1 /******************************************************************************* 2 3 Intel 10 Gigabit PCI Express Linux driver 4 Copyright(c) 1999 - 2013 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 #include "ixgbe.h" 29 #include <linux/ptp_classify.h> 30 31 /* 32 * The 82599 and the X540 do not have true 64bit nanosecond scale 33 * counter registers. Instead, SYSTIME is defined by a fixed point 34 * system which allows the user to define the scale counter increment 35 * value at every level change of the oscillator driving the SYSTIME 36 * value. For both devices the TIMINCA:IV field defines this 37 * increment. On the X540 device, 31 bits are provided. However on the 38 * 82599 only provides 24 bits. The time unit is determined by the 39 * clock frequency of the oscillator in combination with the TIMINCA 40 * register. When these devices link at 10Gb the oscillator has a 41 * period of 6.4ns. In order to convert the scale counter into 42 * nanoseconds the cyclecounter and timecounter structures are 43 * used. The SYSTIME registers need to be converted to ns values by use 44 * of only a right shift (division by power of 2). The following math 45 * determines the largest incvalue that will fit into the available 46 * bits in the TIMINCA register. 47 * 48 * PeriodWidth: Number of bits to store the clock period 49 * MaxWidth: The maximum width value of the TIMINCA register 50 * Period: The clock period for the oscillator 51 * round(): discard the fractional portion of the calculation 52 * 53 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ] 54 * 55 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns 56 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns 57 * 58 * The period also changes based on the link speed: 59 * At 10Gb link or no link, the period remains the same. 60 * At 1Gb link, the period is multiplied by 10. (64ns) 61 * At 100Mb link, the period is multiplied by 100. (640ns) 62 * 63 * The calculated value allows us to right shift the SYSTIME register 64 * value in order to quickly convert it into a nanosecond clock, 65 * while allowing for the maximum possible adjustment value. 66 * 67 * These diagrams are only for the 10Gb link period 68 * 69 * SYSTIMEH SYSTIMEL 70 * +--------------+ +--------------+ 71 * X540 | 32 | | 1 | 3 | 28 | 72 * *--------------+ +--------------+ 73 * \________ 36 bits ______/ fract 74 * 75 * +--------------+ +--------------+ 76 * 82599 | 32 | | 8 | 3 | 21 | 77 * *--------------+ +--------------+ 78 * \________ 43 bits ______/ fract 79 * 80 * The 36 bit X540 SYSTIME overflows every 81 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds 82 * 83 * The 43 bit 82599 SYSTIME overflows every 84 * 2^43 * 10^-9 / 3600 = 2.4 hours 85 */ 86 #define IXGBE_INCVAL_10GB 0x66666666 87 #define IXGBE_INCVAL_1GB 0x40000000 88 #define IXGBE_INCVAL_100 0x50000000 89 90 #define IXGBE_INCVAL_SHIFT_10GB 28 91 #define IXGBE_INCVAL_SHIFT_1GB 24 92 #define IXGBE_INCVAL_SHIFT_100 21 93 94 #define IXGBE_INCVAL_SHIFT_82599 7 95 #define IXGBE_INCPER_SHIFT_82599 24 96 #define IXGBE_MAX_TIMEADJ_VALUE 0x7FFFFFFFFFFFFFFFULL 97 98 #define IXGBE_OVERFLOW_PERIOD (HZ * 30) 99 #define IXGBE_PTP_TX_TIMEOUT (HZ * 15) 100 101 /* half of a one second clock period, for use with PPS signal. We have to use 102 * this instead of something pre-defined like IXGBE_PTP_PPS_HALF_SECOND, in 103 * order to force at least 64bits of precision for shifting 104 */ 105 #define IXGBE_PTP_PPS_HALF_SECOND 500000000ULL 106 107 /** 108 * ixgbe_ptp_setup_sdp 109 * @hw: the hardware private structure 110 * 111 * this function enables or disables the clock out feature on SDP0 for 112 * the X540 device. It will create a 1second periodic output that can 113 * be used as the PPS (via an interrupt). 114 * 115 * It calculates when the systime will be on an exact second, and then 116 * aligns the start of the PPS signal to that value. The shift is 117 * necessary because it can change based on the link speed. 