1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 #include "ixgbe.h"
29 #include <linux/ptp_classify.h>
30 
31 /*
32  * The 82599 and the X540 do not have true 64bit nanosecond scale
33  * counter registers. Instead, SYSTIME is defined by a fixed point
34  * system which allows the user to define the scale counter increment
35  * value at every level change of the oscillator driving the SYSTIME
36  * value. For both devices the TIMINCA:IV field defines this
37  * increment. On the X540 device, 31 bits are provided. However on the
38  * 82599 only provides 24 bits. The time unit is determined by the
39  * clock frequency of the oscillator in combination with the TIMINCA
40  * register. When these devices link at 10Gb the oscillator has a
41  * period of 6.4ns. In order to convert the scale counter into
42  * nanoseconds the cyclecounter and timecounter structures are
43  * used. The SYSTIME registers need to be converted to ns values by use
44  * of only a right shift (division by power of 2). The following math
45  * determines the largest incvalue that will fit into the available
46  * bits in the TIMINCA register.
47  *
48  * PeriodWidth: Number of bits to store the clock period
49  * MaxWidth: The maximum width value of the TIMINCA register
50  * Period: The clock period for the oscillator
51  * round(): discard the fractional portion of the calculation
52  *
53  * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
54  *
55  * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
56  * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
57  *
58  * The period also changes based on the link speed:
59  * At 10Gb link or no link, the period remains the same.
60  * At 1Gb link, the period is multiplied by 10. (64ns)
61  * At 100Mb link, the period is multiplied by 100. (640ns)
62  *
63  * The calculated value allows us to right shift the SYSTIME register
64  * value in order to quickly convert it into a nanosecond clock,
65  * while allowing for the maximum possible adjustment value.
66  *
67  * These diagrams are only for the 10Gb link period
68  *
69  *           SYSTIMEH            SYSTIMEL
70  *       +--------------+  +--------------+
71  * X540  |      32      |  | 1 | 3 |  28  |
72  *       *--------------+  +--------------+
73  *        \________ 36 bits ______/  fract
74  *
75  *       +--------------+  +--------------+
76  * 82599 |      32      |  | 8 | 3 |  21  |
77  *       *--------------+  +--------------+
78  *        \________ 43 bits ______/  fract
79  *
80  * The 36 bit X540 SYSTIME overflows every
81  *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
82  *
83  * The 43 bit 82599 SYSTIME overflows every
84  *   2^43 * 10^-9 / 3600 = 2.4 hours
85  */
86 #define IXGBE_INCVAL_10GB 0x66666666
87 #define IXGBE_INCVAL_1GB  0x40000000
88 #define IXGBE_INCVAL_100  0x50000000
89 
90 #define IXGBE_INCVAL_SHIFT_10GB  28
91 #define IXGBE_INCVAL_SHIFT_1GB   24
92 #define IXGBE_INCVAL_SHIFT_100   21
93 
94 #define IXGBE_INCVAL_SHIFT_82599 7
95 #define IXGBE_INCPER_SHIFT_82599 24
96 #define IXGBE_MAX_TIMEADJ_VALUE  0x7FFFFFFFFFFFFFFFULL
97 
98 #define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
99 #define IXGBE_PTP_TX_TIMEOUT     (HZ * 15)
100 
101 /* half of a one second clock period, for use with PPS signal. We have to use
102  * this instead of something pre-defined like IXGBE_PTP_PPS_HALF_SECOND, in
103  * order to force at least 64bits of precision for shifting
104  */
105 #define IXGBE_PTP_PPS_HALF_SECOND 500000000ULL
106 
107 /**
108  * ixgbe_ptp_setup_sdp
109  * @hw: the hardware private structure
110  *
111  * this function enables or disables the clock out feature on SDP0 for
112  * the X540 device. It will create a 1second periodic output that can
113  * be used as the PPS (via an interrupt).
114  *
115  * It calculates when the systime will be on an exact second, and then
116  * aligns the start of the PPS signal to that value. The shift is
117  * necessary because it can change based on the link speed.
