On the X540 device, 31 bits are provided. However on the
15  * 82599 only provides 24 bits. The time unit is determined by the
16  * clock frequency of the oscillator in combination with the TIMINCA
17  * register. When these devices link at 10Gb the oscillator has a
18  * period of 6.4ns. In order to convert the scale counter into
19  * nanoseconds the cyclecounter and timecounter structures are
20  * used. The SYSTIME registers need to be converted to ns values by use
21  * of only a right shift (division by power of 2). The following math
22  * determines the largest incvalue that will fit into the available
23  * bits in the TIMINCA register.
24  *
25  * PeriodWidth: Number of bits to store the clock period
26  * MaxWidth: The maximum width value of the TIMINCA register
27  * Period: The clock period for the oscillator
28  * round(): discard the fractional portion of the calculation
29  *
30  * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
31  *
32  * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
33  * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
34  *
35  * The period also changes based on the link speed:
36  * At 10Gb link or no link, the period remains the same.
37  * At 1Gb link, the period is multiplied by 10. (64ns)
38  * At 100Mb link, the period is multiplied by 100. (640ns)
39  *
40  * The calculated value allows us to right shift the SYSTIME register
41  * value in order to quickly convert it into a nanosecond clock,
42  * while allowing for the maximum possible adjustment value.
43  *
44  * These diagrams are only for the 10Gb link period
45  *
46  *           SYSTIMEH            SYSTIMEL
47  *       +--------------+  +--------------+
48  * X540  |      32      |  | 1 | 3 |  28  |
49  *       *--------------+  +--------------+
50  *        \________ 36 bits ______/  fract
51  *
52  *       +--------------+  +--------------+
53  * 82599 |      32      |  | 8 | 3 |  21  |
54  *       *--------------+  +--------------+
55  *        \________ 43 bits ______/  fract
56  *
57  * The 36 bit X540 SYSTIME overflows every
58  *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
59  *
60  * The 43 bit 82599 SYSTIME overflows every
61  *   2^43 * 10^-9 / 3600 = 2.4 hours
62  */
63 #define IXGBE_INCVAL_10GB 0x66666666
64 #define IXGBE_INCVAL_1GB  0x40000000
65 #define IXGBE_INCVAL_100  0x50000000
66 
67 #define IXGBE_INCVAL_SHIFT_10GB  28
68 #define IXGBE_INCVAL_SHIFT_1GB   24
69 #define IXGBE_INCVAL_SHIFT_100   21
70 
71 #define IXGBE_INCVAL_SHIFT_82599 7
72 #define IXGBE_INCPER_SHIFT_82599 24
73 
74 #define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
75 #define IXGBE_PTP_TX_TIMEOUT     (HZ)
76 
77 /* We use our own definitions instead of NSEC_PER_SEC because we want to mark
78  * the value as a ULL to force precision when bit shifting.
79  */
80 #define NS_PER_SEC      1000000000ULL
81 #define NS_PER_HALF_SEC  500000000ULL
82 
83 /* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
84  * which contain measurements of seconds and nanoseconds respectively. This
85  * matches the standard linux representation of time in the kernel. In addition,
86  * the X550 also has a SYSTIMER register which represents residue, or
87  * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
88  * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
89  * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
90  * high bit representing whether the adjustent is positive or negative. Every
91  * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
92  * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
93  * X550's clock for purposes of SYSTIME generation is constant and not dependent
94  * on the link speed.
95  *
96  *           SYSTIMEH           SYSTIMEL        SYSTIMER
97  *       +--------------+  +--------------+  +-------------+
98  * X550  |      32      |  |      32      |  |     32      |
99  *       *--------------+  +--------------+  +-------------+
100  *       \____seconds___/   \_nanoseconds_/  \__2^-32 ns__/
101  *
102  * This results in a full 96 bits to represent the clock, with 32 bits for
103  * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
104  * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
105  * underflow of adjustments.
106  *
107  * The 32 bits of seconds for the X550 overflows every
108  *   2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
109  *
110  * In order to adjust the clock frequency for the X550, the TIMINCA register is
111  * provided. This register represents a + or minus nearly 0.5 ns adjustment to
112  * the base frequency. It is measured in 2^-32 ns units, with the high bit being
113  * the sign bit. This register enables software to calculate frequency
114  * adjustments and apply them directly to the clock rate.
115  *
116  * The math for converting ppb into TIMINCA values is fairly straightforward.
117  *   TIMINCA value = ( Base_Frequency * ppb ) / 1000000000ULL
118  *
119  * This assumes that ppb is never high enough to create a value bigger than
120  * TIMINCA's 31 bits can store. This is ensured by the stack. Calculating this
121  * value is also simple.
122  *   Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
123  *
124  * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
125  * 12.5 nanoseconds. This means that the Max ppb is 39999999
126  *   Note: We subtract one in order to ensure no overflow, because the TIMINCA
127  *         register can only hold slightly under 0.5 nanoseconds.
128  *
129  * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
130  * into 2^-32 units, which is
131  *
132  *  12.5 * 2^32 = C80000000
133  *
134  * Some revisions of hardware have a faster base frequency than the registers
135  * were defined for. To fix this, we use a timecounter structure with the
136  * proper mult and shift to convert the cycles into nanoseconds of time.
137  */
138 #define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
139 #define INCVALUE_MASK	0x7FFFFFFF
140 #define ISGN		0x80000000
141 #define MAX_TIMADJ	0x7FFFFFFF
142 
143 /**
144  * ixgbe_ptp_setup_sdp_X540
145  * @adapter: private adapter structure
146  *
147  * this function enables or disables the clock out feature on SDP0 for
148  * the X540 device. It will create a 1 second periodic output that can
149  * be used as the PPS (via an interrupt).
150  *
151  * It calculates when the system time will be on an exact second, and then
152  * aligns the start of the PPS signal to that value.
153  *
154  * This works by using the cycle counter shift and mult values in reverse, and
155  * assumes that the values we're shifting will not overflow.
