1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 #include "ixgbe.h"
28 #include <linux/export.h>
29 #include <linux/ptp_classify.h>
30 
31 /*
32  * The 82599 and the X540 do not have true 64bit nanosecond scale
33  * counter registers. Instead, SYSTIME is defined by a fixed point
34  * system which allows the user to define the scale counter increment
35  * value at every level change of the oscillator driving the SYSTIME
36  * value. For both devices the TIMINCA:IV field defines this
37  * increment. On the X540 device, 31 bits are provided. However on the
38  * 82599 only provides 24 bits. The time unit is determined by the
39  * clock frequency of the oscillator in combination with the TIMINCA
40  * register. When these devices link at 10Gb the oscillator has a
41  * period of 6.4ns. In order to convert the scale counter into
42  * nanoseconds the cyclecounter and timecounter structures are
43  * used. The SYSTIME registers need to be converted to ns values by use
44  * of only a right shift (division by power of 2). The following math
45  * determines the largest incvalue that will fit into the available
46  * bits in the TIMINCA register.
47  *
48  * PeriodWidth: Number of bits to store the clock period
49  * MaxWidth: The maximum width value of the TIMINCA register
50  * Period: The clock period for the oscillator
51  * round(): discard the fractional portion of the calculation
52  *
53  * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
54  *
55  * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
56  * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
57  *
58  * The period also changes based on the link speed:
59  * At 10Gb link or no link, the period remains the same.
60  * At 1Gb link, the period is multiplied by 10. (64ns)
61  * At 100Mb link, the period is multiplied by 100. (640ns)
62  *
63  * The calculated value allows us to right shift the SYSTIME register
64  * value in order to quickly convert it into a nanosecond clock,
65  * while allowing for the maximum possible adjustment value.
66  *
67  * These diagrams are only for the 10Gb link period
68  *
69  *           SYSTIMEH            SYSTIMEL
70  *       +--------------+  +--------------+
71  * X540  |      32      |  | 1 | 3 |  28  |
72  *       *--------------+  +--------------+
73  *        \________ 36 bits ______/  fract
74  *
75  *       +--------------+  +--------------+
76  * 82599 |      32      |  | 8 | 3 |  21  |
77  *       *--------------+  +--------------+
78  *        \________ 43 bits ______/  fract
79  *
80  * The 36 bit X540 SYSTIME overflows every
81  *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
82  *
83  * The 43 bit 82599 SYSTIME overflows every
84  *   2^43 * 10^-9 / 3600 = 2.4 hours
85  */
86 #define IXGBE_INCVAL_10GB 0x66666666
87 #define IXGBE_INCVAL_1GB  0x40000000
88 #define IXGBE_INCVAL_100  0x50000000
89 
90 #define IXGBE_INCVAL_SHIFT_10GB  28
91 #define IXGBE_INCVAL_SHIFT_1GB   24
92 #define IXGBE_INCVAL_SHIFT_100   21
93 
94 #define IXGBE_INCVAL_SHIFT_82599 7
95 #define IXGBE_INCPER_SHIFT_82599 24
96 #define IXGBE_MAX_TIMEADJ_VALUE  0x7FFFFFFFFFFFFFFFULL
97 
98 #define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
99 
100 #ifndef NSECS_PER_SEC
101 #define NSECS_PER_SEC 1000000000ULL
102 #endif
103 
104 static struct sock_filter ptp_filter[] = {
105 	PTP_FILTER
106 };
107 
108 /**
109  * ixgbe_ptp_read - read raw cycle counter (to be used by time counter)
110  * @cc: the cyclecounter structure
111  *
112  * this function reads the cyclecounter registers and is called by the
113  * cyclecounter structure used to construct a ns counter from the
114  * arbitrary fixed point registers
115  */
116 static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
117 {
118 	struct ixgbe_adapter *adapter =
119 		container_of(cc, struct ixgbe_adapter, cc);
120 	struct ixgbe_hw *hw = &adapter->hw;
121 	u64 stamp = 0;
122 
123 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
124 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
125 
126 	return stamp;
127 }
128 
129 /**
130  * ixgbe_ptp_adjfreq
131  * @ptp: the ptp clock structure
132  * @ppb: parts per billion adjustment from base
133  *
134  * adjust the frequency of the ptp cycle counter by the
135  * indicated ppb from the base frequency.
