xref: /openbmc/linux/drivers/net/ethernet/intel/ixgbe/ixgbe_ptp.c (revision 812f77b749a8ae11f58dacf0d3ed65e7ede47458)
1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2016 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 #include "ixgbe.h"
29 #include <linux/ptp_classify.h>
30 #include <linux/clocksource.h>
31 
32 /*
33  * The 82599 and the X540 do not have true 64bit nanosecond scale
34  * counter registers. Instead, SYSTIME is defined by a fixed point
35  * system which allows the user to define the scale counter increment
36  * value at every level change of the oscillator driving the SYSTIME
37  * value. For both devices the TIMINCA:IV field defines this
38  * increment. On the X540 device, 31 bits are provided. However on the
39  * 82599 only provides 24 bits. The time unit is determined by the
40  * clock frequency of the oscillator in combination with the TIMINCA
41  * register. When these devices link at 10Gb the oscillator has a
42  * period of 6.4ns. In order to convert the scale counter into
43  * nanoseconds the cyclecounter and timecounter structures are
44  * used. The SYSTIME registers need to be converted to ns values by use
45  * of only a right shift (division by power of 2). The following math
46  * determines the largest incvalue that will fit into the available
47  * bits in the TIMINCA register.
48  *
49  * PeriodWidth: Number of bits to store the clock period
50  * MaxWidth: The maximum width value of the TIMINCA register
51  * Period: The clock period for the oscillator
52  * round(): discard the fractional portion of the calculation
53  *
54  * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
55  *
56  * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
57  * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
58  *
59  * The period also changes based on the link speed:
60  * At 10Gb link or no link, the period remains the same.
61  * At 1Gb link, the period is multiplied by 10. (64ns)
62  * At 100Mb link, the period is multiplied by 100. (640ns)
63  *
64  * The calculated value allows us to right shift the SYSTIME register
65  * value in order to quickly convert it into a nanosecond clock,
66  * while allowing for the maximum possible adjustment value.
67  *
68  * These diagrams are only for the 10Gb link period
69  *
70  *           SYSTIMEH            SYSTIMEL
71  *       +--------------+  +--------------+
72  * X540  |      32      |  | 1 | 3 |  28  |
73  *       *--------------+  +--------------+
74  *        \________ 36 bits ______/  fract
75  *
76  *       +--------------+  +--------------+
77  * 82599 |      32      |  | 8 | 3 |  21  |
78  *       *--------------+  +--------------+
79  *        \________ 43 bits ______/  fract
80  *
81  * The 36 bit X540 SYSTIME overflows every
82  *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
83  *
84  * The 43 bit 82599 SYSTIME overflows every
85  *   2^43 * 10^-9 / 3600 = 2.4 hours
86  */
87 #define IXGBE_INCVAL_10GB 0x66666666
88 #define IXGBE_INCVAL_1GB  0x40000000
89 #define IXGBE_INCVAL_100  0x50000000
90 
91 #define IXGBE_INCVAL_SHIFT_10GB  28
92 #define IXGBE_INCVAL_SHIFT_1GB   24
93 #define IXGBE_INCVAL_SHIFT_100   21
94 
95 #define IXGBE_INCVAL_SHIFT_82599 7
96 #define IXGBE_INCPER_SHIFT_82599 24
97 
98 #define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
99 #define IXGBE_PTP_TX_TIMEOUT     (HZ * 15)
100 
101 /* half of a one second clock period, for use with PPS signal. We have to use
102  * this instead of something pre-defined like IXGBE_PTP_PPS_HALF_SECOND, in
103  * order to force at least 64bits of precision for shifting
104  */
105 #define IXGBE_PTP_PPS_HALF_SECOND 500000000ULL
106 
107 /* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
108  * which contain measurements of seconds and nanoseconds respectively. This
109  * matches the standard linux representation of time in the kernel. In addition,
110  * the X550 also has a SYSTIMER register which represents residue, or
111  * subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
112  * register is used, but it is unlike the X540 and 82599 devices. TIMINCA
113  * represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
114  * high bit representing whether the adjustent is positive or negative. Every
115  * clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
116  * of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
117  * X550's clock for purposes of SYSTIME generation is constant and not dependent
118  * on the link speed.
119  *
120  *           SYSTIMEH           SYSTIMEL        SYSTIMER
121  *       +--------------+  +--------------+  +-------------+
122  * X550  |      32      |  |      32      |  |     32      |
123  *       *--------------+  +--------------+  +-------------+
124  *       \____seconds___/   \_nanoseconds_/  \__2^-32 ns__/
125  *
126  * This results in a full 96 bits to represent the clock, with 32 bits for
127  * seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
128  * 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
129  * underflow of adjustments.