156  */
157 static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter *adapter)
158 {
159 	struct cyclecounter *cc = &adapter->hw_cc;
160 	struct ixgbe_hw *hw = &adapter->hw;
161 	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
162 	u64 ns = 0, clock_edge = 0, clock_period;
163 	unsigned long flags;
164 
165 	/* disable the pin first */
166 	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
167 	IXGBE_WRITE_FLUSH(hw);
168 
169 	if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
170 		return;
171 
172 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
173 
174 	/* enable the SDP0 pin as output, and connected to the
175 	 * native function for Timesync (ClockOut)
176 	 */
177 	esdp |= IXGBE_ESDP_SDP0_DIR |
178 		IXGBE_ESDP_SDP0_NATIVE;
179 
180 	/* enable the Clock Out feature on SDP0, and allow
181 	 * interrupts to occur when the pin changes
182 	 */
183 	tsauxc = (IXGBE_TSAUXC_EN_CLK |
184 		  IXGBE_TSAUXC_SYNCLK |
185 		  IXGBE_TSAUXC_SDP0_INT);
186 
187 	/* Determine the clock time period to use. This assumes that the
188 	 * cycle counter shift is small enough to avoid overflow.
189 	 */
190 	clock_period = div_u64((NS_PER_HALF_SEC << cc->shift), cc->mult);
191 	clktiml = (u32)(clock_period);
192 	clktimh = (u32)(clock_period >> 32);
193 
194 	/* Read the current clock time, and save the cycle counter value */
195 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
196 	ns = timecounter_read(&adapter->hw_tc);
197 	clock_edge = adapter->hw_tc.cycle_last;
198 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
199 
200 	/* Figure out how many seconds to add in order to round up */
201 	div_u64_rem(ns, NS_PER_SEC, &rem);
202 
203 	/* Figure out how many nanoseconds to add to round the clock edge up
204 	 * to the next full second
205 	 */
206 	rem = (NS_PER_SEC - rem);
207 
208 	/* Adjust the clock edge to align with the next full second. */
209 	clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
210 	trgttiml = (u32)clock_edge;
211 	trgttimh = (u32)(clock_edge >> 32);
212 
213 	IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
214 	IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
215 	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
216 	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
217 
218 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
219 	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
220 
221 	IXGBE_WRITE_FLUSH(hw);
222 }
223 
224 /**
225  * ixgbe_ptp_setup_sdp_X550
226  * @adapter: private adapter structure
227  *
228  * Enable or disable a clock output signal on SDP 0 for X550 hardware.
229  *
230  * Use the target time feature to align the output signal on the next full
231  * second.
232  *
233  * This works by using the cycle counter shift and mult values in reverse, and
234  * assumes that the values we're shifting will not overflow.
235  */
236 static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter *adapter)
237 {
238 	u32 esdp, tsauxc, freqout, trgttiml, trgttimh, rem, tssdp;
239 	struct cyclecounter *cc = &adapter->hw_cc;
240 	struct ixgbe_hw *hw = &adapter->hw;
241 	u64 ns = 0, clock_edge = 0;
242 	struct timespec64 ts;
243 	unsigned long flags;
244 
245 	/* disable the pin first */
246 	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
247 	IXGBE_WRITE_FLUSH(hw);
248 
249 	if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
250 		return;
251 
252 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
253 
254 	/* enable the SDP0 pin as output, and connected to the
255 	 * native function for Timesync (ClockOut)
256 	 */
257 	esdp |= IXGBE_ESDP_SDP0_DIR |
258 		IXGBE_ESDP_SDP0_NATIVE;
259 
260 	/* enable the Clock Out feature on SDP0, and use Target Time 0 to
261 	 * enable generation of interrupts on the clock change.
262 	 */
263 #define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000
264 	tsauxc = (IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_ST0 |
265 		  IXGBE_TSAUXC_EN_TT0 | IXGBE_TSAUXC_SDP0_INT |
266 		  IXGBE_TSAUXC_DIS_TS_CLEAR);
267 
268 	tssdp = (IXGBE_TSSDP_TS_SDP0_EN |
269 		 IXGBE_TSSDP_TS_SDP0_CLK0);
270 
271 	/* Determine the clock time period to use. This assumes that the
272 	 * cycle counter shift is small enough to avoid overflowing a 32bit
273 	 * value.
274 	 */
275 	freqout = div_u64(NS_PER_HALF_SEC << cc->shift,  cc->mult);
276 
277 	/* Read the current clock time, and save the cycle counter value */
278 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
279 	ns = timecounter_read(&adapter->hw_tc);
280 	clock_edge = adapter->hw_tc.cycle_last;
281 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
282 
283 	/* Figure out how far past the next second we are */
284 	div_u64_rem(ns, NS_PER_SEC, &rem);
285 
286 	/* Figure out how many nanoseconds to add to round the clock edge up
287 	 * to the next full second
288 	 */
289 	rem = (NS_PER_SEC - rem);
290 
291 	/* Adjust the clock edge to align with the next full second. */
292 	clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
293 
294 	/* X550 hardware stores the time in 32bits of 'billions of cycles' and
295 	 * 32bits of 'cycles'. There's no guarantee that cycles represents
296 	 * nanoseconds. However, we can use the math from a timespec64 to
297 	 * convert into the hardware representation.
298 	 *
299 	 * See ixgbe_ptp_read_X550() for more details.
300 	 */
301 	ts = ns_to_timespec64(clock_edge);
302 	trgttiml = (u32)ts.tv_nsec;
303 	trgttimh = (u32)ts.tv_sec;
304 
305 	IXGBE_WRITE_REG(hw, IXGBE_FREQOUT0, freqout);
306 	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
307 	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
308 
309 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
310 	IXGBE_WRITE_REG(hw, IXGBE_TSSDP, tssdp);
311 	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
312 
313 	IXGBE_WRITE_FLUSH(hw);
314 }
315 
316 /**
317  * ixgbe_ptp_read_X550 - read cycle counter value
318  * @cc: cyclecounter structure
319  *
320  * This function reads SYSTIME registers. It is called by the cyclecounter
321  * structure to convert from internal representation into nanoseconds. We need
322  * this for X550 since some skews do not have expected clock frequency and
323  * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
324  * "cycles", rather than seconds and nanoseconds.
325  */
326 static u64 ixgbe_ptp_read_X550(const struct cyclecounter *cc)
327 {
328 	struct ixgbe_adapter *adapter =
329 		container_of(cc, struct ixgbe_adapter, hw_cc);
330 	struct ixgbe_hw *hw = &adapter->hw;
331 	struct timespec64 ts;
332 
333 	/* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
334 	 * Some revisions of hardware run at a higher frequency and so the
335 	 * cycles are not guaranteed to be nanoseconds. The timespec64 created
336 	 * here is used for its math/conversions but does not necessarily
337 	 * represent nominal time.
