1 /******************************************************************************* 2 3 Intel 10 Gigabit PCI Express Linux driver 4 Copyright(c) 1999 - 2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 #include "ixgbe.h" 29 #include <linux/ptp_classify.h> 30 31 /* 32 * The 82599 and the X540 do not have true 64bit nanosecond scale 33 * counter registers. Instead, SYSTIME is defined by a fixed point 34 * system which allows the user to define the scale counter increment 35 * value at every level change of the oscillator driving the SYSTIME 36 * value. For both devices the TIMINCA:IV field defines this 37 * increment. On the X540 device, 31 bits are provided. However on the 38 * 82599 only provides 24 bits. The time unit is determined by the 39 * clock frequency of the oscillator in combination with the TIMINCA 40 * register. When these devices link at 10Gb the oscillator has a 41 * period of 6.4ns. In order to convert the scale counter into 42 * nanoseconds the cyclecounter and timecounter structures are 43 * used. The SYSTIME registers need to be converted to ns values by use 44 * of only a right shift (division by power of 2). The following math 45 * determines the largest incvalue that will fit into the available 46 * bits in the TIMINCA register. 47 * 48 * PeriodWidth: Number of bits to store the clock period 49 * MaxWidth: The maximum width value of the TIMINCA register 50 * Period: The clock period for the oscillator 51 * round(): discard the fractional portion of the calculation 52 * 53 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ] 54 * 55 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns 56 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns 57 * 58 * The period also changes based on the link speed: 59 * At 10Gb link or no link, the period remains the same. 60 * At 1Gb link, the period is multiplied by 10. (64ns) 61 * At 100Mb link, the period is multiplied by 100. (640ns) 62 * 63 * The calculated value allows us to right shift the SYSTIME register 64 * value in order to quickly convert it into a nanosecond clock, 65 * while allowing for the maximum possible adjustment value. 66 * 67 * These diagrams are only for the 10Gb link period 68 * 69 * SYSTIMEH SYSTIMEL 70 * +--------------+ +--------------+ 71 * X540 | 32 | | 1 | 3 | 28 | 72 * *--------------+ +--------------+ 73 * \________ 36 bits ______/ fract 74 * 75 * +--------------+ +--------------+ 76 * 82599 | 32 | | 8 | 3 | 21 | 77 * *--------------+ +--------------+ 78 * \________ 43 bits ______/ fract 79 * 80 * The 36 bit X540 SYSTIME overflows every 81 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds 82 * 83 * The 43 bit 82599 SYSTIME overflows every 84 * 2^43 * 10^-9 / 3600 = 2.4 hours 85 */ 86 #define IXGBE_INCVAL_10GB 0x66666666 87 #define IXGBE_INCVAL_1GB 0x40000000 88 #define IXGBE_INCVAL_100 0x50000000 89 90 #define IXGBE_INCVAL_SHIFT_10GB 28 91 #define IXGBE_INCVAL_SHIFT_1GB 24 92 #define IXGBE_INCVAL_SHIFT_100 21 93 94 #define IXGBE_INCVAL_SHIFT_82599 7 95 #define IXGBE_INCPER_SHIFT_82599 24 96 #define IXGBE_MAX_TIMEADJ_VALUE 0x7FFFFFFFFFFFFFFFULL 97 98 #define IXGBE_OVERFLOW_PERIOD (HZ * 30) 99 #define IXGBE_PTP_TX_TIMEOUT (HZ * 15) 100 101 /* half of a one second clock period, for use with PPS signal. We have to use 102 * this instead of something pre-defined like IXGBE_PTP_PPS_HALF_SECOND, in 103 * order to force at least 64bits of precision for shifting 104 */ 105 #define IXGBE_PTP_PPS_HALF_SECOND 500000000ULL 106 107 /** 108 * ixgbe_ptp_setup_sdp 109 * @hw: the hardware private structure 110 * 111 * this function enables or disables the clock out feature on SDP0 for 112 * the X540 device. It will create a 1second periodic output that can 113 * be used as the PPS (via an interrupt). 114 * 115 * It calculates when the systime will be on an exact second, and then 116 * aligns the start of the PPS signal to that value. The shift is 117 * necessary because it can change based on the link speed. 