1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 #include "ixgbe.h"
28 #include <linux/export.h>
29 
30 /*
31  * The 82599 and the X540 do not have true 64bit nanosecond scale
32  * counter registers. Instead, SYSTIME is defined by a fixed point
33  * system which allows the user to define the scale counter increment
34  * value at every level change of the oscillator driving the SYSTIME
35  * value. For both devices the TIMINCA:IV field defines this
36  * increment. On the X540 device, 31 bits are provided. However on the
37  * 82599 only provides 24 bits. The time unit is determined by the
38  * clock frequency of the oscillator in combination with the TIMINCA
39  * register. When these devices link at 10Gb the oscillator has a
40  * period of 6.4ns. In order to convert the scale counter into
41  * nanoseconds the cyclecounter and timecounter structures are
42  * used. The SYSTIME registers need to be converted to ns values by use
43  * of only a right shift (division by power of 2). The following math
44  * determines the largest incvalue that will fit into the available
45  * bits in the TIMINCA register.
46  *
47  * PeriodWidth: Number of bits to store the clock period
48  * MaxWidth: The maximum width value of the TIMINCA register
49  * Period: The clock period for the oscillator
50  * round(): discard the fractional portion of the calculation
51  *
52  * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
53  *
54  * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
55  * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
56  *
57  * The period also changes based on the link speed:
58  * At 10Gb link or no link, the period remains the same.
59  * At 1Gb link, the period is multiplied by 10. (64ns)
60  * At 100Mb link, the period is multiplied by 100. (640ns)
61  *
62  * The calculated value allows us to right shift the SYSTIME register
63  * value in order to quickly convert it into a nanosecond clock,
64  * while allowing for the maximum possible adjustment value.
65  *
66  * These diagrams are only for the 10Gb link period
67  *
68  *           SYSTIMEH            SYSTIMEL
69  *       +--------------+  +--------------+
70  * X540  |      32      |  | 1 | 3 |  28  |
71  *       *--------------+  +--------------+
72  *        \________ 36 bits ______/  fract
73  *
74  *       +--------------+  +--------------+
75  * 82599 |      32      |  | 8 | 3 |  21  |
76  *       *--------------+  +--------------+
77  *        \________ 43 bits ______/  fract
78  *
79  * The 36 bit X540 SYSTIME overflows every
80  *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
81  *
82  * The 43 bit 82599 SYSTIME overflows every
83  *   2^43 * 10^-9 / 3600 = 2.4 hours
84  */
85 #define IXGBE_INCVAL_10GB 0x66666666
86 #define IXGBE_INCVAL_1GB  0x40000000
87 #define IXGBE_INCVAL_100  0x50000000
88 
89 #define IXGBE_INCVAL_SHIFT_10GB  28
90 #define IXGBE_INCVAL_SHIFT_1GB   24
91 #define IXGBE_INCVAL_SHIFT_100   21
92 
93 #define IXGBE_INCVAL_SHIFT_82599 7
94 #define IXGBE_INCPER_SHIFT_82599 24
95 #define IXGBE_MAX_TIMEADJ_VALUE  0x7FFFFFFFFFFFFFFFULL
96 
97 #define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
98 
99 #ifndef NSECS_PER_SEC
100 #define NSECS_PER_SEC 1000000000ULL
101 #endif
102 
103 /**
104  * ixgbe_ptp_read - read raw cycle counter (to be used by time counter)
105  * @cc - the cyclecounter structure
106  *
107  * this function reads the cyclecounter registers and is called by the
108  * cyclecounter structure used to construct a ns counter from the
109  * arbitrary fixed point registers
110  */
111 static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
112 {
113 	struct ixgbe_adapter *adapter =
114 		container_of(cc, struct ixgbe_adapter, cc);
115 	struct ixgbe_hw *hw = &adapter->hw;
116 	u64 stamp = 0;
117 
118 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
119 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
120 
121 	return stamp;
122 }
123 
124 /**
125  * ixgbe_ptp_adjfreq
126  * @ptp - the ptp clock structure
127  * @ppb - parts per billion adjustment from base
128  *
129  * adjust the frequency of the ptp cycle counter by the
130  * indicated ppb from the base frequency.