118 */ 119 static void ixgbe_ptp_setup_sdp(struct ixgbe_adapter *adapter) 120 { 121 struct ixgbe_hw *hw = &adapter->hw; 122 int shift = adapter->cc.shift; 123 u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem; 124 u64 ns = 0, clock_edge = 0; 125 126 if ((adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED) && 127 (hw->mac.type == ixgbe_mac_X540)) { 128 129 /* disable the pin first */ 130 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0); 131 IXGBE_WRITE_FLUSH(hw); 132 133 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); 134 135 /* 136 * enable the SDP0 pin as output, and connected to the 137 * native function for Timesync (ClockOut) 138 */ 139 esdp |= (IXGBE_ESDP_SDP0_DIR | 140 IXGBE_ESDP_SDP0_NATIVE); 141 142 /* 143 * enable the Clock Out feature on SDP0, and allow 144 * interrupts to occur when the pin changes 145 */ 146 tsauxc = (IXGBE_TSAUXC_EN_CLK | 147 IXGBE_TSAUXC_SYNCLK | 148 IXGBE_TSAUXC_SDP0_INT); 149 150 /* clock period (or pulse length) */ 151 clktiml = (u32)(IXGBE_PTP_PPS_HALF_SECOND << shift); 152 clktimh = (u32)((IXGBE_PTP_PPS_HALF_SECOND << shift) >> 32); 153 154 /* 155 * Account for the cyclecounter wrap-around value by 156 * using the converted ns value of the current time to 157 * check for when the next aligned second would occur. 158 */ 159 clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML); 160 clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; 161 ns = timecounter_cyc2time(&adapter->tc, clock_edge); 162 163 div_u64_rem(ns, IXGBE_PTP_PPS_HALF_SECOND, &rem); 164 clock_edge += ((IXGBE_PTP_PPS_HALF_SECOND - (u64)rem) << shift); 165 166 /* specify the initial clock start time */ 167 trgttiml = (u32)clock_edge; 168 trgttimh = (u32)(clock_edge >> 32); 169 170 IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml); 171 IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh); 172 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml); 173 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh); 174 175 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 176 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc); 177 } else { 178 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0); 179 } 180 181 IXGBE_WRITE_FLUSH(hw); 182 } 183 184 /** 185 * ixgbe_ptp_read - read raw cycle counter (to be used by time counter) 186 * @cc: the cyclecounter structure 187 * 188 * this function reads the cyclecounter registers and is called by the 189 * cyclecounter structure used to construct a ns counter from the 190 * arbitrary fixed point registers 191 */ 192 static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc) 193 { 194 struct ixgbe_adapter *adapter = 195 container_of(cc, struct ixgbe_adapter, cc); 196 struct ixgbe_hw *hw = &adapter->hw; 197 u64 stamp = 0; 198 199 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML); 200 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; 201 202 return stamp; 203 } 204 205 /** 206 * ixgbe_ptp_adjfreq 207 * @ptp: the ptp clock structure 208 * @ppb: parts per billion adjustment from base 209 * 210 * adjust the frequency of the ptp cycle counter by the 211 * indicated ppb from the base frequency. 212 */ 213 static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb) 214 { 215 struct ixgbe_adapter *adapter = 216 container_of(ptp, struct ixgbe_adapter, ptp_caps); 217 struct ixgbe_hw *hw = &adapter->hw; 218 u64 freq; 219 u32 diff, incval; 220 int neg_adj = 0; 221 222 if (ppb < 0) { 223 neg_adj = 1; 224 ppb = -ppb; 225 } 226 227 smp_mb(); 228 incval = ACCESS_ONCE(adapter->base_incval); 229 230 freq = incval; 231 freq *= ppb; 232 diff = div_u64(freq, 1000000000ULL); 233 234 incval = neg_adj ? (incval - diff) : (incval + diff); 235 236 switch (hw->mac.type) { 237 case ixgbe_mac_X540: 238 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval); 239 break; 240 case ixgbe_mac_82599EB: 241 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, 242 (1 << IXGBE_INCPER_SHIFT_82599) | 243 incval); 244 break; 245 default: 246 break; 247 } 248 249 return 0; 250 } 251 252 /** 253 * ixgbe_ptp_adjtime 254 * @ptp: the ptp clock structure 255 * @delta: offset to adjust the cycle counter by 256 * 257 * adjust the timer by resetting the timecounter structure. 