118  */
119 static void ixgbe_ptp_setup_sdp(struct ixgbe_adapter *adapter)
120 {
121 	struct ixgbe_hw *hw = &adapter->hw;
122 	int shift = adapter->cc.shift;
123 	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
124 	u64 ns = 0, clock_edge = 0;
125 
126 	if ((adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED) &&
127 	    (hw->mac.type == ixgbe_mac_X540)) {
128 
129 		/* disable the pin first */
130 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
131 		IXGBE_WRITE_FLUSH(hw);
132 
133 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
134 
135 		/*
136 		 * enable the SDP0 pin as output, and connected to the
137 		 * native function for Timesync (ClockOut)
138 		 */
139 		esdp |= (IXGBE_ESDP_SDP0_DIR |
140 			 IXGBE_ESDP_SDP0_NATIVE);
141 
142 		/*
143 		 * enable the Clock Out feature on SDP0, and allow
144 		 * interrupts to occur when the pin changes
145 		 */
146 		tsauxc = (IXGBE_TSAUXC_EN_CLK |
147 			  IXGBE_TSAUXC_SYNCLK |
148 			  IXGBE_TSAUXC_SDP0_INT);
149 
150 		/* clock period (or pulse length) */
151 		clktiml = (u32)(IXGBE_PTP_PPS_HALF_SECOND << shift);
152 		clktimh = (u32)((IXGBE_PTP_PPS_HALF_SECOND << shift) >> 32);
153 
154 		/*
155 		 * Account for the cyclecounter wrap-around value by
156 		 * using the converted ns value of the current time to
157 		 * check for when the next aligned second would occur.
158 		 */
159 		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
160 		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
161 		ns = timecounter_cyc2time(&adapter->tc, clock_edge);
162 
163 		div_u64_rem(ns, IXGBE_PTP_PPS_HALF_SECOND, &rem);
164 		clock_edge += ((IXGBE_PTP_PPS_HALF_SECOND - (u64)rem) << shift);
165 
166 		/* specify the initial clock start time */
167 		trgttiml = (u32)clock_edge;
168 		trgttimh = (u32)(clock_edge >> 32);
169 
170 		IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
171 		IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
172 		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
173 		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
174 
175 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
176 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
177 	} else {
178 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
179 	}
180 
181 	IXGBE_WRITE_FLUSH(hw);
182 }
183 
184 /**
185  * ixgbe_ptp_read - read raw cycle counter (to be used by time counter)
186  * @cc: the cyclecounter structure
187  *
188  * this function reads the cyclecounter registers and is called by the
189  * cyclecounter structure used to construct a ns counter from the
190  * arbitrary fixed point registers
191  */
192 static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
193 {
194 	struct ixgbe_adapter *adapter =
195 		container_of(cc, struct ixgbe_adapter, cc);
196 	struct ixgbe_hw *hw = &adapter->hw;
197 	u64 stamp = 0;
198 
199 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
200 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
201 
202 	return stamp;
203 }
204 
205 /**
206  * ixgbe_ptp_adjfreq
207  * @ptp: the ptp clock structure
208  * @ppb: parts per billion adjustment from base
209  *
210  * adjust the frequency of the ptp cycle counter by the
211  * indicated ppb from the base frequency.
212  */
213 static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
214 {
215 	struct ixgbe_adapter *adapter =
216 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
217 	struct ixgbe_hw *hw = &adapter->hw;
218 	u64 freq;
219 	u32 diff, incval;
220 	int neg_adj = 0;
221 
222 	if (ppb < 0) {
223 		neg_adj = 1;
224 		ppb = -ppb;
225 	}
226 
227 	smp_mb();
228 	incval = ACCESS_ONCE(adapter->base_incval);
229 
230 	freq = incval;
231 	freq *= ppb;
232 	diff = div_u64(freq, 1000000000ULL);
233 
234 	incval = neg_adj ? (incval - diff) : (incval + diff);
235 
236 	switch (hw->mac.type) {
237 	case ixgbe_mac_X540:
238 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
239 		break;
240 	case ixgbe_mac_82599EB:
241 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
242 				(1 << IXGBE_INCPER_SHIFT_82599) |
243 				incval);
244 		break;
245 	default:
246 		break;
247 	}
248 
249 	return 0;
250 }
251 
252 /**
253  * ixgbe_ptp_adjtime
254  * @ptp: the ptp clock structure
255  * @delta: offset to adjust the cycle counter by
256  *
257  * adjust the timer by resetting the timecounter structure.