131  */
132 static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
133 {
134 	struct ixgbe_adapter *adapter =
135 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
136 	struct ixgbe_hw *hw = &adapter->hw;
137 	u64 freq;
138 	u32 diff, incval;
139 	int neg_adj = 0;
140 
141 	if (ppb < 0) {
142 		neg_adj = 1;
143 		ppb = -ppb;
144 	}
145 
146 	smp_mb();
147 	incval = ACCESS_ONCE(adapter->base_incval);
148 
149 	freq = incval;
150 	freq *= ppb;
151 	diff = div_u64(freq, 1000000000ULL);
152 
153 	incval = neg_adj ? (incval - diff) : (incval + diff);
154 
155 	switch (hw->mac.type) {
156 	case ixgbe_mac_X540:
157 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
158 		break;
159 	case ixgbe_mac_82599EB:
160 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
161 				(1 << IXGBE_INCPER_SHIFT_82599) |
162 				incval);
163 		break;
164 	default:
165 		break;
166 	}
167 
168 	return 0;
169 }
170 
171 /**
172  * ixgbe_ptp_adjtime
173  * @ptp - the ptp clock structure
174  * @delta - offset to adjust the cycle counter by
175  *
176  * adjust the timer by resetting the timecounter structure.
177  */
178 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
179 {
180 	struct ixgbe_adapter *adapter =
181 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
182 	unsigned long flags;
183 	u64 now;
184 
185 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
186 
187 	now = timecounter_read(&adapter->tc);
188 	now += delta;
189 
190 	/* reset the timecounter */
191 	timecounter_init(&adapter->tc,
192 			 &adapter->cc,
193 			 now);
194 
195 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
196 	return 0;
197 }
198 
199 /**
200  * ixgbe_ptp_gettime
201  * @ptp - the ptp clock structure
202  * @ts - timespec structure to hold the current time value
203  *
204  * read the timecounter and return the correct value on ns,
205  * after converting it into a struct timespec.
206  */
207 static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
208 {
209 	struct ixgbe_adapter *adapter =
210 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
211 	u64 ns;
212 	u32 remainder;
213 	unsigned long flags;
214 
215 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
216 	ns = timecounter_read(&adapter->tc);
217 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
218 
219 	ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
220 	ts->tv_nsec = remainder;
221 
222 	return 0;
223 }
224 
225 /**
226  * ixgbe_ptp_settime
227  * @ptp - the ptp clock structure
228  * @ts - the timespec containing the new time for the cycle counter
229  *
230  * reset the timecounter to use a new base value instead of the kernel
231  * wall timer value.
232  */
233 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
234 			     const struct timespec *ts)
235 {
236 	struct ixgbe_adapter *adapter =
237 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
238 	u64 ns;
239 	unsigned long flags;
240 
241 	ns = ts->tv_sec * 1000000000ULL;
242 	ns += ts->tv_nsec;
243 
244 	/* reset the timecounter */
245 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
246 	timecounter_init(&adapter->tc, &adapter->cc, ns);
247 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
248 
249 	return 0;
250 }
251 
252 /**
253  * ixgbe_ptp_enable
254  * @ptp - the ptp clock structure
255  * @rq - the requested feature to change
256  * @on - whether to enable or disable the feature
257  *
258  * enable (or disable) ancillary features of the phc subsystem.
259  * our driver only supports the PPS feature on the X540
260  */
261 static int ixgbe_ptp_enable(struct ptp_clock_info *ptp,
262 			    struct ptp_clock_request *rq, int on)
263 {
264 	struct ixgbe_adapter *adapter =
265 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
266 
267 	/**
268 	 * When PPS is enabled, unmask the interrupt for the ClockOut
269 	 * feature, so that the interrupt handler can send the PPS
270 	 * event when the clock SDP triggers. Clear mask when PPS is
271 	 * disabled
272 	 */
273 	if (rq->type == PTP_CLK_REQ_PPS) {
274 		switch (adapter->hw.mac.type) {
275 		case ixgbe_mac_X540:
276 			if (on)
277 				adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
278 			else
279 				adapter->flags2 &=
280 					~IXGBE_FLAG2_PTP_PPS_ENABLED;
281 			return 0;
282 		default:
283 			break;
284 		}
285 	}
286 
287 	return -ENOTSUPP;
288 }
289 
290 /**
291  * ixgbe_ptp_check_pps_event
292  * @adapter - the private adapter structure
293  * @eicr - the interrupt cause register value
294  *
295  * This function is called by the interrupt routine when checking for
296  * interrupts. It will check and handle a pps event.