130  *
131  * The 32 bits of seconds for the X550 overflows every
132  *   2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
133  *
134  * In order to adjust the clock frequency for the X550, the TIMINCA register is
135  * provided. This register represents a + or minus nearly 0.5 ns adjustment to
136  * the base frequency. It is measured in 2^-32 ns units, with the high bit being
137  * the sign bit. This register enables software to calculate frequency
138  * adjustments and apply them directly to the clock rate.
139  *
140  * The math for converting ppb into TIMINCA values is fairly straightforward.
141  *   TIMINCA value = ( Base_Frequency * ppb ) / 1000000000ULL
142  *
143  * This assumes that ppb is never high enough to create a value bigger than
144  * TIMINCA's 31 bits can store. This is ensured by the stack. Calculating this
145  * value is also simple.
146  *   Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
147  *
148  * For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
149  * 12.5 nanoseconds. This means that the Max ppb is 39999999
150  *   Note: We subtract one in order to ensure no overflow, because the TIMINCA
151  *         register can only hold slightly under 0.5 nanoseconds.
152  *
153  * Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
154  * into 2^-32 units, which is
155  *
156  *  12.5 * 2^32 = C80000000
157  *
158  * Some revisions of hardware have a faster base frequency than the registers
159  * were defined for. To fix this, we use a timecounter structure with the
160  * proper mult and shift to convert the cycles into nanoseconds of time.
161  */
162 #define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
163 #define INCVALUE_MASK	0x7FFFFFFF
164 #define ISGN		0x80000000
165 #define MAX_TIMADJ	0x7FFFFFFF
166 
167 /**
168  * ixgbe_ptp_setup_sdp_x540
169  * @hw: the hardware private structure
170  *
171  * this function enables or disables the clock out feature on SDP0 for
172  * the X540 device. It will create a 1second periodic output that can
173  * be used as the PPS (via an interrupt).
174  *
175  * It calculates when the systime will be on an exact second, and then
176  * aligns the start of the PPS signal to that value. The shift is
177  * necessary because it can change based on the link speed.
178  */
179 static void ixgbe_ptp_setup_sdp_x540(struct ixgbe_adapter *adapter)
180 {
181 	struct ixgbe_hw *hw = &adapter->hw;
182 	int shift = adapter->hw_cc.shift;
183 	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
184 	u64 ns = 0, clock_edge = 0;
185 
186 	/* disable the pin first */
187 	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
188 	IXGBE_WRITE_FLUSH(hw);
189 
190 	if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
191 		return;
192 
193 	esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
194 
195 	/* enable the SDP0 pin as output, and connected to the
196 	 * native function for Timesync (ClockOut)
197 	 */
198 	esdp |= IXGBE_ESDP_SDP0_DIR |
199 		IXGBE_ESDP_SDP0_NATIVE;
200 
201 	/* enable the Clock Out feature on SDP0, and allow
202 	 * interrupts to occur when the pin changes
203 	 */
204 	tsauxc = IXGBE_TSAUXC_EN_CLK |
205 		 IXGBE_TSAUXC_SYNCLK |
206 		 IXGBE_TSAUXC_SDP0_INT;
207 
208 	/* clock period (or pulse length) */
209 	clktiml = (u32)(IXGBE_PTP_PPS_HALF_SECOND << shift);
210 	clktimh = (u32)((IXGBE_PTP_PPS_HALF_SECOND << shift) >> 32);
211 
212 	/* Account for the cyclecounter wrap-around value by
213 	 * using the converted ns value of the current time to
214 	 * check for when the next aligned second would occur.
215 	 */
216 	clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
217 	clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
218 	ns = timecounter_cyc2time(&adapter->hw_tc, clock_edge);
219 
220 	div_u64_rem(ns, IXGBE_PTP_PPS_HALF_SECOND, &rem);
221 	clock_edge += ((IXGBE_PTP_PPS_HALF_SECOND - (u64)rem) << shift);
222 
223 	/* specify the initial clock start time */
224 	trgttiml = (u32)clock_edge;
225 	trgttimh = (u32)(clock_edge >> 32);
226 
227 	IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
228 	IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
229 	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
230 	IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
231 
232 	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
233 	IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
234 
235 	IXGBE_WRITE_FLUSH(hw);
236 }
237 
238 /**
239  * ixgbe_ptp_read_X550 - read cycle counter value
240  * @hw_cc: cyclecounter structure
241  *
242  * This function reads SYSTIME registers. It is called by the cyclecounter
243  * structure to convert from internal representation into nanoseconds. We need
244  * this for X550 since some skews do not have expected clock frequency and
245  * result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
246  * "cycles", rather than seconds and nanoseconds.