258  */
259 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
260 {
261 	struct ixgbe_adapter *adapter =
262 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
263 	unsigned long flags;
264 
265 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
266 	timecounter_adjtime(&adapter->tc, delta);
267 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
268 
269 	ixgbe_ptp_setup_sdp(adapter);
270 
271 	return 0;
272 }
273 
274 /**
275  * ixgbe_ptp_gettime
276  * @ptp: the ptp clock structure
277  * @ts: timespec structure to hold the current time value
278  *
279  * read the timecounter and return the correct value on ns,
280  * after converting it into a struct timespec.
281  */
282 static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
283 {
284 	struct ixgbe_adapter *adapter =
285 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
286 	u64 ns;
287 	unsigned long flags;
288 
289 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
290 	ns = timecounter_read(&adapter->tc);
291 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
292 
293 	*ts = ns_to_timespec64(ns);
294 
295 	return 0;
296 }
297 
298 /**
299  * ixgbe_ptp_settime
300  * @ptp: the ptp clock structure
301  * @ts: the timespec containing the new time for the cycle counter
302  *
303  * reset the timecounter to use a new base value instead of the kernel
304  * wall timer value.
305  */
306 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
307 			     const struct timespec64 *ts)
308 {
309 	struct ixgbe_adapter *adapter =
310 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
311 	u64 ns;
312 	unsigned long flags;
313 
314 	ns = timespec64_to_ns(ts);
315 
316 	/* reset the timecounter */
317 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
318 	timecounter_init(&adapter->tc, &adapter->cc, ns);
319 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
320 
321 	ixgbe_ptp_setup_sdp(adapter);
322 	return 0;
323 }
324 
325 /**
326  * ixgbe_ptp_feature_enable
327  * @ptp: the ptp clock structure
328  * @rq: the requested feature to change
329  * @on: whether to enable or disable the feature
330  *
331  * enable (or disable) ancillary features of the phc subsystem.
332  * our driver only supports the PPS feature on the X540
333  */
334 static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
335 				    struct ptp_clock_request *rq, int on)
336 {
337 	struct ixgbe_adapter *adapter =
338 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
339 
340 	/**
341 	 * When PPS is enabled, unmask the interrupt for the ClockOut
342 	 * feature, so that the interrupt handler can send the PPS
343 	 * event when the clock SDP triggers. Clear mask when PPS is
344 	 * disabled
345 	 */
346 	if (rq->type == PTP_CLK_REQ_PPS) {
347 		switch (adapter->hw.mac.type) {
348 		case ixgbe_mac_X540:
349 			if (on)
350 				adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
351 			else
352 				adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
353 
354 			ixgbe_ptp_setup_sdp(adapter);
355 			return 0;
356 		default:
357 			break;
358 		}
359 	}
360 
361 	return -ENOTSUPP;
362 }
363 
364 /**
365  * ixgbe_ptp_check_pps_event
366  * @adapter: the private adapter structure
367  * @eicr: the interrupt cause register value
368  *
369  * This function is called by the interrupt routine when checking for
370  * interrupts. It will check and handle a pps event.
371  */
372 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr)
373 {
374 	struct ixgbe_hw *hw = &adapter->hw;
375 	struct ptp_clock_event event;
376 
377 	event.type = PTP_CLOCK_PPS;
378 
379 	/* this check is necessary in case the interrupt was enabled via some
380 	 * alternative means (ex. debug_fs). Better to check here than
381 	 * everywhere that calls this function.