118 */ 119 static void ixgbe_ptp_setup_sdp(struct ixgbe_adapter *adapter) 120 { 121 struct ixgbe_hw *hw = &adapter->hw; 122 int shift = adapter->cc.shift; 123 u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem; 124 u64 ns = 0, clock_edge = 0; 125 126 if ((adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED) && 127 (hw->mac.type == ixgbe_mac_X540)) { 128 129 /* disable the pin first */ 130 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0); 131 IXGBE_WRITE_FLUSH(hw); 132 133 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); 134 135 /* 136 * enable the SDP0 pin as output, and connected to the 137 * native function for Timesync (ClockOut) 138 */ 139 esdp |= (IXGBE_ESDP_SDP0_DIR | 140 IXGBE_ESDP_SDP0_NATIVE); 141 142 /* 143 * enable the Clock Out feature on SDP0, and allow 144 * interrupts to occur when the pin changes 145 */ 146 tsauxc = (IXGBE_TSAUXC_EN_CLK | 147 IXGBE_TSAUXC_SYNCLK | 148 IXGBE_TSAUXC_SDP0_INT); 149 150 /* clock period (or pulse length) */ 151 clktiml = (u32)(IXGBE_PTP_PPS_HALF_SECOND << shift); 152 clktimh = (u32)((IXGBE_PTP_PPS_HALF_SECOND << shift) >> 32); 153 154 /* 155 * Account for the cyclecounter wrap-around value by 156 * using the converted ns value of the current time to 157 * check for when the next aligned second would occur. 158 */ 159 clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML); 160 clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; 161 ns = timecounter_cyc2time(&adapter->tc, clock_edge); 162 163 div_u64_rem(ns, IXGBE_PTP_PPS_HALF_SECOND, &rem); 164 clock_edge += ((IXGBE_PTP_PPS_HALF_SECOND - (u64)rem) << shift); 165 166 /* specify the initial clock start time */ 167 trgttiml = (u32)clock_edge; 168 trgttimh = (u32)(clock_edge >> 32); 169 170 IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml); 171 IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh); 172 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml); 173 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh); 174 175 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 176 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc); 177 } else { 178 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0); 179 } 180 181 IXGBE_WRITE_FLUSH(hw); 182 } 183 184 /** 185 * ixgbe_ptp_read - read raw cycle counter (to be used by time counter) 186 * @cc: the cyclecounter structure 187 * 188 * this function reads the cyclecounter registers and is called by the 189 * cyclecounter structure used to construct a ns counter from the 190 * arbitrary fixed point registers 191 */ 192 static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc) 193 { 194 struct ixgbe_adapter *adapter = 195 container_of(cc, struct ixgbe_adapter, cc); 196 struct ixgbe_hw *hw = &adapter->hw; 197 u64 stamp = 0; 198 199 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML); 200 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; 201 202 return stamp; 203 } 204 205 /** 206 * ixgbe_ptp_adjfreq 207 * @ptp: the ptp clock structure 208 * @ppb: parts per billion adjustment from base 209 * 210 * adjust the frequency of the ptp cycle counter by the 211 * indicated ppb from the base frequency. 212 */ 213 static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 214 { 215 struct ixgbe_adapter *adapter = 216 container_of(ptp, struct ixgbe_adapter, ptp_caps); 217 struct ixgbe_hw *hw = &adapter->hw; 218 u64 freq; 219 u32 diff, incval; 220 int neg_adj = 0; 221 222 if (ppb < 0) { 223 neg_adj = 1; 224 ppb = -ppb; 225 } 226 227 smp_mb(); 228 incval = ACCESS_ONCE(adapter->base_incval); 229 230 freq = incval; 231 freq *= ppb; 232 diff = div_u64(freq, 1000000000ULL); 233 234 incval = neg_adj ? (incval - diff) : (incval + diff); 235 236 switch (hw->mac.type) { 237 case ixgbe_mac_X540: 238 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval); 239 break; 240 case ixgbe_mac_82599EB: 241 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, 242 (1 << IXGBE_INCPER_SHIFT_82599) | 243 incval); 244 break; 245 default: 246 break; 247 } 248 249 return 0; 250 } 251 252 /** 253 * ixgbe_ptp_adjtime 254 * @ptp: the ptp clock structure 255 * @delta: offset to adjust the cycle counter by 256 * 257 * adjust the timer by resetting the timecounter structure. 