136  */
137 static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
138 {
139 	struct ixgbe_adapter *adapter =
140 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
141 	struct ixgbe_hw *hw = &adapter->hw;
142 	u64 freq;
143 	u32 diff, incval;
144 	int neg_adj = 0;
145 
146 	if (ppb < 0) {
147 		neg_adj = 1;
148 		ppb = -ppb;
149 	}
150 
151 	smp_mb();
152 	incval = ACCESS_ONCE(adapter->base_incval);
153 
154 	freq = incval;
155 	freq *= ppb;
156 	diff = div_u64(freq, 1000000000ULL);
157 
158 	incval = neg_adj ? (incval - diff) : (incval + diff);
159 
160 	switch (hw->mac.type) {
161 	case ixgbe_mac_X540:
162 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
163 		break;
164 	case ixgbe_mac_82599EB:
165 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
166 				(1 << IXGBE_INCPER_SHIFT_82599) |
167 				incval);
168 		break;
169 	default:
170 		break;
171 	}
172 
173 	return 0;
174 }
175 
176 /**
177  * ixgbe_ptp_adjtime
178  * @ptp: the ptp clock structure
179  * @delta: offset to adjust the cycle counter by
180  *
181  * adjust the timer by resetting the timecounter structure.
182  */
183 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
184 {
185 	struct ixgbe_adapter *adapter =
186 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
187 	unsigned long flags;
188 	u64 now;
189 
190 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
191 
192 	now = timecounter_read(&adapter->tc);
193 	now += delta;
194 
195 	/* reset the timecounter */
196 	timecounter_init(&adapter->tc,
197 			 &adapter->cc,
198 			 now);
199 
200 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
201 	return 0;
202 }
203 
204 /**
205  * ixgbe_ptp_gettime
206  * @ptp: the ptp clock structure
207  * @ts: timespec structure to hold the current time value
208  *
209  * read the timecounter and return the correct value on ns,
210  * after converting it into a struct timespec.
211  */
212 static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
213 {
214 	struct ixgbe_adapter *adapter =
215 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
216 	u64 ns;
217 	u32 remainder;
218 	unsigned long flags;
219 
220 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
221 	ns = timecounter_read(&adapter->tc);
222 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
223 
224 	ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
225 	ts->tv_nsec = remainder;
226 
227 	return 0;
228 }
229 
230 /**
231  * ixgbe_ptp_settime
232  * @ptp: the ptp clock structure
233  * @ts: the timespec containing the new time for the cycle counter
234  *
235  * reset the timecounter to use a new base value instead of the kernel
236  * wall timer value.
237  */
238 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
239 			     const struct timespec *ts)
240 {
241 	struct ixgbe_adapter *adapter =
242 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
243 	u64 ns;
244 	unsigned long flags;
245 
246 	ns = ts->tv_sec * 1000000000ULL;
247 	ns += ts->tv_nsec;
248 
249 	/* reset the timecounter */
250 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
251 	timecounter_init(&adapter->tc, &adapter->cc, ns);
252 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
253 
254 	return 0;
255 }
256 
257 /**
258  * ixgbe_ptp_enable
259  * @ptp: the ptp clock structure
260  * @rq: the requested feature to change
261  * @on: whether to enable or disable the feature
262  *
263  * enable (or disable) ancillary features of the phc subsystem.
264  * our driver only supports the PPS feature on the X540
265  */
266 static int ixgbe_ptp_enable(struct ptp_clock_info *ptp,
267 			    struct ptp_clock_request *rq, int on)
268 {
269 	struct ixgbe_adapter *adapter =
270 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
271 
272 	/**
273 	 * When PPS is enabled, unmask the interrupt for the ClockOut
274 	 * feature, so that the interrupt handler can send the PPS
275 	 * event when the clock SDP triggers. Clear mask when PPS is
276 	 * disabled
277 	 */
278 	if (rq->type == PTP_CLK_REQ_PPS) {
279 		switch (adapter->hw.mac.type) {
280 		case ixgbe_mac_X540:
281 			if (on)
282 				adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
283 			else
284 				adapter->flags2 &=
285 					~IXGBE_FLAG2_PTP_PPS_ENABLED;
286 			return 0;
287 		default:
288 			break;
289 		}
290 	}
291 
292 	return -ENOTSUPP;
293 }
294 
295 /**
296  * ixgbe_ptp_check_pps_event
297  * @adapter: the private adapter structure
298  * @eicr: the interrupt cause register value
299  *
300  * This function is called by the interrupt routine when checking for
301  * interrupts. It will check and handle a pps event.