297  */
298 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr)
299 {
300 	struct ixgbe_hw *hw = &adapter->hw;
301 	struct ptp_clock_event event;
302 
303 	event.type = PTP_CLOCK_PPS;
304 
305 	/* Make sure ptp clock is valid, and PPS event enabled */
306 	if (!adapter->ptp_clock ||
307 	    !(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
308 		return;
309 
310 	switch (hw->mac.type) {
311 	case ixgbe_mac_X540:
312 		if (eicr & IXGBE_EICR_TIMESYNC)
313 			ptp_clock_event(adapter->ptp_clock, &event);
314 		break;
315 	default:
316 		break;
317 	}
318 }
319 
320 /**
321  * ixgbe_ptp_enable_sdp
322  * @hw - the hardware private structure
323  * @shift - the clock shift for calculating nanoseconds
324  *
325  * this function enables the clock out feature on the sdp0 for the
326  * X540 device. It will create a 1second periodic output that can be
327  * used as the PPS (via an interrupt).
328  *
329  * It calculates when the systime will be on an exact second, and then
330  * aligns the start of the PPS signal to that value. The shift is
331  * necessary because it can change based on the link speed.
332  */
333 static void ixgbe_ptp_enable_sdp(struct ixgbe_hw *hw, int shift)
334 {
335 	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh;
336 	u64 clock_edge = 0;
337 	u32 rem;
338 
339 	switch (hw->mac.type) {
340 	case ixgbe_mac_X540:
341 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
342 
343 		/*
344 		 * enable the SDP0 pin as output, and connected to the native
345 		 * function for Timesync (ClockOut)
346 		 */
347 		esdp |= (IXGBE_ESDP_SDP0_DIR |
348 			 IXGBE_ESDP_SDP0_NATIVE);
349 
350 		/*
351 		 * enable the Clock Out feature on SDP0, and allow interrupts
352 		 * to occur when the pin changes
353 		 */
354 		tsauxc = (IXGBE_TSAUXC_EN_CLK |
355 			  IXGBE_TSAUXC_SYNCLK |
356 			  IXGBE_TSAUXC_SDP0_INT);
357 
358 		/* clock period (or pulse length) */
359 		clktiml = (u32)(NSECS_PER_SEC << shift);
360 		clktimh = (u32)((NSECS_PER_SEC << shift) >> 32);
361 
362 		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
363 		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
364 
365 		/*
366 		 * account for the fact that we can't do u64 division
367 		 * with remainder, by converting the clock values into
368 		 * nanoseconds first
369 		 */
370 		clock_edge >>= shift;
371 		div_u64_rem(clock_edge, NSECS_PER_SEC, &rem);
372 		clock_edge += (NSECS_PER_SEC - rem);
373 		clock_edge <<= shift;
374 
375 		/* specify the initial clock start time */
376 		trgttiml = (u32)clock_edge;
377 		trgttimh = (u32)(clock_edge >> 32);
378 
379 		IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
380 		IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
381 		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
382 		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
383 
384 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
385 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
386 
387 		IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EICR_TIMESYNC);
388 		break;
389 	default:
390 		break;
391 	}
392 }
393 
394 /**
395  * ixgbe_ptp_disable_sdp
396  * @hw - the private hardware structure
397  *
398  * this function disables the auxiliary SDP clock out feature
399  */
400 static void ixgbe_ptp_disable_sdp(struct ixgbe_hw *hw)
401 {
402 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_EICR_TIMESYNC);
403 	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0);
404 }
405 
406 /**
407  * ixgbe_ptp_overflow_check - delayed work to detect SYSTIME overflow
408  * @work: structure containing information about this work task
409  *
410  * this work function is scheduled to continue reading the timecounter
411  * in order to prevent missing when the system time registers wrap
412  * around. This needs to be run approximately twice a minute when no
413  * PTP activity is occurring.