258 */ 259 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 260 { 261 struct ixgbe_adapter *adapter = 262 container_of(ptp, struct ixgbe_adapter, ptp_caps); 263 unsigned long flags; 264 265 spin_lock_irqsave(&adapter->tmreg_lock, flags); 266 timecounter_adjtime(&adapter->tc, delta); 267 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 268 269 ixgbe_ptp_setup_sdp(adapter); 270 271 return 0; 272 } 273 274 /** 275 * ixgbe_ptp_gettime 276 * @ptp: the ptp clock structure 277 * @ts: timespec structure to hold the current time value 278 * 279 * read the timecounter and return the correct value on ns, 280 * after converting it into a struct timespec. 281 */ 282 static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts) 283 { 284 struct ixgbe_adapter *adapter = 285 container_of(ptp, struct ixgbe_adapter, ptp_caps); 286 u64 ns; 287 unsigned long flags; 288 289 spin_lock_irqsave(&adapter->tmreg_lock, flags); 290 ns = timecounter_read(&adapter->tc); 291 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 292 293 *ts = ns_to_timespec64(ns); 294 295 return 0; 296 } 297 298 /** 299 * ixgbe_ptp_settime 300 * @ptp: the ptp clock structure 301 * @ts: the timespec containing the new time for the cycle counter 302 * 303 * reset the timecounter to use a new base value instead of the kernel 304 * wall timer value. 305 */ 306 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp, 307 const struct timespec64 *ts) 308 { 309 struct ixgbe_adapter *adapter = 310 container_of(ptp, struct ixgbe_adapter, ptp_caps); 311 u64 ns; 312 unsigned long flags; 313 314 ns = timespec64_to_ns(ts); 315 316 /* reset the timecounter */ 317 spin_lock_irqsave(&adapter->tmreg_lock, flags); 318 timecounter_init(&adapter->tc, &adapter->cc, ns); 319 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 320 321 ixgbe_ptp_setup_sdp(adapter); 322 return 0; 323 } 324 325 /** 326 * ixgbe_ptp_feature_enable 327 * @ptp: the ptp clock structure 328 * @rq: the requested feature to change 329 * @on: whether to enable or disable the feature 330 * 331 * enable (or disable) ancillary features of the phc subsystem. 332 * our driver only supports the PPS feature on the X540 333 */ 334 static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp, 335 struct ptp_clock_request *rq, int on) 336 { 337 struct ixgbe_adapter *adapter = 338 container_of(ptp, struct ixgbe_adapter, ptp_caps); 339 340 /** 341 * When PPS is enabled, unmask the interrupt for the ClockOut 342 * feature, so that the interrupt handler can send the PPS 343 * event when the clock SDP triggers. Clear mask when PPS is 344 * disabled 345 */ 346 if (rq->type == PTP_CLK_REQ_PPS) { 347 switch (adapter->hw.mac.type) { 348 case ixgbe_mac_X540: 349 if (on) 350 adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED; 351 else 352 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED; 353 354 ixgbe_ptp_setup_sdp(adapter); 355 return 0; 356 default: 357 break; 358 } 359 } 360 361 return -ENOTSUPP; 362 } 363 364 /** 365 * ixgbe_ptp_check_pps_event 366 * @adapter: the private adapter structure 367 * @eicr: the interrupt cause register value 368 * 369 * This function is called by the interrupt routine when checking for 370 * interrupts. It will check and handle a pps event. 371 */ 372 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr) 373 { 374 struct ixgbe_hw *hw = &adapter->hw; 375 struct ptp_clock_event event; 376 377 event.type = PTP_CLOCK_PPS; 378 379 /* this check is necessary in case the interrupt was enabled via some 380 * alternative means (ex. debug_fs). Better to check here than 381 * everywhere that calls this function. 382 */ 383 if (!adapter->ptp_clock) 384 return; 385 386 switch (hw->mac.type) { 387 case ixgbe_mac_X540: 388 ptp_clock_event(adapter->ptp_clock, &event); 389 break; 390 default: 391 break; 392 } 393 } 394 395 /** 396 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow 397 * @adapter: private adapter struct 398 * 399 * this watchdog task periodically reads the timecounter 400 * in order to prevent missing when the system time registers wrap 401 * around. This needs to be run approximately twice a minute. 