247  */
248 static u64 ixgbe_ptp_read_X550(const struct cyclecounter *hw_cc)
249 {
250 	struct ixgbe_adapter *adapter =
251 			container_of(hw_cc, struct ixgbe_adapter, hw_cc);
252 	struct ixgbe_hw *hw = &adapter->hw;
253 	struct timespec64 ts;
254 
255 	/* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
256 	 * Some revisions of hardware run at a higher frequency and so the
257 	 * cycles are not guaranteed to be nanoseconds. The timespec64 created
258 	 * here is used for its math/conversions but does not necessarily
259 	 * represent nominal time.
260 	 *
261 	 * It should be noted that this cyclecounter will overflow at a
262 	 * non-bitmask field since we have to convert our billions of cycles
263 	 * into an actual cycles count. This results in some possible weird
264 	 * situations at high cycle counter stamps. However given that 32 bits
265 	 * of "seconds" is ~138 years this isn't a problem. Even at the
266 	 * increased frequency of some revisions, this is still ~103 years.
267 	 * Since the SYSTIME values start at 0 and we never write them, it is
268 	 * highly unlikely for the cyclecounter to overflow in practice.
269 	 */
270 	IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
271 	ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
272 	ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
273 
274 	return (u64)timespec64_to_ns(&ts);
275 }
276 
277 /**
278  * ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
279  * @cc: the cyclecounter structure
280  *
281  * this function reads the cyclecounter registers and is called by the
282  * cyclecounter structure used to construct a ns counter from the
283  * arbitrary fixed point registers
284  */
285 static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc)
286 {
287 	struct ixgbe_adapter *adapter =
288 		container_of(cc, struct ixgbe_adapter, hw_cc);
289 	struct ixgbe_hw *hw = &adapter->hw;
290 	u64 stamp = 0;
291 
292 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
293 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
294 
295 	return stamp;
296 }
297 
298 /**
299  * ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
300  * @adapter: private adapter structure
301  * @hwtstamp: stack timestamp structure
302  * @systim: unsigned 64bit system time value
303  *
304  * We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
305  * which can be used by the stack's ptp functions.
306  *
307  * The lock is used to protect consistency of the cyclecounter and the SYSTIME
308  * registers. However, it does not need to protect against the Rx or Tx
309  * timestamp registers, as there can't be a new timestamp until the old one is
310  * unlatched by reading.
311  *
312  * In addition to the timestamp in hardware, some controllers need a software
313  * overflow cyclecounter, and this function takes this into account as well.
314  **/
315 static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
316 					  struct skb_shared_hwtstamps *hwtstamp,
317 					  u64 timestamp)
318 {
319 	unsigned long flags;
320 	struct timespec64 systime;
321 	u64 ns;
322 
323 	memset(hwtstamp, 0, sizeof(*hwtstamp));
324 
325 	switch (adapter->hw.mac.type) {
326 	/* X550 and later hardware supposedly represent time using a seconds
327 	 * and nanoseconds counter, instead of raw 64bits nanoseconds. We need
328 	 * to convert the timestamp into cycles before it can be fed to the
329 	 * cyclecounter. We need an actual cyclecounter because some revisions
330 	 * of hardware run at a higher frequency and thus the counter does
331 	 * not represent seconds/nanoseconds. Instead it can be thought of as
332 	 * cycles and billions of cycles.
333 	 */
334 	case ixgbe_mac_X550:
335 	case ixgbe_mac_X550EM_x:
336 	case ixgbe_mac_x550em_a:
337 		/* Upper 32 bits represent billions of cycles, lower 32 bits
338 		 * represent cycles. However, we use timespec64_to_ns for the
339 		 * correct math even though the units haven't been corrected
340 		 * yet.
341 		 */
342 		systime.tv_sec = timestamp >> 32;
343 		systime.tv_nsec = timestamp & 0xFFFFFFFF;
344 
345 		timestamp = timespec64_to_ns(&systime);
346 		break;
347 	default:
348 		break;
349 	}
350 
351 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
352 	ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
353 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
354 
355 	hwtstamp->hwtstamp = ns_to_ktime(ns);
356 }
357 
358 /**
359  * ixgbe_ptp_adjfreq_82599
360  * @ptp: the ptp clock structure
361  * @ppb: parts per billion adjustment from base
362  *
363  * adjust the frequency of the ptp cycle counter by the
364  * indicated ppb from the base frequency.
