1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 #include "ixgbe.h" 5 #include <linux/ptp_classify.h> 6 #include <linux/clocksource.h> 7 8 /* 9 * The 82599 and the X540 do not have true 64bit nanosecond scale 10 * counter registers. Instead, SYSTIME is defined by a fixed point 11 * system which allows the user to define the scale counter increment 12 * value at every level change of the oscillator driving the SYSTIME 13 * value. For both devices the TIMINCA:IV field defines this 14 * increment. On the X540 device, 31 bits are provided. However on the 15 * 82599 only provides 24 bits. The time unit is determined by the 16 * clock frequency of the oscillator in combination with the TIMINCA 17 * register. When these devices link at 10Gb the oscillator has a 18 * period of 6.4ns. In order to convert the scale counter into 19 * nanoseconds the cyclecounter and timecounter structures are 20 * used. The SYSTIME registers need to be converted to ns values by use 21 * of only a right shift (division by power of 2). The following math 22 * determines the largest incvalue that will fit into the available 23 * bits in the TIMINCA register. 24 * 25 * PeriodWidth: Number of bits to store the clock period 26 * MaxWidth: The maximum width value of the TIMINCA register 27 * Period: The clock period for the oscillator 28 * round(): discard the fractional portion of the calculation 29 * 30 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ] 31 * 32 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns 33 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns 34 * 35 * The period also changes based on the link speed: 36 * At 10Gb link or no link, the period remains the same. 37 * At 1Gb link, the period is multiplied by 10. (64ns) 38 * At 100Mb link, the period is multiplied by 100. (640ns) 39 * 40 * The calculated value allows us to right shift the SYSTIME register 41 * value in order to quickly convert it into a nanosecond clock, 42 * while allowing for the maximum possible adjustment value. 43 * 44 * These diagrams are only for the 10Gb link period 45 * 46 * SYSTIMEH SYSTIMEL 47 * +--------------+ +--------------+ 48 * X540 | 32 | | 1 | 3 | 28 | 49 * *--------------+ +--------------+ 50 * \________ 36 bits ______/ fract 51 * 52 * +--------------+ +--------------+ 53 * 82599 | 32 | | 8 | 3 | 21 | 54 * *--------------+ +--------------+ 55 * \________ 43 bits ______/ fract 56 * 57 * The 36 bit X540 SYSTIME overflows every 58 * 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds 59 * 60 * The 43 bit 82599 SYSTIME overflows every 61 * 2^43 * 10^-9 / 3600 = 2.4 hours 62 */ 63 #define IXGBE_INCVAL_10GB 0x66666666 64 #define IXGBE_INCVAL_1GB 0x40000000 65 #define IXGBE_INCVAL_100 0x50000000 66 67 #define IXGBE_INCVAL_SHIFT_10GB 28 68 #define IXGBE_INCVAL_SHIFT_1GB 24 69 #define IXGBE_INCVAL_SHIFT_100 21 70 71 #define IXGBE_INCVAL_SHIFT_82599 7 72 #define IXGBE_INCPER_SHIFT_82599 24 73 74 #define IXGBE_OVERFLOW_PERIOD (HZ * 30) 75 #define IXGBE_PTP_TX_TIMEOUT (HZ) 76 77 /* We use our own definitions instead of NSEC_PER_SEC because we want to mark 78 * the value as a ULL to force precision when bit shifting. 79 */ 80 #define NS_PER_SEC 1000000000ULL 81 #define NS_PER_HALF_SEC 500000000ULL 82 83 /* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL 84 * which contain measurements of seconds and nanoseconds respectively. This 85 * matches the standard linux representation of time in the kernel. In addition, 86 * the X550 also has a SYSTIMER register which represents residue, or 87 * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA 88 * register is used, but it is unlike the X540 and 82599 devices. TIMINCA 89 * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the 90 * high bit representing whether the adjustent is positive or negative. Every 91 * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range 92 * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the 93 * X550's clock for purposes of SYSTIME generation is constant and not dependent 94 * on the link speed. 95 * 96 * SYSTIMEH SYSTIMEL SYSTIMER 97 * +--------------+ +--------------+ +-------------+ 98 * X550 | 32 | | 32 | | 32 | 99 * *--------------+ +--------------+ +-------------+ 100 * \____seconds___/ \_nanoseconds_/ \__2^-32 ns__/ 101 * 102 * This results in a full 96 bits to represent the clock, with 32 bits for 103 * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under 104 * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for 105 * underflow of adjustments. 106 * 107 * The 32 bits of seconds for the X550 overflows every 108 * 2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years. 109 * 110 * In order to adjust the clock frequency for the X550, the TIMINCA register is 111 * provided. This register represents a + or minus nearly 0.5 ns adjustment to 112 * the base frequency. It is measured in 2^-32 ns units, with the high bit being 113 * the sign bit. This register enables software to calculate frequency 114 * adjustments and apply them directly to the clock rate. 115 * 116 * The math for converting scaled_ppm into TIMINCA values is fairly 117 * straightforward. 118 * 119 * TIMINCA value = ( Base_Frequency * scaled_ppm ) / 1000000ULL << 16 120 * 121 * To avoid overflow, we simply use mul_u64_u64_div_u64. 122 * 123 * This assumes that scaled_ppm is never high enough to create a value bigger 124 * than TIMINCA's 31 bits can store. This is ensured by the stack, and is 125 * measured in parts per billion. Calculating this value is also simple. 126 * Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL 127 * 128 * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is 129 * 12.5 nanoseconds. This means that the Max ppb is 39999999 130 * Note: We subtract one in order to ensure no overflow, because the TIMINCA 131 * register can only hold slightly under 0.5 nanoseconds. 132 * 133 * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns 134 * into 2^-32 units, which is 135 * 136 * 12.5 * 2^32 = C80000000 137 * 138 * Some revisions of hardware have a faster base frequency than the registers 139 * were defined for. To fix this, we use a timecounter structure with the 140 * proper mult and shift to convert the cycles into nanoseconds of time. 141 */ 142 #define IXGBE_X550_BASE_PERIOD 0xC80000000ULL 143 #define INCVALUE_MASK 0x7FFFFFFF 144 #define ISGN 0x80000000 145 146 /** 147 * ixgbe_ptp_setup_sdp_X540 148 * @adapter: private adapter structure 149 * 150 * this function enables or disables the clock out feature on SDP0 for 151 * the X540 device. It will create a 1 second periodic output that can 152 * be used as the PPS (via an interrupt). 153 * 154 * It calculates when the system time will be on an exact second, and then 155 * aligns the start of the PPS signal to that value. 156 * 157 * This works by using the cycle counter shift and mult values in reverse, and 158 * assumes that the values we're shifting will not overflow. 