1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 #include "ixgbe.h" 5 #include <linux/ptp_classify.h> 6 #include <linux/clocksource.h> 7 8 /* 9 * The 82599 and the X540 do not have true 64bit nanosecond scale 10 * counter registers. Instead, SYSTIME is defined by a fixed point 11 * system which allows the user to define the scale counter increment 12 * value at every level change of the oscillator driving the SYSTIME 13 * value. For both devices the TIMINCA:IV field defines this 14 * increment. On the X540 device, 31 bits are provided. However on the 15 * 82599 only provides 24 bits. The time unit is determined by the 16 * clock frequency of the oscillator in combination with the TIMINCA 17 * register. When these devices link at 10Gb the oscillator has a 18 * period of 6.4ns. In order to convert the scale counter into 19 * nanoseconds the cyclecounter and timecounter structures are 20 * used. The SYSTIME registers need to be converted to ns values by use 21 * of only a right shift (division by power of 2). The following math 22 * determines the largest incvalue that will fit into the available 23 * bits in the TIMINCA register. 24 * 25 * PeriodWidth: Number of bits to store the clock period 26 * MaxWidth: The maximum width value of the TIMINCA register 27 * Period: The clock period for the oscillator 28 * round(): discard the fractional portion of the calculation 29 * 30 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ] 31 * 32 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns 33 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns 34 * 35 * The period also changes based on the link speed: 36 * At 10Gb link or no link, the period remains the same. 37 * At 1Gb link, the period is multiplied by 10. (64ns) 38 * At 100Mb link, the period is multiplied by 100. (640ns) 39 * 40 * The calculated value allows us to right shift the SYSTIME register 41 * value in order to quickly convert it into a nanosecond clock, 42 * while allowing for the maximum possible adjustment value. 43 * 44 * These diagrams are only for the 10Gb link period 45 * 46 * SYSTIMEH SYSTIMEL 47 * +--------------+ +--------------+ 48 * X540 | 32 | | 1 | 3 | 28 | 49 * *--------------+ +--------------+ 50 * \________ 36 bits ______/ fract 51 * 52 * +--------------+ +--------------+ 53 * 82599 | 32 | | 8 | 3 | 21 | 54 * *--------------+ +--------------+ 55 * \________ 43 bits ______/ fract 56 * 57 * The 36 bit X540 SYSTIME overflows every 58 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds 59 * 60 * The 43 bit 82599 SYSTIME overflows every 61 * 2^43 * 10^-9 / 3600 = 2.4 hours 62 */ 63 #define IXGBE_INCVAL_10GB 0x66666666 64 #define IXGBE_INCVAL_1GB 0x40000000 65 #define IXGBE_INCVAL_100 0x50000000 66 67 #define IXGBE_INCVAL_SHIFT_10GB 28 68 #define IXGBE_INCVAL_SHIFT_1GB 24 69 #define IXGBE_INCVAL_SHIFT_100 21 70 71 #define IXGBE_INCVAL_SHIFT_82599 7 72 #define IXGBE_INCPER_SHIFT_82599 24 73 74 #define IXGBE_OVERFLOW_PERIOD (HZ * 30) 75 #define IXGBE_PTP_TX_TIMEOUT (HZ) 76 77 /* We use our own definitions instead of NSEC_PER_SEC because we want to mark 78 * the value as a ULL to force precision when bit shifting. 79 */ 80 #define NS_PER_SEC 1000000000ULL 81 #define NS_PER_HALF_SEC 500000000ULL 82 83 /* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL 84 * which contain measurements of seconds and nanoseconds respectively. This 85 * matches the standard linux representation of time in the kernel. In addition, 86 * the X550 also has a SYSTIMER register which represents residue, or 87 * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA 88 * register is used, but it is unlike the X540 and 82599 devices. TIMINCA 89 * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the 90 * high bit representing whether the adjustent is positive or negative. Every 91 * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range 92 * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the 93 * X550's clock for purposes of SYSTIME generation is constant and not dependent 94 * on the link speed. 95 * 96 * SYSTIMEH SYSTIMEL SYSTIMER 97 * +--------------+ +--------------+ +-------------+ 98 * X550 | 32 | | 32 | | 32 | 99 * *--------------+ +--------------+ +-------------+ 100 * \____seconds___/ \_nanoseconds_/ \__2^-32 ns__/ 101 * 102 * This results in a full 96 bits to represent the clock, with 32 bits for 103 * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under 104 * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for 105 * underflow of adjustments. 106 * 107 * The 32 bits of seconds for the X550 overflows every 108 * 2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years. 109 * 110 * In order to adjust the clock frequency for the X550, the TIMINCA register is 111 * provided. This register represents a + or minus nearly 0.5 ns adjustment to 112 * the base frequency. It is measured in 2^-32 ns units, with the high bit being 113 * the sign bit. This register enables software to calculate frequency 114 * adjustments and apply them directly to the clock rate. 115 * 116 * The math for converting ppb into TIMINCA values is fairly straightforward. 117 * TIMINCA value = ( Base_Frequency * ppb ) / 1000000000ULL 118 * 119 * This assumes that ppb is never high enough to create a value bigger than 120 * TIMINCA's 31 bits can store. This is ensured by the stack. Calculating this 121 * value is also simple. 122 * Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL 123 * 124 * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is 125 * 12.5 nanoseconds. This means that the Max ppb is 39999999 126 * Note: We subtract one in order to ensure no overflow, because the TIMINCA 127 * register can only hold slightly under 0.5 nanoseconds. 128 * 129 * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns 130 * into 2^-32 units, which is 131 * 132 * 12.5 * 2^32 = C80000000 133 * 134 * Some revisions of hardware have a faster base frequency than the registers 135 * were defined for. To fix this, we use a timecounter structure with the 136 * proper mult and shift to convert the cycles into nanoseconds of time. 137 */ 138 #define IXGBE_X550_BASE_PERIOD 0xC80000000ULL 139 #define INCVALUE_MASK 0x7FFFFFFF 140 #define ISGN 0x80000000 141 #define MAX_TIMADJ 0x7FFFFFFF 142 143 /** 144 * ixgbe_ptp_setup_sdp_X540 145 * @adapter: private adapter structure 146 * 147 * this function enables or disables the clock out feature on SDP0 for 148 * the X540 device. It will create a 1 second periodic output that can 149 * be used as the PPS (via an interrupt). 150 * 151 * It calculates when the system time will be on an exact second, and then 152 * aligns the start of the PPS signal to that value. 