365  */
366 static int ixgbe_ptp_adjfreq_82599(struct ptp_clock_info *ptp, s32 ppb)
367 {
368 	struct ixgbe_adapter *adapter =
369 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
370 	struct ixgbe_hw *hw = &adapter->hw;
371 	u64 freq, incval;
372 	u32 diff;
373 	int neg_adj = 0;
374 
375 	if (ppb < 0) {
376 		neg_adj = 1;
377 		ppb = -ppb;
378 	}
379 
380 	smp_mb();
381 	incval = READ_ONCE(adapter->base_incval);
382 
383 	freq = incval;
384 	freq *= ppb;
385 	diff = div_u64(freq, 1000000000ULL);
386 
387 	incval = neg_adj ? (incval - diff) : (incval + diff);
388 
389 	switch (hw->mac.type) {
390 	case ixgbe_mac_X540:
391 		if (incval > 0xFFFFFFFFULL)
392 			e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
393 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
394 		break;
395 	case ixgbe_mac_82599EB:
396 		if (incval > 0x00FFFFFFULL)
397 			e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
398 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
399 				BIT(IXGBE_INCPER_SHIFT_82599) |
400 				((u32)incval & 0x00FFFFFFUL));
401 		break;
402 	default:
403 		break;
404 	}
405 
406 	return 0;
407 }
408 
409 /**
410  * ixgbe_ptp_adjfreq_X550
411  * @ptp: the ptp clock structure
412  * @ppb: parts per billion adjustment from base
413  *
414  * adjust the frequency of the SYSTIME registers by the indicated ppb from base
415  * frequency
416  */
417 static int ixgbe_ptp_adjfreq_X550(struct ptp_clock_info *ptp, s32 ppb)
418 {
419 	struct ixgbe_adapter *adapter =
420 			container_of(ptp, struct ixgbe_adapter, ptp_caps);
421 	struct ixgbe_hw *hw = &adapter->hw;
422 	int neg_adj = 0;
423 	u64 rate = IXGBE_X550_BASE_PERIOD;
424 	u32 inca;
425 
426 	if (ppb < 0) {
427 		neg_adj = 1;
428 		ppb = -ppb;
429 	}
430 	rate *= ppb;
431 	rate = div_u64(rate, 1000000000ULL);
432 
433 	/* warn if rate is too large */
434 	if (rate >= INCVALUE_MASK)
435 		e_dev_warn("PTP ppb adjusted SYSTIME rate overflowed!\n");
436 
437 	inca = rate & INCVALUE_MASK;
438 	if (neg_adj)
439 		inca |= ISGN;
440 
441 	IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
442 
443 	return 0;
444 }
445 
446 /**
447  * ixgbe_ptp_adjtime
448  * @ptp: the ptp clock structure
449  * @delta: offset to adjust the cycle counter by
450  *
451  * adjust the timer by resetting the timecounter structure.
452  */
453 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
454 {
455 	struct ixgbe_adapter *adapter =
456 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
457 	unsigned long flags;
458 
459 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
460 	timecounter_adjtime(&adapter->hw_tc, delta);
461 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
462 
463 	if (adapter->ptp_setup_sdp)
464 		adapter->ptp_setup_sdp(adapter);
465 
466 	return 0;
467 }
468 
469 /**
470  * ixgbe_ptp_gettime
471  * @ptp: the ptp clock structure
472  * @ts: timespec structure to hold the current time value
473  *
474  * read the timecounter and return the correct value on ns,
475  * after converting it into a struct timespec.
476  */
477 static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
478 {
479 	struct ixgbe_adapter *adapter =
480 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
481 	unsigned long flags;
482 	u64 ns;
483 
484 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
485 	ns = timecounter_read(&adapter->hw_tc);
486 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
487 
488 	*ts = ns_to_timespec64(ns);
489 
490 	return 0;
491 }
492 
493 /**
494  * ixgbe_ptp_settime
495  * @ptp: the ptp clock structure
496  * @ts: the timespec containing the new time for the cycle counter
497  *
498  * reset the timecounter to use a new base value instead of the kernel
499  * wall timer value.
500  */
501 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
502 			     const struct timespec64 *ts)
503 {
504 	struct ixgbe_adapter *adapter =
505 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
506 	unsigned long flags;
507 	u64 ns = timespec64_to_ns(ts);
508 
509 	/* reset the timecounter */
510 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
511 	timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
512 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
513 
514 	if (adapter->ptp_setup_sdp)
515 		adapter->ptp_setup_sdp(adapter);
516 	return 0;
517 }
518 
519 /**
520  * ixgbe_ptp_feature_enable
521  * @ptp: the ptp clock structure
522  * @rq: the requested feature to change
523  * @on: whether to enable or disable the feature
524  *
525  * enable (or disable) ancillary features of the phc subsystem.