159 */ 160 static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter *adapter) 161 { 162 struct cyclecounter *cc = &adapter->hw_cc; 163 struct ixgbe_hw *hw = &adapter->hw; 164 u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem; 165 u64 ns = 0, clock_edge = 0, clock_period; 166 unsigned long flags; 167 168 /* disable the pin first */ 169 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0); 170 IXGBE_WRITE_FLUSH(hw); 171 172 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED)) 173 return; 174 175 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); 176 177 /* enable the SDP0 pin as output, and connected to the 178 * native function for Timesync (ClockOut) 179 */ 180 esdp |= IXGBE_ESDP_SDP0_DIR | 181 IXGBE_ESDP_SDP0_NATIVE; 182 183 /* enable the Clock Out feature on SDP0, and allow 184 * interrupts to occur when the pin changes 185 */ 186 tsauxc = (IXGBE_TSAUXC_EN_CLK | 187 IXGBE_TSAUXC_SYNCLK | 188 IXGBE_TSAUXC_SDP0_INT); 189 190 /* Determine the clock time period to use. This assumes that the 191 * cycle counter shift is small enough to avoid overflow. 192 */ 193 clock_period = div_u64((NS_PER_HALF_SEC << cc->shift), cc->mult); 194 clktiml = (u32)(clock_period); 195 clktimh = (u32)(clock_period >> 32); 196 197 /* Read the current clock time, and save the cycle counter value */ 198 spin_lock_irqsave(&adapter->tmreg_lock, flags); 199 ns = timecounter_read(&adapter->hw_tc); 200 clock_edge = adapter->hw_tc.cycle_last; 201 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 202 203 /* Figure out how many seconds to add in order to round up */ 204 div_u64_rem(ns, NS_PER_SEC, &rem); 205 206 /* Figure out how many nanoseconds to add to round the clock edge up 207 * to the next full second 208 */ 209 rem = (NS_PER_SEC - rem); 210 211 /* Adjust the clock edge to align with the next full second. */ 212 clock_edge += div_u64(((u64)rem << cc->shift), cc->mult); 213 trgttiml = (u32)clock_edge; 214 trgttimh = (u32)(clock_edge >> 32); 215 216 IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml); 217 IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh); 218 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml); 219 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh); 220 221 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 222 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc); 223 224 IXGBE_WRITE_FLUSH(hw); 225 } 226 227 /** 228 * ixgbe_ptp_setup_sdp_X550 229 * @adapter: private adapter structure 230 * 231 * Enable or disable a clock output signal on SDP 0 for X550 hardware. 232 * 233 * Use the target time feature to align the output signal on the next full 234 * second. 235 * 236 * This works by using the cycle counter shift and mult values in reverse, and 237 * assumes that the values we're shifting will not overflow. 238 */ 239 static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter *adapter) 240 { 241 u32 esdp, tsauxc, freqout, trgttiml, trgttimh, rem, tssdp; 242 struct cyclecounter *cc = &adapter->hw_cc; 243 struct ixgbe_hw *hw = &adapter->hw; 244 u64 ns = 0, clock_edge = 0; 245 struct timespec64 ts; 246 unsigned long flags; 247 248 /* disable the pin first */ 249 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0); 250 IXGBE_WRITE_FLUSH(hw); 251 252 if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED)) 253 return; 254 255 esdp = IXGBE_READ_REG(hw, IXGBE_ESDP); 256 257 /* enable the SDP0 pin as output, and connected to the 258 * native function for Timesync (ClockOut) 259 */ 260 esdp |= IXGBE_ESDP_SDP0_DIR | 261 IXGBE_ESDP_SDP0_NATIVE; 262 263 /* enable the Clock Out feature on SDP0, and use Target Time 0 to 264 * enable generation of interrupts on the clock change. 265 */ 266 #define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000 267 tsauxc = (IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_ST0 | 268 IXGBE_TSAUXC_EN_TT0 | IXGBE_TSAUXC_SDP0_INT | 269 IXGBE_TSAUXC_DIS_TS_CLEAR); 270 271 tssdp = (IXGBE_TSSDP_TS_SDP0_EN | 272 IXGBE_TSSDP_TS_SDP0_CLK0); 273 274 /* Determine the clock time period to use. This assumes that the 275 * cycle counter shift is small enough to avoid overflowing a 32bit 276 * value. 277 */ 278 freqout = div_u64(NS_PER_HALF_SEC << cc->shift, cc->mult); 279 280 /* Read the current clock time, and save the cycle counter value */ 281 spin_lock_irqsave(&adapter->tmreg_lock, flags); 282 ns = timecounter_read(&adapter->hw_tc); 283 clock_edge = adapter->hw_tc.cycle_last; 284 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 285 286 /* Figure out how far past the next second we are */ 287 div_u64_rem(ns, NS_PER_SEC, &rem); 288 289 /* Figure out how many nanoseconds to add to round the clock edge up 290 * to the next full second 291 */ 292 rem = (NS_PER_SEC - rem); 293 294 /* Adjust the clock edge to align with the next full second. */ 295 clock_edge += div_u64(((u64)rem << cc->shift), cc->mult); 296 297 /* X550 hardware stores the time in 32bits of 'billions of cycles' and 298 * 32bits of 'cycles'. There's no guarantee that cycles represents 299 * nanoseconds. However, we can use the math from a timespec64 to 300 * convert into the hardware representation. 301 * 302 * See ixgbe_ptp_read_X550() for more details. 303 */ 304 ts = ns_to_timespec64(clock_edge); 305 trgttiml = (u32)ts.tv_nsec; 306 trgttimh = (u32)ts.tv_sec; 307 308 IXGBE_WRITE_REG(hw, IXGBE_FREQOUT0, freqout); 309 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml); 310 IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh); 311 312 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp); 313 IXGBE_WRITE_REG(hw, IXGBE_TSSDP, tssdp); 314 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc); 315 316 IXGBE_WRITE_FLUSH(hw); 317 } 318 319 /** 320 * ixgbe_ptp_read_X550 - read cycle counter value 321 * @cc: cyclecounter structure 322 * 323 * This function reads SYSTIME registers. It is called by the cyclecounter 324 * structure to convert from internal representation into nanoseconds. We need 325 * this for X550 since some skews do not have expected clock frequency and 326 * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of 327 * "cycles", rather than seconds and nanoseconds. 328 */ 329 static u64 ixgbe_ptp_read_X550(const struct cyclecounter *cc) 330 { 331 struct ixgbe_adapter *adapter = 332 container_of(cc, struct ixgbe_adapter, hw_cc); 333 struct ixgbe_hw *hw = &adapter->hw; 334 struct timespec64 ts; 335 336 /* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'. 337 * Some revisions of hardware run at a higher frequency and so the 338 * cycles are not guaranteed to be nanoseconds. The timespec64 created 339 * here is used for its math/conversions but does not necessarily 340 * represent nominal time. 341 * 342 * It should be noted that this cyclecounter will overflow at a 343 * non-bitmask field since we have to convert our billions of cycles 344 * into an actual cycles count. This results in some possible weird 345 * situations at high cycle counter stamps. However given that 32 bits 346 * of "seconds" is ~138 years this isn't a problem. Even at the 347 * increased frequency of some revisions, this is still ~103 years. 