382 	 */
383 	if (!adapter->ptp_clock)
384 		return;
385 
386 	switch (hw->mac.type) {
387 	case ixgbe_mac_X540:
388 		ptp_clock_event(adapter->ptp_clock, &event);
389 		break;
390 	default:
391 		break;
392 	}
393 }
394 
395 /**
396  * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
397  * @adapter: private adapter struct
398  *
399  * this watchdog task periodically reads the timecounter
400  * in order to prevent missing when the system time registers wrap
401  * around. This needs to be run approximately twice a minute.
402  */
403 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
404 {
405 	bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
406 					     IXGBE_OVERFLOW_PERIOD);
407 	struct timespec64 ts;
408 
409 	if (timeout) {
410 		ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
411 		adapter->last_overflow_check = jiffies;
412 	}
413 }
414 
415 /**
416  * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
417  * @adapter: private network adapter structure
418  *
419  * this watchdog task is scheduled to detect error case where hardware has
420  * dropped an Rx packet that was timestamped when the ring is full. The
421  * particular error is rare but leaves the device in a state unable to timestamp
422  * any future packets.
423  */
424 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
425 {
426 	struct ixgbe_hw *hw = &adapter->hw;
427 	u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
428 	unsigned long rx_event;
429 
430 	/* if we don't have a valid timestamp in the registers, just update the
431 	 * timeout counter and exit
432 	 */
433 	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
434 		adapter->last_rx_ptp_check = jiffies;
435 		return;
436 	}
437 
438 	/* determine the most recent watchdog or rx_timestamp event */
439 	rx_event = adapter->last_rx_ptp_check;
440 	if (time_after(adapter->last_rx_timestamp, rx_event))
441 		rx_event = adapter->last_rx_timestamp;
442 
443 	/* only need to read the high RXSTMP register to clear the lock */
444 	if (time_is_before_jiffies(rx_event + 5*HZ)) {
445 		IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
446 		adapter->last_rx_ptp_check = jiffies;
447 
448 		e_warn(drv, "clearing RX Timestamp hang\n");
449 	}
450 }
451 
452 /**
453  * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
454  * @adapter: the private adapter struct
455  *
456  * if the timestamp is valid, we convert it into the timecounter ns
457  * value, then store that result into the shhwtstamps structure which
458  * is passed up the network stack
459  */
460 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
461 {
462 	struct ixgbe_hw *hw = &adapter->hw;
463 	struct skb_shared_hwtstamps shhwtstamps;
464 	u64 regval = 0, ns;
465 	unsigned long flags;
466 
467 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
468 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
469 
470 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
471 	ns = timecounter_cyc2time(&adapter->tc, regval);
472 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
473 
474 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
475 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
476 	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
477 
478 	dev_kfree_skb_any(adapter->ptp_tx_skb);
479 	adapter->ptp_tx_skb = NULL;
480 	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
481 }
482 
483 /**
484  * ixgbe_ptp_tx_hwtstamp_work
485  * @work: pointer to the work struct
486  *
487  * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
488  * timestamp has been taken for the current skb. It is necessary, because the
489  * descriptor's "done" bit does not correlate with the timestamp event.