153 * 154 * This works by using the cycle counter shift and mult values in reverse, and 155 * assumes that the values we're shifting will not overflow. 156 */ 157 static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter *adapter) 158 { 159 struct cyclecounter *cc = &adapter->hw_cc; 160 struct ixgbe_hw *hw = &adapter->hw; 161 u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem; 162 u64 ns = 0, clock_edge = 0, clock_period; 163 unsigned long flags; 164 165 /* disable the pin first */ 166 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0); 167 IXGBE_WRITE_FLUSH(hw); 168 169 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED)) 170 return; 171 172 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); 173 174 /* enable the SDP0 pin as output, and connected to the 175 * native function for Timesync (ClockOut) 176 */ 177 esdp |= IXGBE_ESDP_SDP0_DIR | 178 IXGBE_ESDP_SDP0_NATIVE; 179 180 /* enable the Clock Out feature on SDP0, and allow 181 * interrupts to occur when the pin changes 182 */ 183 tsauxc = (IXGBE_TSAUXC_EN_CLK | 184 IXGBE_TSAUXC_SYNCLK | 185 IXGBE_TSAUXC_SDP0_INT); 186 187 /* Determine the clock time period to use. This assumes that the 188 * cycle counter shift is small enough to avoid overflow. 189 */ 190 clock_period = div_u64((NS_PER_HALF_SEC << cc->shift), cc->mult); 191 clktiml = (u32)(clock_period); 192 clktimh = (u32)(clock_period >> 32); 193 194 /* Read the current clock time, and save the cycle counter value */ 195 spin_lock_irqsave(&adapter->tmreg_lock, flags); 196 ns = timecounter_read(&adapter->hw_tc); 197 clock_edge = adapter->hw_tc.cycle_last; 198 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 199 200 /* Figure out how many seconds to add in order to round up */ 201 div_u64_rem(ns, NS_PER_SEC, &rem); 202 203 /* Figure out how many nanoseconds to add to round the clock edge up 204 * to the next full second 205 */ 206 rem = (NS_PER_SEC - rem); 207 208 /* Adjust the clock edge to align with the next full second. */ 209 clock_edge += div_u64(((u64)rem << cc->shift), cc->mult); 210 trgttiml = (u32)clock_edge; 211 trgttimh = (u32)(clock_edge >> 32); 212 213 IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml); 214 IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh); 215 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml); 216 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh); 217 218 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 219 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc); 220 221 IXGBE_WRITE_FLUSH(hw); 222 } 223 224 /** 225 * ixgbe_ptp_setup_sdp_X550 226 * @adapter: private adapter structure 227 * 228 * Enable or disable a clock output signal on SDP 0 for X550 hardware. 229 * 230 * Use the target time feature to align the output signal on the next full 231 * second. 232 * 233 * This works by using the cycle counter shift and mult values in reverse, and 234 * assumes that the values we're shifting will not overflow. 235 */ 236 static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter *adapter) 237 { 238 u32 esdp, tsauxc, freqout, trgttiml, trgttimh, rem, tssdp; 239 struct cyclecounter *cc = &adapter->hw_cc; 240 struct ixgbe_hw *hw = &adapter->hw; 241 u64 ns = 0, clock_edge = 0; 242 struct timespec64 ts; 243 unsigned long flags; 244 245 /* disable the pin first */ 246 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0); 247 IXGBE_WRITE_FLUSH(hw); 248 249 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED)) 250 return; 251 252 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); 253 254 /* enable the SDP0 pin as output, and connected to the 255 * native function for Timesync (ClockOut) 256 */ 257 esdp |= IXGBE_ESDP_SDP0_DIR | 258 IXGBE_ESDP_SDP0_NATIVE; 259 260 /* enable the Clock Out feature on SDP0, and use Target Time 0 to 261 * enable generation of interrupts on the clock change. 262 */ 263 #define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000 264 tsauxc = (IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_ST0 | 265 IXGBE_TSAUXC_EN_TT0 | IXGBE_TSAUXC_SDP0_INT | 266 IXGBE_TSAUXC_DIS_TS_CLEAR); 267 268 tssdp = (IXGBE_TSSDP_TS_SDP0_EN | 269 IXGBE_TSSDP_TS_SDP0_CLK0); 270 271 /* Determine the clock time period to use. This assumes that the 272 * cycle counter shift is small enough to avoid overflowing a 32bit 273 * value. 274 */ 275 freqout = div_u64(NS_PER_HALF_SEC << cc->shift, cc->mult); 276 277 /* Read the current clock time, and save the cycle counter value */ 278 spin_lock_irqsave(&adapter->tmreg_lock, flags); 279 ns = timecounter_read(&adapter->hw_tc); 280 clock_edge = adapter->hw_tc.cycle_last; 281 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 282 283 /* Figure out how far past the next second we are */ 284 div_u64_rem(ns, NS_PER_SEC, &rem); 285 286 /* Figure out how many nanoseconds to add to round the clock edge up 287 * to the next full second 288 */ 289 rem = (NS_PER_SEC - rem); 290 291 /* Adjust the clock edge to align with the next full second. */ 292 clock_edge += div_u64(((u64)rem << cc->shift), cc->mult); 293 294 /* X550 hardware stores the time in 32bits of 'billions of cycles' and 295 * 32bits of 'cycles'. There's no guarantee that cycles represents 296 * nanoseconds. However, we can use the math from a timespec64 to 297 * convert into the hardware representation. 298 * 299 * See ixgbe_ptp_read_X550() for more details. 300 */ 301 ts = ns_to_timespec64(clock_edge); 302 trgttiml = (u32)ts.tv_nsec; 303 trgttimh = (u32)ts.tv_sec; 304 305 IXGBE_WRITE_REG(hw, IXGBE_FREQOUT0, freqout); 306 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml); 307 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh); 308 309 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 310 IXGBE_WRITE_REG(hw, IXGBE_TSSDP, tssdp); 311 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc); 312 313 IXGBE_WRITE_FLUSH(hw); 314 } 315 316 /** 317 * ixgbe_ptp_read_X550 - read cycle counter value 318 * @cc: cyclecounter structure 319 * 320 * This function reads SYSTIME registers. It is called by the cyclecounter 321 * structure to convert from internal representation into nanoseconds. We need 322 * this for X550 since some skews do not have expected clock frequency and 323 * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of 324 * "cycles", rather than seconds and nanoseconds. 325 */ 326 static u64 ixgbe_ptp_read_X550(const struct cyclecounter *cc) 327 { 328 struct ixgbe_adapter *adapter = 329 container_of(cc, struct ixgbe_adapter, hw_cc); 330 struct ixgbe_hw *hw = &adapter->hw; 331 struct timespec64 ts; 332 333 /* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'. 