526  * our driver only supports the PPS feature on the X540
527  */
528 static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
529 				    struct ptp_clock_request *rq, int on)
530 {
531 	struct ixgbe_adapter *adapter =
532 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
533 
534 	/**
535 	 * When PPS is enabled, unmask the interrupt for the ClockOut
536 	 * feature, so that the interrupt handler can send the PPS
537 	 * event when the clock SDP triggers. Clear mask when PPS is
538 	 * disabled
539 	 */
540 	if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
541 		return -ENOTSUPP;
542 
543 	if (on)
544 		adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
545 	else
546 		adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
547 
548 	adapter->ptp_setup_sdp(adapter);
549 	return 0;
550 }
551 
552 /**
553  * ixgbe_ptp_check_pps_event
554  * @adapter: the private adapter structure
555  *
556  * This function is called by the interrupt routine when checking for
557  * interrupts. It will check and handle a pps event.
558  */
559 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
560 {
561 	struct ixgbe_hw *hw = &adapter->hw;
562 	struct ptp_clock_event event;
563 
564 	event.type = PTP_CLOCK_PPS;
565 
566 	/* this check is necessary in case the interrupt was enabled via some
567 	 * alternative means (ex. debug_fs). Better to check here than
568 	 * everywhere that calls this function.
569 	 */
570 	if (!adapter->ptp_clock)
571 		return;
572 
573 	switch (hw->mac.type) {
574 	case ixgbe_mac_X540:
575 		ptp_clock_event(adapter->ptp_clock, &event);
576 		break;
577 	default:
578 		break;
579 	}
580 }
581 
582 /**
583  * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
584  * @adapter: private adapter struct
585  *
586  * this watchdog task periodically reads the timecounter
587  * in order to prevent missing when the system time registers wrap
588  * around. This needs to be run approximately twice a minute.
589  */
590 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
591 {
592 	bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
593 					     IXGBE_OVERFLOW_PERIOD);
594 	struct timespec64 ts;
595 
596 	if (timeout) {
597 		ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
598 		adapter->last_overflow_check = jiffies;
599 	}
600 }
601 
602 /**
603  * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
604  * @adapter: private network adapter structure
605  *
606  * this watchdog task is scheduled to detect error case where hardware has
607  * dropped an Rx packet that was timestamped when the ring is full. The
608  * particular error is rare but leaves the device in a state unable to timestamp
609  * any future packets.
610  */
611 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
612 {
613 	struct ixgbe_hw *hw = &adapter->hw;
614 	u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
615 	struct ixgbe_ring *rx_ring;
616 	unsigned long rx_event;
617 	int n;
618 
619 	/* if we don't have a valid timestamp in the registers, just update the
620 	 * timeout counter and exit
621 	 */
622 	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
623 		adapter->last_rx_ptp_check = jiffies;
624 		return;
625 	}
626 
627 	/* determine the most recent watchdog or rx_timestamp event */
628 	rx_event = adapter->last_rx_ptp_check;
629 	for (n = 0; n < adapter->num_rx_queues; n++) {
630 		rx_ring = adapter->rx_ring[n];
631 		if (time_after(rx_ring->last_rx_timestamp, rx_event))
632 			rx_event = rx_ring->last_rx_timestamp;
633 	}
634 
635 	/* only need to read the high RXSTMP register to clear the lock */
636 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
637 		IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
638 		adapter->last_rx_ptp_check = jiffies;
639 
640 		adapter->rx_hwtstamp_cleared++;
641 		e_warn(drv, "clearing RX Timestamp hang\n");
642 	}
643 }
644 
645 /**
646  * ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
647  * @adapter: the private adapter structure
648  *
649  * This function should be called whenever the state related to a Tx timestamp
650  * needs to be cleared. This helps ensure that all related bits are reset for
651  * the next Tx timestamp event.
652  */
653 static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
654 {
655 	struct ixgbe_hw *hw = &adapter->hw;
656 
657 	IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
658 	if (adapter->ptp_tx_skb) {
659 		dev_kfree_skb_any(adapter->ptp_tx_skb);
660 		adapter->ptp_tx_skb = NULL;
661 	}
662 	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
663 }
664 
665 /**
666  * ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes
667  * @adapter: private network adapter structure
668  */
669 void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter)
670 {
671 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
672 					      IXGBE_PTP_TX_TIMEOUT);
673 
674 	if (!adapter->ptp_tx_skb)
675 		return;
676 
677 	if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state))
678 		return;
679 
680 	/* If we haven't received a timestamp within the timeout, it is
681 	 * reasonable to assume that it will never occur, so we can unlock the
682 	 * timestamp bit when this occurs.