258 */ 259 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 260 { 261 struct ixgbe_adapter *adapter = 262 container_of(ptp, struct ixgbe_adapter, ptp_caps); 263 unsigned long flags; 264 265 spin_lock_irqsave(&adapter->tmreg_lock, flags); 266 timecounter_adjtime(&adapter->tc, delta); 267 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 268 269 ixgbe_ptp_setup_sdp(adapter); 270 271 return 0; 272 } 273 274 /** 275 * ixgbe_ptp_gettime 276 * @ptp: the ptp clock structure 277 * @ts: timespec structure to hold the current time value 278 * 279 * read the timecounter and return the correct value on ns, 280 * after converting it into a struct timespec. 281 */ 282 static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts) 283 { 284 struct ixgbe_adapter *adapter = 285 container_of(ptp, struct ixgbe_adapter, ptp_caps); 286 u64 ns; 287 u32 remainder; 288 unsigned long flags; 289 290 spin_lock_irqsave(&adapter->tmreg_lock, flags); 291 ns = timecounter_read(&adapter->tc); 292 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 293 294 ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder); 295 ts->tv_nsec = remainder; 296 297 return 0; 298 } 299 300 /** 301 * ixgbe_ptp_settime 302 * @ptp: the ptp clock structure 303 * @ts: the timespec containing the new time for the cycle counter 304 * 305 * reset the timecounter to use a new base value instead of the kernel 306 * wall timer value. 307 */ 308 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp, 309 const struct timespec *ts) 310 { 311 struct ixgbe_adapter *adapter = 312 container_of(ptp, struct ixgbe_adapter, ptp_caps); 313 u64 ns; 314 unsigned long flags; 315 316 ns = ts->tv_sec * 1000000000ULL; 317 ns += ts->tv_nsec; 318 319 /* reset the timecounter */ 320 spin_lock_irqsave(&adapter->tmreg_lock, flags); 321 timecounter_init(&adapter->tc, &adapter->cc, ns); 322 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 323 324 ixgbe_ptp_setup_sdp(adapter); 325 return 0; 326 } 327 328 /** 329 * ixgbe_ptp_feature_enable 330 * @ptp: the ptp clock structure 331 * @rq: the requested feature to change 332 * @on: whether to enable or disable the feature 333 * 334 * enable (or disable) ancillary features of the phc subsystem. 335 * our driver only supports the PPS feature on the X540 336 */ 337 static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp, 338 struct ptp_clock_request *rq, int on) 339 { 340 struct ixgbe_adapter *adapter = 341 container_of(ptp, struct ixgbe_adapter, ptp_caps); 342 343 /** 344 * When PPS is enabled, unmask the interrupt for the ClockOut 345 * feature, so that the interrupt handler can send the PPS 346 * event when the clock SDP triggers. Clear mask when PPS is 347 * disabled 348 */ 349 if (rq->type == PTP_CLK_REQ_PPS) { 350 switch (adapter->hw.mac.type) { 351 case ixgbe_mac_X540: 352 if (on) 353 adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED; 354 else 355 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED; 356 357 ixgbe_ptp_setup_sdp(adapter); 358 return 0; 359 default: 360 break; 361 } 362 } 363 364 return -ENOTSUPP; 365 } 366 367 /** 368 * ixgbe_ptp_check_pps_event 369 * @adapter: the private adapter structure 370 * @eicr: the interrupt cause register value 371 * 372 * This function is called by the interrupt routine when checking for 373 * interrupts. It will check and handle a pps event. 374 */ 375 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr) 376 { 377 struct ixgbe_hw *hw = &adapter->hw; 378 struct ptp_clock_event event; 379 380 event.type = PTP_CLOCK_PPS; 381 382 /* this check is necessary in case the interrupt was enabled via some 383 * alternative means (ex. debug_fs). Better to check here than 384 * everywhere that calls this function. 385 */ 386 if (!adapter->ptp_clock) 387 return; 388 389 switch (hw->mac.type) { 390 case ixgbe_mac_X540: 391 ptp_clock_event(adapter->ptp_clock, &event); 392 break; 393 default: 394 break; 395 } 396 } 397 398 /** 399 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow 400 * @adapter: private adapter struct 401 * 402 * this watchdog task periodically reads the timecounter 403 * in order to prevent missing when the system time registers wrap 404 * around. This needs to be run approximately twice a minute. 