1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 #include "ixgbe.h"
29 #include <linux/export.h>
30 #include <linux/ptp_classify.h>
31 
32 /*
33  * The 82599 and the X540 do not have true 64bit nanosecond scale
34  * counter registers. Instead, SYSTIME is defined by a fixed point
35  * system which allows the user to define the scale counter increment
36  * value at every level change of the oscillator driving the SYSTIME
37  * value. For both devices the TIMINCA:IV field defines this
38  * increment. On the X540 device, 31 bits are provided. However on the
39  * 82599 only provides 24 bits. The time unit is determined by the
40  * clock frequency of the oscillator in combination with the TIMINCA
41  * register. When these devices link at 10Gb the oscillator has a
42  * period of 6.4ns. In order to convert the scale counter into
43  * nanoseconds the cyclecounter and timecounter structures are
44  * used. The SYSTIME registers need to be converted to ns values by use
45  * of only a right shift (division by power of 2). The following math
46  * determines the largest incvalue that will fit into the available
47  * bits in the TIMINCA register.
48  *
49  * PeriodWidth: Number of bits to store the clock period
50  * MaxWidth: The maximum width value of the TIMINCA register
51  * Period: The clock period for the oscillator
52  * round(): discard the fractional portion of the calculation
53  *
54  * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
55  *
56  * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
57  * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
58  *
59  * The period also changes based on the link speed:
60  * At 10Gb link or no link, the period remains the same.
61  * At 1Gb link, the period is multiplied by 10. (64ns)
62  * At 100Mb link, the period is multiplied by 100. (640ns)
63  *
64  * The calculated value allows us to right shift the SYSTIME register
65  * value in order to quickly convert it into a nanosecond clock,
66  * while allowing for the maximum possible adjustment value.
67  *
68  * These diagrams are only for the 10Gb link period
69  *
70  *           SYSTIMEH            SYSTIMEL
71  *       +--------------+  +--------------+
72  * X540  |      32      |  | 1 | 3 |  28  |
73  *       *--------------+  +--------------+
74  *        \________ 36 bits ______/  fract
75  *
76  *       +--------------+  +--------------+
77  * 82599 |      32      |  | 8 | 3 |  21  |
78  *       *--------------+  +--------------+
79  *        \________ 43 bits ______/  fract
80  *
81  * The 36 bit X540 SYSTIME overflows every
82  *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
83  *
84  * The 43 bit 82599 SYSTIME overflows every
85  *   2^43 * 10^-9 / 3600 = 2.4 hours
86  */
87 #define IXGBE_INCVAL_10GB 0x66666666
88 #define IXGBE_INCVAL_1GB  0x40000000
89 #define IXGBE_INCVAL_100  0x50000000
90 
91 #define IXGBE_INCVAL_SHIFT_10GB  28
92 #define IXGBE_INCVAL_SHIFT_1GB   24
93 #define IXGBE_INCVAL_SHIFT_100   21
94 
95 #define IXGBE_INCVAL_SHIFT_82599 7
96 #define IXGBE_INCPER_SHIFT_82599 24
97 #define IXGBE_MAX_TIMEADJ_VALUE  0x7FFFFFFFFFFFFFFFULL
98 
99 #define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
100 #define IXGBE_PTP_TX_TIMEOUT     (HZ * 15)
101 
102 #ifndef NSECS_PER_SEC
103 #define NSECS_PER_SEC 1000000000ULL
104 #endif
105 
106 /**
107  * ixgbe_ptp_setup_sdp
108  * @hw: the hardware private structure
109  *
110  * this function enables or disables the clock out feature on SDP0 for
111  * the X540 device. It will create a 1second periodic output that can
112  * be used as the PPS (via an interrupt).
113  *
114  * It calculates when the systime will be on an exact second, and then
115  * aligns the start of the PPS signal to that value. The shift is
116  * necessary because it can change based on the link speed.