683 	 */
684 	if (timeout) {
685 		cancel_work_sync(&adapter->ptp_tx_work);
686 		ixgbe_ptp_clear_tx_timestamp(adapter);
687 		adapter->tx_hwtstamp_timeouts++;
688 		e_warn(drv, "clearing Tx timestamp hang\n");
689 	}
690 }
691 
692 /**
693  * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
694  * @adapter: the private adapter struct
695  *
696  * if the timestamp is valid, we convert it into the timecounter ns
697  * value, then store that result into the shhwtstamps structure which
698  * is passed up the network stack
699  */
700 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
701 {
702 	struct sk_buff *skb = adapter->ptp_tx_skb;
703 	struct ixgbe_hw *hw = &adapter->hw;
704 	struct skb_shared_hwtstamps shhwtstamps;
705 	u64 regval = 0;
706 
707 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
708 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
709 	ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
710 
711 	/* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state
712 	 * bit prior to notifying the stack via skb_tstamp_tx(). This prevents
713 	 * well behaved applications from attempting to timestamp again prior
714 	 * to the lock bit being clear.
715 	 */
716 	adapter->ptp_tx_skb = NULL;
717 	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
718 
719 	/* Notify the stack and then free the skb after we've unlocked */
720 	skb_tstamp_tx(skb, &shhwtstamps);
721 	dev_kfree_skb_any(skb);
722 }
723 
724 /**
725  * ixgbe_ptp_tx_hwtstamp_work
726  * @work: pointer to the work struct
727  *
728  * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
729  * timestamp has been taken for the current skb. It is necessary, because the
730  * descriptor's "done" bit does not correlate with the timestamp event.
731  */
732 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
733 {
734 	struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
735 						     ptp_tx_work);
736 	struct ixgbe_hw *hw = &adapter->hw;
737 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
738 					      IXGBE_PTP_TX_TIMEOUT);
739 	u32 tsynctxctl;
740 
741 	/* we have to have a valid skb to poll for a timestamp */
742 	if (!adapter->ptp_tx_skb) {
743 		ixgbe_ptp_clear_tx_timestamp(adapter);
744 		return;
745 	}
746 
747 	/* stop polling once we have a valid timestamp */
748 	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
749 	if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
750 		ixgbe_ptp_tx_hwtstamp(adapter);
751 		return;
752 	}
753 
754 	if (timeout) {
755 		ixgbe_ptp_clear_tx_timestamp(adapter);
756 		adapter->tx_hwtstamp_timeouts++;
757 		e_warn(drv, "clearing Tx Timestamp hang\n");
758 	} else {
759 		/* reschedule to keep checking if it's not available yet */
760 		schedule_work(&adapter->ptp_tx_work);
761 	}
762 }
763 
764 /**
765  * ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
766  * @q_vector: structure containing interrupt and ring information
767  * @skb: the packet
768  *
769  * This function will be called by the Rx routine of the timestamp for this
770  * packet is stored in the buffer. The value is stored in little endian format
771  * starting at the end of the packet data.
772  */
773 void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
774 			   struct sk_buff *skb)
775 {
776 	__le64 regval;
777 
778 	/* copy the bits out of the skb, and then trim the skb length */
779 	skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, &regval,
780 		      IXGBE_TS_HDR_LEN);
781 	__pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
782 
783 	/* The timestamp is recorded in little endian format, and is stored at
784 	 * the end of the packet.
785 	 *
786 	 * DWORD: N              N + 1      N + 2
787 	 * Field: End of Packet  SYSTIMH    SYSTIML
788 	 */
789 	ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
790 				      le64_to_cpu(regval));
791 }
792 
793 /**
794  * ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
795  * @q_vector: structure containing interrupt and ring information
796  * @skb: particular skb to send timestamp with
797  *
798  * if the timestamp is valid, we convert it into the timecounter ns
799  * value, then store that result into the shhwtstamps structure which
800  * is passed up the network stack
801  */
802 void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
803 			   struct sk_buff *skb)
804 {
805 	struct ixgbe_adapter *adapter;
806 	struct ixgbe_hw *hw;
807 	u64 regval = 0;
808 	u32 tsyncrxctl;
809 
810 	/* we cannot process timestamps on a ring without a q_vector */
811 	if (!q_vector || !q_vector->adapter)
812 		return;
813 
814 	adapter = q_vector->adapter;
815 	hw = &adapter->hw;
816 
817 	/* Read the tsyncrxctl register afterwards in order to prevent taking an
818 	 * I/O hit on every packet.
819 	 */
820 
821 	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
822 	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
823 		return;
824 
825 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
826 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
827 
828 	ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
829 }
830 
831 int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
832 {
833 	struct hwtstamp_config *config = &adapter->tstamp_config;
834 
835 	return copy_to_user(ifr->ifr_data, config,
836 			    sizeof(*config)) ? -EFAULT : 0;
837 }
838 
839 /**
840  * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
841  * @adapter: the private ixgbe adapter structure
842  * @config: the hwtstamp configuration requested
843  *
844  * Outgoing time stamping can be enabled and disabled. Play nice and
845  * disable it when requested, although it shouldn't cause any overhead
846  * when no packet needs it. At most one packet in the queue may be
847  * marked for time stamping, otherwise it would be impossible to tell
848  * for sure to which packet the hardware time stamp belongs.