405 */ 406 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter) 407 { 408 bool timeout = time_is_before_jiffies(adapter->last_overflow_check + 409 IXGBE_OVERFLOW_PERIOD); 410 struct timespec ts; 411 412 if (timeout) { 413 ixgbe_ptp_gettime(&adapter->ptp_caps, &ts); 414 adapter->last_overflow_check = jiffies; 415 } 416 } 417 418 /** 419 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched 420 * @adapter: private network adapter structure 421 * 422 * this watchdog task is scheduled to detect error case where hardware has 423 * dropped an Rx packet that was timestamped when the ring is full. The 424 * particular error is rare but leaves the device in a state unable to timestamp 425 * any future packets. 426 */ 427 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter) 428 { 429 struct ixgbe_hw *hw = &adapter->hw; 430 u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 431 unsigned long rx_event; 432 433 /* if we don't have a valid timestamp in the registers, just update the 434 * timeout counter and exit 435 */ 436 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) { 437 adapter->last_rx_ptp_check = jiffies; 438 return; 439 } 440 441 /* determine the most recent watchdog or rx_timestamp event */ 442 rx_event = adapter->last_rx_ptp_check; 443 if (time_after(adapter->last_rx_timestamp, rx_event)) 444 rx_event = adapter->last_rx_timestamp; 445 446 /* only need to read the high RXSTMP register to clear the lock */ 447 if (time_is_before_jiffies(rx_event + 5*HZ)) { 448 IXGBE_READ_REG(hw, IXGBE_RXSTMPH); 449 adapter->last_rx_ptp_check = jiffies; 450 451 e_warn(drv, "clearing RX Timestamp hang\n"); 452 } 453 } 454 455 /** 456 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp 457 * @adapter: the private adapter struct 458 * 459 * if the timestamp is valid, we convert it into the timecounter ns 460 * value, then store that result into the shhwtstamps structure which 461 * is passed up the network stack 462 */ 463 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter) 464 { 465 struct ixgbe_hw *hw = &adapter->hw; 466 struct skb_shared_hwtstamps shhwtstamps; 467 u64 regval = 0, ns; 468 unsigned long flags; 469 470 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL); 471 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32; 472 473 spin_lock_irqsave(&adapter->tmreg_lock, flags); 474 ns = timecounter_cyc2time(&adapter->tc, regval); 475 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 476 477 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 478 shhwtstamps.hwtstamp = ns_to_ktime(ns); 479 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps); 480 481 dev_kfree_skb_any(adapter->ptp_tx_skb); 482 adapter->ptp_tx_skb = NULL; 483 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state); 484 } 485 486 /** 487 * ixgbe_ptp_tx_hwtstamp_work 488 * @work: pointer to the work struct 489 * 490 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware 491 * timestamp has been taken for the current skb. It is necessary, because the 492 * descriptor's "done" bit does not correlate with the timestamp event. 493 */ 494 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work) 495 { 496 struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter, 497 ptp_tx_work); 498 struct ixgbe_hw *hw = &adapter->hw; 499 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start + 500 IXGBE_PTP_TX_TIMEOUT); 501 u32 tsynctxctl; 502 503 if (timeout) { 504 dev_kfree_skb_any(adapter->ptp_tx_skb); 505 adapter->ptp_tx_skb = NULL; 506 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state); 507 e_warn(drv, "clearing Tx Timestamp hang\n"); 508 return; 509 } 510 511 tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); 512 if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) 513 ixgbe_ptp_tx_hwtstamp(adapter); 514 else 515 /* reschedule to keep checking if it's not available yet */ 516 schedule_work(&adapter->ptp_tx_work); 517 } 518 519 /** 520 * ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp 521 * @adapter: pointer to adapter struct 522 * @skb: particular skb to send timestamp with 523 * 524 * if the timestamp is valid, we convert it into the timecounter ns 525 * value, then store that result into the shhwtstamps structure which 526 * is passed up the network stack 527 */ 528 void ixgbe_ptp_rx_hwtstamp(struct ixgbe_adapter *adapter, struct sk_buff *skb) 529 { 530 struct ixgbe_hw *hw = &adapter->hw; 531 struct skb_shared_hwtstamps *shhwtstamps; 532 u64 regval = 0, ns; 533 u32 tsyncrxctl; 534 unsigned long flags; 535 536 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 537 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) 538 return; 539 540 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL); 541 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32; 542 543 spin_lock_irqsave(&adapter->tmreg_lock, flags); 544 ns = timecounter_cyc2time(&adapter->tc, regval); 545 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 546 547 shhwtstamps = skb_hwtstamps(skb); 548 shhwtstamps->hwtstamp = ns_to_ktime(ns); 549 550 /* Update the last_rx_timestamp timer in order to enable watchdog check 551 * for error case of latched timestamp on a dropped packet. 552 */ 553 adapter->last_rx_timestamp = jiffies; 554 } 555 556 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr) 557 { 558 struct hwtstamp_config *config = &adapter->tstamp_config; 559 560 return copy_to_user(ifr->ifr_data, config, 561 sizeof(*config)) ? -EFAULT : 0; 562 } 563 564 /** 565 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode 566 * @adapter: the private ixgbe adapter structure 567 * @config: the hwtstamp configuration requested 568 * 569 * Outgoing time stamping can be enabled and disabled. Play nice and 570 * disable it when requested, although it shouldn't cause any overhead 571 * when no packet needs it. At most one packet in the queue may be 572 * marked for time stamping, otherwise it would be impossible to tell 573 * for sure to which packet the hardware time stamp belongs. 574 * 575 * Incoming time stamping has to be configured via the hardware 576 * filters. Not all combinations are supported, in particular event 577 * type has to be specified. Matching the kind of event packet is 578 * not supported, with the exception of "all V2 events regardless of 579 * level 2 or 4". 580 * 581 * Since hardware always timestamps Path delay packets when timestamping V2 582 * packets, regardless of the type specified in the register, only use V2 583 * Event mode. This more accurately tells the user what the hardware is going 584 * to do anyways. 585 * 586 * Note: this may modify the hwtstamp configuration towards a more general 587 * mode, if required to support the specifically requested mode. 588 */ 589 static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter, 590 struct hwtstamp_config *config) 591 { 592 struct ixgbe_hw *hw = &adapter->hw; 593 u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED; 594 u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED; 595 u32 tsync_rx_mtrl = PTP_EV_PORT << 16; 596 bool is_l2 = false; 597 u32 regval; 598 599 /* reserved for future extensions */ 600 if (config->flags) 601 return -EINVAL; 602 603 switch (config->tx_type) { 604 case HWTSTAMP_TX_OFF: 605 tsync_tx_ctl = 0; 606 case HWTSTAMP_TX_ON: 607 break; 608 default: 609 return -ERANGE; 610 } 611 612 switch (config->rx_filter) { 613 case HWTSTAMP_FILTER_NONE: 614 tsync_rx_ctl = 0; 615 tsync_rx_mtrl = 0; 616 break; 617 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 618 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; 619 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG; 620 break; 621 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 622 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; 623 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG; 624 break; 625 case HWTSTAMP_FILTER_PTP_V2_EVENT: 626 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 627 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 628 case HWTSTAMP_FILTER_PTP_V2_SYNC: 629 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 630 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 631 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 632 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 633 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 