117  */
118 static void ixgbe_ptp_setup_sdp(struct ixgbe_adapter *adapter)
119 {
120 	struct ixgbe_hw *hw = &adapter->hw;
121 	int shift = adapter->cc.shift;
122 	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
123 	u64 ns = 0, clock_edge = 0;
124 
125 	if ((adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED) &&
126 	    (hw->mac.type == ixgbe_mac_X540)) {
127 
128 		/* disable the pin first */
129 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
130 		IXGBE_WRITE_FLUSH(hw);
131 
132 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
133 
134 		/*
135 		 * enable the SDP0 pin as output, and connected to the
136 		 * native function for Timesync (ClockOut)
137 		 */
138 		esdp |= (IXGBE_ESDP_SDP0_DIR |
139 			 IXGBE_ESDP_SDP0_NATIVE);
140 
141 		/*
142 		 * enable the Clock Out feature on SDP0, and allow
143 		 * interrupts to occur when the pin changes
144 		 */
145 		tsauxc = (IXGBE_TSAUXC_EN_CLK |
146 			  IXGBE_TSAUXC_SYNCLK |
147 			  IXGBE_TSAUXC_SDP0_INT);
148 
149 		/* clock period (or pulse length) */
150 		clktiml = (u32)(NSECS_PER_SEC << shift);
151 		clktimh = (u32)((NSECS_PER_SEC << shift) >> 32);
152 
153 		/*
154 		 * Account for the cyclecounter wrap-around value by
155 		 * using the converted ns value of the current time to
156 		 * check for when the next aligned second would occur.
157 		 */
158 		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
159 		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
160 		ns = timecounter_cyc2time(&adapter->tc, clock_edge);
161 
162 		div_u64_rem(ns, NSECS_PER_SEC, &rem);
163 		clock_edge += ((NSECS_PER_SEC - (u64)rem) << shift);
164 
165 		/* specify the initial clock start time */
166 		trgttiml = (u32)clock_edge;
167 		trgttimh = (u32)(clock_edge >> 32);
168 
169 		IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
170 		IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
171 		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
172 		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
173 
174 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
175 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
176 	} else {
177 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
178 	}
179 
180 	IXGBE_WRITE_FLUSH(hw);
181 }
182 
183 /**
184  * ixgbe_ptp_read - read raw cycle counter (to be used by time counter)
185  * @cc: the cyclecounter structure
186  *
187  * this function reads the cyclecounter registers and is called by the
188  * cyclecounter structure used to construct a ns counter from the
189  * arbitrary fixed point registers
190  */
191 static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
192 {
193 	struct ixgbe_adapter *adapter =
194 		container_of(cc, struct ixgbe_adapter, cc);
195 	struct ixgbe_hw *hw = &adapter->hw;
196 	u64 stamp = 0;
197 
198 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
199 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
200 
201 	return stamp;
202 }
203 
204 /**
205  * ixgbe_ptp_adjfreq
206  * @ptp: the ptp clock structure
207  * @ppb: parts per billion adjustment from base
208  *
209  * adjust the frequency of the ptp cycle counter by the
210  * indicated ppb from the base frequency.
211  */
212 static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
213 {
214 	struct ixgbe_adapter *adapter =
215 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
216 	struct ixgbe_hw *hw = &adapter->hw;
217 	u64 freq;
218 	u32 diff, incval;
219 	int neg_adj = 0;
220 
221 	if (ppb < 0) {
222 		neg_adj = 1;
223 		ppb = -ppb;
224 	}
225 
226 	smp_mb();
227 	incval = ACCESS_ONCE(adapter->base_incval);
228 
229 	freq = incval;
230 	freq *= ppb;
231 	diff = div_u64(freq, 1000000000ULL);
232 
233 	incval = neg_adj ? (incval - diff) : (incval + diff);
234 
235 	switch (hw->mac.type) {
236 	case ixgbe_mac_X540:
237 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
238 		break;
239 	case ixgbe_mac_82599EB:
240 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
241 				(1 << IXGBE_INCPER_SHIFT_82599) |
242 				incval);
243 		break;
244 	default:
245 		break;
246 	}
247 
248 	return 0;
249 }
250 
251 /**
252  * ixgbe_ptp_adjtime
253  * @ptp: the ptp clock structure
254  * @delta: offset to adjust the cycle counter by
255  *
256  * adjust the timer by resetting the timecounter structure.