334 * Some revisions of hardware run at a higher frequency and so the 335 * cycles are not guaranteed to be nanoseconds. The timespec64 created 336 * here is used for its math/conversions but does not necessarily 337 * represent nominal time. 338 * 339 * It should be noted that this cyclecounter will overflow at a 340 * non-bitmask field since we have to convert our billions of cycles 341 * into an actual cycles count. This results in some possible weird 342 * situations at high cycle counter stamps. However given that 32 bits 343 * of "seconds" is ~138 years this isn't a problem. Even at the 344 * increased frequency of some revisions, this is still ~103 years. 345 * Since the SYSTIME values start at 0 and we never write them, it is 346 * highly unlikely for the cyclecounter to overflow in practice. 347 */ 348 IXGBE_READ_REG(hw, IXGBE_SYSTIMR); 349 ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML); 350 ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH); 351 352 return (u64)timespec64_to_ns(&ts); 353 } 354 355 /** 356 * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter) 357 * @cc: the cyclecounter structure 358 * 359 * this function reads the cyclecounter registers and is called by the 360 * cyclecounter structure used to construct a ns counter from the 361 * arbitrary fixed point registers 362 */ 363 static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc) 364 { 365 struct ixgbe_adapter *adapter = 366 container_of(cc, struct ixgbe_adapter, hw_cc); 367 struct ixgbe_hw *hw = &adapter->hw; 368 u64 stamp = 0; 369 370 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML); 371 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; 372 373 return stamp; 374 } 375 376 /** 377 * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp 378 * @adapter: private adapter structure 379 * @hwtstamp: stack timestamp structure 380 * @timestamp: unsigned 64bit system time value 381 * 382 * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value 383 * which can be used by the stack's ptp functions. 384 * 385 * The lock is used to protect consistency of the cyclecounter and the SYSTIME 386 * registers. However, it does not need to protect against the Rx or Tx 387 * timestamp registers, as there can't be a new timestamp until the old one is 388 * unlatched by reading. 389 * 390 * In addition to the timestamp in hardware, some controllers need a software 391 * overflow cyclecounter, and this function takes this into account as well. 392 **/ 393 static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter, 394 struct skb_shared_hwtstamps *hwtstamp, 395 u64 timestamp) 396 { 397 unsigned long flags; 398 struct timespec64 systime; 399 u64 ns; 400 401 memset(hwtstamp, 0, sizeof(*hwtstamp)); 402 403 switch (adapter->hw.mac.type) { 404 /* X550 and later hardware supposedly represent time using a seconds 405 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need 406 * to convert the timestamp into cycles before it can be fed to the 407 * cyclecounter. We need an actual cyclecounter because some revisions 408 * of hardware run at a higher frequency and thus the counter does 409 * not represent seconds/nanoseconds. Instead it can be thought of as 410 * cycles and billions of cycles. 411 */ 412 case ixgbe_mac_X550: 413 case ixgbe_mac_X550EM_x: 414 case ixgbe_mac_x550em_a: 415 /* Upper 32 bits represent billions of cycles, lower 32 bits 416 * represent cycles. However, we use timespec64_to_ns for the 417 * correct math even though the units haven't been corrected 418 * yet. 419 */ 420 systime.tv_sec = timestamp >> 32; 421 systime.tv_nsec = timestamp & 0xFFFFFFFF; 422 423 timestamp = timespec64_to_ns(&systime); 424 break; 425 default: 426 break; 427 } 428 429 spin_lock_irqsave(&adapter->tmreg_lock, flags); 430 ns = timecounter_cyc2time(&adapter->hw_tc, timestamp); 431 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 432 433 hwtstamp->hwtstamp = ns_to_ktime(ns); 434 } 435 436 /** 437 * ixgbe_ptp_adjfreq_82599 438 * @ptp: the ptp clock structure 439 * @ppb: parts per billion adjustment from base 440 * 441 * adjust the frequency of the ptp cycle counter by the 442 * indicated ppb from the base frequency. 443 */ 444 static int ixgbe_ptp_adjfreq_82599(struct ptp_clock_info *ptp, s32 ppb) 445 { 446 struct ixgbe_adapter *adapter = 447 container_of(ptp, struct ixgbe_adapter, ptp_caps); 448 struct ixgbe_hw *hw = &adapter->hw; 449 u64 freq, incval; 450 u32 diff; 451 int neg_adj = 0; 452 453 if (ppb < 0) { 454 neg_adj = 1; 455 ppb = -ppb; 456 } 457 458 smp_mb(); 459 incval = READ_ONCE(adapter->base_incval); 460 461 freq = incval; 462 freq *= ppb; 463 diff = div_u64(freq, 1000000000ULL); 464 465 incval = neg_adj ? (incval - diff) : (incval + diff); 466 467 switch (hw->mac.type) { 468 case ixgbe_mac_X540: 469 if (incval > 0xFFFFFFFFULL) 470 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n"); 471 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval); 472 break; 473 case ixgbe_mac_82599EB: 474 if (incval > 0x00FFFFFFULL) 475 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n"); 476 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, 477 BIT(IXGBE_INCPER_SHIFT_82599) | 478 ((u32)incval & 0x00FFFFFFUL)); 479 break; 480 default: 481 break; 482 } 483 484 return 0; 485 } 486 487 /** 488 * ixgbe_ptp_adjfreq_X550 489 * @ptp: the ptp clock structure 490 * @ppb: parts per billion adjustment from base 491 * 492 * adjust the frequency of the SYSTIME registers by the indicated ppb from base 493 * frequency 494 */ 495 static int ixgbe_ptp_adjfreq_X550(struct ptp_clock_info *ptp, s32 ppb) 496 { 497 struct ixgbe_adapter *adapter = 498 container_of(ptp, struct ixgbe_adapter, ptp_caps); 499 struct ixgbe_hw *hw = &adapter->hw; 500 int neg_adj = 0; 501 u64 rate = IXGBE_X550_BASE_PERIOD; 502 u32 inca; 503 504 if (ppb < 0) { 505 neg_adj = 1; 506 ppb = -ppb; 507 } 508 rate *= ppb; 509 rate = div_u64(rate, 1000000000ULL); 510 511 /* warn if rate is too large */ 512 if (rate >= INCVALUE_MASK) 513 e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n"); 514 515 inca = rate & INCVALUE_MASK; 516 if (neg_adj) 517 inca |= ISGN; 518 519 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca); 520 521 return 0; 522 } 523 524 /** 525 * ixgbe_ptp_adjtime 526 * @ptp: the ptp clock structure 527 * @delta: offset to adjust the cycle counter by 528 * 529 * adjust the timer by resetting the timecounter structure. 530 */ 531 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 532 { 533 struct ixgbe_adapter *adapter = 534 container_of(ptp, struct ixgbe_adapter, ptp_caps); 535 unsigned long flags; 536 537 spin_lock_irqsave(&adapter->tmreg_lock, flags); 538 timecounter_adjtime(&adapter->hw_tc, delta); 539 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 540 541 if (adapter->ptp_setup_sdp) 542 adapter->ptp_setup_sdp(adapter); 543 544 return 0; 545 } 546 547 /** 548 * ixgbe_ptp_gettimex 549 * @ptp: the ptp clock structure 550 * @ts: timespec to hold the PHC timestamp 551 * @sts: structure to hold the system time before and after reading the PHC 552 * 553 * read the timecounter and return the correct value on ns, 554 * after converting it into a struct timespec. 