490  */
491 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
492 {
493 	struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
494 						     ptp_tx_work);
495 	struct ixgbe_hw *hw = &adapter->hw;
496 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
497 					      IXGBE_PTP_TX_TIMEOUT);
498 	u32 tsynctxctl;
499 
500 	if (timeout) {
501 		dev_kfree_skb_any(adapter->ptp_tx_skb);
502 		adapter->ptp_tx_skb = NULL;
503 		clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
504 		e_warn(drv, "clearing Tx Timestamp hang\n");
505 		return;
506 	}
507 
508 	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
509 	if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID)
510 		ixgbe_ptp_tx_hwtstamp(adapter);
511 	else
512 		/* reschedule to keep checking if it's not available yet */
513 		schedule_work(&adapter->ptp_tx_work);
514 }
515 
516 /**
517  * ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp
518  * @adapter: pointer to adapter struct
519  * @skb: particular skb to send timestamp with
520  *
521  * if the timestamp is valid, we convert it into the timecounter ns
522  * value, then store that result into the shhwtstamps structure which
523  * is passed up the network stack
524  */
525 void ixgbe_ptp_rx_hwtstamp(struct ixgbe_adapter *adapter, struct sk_buff *skb)
526 {
527 	struct ixgbe_hw *hw = &adapter->hw;
528 	struct skb_shared_hwtstamps *shhwtstamps;
529 	u64 regval = 0, ns;
530 	u32 tsyncrxctl;
531 	unsigned long flags;
532 
533 	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
534 	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
535 		return;
536 
537 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
538 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
539 
540 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
541 	ns = timecounter_cyc2time(&adapter->tc, regval);
542 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
543 
544 	shhwtstamps = skb_hwtstamps(skb);
545 	shhwtstamps->hwtstamp = ns_to_ktime(ns);
546 
547 	/* Update the last_rx_timestamp timer in order to enable watchdog check
548 	 * for error case of latched timestamp on a dropped packet.
549 	 */
550 	adapter->last_rx_timestamp = jiffies;
551 }
552 
553 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
554 {
555 	struct hwtstamp_config *config = &adapter->tstamp_config;
556 
557 	return copy_to_user(ifr->ifr_data, config,
558 			    sizeof(*config)) ? -EFAULT : 0;
559 }
560 
561 /**
562  * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
563  * @adapter: the private ixgbe adapter structure
564  * @config: the hwtstamp configuration requested
565  *
566  * Outgoing time stamping can be enabled and disabled. Play nice and
567  * disable it when requested, although it shouldn't cause any overhead
568  * when no packet needs it. At most one packet in the queue may be
569  * marked for time stamping, otherwise it would be impossible to tell
570  * for sure to which packet the hardware time stamp belongs.
571  *
572  * Incoming time stamping has to be configured via the hardware
573  * filters. Not all combinations are supported, in particular event
574  * type has to be specified. Matching the kind of event packet is
575  * not supported, with the exception of "all V2 events regardless of
576  * level 2 or 4".
577  *
578  * Since hardware always timestamps Path delay packets when timestamping V2
579  * packets, regardless of the type specified in the register, only use V2
580  * Event mode. This more accurately tells the user what the hardware is going
581  * to do anyways.
582  *
583  * Note: this may modify the hwtstamp configuration towards a more general
584  * mode, if required to support the specifically requested mode.
585  */
586 static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
587 				 struct hwtstamp_config *config)
588 {
589 	struct ixgbe_hw *hw = &adapter->hw;
590 	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
591 	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
592 	u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
593 	bool is_l2 = false;
594 	u32 regval;
595 
596 	/* reserved for future extensions */
597 	if (config->flags)
598 		return -EINVAL;
599 
600 	switch (config->tx_type) {
601 	case HWTSTAMP_TX_OFF:
602 		tsync_tx_ctl = 0;
603 	case HWTSTAMP_TX_ON:
604 		break;
605 	default:
606 		return -ERANGE;
607 	}
608 
609 	switch (config->rx_filter) {
610 	case HWTSTAMP_FILTER_NONE:
611 		tsync_rx_ctl = 0;
612 		tsync_rx_mtrl = 0;
613 		break;
614 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
615 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
616 		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
617 		break;
618 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
619 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
620 		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
621 		break;
622 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
623 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
624 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
625 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
626 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