348 * Since the SYSTIME values start at 0 and we never write them, it is 349 * highly unlikely for the cyclecounter to overflow in practice. 350 */ 351 IXGBE_READ_REG(hw, IXGBE_SYSTIMR); 352 ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML); 353 ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH); 354 355 return (u64)timespec64_to_ns(&ts); 356 } 357 358 /** 359 * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter) 360 * @cc: the cyclecounter structure 361 * 362 * this function reads the cyclecounter registers and is called by the 363 * cyclecounter structure used to construct a ns counter from the 364 * arbitrary fixed point registers 365 */ 366 static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc) 367 { 368 struct ixgbe_adapter *adapter = 369 container_of(cc, struct ixgbe_adapter, hw_cc); 370 struct ixgbe_hw *hw = &adapter->hw; 371 u64 stamp = 0; 372 373 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML); 374 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; 375 376 return stamp; 377 } 378 379 /** 380 * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp 381 * @adapter: private adapter structure 382 * @hwtstamp: stack timestamp structure 383 * @timestamp: unsigned 64bit system time value 384 * 385 * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value 386 * which can be used by the stack's ptp functions. 387 * 388 * The lock is used to protect consistency of the cyclecounter and the SYSTIME 389 * registers. However, it does not need to protect against the Rx or Tx 390 * timestamp registers, as there can't be a new timestamp until the old one is 391 * unlatched by reading. 392 * 393 * In addition to the timestamp in hardware, some controllers need a software 394 * overflow cyclecounter, and this function takes this into account as well. 395 **/ 396 static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter, 397 struct skb_shared_hwtstamps *hwtstamp, 398 u64 timestamp) 399 { 400 unsigned long flags; 401 struct timespec64 systime; 402 u64 ns; 403 404 memset(hwtstamp, 0, sizeof(*hwtstamp)); 405 406 switch (adapter->hw.mac.type) { 407 /* X550 and later hardware supposedly represent time using a seconds 408 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need 409 * to convert the timestamp into cycles before it can be fed to the 410 * cyclecounter. We need an actual cyclecounter because some revisions 411 * of hardware run at a higher frequency and thus the counter does 412 * not represent seconds/nanoseconds. Instead it can be thought of as 413 * cycles and billions of cycles. 414 */ 415 case ixgbe_mac_X550: 416 case ixgbe_mac_X550EM_x: 417 case ixgbe_mac_x550em_a: 418 /* Upper 32 bits represent billions of cycles, lower 32 bits 419 * represent cycles. However, we use timespec64_to_ns for the 420 * correct math even though the units haven't been corrected 421 * yet. 422 */ 423 systime.tv_sec = timestamp >> 32; 424 systime.tv_nsec = timestamp & 0xFFFFFFFF; 425 426 timestamp = timespec64_to_ns(&systime); 427 break; 428 default: 429 break; 430 } 431 432 spin_lock_irqsave(&adapter->tmreg_lock, flags); 433 ns = timecounter_cyc2time(&adapter->hw_tc, timestamp); 434 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 435 436 hwtstamp->hwtstamp = ns_to_ktime(ns); 437 } 438 439 /** 440 * ixgbe_ptp_adjfine_82599 441 * @ptp: the ptp clock structure 442 * @scaled_ppm: scaled parts per million adjustment from base 443 * 444 * Adjust the frequency of the ptp cycle counter by the 445 * indicated scaled_ppm from the base frequency. 446 * 447 * Scaled parts per million is ppm with a 16-bit binary fractional field. 448 */ 449 static int ixgbe_ptp_adjfine_82599(struct ptp_clock_info *ptp, long scaled_ppm) 450 { 451 struct ixgbe_adapter *adapter = 452 container_of(ptp, struct ixgbe_adapter, ptp_caps); 453 struct ixgbe_hw *hw = &adapter->hw; 454 u64 incval, diff; 455 int neg_adj = 0; 456 457 if (scaled_ppm < 0) { 458 neg_adj = 1; 459 scaled_ppm = -scaled_ppm; 460 } 461 462 smp_mb(); 463 incval = READ_ONCE(adapter->base_incval); 464 465 diff = mul_u64_u64_div_u64(incval, scaled_ppm, 466 1000000ULL << 16); 467 468 incval = neg_adj ? (incval - diff) : (incval + diff); 469 470 switch (hw->mac.type) { 471 case ixgbe_mac_X540: 472 if (incval > 0xFFFFFFFFULL) 473 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n"); 474 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval); 475 break; 476 case ixgbe_mac_82599EB: 477 if (incval > 0x00FFFFFFULL) 478 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n"); 479 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, 480 BIT(IXGBE_INCPER_SHIFT_82599) | 481 ((u32)incval & 0x00FFFFFFUL)); 482 break; 483 default: 484 break; 485 } 486 487 return 0; 488 } 489 490 /** 491 * ixgbe_ptp_adjfine_X550 492 * @ptp: the ptp clock structure 493 * @scaled_ppm: scaled parts per million adjustment from base 494 * 495 * Adjust the frequency of the SYSTIME registers by the indicated scaled_ppm 496 * from base frequency. 497 * 498 * Scaled parts per million is ppm with a 16-bit binary fractional field. 499 */ 500 static int ixgbe_ptp_adjfine_X550(struct ptp_clock_info *ptp, long scaled_ppm) 501 { 502 struct ixgbe_adapter *adapter = 503 container_of(ptp, struct ixgbe_adapter, ptp_caps); 504 struct ixgbe_hw *hw = &adapter->hw; 505 int neg_adj = 0; 506 u64 rate; 507 u32 inca; 508 509 if (scaled_ppm < 0) { 510 neg_adj = 1; 511 scaled_ppm = -scaled_ppm; 512 } 513 514 rate = mul_u64_u64_div_u64(IXGBE_X550_BASE_PERIOD, scaled_ppm, 515 1000000ULL << 16); 516 517 /* warn if rate is too large */ 518 if (rate >= INCVALUE_MASK) 519 e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n"); 520 521 inca = rate & INCVALUE_MASK; 522 if (neg_adj) 523 inca |= ISGN; 524 525 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca); 526 527 return 0; 528 } 529 530 /** 531 * ixgbe_ptp_adjtime 532 * @ptp: the ptp clock structure 533 * @delta: offset to adjust the cycle counter by 534 * 535 * adjust the timer by resetting the timecounter structure. 536 */ 537 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) 538 { 539 struct ixgbe_adapter *adapter = 540 container_of(ptp, struct ixgbe_adapter, ptp_caps); 541 unsigned long flags; 542 543 spin_lock_irqsave(&adapter->tmreg_lock, flags); 544 timecounter_adjtime(&adapter->hw_tc, delta); 545 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 546 547 if (adapter->ptp_setup_sdp) 548 adapter->ptp_setup_sdp(adapter); 549 550 return 0; 551 } 552 553 /** 554 * ixgbe_ptp_gettimex 555 * @ptp: the ptp clock structure 556 * @ts: timespec to hold the PHC timestamp 557 * @sts: structure to hold the system time before and after reading the PHC 558 * 559 * read the timecounter and return the correct value on ns, 560 * after converting it into a struct timespec. 