555 */ 556 static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp, 557 struct timespec64 *ts, 558 struct ptp_system_timestamp *sts) 559 { 560 struct ixgbe_adapter *adapter = 561 container_of(ptp, struct ixgbe_adapter, ptp_caps); 562 struct ixgbe_hw *hw = &adapter->hw; 563 unsigned long flags; 564 u64 ns, stamp; 565 566 spin_lock_irqsave(&adapter->tmreg_lock, flags); 567 568 switch (adapter->hw.mac.type) { 569 case ixgbe_mac_X550: 570 case ixgbe_mac_X550EM_x: 571 case ixgbe_mac_x550em_a: 572 /* Upper 32 bits represent billions of cycles, lower 32 bits 573 * represent cycles. However, we use timespec64_to_ns for the 574 * correct math even though the units haven't been corrected 575 * yet. 576 */ 577 ptp_read_system_prets(sts); 578 IXGBE_READ_REG(hw, IXGBE_SYSTIMR); 579 ptp_read_system_postts(sts); 580 ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML); 581 ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH); 582 stamp = timespec64_to_ns(ts); 583 break; 584 default: 585 ptp_read_system_prets(sts); 586 stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML); 587 ptp_read_system_postts(sts); 588 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; 589 break; 590 } 591 592 ns = timecounter_cyc2time(&adapter->hw_tc, stamp); 593 594 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 595 596 *ts = ns_to_timespec64(ns); 597 598 return 0; 599 } 600 601 /** 602 * ixgbe_ptp_settime 603 * @ptp: the ptp clock structure 604 * @ts: the timespec containing the new time for the cycle counter 605 * 606 * reset the timecounter to use a new base value instead of the kernel 607 * wall timer value. 608 */ 609 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp, 610 const struct timespec64 *ts) 611 { 612 struct ixgbe_adapter *adapter = 613 container_of(ptp, struct ixgbe_adapter, ptp_caps); 614 unsigned long flags; 615 u64 ns = timespec64_to_ns(ts); 616 617 /* reset the timecounter */ 618 spin_lock_irqsave(&adapter->tmreg_lock, flags); 619 timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns); 620 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 621 622 if (adapter->ptp_setup_sdp) 623 adapter->ptp_setup_sdp(adapter); 624 return 0; 625 } 626 627 /** 628 * ixgbe_ptp_feature_enable 629 * @ptp: the ptp clock structure 630 * @rq: the requested feature to change 631 * @on: whether to enable or disable the feature 632 * 633 * enable (or disable) ancillary features of the phc subsystem. 634 * our driver only supports the PPS feature on the X540 635 */ 636 static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp, 637 struct ptp_clock_request *rq, int on) 638 { 639 struct ixgbe_adapter *adapter = 640 container_of(ptp, struct ixgbe_adapter, ptp_caps); 641 642 /** 643 * When PPS is enabled, unmask the interrupt for the ClockOut 644 * feature, so that the interrupt handler can send the PPS 645 * event when the clock SDP triggers. Clear mask when PPS is 646 * disabled 647 */ 648 if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp) 649 return -ENOTSUPP; 650 651 if (on) 652 adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED; 653 else 654 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED; 655 656 adapter->ptp_setup_sdp(adapter); 657 return 0; 658 } 659 660 /** 661 * ixgbe_ptp_check_pps_event 662 * @adapter: the private adapter structure 663 * 664 * This function is called by the interrupt routine when checking for 665 * interrupts. It will check and handle a pps event. 666 */ 667 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter) 668 { 669 struct ixgbe_hw *hw = &adapter->hw; 670 struct ptp_clock_event event; 671 672 event.type = PTP_CLOCK_PPS; 673 674 /* this check is necessary in case the interrupt was enabled via some 675 * alternative means (ex. debug_fs). Better to check here than 676 * everywhere that calls this function. 677 */ 678 if (!adapter->ptp_clock) 679 return; 680 681 switch (hw->mac.type) { 682 case ixgbe_mac_X540: 683 ptp_clock_event(adapter->ptp_clock, &event); 684 break; 685 default: 686 break; 687 } 688 } 689 690 /** 691 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow 692 * @adapter: private adapter struct 693 * 694 * this watchdog task periodically reads the timecounter 695 * in order to prevent missing when the system time registers wrap 696 * around. This needs to be run approximately twice a minute. 697 */ 698 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter) 699 { 700 bool timeout = time_is_before_jiffies(adapter->last_overflow_check + 701 IXGBE_OVERFLOW_PERIOD); 702 unsigned long flags; 703 704 if (timeout) { 705 /* Update the timecounter */ 706 spin_lock_irqsave(&adapter->tmreg_lock, flags); 707 timecounter_read(&adapter->hw_tc); 708 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 709 710 adapter->last_overflow_check = jiffies; 711 } 712 } 713 714 /** 715 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched 716 * @adapter: private network adapter structure 717 * 718 * this watchdog task is scheduled to detect error case where hardware has 719 * dropped an Rx packet that was timestamped when the ring is full. The 720 * particular error is rare but leaves the device in a state unable to timestamp 721 * any future packets. 722 */ 723 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter) 724 { 725 struct ixgbe_hw *hw = &adapter->hw; 726 u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 727 struct ixgbe_ring *rx_ring; 728 unsigned long rx_event; 729 int n; 730 731 /* if we don't have a valid timestamp in the registers, just update the 732 * timeout counter and exit 733 */ 734 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) { 735 adapter->last_rx_ptp_check = jiffies; 736 return; 737 } 738 739 /* determine the most recent watchdog or rx_timestamp event */ 740 rx_event = adapter->last_rx_ptp_check; 741 for (n = 0; n < adapter->num_rx_queues; n++) { 742 rx_ring = adapter->rx_ring[n]; 743 if (time_after(rx_ring->last_rx_timestamp, rx_event)) 744 rx_event = rx_ring->last_rx_timestamp; 745 } 746 747 /* only need to read the high RXSTMP register to clear the lock */ 748 if (time_is_before_jiffies(rx_event + 5 * HZ)) { 749 IXGBE_READ_REG(hw, IXGBE_RXSTMPH); 750 adapter->last_rx_ptp_check = jiffies; 751 752 adapter->rx_hwtstamp_cleared++; 753 e_warn(drv, "clearing RX Timestamp hang\n"); 754 } 755 } 756 757 /** 758 * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state 759 * @adapter: the private adapter structure 760 * 761 * This function should be called whenever the state related to a Tx timestamp 762 * needs to be cleared. This helps ensure that all related bits are reset for 763 * the next Tx timestamp event. 