402 */ 403 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter) 404 { 405 bool timeout = time_is_before_jiffies(adapter->last_overflow_check + 406 IXGBE_OVERFLOW_PERIOD); 407 struct timespec64 ts; 408 409 if (timeout) { 410 ixgbe_ptp_gettime(&adapter->ptp_caps, &ts); 411 adapter->last_overflow_check = jiffies; 412 } 413 } 414 415 /** 416 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched 417 * @adapter: private network adapter structure 418 * 419 * this watchdog task is scheduled to detect error case where hardware has 420 * dropped an Rx packet that was timestamped when the ring is full. The 421 * particular error is rare but leaves the device in a state unable to timestamp 422 * any future packets. 423 */ 424 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter) 425 { 426 struct ixgbe_hw *hw = &adapter->hw; 427 u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 428 unsigned long rx_event; 429 430 /* if we don't have a valid timestamp in the registers, just update the 431 * timeout counter and exit 432 */ 433 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) { 434 adapter->last_rx_ptp_check = jiffies; 435 return; 436 } 437 438 /* determine the most recent watchdog or rx_timestamp event */ 439 rx_event = adapter->last_rx_ptp_check; 440 if (time_after(adapter->last_rx_timestamp, rx_event)) 441 rx_event = adapter->last_rx_timestamp; 442 443 /* only need to read the high RXSTMP register to clear the lock */ 444 if (time_is_before_jiffies(rx_event + 5*HZ)) { 445 IXGBE_READ_REG(hw, IXGBE_RXSTMPH); 446 adapter->last_rx_ptp_check = jiffies; 447 448 e_warn(drv, "clearing RX Timestamp hang\n"); 449 } 450 } 451 452 /** 453 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp 454 * @adapter: the private adapter struct 455 * 456 * if the timestamp is valid, we convert it into the timecounter ns 457 * value, then store that result into the shhwtstamps structure which 458 * is passed up the network stack 459 */ 460 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter) 461 { 462 struct ixgbe_hw *hw = &adapter->hw; 463 struct skb_shared_hwtstamps shhwtstamps; 464 u64 regval = 0, ns; 465 unsigned long flags; 466 467 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL); 468 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32; 469 470 spin_lock_irqsave(&adapter->tmreg_lock, flags); 471 ns = timecounter_cyc2time(&adapter->tc, regval); 472 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 473 474 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 475 shhwtstamps.hwtstamp = ns_to_ktime(ns); 476 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps); 477 478 dev_kfree_skb_any(adapter->ptp_tx_skb); 479 adapter->ptp_tx_skb = NULL; 480 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state); 481 } 482 483 /** 484 * ixgbe_ptp_tx_hwtstamp_work 485 * @work: pointer to the work struct 486 * 487 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware 488 * timestamp has been taken for the current skb. It is necessary, because the 489 * descriptor's "done" bit does not correlate with the timestamp event. 490 */ 491 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work) 492 { 493 struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter, 494 ptp_tx_work); 495 struct ixgbe_hw *hw = &adapter->hw; 496 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start + 497 IXGBE_PTP_TX_TIMEOUT); 498 u32 tsynctxctl; 499 500 if (timeout) { 501 dev_kfree_skb_any(adapter->ptp_tx_skb); 502 adapter->ptp_tx_skb = NULL; 503 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state); 504 e_warn(drv, "clearing Tx Timestamp hang\n"); 505 return; 506 } 507 508 tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); 509 if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) 510 ixgbe_ptp_tx_hwtstamp(adapter); 511 else 512 /* reschedule to keep checking if it's not available yet */ 513 schedule_work(&adapter->ptp_tx_work); 514 } 515 516 /** 517 * ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp 518 * @adapter: pointer to adapter struct 519 * @skb: particular skb to send timestamp with 520 * 521 * if the timestamp is valid, we convert it into the timecounter ns 522 * value, then store that result into the shhwtstamps structure which 