338 	 *
339 	 * It should be noted that this cyclecounter will overflow at a
340 	 * non-bitmask field since we have to convert our billions of cycles
341 	 * into an actual cycles count. This results in some possible weird
342 	 * situations at high cycle counter stamps. However given that 32 bits
343 	 * of "seconds" is ~138 years this isn't a problem. Even at the
344 	 * increased frequency of some revisions, this is still ~103 years.
345 	 * Since the SYSTIME values start at 0 and we never write them, it is
346 	 * highly unlikely for the cyclecounter to overflow in practice.
347 	 */
348 	IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
349 	ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
350 	ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
351 
352 	return (u64)timespec64_to_ns(&ts);
353 }
354 
355 /**
356  * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
357  * @cc: the cyclecounter structure
358  *
359  * this function reads the cyclecounter registers and is called by the
360  * cyclecounter structure used to construct a ns counter from the
361  * arbitrary fixed point registers
362  */
363 static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc)
364 {
365 	struct ixgbe_adapter *adapter =
366 		container_of(cc, struct ixgbe_adapter, hw_cc);
367 	struct ixgbe_hw *hw = &adapter->hw;
368 	u64 stamp = 0;
369 
370 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
371 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
372 
373 	return stamp;
374 }
375 
376 /**
377  * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
378  * @adapter: private adapter structure
379  * @hwtstamp: stack timestamp structure
380  * @timestamp: unsigned 64bit system time value
381  *
382  * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
383  * which can be used by the stack's ptp functions.
384  *
385  * The lock is used to protect consistency of the cyclecounter and the SYSTIME
386  * registers. However, it does not need to protect against the Rx or Tx
387  * timestamp registers, as there can't be a new timestamp until the old one is
388  * unlatched by reading.
389  *
390  * In addition to the timestamp in hardware, some controllers need a software
391  * overflow cyclecounter, and this function takes this into account as well.
392  **/
393 static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
394 					  struct skb_shared_hwtstamps *hwtstamp,
395 					  u64 timestamp)
396 {
397 	unsigned long flags;
398 	struct timespec64 systime;
399 	u64 ns;
400 
401 	memset(hwtstamp, 0, sizeof(*hwtstamp));
402 
403 	switch (adapter->hw.mac.type) {
404 	/* X550 and later hardware supposedly represent time using a seconds
405 	 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
406 	 * to convert the timestamp into cycles before it can be fed to the
407 	 * cyclecounter. We need an actual cyclecounter because some revisions
408 	 * of hardware run at a higher frequency and thus the counter does
409 	 * not represent seconds/nanoseconds. Instead it can be thought of as
410 	 * cycles and billions of cycles.
411 	 */
412 	case ixgbe_mac_X550:
413 	case ixgbe_mac_X550EM_x:
414 	case ixgbe_mac_x550em_a:
415 		/* Upper 32 bits represent billions of cycles, lower 32 bits
416 		 * represent cycles. However, we use timespec64_to_ns for the
417 		 * correct math even though the units haven't been corrected
418 		 * yet.
419 		 */
420 		systime.tv_sec = timestamp >> 32;
421 		systime.tv_nsec = timestamp & 0xFFFFFFFF;
422 
423 		timestamp = timespec64_to_ns(&systime);
424 		break;
425 	default:
426 		break;
427 	}
428 
429 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
430 	ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
431 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
432 
433 	hwtstamp->hwtstamp = ns_to_ktime(ns);
434 }
435 
436 /**
437  * ixgbe_ptp_adjfreq_82599
438  * @ptp: the ptp clock structure
439  * @ppb: parts per billion adjustment from base
440  *
441  * adjust the frequency of the ptp cycle counter by the
442  * indicated ppb from the base frequency.
443  */
444 static int ixgbe_ptp_adjfreq_82599(struct ptp_clock_info *ptp, s32 ppb)
445 {
446 	struct ixgbe_adapter *adapter =
447 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
448 	struct ixgbe_hw *hw = &adapter->hw;
449 	u64 freq, incval;
450 	u32 diff;
451 	int neg_adj = 0;
452 
453 	if (ppb < 0) {
454 		neg_adj = 1;
455 		ppb = -ppb;
456 	}
457 
458 	smp_mb();
459 	incval = READ_ONCE(adapter->base_incval);
460 
461 	freq = incval;
462 	freq *= ppb;
463 	diff = div_u64(freq, 1000000000ULL);
464 
465 	incval = neg_adj ? (incval - diff) : (incval + diff);
466 
467 	switch (hw->mac.type) {
468 	case ixgbe_mac_X540:
469 		if (incval > 0xFFFFFFFFULL)
470 			e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
471 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
472 		break;
473 	case ixgbe_mac_82599EB:
474 		if (incval > 0x00FFFFFFULL)
475 			e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
476 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
477 				BIT(IXGBE_INCPER_SHIFT_82599) |
478 				((u32)incval & 0x00FFFFFFUL));
479 		break;
480 	default:
481 		break;
482 	}
483 
484 	return 0;
485 }
486 
487 /**
488  * ixgbe_ptp_adjfreq_X550
489  * @ptp: the ptp clock structure
490  * @ppb: parts per billion adjustment from base
491  *
492  * adjust the frequency of the SYSTIME registers by the indicated ppb from base
493  * frequency
494  */
495 static int ixgbe_ptp_adjfreq_X550(struct ptp_clock_info *ptp, s32 ppb)
496 {
497 	struct ixgbe_adapter *adapter =
498 			container_of(ptp, struct ixgbe_adapter, ptp_caps);
499 	struct ixgbe_hw *hw = &adapter->hw;
500 	int neg_adj = 0;
501 	u64 rate = IXGBE_X550_BASE_PERIOD;
502 	u32 inca;
503 
504 	if (ppb < 0) {
505 		neg_adj = 1;
506 		ppb = -ppb;
507 	}
508 	rate *= ppb;
509 	rate = div_u64(rate, 1000000000ULL);
510 
511 	/* warn if rate is too large */
512 	if (rate >= INCVALUE_MASK)
513 		e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
514 
515 	inca = rate & INCVALUE_MASK;
516 	if (neg_adj)
517 		inca |= ISGN;
518 
519 	IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
520 
521 	return 0;
522 }
523 
524 /**
525  * ixgbe_ptp_adjtime
526  * @ptp: the ptp clock structure
527  * @delta: offset to adjust the cycle counter by
528  *
529  * adjust the timer by resetting the timecounter structure.