302  */
303 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr)
304 {
305 	struct ixgbe_hw *hw = &adapter->hw;
306 	struct ptp_clock_event event;
307 
308 	event.type = PTP_CLOCK_PPS;
309 
310 	/* Make sure ptp clock is valid, and PPS event enabled */
311 	if (!adapter->ptp_clock ||
312 	    !(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
313 		return;
314 
315 	if (unlikely(eicr & IXGBE_EICR_TIMESYNC)) {
316 		switch (hw->mac.type) {
317 		case ixgbe_mac_X540:
318 			ptp_clock_event(adapter->ptp_clock, &event);
319 			break;
320 		default:
321 			break;
322 		}
323 	}
324 }
325 
326 /**
327  * ixgbe_ptp_enable_sdp
328  * @hw: the hardware private structure
329  * @shift: the clock shift for calculating nanoseconds
330  *
331  * this function enables the clock out feature on the sdp0 for the
332  * X540 device. It will create a 1second periodic output that can be
333  * used as the PPS (via an interrupt).
334  *
335  * It calculates when the systime will be on an exact second, and then
336  * aligns the start of the PPS signal to that value. The shift is
337  * necessary because it can change based on the link speed.
338  */
339 static void ixgbe_ptp_enable_sdp(struct ixgbe_hw *hw, int shift)
340 {
341 	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh;
342 	u64 clock_edge = 0;
343 	u32 rem;
344 
345 	switch (hw->mac.type) {
346 	case ixgbe_mac_X540:
347 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
348 
349 		/*
350 		 * enable the SDP0 pin as output, and connected to the native
351 		 * function for Timesync (ClockOut)
352 		 */
353 		esdp |= (IXGBE_ESDP_SDP0_DIR |
354 			 IXGBE_ESDP_SDP0_NATIVE);
355 
356 		/*
357 		 * enable the Clock Out feature on SDP0, and allow interrupts
358 		 * to occur when the pin changes
359 		 */
360 		tsauxc = (IXGBE_TSAUXC_EN_CLK |
361 			  IXGBE_TSAUXC_SYNCLK |
362 			  IXGBE_TSAUXC_SDP0_INT);
363 
364 		/* clock period (or pulse length) */
365 		clktiml = (u32)(NSECS_PER_SEC << shift);
366 		clktimh = (u32)((NSECS_PER_SEC << shift) >> 32);
367 
368 		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
369 		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
370 
371 		/*
372 		 * account for the fact that we can't do u64 division
373 		 * with remainder, by converting the clock values into
374 		 * nanoseconds first
375 		 */
376 		clock_edge >>= shift;
377 		div_u64_rem(clock_edge, NSECS_PER_SEC, &rem);
378 		clock_edge += (NSECS_PER_SEC - rem);
379 		clock_edge <<= shift;
380 
381 		/* specify the initial clock start time */
382 		trgttiml = (u32)clock_edge;
383 		trgttimh = (u32)(clock_edge >> 32);
384 
385 		IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
386 		IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
387 		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
388 		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
389 
390 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
391 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
392 
393 		IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EICR_TIMESYNC);
394 		break;
395 	default:
396 		break;
397 	}
398 }
399 
400 /**
401  * ixgbe_ptp_disable_sdp
402  * @hw: the private hardware structure
403  *
404  * this function disables the auxiliary SDP clock out feature
405  */
406 static void ixgbe_ptp_disable_sdp(struct ixgbe_hw *hw)
407 {
408 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_EICR_TIMESYNC);
409 	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0);
410 }
411 
412 /**
413  * ixgbe_ptp_overflow_check - delayed work to detect SYSTIME overflow
414  * @work: structure containing information about this work task
415  *
416  * this work function is scheduled to continue reading the timecounter
417  * in order to prevent missing when the system time registers wrap
418  * around. This needs to be run approximately twice a minute when no
419  * PTP activity is occurring.