257  */
258 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
259 {
260 	struct ixgbe_adapter *adapter =
261 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
262 	unsigned long flags;
263 	u64 now;
264 
265 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
266 
267 	now = timecounter_read(&adapter->tc);
268 	now += delta;
269 
270 	/* reset the timecounter */
271 	timecounter_init(&adapter->tc,
272 			 &adapter->cc,
273 			 now);
274 
275 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
276 
277 	ixgbe_ptp_setup_sdp(adapter);
278 
279 	return 0;
280 }
281 
282 /**
283  * ixgbe_ptp_gettime
284  * @ptp: the ptp clock structure
285  * @ts: timespec structure to hold the current time value
286  *
287  * read the timecounter and return the correct value on ns,
288  * after converting it into a struct timespec.
289  */
290 static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
291 {
292 	struct ixgbe_adapter *adapter =
293 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
294 	u64 ns;
295 	u32 remainder;
296 	unsigned long flags;
297 
298 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
299 	ns = timecounter_read(&adapter->tc);
300 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
301 
302 	ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
303 	ts->tv_nsec = remainder;
304 
305 	return 0;
306 }
307 
308 /**
309  * ixgbe_ptp_settime
310  * @ptp: the ptp clock structure
311  * @ts: the timespec containing the new time for the cycle counter
312  *
313  * reset the timecounter to use a new base value instead of the kernel
314  * wall timer value.
315  */
316 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
317 			     const struct timespec *ts)
318 {
319 	struct ixgbe_adapter *adapter =
320 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
321 	u64 ns;
322 	unsigned long flags;
323 
324 	ns = ts->tv_sec * 1000000000ULL;
325 	ns += ts->tv_nsec;
326 
327 	/* reset the timecounter */
328 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
329 	timecounter_init(&adapter->tc, &adapter->cc, ns);
330 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
331 
332 	ixgbe_ptp_setup_sdp(adapter);
333 	return 0;
334 }
335 
336 /**
337  * ixgbe_ptp_enable
338  * @ptp: the ptp clock structure
339  * @rq: the requested feature to change
340  * @on: whether to enable or disable the feature
341  *
342  * enable (or disable) ancillary features of the phc subsystem.
343  * our driver only supports the PPS feature on the X540
344  */
345 static int ixgbe_ptp_enable(struct ptp_clock_info *ptp,
346 			    struct ptp_clock_request *rq, int on)
347 {
348 	struct ixgbe_adapter *adapter =
349 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
350 
351 	/**
352 	 * When PPS is enabled, unmask the interrupt for the ClockOut
353 	 * feature, so that the interrupt handler can send the PPS
354 	 * event when the clock SDP triggers. Clear mask when PPS is
355 	 * disabled
356 	 */
357 	if (rq->type == PTP_CLK_REQ_PPS) {
358 		switch (adapter->hw.mac.type) {
359 		case ixgbe_mac_X540:
360 			if (on)
361 				adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
362 			else
363 				adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
364 
365 			ixgbe_ptp_setup_sdp(adapter);
366 			return 0;
367 		default:
368 			break;
369 		}
370 	}
371 
372 	return -ENOTSUPP;
373 }
374 
375 /**
376  * ixgbe_ptp_check_pps_event
377  * @adapter: the private adapter structure
378  * @eicr: the interrupt cause register value
379  *
380  * This function is called by the interrupt routine when checking for
381  * interrupts. It will check and handle a pps event.
382  */
383 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr)
384 {
385 	struct ixgbe_hw *hw = &adapter->hw;
386 	struct ptp_clock_event event;
387 
388 	event.type = PTP_CLOCK_PPS;
389 
390 	/* this check is necessary in case the interrupt was enabled via some
391 	 * alternative means (ex. debug_fs). Better to check here than
392 	 * everywhere that calls this function.
393 	 */
394 	if (!adapter->ptp_clock)
395 		return;
396 
397 	switch (hw->mac.type) {
398 	case ixgbe_mac_X540:
399 		ptp_clock_event(adapter->ptp_clock, &event);
400 		break;
401 	default:
402 		break;
403 	}
404 }
405 
406 /**
407  * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
408  * @adapter: private adapter struct
409  *
410  * this watchdog task periodically reads the timecounter
411  * in order to prevent missing when the system time registers wrap
412  * around. This needs to be run approximately twice a minute.