530  */
531 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
532 {
533 	struct ixgbe_adapter *adapter =
534 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
535 	unsigned long flags;
536 
537 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
538 	timecounter_adjtime(&adapter->hw_tc, delta);
539 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
540 
541 	if (adapter->ptp_setup_sdp)
542 		adapter->ptp_setup_sdp(adapter);
543 
544 	return 0;
545 }
546 
547 /**
548  * ixgbe_ptp_gettimex
549  * @ptp: the ptp clock structure
550  * @ts: timespec to hold the PHC timestamp
551  * @sts: structure to hold the system time before and after reading the PHC
552  *
553  * read the timecounter and return the correct value on ns,
554  * after converting it into a struct timespec.
555  */
556 static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp,
557 			      struct timespec64 *ts,
558 			      struct ptp_system_timestamp *sts)
559 {
560 	struct ixgbe_adapter *adapter =
561 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
562 	struct ixgbe_hw *hw = &adapter->hw;
563 	unsigned long flags;
564 	u64 ns, stamp;
565 
566 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
567 
568 	switch (adapter->hw.mac.type) {
569 	case ixgbe_mac_X550:
570 	case ixgbe_mac_X550EM_x:
571 	case ixgbe_mac_x550em_a:
572 		/* Upper 32 bits represent billions of cycles, lower 32 bits
573 		 * represent cycles. However, we use timespec64_to_ns for the
574 		 * correct math even though the units haven't been corrected
575 		 * yet.
576 		 */
577 		ptp_read_system_prets(sts);
578 		IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
579 		ptp_read_system_postts(sts);
580 		ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
581 		ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
582 		stamp = timespec64_to_ns(ts);
583 		break;
584 	default:
585 		ptp_read_system_prets(sts);
586 		stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
587 		ptp_read_system_postts(sts);
588 		stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
589 		break;
590 	}
591 
592 	ns = timecounter_cyc2time(&adapter->hw_tc, stamp);
593 
594 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
595 
596 	*ts = ns_to_timespec64(ns);
597 
598 	return 0;
599 }
600 
601 /**
602  * ixgbe_ptp_settime
603  * @ptp: the ptp clock structure
604  * @ts: the timespec containing the new time for the cycle counter
605  *
606  * reset the timecounter to use a new base value instead of the kernel
607  * wall timer value.
608  */
609 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
610 			     const struct timespec64 *ts)
611 {
612 	struct ixgbe_adapter *adapter =
613 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
614 	unsigned long flags;
615 	u64 ns = timespec64_to_ns(ts);
616 
617 	/* reset the timecounter */
618 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
619 	timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
620 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
621 
622 	if (adapter->ptp_setup_sdp)
623 		adapter->ptp_setup_sdp(adapter);
624 	return 0;
625 }
626 
627 /**
628  * ixgbe_ptp_feature_enable
629  * @ptp: the ptp clock structure
630  * @rq: the requested feature to change
631  * @on: whether to enable or disable the feature
632  *
633  * enable (or disable) ancillary features of the phc subsystem.
634  * our driver only supports the PPS feature on the X540
635  */
636 static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
637 				    struct ptp_clock_request *rq, int on)
638 {
639 	struct ixgbe_adapter *adapter =
640 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
641 
642 	/**
643 	 * When PPS is enabled, unmask the interrupt for the ClockOut
644 	 * feature, so that the interrupt handler can send the PPS
645 	 * event when the clock SDP triggers. Clear mask when PPS is
646 	 * disabled
647 	 */
648 	if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
649 		return -ENOTSUPP;
650 
651 	if (on)
652 		adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
653 	else
654 		adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
655 
656 	adapter->ptp_setup_sdp(adapter);
657 	return 0;
658 }
659 
660 /**
661  * ixgbe_ptp_check_pps_event
662  * @adapter: the private adapter structure
663  *
664  * This function is called by the interrupt routine when checking for
665  * interrupts. It will check and handle a pps event.
666  */
667 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
668 {
669 	struct ixgbe_hw *hw = &adapter->hw;
670 	struct ptp_clock_event event;
671 
672 	event.type = PTP_CLOCK_PPS;
673 
674 	/* this check is necessary in case the interrupt was enabled via some
675 	 * alternative means (ex. debug_fs). Better to check here than
676 	 * everywhere that calls this function.
677 	 */
678 	if (!adapter->ptp_clock)
679 		return;
680 
681 	switch (hw->mac.type) {
682 	case ixgbe_mac_X540:
683 		ptp_clock_event(adapter->ptp_clock, &event);
684 		break;
685 	default:
686 		break;
687 	}
688 }
689 
690 /**
691  * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
692  * @adapter: private adapter struct
693  *
694  * this watchdog task periodically reads the timecounter
695  * in order to prevent missing when the system time registers wrap
696  * around. This needs to be run approximately twice a minute.
697  */
698 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
699 {
700 	bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
701 					     IXGBE_OVERFLOW_PERIOD);
702 	unsigned long flags;
703 
704 	if (timeout) {
705 		/* Update the timecounter */
706 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
707 		timecounter_read(&adapter->hw_tc);
708 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
709 
710 		adapter->last_overflow_check = jiffies;
711 	}
712 }
713 
714 /**
715  * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
716  * @adapter: private network adapter structure
717  *
718  * this watchdog task is scheduled to detect error case where hardware has
719  * dropped an Rx packet that was timestamped when the ring is full. The
720  * particular error is rare but leaves the device in a state unable to timestamp
721  * any future packets.
722  */
723 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
724 {
725 	struct ixgbe_hw *hw = &adapter->hw;
726 	u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
727 	struct ixgbe_ring *rx_ring;
728 	unsigned long rx_event;
729 	int n;
730 
731 	/* if we don't have a valid timestamp in the registers, just update the
732 	 * timeout counter and exit
733 	 */
734 	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
735 		adapter->last_rx_ptp_check = jiffies;
736 		return;
737 	}
738 
739 	/* determine the most recent watchdog or rx_timestamp event */
740 	rx_event = adapter->last_rx_ptp_check;
741 	for (n = 0; n < adapter->num_rx_queues; n++) {
742 		rx_ring = adapter->rx_ring[n];
743 		if (time_after(rx_ring->last_rx_timestamp, rx_event))
744 			rx_event = rx_ring->last_rx_timestamp;
745 	}
746 
747 	/* only need to read the high RXSTMP register to clear the lock */
748 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
749 		IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
750 		adapter->last_rx_ptp_check = jiffies;
751 
752 		adapter->rx_hwtstamp_cleared++;
753 		e_warn(drv, "clearing RX Timestamp hang\n");
754 	}
755 }
756 
757 /**
758  * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
759  * @adapter: the private adapter structure
760  *
761  * This function should be called whenever the state related to a Tx timestamp
762  * needs to be cleared. This helps ensure that all related bits are reset for
763  * the next Tx timestamp event.