420  */
421 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
422 {
423 	unsigned long elapsed_jiffies = adapter->last_overflow_check - jiffies;
424 	struct timespec ts;
425 
426 	if ((adapter->flags2 & IXGBE_FLAG2_OVERFLOW_CHECK_ENABLED) &&
427 	    (elapsed_jiffies >= IXGBE_OVERFLOW_PERIOD)) {
428 		ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
429 		adapter->last_overflow_check = jiffies;
430 	}
431 }
432 
433 /**
434  * ixgbe_ptp_match - determine if this skb matches a ptp packet
435  * @skb: pointer to the skb
436  * @hwtstamp: pointer to the hwtstamp_config to check
437  *
438  * Determine whether the skb should have been timestamped, assuming the
439  * hwtstamp was set via the hwtstamp ioctl. Returns non-zero when the packet
440  * should have a timestamp waiting in the registers, and 0 otherwise.
441  *
442  * V1 packets have to check the version type to determine whether they are
443  * correct. However, we can't directly access the data because it might be
444  * fragmented in the SKB, in paged memory. In order to work around this, we
445  * use skb_copy_bits which will properly copy the data whether it is in the
446  * paged memory fragments or not. We have to copy the IP header as well as the
447  * message type.
448  */
449 static int ixgbe_ptp_match(struct sk_buff *skb, int rx_filter)
450 {
451 	struct iphdr iph;
452 	u8 msgtype;
453 	unsigned int type, offset;
454 
455 	if (rx_filter == HWTSTAMP_FILTER_NONE)
456 		return 0;
457 
458 	type = sk_run_filter(skb, ptp_filter);
459 
460 	if (likely(rx_filter == HWTSTAMP_FILTER_PTP_V2_EVENT))
461 		return type & PTP_CLASS_V2;
462 
463 	/* For the remaining cases actually check message type */
464 	switch (type) {
465 	case PTP_CLASS_V1_IPV4:
466 		skb_copy_bits(skb, OFF_IHL, &iph, sizeof(iph));
467 		offset = ETH_HLEN + (iph.ihl << 2) + UDP_HLEN + OFF_PTP_CONTROL;
468 		break;
469 	case PTP_CLASS_V1_IPV6:
470 		offset = OFF_PTP6 + OFF_PTP_CONTROL;
471 		break;
472 	default:
473 		/* other cases invalid or handled above */
474 		return 0;
475 	}
476 
477 	/* Make sure our buffer is long enough */
478 	if (skb->len < offset)
479 		return 0;
480 
481 	skb_copy_bits(skb, offset, &msgtype, sizeof(msgtype));
482 
483 	switch (rx_filter) {
484 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
485 		return (msgtype == IXGBE_RXMTRL_V1_SYNC_MSG);
486 		break;
487 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
488 		return (msgtype == IXGBE_RXMTRL_V1_DELAY_REQ_MSG);
489 		break;
490 	default:
491 		return 0;
492 	}
493 }
494 
495 /**
496  * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
497  * @q_vector: structure containing interrupt and ring information
498  * @skb: particular skb to send timestamp with
499  *
500  * if the timestamp is valid, we convert it into the timecounter ns
501  * value, then store that result into the shhwtstamps structure which
502  * is passed up the network stack
503  */
504 void ixgbe_ptp_tx_hwtstamp(struct ixgbe_q_vector *q_vector,
505 			   struct sk_buff *skb)
506 {
507 	struct ixgbe_adapter *adapter;
508 	struct ixgbe_hw *hw;
509 	struct skb_shared_hwtstamps shhwtstamps;
510 	u64 regval = 0, ns;
511 	u32 tsynctxctl;
512 	unsigned long flags;
513 
514 	/* we cannot process timestamps on a ring without a q_vector */
515 	if (!q_vector || !q_vector->adapter)
516 		return;
517 
518 	adapter = q_vector->adapter;
519 	hw = &adapter->hw;
520 
521 	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
522 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
523 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
524 
525 	/*
526 	 * if TX timestamp is not valid, exit after clearing the
527 	 * timestamp registers
528 	 */
529 	if (!(tsynctxctl & IXGBE_TSYNCTXCTL_VALID))
530 		return;
531 
532 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
533 	ns = timecounter_cyc2time(&adapter->tc, regval);