413  */
414 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
415 {
416 	bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
417 					     IXGBE_OVERFLOW_PERIOD);
418 	struct timespec ts;
419 
420 	if (timeout) {
421 		ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
422 		adapter->last_overflow_check = jiffies;
423 	}
424 }
425 
426 /**
427  * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
428  * @adapter: private network adapter structure
429  *
430  * this watchdog task is scheduled to detect error case where hardware has
431  * dropped an Rx packet that was timestamped when the ring is full. The
432  * particular error is rare but leaves the device in a state unable to timestamp
433  * any future packets.
434  */
435 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
436 {
437 	struct ixgbe_hw *hw = &adapter->hw;
438 	u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
439 	unsigned long rx_event;
440 
441 	/* if we don't have a valid timestamp in the registers, just update the
442 	 * timeout counter and exit
443 	 */
444 	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
445 		adapter->last_rx_ptp_check = jiffies;
446 		return;
447 	}
448 
449 	/* determine the most recent watchdog or rx_timestamp event */
450 	rx_event = adapter->last_rx_ptp_check;
451 	if (time_after(adapter->last_rx_timestamp, rx_event))
452 		rx_event = adapter->last_rx_timestamp;
453 
454 	/* only need to read the high RXSTMP register to clear the lock */
455 	if (time_is_before_jiffies(rx_event + 5*HZ)) {
456 		IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
457 		adapter->last_rx_ptp_check = jiffies;
458 
459 		e_warn(drv, "clearing RX Timestamp hang\n");
460 	}
461 }
462 
463 /**
464  * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
465  * @adapter: the private adapter struct
466  *
467  * if the timestamp is valid, we convert it into the timecounter ns
468  * value, then store that result into the shhwtstamps structure which
469  * is passed up the network stack
470  */
471 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
472 {
473 	struct ixgbe_hw *hw = &adapter->hw;
474 	struct skb_shared_hwtstamps shhwtstamps;
475 	u64 regval = 0, ns;
476 	unsigned long flags;
477 
478 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
479 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
480 
481 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
482 	ns = timecounter_cyc2time(&adapter->tc, regval);
483 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
484 
485 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
486 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
487 	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
488 
489 	dev_kfree_skb_any(adapter->ptp_tx_skb);
490 	adapter->ptp_tx_skb = NULL;
491 	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
492 }
493 
494 /**
495  * ixgbe_ptp_tx_hwtstamp_work
496  * @work: pointer to the work struct
497  *
498  * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
499  * timestamp has been taken for the current skb. It is necesary, because the
500  * descriptor's "done" bit does not correlate with the timestamp event.
501  */
502 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
503 {
504 	struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
505 						     ptp_tx_work);
506 	struct ixgbe_hw *hw = &adapter->hw;
507 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
508 					      IXGBE_PTP_TX_TIMEOUT);
509 	u32 tsynctxctl;
510 
511 	if (timeout) {
512 		dev_kfree_skb_any(adapter->ptp_tx_skb);
513 		adapter->ptp_tx_skb = NULL;
514 		clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
515 		e_warn(drv, "clearing Tx Timestamp hang\n");
516 		return;
517 	}
518 
519 	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
520 	if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID)
521 		ixgbe_ptp_tx_hwtstamp(adapter);
522 	else
523 		/* reschedule to keep checking if it's not available yet */
524 		schedule_work(&adapter->ptp_tx_work);
525 }
526 
527 /**
528  * ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp
529  * @adapter: pointer to adapter struct
530  * @skb: particular skb to send timestamp with
531  *
532  * if the timestamp is valid, we convert it into the timecounter ns
533  * value, then store that result into the shhwtstamps structure which
534  * is passed up the network stack
535  */
536 void ixgbe_ptp_rx_hwtstamp(struct ixgbe_adapter *adapter, struct sk_buff *skb)
537 {
538 	struct ixgbe_hw *hw = &adapter->hw;
539 	struct skb_shared_hwtstamps *shhwtstamps;
540 	u64 regval = 0, ns;
541 	u32 tsyncrxctl;
542 	unsigned long flags;
543 
544 	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
545 	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
546 		return;
547 
548 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
549 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
550 
551 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
552 	ns = timecounter_cyc2time(&adapter->tc, regval);
553 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
554 
555 	shhwtstamps = skb_hwtstamps(skb);
556 	shhwtstamps->hwtstamp = ns_to_ktime(ns);
557 
558 	/* Update the last_rx_timestamp timer in order to enable watchdog check
559 	 * for error case of latched timestamp on a dropped packet.