764  */
765 static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
766 {
767 	struct ixgbe_hw *hw = &adapter->hw;
768 
769 	IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
770 	if (adapter->ptp_tx_skb) {
771 		dev_kfree_skb_any(adapter->ptp_tx_skb);
772 		adapter->ptp_tx_skb = NULL;
773 	}
774 	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
775 }
776 
777 /**
778  * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes
779  * @adapter: private network adapter structure
780  */
781 void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter)
782 {
783 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
784 					      IXGBE_PTP_TX_TIMEOUT);
785 
786 	if (!adapter->ptp_tx_skb)
787 		return;
788 
789 	if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state))
790 		return;
791 
792 	/* If we haven't received a timestamp within the timeout, it is
793 	 * reasonable to assume that it will never occur, so we can unlock the
794 	 * timestamp bit when this occurs.
795 	 */
796 	if (timeout) {
797 		cancel_work_sync(&adapter->ptp_tx_work);
798 		ixgbe_ptp_clear_tx_timestamp(adapter);
799 		adapter->tx_hwtstamp_timeouts++;
800 		e_warn(drv, "clearing Tx timestamp hang\n");
801 	}
802 }
803 
804 /**
805  * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
806  * @adapter: the private adapter struct
807  *
808  * if the timestamp is valid, we convert it into the timecounter ns
809  * value, then store that result into the shhwtstamps structure which
810  * is passed up the network stack
811  */
812 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
813 {
814 	struct sk_buff *skb = adapter->ptp_tx_skb;
815 	struct ixgbe_hw *hw = &adapter->hw;
816 	struct skb_shared_hwtstamps shhwtstamps;
817 	u64 regval = 0;
818 
819 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
820 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
821 	ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
822 
823 	/* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state
824 	 * bit prior to notifying the stack via skb_tstamp_tx(). This prevents
825 	 * well behaved applications from attempting to timestamp again prior
826 	 * to the lock bit being clear.
827 	 */
828 	adapter->ptp_tx_skb = NULL;
829 	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
830 
831 	/* Notify the stack and then free the skb after we've unlocked */
832 	skb_tstamp_tx(skb, &shhwtstamps);
833 	dev_kfree_skb_any(skb);
834 }
835 
836 /**
837  * ixgbe_ptp_tx_hwtstamp_work
838  * @work: pointer to the work struct
839  *
840  * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
841  * timestamp has been taken for the current skb. It is necessary, because the
842  * descriptor's "done" bit does not correlate with the timestamp event.
843  */
844 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
845 {
846 	struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
847 						     ptp_tx_work);
848 	struct ixgbe_hw *hw = &adapter->hw;
849 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
850 					      IXGBE_PTP_TX_TIMEOUT);
851 	u32 tsynctxctl;
852 
853 	/* we have to have a valid skb to poll for a timestamp */
854 	if (!adapter->ptp_tx_skb) {
855 		ixgbe_ptp_clear_tx_timestamp(adapter);
856 		return;
857 	}
858 
859 	/* stop polling once we have a valid timestamp */
860 	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
861 	if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
862 		ixgbe_ptp_tx_hwtstamp(adapter);
863 		return;
864 	}
865 
866 	if (timeout) {
867 		ixgbe_ptp_clear_tx_timestamp(adapter);
868 		adapter->tx_hwtstamp_timeouts++;
869 		e_warn(drv, "clearing Tx Timestamp hang\n");
870 	} else {
871 		/* reschedule to keep checking if it's not available yet */
872 		schedule_work(&adapter->ptp_tx_work);
873 	}
874 }
875 
876 /**
877  * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
878  * @q_vector: structure containing interrupt and ring information
879  * @skb: the packet
880  *
881  * This function will be called by the Rx routine of the timestamp for this
882  * packet is stored in the buffer. The value is stored in little endian format
883  * starting at the end of the packet data.
884  */
885 void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
886 			   struct sk_buff *skb)
887 {
888 	__le64 regval;
889 
890 	/* copy the bits out of the skb, and then trim the skb length */
891 	skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, &regval,
892 		      IXGBE_TS_HDR_LEN);
893 	__pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
894 
895 	/* The timestamp is recorded in little endian format, and is stored at
896 	 * the end of the packet.
897 	 *
898 	 * DWORD: N              N + 1      N + 2
899 	 * Field: End of Packet  SYSTIMH    SYSTIML
900 	 */
901 	ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
902 				      le64_to_cpu(regval));
903 }
904 
905 /**
906  * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
907  * @q_vector: structure containing interrupt and ring information
908  * @skb: particular skb to send timestamp with
909  *
910  * if the timestamp is valid, we convert it into the timecounter ns
911  * value, then store that result into the shhwtstamps structure which
912  * is passed up the network stack
913  */
914 void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
915 			   struct sk_buff *skb)
916 {
917 	struct ixgbe_adapter *adapter;
918 	struct ixgbe_hw *hw;
919 	u64 regval = 0;
920 	u32 tsyncrxctl;
921 
922 	/* we cannot process timestamps on a ring without a q_vector */
923 	if (!q_vector || !q_vector->adapter)
924 		return;
925 
926 	adapter = q_vector->adapter;
927 	hw = &adapter->hw;
928 
929 	/* Read the tsyncrxctl register afterwards in order to prevent taking an
930 	 * I/O hit on every packet.
931 	 */
932 
933 	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
934 	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
935 		return;
936 
937 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
938 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
939 
940 	ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
941 }
942 
943 /**
944  * ixgbe_ptp_get_ts_config - get current hardware timestamping configuration
945  * @adapter: pointer to adapter structure
946  * @ifr: ioctl data
947  *
948  * This function returns the current timestamping settings. Rather than
949  * attempt to deconstruct registers to fill in the values, simply keep a copy
950  * of the old settings around, and return a copy when requested.