561 */ 562 static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp, 563 struct timespec64 *ts, 564 struct ptp_system_timestamp *sts) 565 { 566 struct ixgbe_adapter *adapter = 567 container_of(ptp, struct ixgbe_adapter, ptp_caps); 568 struct ixgbe_hw *hw = &adapter->hw; 569 unsigned long flags; 570 u64 ns, stamp; 571 572 spin_lock_irqsave(&adapter->tmreg_lock, flags); 573 574 switch (adapter->hw.mac.type) { 575 case ixgbe_mac_X550: 576 case ixgbe_mac_X550EM_x: 577 case ixgbe_mac_x550em_a: 578 /* Upper 32 bits represent billions of cycles, lower 32 bits 579 * represent cycles. However, we use timespec64_to_ns for the 580 * correct math even though the units haven't been corrected 581 * yet. 582 */ 583 ptp_read_system_prets(sts); 584 IXGBE_READ_REG(hw, IXGBE_SYSTIMR); 585 ptp_read_system_postts(sts); 586 ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML); 587 ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH); 588 stamp = timespec64_to_ns(ts); 589 break; 590 default: 591 ptp_read_system_prets(sts); 592 stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML); 593 ptp_read_system_postts(sts); 594 stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32; 595 break; 596 } 597 598 ns = timecounter_cyc2time(&adapter->hw_tc, stamp); 599 600 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 601 602 *ts = ns_to_timespec64(ns); 603 604 return 0; 605 } 606 607 /** 608 * ixgbe_ptp_settime 609 * @ptp: the ptp clock structure 610 * @ts: the timespec containing the new time for the cycle counter 611 * 612 * reset the timecounter to use a new base value instead of the kernel 613 * wall timer value. 614 */ 615 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp, 616 const struct timespec64 *ts) 617 { 618 struct ixgbe_adapter *adapter = 619 container_of(ptp, struct ixgbe_adapter, ptp_caps); 620 unsigned long flags; 621 u64 ns = timespec64_to_ns(ts); 622 623 /* reset the timecounter */ 624 spin_lock_irqsave(&adapter->tmreg_lock, flags); 625 timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns); 626 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 627 628 if (adapter->ptp_setup_sdp) 629 adapter->ptp_setup_sdp(adapter); 630 return 0; 631 } 632 633 /** 634 * ixgbe_ptp_feature_enable 635 * @ptp: the ptp clock structure 636 * @rq: the requested feature to change 637 * @on: whether to enable or disable the feature 638 * 639 * enable (or disable) ancillary features of the phc subsystem. 640 * our driver only supports the PPS feature on the X540 641 */ 642 static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp, 643 struct ptp_clock_request *rq, int on) 644 { 645 struct ixgbe_adapter *adapter = 646 container_of(ptp, struct ixgbe_adapter, ptp_caps); 647 648 /** 649 * When PPS is enabled, unmask the interrupt for the ClockOut 650 * feature, so that the interrupt handler can send the PPS 651 * event when the clock SDP triggers. Clear mask when PPS is 652 * disabled 653 */ 654 if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp) 655 return -ENOTSUPP; 656 657 if (on) 658 adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED; 659 else 660 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED; 661 662 adapter->ptp_setup_sdp(adapter); 663 return 0; 664 } 665 666 /** 667 * ixgbe_ptp_check_pps_event 668 * @adapter: the private adapter structure 669 * 670 * This function is called by the interrupt routine when checking for 671 * interrupts. It will check and handle a pps event. 672 */ 673 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter) 674 { 675 struct ixgbe_hw *hw = &adapter->hw; 676 struct ptp_clock_event event; 677 678 event.type = PTP_CLOCK_PPS; 679 680 /* this check is necessary in case the interrupt was enabled via some 681 * alternative means (ex. debug_fs). Better to check here than 682 * everywhere that calls this function. 683 */ 684 if (!adapter->ptp_clock) 685 return; 686 687 switch (hw->mac.type) { 688 case ixgbe_mac_X540: 689 ptp_clock_event(adapter->ptp_clock, &event); 690 break; 691 default: 692 break; 693 } 694 } 695 696 /** 697 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow 698 * @adapter: private adapter struct 699 * 700 * this watchdog task periodically reads the timecounter 701 * in order to prevent missing when the system time registers wrap 702 * around. This needs to be run approximately twice a minute. 703 */ 704 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter) 705 { 706 bool timeout = time_is_before_jiffies(adapter->last_overflow_check + 707 IXGBE_OVERFLOW_PERIOD); 708 unsigned long flags; 709 710 if (timeout) { 711 /* Update the timecounter */ 712 spin_lock_irqsave(&adapter->tmreg_lock, flags); 713 timecounter_read(&adapter->hw_tc); 714 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 715 716 adapter->last_overflow_check = jiffies; 717 } 718 } 719 720 /** 721 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched 722 * @adapter: private network adapter structure 723 * 724 * this watchdog task is scheduled to detect error case where hardware has 725 * dropped an Rx packet that was timestamped when the ring is full. The 726 * particular error is rare but leaves the device in a state unable to timestamp 727 * any future packets. 728 */ 729 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter) 730 { 731 struct ixgbe_hw *hw = &adapter->hw; 732 u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 733 struct ixgbe_ring *rx_ring; 734 unsigned long rx_event; 735 int n; 736 737 /* if we don't have a valid timestamp in the registers, just update the 738 * timeout counter and exit 739 */ 740 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) { 741 adapter->last_rx_ptp_check = jiffies; 742 return; 743 } 744 745 /* determine the most recent watchdog or rx_timestamp event */ 746 rx_event = adapter->last_rx_ptp_check; 747 for (n = 0; n < adapter->num_rx_queues; n++) { 748 rx_ring = adapter->rx_ring[n]; 749 if (time_after(rx_ring->last_rx_timestamp, rx_event)) 750 rx_event = rx_ring->last_rx_timestamp; 751 } 752 753 /* only need to read the high RXSTMP register to clear the lock */ 754 if (time_is_before_jiffies(rx_event + 5 * HZ)) { 755 IXGBE_READ_REG(hw, IXGBE_RXSTMPH); 756 adapter->last_rx_ptp_check = jiffies; 757 758 adapter->rx_hwtstamp_cleared++; 759 e_warn(drv, "clearing RX Timestamp hang\n"); 760 } 761 } 762 763 /** 764 * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state 765 * @adapter: the private adapter structure 766 * 767 * This function should be called whenever the state related to a Tx timestamp 768 * needs to be cleared. This helps ensure that all related bits are reset for 769 * the next Tx timestamp event. 