534 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
535 
536 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
537 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
538 	skb_tstamp_tx(skb, &shhwtstamps);
539 }
540 
541 /**
542  * ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp
543  * @q_vector: structure containing interrupt and ring information
544  * @rx_desc: the rx descriptor
545  * @skb: particular skb to send timestamp with
546  *
547  * if the timestamp is valid, we convert it into the timecounter ns
548  * value, then store that result into the shhwtstamps structure which
549  * is passed up the network stack
550  */
551 void ixgbe_ptp_rx_hwtstamp(struct ixgbe_q_vector *q_vector,
552 			   union ixgbe_adv_rx_desc *rx_desc,
553 			   struct sk_buff *skb)
554 {
555 	struct ixgbe_adapter *adapter;
556 	struct ixgbe_hw *hw;
557 	struct skb_shared_hwtstamps *shhwtstamps;
558 	u64 regval = 0, ns;
559 	u32 tsyncrxctl;
560 	unsigned long flags;
561 
562 	/* we cannot process timestamps on a ring without a q_vector */
563 	if (!q_vector || !q_vector->adapter)
564 		return;
565 
566 	adapter = q_vector->adapter;
567 	hw = &adapter->hw;
568 
569 	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
570 
571 	/* Check if we have a valid timestamp and make sure the skb should
572 	 * have been timestamped */
573 	if (likely(!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID) ||
574 		   !ixgbe_ptp_match(skb, adapter->rx_hwtstamp_filter)))
575 		return;
576 
577 	/*
578 	 * Always read the registers, in order to clear a possible fault
579 	 * because of stagnant RX timestamp values for a packet that never
580 	 * reached the queue.
581 	 */
582 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
583 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
584 
585 	/*
586 	 * If the timestamp bit is set in the packet's descriptor, we know the
587 	 * timestamp belongs to this packet. No other packet can be
588 	 * timestamped until the registers for timestamping have been read.
589 	 * Therefor only one packet with this bit can be in the queue at a
590 	 * time, and the rx timestamp values that were in the registers belong
591 	 * to this packet.
592 	 *
593 	 * If nothing went wrong, then it should have a skb_shared_tx that we
594 	 * can turn into a skb_shared_hwtstamps.
595 	 */
596 	if (unlikely(!ixgbe_test_staterr(rx_desc, IXGBE_RXDADV_STAT_TS)))
597 		return;
598 
599 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
600 	ns = timecounter_cyc2time(&adapter->tc, regval);
601 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
602 
603 	shhwtstamps = skb_hwtstamps(skb);
604 	shhwtstamps->hwtstamp = ns_to_ktime(ns);
605 }
606 
607 /**
608  * ixgbe_ptp_hwtstamp_ioctl - control hardware time stamping
609  * @adapter: pointer to adapter struct
610  * @ifreq: ioctl data
611  * @cmd: particular ioctl requested
612  *
613  * Outgoing time stamping can be enabled and disabled. Play nice and
614  * disable it when requested, although it shouldn't case any overhead
615  * when no packet needs it. At most one packet in the queue may be
616  * marked for time stamping, otherwise it would be impossible to tell
617  * for sure to which packet the hardware time stamp belongs.
618  *
619  * Incoming time stamping has to be configured via the hardware
620  * filters. Not all combinations are supported, in particular event
621  * type has to be specified. Matching the kind of event packet is
622  * not supported, with the exception of "all V2 events regardless of
623  * level 2 or 4".
624  *
625  * Since hardware always timestamps Path delay packets when timestamping V2
626  * packets, regardless of the type specified in the register, only use V2
627  * Event mode. This more accurately tells the user what the hardware is going
628  * to do anyways.