849  *
850  * Incoming time stamping has to be configured via the hardware
851  * filters. Not all combinations are supported, in particular event
852  * type has to be specified. Matching the kind of event packet is
853  * not supported, with the exception of "all V2 events regardless of
854  * level 2 or 4".
855  *
856  * Since hardware always timestamps Path delay packets when timestamping V2
857  * packets, regardless of the type specified in the register, only use V2
858  * Event mode. This more accurately tells the user what the hardware is going
859  * to do anyways.
860  *
861  * Note: this may modify the hwtstamp configuration towards a more general
862  * mode, if required to support the specifically requested mode.
863  */
864 static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
865 				 struct hwtstamp_config *config)
866 {
867 	struct ixgbe_hw *hw = &adapter->hw;
868 	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
869 	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
870 	u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
871 	bool is_l2 = false;
872 	u32 regval;
873 
874 	/* reserved for future extensions */
875 	if (config->flags)
876 		return -EINVAL;
877 
878 	switch (config->tx_type) {
879 	case HWTSTAMP_TX_OFF:
880 		tsync_tx_ctl = 0;
881 	case HWTSTAMP_TX_ON:
882 		break;
883 	default:
884 		return -ERANGE;
885 	}
886 
887 	switch (config->rx_filter) {
888 	case HWTSTAMP_FILTER_NONE:
889 		tsync_rx_ctl = 0;
890 		tsync_rx_mtrl = 0;
891 		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
892 				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
893 		break;
894 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
895 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
896 		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
897 		adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
898 				   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
899 		break;
900 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
901 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
902 		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
903 		adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
904 				   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
905 		break;
906 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
907 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
908 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
909 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
910 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
911 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
912 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
913 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
914 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
915 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
916 		is_l2 = true;
917 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
918 		adapter->flags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
919 				   IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
920 		break;
921 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
922 	case HWTSTAMP_FILTER_NTP_ALL:
923 	case HWTSTAMP_FILTER_ALL:
924 		/* The X550 controller is capable of timestamping all packets,
925 		 * which allows it to accept any filter.
926 		 */
927 		if (hw->mac.type >= ixgbe_mac_X550) {
928 			tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
929 			config->rx_filter = HWTSTAMP_FILTER_ALL;
930 			adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
931 			break;
932 		}
933 		/* fall through */
934 	default:
935 		/*
936 		 * register RXMTRL must be set in order to do V1 packets,
937 		 * therefore it is not possible to time stamp both V1 Sync and
938 		 * Delay_Req messages and hardware does not support
939 		 * timestamping all packets => return error
940 		 */
941 		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
942 				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
943 		config->rx_filter = HWTSTAMP_FILTER_NONE;
944 		return -ERANGE;
945 	}
946 
947 	if (hw->mac.type == ixgbe_mac_82598EB) {
948 		adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
949 				    IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
950 		if (tsync_rx_ctl | tsync_tx_ctl)
951 			return -ERANGE;
952 		return 0;
953 	}
954 
955 	/* Per-packet timestamping only works if the filter is set to all
956 	 * packets. Since this is desired, always timestamp all packets as long
957 	 * as any Rx filter was configured.
958 	 */
959 	switch (hw->mac.type) {
960 	case ixgbe_mac_X550:
961 	case ixgbe_mac_X550EM_x:
962 	case ixgbe_mac_x550em_a:
963 		/* enable timestamping all packets only if at least some
964 		 * packets were requested. Otherwise, play nice and disable
965 		 * timestamping
966 		 */
967 		if (config->rx_filter == HWTSTAMP_FILTER_NONE)
968 			break;
969 
970 		tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
971 			       IXGBE_TSYNCRXCTL_TYPE_ALL |
972 			       IXGBE_TSYNCRXCTL_TSIP_UT_EN;
973 		config->rx_filter = HWTSTAMP_FILTER_ALL;
974 		adapter->flags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
975 		adapter->flags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
976 		is_l2 = true;
977 		break;
978 	default:
979 		break;
980 	}
981 
982 	/* define ethertype filter for timestamping L2 packets */
983 	if (is_l2)
984 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
985 				(IXGBE_ETQF_FILTER_EN | /* enable filter */
986 				 IXGBE_ETQF_1588 | /* enable timestamping */
987 				 ETH_P_1588));     /* 1588 eth protocol type */
988 	else
989 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
990 
991 	/* enable/disable TX */
992 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
993 	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
994 	regval |= tsync_tx_ctl;
995 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
996 
997 	/* enable/disable RX */
998 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
999 	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
1000 	regval |= tsync_rx_ctl;
1001 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
1002 
1003 	/* define which PTP packets are time stamped */
1004 	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
1005 
1006 	IXGBE_WRITE_FLUSH(hw);
1007 
1008 	/* clear TX/RX time stamp registers, just to be sure */
1009 	ixgbe_ptp_clear_tx_timestamp(adapter);
1010 	IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
1011 
1012 	return 0;
1013 }
1014 
1015 /**
1016  * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
1017  * @adapter: pointer to adapter struct
1018  * @ifreq: ioctl data
1019  *
1020  * Set hardware to requested mode. If unsupported, return an error with no
1021  * changes. Otherwise, store the mode for future reference.