770 */ 771 static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter) 772 { 773 struct ixgbe_hw *hw = &adapter->hw; 774 775 IXGBE_READ_REG(hw, IXGBE_TXSTMPH); 776 if (adapter->ptp_tx_skb) { 777 dev_kfree_skb_any(adapter->ptp_tx_skb); 778 adapter->ptp_tx_skb = NULL; 779 } 780 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state); 781 } 782 783 /** 784 * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes 785 * @adapter: private network adapter structure 786 */ 787 void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter) 788 { 789 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start + 790 IXGBE_PTP_TX_TIMEOUT); 791 792 if (!adapter->ptp_tx_skb) 793 return; 794 795 if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state)) 796 return; 797 798 /* If we haven't received a timestamp within the timeout, it is 799 * reasonable to assume that it will never occur, so we can unlock the 800 * timestamp bit when this occurs. 801 */ 802 if (timeout) { 803 cancel_work_sync(&adapter->ptp_tx_work); 804 ixgbe_ptp_clear_tx_timestamp(adapter); 805 adapter->tx_hwtstamp_timeouts++; 806 e_warn(drv, "clearing Tx timestamp hang\n"); 807 } 808 } 809 810 /** 811 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp 812 * @adapter: the private adapter struct 813 * 814 * if the timestamp is valid, we convert it into the timecounter ns 815 * value, then store that result into the shhwtstamps structure which 816 * is passed up the network stack 817 */ 818 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter) 819 { 820 struct sk_buff *skb = adapter->ptp_tx_skb; 821 struct ixgbe_hw *hw = &adapter->hw; 822 struct skb_shared_hwtstamps shhwtstamps; 823 u64 regval = 0; 824 825 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL); 826 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32; 827 ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval); 828 829 /* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state 830 * bit prior to notifying the stack via skb_tstamp_tx(). This prevents 831 * well behaved applications from attempting to timestamp again prior 832 * to the lock bit being clear. 833 */ 834 adapter->ptp_tx_skb = NULL; 835 clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state); 836 837 /* Notify the stack and then free the skb after we've unlocked */ 838 skb_tstamp_tx(skb, &shhwtstamps); 839 dev_kfree_skb_any(skb); 840 } 841 842 /** 843 * ixgbe_ptp_tx_hwtstamp_work 844 * @work: pointer to the work struct 845 * 846 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware 847 * timestamp has been taken for the current skb. It is necessary, because the 848 * descriptor's "done" bit does not correlate with the timestamp event. 849 */ 850 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work) 851 { 852 struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter, 853 ptp_tx_work); 854 struct ixgbe_hw *hw = &adapter->hw; 855 bool timeout = time_is_before_jiffies(adapter->ptp_tx_start + 856 IXGBE_PTP_TX_TIMEOUT); 857 u32 tsynctxctl; 858 859 /* we have to have a valid skb to poll for a timestamp */ 860 if (!adapter->ptp_tx_skb) { 861 ixgbe_ptp_clear_tx_timestamp(adapter); 862 return; 863 } 864 865 /* stop polling once we have a valid timestamp */ 866 tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); 867 if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) { 868 ixgbe_ptp_tx_hwtstamp(adapter); 869 return; 870 } 871 872 if (timeout) { 873 ixgbe_ptp_clear_tx_timestamp(adapter); 874 adapter->tx_hwtstamp_timeouts++; 875 e_warn(drv, "clearing Tx Timestamp hang\n"); 876 } else { 877 /* reschedule to keep checking if it's not available yet */ 878 schedule_work(&adapter->ptp_tx_work); 879 } 880 } 881 882 /** 883 * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer 884 * @q_vector: structure containing interrupt and ring information 885 * @skb: the packet 886 * 887 * This function will be called by the Rx routine of the timestamp for this 888 * packet is stored in the buffer. The value is stored in little endian format 889 * starting at the end of the packet data. 890 */ 891 void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector, 892 struct sk_buff *skb) 893 { 894 __le64 regval; 895 896 /* copy the bits out of the skb, and then trim the skb length */ 897 skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, ®val, 898 IXGBE_TS_HDR_LEN); 899 __pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN); 900 901 /* The timestamp is recorded in little endian format, and is stored at 902 * the end of the packet. 903 * 904 * DWORD: N N + 1 N + 2 905 * Field: End of Packet SYSTIMH SYSTIML 906 */ 907 ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb), 908 le64_to_cpu(regval)); 909 } 910 911 /** 912 * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp 913 * @q_vector: structure containing interrupt and ring information 914 * @skb: particular skb to send timestamp with 915 * 916 * if the timestamp is valid, we convert it into the timecounter ns 917 * value, then store that result into the shhwtstamps structure which 918 * is passed up the network stack 919 */ 920 void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector, 921 struct sk_buff *skb) 922 { 923 struct ixgbe_adapter *adapter; 924 struct ixgbe_hw *hw; 925 u64 regval = 0; 926 u32 tsyncrxctl; 927 928 /* we cannot process timestamps on a ring without a q_vector */ 929 if (!q_vector || !q_vector->adapter) 930 return; 931 932 adapter = q_vector->adapter; 933 hw = &adapter->hw; 934 935 /* Read the tsyncrxctl register afterwards in order to prevent taking an 936 * I/O hit on every packet. 937 */ 938 939 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 940 if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) 941 return; 942 943 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL); 944 regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32; 945 946 ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); 947 } 948 949 /** 950 * ixgbe_ptp_get_ts_config - get current hardware timestamping configuration 951 * @adapter: pointer to adapter structure 952 * @ifr: ioctl data 953 * 954 * This function returns the current timestamping settings. Rather than 955 * attempt to deconstruct registers to fill in the values, simply keep a copy 956 * of the old settings around, and return a copy when requested. 957 */ 958 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr) 959 { 960 struct hwtstamp_config *config = &adapter->tstamp_config; 961 962 return copy_to_user(ifr->ifr_data, config, 963 sizeof(*config)) ? -EFAULT : 0; 964 } 965 966 /** 967 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode 968 * @adapter: the private ixgbe adapter structure 969 * @config: the hwtstamp configuration requested 970 * 971 * Outgoing time stamping can be enabled and disabled. Play nice and 972 * disable it when requested, although it shouldn't cause any overhead 973 * when no packet needs it. At most one packet in the queue may be 974 * marked for time stamping, otherwise it would be impossible to tell 975 * for sure to which packet the hardware time stamp belongs. 