629  */
630 int ixgbe_ptp_hwtstamp_ioctl(struct ixgbe_adapter *adapter,
631 			     struct ifreq *ifr, int cmd)
632 {
633 	struct ixgbe_hw *hw = &adapter->hw;
634 	struct hwtstamp_config config;
635 	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
636 	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
637 	u32 tsync_rx_mtrl = 0;
638 	bool is_l4 = false;
639 	bool is_l2 = false;
640 	u32 regval;
641 
642 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
643 		return -EFAULT;
644 
645 	/* reserved for future extensions */
646 	if (config.flags)
647 		return -EINVAL;
648 
649 	switch (config.tx_type) {
650 	case HWTSTAMP_TX_OFF:
651 		tsync_tx_ctl = 0;
652 	case HWTSTAMP_TX_ON:
653 		break;
654 	default:
655 		return -ERANGE;
656 	}
657 
658 	switch (config.rx_filter) {
659 	case HWTSTAMP_FILTER_NONE:
660 		tsync_rx_ctl = 0;
661 		break;
662 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
663 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
664 		tsync_rx_mtrl = IXGBE_RXMTRL_V1_SYNC_MSG;
665 		is_l4 = true;
666 		break;
667 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
668 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
669 		tsync_rx_mtrl = IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
670 		is_l4 = true;
671 		break;
672 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
673 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
674 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
675 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
676 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
677 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
678 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
679 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
680 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
681 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
682 		is_l2 = true;
683 		is_l4 = true;
684 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
685 		break;
686 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
687 	case HWTSTAMP_FILTER_ALL:
688 	default:
689 		/*
690 		 * register RXMTRL must be set in order to do V1 packets,
691 		 * therefore it is not possible to time stamp both V1 Sync and
692 		 * Delay_Req messages and hardware does not support
693 		 * timestamping all packets => return error
694 		 */
695 		config.rx_filter = HWTSTAMP_FILTER_NONE;
696 		return -ERANGE;
697 	}
698 
699 	if (hw->mac.type == ixgbe_mac_82598EB) {
700 		if (tsync_rx_ctl | tsync_tx_ctl)
701 			return -ERANGE;
702 		return 0;
703 	}
704 
705 	/* Store filter value for later use */
706 	adapter->rx_hwtstamp_filter = config.rx_filter;
707 
708 	/* define ethertype filter for timestamped packets */
709 	if (is_l2)
710 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(3),
711 				(IXGBE_ETQF_FILTER_EN | /* enable filter */
712 				 IXGBE_ETQF_1588 | /* enable timestamping */
713 				 ETH_P_1588));     /* 1588 eth protocol type */
714 	else
715 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(3), 0);
716 
717 #define PTP_PORT 319
718 	/* L4 Queue Filter[3]: filter by destination port and protocol */
719 	if (is_l4) {
720 		u32 ftqf = (IXGBE_FTQF_PROTOCOL_UDP /* UDP */
721 			    | IXGBE_FTQF_POOL_MASK_EN /* Pool not compared */
722 			    | IXGBE_FTQF_QUEUE_ENABLE);
723 
724 		ftqf |= ((IXGBE_FTQF_PROTOCOL_COMP_MASK /* protocol check */
725 			  & IXGBE_FTQF_DEST_PORT_MASK /* dest check */
726 			  & IXGBE_FTQF_SOURCE_PORT_MASK) /* source check */
727 			 << IXGBE_FTQF_5TUPLE_MASK_SHIFT);
728 
729 		IXGBE_WRITE_REG(hw, IXGBE_L34T_IMIR(3),
730 				(3 << IXGBE_IMIR_RX_QUEUE_SHIFT_82599 |
731 				 IXGBE_IMIR_SIZE_BP_82599));
732 
733 		/* enable port check */
734 		IXGBE_WRITE_REG(hw, IXGBE_SDPQF(3),
735 				(htons(PTP_PORT) |
736 				 htons(PTP_PORT) << 16));
737 
738 		IXGBE_WRITE_REG(hw, IXGBE_FTQF(3), ftqf);
739 
740 		tsync_rx_mtrl |= PTP_PORT << 16;
741 	} else {
742 		IXGBE_WRITE_REG(hw, IXGBE_FTQF(3), 0);
743 	}
744 
745 	/* enable/disable TX */
746 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
747 	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
748 	regval |= tsync_tx_ctl;
749 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
750 
751 	/* enable/disable RX */
752 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
753 	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
754 	regval |= tsync_rx_ctl;
755 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
756 
757 	/* define which PTP packets are time stamped */
758 	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
759 
760 	IXGBE_WRITE_FLUSH(hw);
761 
762 	/* clear TX/RX time stamp registers, just to be sure */
763 	regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
764 	regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
765 
766 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
767 		-EFAULT : 0;
768 }
769 
770 /**
771  * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
772  * @adapter: pointer to the adapter structure
773  *
774  * this function initializes the timecounter and cyclecounter
775  * structures for use in generated a ns counter from the arbitrary
776  * fixed point cycles registers in the hardware.