627 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
628 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
629 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
630 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
631 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
632 		is_l2 = true;
633 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
634 		break;
635 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
636 	case HWTSTAMP_FILTER_ALL:
637 	default:
638 		/*
639 		 * register RXMTRL must be set in order to do V1 packets,
640 		 * therefore it is not possible to time stamp both V1 Sync and
641 		 * Delay_Req messages and hardware does not support
642 		 * timestamping all packets => return error
643 		 */
644 		config->rx_filter = HWTSTAMP_FILTER_NONE;
645 		return -ERANGE;
646 	}
647 
648 	if (hw->mac.type == ixgbe_mac_82598EB) {
649 		if (tsync_rx_ctl | tsync_tx_ctl)
650 			return -ERANGE;
651 		return 0;
652 	}
653 
654 	/* define ethertype filter for timestamping L2 packets */
655 	if (is_l2)
656 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
657 				(IXGBE_ETQF_FILTER_EN | /* enable filter */
658 				 IXGBE_ETQF_1588 | /* enable timestamping */
659 				 ETH_P_1588));     /* 1588 eth protocol type */
660 	else
661 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
662 
663 	/* enable/disable TX */
664 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
665 	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
666 	regval |= tsync_tx_ctl;
667 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
668 
669 	/* enable/disable RX */
670 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
671 	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
672 	regval |= tsync_rx_ctl;
673 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
674 
675 	/* define which PTP packets are time stamped */
676 	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
677 
678 	IXGBE_WRITE_FLUSH(hw);
679 
680 	/* clear TX/RX time stamp registers, just to be sure */
681 	regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
682 	regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
683 
684 	return 0;
685 }
686 
687 /**
688  * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
689  * @adapter: pointer to adapter struct
690  * @ifreq: ioctl data
691  *
692  * Set hardware to requested mode. If unsupported, return an error with no
693  * changes. Otherwise, store the mode for future reference.
694  */
695 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
696 {
697 	struct hwtstamp_config config;
698 	int err;
699 
700 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
701 		return -EFAULT;
702 
703 	err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
704 	if (err)
705 		return err;
706 
707 	/* save these settings for future reference */
708 	memcpy(&adapter->tstamp_config, &config,
709 	       sizeof(adapter->tstamp_config));
710 
711 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
712 		-EFAULT : 0;
713 }
714 
715 /**
716  * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
717  * @adapter: pointer to the adapter structure
718  *
719  * This function should be called to set the proper values for the TIMINCA
720  * register and tell the cyclecounter structure what the tick rate of SYSTIME
721  * is. It does not directly modify SYSTIME registers or the timecounter
722  * structure. It should be called whenever a new TIMINCA value is necessary,
723  * such as during initialization or when the link speed changes.
724  */
725 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
726 {
727 	struct ixgbe_hw *hw = &adapter->hw;
728 	u32 incval = 0;
729 	u32 shift = 0;
730 	unsigned long flags;
731 
732 	/**
733 	 * Scale the NIC cycle counter by a large factor so that
734 	 * relatively small corrections to the frequency can be added
735 	 * or subtracted. The drawbacks of a large factor include
736 	 * (a) the clock register overflows more quickly, (b) the cycle
737 	 * counter structure must be able to convert the systime value
738 	 * to nanoseconds using only a multiplier and a right-shift,
739 	 * and (c) the value must fit within the timinca register space
740 	 * => math based on internal DMA clock rate and available bits
741 	 *
742 	 * Note that when there is no link, internal DMA clock is same as when
743 	 * link speed is 10Gb. Set the registers correctly even when link is
744 	 * down to preserve the clock setting
745 	 */
746 	switch (adapter->link_speed) {
747 	case IXGBE_LINK_SPEED_100_FULL:
748 		incval = IXGBE_INCVAL_100;
749 		shift = IXGBE_INCVAL_SHIFT_100;
750 		break;
751 	case IXGBE_LINK_SPEED_1GB_FULL:
752 		incval = IXGBE_INCVAL_1GB;
753 		shift = IXGBE_INCVAL_SHIFT_1GB;
754 		break;
755 	case IXGBE_LINK_SPEED_10GB_FULL:
756 	default:
757 		incval = IXGBE_INCVAL_10GB;
758 		shift = IXGBE_INCVAL_SHIFT_10GB;
759 		break;
760 	}
761 
762 	/**
763 	 * Modify the calculated values to fit within the correct
764 	 * number of bits specified by the hardware. The 82599 doesn't
765 	 * have the same space as the X540, so bitshift the calculated
766 	 * values to fit.