523 * is passed up the network stack 524 */ 525 void ixgbe_ptp_rx_hwtstamp(struct ixgbe_adapter *adapter, struct sk_buff *skb) 526 { 527 struct ixgbe_hw *hw = &adapter->hw; 528 struct skb_shared_hwtstamps *shhwtstamps; 529 u64 regval = 0, ns; 530 u32 tsyncrxctl; 531 unsigned long flags; 532 533 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 534 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) 535 return; 536 537 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL); 538 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32; 539 540 spin_lock_irqsave(&adapter->tmreg_lock, flags); 541 ns = timecounter_cyc2time(&adapter->tc, regval); 542 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 543 544 shhwtstamps = skb_hwtstamps(skb); 545 shhwtstamps->hwtstamp = ns_to_ktime(ns); 546 547 /* Update the last_rx_timestamp timer in order to enable watchdog check 548 * for error case of latched timestamp on a dropped packet. 549 */ 550 adapter->last_rx_timestamp = jiffies; 551 } 552 553 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr) 554 { 555 struct hwtstamp_config *config = &adapter->tstamp_config; 556 557 return copy_to_user(ifr->ifr_data, config, 558 sizeof(*config)) ? -EFAULT : 0; 559 } 560 561 /** 562 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode 563 * @adapter: the private ixgbe adapter structure 564 * @config: the hwtstamp configuration requested 565 * 566 * Outgoing time stamping can be enabled and disabled. Play nice and 567 * disable it when requested, although it shouldn't cause any overhead 568 * when no packet needs it. At most one packet in the queue may be 569 * marked for time stamping, otherwise it would be impossible to tell 570 * for sure to which packet the hardware time stamp belongs. 571 * 572 * Incoming time stamping has to be configured via the hardware 573 * filters. Not all combinations are supported, in particular event 574 * type has to be specified. Matching the kind of event packet is 575 * not supported, with the exception of "all V2 events regardless of 576 * level 2 or 4". 577 * 578 * Since hardware always timestamps Path delay packets when timestamping V2 579 * packets, regardless of the type specified in the register, only use V2 580 * Event mode. This more accurately tells the user what the hardware is going 581 * to do anyways. 582 * 583 * Note: this may modify the hwtstamp configuration towards a more general 584 * mode, if required to support the specifically requested mode. 585 */ 586 static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter, 587 struct hwtstamp_config *config) 588 { 589 struct ixgbe_hw *hw = &adapter->hw; 590 u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED; 591 u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED; 592 u32 tsync_rx_mtrl = PTP_EV_PORT << 16; 593 bool is_l2 = false; 594 u32 regval; 595 596 /* reserved for future extensions */ 597 if (config->flags) 598 return -EINVAL; 599 600 switch (config->tx_type) { 601 case HWTSTAMP_TX_OFF: 602 tsync_tx_ctl = 0; 603 case HWTSTAMP_TX_ON: 604 break; 605 default: 606 return -ERANGE; 607 } 608 609 switch (config->rx_filter) { 610 case HWTSTAMP_FILTER_NONE: 611 tsync_rx_ctl = 0; 612 tsync_rx_mtrl = 0; 613 break; 614 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 615 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; 616 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG; 617 break; 618 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 619 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; 620 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG; 621 break; 622 case HWTSTAMP_FILTER_PTP_V2_EVENT: 623 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 624 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 625 case HWTSTAMP_FILTER_PTP_V2_SYNC: 626 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 627 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 628 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 629 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 630 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 631 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2; 