764 */ 765 static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter) 766 { 767 struct ixgbe_hw *hw = &adapter->hw; 768 769 IXGBE_READ_REG(hw, IXGBE_TXSTMPH); 770 if (adapter->ptp_tx_skb) { 771 dev_kfree_skb_any(adapter->ptp_tx_skb); 772 adapter->ptp_tx_skb = NULL; 773 } 774 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state); 775 } 776 777 /** 778 * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes 779 * @adapter: private network adapter structure 780 */ 781 void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter) 782 { 783 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start + 784 IXGBE_PTP_TX_TIMEOUT); 785 786 if (!adapter->ptp_tx_skb) 787 return; 788 789 if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state)) 790 return; 791 792 /* If we haven't received a timestamp within the timeout, it is 793 * reasonable to assume that it will never occur, so we can unlock the 794 * timestamp bit when this occurs. 795 */ 796 if (timeout) { 797 cancel_work_sync(&adapter->ptp_tx_work); 798 ixgbe_ptp_clear_tx_timestamp(adapter); 799 adapter->tx_hwtstamp_timeouts++; 800 e_warn(drv, "clearing Tx timestamp hang\n"); 801 } 802 } 803 804 /** 805 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp 806 * @adapter: the private adapter struct 807 * 808 * if the timestamp is valid, we convert it into the timecounter ns 809 * value, then store that result into the shhwtstamps structure which 810 * is passed up the network stack 811 */ 812 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter) 813 { 814 struct sk_buff *skb = adapter->ptp_tx_skb; 815 struct ixgbe_hw *hw = &adapter->hw; 816 struct skb_shared_hwtstamps shhwtstamps; 817 u64 regval = 0; 818 819 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL); 820 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32; 821 ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval); 822 823 /* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state 824 * bit prior to notifying the stack via skb_tstamp_tx(). This prevents 825 * well behaved applications from attempting to timestamp again prior 826 * to the lock bit being clear. 827 */ 828 adapter->ptp_tx_skb = NULL; 829 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state); 830 831 /* Notify the stack and then free the skb after we've unlocked */ 832 skb_tstamp_tx(skb, &shhwtstamps); 833 dev_kfree_skb_any(skb); 834 } 835 836 /** 837 * ixgbe_ptp_tx_hwtstamp_work 838 * @work: pointer to the work struct 839 * 840 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware 841 * timestamp has been taken for the current skb. It is necessary, because the 842 * descriptor's "done" bit does not correlate with the timestamp event. 843 */ 844 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work) 845 { 846 struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter, 847 ptp_tx_work); 848 struct ixgbe_hw *hw = &adapter->hw; 849 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start + 850 IXGBE_PTP_TX_TIMEOUT); 851 u32 tsynctxctl; 852 853 /* we have to have a valid skb to poll for a timestamp */ 854 if (!adapter->ptp_tx_skb) { 855 ixgbe_ptp_clear_tx_timestamp(adapter); 856 return; 857 } 858 859 /* stop polling once we have a valid timestamp */ 860 tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); 861 if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) { 862 ixgbe_ptp_tx_hwtstamp(adapter); 863 return; 864 } 865 866 if (timeout) { 867 ixgbe_ptp_clear_tx_timestamp(adapter); 868 adapter->tx_hwtstamp_timeouts++; 869 e_warn(drv, "clearing Tx Timestamp hang\n"); 870 } else { 871 /* reschedule to keep checking if it's not available yet */ 872 schedule_work(&adapter->ptp_tx_work); 873 } 874 } 875 876 /** 877 * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer 878 * @q_vector: structure containing interrupt and ring information 879 * @skb: the packet 880 * 881 * This function will be called by the Rx routine of the timestamp for this 882 * packet is stored in the buffer. The value is stored in little endian format 883 * starting at the end of the packet data. 884 */ 885 void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector, 886 struct sk_buff *skb) 887 { 888 __le64 regval; 889 890 /* copy the bits out of the skb, and then trim the skb length */ 891 skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, ®val, 892 IXGBE_TS_HDR_LEN); 893 __pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN); 894 895 /* The timestamp is recorded in little endian format, and is stored at 896 * the end of the packet. 897 * 898 * DWORD: N N + 1 N + 2 899 * Field: End of Packet SYSTIMH SYSTIML 900 */ 901 ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb), 902 le64_to_cpu(regval)); 903 } 904 905 /** 906 * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp 907 * @q_vector: structure containing interrupt and ring information 908 * @skb: particular skb to send timestamp with 909 * 910 * if the timestamp is valid, we convert it into the timecounter ns 911 * value, then store that result into the shhwtstamps structure which 912 * is passed up the network stack 913 */ 914 void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector, 915 struct sk_buff *skb) 916 { 917 struct ixgbe_adapter *adapter; 918 struct ixgbe_hw *hw; 919 u64 regval = 0; 920 u32 tsyncrxctl; 921 922 /* we cannot process timestamps on a ring without a q_vector */ 923 if (!q_vector || !q_vector->adapter) 924 return; 925 926 adapter = q_vector->adapter; 927 hw = &adapter->hw; 928 929 /* Read the tsyncrxctl register afterwards in order to prevent taking an 930 * I/O hit on every packet. 931 */ 932 933 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 934 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) 935 return; 936 937 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL); 938 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32; 939 940 ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); 941 } 942 943 /** 944 * ixgbe_ptp_get_ts_config - get current hardware timestamping configuration 945 * @adapter: pointer to adapter structure 946 * @ifr: ioctl data 947 * 948 * This function returns the current timestamping settings. Rather than 949 * attempt to deconstruct registers to fill in the values, simply keep a copy 950 * of the old settings around, and return a copy when requested. 