951  */
952 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
953 {
954 	struct hwtstamp_config *config = &adapter->tstamp_config;
955 
956 	return copy_to_user(ifr->ifr_data, config,
957 			    sizeof(*config)) ? -EFAULT : 0;
958 }
959 
960 /**
961  * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
962  * @adapter: the private ixgbe adapter structure
963  * @config: the hwtstamp configuration requested
964  *
965  * Outgoing time stamping can be enabled and disabled. Play nice and
966  * disable it when requested, although it shouldn't cause any overhead
967  * when no packet needs it. At most one packet in the queue may be
968  * marked for time stamping, otherwise it would be impossible to tell
969  * for sure to which packet the hardware time stamp belongs.
970  *
971  * Incoming time stamping has to be configured via the hardware
972  * filters. Not all combinations are supported, in particular event
973  * type has to be specified. Matching the kind of event packet is
974  * not supported, with the exception of "all V2 events regardless of
975  * level 2 or 4".
976  *
977  * Since hardware always timestamps Path delay packets when timestamping V2
978  * packets, regardless of the type specified in the register, only use V2
979  * Event mode. This more accurately tells the user what the hardware is going
980  * to do anyways.
981  *
982  * Note: this may modify the hwtstamp configuration towards a more general
983  * mode, if required to support the specifically requested mode.
984  */
985 static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
986 				 struct hwtstamp_config *config)
987 {
988 	struct ixgbe_hw *hw = &adapter->hw;
989 	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
990 	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
991 	u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
992 	bool is_l2 = false;
993 	u32 regval;
994 
995 	/* reserved for future extensions */
996 	if (config->flags)
997 		return -EINVAL;
998 
999 	switch (config->tx_type) {
1000 	case HWTSTAMP_TX_OFF:
1001 		tsync_tx_ctl = 0;
1002 		break;
1003 	case HWTSTAMP_TX_ON:
1004 		break;
1005 	default:
1006 		return -ERANGE;
1007 	}
1008 
1009 	switch (config->rx_filter) {
1010 	case HWTSTAMP_FILTER_NONE:
1011 		tsync_rx_ctl = 0;
1012 		tsync_rx_mtrl = 0;
1013 		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1014 				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1015 		break;
1016 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1017 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1018 		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
1019 		adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1020 				   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1021 		break;
1022 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1023 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
1024 		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
1025 		adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1026 				   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1027 		break;
1028 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1029 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1030 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1031 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1032 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1033 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1034 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1035 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1036 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1037 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
1038 		is_l2 = true;
1039 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1040 		adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1041 				   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1042 		break;
1043 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1044 	case HWTSTAMP_FILTER_NTP_ALL:
1045 	case HWTSTAMP_FILTER_ALL:
1046 		/* The X550 controller is capable of timestamping all packets,
1047 		 * which allows it to accept any filter.
1048 		 */
1049 		if (hw->mac.type >= ixgbe_mac_X550) {
1050 			tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
1051 			config->rx_filter = HWTSTAMP_FILTER_ALL;
1052 			adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1053 			break;
1054 		}
1055 		fallthrough;
1056 	default:
1057 		/*
1058 		 * register RXMTRL must be set in order to do V1 packets,
1059 		 * therefore it is not possible to time stamp both V1 Sync and
1060 		 * Delay_Req messages and hardware does not support
1061 		 * timestamping all packets => return error
1062 		 */
1063 		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1064 				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1065 		config->rx_filter = HWTSTAMP_FILTER_NONE;
1066 		return -ERANGE;
1067 	}
1068 
1069 	if (hw->mac.type == ixgbe_mac_82598EB) {
1070 		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
1071 				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
1072 		if (tsync_rx_ctl | tsync_tx_ctl)
1073 			return -ERANGE;
1074 		return 0;
1075 	}
1076 
1077 	/* Per-packet timestamping only works if the filter is set to all
1078 	 * packets. Since this is desired, always timestamp all packets as long
1079 	 * as any Rx filter was configured.
1080 	 */
1081 	switch (hw->mac.type) {
1082 	case ixgbe_mac_X550:
1083 	case ixgbe_mac_X550EM_x:
1084 	case ixgbe_mac_x550em_a:
1085 		/* enable timestamping all packets only if at least some
1086 		 * packets were requested. Otherwise, play nice and disable
1087 		 * timestamping
1088 		 */
1089 		if (config->rx_filter == HWTSTAMP_FILTER_NONE)
1090 			break;
1091 
1092 		tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
1093 			       IXGBE_TSYNCRXCTL_TYPE_ALL |
1094 			       IXGBE_TSYNCRXCTL_TSIP_UT_EN;
1095 		config->rx_filter = HWTSTAMP_FILTER_ALL;
1096 		adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
1097 		adapter->flags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
1098 		is_l2 = true;
1099 		break;
1100 	default:
1101 		break;
1102 	}
1103 
1104 	/* define ethertype filter for timestamping L2 packets */
1105 	if (is_l2)
1106 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
1107 				(IXGBE_ETQF_FILTER_EN | /* enable filter */
1108 				 IXGBE_ETQF_1588 | /* enable timestamping */
1109 				 ETH_P_1588));     /* 1588 eth protocol type */
1110 	else
1111 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
1112 
1113 	/* enable/disable TX */
1114 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
1115 	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
1116 	regval |= tsync_tx_ctl;
1117 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
1118 
1119 	/* enable/disable RX */
1120 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
1121 	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
1122 	regval |= tsync_rx_ctl;
1123 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
1124 
1125 	/* define which PTP packets are time stamped */
1126 	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
1127 
1128 	IXGBE_WRITE_FLUSH(hw);
1129 
1130 	/* clear TX/RX time stamp registers, just to be sure */
1131 	ixgbe_ptp_clear_tx_timestamp(adapter);
1132 	IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
1133 
1134 	return 0;
1135 }
1136 
1137 /**
1138  * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
1139  * @adapter: pointer to adapter struct
1140  * @ifr: ioctl data
1141  *
1142  * Set hardware to requested mode. If unsupported, return an error with no
1143  * changes. Otherwise, store the mode for future reference.