632 is_l2 = true; 633 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 634 break; 635 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 636 case HWTSTAMP_FILTER_ALL: 637 default: 638 /* 639 * register RXMTRL must be set in order to do V1 packets, 640 * therefore it is not possible to time stamp both V1 Sync and 641 * Delay_Req messages and hardware does not support 642 * timestamping all packets => return error 643 */ 644 config->rx_filter = HWTSTAMP_FILTER_NONE; 645 return -ERANGE; 646 } 647 648 if (hw->mac.type == ixgbe_mac_82598EB) { 649 if (tsync_rx_ctl | tsync_tx_ctl) 650 return -ERANGE; 651 return 0; 652 } 653 654 /* define ethertype filter for timestamping L2 packets */ 655 if (is_l2) 656 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 657 (IXGBE_ETQF_FILTER_EN | /* enable filter */ 658 IXGBE_ETQF_1588 | /* enable timestamping */ 659 ETH_P_1588)); /* 1588 eth protocol type */ 660 else 661 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0); 662 663 /* enable/disable TX */ 664 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); 665 regval &= ~IXGBE_TSYNCTXCTL_ENABLED; 666 regval |= tsync_tx_ctl; 667 IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval); 668 669 /* enable/disable RX */ 670 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 671 regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK); 672 regval |= tsync_rx_ctl; 673 IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval); 674 675 /* define which PTP packets are time stamped */ 676 IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl); 677 678 IXGBE_WRITE_FLUSH(hw); 679 680 /* clear TX/RX time stamp registers, just to be sure */ 681 regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH); 682 regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH); 683 684 return 0; 685 } 686 687 /** 688 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode 689 * @adapter: pointer to adapter struct 690 * @ifreq: ioctl data 691 * 692 * Set hardware to requested mode. If unsupported, return an error with no 693 * changes. Otherwise, store the mode for future reference. 694 */ 695 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr) 696 { 697 struct hwtstamp_config config; 698 int err; 699 700 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 701 return -EFAULT; 702 703 err = ixgbe_ptp_set_timestamp_mode(adapter, &config); 704 if (err) 705 return err; 706 707 /* save these settings for future reference */ 708 memcpy(&adapter->tstamp_config, &config, 709 sizeof(adapter->tstamp_config)); 710 711 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 712 -EFAULT : 0; 713 } 714 715 /** 716 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw 717 * @adapter: pointer to the adapter structure 718 * 719 * This function should be called to set the proper values for the TIMINCA 720 * register and tell the cyclecounter structure what the tick rate of SYSTIME 721 * is. It does not directly modify SYSTIME registers or the timecounter 722 * structure. It should be called whenever a new TIMINCA value is necessary, 723 * such as during initialization or when the link speed changes. 724 */ 725 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter) 726 { 727 struct ixgbe_hw *hw = &adapter->hw; 728 u32 incval = 0; 729 u32 shift = 0; 730 unsigned long flags; 731 732 /** 733 * Scale the NIC cycle counter by a large factor so that 734 * relatively small corrections to the frequency can be added 735 * or subtracted. The drawbacks of a large factor include 736 * (a) the clock register overflows more quickly, (b) the cycle 737 * counter structure must be able to convert the systime value 738 * to nanoseconds using only a multiplier and a right-shift, 739 * and (c) the value must fit within the timinca register space 740 * => math based on internal DMA clock rate and available bits 741 * 742 * Note that when there is no link, internal DMA clock is same as when 743 * link speed is 10Gb. Set the registers correctly even when link is 744 * down to preserve the clock setting 745 */ 746 switch (adapter->link_speed) { 747 case IXGBE_LINK_SPEED_100_FULL: 748 incval = IXGBE_INCVAL_100; 