777  *
778  * A change in link speed impacts the frequency of the DMA clock on
779  * the device, which is used to generate the cycle counter
780  * registers. Therefor this function is called whenever the link speed
781  * changes.
782  *
783  * This function also turns on the SDP pin for clock out feature (X540
784  * only), because this is where the shift is first calculated.
785  */
786 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
787 {
788 	struct ixgbe_hw *hw = &adapter->hw;
789 	u32 incval = 0;
790 	u32 timinca = 0;
791 	u32 shift = 0;
792 	u32 cycle_speed;
793 	unsigned long flags;
794 
795 	/**
796 	 * Determine what speed we need to set the cyclecounter
797 	 * for. It should be different for 100Mb, 1Gb, and 10Gb. Treat
798 	 * unknown speeds as 10Gb. (Hence why we can't just copy the
799 	 * link_speed.
800 	 */
801 	switch (adapter->link_speed) {
802 	case IXGBE_LINK_SPEED_100_FULL:
803 	case IXGBE_LINK_SPEED_1GB_FULL:
804 	case IXGBE_LINK_SPEED_10GB_FULL:
805 		cycle_speed = adapter->link_speed;
806 		break;
807 	default:
808 		/* cycle speed should be 10Gb when there is no link */
809 		cycle_speed = IXGBE_LINK_SPEED_10GB_FULL;
810 		break;
811 	}
812 
813 	/*
814 	 * grab the current TIMINCA value from the register so that it can be
815 	 * double checked. If the register value has been cleared, it must be
816 	 * reset to the correct value for generating a cyclecounter. If
817 	 * TIMINCA is zero, the SYSTIME registers do not increment at all.
818 	 */
819 	timinca = IXGBE_READ_REG(hw, IXGBE_TIMINCA);
820 
821 	/* Bail if the cycle speed didn't change and TIMINCA is non-zero */
822 	if (adapter->cycle_speed == cycle_speed && timinca)
823 		return;
824 
825 	/* disable the SDP clock out */
826 	ixgbe_ptp_disable_sdp(hw);
827 
828 	/**
829 	 * Scale the NIC cycle counter by a large factor so that
830 	 * relatively small corrections to the frequency can be added
831 	 * or subtracted. The drawbacks of a large factor include
832 	 * (a) the clock register overflows more quickly, (b) the cycle
833 	 * counter structure must be able to convert the systime value
834 	 * to nanoseconds using only a multiplier and a right-shift,
835 	 * and (c) the value must fit within the timinca register space
836 	 * => math based on internal DMA clock rate and available bits
837 	 */
838 	switch (cycle_speed) {
839 	case IXGBE_LINK_SPEED_100_FULL:
840 		incval = IXGBE_INCVAL_100;
841 		shift = IXGBE_INCVAL_SHIFT_100;
842 		break;
843 	case IXGBE_LINK_SPEED_1GB_FULL:
844 		incval = IXGBE_INCVAL_1GB;
845 		shift = IXGBE_INCVAL_SHIFT_1GB;
846 		break;
847 	case IXGBE_LINK_SPEED_10GB_FULL:
848 		incval = IXGBE_INCVAL_10GB;
849 		shift = IXGBE_INCVAL_SHIFT_10GB;
850 		break;
851 	}
852 
853 	/**
854 	 * Modify the calculated values to fit within the correct
855 	 * number of bits specified by the hardware. The 82599 doesn't
856 	 * have the same space as the X540, so bitshift the calculated
857 	 * values to fit.