767 	 */
768 	switch (hw->mac.type) {
769 	case ixgbe_mac_X540:
770 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
771 		break;
772 	case ixgbe_mac_82599EB:
773 		incval >>= IXGBE_INCVAL_SHIFT_82599;
774 		shift -= IXGBE_INCVAL_SHIFT_82599;
775 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
776 				(1 << IXGBE_INCPER_SHIFT_82599) |
777 				incval);
778 		break;
779 	default:
780 		/* other devices aren't supported */
781 		return;
782 	}
783 
784 	/* update the base incval used to calculate frequency adjustment */
785 	ACCESS_ONCE(adapter->base_incval) = incval;
786 	smp_mb();
787 
788 	/* need lock to prevent incorrect read while modifying cyclecounter */
789 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
790 
791 	memset(&adapter->cc, 0, sizeof(adapter->cc));
792 	adapter->cc.read = ixgbe_ptp_read;
793 	adapter->cc.mask = CYCLECOUNTER_MASK(64);
794 	adapter->cc.shift = shift;
795 	adapter->cc.mult = 1;
796 
797 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
798 }
799 
800 /**
801  * ixgbe_ptp_reset
802  * @adapter: the ixgbe private board structure
803  *
804  * When the MAC resets, all the hardware bits for timesync are reset. This
805  * function is used to re-enable the device for PTP based on current settings.
806  * We do lose the current clock time, so just reset the cyclecounter to the
807  * system real clock time.
808  *
809  * This function will maintain hwtstamp_config settings, and resets the SDP
810  * output if it was enabled.
811  */
812 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
813 {
814 	struct ixgbe_hw *hw = &adapter->hw;
815 	unsigned long flags;
816 
817 	/* set SYSTIME registers to 0 just in case */
818 	IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000);
819 	IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000);
820 	IXGBE_WRITE_FLUSH(hw);
821 
822 	/* reset the hardware timestamping mode */
823 	ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
824 
825 	ixgbe_ptp_start_cyclecounter(adapter);
826 
827 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
828 
829 	/* reset the ns time counter */
830 	timecounter_init(&adapter->tc, &adapter->cc,
831 			 ktime_to_ns(ktime_get_real()));
832 
833 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
834 
835 	/*
836 	 * Now that the shift has been calculated and the systime
837 	 * registers reset, (re-)enable the Clock out feature
838 	 */
839 	ixgbe_ptp_setup_sdp(adapter);
840 }
841 
842 /**
843  * ixgbe_ptp_create_clock
844  * @adapter: the ixgbe private adapter structure
845  *
846  * This function performs setup of the user entry point function table and
847  * initializes the PTP clock device, which is used to access the clock-like
848  * features of the PTP core. It will be called by ixgbe_ptp_init, only if
849  * there isn't already a clock device (such as after a suspend/resume cycle,
850  * where the clock device wasn't destroyed).