951 */ 952 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr) 953 { 954 struct hwtstamp_config *config = &adapter->tstamp_config; 955 956 return copy_to_user(ifr->ifr_data, config, 957 sizeof(*config)) ? -EFAULT : 0; 958 } 959 960 /** 961 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode 962 * @adapter: the private ixgbe adapter structure 963 * @config: the hwtstamp configuration requested 964 * 965 * Outgoing time stamping can be enabled and disabled. Play nice and 966 * disable it when requested, although it shouldn't cause any overhead 967 * when no packet needs it. At most one packet in the queue may be 968 * marked for time stamping, otherwise it would be impossible to tell 969 * for sure to which packet the hardware time stamp belongs. 970 * 971 * Incoming time stamping has to be configured via the hardware 972 * filters. Not all combinations are supported, in particular event 973 * type has to be specified. Matching the kind of event packet is 974 * not supported, with the exception of "all V2 events regardless of 975 * level 2 or 4". 976 * 977 * Since hardware always timestamps Path delay packets when timestamping V2 978 * packets, regardless of the type specified in the register, only use V2 979 * Event mode. This more accurately tells the user what the hardware is going 980 * to do anyways. 981 * 982 * Note: this may modify the hwtstamp configuration towards a more general 983 * mode, if required to support the specifically requested mode. 984 */ 985 static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter, 986 struct hwtstamp_config *config) 987 { 988 struct ixgbe_hw *hw = &adapter->hw; 989 u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED; 990 u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED; 991 u32 tsync_rx_mtrl = PTP_EV_PORT << 16; 992 bool is_l2 = false; 993 u32 regval; 994 995 /* reserved for future extensions */ 996 if (config->flags) 997 return -EINVAL; 998 999 switch (config->tx_type) { 1000 case HWTSTAMP_TX_OFF: 1001 tsync_tx_ctl = 0; 1002 case HWTSTAMP_TX_ON: 1003 break; 1004 default: 1005 return -ERANGE; 1006 } 1007 1008 switch (config->rx_filter) { 1009 case HWTSTAMP_FILTER_NONE: 1010 tsync_rx_ctl = 0; 1011 tsync_rx_mtrl = 0; 1012 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1013 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1014 break; 1015 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1016 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; 1017 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG; 1018 adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1019 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1020 break; 1021 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1022 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; 1023 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG; 1024 adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1025 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1026 break; 1027 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1028 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1029 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1030 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1031 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1032 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1033 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1034 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1035 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1036 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2; 1037 is_l2 = true; 1038 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1039 adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1040 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1041 break; 1042 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1043 case HWTSTAMP_FILTER_NTP_ALL: 1044 case HWTSTAMP_FILTER_ALL: 1045 /* The X550 controller is capable of timestamping all packets, 1046 * which allows it to accept any filter. 1047 */ 1048 if (hw->mac.type >= ixgbe_mac_X550) { 1049 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL; 1050 config->rx_filter = HWTSTAMP_FILTER_ALL; 1051 adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED; 1052 break; 1053 } 1054 fallthrough; 1055 default: 1056 /* 1057 * register RXMTRL must be set in order to do V1 packets, 1058 * therefore it is not possible to time stamp both V1 Sync and 1059 * Delay_Req messages and hardware does not support 1060 * timestamping all packets => return error 1061 */ 1062 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1063 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1064 config->rx_filter = HWTSTAMP_FILTER_NONE; 1065 return -ERANGE; 1066 } 1067 1068 if (hw->mac.type == ixgbe_mac_82598EB) { 1069 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1070 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1071 if (tsync_rx_ctl | tsync_tx_ctl) 1072 return -ERANGE; 1073 return 0; 1074 } 1075 1076 /* Per-packet timestamping only works if the filter is set to all 1077 * packets. Since this is desired, always timestamp all packets as long 1078 * as any Rx filter was configured. 1079 */ 1080 switch (hw->mac.type) { 1081 case ixgbe_mac_X550: 1082 case ixgbe_mac_X550EM_x: 1083 case ixgbe_mac_x550em_a: 1084 /* enable timestamping all packets only if at least some 1085 * packets were requested. Otherwise, play nice and disable 1086 * timestamping 1087 */ 1088 if (config->rx_filter == HWTSTAMP_FILTER_NONE) 1089 break; 1090 1091 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED | 1092 IXGBE_TSYNCRXCTL_TYPE_ALL | 1093 IXGBE_TSYNCRXCTL_TSIP_UT_EN; 1094 config->rx_filter = HWTSTAMP_FILTER_ALL; 1095 adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED; 1096 adapter->flags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER; 1097 is_l2 = true; 1098 break; 1099 default: 1100 break; 1101 } 1102 1103 /* define ethertype filter for timestamping L2 packets */ 1104 if (is_l2) 1105 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 1106 (IXGBE_ETQF_FILTER_EN | /* enable filter */ 1107 IXGBE_ETQF_1588 | /* enable timestamping */ 1108 ETH_P_1588)); /* 1588 eth protocol type */ 1109 else 1110 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0); 1111 1112 /* enable/disable TX */ 1113 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); 1114 regval &= ~IXGBE_TSYNCTXCTL_ENABLED; 1115 regval |= tsync_tx_ctl; 1116 IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval); 1117 1118 /* enable/disable RX */ 1119 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 1120 regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK); 1121 regval |= tsync_rx_ctl; 1122 IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval); 1123 1124 /* define which PTP packets are time stamped */ 1125 IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl); 1126 1127 IXGBE_WRITE_FLUSH(hw); 1128 1129 /* clear TX/RX time stamp registers, just to be sure */ 1130 ixgbe_ptp_clear_tx_timestamp(adapter); 1131 IXGBE_READ_REG(hw, IXGBE_RXSTMPH); 1132 1133 return 0; 1134 } 1135 1136 /** 1137 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode 1138 * @adapter: pointer to adapter struct 1139 * @ifr: ioctl data 1140 * 1141 * Set hardware to requested mode. If unsupported, return an error with no 1142 * changes. Otherwise, store the mode for future reference. 