634 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2; 635 is_l2 = true; 636 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 637 break; 638 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 639 case HWTSTAMP_FILTER_ALL: 640 default: 641 /* 642 * register RXMTRL must be set in order to do V1 packets, 643 * therefore it is not possible to time stamp both V1 Sync and 644 * Delay_Req messages and hardware does not support 645 * timestamping all packets => return error 646 */ 647 config->rx_filter = HWTSTAMP_FILTER_NONE; 648 return -ERANGE; 649 } 650 651 if (hw->mac.type == ixgbe_mac_82598EB) { 652 if (tsync_rx_ctl | tsync_tx_ctl) 653 return -ERANGE; 654 return 0; 655 } 656 657 /* define ethertype filter for timestamping L2 packets */ 658 if (is_l2) 659 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 660 (IXGBE_ETQF_FILTER_EN | /* enable filter */ 661 IXGBE_ETQF_1588 | /* enable timestamping */ 662 ETH_P_1588)); /* 1588 eth protocol type */ 663 else 664 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0); 665 666 /* enable/disable TX */ 667 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); 668 regval &= ~IXGBE_TSYNCTXCTL_ENABLED; 669 regval |= tsync_tx_ctl; 670 IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval); 671 672 /* enable/disable RX */ 673 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 674 regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK); 675 regval |= tsync_rx_ctl; 676 IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval); 677 678 /* define which PTP packets are time stamped */ 679 IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl); 680 681 IXGBE_WRITE_FLUSH(hw); 682 683 /* clear TX/RX time stamp registers, just to be sure */ 684 regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH); 685 regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH); 686 687 return 0; 688 } 689 690 /** 691 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode 692 * @adapter: pointer to adapter struct 693 * @ifreq: ioctl data 694 * 695 * Set hardware to requested mode. If unsupported, return an error with no 696 * changes. Otherwise, store the mode for future reference. 697 */ 698 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr) 699 { 700 struct hwtstamp_config config; 701 int err; 702 703 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 704 return -EFAULT; 705 706 err = ixgbe_ptp_set_timestamp_mode(adapter, &config); 707 if (err) 708 return err; 709 710 /* save these settings for future reference */ 711 memcpy(&adapter->tstamp_config, &config, 712 sizeof(adapter->tstamp_config)); 713 714 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 715 -EFAULT : 0; 716 } 717 718 /** 719 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw 720 * @adapter: pointer to the adapter structure 721 * 722 * This function should be called to set the proper values for the TIMINCA 723 * register and tell the cyclecounter structure what the tick rate of SYSTIME 724 * is. It does not directly modify SYSTIME registers or the timecounter 725 * structure. It should be called whenever a new TIMINCA value is necessary, 726 * such as during initialization or when the link speed changes. 727 */ 728 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter) 729 { 730 struct ixgbe_hw *hw = &adapter->hw; 731 u32 incval = 0; 732 u32 shift = 0; 733 unsigned long flags; 734 735 /** 736 * Scale the NIC cycle counter by a large factor so that 737 * relatively small corrections to the frequency can be added 738 * or subtracted. The drawbacks of a large factor include 739 * (a) the clock register overflows more quickly, (b) the cycle 740 * counter structure must be able to convert the systime value 741 * to nanoseconds using only a multiplier and a right-shift, 742 * and (c) the value must fit within the timinca register space 743 * => math based on internal DMA clock rate and available bits 744 * 745 * Note that when there is no link, internal DMA clock is same as when 746 * link speed is 10Gb. Set the registers correctly even when link is 747 * down to preserve the clock setting 748 */ 749 switch (adapter->link_speed) { 750 case