851  */
852 static int ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
853 {
854 	struct net_device *netdev = adapter->netdev;
855 	long err;
856 
857 	/* do nothing if we already have a clock device */
858 	if (!IS_ERR_OR_NULL(adapter->ptp_clock))
859 		return 0;
860 
861 	switch (adapter->hw.mac.type) {
862 	case ixgbe_mac_X540:
863 		snprintf(adapter->ptp_caps.name,
864 			 sizeof(adapter->ptp_caps.name),
865 			 "%s", netdev->name);
866 		adapter->ptp_caps.owner = THIS_MODULE;
867 		adapter->ptp_caps.max_adj = 250000000;
868 		adapter->ptp_caps.n_alarm = 0;
869 		adapter->ptp_caps.n_ext_ts = 0;
870 		adapter->ptp_caps.n_per_out = 0;
871 		adapter->ptp_caps.pps = 1;
872 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
873 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
874 		adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
875 		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
876 		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
877 		break;
878 	case ixgbe_mac_82599EB:
879 		snprintf(adapter->ptp_caps.name,
880 			 sizeof(adapter->ptp_caps.name),
881 			 "%s", netdev->name);
882 		adapter->ptp_caps.owner = THIS_MODULE;
883 		adapter->ptp_caps.max_adj = 250000000;
884 		adapter->ptp_caps.n_alarm = 0;
885 		adapter->ptp_caps.n_ext_ts = 0;
886 		adapter->ptp_caps.n_per_out = 0;
887 		adapter->ptp_caps.pps = 0;
888 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
889 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
890 		adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
891 		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
892 		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
893 		break;
894 	default:
895 		adapter->ptp_clock = NULL;
896 		return -EOPNOTSUPP;
897 	}
898 
899 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
900 						&adapter->pdev->dev);
901 	if (IS_ERR(adapter->ptp_clock)) {
902 		err = PTR_ERR(adapter->ptp_clock);
903 		adapter->ptp_clock = NULL;
904 		e_dev_err("ptp_clock_register failed\n");
905 		return err;
906 	} else
907 		e_dev_info("registered PHC device on %s\n", netdev->name);
908 
909 	/* set default timestamp mode to disabled here. We do this in
910 	 * create_clock instead of init, because we don't want to override the
911 	 * previous settings during a resume cycle.
912 	 */
913 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
914 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
915 
916 	return 0;
917 }
918 
919 /**
920  * ixgbe_ptp_init
921  * @adapter: the ixgbe private adapter structure
922  *
923  * This function performs the required steps for enabling PTP
924  * support. If PTP support has already been loaded it simply calls the
925  * cyclecounter init routine and exits.
926  */
927 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
928 {
929 	/* initialize the spin lock first since we can't control when a user
930 	 * will call the entry functions once we have initialized the clock
931 	 * device
932 	 */
933 	spin_lock_init(&adapter->tmreg_lock);
934 
935 	/* obtain a PTP device, or re-use an existing device */
936 	if (ixgbe_ptp_create_clock(adapter))
937 		return;
938 
939 	/* we have a clock so we can initialize work now */
940 	INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
941 
942 	/* reset the PTP related hardware bits */
943 	ixgbe_ptp_reset(adapter);
944 
945 	/* enter the IXGBE_PTP_RUNNING state */
946 	set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
947 
948 	return;
949 }
950 
951 /**
952  * ixgbe_ptp_suspend - stop PTP work items
953  * @ adapter: pointer to adapter struct
954  *
955  * this function suspends PTP activity, and prevents more PTP work from being
956  * generated, but does not destroy the PTP clock device.
957  */
958 void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
959 {
960 	/* Leave the IXGBE_PTP_RUNNING state. */
961 	if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
962 		return;
963 
964 	/* since this might be called in suspend, we don't clear the state,
965 	 * but simply reset the auxiliary PPS signal control register
966 	 */
967 	IXGBE_WRITE_REG(&adapter->hw, IXGBE_TSAUXC, 0x0);
968 
969 	/* ensure that we cancel any pending PTP Tx work item in progress */
970 	cancel_work_sync(&adapter->ptp_tx_work);
971 	if (adapter->ptp_tx_skb) {
972 		dev_kfree_skb_any(adapter->ptp_tx_skb);
973 		adapter->ptp_tx_skb = NULL;
974 		clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
975 	}
976 }
977 
978 /**
979  * ixgbe_ptp_stop - close the PTP device
980  * @adapter: pointer to adapter struct
981  *
982  * completely destroy the PTP device, should only be called when the device is
983  * being fully closed.
984  */
985 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
986 {
987 	/* first, suspend PTP activity */
988 	ixgbe_ptp_suspend(adapter);
989 
990 	/* disable the PTP clock device */
991 	if (adapter->ptp_clock) {
992 		ptp_clock_unregister(adapter->ptp_clock);
993 		adapter->ptp_clock = NULL;
994 		e_dev_info("removed PHC on %s\n",
995 			   adapter->netdev->name);
996 	}
997 }
998