414  */
415 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
416 {
417 	unsigned long elapsed_jiffies = adapter->last_overflow_check - jiffies;
418 	struct timespec ts;
419 
420 	if ((adapter->flags2 & IXGBE_FLAG2_OVERFLOW_CHECK_ENABLED) &&
421 	    (elapsed_jiffies >= IXGBE_OVERFLOW_PERIOD)) {
422 		ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
423 		adapter->last_overflow_check = jiffies;
424 	}
425 }
426 
427 /**
428  * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
429  * @q_vector: structure containing interrupt and ring information
430  * @skb: particular skb to send timestamp with
431  *
432  * if the timestamp is valid, we convert it into the timecounter ns
433  * value, then store that result into the shhwtstamps structure which
434  * is passed up the network stack
435  */
436 void ixgbe_ptp_tx_hwtstamp(struct ixgbe_q_vector *q_vector,
437 			   struct sk_buff *skb)
438 {
439 	struct ixgbe_adapter *adapter;
440 	struct ixgbe_hw *hw;
441 	struct skb_shared_hwtstamps shhwtstamps;
442 	u64 regval = 0, ns;
443 	u32 tsynctxctl;
444 	unsigned long flags;
445 
446 	/* we cannot process timestamps on a ring without a q_vector */
447 	if (!q_vector || !q_vector->adapter)
448 		return;
449 
450 	adapter = q_vector->adapter;
451 	hw = &adapter->hw;
452 
453 	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
454 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
455 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
456 
457 	/*
458 	 * if TX timestamp is not valid, exit after clearing the
459 	 * timestamp registers
460 	 */
461 	if (!(tsynctxctl & IXGBE_TSYNCTXCTL_VALID))
462 		return;
463 
464 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
465 	ns = timecounter_cyc2time(&adapter->tc, regval);
466 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
467 
468 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
469 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
470 	skb_tstamp_tx(skb, &shhwtstamps);
471 }
472 
473 /**
474  * ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp
475  * @q_vector: structure containing interrupt and ring information
476  * @skb: particular skb to send timestamp with
477  *
478  * if the timestamp is valid, we convert it into the timecounter ns
479  * value, then store that result into the shhwtstamps structure which
480  * is passed up the network stack
481  */
482 void ixgbe_ptp_rx_hwtstamp(struct ixgbe_q_vector *q_vector,
483 			   struct sk_buff *skb)
484 {
485 	struct ixgbe_adapter *adapter;
486 	struct ixgbe_hw *hw;
487 	struct skb_shared_hwtstamps *shhwtstamps;
488 	u64 regval = 0, ns;
489 	u32 tsyncrxctl;
490 	unsigned long flags;
491 
492 	/* we cannot process timestamps on a ring without a q_vector */
493 	if (!q_vector || !q_vector->adapter)
494 		return;
495 
496 	adapter = q_vector->adapter;
497 	hw = &adapter->hw;
498 
499 	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
500 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
501 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
502 
503 	/*
504 	 * If this bit is set, then the RX registers contain the time stamp. No
505 	 * other packet will be time stamped until we read these registers, so
506 	 * read the registers to make them available again. Because only one
507 	 * packet can be time stamped at a time, we know that the register
508 	 * values must belong to this one here and therefore we don't need to
509 	 * compare any of the additional attributes stored for it.
510 	 *
511 	 * If nothing went wrong, then it should have a skb_shared_tx that we
512 	 * can turn into a skb_shared_hwtstamps.
513 	 */
514 	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
515 		return;
516 
517 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
518 	ns = timecounter_cyc2time(&adapter->tc, regval);
519 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
520 
521 	shhwtstamps = skb_hwtstamps(skb);
522 	shhwtstamps->hwtstamp = ns_to_ktime(ns);
523 }
524 
525 /**
526  * ixgbe_ptp_hwtstamp_ioctl - control hardware time stamping
527  * @adapter: pointer to adapter struct
528  * @ifreq: ioctl data
529  * @cmd: particular ioctl requested
530  *
531  * Outgoing time stamping can be enabled and disabled. Play nice and
532  * disable it when requested, although it shouldn't case any overhead
533  * when no packet needs it. At most one packet in the queue may be
534  * marked for time stamping, otherwise it would be impossible to tell
535  * for sure to which packet the hardware time stamp belongs.
536  *
537  * Incoming time stamping has to be configured via the hardware
538  * filters. Not all combinations are supported, in particular event
539  * type has to be specified. Matching the kind of event packet is
540  * not supported, with the exception of "all V2 events regardless of
541  * level 2 or 4".