749 shift = IXGBE_INCVAL_SHIFT_100; 750 break; 751 case IXGBE_LINK_SPEED_1GB_FULL: 752 incval = IXGBE_INCVAL_1GB; 753 shift = IXGBE_INCVAL_SHIFT_1GB; 754 break; 755 case IXGBE_LINK_SPEED_10GB_FULL: 756 default: 757 incval = IXGBE_INCVAL_10GB; 758 shift = IXGBE_INCVAL_SHIFT_10GB; 759 break; 760 } 761 762 /** 763 * Modify the calculated values to fit within the correct 764 * number of bits specified by the hardware. The 82599 doesn't 765 * have the same space as the X540, so bitshift the calculated 766 * values to fit. 767 */ 768 switch (hw->mac.type) { 769 case ixgbe_mac_X540: 770 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval); 771 break; 772 case ixgbe_mac_82599EB: 773 incval >>= IXGBE_INCVAL_SHIFT_82599; 774 shift -= IXGBE_INCVAL_SHIFT_82599; 775 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, 776 (1 << IXGBE_INCPER_SHIFT_82599) | 777 incval); 778 break; 779 default: 780 /* other devices aren't supported */ 781 return; 782 } 783 784 /* update the base incval used to calculate frequency adjustment */ 785 ACCESS_ONCE(adapter->base_incval) = incval; 786 smp_mb(); 787 788 /* need lock to prevent incorrect read while modifying cyclecounter */ 789 spin_lock_irqsave(&adapter->tmreg_lock, flags); 790 791 memset(&adapter->cc, 0, sizeof(adapter->cc)); 792 adapter->cc.read = ixgbe_ptp_read; 793 adapter->cc.mask = CYCLECOUNTER_MASK(64); 794 adapter->cc.shift = shift; 795 adapter->cc.mult = 1; 796 797 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 798 } 799 800 /** 801 * ixgbe_ptp_reset 802 * @adapter: the ixgbe private board structure 803 * 804 * When the MAC resets, all the hardware bits for timesync are reset. This 805 * function is used to re-enable the device for PTP based on current settings. 806 * We do lose the current clock time, so just reset the cyclecounter to the 807 * system real clock time. 808 * 809 * This function will maintain hwtstamp_config settings, and resets the SDP 810 * output if it was enabled. 811 */ 812 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter) 813 { 814 struct ixgbe_hw *hw = &adapter->hw; 815 unsigned long flags; 816 817 /* set SYSTIME registers to 0 just in case */ 818 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000); 819 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000); 820 IXGBE_WRITE_FLUSH(hw); 821 822 /* reset the hardware timestamping mode */ 823 ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); 824 825 ixgbe_ptp_start_cyclecounter(adapter); 826 827 spin_lock_irqsave(&adapter->tmreg_lock, flags); 828 829 /* reset the ns time counter */ 830 timecounter_init(&adapter->tc, &adapter->cc, 831 ktime_to_ns(ktime_get_real())); 832 833 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 834 835 /* 836 * Now that the shift has been calculated and the systime 837 * registers reset, (re-)enable the Clock out feature 838 */ 839 ixgbe_ptp_setup_sdp(adapter); 840 } 841 842 /** 843 * ixgbe_ptp_create_clock 844 * @adapter: the ixgbe private adapter structure 845 * 846 * This function performs setup of the user entry point function table and 847 * initializes the PTP clock device, which is used to access the clock-like 848 * features of the PTP core. It will be called by ixgbe_ptp_init, only if 849 * there isn't already a clock device (such as after a suspend/resume cycle, 850 * where the clock device wasn't destroyed). 851 */ 852 static int ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter) 853 { 854 struct net_device *netdev = adapter->netdev; 855 long err; 856 857 /* do nothing if we already have a clock device */ 858 if (!IS_ERR_OR_NULL(adapter->ptp_clock)) 859 return 0; 860 861 switch (adapter->hw.mac.type) { 862 case ixgbe_mac_X540: 863 snprintf(adapter->ptp_caps.name, 864 sizeof(adapter->ptp_caps.name), 865 "%s", netdev->name); 866 adapter->ptp_caps.owner = THIS_MODULE; 867 adapter->ptp_caps.max_adj = 250000000; 868 adapter->ptp_caps.n_alarm = 0; 869 adapter->ptp_caps.n_ext_ts = 0; 870 adapter->ptp_caps.n_per_out = 0; 871 adapter->ptp_caps.pps = 1; 872 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq; 873 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; 