1143 */ 1144 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr) 1145 { 1146 struct hwtstamp_config config; 1147 int err; 1148 1149 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1150 return -EFAULT; 1151 1152 err = ixgbe_ptp_set_timestamp_mode(adapter, &config); 1153 if (err) 1154 return err; 1155 1156 /* save these settings for future reference */ 1157 memcpy(&adapter->tstamp_config, &config, 1158 sizeof(adapter->tstamp_config)); 1159 1160 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 1161 -EFAULT : 0; 1162 } 1163 1164 static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter, 1165 u32 *shift, u32 *incval) 1166 { 1167 /** 1168 * Scale the NIC cycle counter by a large factor so that 1169 * relatively small corrections to the frequency can be added 1170 * or subtracted. The drawbacks of a large factor include 1171 * (a) the clock register overflows more quickly, (b) the cycle 1172 * counter structure must be able to convert the systime value 1173 * to nanoseconds using only a multiplier and a right-shift, 1174 * and (c) the value must fit within the timinca register space 1175 * => math based on internal DMA clock rate and available bits 1176 * 1177 * Note that when there is no link, internal DMA clock is same as when 1178 * link speed is 10Gb. Set the registers correctly even when link is 1179 * down to preserve the clock setting 1180 */ 1181 switch (adapter->link_speed) { 1182 case IXGBE_LINK_SPEED_100_FULL: 1183 *shift = IXGBE_INCVAL_SHIFT_100; 1184 *incval = IXGBE_INCVAL_100; 1185 break; 1186 case IXGBE_LINK_SPEED_1GB_FULL: 1187 *shift = IXGBE_INCVAL_SHIFT_1GB; 1188 *incval = IXGBE_INCVAL_1GB; 1189 break; 1190 case IXGBE_LINK_SPEED_10GB_FULL: 1191 default: 1192 *shift = IXGBE_INCVAL_SHIFT_10GB; 1193 *incval = IXGBE_INCVAL_10GB; 1194 break; 1195 } 1196 } 1197 1198 /** 1199 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw 1200 * @adapter: pointer to the adapter structure 1201 * 1202 * This function should be called to set the proper values for the TIMINCA 1203 * register and tell the cyclecounter structure what the tick rate of SYSTIME 1204 * is. It does not directly modify SYSTIME registers or the timecounter 1205 * structure. It should be called whenever a new TIMINCA value is necessary, 1206 * such as during initialization or when the link speed changes. 1207 */ 1208 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter) 1209 { 1210 struct ixgbe_hw *hw = &adapter->hw; 1211 struct cyclecounter cc; 1212 unsigned long flags; 1213 u32 incval = 0; 1214 u32 tsauxc = 0; 1215 u32 fuse0 = 0; 1216 1217 /* For some of the boards below this mask is technically incorrect. 1218 * The timestamp mask overflows at approximately 61bits. However the 1219 * particular hardware does not overflow on an even bitmask value. 1220 * Instead, it overflows due to conversion of upper 32bits billions of 1221 * cycles. Timecounters are not really intended for this purpose so 1222 * they do not properly function if the overflow point isn't 2^N-1. 1223 * However, the actual SYSTIME values in question take ~138 years to 1224 * overflow. In practice this means they won't actually overflow. A 1225 * proper fix to this problem would require modification of the 1226 * timecounter delta calculations. 1227 */ 1228 cc.mask = CLOCKSOURCE_MASK(64); 1229 cc.mult = 1; 1230 cc.shift = 0; 1231 1232 switch (hw->mac.type) { 1233 case ixgbe_mac_X550EM_x: 1234 /* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is 1235 * designed to represent seconds and nanoseconds when this is 1236 * the case. However, some revisions of hardware have a 400Mhz 1237 * clock and we have to compensate for this frequency 1238 * variation using corrected mult and shift values. 1239 */ 1240 fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0)); 1241 if (!(fuse0 & IXGBE_FUSES0_300MHZ)) { 1242 cc.mult = 3; 1243 cc.shift = 2; 1244 } 1245 fallthrough; 1246 case ixgbe_mac_x550em_a: 1247 case ixgbe_mac_X550: 1248 cc.read = ixgbe_ptp_read_X550; 1249 1250 /* enable SYSTIME counter */ 1251 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0); 1252 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0); 1253 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0); 1254 tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC); 1255 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 1256 tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME); 1257 IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS); 1258 IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC); 1259 1260 IXGBE_WRITE_FLUSH(hw); 1261 break; 1262 case ixgbe_mac_X540: 1263 cc.read = ixgbe_ptp_read_82599; 1264 1265 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval); 1266 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval); 1267 break; 1268 case ixgbe_mac_82599EB: 1269 cc.read = ixgbe_ptp_read_82599; 1270 1271 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval); 1272 incval >>= IXGBE_INCVAL_SHIFT_82599; 1273 cc.shift -= IXGBE_INCVAL_SHIFT_82599; 1274 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, 1275 BIT(IXGBE_INCPER_SHIFT_82599) | incval); 1276 break; 1277 default: 1278 /* other devices aren't supported */ 1279 return; 1280 } 1281 1282 /* update the base incval used to calculate frequency adjustment */ 1283 WRITE_ONCE(adapter->base_incval, incval); 1284 smp_mb(); 1285 1286 /* need lock to prevent incorrect read while modifying cyclecounter */ 1287 spin_lock_irqsave(&adapter->tmreg_lock, flags); 1288 memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc)); 1289 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 1290 } 1291 1292 /** 1293 * ixgbe_ptp_reset 1294 * @adapter: the ixgbe private board structure 1295 * 1296 * When the MAC resets, all the hardware bits for timesync are reset. This 1297 * function is used to re-enable the device for PTP based on current settings. 1298 * We do lose the current clock time, so just reset the cyclecounter to the 1299 * system real clock time. 1300 * 1301 * This function will maintain hwtstamp_config settings, and resets the SDP 1302 * output if it was enabled. 