542  */
543 int ixgbe_ptp_hwtstamp_ioctl(struct ixgbe_adapter *adapter,
544 			     struct ifreq *ifr, int cmd)
545 {
546 	struct ixgbe_hw *hw = &adapter->hw;
547 	struct hwtstamp_config config;
548 	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
549 	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
550 	u32 tsync_rx_mtrl = 0;
551 	bool is_l4 = false;
552 	bool is_l2 = false;
553 	u32 regval;
554 
555 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
556 		return -EFAULT;
557 
558 	/* reserved for future extensions */
559 	if (config.flags)
560 		return -EINVAL;
561 
562 	switch (config.tx_type) {
563 	case HWTSTAMP_TX_OFF:
564 		tsync_tx_ctl = 0;
565 	case HWTSTAMP_TX_ON:
566 		break;
567 	default:
568 		return -ERANGE;
569 	}
570 
571 	switch (config.rx_filter) {
572 	case HWTSTAMP_FILTER_NONE:
573 		tsync_rx_ctl = 0;
574 		break;
575 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
576 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
577 		tsync_rx_mtrl = IXGBE_RXMTRL_V1_SYNC_MSG;
578 		is_l4 = true;
579 		break;
580 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
581 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
582 		tsync_rx_mtrl = IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
583 		is_l4 = true;
584 		break;
585 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
586 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
587 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
588 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L2_L4_V2;
589 		tsync_rx_mtrl = IXGBE_RXMTRL_V2_SYNC_MSG;
590 		is_l2 = true;
591 		is_l4 = true;
592 		config.rx_filter = HWTSTAMP_FILTER_SOME;
593 		break;
594 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
595 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
596 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
597 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L2_L4_V2;
598 		tsync_rx_mtrl = IXGBE_RXMTRL_V2_DELAY_REQ_MSG;
599 		is_l2 = true;
600 		is_l4 = true;
601 		config.rx_filter = HWTSTAMP_FILTER_SOME;
602 		break;
603 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
604 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
605 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
606 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
607 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
608 		is_l2 = true;
609 		is_l4 = true;
610 		break;
611 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
612 	case HWTSTAMP_FILTER_ALL:
613 	default:
614 		/*
615 		 * register RXMTRL must be set, therefore it is not
616 		 * possible to time stamp both V1 Sync and Delay_Req messages
617 		 * and hardware does not support timestamping all packets
618 		 * => return error
619 		 */
620 		return -ERANGE;
621 	}
622 
623 	if (hw->mac.type == ixgbe_mac_82598EB) {
624 		if (tsync_rx_ctl | tsync_tx_ctl)
625 			return -ERANGE;
626 		return 0;
627 	}
628 
629 	/* define ethertype filter for timestamped packets */
630 	if (is_l2)
631 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(3),
632 				(IXGBE_ETQF_FILTER_EN | /* enable filter */
633 				 IXGBE_ETQF_1588 | /* enable timestamping */
634 				 ETH_P_1588));     /* 1588 eth protocol type */
635 	else
636 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(3), 0);
637 
638 #define PTP_PORT 319
639 	/* L4 Queue Filter[3]: filter by destination port and protocol */
640 	if (is_l4) {
641 		u32 ftqf = (IXGBE_FTQF_PROTOCOL_UDP /* UDP */
642 			    | IXGBE_FTQF_POOL_MASK_EN /* Pool not compared */
643 			    | IXGBE_FTQF_QUEUE_ENABLE);
644 
645 		ftqf |= ((IXGBE_FTQF_PROTOCOL_COMP_MASK /* protocol check */
646 			  & IXGBE_FTQF_DEST_PORT_MASK /* dest check */
647 			  & IXGBE_FTQF_SOURCE_PORT_MASK) /* source check */
648 			 << IXGBE_FTQF_5TUPLE_MASK_SHIFT);
649 
650 		IXGBE_WRITE_REG(hw, IXGBE_L34T_IMIR(3),
651 				(3 << IXGBE_IMIR_RX_QUEUE_SHIFT_82599 |
652 				 IXGBE_IMIR_SIZE_BP_82599));
653 
654 		/* enable port check */
655 		IXGBE_WRITE_REG(hw, IXGBE_SDPQF(3),
656 				(htons(PTP_PORT) |
657 				 htons(PTP_PORT) << 16));
658 
659 		IXGBE_WRITE_REG(hw, IXGBE_FTQF(3), ftqf);
660 
661 		tsync_rx_mtrl |= PTP_PORT << 16;
662 	} else {
663 		IXGBE_WRITE_REG(hw, IXGBE_FTQF(3), 0);
664 	}
665 
666 	/* enable/disable TX */
667 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
668 	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
669 	regval |= tsync_tx_ctl;
670 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
671 
672 	/* enable/disable RX */
673 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
674 	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
675 	regval |= tsync_rx_ctl;
676 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
677 
678 	/* define which PTP packets are time stamped */
679 	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
680 
681 	IXGBE_WRITE_FLUSH(hw);
682 
683 	/* clear TX/RX time stamp registers, just to be sure */
684 	regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
685 	regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
686 
687 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
688 		-EFAULT : 0;
689 }
690 
691 /**
692  * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
693  * @adapter - pointer to the adapter structure
694  *
695  * this function initializes the timecounter and cyclecounter
696  * structures for use in generated a ns counter from the arbitrary
697  * fixed point cycles registers in the hardware.