976 * 977 * Incoming time stamping has to be configured via the hardware 978 * filters. Not all combinations are supported, in particular event 979 * type has to be specified. Matching the kind of event packet is 980 * not supported, with the exception of "all V2 events regardless of 981 * level 2 or 4". 982 * 983 * Since hardware always timestamps Path delay packets when timestamping V2 984 * packets, regardless of the type specified in the register, only use V2 985 * Event mode. This more accurately tells the user what the hardware is going 986 * to do anyways. 987 * 988 * Note: this may modify the hwtstamp configuration towards a more general 989 * mode, if required to support the specifically requested mode. 990 */ 991 static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter, 992 struct hwtstamp_config *config) 993 { 994 struct ixgbe_hw *hw = &adapter->hw; 995 u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED; 996 u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED; 997 u32 tsync_rx_mtrl = PTP_EV_PORT << 16; 998 bool is_l2 = false; 999 u32 regval; 1000 1001 switch (config->tx_type) { 1002 case HWTSTAMP_TX_OFF: 1003 tsync_tx_ctl = 0; 1004 break; 1005 case HWTSTAMP_TX_ON: 1006 break; 1007 default: 1008 return -ERANGE; 1009 } 1010 1011 switch (config->rx_filter) { 1012 case HWTSTAMP_FILTER_NONE: 1013 tsync_rx_ctl = 0; 1014 tsync_rx_mtrl = 0; 1015 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1016 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1017 break; 1018 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1019 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; 1020 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG; 1021 adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1022 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1023 break; 1024 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1025 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1; 1026 tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG; 1027 adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1028 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1029 break; 1030 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1031 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1032 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1033 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1034 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1035 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1036 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1037 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1038 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1039 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2; 1040 is_l2 = true; 1041 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 1042 adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1043 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1044 break; 1045 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1046 case HWTSTAMP_FILTER_NTP_ALL: 1047 case HWTSTAMP_FILTER_ALL: 1048 /* The X550 controller is capable of timestamping all packets, 1049 * which allows it to accept any filter. 1050 */ 1051 if (hw->mac.type >= ixgbe_mac_X550) { 1052 tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL; 1053 config->rx_filter = HWTSTAMP_FILTER_ALL; 1054 adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED; 1055 break; 1056 } 1057 fallthrough; 1058 default: 1059 /* 1060 * register RXMTRL must be set in order to do V1 packets, 1061 * therefore it is not possible to time stamp both V1 Sync and 1062 * Delay_Req messages and hardware does not support 1063 * timestamping all packets => return error 1064 */ 1065 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1066 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1067 config->rx_filter = HWTSTAMP_FILTER_NONE; 1068 return -ERANGE; 1069 } 1070 1071 if (hw->mac.type == ixgbe_mac_82598EB) { 1072 adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED | 1073 IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER); 1074 if (tsync_rx_ctl | tsync_tx_ctl) 1075 return -ERANGE; 1076 return 0; 1077 } 1078 1079 /* Per-packet timestamping only works if the filter is set to all 1080 * packets. Since this is desired, always timestamp all packets as long 1081 * as any Rx filter was configured. 1082 */ 1083 switch (hw->mac.type) { 1084 case ixgbe_mac_X550: 1085 case ixgbe_mac_X550EM_x: 1086 case ixgbe_mac_x550em_a: 1087 /* enable timestamping all packets only if at least some 1088 * packets were requested. Otherwise, play nice and disable 1089 * timestamping 1090 */ 1091 if (config->rx_filter == HWTSTAMP_FILTER_NONE) 1092 break; 1093 1094 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED | 1095 IXGBE_TSYNCRXCTL_TYPE_ALL | 1096 IXGBE_TSYNCRXCTL_TSIP_UT_EN; 1097 config->rx_filter = HWTSTAMP_FILTER_ALL; 1098 adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED; 1099 adapter->flags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER; 1100 is_l2 = true; 1101 break; 1102 default: 1103 break; 1104 } 1105 1106 /* define ethertype filter for timestamping L2 packets */ 1107 if (is_l2) 1108 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 1109 (IXGBE_ETQF_FILTER_EN | /* enable filter */ 1110 IXGBE_ETQF_1588 | /* enable timestamping */ 1111 ETH_P_1588)); /* 1588 eth protocol type */ 1112 else 1113 IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0); 1114 1115 /* enable/disable TX */ 1116 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL); 1117 regval &= ~IXGBE_TSYNCTXCTL_ENABLED; 1118 regval |= tsync_tx_ctl; 1119 IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval); 1120 1121 /* enable/disable RX */ 1122 regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL); 1123 regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK); 1124 regval |= tsync_rx_ctl; 1125 IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval); 1126 1127 /* define which PTP packets are time stamped */ 1128 IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl); 1129 1130 IXGBE_WRITE_FLUSH(hw); 1131 1132 /* clear TX/RX time stamp registers, just to be sure */ 1133 ixgbe_ptp_clear_tx_timestamp(adapter); 1134 IXGBE_READ_REG(hw, IXGBE_RXSTMPH); 1135 1136 return 0; 1137 } 1138 1139 /** 1140 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode 1141 * @adapter: pointer to adapter struct 1142 * @ifr: ioctl data 1143 * 1144 * Set hardware to requested mode. If unsupported, return an error with no 1145 * changes. Otherwise, store the mode for future reference. 1146 */ 1147 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr) 1148 { 1149 struct hwtstamp_config config; 1150 int err; 1151 1152 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 1153 return -EFAULT; 1154 1155 err = ixgbe_ptp_set_timestamp_mode(adapter, &config); 1156 if (err) 1157 return err; 1158 1159 /* save these settings for future reference */ 1160 memcpy(&adapter->tstamp_config, &config, 1161 sizeof(adapter->tstamp_config)); 1162 1163 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? 