IXGBE_LINK_SPEED_100_FULL: 751 incval = IXGBE_INCVAL_100; 752 shift = IXGBE_INCVAL_SHIFT_100; 753 break; 754 case IXGBE_LINK_SPEED_1GB_FULL: 755 incval = IXGBE_INCVAL_1GB; 756 shift = IXGBE_INCVAL_SHIFT_1GB; 757 break; 758 case IXGBE_LINK_SPEED_10GB_FULL: 759 default: 760 incval = IXGBE_INCVAL_10GB; 761 shift = IXGBE_INCVAL_SHIFT_10GB; 762 break; 763 } 764 765 /** 766 * Modify the calculated values to fit within the correct 767 * number of bits specified by the hardware. The 82599 doesn't 768 * have the same space as the X540, so bitshift the calculated 769 * values to fit. 770 */ 771 switch (hw->mac.type) { 772 case ixgbe_mac_X540: 773 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval); 774 break; 775 case ixgbe_mac_82599EB: 776 incval >>= IXGBE_INCVAL_SHIFT_82599; 777 shift -= IXGBE_INCVAL_SHIFT_82599; 778 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, 779 (1 << IXGBE_INCPER_SHIFT_82599) | 780 incval); 781 break; 782 default: 783 /* other devices aren't supported */ 784 return; 785 } 786 787 /* update the base incval used to calculate frequency adjustment */ 788 ACCESS_ONCE(adapter->base_incval) = incval; 789 smp_mb(); 790 791 /* need lock to prevent incorrect read while modifying cyclecounter */ 792 spin_lock_irqsave(&adapter->tmreg_lock, flags); 793 794 memset(&adapter->cc, 0, sizeof(adapter->cc)); 795 adapter->cc.read = ixgbe_ptp_read; 796 adapter->cc.mask = CYCLECOUNTER_MASK(64); 797 adapter->cc.shift = shift; 798 adapter->cc.mult = 1; 799 800 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 801 } 802 803 /** 804 * ixgbe_ptp_reset 805 * @adapter: the ixgbe private board structure 806 * 807 * When the MAC resets, all the hardware bits for timesync are reset. This 808 * function is used to re-enable the device for PTP based on current settings. 809 * We do lose the current clock time, so just reset the cyclecounter to the 810 * system real clock time. 811 * 812 * This function will maintain hwtstamp_config settings, and resets the SDP 813 * output if it was enabled. 814 */ 815 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter) 816 { 817 struct ixgbe_hw *hw = &adapter->hw; 818 unsigned long flags; 819 820 /* set SYSTIME registers to 0 just in case */ 821 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000); 822 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000); 823 IXGBE_WRITE_FLUSH(hw); 824 825 /* reset the hardware timestamping mode */ 826 ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); 827 828 ixgbe_ptp_start_cyclecounter(adapter); 829 830 spin_lock_irqsave(&adapter->tmreg_lock, flags); 831 832 /* reset the ns time counter */ 833 timecounter_init(&adapter->tc, &adapter->cc, 834 ktime_to_ns(ktime_get_real())); 835 836 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 837 838 /* 839 * Now that the shift has been calculated and the systime 840 * registers reset, (re-)enable the Clock out feature 841 */ 842 ixgbe_ptp_setup_sdp(adapter); 843 } 844 845 /** 846 * ixgbe_ptp_create_clock 847 * @adapter: the ixgbe private adapter structure 848 * 849 * This function performs setup of the user entry point function table and 850 * initializes the PTP clock device, which is used to access the clock-like 851 * features of the PTP core. It will be called by ixgbe_ptp_init, only if 852 * there isn't already a clock device (such as after a suspend/resume cycle, 853 * where the clock device wasn't destroyed). 854 */ 855 static int ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter) 856 { 857 struct net_device *netdev = adapter->netdev; 858 long err; 859 860 /* do nothing if we already have a clock device */ 861 if (!IS_ERR_OR_NULL(adapter->ptp_clock)) 862 return 0; 863 864 switch (adapter->hw.mac.type) { 865 case ixgbe_mac_X540: 866 snprintf(adapter->ptp_caps.name, 867 sizeof(adapter->ptp_caps.name), 868 "%s", netdev->name); 869 adapter->ptp_caps.owner = THIS_MODULE; 870 adapter->ptp_caps.max_adj = 250000000; 871 adapter->ptp_caps.n_alarm = 0; 872 adapter->ptp_caps.n_ext_ts = 0; 873 adapter->ptp_caps.n_per_out = 0; 874 adapter->ptp_caps.pps = 1; 875 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq; 876 