698  *
699  * A change in link speed impacts the frequency of the DMA clock on
700  * the device, which is used to generate the cycle counter
701  * registers. Therefor this function is called whenever the link speed
702  * changes.
703  *
704  * This function also turns on the SDP pin for clock out feature (X540
705  * only), because this is where the shift is first calculated.
706  */
707 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
708 {
709 	struct ixgbe_hw *hw = &adapter->hw;
710 	u32 incval = 0;
711 	u32 shift = 0;
712 	u32 cycle_speed;
713 	unsigned long flags;
714 
715 	/**
716 	 * Determine what speed we need to set the cyclecounter
717 	 * for. It should be different for 100Mb, 1Gb, and 10Gb. Treat
718 	 * unknown speeds as 10Gb. (Hence why we can't just copy the
719 	 * link_speed.
720 	 */
721 	switch (adapter->link_speed) {
722 	case IXGBE_LINK_SPEED_100_FULL:
723 	case IXGBE_LINK_SPEED_1GB_FULL:
724 	case IXGBE_LINK_SPEED_10GB_FULL:
725 		cycle_speed = adapter->link_speed;
726 		break;
727 	default:
728 		/* cycle speed should be 10Gb when there is no link */
729 		cycle_speed = IXGBE_LINK_SPEED_10GB_FULL;
730 		break;
731 	}
732 
733 	/* Bail if the cycle speed didn't change */
734 	if (adapter->cycle_speed == cycle_speed)
735 		return;
736 
737 	/* disable the SDP clock out */
738 	ixgbe_ptp_disable_sdp(hw);
739 
740 	/**
741 	 * Scale the NIC cycle counter by a large factor so that
742 	 * relatively small corrections to the frequency can be added
743 	 * or subtracted. The drawbacks of a large factor include
744 	 * (a) the clock register overflows more quickly, (b) the cycle
745 	 * counter structure must be able to convert the systime value
746 	 * to nanoseconds using only a multiplier and a right-shift,
747 	 * and (c) the value must fit within the timinca register space
748 	 * => math based on internal DMA clock rate and available bits
749 	 */
750 	switch (cycle_speed) {
751 	case IXGBE_LINK_SPEED_100_FULL:
752 		incval = IXGBE_INCVAL_100;
753 		shift = IXGBE_INCVAL_SHIFT_100;
754 		break;
755 	case IXGBE_LINK_SPEED_1GB_FULL:
756 		incval = IXGBE_INCVAL_1GB;
757 		shift = IXGBE_INCVAL_SHIFT_1GB;
758 		break;
759 	case IXGBE_LINK_SPEED_10GB_FULL:
760 		incval = IXGBE_INCVAL_10GB;
761 		shift = IXGBE_INCVAL_SHIFT_10GB;
762 		break;
763 	}
764 
765 	/**
766 	 * Modify the calculated values to fit within the correct
767 	 * number of bits specified by the hardware. The 82599 doesn't
768 	 * have the same space as the X540, so bitshift the calculated
769 	 * values to fit.