560 	 */
561 	adapter->last_rx_timestamp = jiffies;
562 }
563 
564 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
565 {
566 	struct hwtstamp_config *config = &adapter->tstamp_config;
567 
568 	return copy_to_user(ifr->ifr_data, config,
569 			    sizeof(*config)) ? -EFAULT : 0;
570 }
571 
572 /**
573  * ixgbe_ptp_set_ts_config - control hardware time stamping
574  * @adapter: pointer to adapter struct
575  * @ifreq: ioctl data
576  *
577  * Outgoing time stamping can be enabled and disabled. Play nice and
578  * disable it when requested, although it shouldn't cause any overhead
579  * when no packet needs it. At most one packet in the queue may be
580  * marked for time stamping, otherwise it would be impossible to tell
581  * for sure to which packet the hardware time stamp belongs.
582  *
583  * Incoming time stamping has to be configured via the hardware
584  * filters. Not all combinations are supported, in particular event
585  * type has to be specified. Matching the kind of event packet is
586  * not supported, with the exception of "all V2 events regardless of
587  * level 2 or 4".
588  *
589  * Since hardware always timestamps Path delay packets when timestamping V2
590  * packets, regardless of the type specified in the register, only use V2
591  * Event mode. This more accurately tells the user what the hardware is going
592  * to do anyways.
593  */
594 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
595 {
596 	struct ixgbe_hw *hw = &adapter->hw;
597 	struct hwtstamp_config config;
598 	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
599 	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
600 	u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
601 	bool is_l2 = false;
602 	u32 regval;
603 
604 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
605 		return -EFAULT;
606 
607 	/* reserved for future extensions */
608 	if (config.flags)
609 		return -EINVAL;
610 
611 	switch (config.tx_type) {
612 	case HWTSTAMP_TX_OFF:
613 		tsync_tx_ctl = 0;
614 	case HWTSTAMP_TX_ON:
615 		break;
616 	default:
617 		return -ERANGE;
618 	}
619 
620 	switch (config.rx_filter) {
621 	case HWTSTAMP_FILTER_NONE:
622 		tsync_rx_ctl = 0;
623 		tsync_rx_mtrl = 0;
624 		break;
625 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
626 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
627 		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
628 		break;
629 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
630 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
631 		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
632 		break;
633 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
634 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
635 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
636 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
637 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
638 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
639 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
640 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
641 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
642 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
643 		is_l2 = true;
644 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
645 		break;
646 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
647 	case HWTSTAMP_FILTER_ALL:
648 	default:
649 		/*
650 		 * register RXMTRL must be set in order to do V1 packets,
651 		 * therefore it is not possible to time stamp both V1 Sync and
652 		 * Delay_Req messages and hardware does not support
653 		 * timestamping all packets => return error
654 		 */
655 		config.rx_filter = HWTSTAMP_FILTER_NONE;
656 		return -ERANGE;
657 	}
658 
659 	if (hw->mac.type == ixgbe_mac_82598EB) {
660 		if (tsync_rx_ctl | tsync_tx_ctl)
661 			return -ERANGE;
662 		return 0;
663 	}
664 
665 	/* define ethertype filter for timestamping L2 packets */
666 	if (is_l2)
667 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
668 				(IXGBE_ETQF_FILTER_EN | /* enable filter */
669 				 IXGBE_ETQF_1588 | /* enable timestamping */
670 				 ETH_P_1588));     /* 1588 eth protocol type */
671 	else
672 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
673 
674 
675 	/* enable/disable TX */
676 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
677 	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
678 	regval |= tsync_tx_ctl;
679 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
680 
681 	/* enable/disable RX */
682 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
683 	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
684 	regval |= tsync_rx_ctl;
685 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
686 
687 	/* define which PTP packets are time stamped */
688 	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
689 
690 	IXGBE_WRITE_FLUSH(hw);
691 
692 	/* clear TX/RX time stamp registers, just to be sure */
693 	regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
694 	regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
695 
696 	/* save these settings for future reference */
697 	memcpy(&adapter->tstamp_config, &config,
698 	       sizeof(adapter->tstamp_config));
699 
700 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
701 		-EFAULT : 0;
702 }
703 
704 /**
705  * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
706  * @adapter: pointer to the adapter structure
707  *
708  * This function should be called to set the proper values for the TIMINCA
709  * register and tell the cyclecounter structure what the tick rate of SYSTIME
710  * is. It does not directly modify SYSTIME registers or the timecounter
711  * structure. It should be called whenever a new TIMINCA value is necessary,
712  * such as during initialization or when the link speed changes.