1164 -EFAULT : 0; 1165 } 1166 1167 static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter, 1168 u32 *shift, u32 *incval) 1169 { 1170 /** 1171 * Scale the NIC cycle counter by a large factor so that 1172 * relatively small corrections to the frequency can be added 1173 * or subtracted. The drawbacks of a large factor include 1174 * (a) the clock register overflows more quickly, (b) the cycle 1175 * counter structure must be able to convert the systime value 1176 * to nanoseconds using only a multiplier and a right-shift, 1177 * and (c) the value must fit within the timinca register space 1178 * => math based on internal DMA clock rate and available bits 1179 * 1180 * Note that when there is no link, internal DMA clock is same as when 1181 * link speed is 10Gb. Set the registers correctly even when link is 1182 * down to preserve the clock setting 1183 */ 1184 switch (adapter->link_speed) { 1185 case IXGBE_LINK_SPEED_100_FULL: 1186 *shift = IXGBE_INCVAL_SHIFT_100; 1187 *incval = IXGBE_INCVAL_100; 1188 break; 1189 case IXGBE_LINK_SPEED_1GB_FULL: 1190 *shift = IXGBE_INCVAL_SHIFT_1GB; 1191 *incval = IXGBE_INCVAL_1GB; 1192 break; 1193 case IXGBE_LINK_SPEED_10GB_FULL: 1194 default: 1195 *shift = IXGBE_INCVAL_SHIFT_10GB; 1196 *incval = IXGBE_INCVAL_10GB; 1197 break; 1198 } 1199 } 1200 1201 /** 1202 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw 1203 * @adapter: pointer to the adapter structure 1204 * 1205 * This function should be called to set the proper values for the TIMINCA 1206 * register and tell the cyclecounter structure what the tick rate of SYSTIME 1207 * is. It does not directly modify SYSTIME registers or the timecounter 1208 * structure. It should be called whenever a new TIMINCA value is necessary, 1209 * such as during initialization or when the link speed changes. 1210 */ 1211 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter) 1212 { 1213 struct ixgbe_hw *hw = &adapter->hw; 1214 struct cyclecounter cc; 1215 unsigned long flags; 1216 u32 incval = 0; 1217 u32 fuse0 = 0; 1218 1219 /* For some of the boards below this mask is technically incorrect. 1220 * The timestamp mask overflows at approximately 61bits. However the 1221 * particular hardware does not overflow on an even bitmask value. 1222 * Instead, it overflows due to conversion of upper 32bits billions of 1223 * cycles. Timecounters are not really intended for this purpose so 1224 * they do not properly function if the overflow point isn't 2^N-1. 1225 * However, the actual SYSTIME values in question take ~138 years to 1226 * overflow. In practice this means they won't actually overflow. A 1227 * proper fix to this problem would require modification of the 1228 * timecounter delta calculations. 1229 */ 1230 cc.mask = CLOCKSOURCE_MASK(64); 1231 cc.mult = 1; 1232 cc.shift = 0; 1233 1234 switch (hw->mac.type) { 1235 case ixgbe_mac_X550EM_x: 1236 /* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is 1237 * designed to represent seconds and nanoseconds when this is 1238 * the case. However, some revisions of hardware have a 400Mhz 1239 * clock and we have to compensate for this frequency 1240 * variation using corrected mult and shift values. 1241 */ 1242 fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0)); 1243 if (!(fuse0 & IXGBE_FUSES0_300MHZ)) { 1244 cc.mult = 3; 1245 cc.shift = 2; 1246 } 1247 fallthrough; 1248 case ixgbe_mac_x550em_a: 1249 case ixgbe_mac_X550: 1250 cc.read = ixgbe_ptp_read_X550; 1251 break; 1252 case ixgbe_mac_X540: 1253 cc.read = ixgbe_ptp_read_82599; 1254 1255 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval); 1256 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval); 1257 break; 1258 case ixgbe_mac_82599EB: 1259 cc.read = ixgbe_ptp_read_82599; 1260 1261 ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval); 1262 incval >>= IXGBE_INCVAL_SHIFT_82599; 1263 cc.shift -= IXGBE_INCVAL_SHIFT_82599; 1264 IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, 1265 BIT(IXGBE_INCPER_SHIFT_82599) | incval); 1266 break; 1267 default: 1268 /* other devices aren't supported */ 1269 return; 1270 } 1271 1272 /* update the base incval used to calculate frequency adjustment */ 1273 WRITE_ONCE(adapter->base_incval, incval); 1274 smp_mb(); 1275 1276 /* need lock to prevent incorrect read while modifying cyclecounter */ 1277 spin_lock_irqsave(&adapter->tmreg_lock, flags); 1278 memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc)); 1279 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 1280 } 1281 1282 /** 1283 * ixgbe_ptp_init_systime - Initialize SYSTIME registers 1284 * @adapter: the ixgbe private board structure 1285 * 1286 * Initialize and start the SYSTIME registers. 1287 */ 1288 static void ixgbe_ptp_init_systime(struct ixgbe_adapter *adapter) 1289 { 1290 struct ixgbe_hw *hw = &adapter->hw; 1291 u32 tsauxc; 1292 1293 switch (hw->mac.type) { 1294 case ixgbe_mac_X550EM_x: 1295 case ixgbe_mac_x550em_a: 1296 case ixgbe_mac_X550: 1297 tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC); 1298 1299 /* Reset SYSTIME registers to 0 */ 1300 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0); 1301 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0); 1302 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0); 1303 1304 /* Reset interrupt settings */ 1305 IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS); 1306 IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC); 1307 1308 /* Activate the SYSTIME counter */ 1309 IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 1310 tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME); 1311 break; 1312 case ixgbe_mac_X540: 1313 case ixgbe_mac_82599EB: 1314 /* Reset SYSTIME registers to 0 */ 1315 IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0); 1316 IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0); 1317 break; 1318 default: 1319 /* Other devices aren't supported */ 1320 return; 1321 }; 1322 1323 IXGBE_WRITE_FLUSH(hw); 1324 } 1325 1326 /** 1327 * ixgbe_ptp_reset 1328 * @adapter: the ixgbe private board structure 1329 * 1330 * When the MAC resets, all the hardware bits for timesync are reset. This 1331 * function is used to re-enable the device for PTP based on current settings. 1332 * We do lose the current clock time, so just reset the cyclecounter to the 1333 * system real clock time. 1334 * 1335 * This function will maintain hwtstamp_config settings, and resets the SDP 1336 * output if it was enabled. 