1144  */
1145 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
1146 {
1147 	struct hwtstamp_config config;
1148 	int err;
1149 
1150 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1151 		return -EFAULT;
1152 
1153 	err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
1154 	if (err)
1155 		return err;
1156 
1157 	/* save these settings for future reference */
1158 	memcpy(&adapter->tstamp_config, &config,
1159 	       sizeof(adapter->tstamp_config));
1160 
1161 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1162 		-EFAULT : 0;
1163 }
1164 
1165 static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
1166 					u32 *shift, u32 *incval)
1167 {
1168 	/**
1169 	 * Scale the NIC cycle counter by a large factor so that
1170 	 * relatively small corrections to the frequency can be added
1171 	 * or subtracted. The drawbacks of a large factor include
1172 	 * (a) the clock register overflows more quickly, (b) the cycle
1173 	 * counter structure must be able to convert the systime value
1174 	 * to nanoseconds using only a multiplier and a right-shift,
1175 	 * and (c) the value must fit within the timinca register space
1176 	 * => math based on internal DMA clock rate and available bits
1177 	 *
1178 	 * Note that when there is no link, internal DMA clock is same as when
1179 	 * link speed is 10Gb. Set the registers correctly even when link is
1180 	 * down to preserve the clock setting
1181 	 */
1182 	switch (adapter->link_speed) {
1183 	case IXGBE_LINK_SPEED_100_FULL:
1184 		*shift = IXGBE_INCVAL_SHIFT_100;
1185 		*incval = IXGBE_INCVAL_100;
1186 		break;
1187 	case IXGBE_LINK_SPEED_1GB_FULL:
1188 		*shift = IXGBE_INCVAL_SHIFT_1GB;
1189 		*incval = IXGBE_INCVAL_1GB;
1190 		break;
1191 	case IXGBE_LINK_SPEED_10GB_FULL:
1192 	default:
1193 		*shift = IXGBE_INCVAL_SHIFT_10GB;
1194 		*incval = IXGBE_INCVAL_10GB;
1195 		break;
1196 	}
1197 }
1198 
1199 /**
1200  * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
1201  * @adapter: pointer to the adapter structure
1202  *
1203  * This function should be called to set the proper values for the TIMINCA
1204  * register and tell the cyclecounter structure what the tick rate of SYSTIME
1205  * is. It does not directly modify SYSTIME registers or the timecounter
1206  * structure. It should be called whenever a new TIMINCA value is necessary,
1207  * such as during initialization or when the link speed changes.
1208  */
1209 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
1210 {
1211 	struct ixgbe_hw *hw = &adapter->hw;
1212 	struct cyclecounter cc;
1213 	unsigned long flags;
1214 	u32 incval = 0;
1215 	u32 tsauxc = 0;
1216 	u32 fuse0 = 0;
1217 
1218 	/* For some of the boards below this mask is technically incorrect.
1219 	 * The timestamp mask overflows at approximately 61bits. However the
1220 	 * particular hardware does not overflow on an even bitmask value.
1221 	 * Instead, it overflows due to conversion of upper 32bits billions of
1222 	 * cycles. Timecounters are not really intended for this purpose so
1223 	 * they do not properly function if the overflow point isn't 2^N-1.
1224 	 * However, the actual SYSTIME values in question take ~138 years to
1225 	 * overflow. In practice this means they won't actually overflow. A
1226 	 * proper fix to this problem would require modification of the
1227 	 * timecounter delta calculations.
1228 	 */
1229 	cc.mask = CLOCKSOURCE_MASK(64);
1230 	cc.mult = 1;
1231 	cc.shift = 0;
1232 
1233 	switch (hw->mac.type) {
1234 	case ixgbe_mac_X550EM_x:
1235 		/* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
1236 		 * designed to represent seconds and nanoseconds when this is
1237 		 * the case. However, some revisions of hardware have a 400Mhz
1238 		 * clock and we have to compensate for this frequency
1239 		 * variation using corrected mult and shift values.
1240 		 */
1241 		fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
1242 		if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
1243 			cc.mult = 3;
1244 			cc.shift = 2;
1245 		}
1246 		fallthrough;
1247 	case ixgbe_mac_x550em_a:
1248 	case ixgbe_mac_X550:
1249 		cc.read = ixgbe_ptp_read_X550;
1250 
1251 		/* enable SYSTIME counter */
1252 		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
1253 		IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1254 		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1255 		tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
1256 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
1257 				tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
1258 		IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
1259 		IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
1260 
1261 		IXGBE_WRITE_FLUSH(hw);
1262 		break;
1263 	case ixgbe_mac_X540:
1264 		cc.read = ixgbe_ptp_read_82599;
1265 
1266 		ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1267 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
1268 		break;
1269 	case ixgbe_mac_82599EB:
1270 		cc.read = ixgbe_ptp_read_82599;
1271 
1272 		ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1273 		incval >>= IXGBE_INCVAL_SHIFT_82599;
1274 		cc.shift -= IXGBE_INCVAL_SHIFT_82599;
1275 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
1276 				BIT(IXGBE_INCPER_SHIFT_82599) | incval);
1277 		break;
1278 	default:
1279 		/* other devices aren't supported */
1280 		return;
1281 	}
1282 
1283 	/* update the base incval used to calculate frequency adjustment */
1284 	WRITE_ONCE(adapter->base_incval, incval);
1285 	smp_mb();
1286 
1287 	/* need lock to prevent incorrect read while modifying cyclecounter */
1288 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1289 	memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
1290 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1291 }
1292 
1293 /**
1294  * ixgbe_ptp_reset
1295  * @adapter: the ixgbe private board structure
1296  *
1297  * When the MAC resets, all the hardware bits for timesync are reset. This
1298  * function is used to re-enable the device for PTP based on current settings.
1299  * We do lose the current clock time, so just reset the cyclecounter to the
1300  * system real clock time.
1301  *
1302  * This function will maintain hwtstamp_config settings, and resets the SDP
1303  * output if it was enabled.
1304  */
1305 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
1306 {
1307 	struct ixgbe_hw *hw = &adapter->hw;
1308 	unsigned long flags;
1309 
1310 	/* reset the hardware timestamping mode */
1311 	ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1312 
1313 	/* 82598 does not support PTP */
1314 	if (hw->mac.type == ixgbe_mac_82598EB)
1315 		return;
1316 
1317 	ixgbe_ptp_start_cyclecounter(adapter);
1318 
1319 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1320 	timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
1321 			 ktime_to_ns(ktime_get_real()));
1322 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1323 
1324 	adapter->last_overflow_check = jiffies;
1325 
1326 	/* Now that the shift has been calculated and the systime
1327 	 * registers reset, (re-)enable the Clock out feature
1328 	 */
1329 	if (adapter->ptp_setup_sdp)
1330 		adapter->ptp_setup_sdp(adapter);
1331 }
1332 
1333 /**
1334  * ixgbe_ptp_create_clock
1335  * @adapter: the ixgbe private adapter structure
1336  *
1337  * This function performs setup of the user entry point function table and
1338  * initializes the PTP clock device, which is used to access the clock-like
1339  * features of the PTP core. It will be called by ixgbe_ptp_init, and may
1340  * reuse a previously initialized clock (such as during a suspend/resume
1341  * cycle).