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; 877 adapter->ptp_caps.gettime = ixgbe_ptp_gettime; 878 adapter->ptp_caps.settime = ixgbe_ptp_settime; 879 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; 880 break; 881 case ixgbe_mac_82599EB: 882 snprintf(adapter->ptp_caps.name, 883 sizeof(adapter->ptp_caps.name), 884 "%s", netdev->name); 885 adapter->ptp_caps.owner = THIS_MODULE; 886 adapter->ptp_caps.max_adj = 250000000; 887 adapter->ptp_caps.n_alarm = 0; 888 adapter->ptp_caps.n_ext_ts = 0; 889 adapter->ptp_caps.n_per_out = 0; 890 adapter->ptp_caps.pps = 0; 891 adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq; 892 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; 893 adapter->ptp_caps.gettime = ixgbe_ptp_gettime; 894 adapter->ptp_caps.settime = ixgbe_ptp_settime; 895 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; 896 break; 897 default: 898 adapter->ptp_clock = NULL; 899 return -EOPNOTSUPP; 900 } 901 902 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, 903 &adapter->pdev->dev); 904 if (IS_ERR(adapter->ptp_clock)) { 905 err = PTR_ERR(adapter->ptp_clock); 906 adapter->ptp_clock = NULL; 907 e_dev_err("ptp_clock_register failed\n"); 908 return err; 909 } else 910 e_dev_info("registered PHC device on %s\n", netdev->name); 911 912 /* set default timestamp mode to disabled here. We do this in 913 * create_clock instead of init, because we don't want to override the 914 * previous settings during a resume cycle. 915 */ 916 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 917 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 918 919 return 0; 920 } 921 922 /** 923 * ixgbe_ptp_init 924 * @adapter: the ixgbe private adapter structure 925 * 926 * This function performs the required steps for enabling PTP 927 * support. If PTP support has already been loaded it simply calls the 928 * cyclecounter init routine and exits. 929 */ 930 void ixgbe_ptp_init(struct ixgbe_adapter *adapter) 931 { 932 /* initialize the spin lock first since we can't control when a user 933 * will call the entry functions once we have initialized the clock 934 * device 935 */ 936 spin_lock_init(&adapter->tmreg_lock); 937 938 /* obtain a PTP device, or re-use an existing device */ 939 if (ixgbe_ptp_create_clock(adapter)) 940 return; 941 942 /* we have a clock so we can initialize work now */ 943 INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work); 944 945 /* reset the PTP related hardware bits */ 946 ixgbe_ptp_reset(adapter); 947 948 /* enter the IXGBE_PTP_RUNNING state */ 949 set_bit(__IXGBE_PTP_RUNNING, &adapter->state); 950 951 return; 952 } 953 954 /** 955 * ixgbe_ptp_suspend - stop PTP work items 956 * @ adapter: pointer to adapter struct 957 * 958 * this function suspends PTP activity, and prevents more PTP work from being 959 * generated, but does not destroy the PTP clock device. 960 */ 961 void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter) 962 { 963 /* Leave the IXGBE_PTP_RUNNING state. */ 964 if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state)) 965 return; 966 967 /* since this might be called in suspend, we don't clear the state, 968 * but simply reset the auxiliary PPS signal control register 969 */ 970 IXGBE_WRITE_REG(&adapter->hw, IXGBE_TSAUXC, 0x0); 971 972 /* ensure that we cancel any pending PTP Tx work item in progress */ 973 cancel_work_sync(&adapter->ptp_tx_work); 974 if (adapter->ptp_tx_skb) { 975 dev_kfree_skb_any(adapter->ptp_tx_skb); 976 adapter->ptp_tx_skb = NULL; 977 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state); 978 } 979 } 980 981 /** 982 * ixgbe_ptp_stop - close the PTP device 983 * @adapter: pointer to adapter struct 984 * 985 * completely destroy the PTP device, should only be called when the device is 986 * being fully closed. 987 */ 988 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter) 989 { 990 /* first, suspend PTP activity */ 991 ixgbe_ptp_suspend(adapter); 992 993 /* disable the PTP clock device */ 994 if (adapter->ptp_clock) { 995 ptp_clock_unregister(adapter->ptp_clock); 996 adapter->ptp_clock = NULL; 997 e_dev_info("removed PHC on %s\n", 998 adapter->netdev->name); 999 } 1000 } 1001