770 	 */
771 	switch (hw->mac.type) {
772 	case ixgbe_mac_X540:
773 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
774 		break;
775 	case ixgbe_mac_82599EB:
776 		incval >>= IXGBE_INCVAL_SHIFT_82599;
777 		shift -= IXGBE_INCVAL_SHIFT_82599;
778 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
779 				(1 << IXGBE_INCPER_SHIFT_82599) |
780 				incval);
781 		break;
782 	default:
783 		/* other devices aren't supported */
784 		return;
785 	}
786 
787 	/* reset the system time registers */
788 	IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000);
789 	IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000);
790 	IXGBE_WRITE_FLUSH(hw);
791 
792 	/* now that the shift has been calculated and the systime
793 	 * registers reset, (re-)enable the Clock out feature*/
794 	ixgbe_ptp_enable_sdp(hw, shift);
795 
796 	/* store the new cycle speed */
797 	adapter->cycle_speed = cycle_speed;
798 
799 	ACCESS_ONCE(adapter->base_incval) = incval;
800 	smp_mb();
801 
802 	/* grab the ptp lock */
803 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
804 
805 	memset(&adapter->cc, 0, sizeof(adapter->cc));
806 	adapter->cc.read = ixgbe_ptp_read;
807 	adapter->cc.mask = CLOCKSOURCE_MASK(64);
808 	adapter->cc.shift = shift;
809 	adapter->cc.mult = 1;
810 
811 	/* reset the ns time counter */
812 	timecounter_init(&adapter->tc, &adapter->cc,
813 			 ktime_to_ns(ktime_get_real()));
814 
815 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
816 }
817 
818 /**
819  * ixgbe_ptp_init
820  * @adapter - the ixgbe private adapter structure
821  *
822  * This function performs the required steps for enabling ptp
823  * support. If ptp support has already been loaded it simply calls the
824  * cyclecounter init routine and exits.
825  */
826 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
827 {
828 	struct net_device *netdev = adapter->netdev;
829 
830 	switch (adapter->hw.mac.type) {
831 	case ixgbe_mac_X540:
832 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
833 		adapter->ptp_caps.owner = THIS_MODULE;
834 		adapter->ptp_caps.max_adj = 250000000;
835 		adapter->ptp_caps.n_alarm = 0;
836 		adapter->ptp_caps.n_ext_ts = 0;
837 		adapter->ptp_caps.n_per_out = 0;
838 		adapter->ptp_caps.pps = 1;
839 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
840 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
841 		adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
842 		adapter->ptp_caps.settime = ixgbe_ptp_settime;
843 		adapter->ptp_caps.enable = ixgbe_ptp_enable;
844 		break;
845 	case ixgbe_mac_82599EB:
846 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
847 		adapter->ptp_caps.owner = THIS_MODULE;
848 		adapter->ptp_caps.max_adj = 250000000;
849 		adapter->ptp_caps.n_alarm = 0;
850 		adapter->ptp_caps.n_ext_ts = 0;
851 		adapter->ptp_caps.n_per_out = 0;
852 		adapter->ptp_caps.pps = 0;
853 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
854 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
855 		adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
856 		adapter->ptp_caps.settime = ixgbe_ptp_settime;
857 		adapter->ptp_caps.enable = ixgbe_ptp_enable;
858 		break;
859 	default:
860 		adapter->ptp_clock = NULL;
861 		return;
862 	}
863 
864 	spin_lock_init(&adapter->tmreg_lock);
865 
866 	ixgbe_ptp_start_cyclecounter(adapter);
867 
868 	/* (Re)start the overflow check */
869 	adapter->flags2 |= IXGBE_FLAG2_OVERFLOW_CHECK_ENABLED;
870 
871 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps);
872 	if (IS_ERR(adapter->ptp_clock)) {
873 		adapter->ptp_clock = NULL;
874 		e_dev_err("ptp_clock_register failed\n");
875 	} else
876 		e_dev_info("registered PHC device on %s\n", netdev->name);
877 
878 	return;
879 }
880 
881 /**
882  * ixgbe_ptp_stop - disable ptp device and stop the overflow check
883  * @adapter: pointer to adapter struct
884  *
885  * this function stops the ptp support, and cancels the delayed work.
886  */
887 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
888 {
889 	ixgbe_ptp_disable_sdp(&adapter->hw);
890 
891 	/* stop the overflow check task */
892 	adapter->flags2 &= ~IXGBE_FLAG2_OVERFLOW_CHECK_ENABLED;
893 
894 	if (adapter->ptp_clock) {
895 		ptp_clock_unregister(adapter->ptp_clock);
896 		adapter->ptp_clock = NULL;
897 		e_dev_info("removed PHC on %s\n",
898 			   adapter->netdev->name);
899 	}
900 }
901