1342  */
1343 static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
1344 {
1345 	struct net_device *netdev = adapter->netdev;
1346 	long err;
1347 
1348 	/* do nothing if we already have a clock device */
1349 	if (!IS_ERR_OR_NULL(adapter->ptp_clock))
1350 		return 0;
1351 
1352 	switch (adapter->hw.mac.type) {
1353 	case ixgbe_mac_X540:
1354 		snprintf(adapter->ptp_caps.name,
1355 			 sizeof(adapter->ptp_caps.name),
1356 			 "%s", netdev->name);
1357 		adapter->ptp_caps.owner = THIS_MODULE;
1358 		adapter->ptp_caps.max_adj = 250000000;
1359 		adapter->ptp_caps.n_alarm = 0;
1360 		adapter->ptp_caps.n_ext_ts = 0;
1361 		adapter->ptp_caps.n_per_out = 0;
1362 		adapter->ptp_caps.pps = 1;
1363 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1364 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1365 		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1366 		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1367 		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1368 		adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X540;
1369 		break;
1370 	case ixgbe_mac_82599EB:
1371 		snprintf(adapter->ptp_caps.name,
1372 			 sizeof(adapter->ptp_caps.name),
1373 			 "%s", netdev->name);
1374 		adapter->ptp_caps.owner = THIS_MODULE;
1375 		adapter->ptp_caps.max_adj = 250000000;
1376 		adapter->ptp_caps.n_alarm = 0;
1377 		adapter->ptp_caps.n_ext_ts = 0;
1378 		adapter->ptp_caps.n_per_out = 0;
1379 		adapter->ptp_caps.pps = 0;
1380 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1381 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1382 		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1383 		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1384 		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1385 		break;
1386 	case ixgbe_mac_X550:
1387 	case ixgbe_mac_X550EM_x:
1388 	case ixgbe_mac_x550em_a:
1389 		snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
1390 		adapter->ptp_caps.owner = THIS_MODULE;
1391 		adapter->ptp_caps.max_adj = 30000000;
1392 		adapter->ptp_caps.n_alarm = 0;
1393 		adapter->ptp_caps.n_ext_ts = 0;
1394 		adapter->ptp_caps.n_per_out = 0;
1395 		adapter->ptp_caps.pps = 1;
1396 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_X550;
1397 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1398 		adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
1399 		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1400 		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1401 		adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X550;
1402 		break;
1403 	default:
1404 		adapter->ptp_clock = NULL;
1405 		adapter->ptp_setup_sdp = NULL;
1406 		return -EOPNOTSUPP;
1407 	}
1408 
1409 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1410 						&adapter->pdev->dev);
1411 	if (IS_ERR(adapter->ptp_clock)) {
1412 		err = PTR_ERR(adapter->ptp_clock);
1413 		adapter->ptp_clock = NULL;
1414 		e_dev_err("ptp_clock_register failed\n");
1415 		return err;
1416 	} else if (adapter->ptp_clock)
1417 		e_dev_info("registered PHC device on %s\n", netdev->name);
1418 
1419 	/* set default timestamp mode to disabled here. We do this in
1420 	 * create_clock instead of init, because we don't want to override the
1421 	 * previous settings during a resume cycle.
1422 	 */
1423 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1424 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1425 
1426 	return 0;
1427 }
1428 
1429 /**
1430  * ixgbe_ptp_init
1431  * @adapter: the ixgbe private adapter structure
1432  *
1433  * This function performs the required steps for enabling PTP
1434  * support. If PTP support has already been loaded it simply calls the
1435  * cyclecounter init routine and exits.
1436  */
1437 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
1438 {
1439 	/* initialize the spin lock first since we can't control when a user
1440 	 * will call the entry functions once we have initialized the clock
1441 	 * device
1442 	 */
1443 	spin_lock_init(&adapter->tmreg_lock);
1444 
1445 	/* obtain a PTP device, or re-use an existing device */
1446 	if (ixgbe_ptp_create_clock(adapter))
1447 		return;
1448 
1449 	/* we have a clock so we can initialize work now */
1450 	INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
1451 
1452 	/* reset the PTP related hardware bits */
1453 	ixgbe_ptp_reset(adapter);
1454 
1455 	/* enter the IXGBE_PTP_RUNNING state */
1456 	set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
1457 
1458 	return;
1459 }
1460 
1461 /**
1462  * ixgbe_ptp_suspend - stop PTP work items
1463  * @adapter: pointer to adapter struct
1464  *
1465  * this function suspends PTP activity, and prevents more PTP work from being
1466  * generated, but does not destroy the PTP clock device.
1467  */
1468 void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
1469 {
1470 	/* Leave the IXGBE_PTP_RUNNING state. */
1471 	if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
1472 		return;
1473 
1474 	adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
1475 	if (adapter->ptp_setup_sdp)
1476 		adapter->ptp_setup_sdp(adapter);
1477 
1478 	/* ensure that we cancel any pending PTP Tx work item in progress */
1479 	cancel_work_sync(&adapter->ptp_tx_work);
1480 	ixgbe_ptp_clear_tx_timestamp(adapter);
1481 }
1482 
1483 /**
1484  * ixgbe_ptp_stop - close the PTP device
1485  * @adapter: pointer to adapter struct
1486  *
1487  * completely destroy the PTP device, should only be called when the device is
1488  * being fully closed.
1489  */
1490 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
1491 {
1492 	/* first, suspend PTP activity */
1493 	ixgbe_ptp_suspend(adapter);
1494 
1495 	/* disable the PTP clock device */
1496 	if (adapter->ptp_clock) {
1497 		ptp_clock_unregister(adapter->ptp_clock);
1498 		adapter->ptp_clock = NULL;
1499 		e_dev_info("removed PHC on %s\n",
1500 			   adapter->netdev->name);
1501 	}
1502 }
1503