858 	 */
859 	switch (hw->mac.type) {
860 	case ixgbe_mac_X540:
861 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
862 		break;
863 	case ixgbe_mac_82599EB:
864 		incval >>= IXGBE_INCVAL_SHIFT_82599;
865 		shift -= IXGBE_INCVAL_SHIFT_82599;
866 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
867 				(1 << IXGBE_INCPER_SHIFT_82599) |
868 				incval);
869 		break;
870 	default:
871 		/* other devices aren't supported */
872 		return;
873 	}
874 
875 	/* reset the system time registers */
876 	IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000);
877 	IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000);
878 	IXGBE_WRITE_FLUSH(hw);
879 
880 	/* now that the shift has been calculated and the systime
881 	 * registers reset, (re-)enable the Clock out feature*/
882 	ixgbe_ptp_enable_sdp(hw, shift);
883 
884 	/* store the new cycle speed */
885 	adapter->cycle_speed = cycle_speed;
886 
887 	ACCESS_ONCE(adapter->base_incval) = incval;
888 	smp_mb();
889 
890 	/* grab the ptp lock */
891 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
892 
893 	memset(&adapter->cc, 0, sizeof(adapter->cc));
894 	adapter->cc.read = ixgbe_ptp_read;
895 	adapter->cc.mask = CLOCKSOURCE_MASK(64);
896 	adapter->cc.shift = shift;
897 	adapter->cc.mult = 1;
898 
899 	/* reset the ns time counter */
900 	timecounter_init(&adapter->tc, &adapter->cc,
901 			 ktime_to_ns(ktime_get_real()));
902 
903 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
904 }
905 
906 /**
907  * ixgbe_ptp_init
908  * @adapter: the ixgbe private adapter structure
909  *
910  * This function performs the required steps for enabling ptp
911  * support. If ptp support has already been loaded it simply calls the
912  * cyclecounter init routine and exits.
913  */
914 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
915 {
916 	struct net_device *netdev = adapter->netdev;
917 
918 	switch (adapter->hw.mac.type) {
919 	case ixgbe_mac_X540:
920 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
921 		adapter->ptp_caps.owner = THIS_MODULE;
922 		adapter->ptp_caps.max_adj = 250000000;
923 		adapter->ptp_caps.n_alarm = 0;
924 		adapter->ptp_caps.n_ext_ts = 0;
925 		adapter->ptp_caps.n_per_out = 0;
926 		adapter->ptp_caps.pps = 1;
927 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
928 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
929 		adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
930 		adapter->ptp_caps.settime = ixgbe_ptp_settime;
931 		adapter->ptp_caps.enable = ixgbe_ptp_enable;
932 		break;
933 	case ixgbe_mac_82599EB:
934 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
935 		adapter->ptp_caps.owner = THIS_MODULE;
936 		adapter->ptp_caps.max_adj = 250000000;
937 		adapter->ptp_caps.n_alarm = 0;
938 		adapter->ptp_caps.n_ext_ts = 0;
939 		adapter->ptp_caps.n_per_out = 0;
940 		adapter->ptp_caps.pps = 0;
941 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
942 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
943 		adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
944 		adapter->ptp_caps.settime = ixgbe_ptp_settime;
945 		adapter->ptp_caps.enable = ixgbe_ptp_enable;
946 		break;
947 	default:
948 		adapter->ptp_clock = NULL;
949 		return;
950 	}
951 
952 	/* initialize the ptp filter */
953 	if (ptp_filter_init(ptp_filter, ARRAY_SIZE(ptp_filter)))
954 		e_dev_warn("ptp_filter_init failed\n");
955 
956 	spin_lock_init(&adapter->tmreg_lock);
957 
958 	ixgbe_ptp_start_cyclecounter(adapter);
959 
960 	/* (Re)start the overflow check */
961 	adapter->flags2 |= IXGBE_FLAG2_OVERFLOW_CHECK_ENABLED;
962 
963 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps);
964 	if (IS_ERR(adapter->ptp_clock)) {
965 		adapter->ptp_clock = NULL;
966 		e_dev_err("ptp_clock_register failed\n");
967 	} else
968 		e_dev_info("registered PHC device on %s\n", netdev->name);
969 
970 	return;
971 }
972 
973 /**
974  * ixgbe_ptp_stop - disable ptp device and stop the overflow check
975  * @adapter: pointer to adapter struct
976  *
977  * this function stops the ptp support, and cancels the delayed work.
978  */
979 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
980 {
981 	ixgbe_ptp_disable_sdp(&adapter->hw);
982 
983 	/* stop the overflow check task */
984 	adapter->flags2 &= ~IXGBE_FLAG2_OVERFLOW_CHECK_ENABLED;
985 
986 	if (adapter->ptp_clock) {
987 		ptp_clock_unregister(adapter->ptp_clock);
988 		adapter->ptp_clock = NULL;
989 		e_dev_info("removed PHC on %s\n",
990 			   adapter->netdev->name);
991 	}
992 }
993