713  */
714 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
715 {
716 	struct ixgbe_hw *hw = &adapter->hw;
717 	u32 incval = 0;
718 	u32 shift = 0;
719 	unsigned long flags;
720 
721 	/**
722 	 * Scale the NIC cycle counter by a large factor so that
723 	 * relatively small corrections to the frequency can be added
724 	 * or subtracted. The drawbacks of a large factor include
725 	 * (a) the clock register overflows more quickly, (b) the cycle
726 	 * counter structure must be able to convert the systime value
727 	 * to nanoseconds using only a multiplier and a right-shift,
728 	 * and (c) the value must fit within the timinca register space
729 	 * => math based on internal DMA clock rate and available bits
730 	 *
731 	 * Note that when there is no link, internal DMA clock is same as when
732 	 * link speed is 10Gb. Set the registers correctly even when link is
733 	 * down to preserve the clock setting
734 	 */
735 	switch (adapter->link_speed) {
736 	case IXGBE_LINK_SPEED_100_FULL:
737 		incval = IXGBE_INCVAL_100;
738 		shift = IXGBE_INCVAL_SHIFT_100;
739 		break;
740 	case IXGBE_LINK_SPEED_1GB_FULL:
741 		incval = IXGBE_INCVAL_1GB;
742 		shift = IXGBE_INCVAL_SHIFT_1GB;
743 		break;
744 	case IXGBE_LINK_SPEED_10GB_FULL:
745 	default:
746 		incval = IXGBE_INCVAL_10GB;
747 		shift = IXGBE_INCVAL_SHIFT_10GB;
748 		break;
749 	}
750 
751 	/**
752 	 * Modify the calculated values to fit within the correct
753 	 * number of bits specified by the hardware. The 82599 doesn't
754 	 * have the same space as the X540, so bitshift the calculated
755 	 * values to fit.
756 	 */
757 	switch (hw->mac.type) {
758 	case ixgbe_mac_X540:
759 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
760 		break;
761 	case ixgbe_mac_82599EB:
762 		incval >>= IXGBE_INCVAL_SHIFT_82599;
763 		shift -= IXGBE_INCVAL_SHIFT_82599;
764 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
765 				(1 << IXGBE_INCPER_SHIFT_82599) |
766 				incval);
767 		break;
768 	default:
769 		/* other devices aren't supported */
770 		return;
771 	}
772 
773 	/* update the base incval used to calculate frequency adjustment */
774 	ACCESS_ONCE(adapter->base_incval) = incval;
775 	smp_mb();
776 
777 	/* need lock to prevent incorrect read while modifying cyclecounter */
778 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
779 
780 	memset(&adapter->cc, 0, sizeof(adapter->cc));
781 	adapter->cc.read = ixgbe_ptp_read;
782 	adapter->cc.mask = CLOCKSOURCE_MASK(64);
783 	adapter->cc.shift = shift;
784 	adapter->cc.mult = 1;
785 
786 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
787 }
788 
789 /**
790  * ixgbe_ptp_reset
791  * @adapter: the ixgbe private board structure
792  *
793  * When the MAC resets, all timesync features are reset. This function should be
794  * called to re-enable the PTP clock structure. It will re-init the timecounter
795  * structure based on the kernel time as well as setup the cycle counter data.