1303 */ 1304 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter) 1305 { 1306 struct ixgbe_hw *hw = &adapter->hw; 1307 unsigned long flags; 1308 1309 /* reset the hardware timestamping mode */ 1310 ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); 1311 1312 /* 82598 does not support PTP */ 1313 if (hw->mac.type == ixgbe_mac_82598EB) 1314 return; 1315 1316 ixgbe_ptp_start_cyclecounter(adapter); 1317 1318 spin_lock_irqsave(&adapter->tmreg_lock, flags); 1319 timecounter_init(&adapter->hw_tc, &adapter->hw_cc, 1320 ktime_to_ns(ktime_get_real())); 1321 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 1322 1323 adapter->last_overflow_check = jiffies; 1324 1325 /* Now that the shift has been calculated and the systime 1326 * registers reset, (re-)enable the Clock out feature 1327 */ 1328 if (adapter->ptp_setup_sdp) 1329 adapter->ptp_setup_sdp(adapter); 1330 } 1331 1332 /** 1333 * ixgbe_ptp_create_clock 1334 * @adapter: the ixgbe private adapter structure 1335 * 1336 * This function performs setup of the user entry point function table and 1337 * initializes the PTP clock device, which is used to access the clock-like 1338 * features of the PTP core. It will be called by ixgbe_ptp_init, and may 1339 * reuse a previously initialized clock (such as during a suspend/resume 1340 * cycle). 1341 */ 1342 static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter) 1343 { 1344 struct net_device *netdev = adapter->netdev; 1345 long err; 1346 1347 /* do nothing if we already have a clock device */ 1348 if (!IS_ERR_OR_NULL(adapter->ptp_clock)) 1349 return 0; 1350 1351 switch (adapter->hw.mac.type) { 1352 case ixgbe_mac_X540: 1353 snprintf(adapter->ptp_caps.name, 1354 sizeof(adapter->ptp_caps.name), 1355 "%s", netdev->name); 1356 adapter->ptp_caps.owner = THIS_MODULE; 1357 adapter->ptp_caps.max_adj = 250000000; 1358 adapter->ptp_caps.n_alarm = 0; 1359 adapter->ptp_caps.n_ext_ts = 0; 1360 adapter->ptp_caps.n_per_out = 0; 1361 adapter->ptp_caps.pps = 1; 1362 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599; 1363 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; 1364 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex; 1365 adapter->ptp_caps.settime64 = ixgbe_ptp_settime; 1366 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; 1367 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X540; 1368 break; 1369 case ixgbe_mac_82599EB: 1370 snprintf(adapter->ptp_caps.name, 1371 sizeof(adapter->ptp_caps.name), 1372 "%s", netdev->name); 1373 adapter->ptp_caps.owner = THIS_MODULE; 1374 adapter->ptp_caps.max_adj = 250000000; 1375 adapter->ptp_caps.n_alarm = 0; 1376 adapter->ptp_caps.n_ext_ts = 0; 1377 adapter->ptp_caps.n_per_out = 0; 1378 adapter->ptp_caps.pps = 0; 1379 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599; 1380 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; 1381 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex; 1382 adapter->ptp_caps.settime64 = ixgbe_ptp_settime; 1383 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; 1384 break; 1385 case ixgbe_mac_X550: 1386 case ixgbe_mac_X550EM_x: 1387 case ixgbe_mac_x550em_a: 1388 snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name); 1389 adapter->ptp_caps.owner = THIS_MODULE; 1390 adapter->ptp_caps.max_adj = 30000000; 1391 adapter->ptp_caps.n_alarm = 0; 1392 adapter->ptp_caps.n_ext_ts = 0; 1393 adapter->ptp_caps.n_per_out = 0; 1394 adapter->ptp_caps.pps = 1; 1395 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_X550; 1396 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; 1397 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex; 1398 adapter->ptp_caps.settime64 = ixgbe_ptp_settime; 1399 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; 1400 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X550; 1401 break; 1402 default: 1403 adapter->ptp_clock = NULL; 1404 adapter->ptp_setup_sdp = NULL; 1405 return -EOPNOTSUPP; 1406 } 1407 1408 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, 1409 &adapter->pdev->dev); 1410 if (IS_ERR(adapter->ptp_clock)) { 1411 err = PTR_ERR(adapter->ptp_clock); 1412 adapter->ptp_clock = NULL; 1413 e_dev_err("ptp_clock_register failed\n"); 1414 return err; 1415 } else if (adapter->ptp_clock) 1416 e_dev_info("registered PHC device on %s\n", netdev->name); 1417 1418 /* set default timestamp mode to disabled here. We do this in 1419 * create_clock instead of init, because we don't want to override the 1420 * previous settings during a resume cycle. 1421 */ 1422 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 1423 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 1424 1425 return 0; 1426 } 1427 1428 /** 1429 * ixgbe_ptp_init 1430 * @adapter: the ixgbe private adapter structure 1431 * 1432 * This function performs the required steps for enabling PTP 1433 * support. If PTP support has already been loaded it simply calls the 1434 * cyclecounter init routine and exits. 1435 */ 1436 void ixgbe_ptp_init(struct ixgbe_adapter *adapter) 1437 { 1438 /* initialize the spin lock first since we can't control when a user 1439 * will call the entry functions once we have initialized the clock 1440 * device 1441 */ 1442 spin_lock_init(&adapter->tmreg_lock); 1443 1444 /* obtain a PTP device, or re-use an existing device */ 1445 if (ixgbe_ptp_create_clock(adapter)) 1446 return; 1447 1448 /* we have a clock so we can initialize work now */ 1449 INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work); 1450 1451 /* reset the PTP related hardware bits */ 1452 ixgbe_ptp_reset(adapter); 1453 1454 /* enter the IXGBE_PTP_RUNNING state */ 1455 set_bit(__IXGBE_PTP_RUNNING, &adapter->state); 1456 1457 return; 1458 } 1459 1460 /** 1461 * ixgbe_ptp_suspend - stop PTP work items 1462 * @adapter: pointer to adapter struct 1463 * 1464 * this function suspends PTP activity, and prevents more PTP work from being 1465 * generated, but does not destroy the PTP clock device. 1466 */ 1467 void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter) 1468 { 1469 /* Leave the IXGBE_PTP_RUNNING state. */ 1470 if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state)) 1471 return; 1472 1473 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED; 1474 if (adapter->ptp_setup_sdp) 1475 adapter->ptp_setup_sdp(adapter); 1476 1477 /* ensure that we cancel any pending PTP Tx work item in progress */ 1478 cancel_work_sync(&adapter->ptp_tx_work); 1479 ixgbe_ptp_clear_tx_timestamp(adapter); 1480 } 1481 1482 /** 1483 * ixgbe_ptp_stop - close the PTP device 1484 * @adapter: pointer to adapter struct 1485 * 1486 * completely destroy the PTP device, should only be called when the device is 1487 * being fully closed. 1488 */ 1489 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter) 1490 { 1491 /* first, suspend PTP activity */ 1492 ixgbe_ptp_suspend(adapter); 1493 1494 /* disable the PTP clock device */ 1495 if (adapter->ptp_clock) { 1496 ptp_clock_unregister(adapter->ptp_clock); 1497 adapter->ptp_clock = NULL; 1498 e_dev_info("removed PHC on %s\n", 1499 adapter->netdev->name); 1500 } 1501 } 1502