1337 */ 1338 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter) 1339 { 1340 struct ixgbe_hw *hw = &adapter->hw; 1341 unsigned long flags; 1342 1343 /* reset the hardware timestamping mode */ 1344 ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); 1345 1346 /* 82598 does not support PTP */ 1347 if (hw->mac.type == ixgbe_mac_82598EB) 1348 return; 1349 1350 ixgbe_ptp_start_cyclecounter(adapter); 1351 1352 ixgbe_ptp_init_systime(adapter); 1353 1354 spin_lock_irqsave(&adapter->tmreg_lock, flags); 1355 timecounter_init(&adapter->hw_tc, &adapter->hw_cc, 1356 ktime_to_ns(ktime_get_real())); 1357 spin_unlock_irqrestore(&adapter->tmreg_lock, flags); 1358 1359 adapter->last_overflow_check = jiffies; 1360 1361 /* Now that the shift has been calculated and the systime 1362 * registers reset, (re-)enable the Clock out feature 1363 */ 1364 if (adapter->ptp_setup_sdp) 1365 adapter->ptp_setup_sdp(adapter); 1366 } 1367 1368 /** 1369 * ixgbe_ptp_create_clock 1370 * @adapter: the ixgbe private adapter structure 1371 * 1372 * This function performs setup of the user entry point function table and 1373 * initializes the PTP clock device, which is used to access the clock-like 1374 * features of the PTP core. It will be called by ixgbe_ptp_init, and may 1375 * reuse a previously initialized clock (such as during a suspend/resume 1376 * cycle). 1377 */ 1378 static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter) 1379 { 1380 struct net_device *netdev = adapter->netdev; 1381 long err; 1382 1383 /* do nothing if we already have a clock device */ 1384 if (!IS_ERR_OR_NULL(adapter->ptp_clock)) 1385 return 0; 1386 1387 switch (adapter->hw.mac.type) { 1388 case ixgbe_mac_X540: 1389 snprintf(adapter->ptp_caps.name, 1390 sizeof(adapter->ptp_caps.name), 1391 "%s", netdev->name); 1392 adapter->ptp_caps.owner = THIS_MODULE; 1393 adapter->ptp_caps.max_adj = 250000000; 1394 adapter->ptp_caps.n_alarm = 0; 1395 adapter->ptp_caps.n_ext_ts = 0; 1396 adapter->ptp_caps.n_per_out = 0; 1397 adapter->ptp_caps.pps = 1; 1398 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599; 1399 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; 1400 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex; 1401 adapter->ptp_caps.settime64 = ixgbe_ptp_settime; 1402 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; 1403 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X540; 1404 break; 1405 case ixgbe_mac_82599EB: 1406 snprintf(adapter->ptp_caps.name, 1407 sizeof(adapter->ptp_caps.name), 1408 "%s", netdev->name); 1409 adapter->ptp_caps.owner = THIS_MODULE; 1410 adapter->ptp_caps.max_adj = 250000000; 1411 adapter->ptp_caps.n_alarm = 0; 1412 adapter->ptp_caps.n_ext_ts = 0; 1413 adapter->ptp_caps.n_per_out = 0; 1414 adapter->ptp_caps.pps = 0; 1415 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599; 1416 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; 1417 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex; 1418 adapter->ptp_caps.settime64 = ixgbe_ptp_settime; 1419 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; 1420 break; 1421 case ixgbe_mac_X550: 1422 case ixgbe_mac_X550EM_x: 1423 case ixgbe_mac_x550em_a: 1424 snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name); 1425 adapter->ptp_caps.owner = THIS_MODULE; 1426 adapter->ptp_caps.max_adj = 30000000; 1427 adapter->ptp_caps.n_alarm = 0; 1428 adapter->ptp_caps.n_ext_ts = 0; 1429 adapter->ptp_caps.n_per_out = 0; 1430 adapter->ptp_caps.pps = 1; 1431 adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_X550; 1432 adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime; 1433 adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex; 1434 adapter->ptp_caps.settime64 = ixgbe_ptp_settime; 1435 adapter->ptp_caps.enable = ixgbe_ptp_feature_enable; 1436 adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X550; 1437 break; 1438 default: 1439 adapter->ptp_clock = NULL; 1440 adapter->ptp_setup_sdp = NULL; 1441 return -EOPNOTSUPP; 1442 } 1443 1444 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, 1445 &adapter->pdev->dev); 1446 if (IS_ERR(adapter->ptp_clock)) { 1447 err = PTR_ERR(adapter->ptp_clock); 1448 adapter->ptp_clock = NULL; 1449 e_dev_err("ptp_clock_register failed\n"); 1450 return err; 1451 } else if (adapter->ptp_clock) 1452 e_dev_info("registered PHC device on %s\n", netdev->name); 1453 1454 /* set default timestamp mode to disabled here. We do this in 1455 * create_clock instead of init, because we don't want to override the 1456 * previous settings during a resume cycle. 1457 */ 1458 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; 1459 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; 1460 1461 return 0; 1462 } 1463 1464 /** 1465 * ixgbe_ptp_init 1466 * @adapter: the ixgbe private adapter structure 1467 * 1468 * This function performs the required steps for enabling PTP 1469 * support. If PTP support has already been loaded it simply calls the 1470 * cyclecounter init routine and exits. 1471 */ 1472 void ixgbe_ptp_init(struct ixgbe_adapter *adapter) 1473 { 1474 /* initialize the spin lock first since we can't control when a user 1475 * will call the entry functions once we have initialized the clock 1476 * device 1477 */ 1478 spin_lock_init(&adapter->tmreg_lock); 1479 1480 /* obtain a PTP device, or re-use an existing device */ 1481 if (ixgbe_ptp_create_clock(adapter)) 1482 return; 1483 1484 /* we have a clock so we can initialize work now */ 1485 INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work); 1486 1487 /* reset the PTP related hardware bits */ 1488 ixgbe_ptp_reset(adapter); 1489 1490 /* enter the IXGBE_PTP_RUNNING state */ 1491 set_bit(__IXGBE_PTP_RUNNING, &adapter->state); 1492 1493 return; 1494 } 1495 1496 /** 1497 * ixgbe_ptp_suspend - stop PTP work items 1498 * @adapter: pointer to adapter struct 1499 * 1500 * this function suspends PTP activity, and prevents more PTP work from being 1501 * generated, but does not destroy the PTP clock device. 1502 */ 1503 void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter) 1504 { 1505 /* Leave the IXGBE_PTP_RUNNING state. */ 1506 if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state)) 1507 return; 1508 1509 adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED; 1510 if (adapter->ptp_setup_sdp) 1511 adapter->ptp_setup_sdp(adapter); 1512 1513 /* ensure that we cancel any pending PTP Tx work item in progress */ 1514 cancel_work_sync(&adapter->ptp_tx_work); 1515 ixgbe_ptp_clear_tx_timestamp(adapter); 1516 } 1517 1518 /** 1519 * ixgbe_ptp_stop - close the PTP device 1520 * @adapter: pointer to adapter struct 1521 * 1522 * completely destroy the PTP device, should only be called when the device is 1523 * being fully closed. 1524 */ 1525 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter) 1526 { 1527 /* first, suspend PTP activity */ 1528 ixgbe_ptp_suspend(adapter); 1529 1530 /* disable the PTP clock device */ 1531 if (adapter->ptp_clock) { 1532 ptp_clock_unregister(adapter->ptp_clock); 1533 adapter->ptp_clock = NULL; 1534 e_dev_info("removed PHC on %s\n", 1535 adapter->netdev->name); 1536 } 1537 } 1538