796  */
797 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
798 {
799 	struct ixgbe_hw *hw = &adapter->hw;
800 	unsigned long flags;
801 
802 	/* set SYSTIME registers to 0 just in case */
803 	IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000);
804 	IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000);
805 	IXGBE_WRITE_FLUSH(hw);
806 
807 	/* Reset the saved tstamp_config */
808 	memset(&adapter->tstamp_config, 0, sizeof(adapter->tstamp_config));
809 
810 	ixgbe_ptp_start_cyclecounter(adapter);
811 
812 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
813 
814 	/* reset the ns time counter */
815 	timecounter_init(&adapter->tc, &adapter->cc,
816 			 ktime_to_ns(ktime_get_real()));
817 
818 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
819 
820 	/*
821 	 * Now that the shift has been calculated and the systime
822 	 * registers reset, (re-)enable the Clock out feature
823 	 */
824 	ixgbe_ptp_setup_sdp(adapter);
825 }
826 
827 /**
828  * ixgbe_ptp_init
829  * @adapter: the ixgbe private adapter structure
830  *
831  * This function performs the required steps for enabling ptp
832  * support. If ptp support has already been loaded it simply calls the
833  * cyclecounter init routine and exits.
834  */
835 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
836 {
837 	struct net_device *netdev = adapter->netdev;
838 
839 	switch (adapter->hw.mac.type) {
840 	case ixgbe_mac_X540:
841 		snprintf(adapter->ptp_caps.name,
842 			 sizeof(adapter->ptp_caps.name),
843 			 "%s", netdev->name);
844 		adapter->ptp_caps.owner = THIS_MODULE;
845 		adapter->ptp_caps.max_adj = 250000000;
846 		adapter->ptp_caps.n_alarm = 0;
847 		adapter->ptp_caps.n_ext_ts = 0;
848 		adapter->ptp_caps.n_per_out = 0;
849 		adapter->ptp_caps.pps = 1;
850 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
851 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
852 		adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
853 		adapter->ptp_caps.settime = ixgbe_ptp_settime;
854 		adapter->ptp_caps.enable = ixgbe_ptp_enable;
855 		break;
856 	case ixgbe_mac_82599EB:
857 		snprintf(adapter->ptp_caps.name,
858 			 sizeof(adapter->ptp_caps.name),
859 			 "%s", netdev->name);
860 		adapter->ptp_caps.owner = THIS_MODULE;
861 		adapter->ptp_caps.max_adj = 250000000;
862 		adapter->ptp_caps.n_alarm = 0;
863 		adapter->ptp_caps.n_ext_ts = 0;
864 		adapter->ptp_caps.n_per_out = 0;
865 		adapter->ptp_caps.pps = 0;
866 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
867 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
868 		adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
869 		adapter->ptp_caps.settime = ixgbe_ptp_settime;
870 		adapter->ptp_caps.enable = ixgbe_ptp_enable;
871 		break;
872 	default:
873 		adapter->ptp_clock = NULL;
874 		return;
875 	}
876 
877 	spin_lock_init(&adapter->tmreg_lock);
878 	INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
879 
880 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
881 						&adapter->pdev->dev);
882 	if (IS_ERR(adapter->ptp_clock)) {
883 		adapter->ptp_clock = NULL;
884 		e_dev_err("ptp_clock_register failed\n");
885 	} else
886 		e_dev_info("registered PHC device on %s\n", netdev->name);
887 
888 	ixgbe_ptp_reset(adapter);
889 
890 	/* enter the IXGBE_PTP_RUNNING state */
891 	set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
892 
893 	return;
894 }
895 
896 /**
897  * ixgbe_ptp_stop - disable ptp device and stop the overflow check
898  * @adapter: pointer to adapter struct
899  *
900  * this function stops the ptp support, and cancels the delayed work.
901  */
902 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
903 {
904 	/* Leave the IXGBE_PTP_RUNNING state. */
905 	if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
906 		return;
907 
908 	/* stop the PPS signal */
909 	adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
910 	ixgbe_ptp_setup_sdp(adapter);
911 
912 	cancel_work_sync(&adapter->ptp_tx_work);
913 	if (adapter->ptp_tx_skb) {
914 		dev_kfree_skb_any(adapter->ptp_tx_skb);
915 		adapter->ptp_tx_skb = NULL;
916 		clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
917 	}
918 
919 	if (adapter->ptp_clock) {
920 		ptp_clock_unregister(adapter->ptp_clock);
921 		adapter->ptp_clock = NULL;
922 		e_dev_info("removed PHC on %s\n",
923 			   adapter->netdev->name);
924 	}
925 }
926