874 adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime; 875 adapter->ptp_caps.settime64 = ixgbe_ptp_settime; 876 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; 877 break; 878 case ixgbe_mac_82599EB: 879 snprintf(adapter->ptp_caps.name, 880 sizeof(adapter->ptp_caps.name), 881 "%s", netdev->name); 882 adapter->ptp_caps.owner = THIS_MODULE; 883 adapter->ptp_caps.max_adj = 250000000; 884 adapter->ptp_caps.n_alarm = 0; 885 adapter->ptp_caps.n_ext_ts = 0; 886 adapter->ptp_caps.n_per_out = 0; 887 adapter->ptp_caps.pps = 0; 888 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq; 889 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; 890 adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime; 891 adapter->ptp_caps.settime64 = ixgbe_ptp_settime; 892 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; 893 break; 894 default: 895 adapter->ptp_clock = NULL; 896 return -EOPNOTSUPP; 897 } 898 899 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, 900 &adapter->pdev->dev); 901 if (IS_ERR(adapter->ptp_clock)) { 902 err = PTR_ERR(adapter->ptp_clock); 903 adapter->ptp_clock = NULL; 904 e_dev_err("ptp_clock_register failed\n"); 905 return err; 906 } else 907 e_dev_info("registered PHC device on %s\n", netdev->name); 908 909 /* set default timestamp mode to disabled here. We do this in 910 * create_clock instead of init, because we don't want to override the 911 * previous settings during a resume cycle. 912 */ 913 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 914 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 915 916 return 0; 917 } 918 919 /** 920 * ixgbe_ptp_init 921 * @adapter: the ixgbe private adapter structure 922 * 923 * This function performs the required steps for enabling PTP 924 * support. If PTP support has already been loaded it simply calls the 925 * cyclecounter init routine and exits. 926 */ 927 void ixgbe_ptp_init(struct ixgbe_adapter *adapter) 928 { 929 /* initialize the spin lock first since we can't control when a user 930 * will call the entry functions once we have initialized the clock 931 * device 932 */ 933 spin_lock_init(&adapter->tmreg_lock); 934 935 /* obtain a PTP device, or re-use an existing device */ 936 if (ixgbe_ptp_create_clock(adapter)) 937 return; 938 939 /* we have a clock so we can initialize work now */ 940 INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work); 941 942 /* reset the PTP related hardware bits */ 943 ixgbe_ptp_reset(adapter); 944 945 /* enter the IXGBE_PTP_RUNNING state */ 946 set_bit(__IXGBE_PTP_RUNNING, &adapter->state); 947 948 return; 949 } 950 951 /** 952 * ixgbe_ptp_suspend - stop PTP work items 953 * @ adapter: pointer to adapter struct 954 * 955 * this function suspends PTP activity, and prevents more PTP work from being 956 * generated, but does not destroy the PTP clock device. 957 */ 958 void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter) 959 { 960 /* Leave the IXGBE_PTP_RUNNING state. */ 961 if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state)) 962 return; 963 964 /* since this might be called in suspend, we don't clear the state, 965 * but simply reset the auxiliary PPS signal control register 966 */ 967 IXGBE_WRITE_REG(&adapter->hw, IXGBE_TSAUXC, 0x0); 968 969 /* ensure that we cancel any pending PTP Tx work item in progress */ 970 cancel_work_sync(&adapter->ptp_tx_work); 971 if (adapter->ptp_tx_skb) { 972 dev_kfree_skb_any(adapter->ptp_tx_skb); 973 adapter->ptp_tx_skb = NULL; 974 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state); 975 } 976 } 977 978 /** 979 * ixgbe_ptp_stop - close the PTP device 980 * @adapter: pointer to adapter struct 981 * 982 * completely destroy the PTP device, should only be called when the device is 983 * being fully closed. 984 */ 985 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter) 986 { 987 /* first, suspend PTP activity */ 988 ixgbe_ptp_suspend(adapter); 989 990 /* disable the PTP clock device */ 991 if (adapter->ptp_clock) { 992 ptp_clock_unregister(adapter->ptp_clock); 993 adapter->ptp_clock = NULL; 994 e_dev_info("removed PHC on %s\n", 995 adapter->netdev->name); 996 } 997 } 998