1022  */
1023 int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
1024 {
1025 	struct hwtstamp_config config;
1026 	int err;
1027 
1028 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1029 		return -EFAULT;
1030 
1031 	err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
1032 	if (err)
1033 		return err;
1034 
1035 	/* save these settings for future reference */
1036 	memcpy(&adapter->tstamp_config, &config,
1037 	       sizeof(adapter->tstamp_config));
1038 
1039 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1040 		-EFAULT : 0;
1041 }
1042 
1043 static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
1044 					u32 *shift, u32 *incval)
1045 {
1046 	/**
1047 	 * Scale the NIC cycle counter by a large factor so that
1048 	 * relatively small corrections to the frequency can be added
1049 	 * or subtracted. The drawbacks of a large factor include
1050 	 * (a) the clock register overflows more quickly, (b) the cycle
1051 	 * counter structure must be able to convert the systime value
1052 	 * to nanoseconds using only a multiplier and a right-shift,
1053 	 * and (c) the value must fit within the timinca register space
1054 	 * => math based on internal DMA clock rate and available bits
1055 	 *
1056 	 * Note that when there is no link, internal DMA clock is same as when
1057 	 * link speed is 10Gb. Set the registers correctly even when link is
1058 	 * down to preserve the clock setting
1059 	 */
1060 	switch (adapter->link_speed) {
1061 	case IXGBE_LINK_SPEED_100_FULL:
1062 		*shift = IXGBE_INCVAL_SHIFT_100;
1063 		*incval = IXGBE_INCVAL_100;
1064 		break;
1065 	case IXGBE_LINK_SPEED_1GB_FULL:
1066 		*shift = IXGBE_INCVAL_SHIFT_1GB;
1067 		*incval = IXGBE_INCVAL_1GB;
1068 		break;
1069 	case IXGBE_LINK_SPEED_10GB_FULL:
1070 	default:
1071 		*shift = IXGBE_INCVAL_SHIFT_10GB;
1072 		*incval = IXGBE_INCVAL_10GB;
1073 		break;
1074 	}
1075 }
1076 
1077 /**
1078  * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
1079  * @adapter: pointer to the adapter structure
1080  *
1081  * This function should be called to set the proper values for the TIMINCA
1082  * register and tell the cyclecounter structure what the tick rate of SYSTIME
1083  * is. It does not directly modify SYSTIME registers or the timecounter
1084  * structure. It should be called whenever a new TIMINCA value is necessary,
1085  * such as during initialization or when the link speed changes.
1086  */
1087 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
1088 {
1089 	struct ixgbe_hw *hw = &adapter->hw;
1090 	struct cyclecounter cc;
1091 	unsigned long flags;
1092 	u32 incval = 0;
1093 	u32 tsauxc = 0;
1094 	u32 fuse0 = 0;
1095 
1096 	/* For some of the boards below this mask is technically incorrect.
1097 	 * The timestamp mask overflows at approximately 61bits. However the
1098 	 * particular hardware does not overflow on an even bitmask value.
1099 	 * Instead, it overflows due to conversion of upper 32bits billions of
1100 	 * cycles. Timecounters are not really intended for this purpose so
1101 	 * they do not properly function if the overflow point isn't 2^N-1.
1102 	 * However, the actual SYSTIME values in question take ~138 years to
1103 	 * overflow. In practice this means they won't actually overflow. A
1104 	 * proper fix to this problem would require modification of the
1105 	 * timecounter delta calculations.
1106 	 */
1107 	cc.mask = CLOCKSOURCE_MASK(64);
1108 	cc.mult = 1;
1109 	cc.shift = 0;
1110 
1111 	switch (hw->mac.type) {
1112 	case ixgbe_mac_X550EM_x:
1113 		/* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
1114 		 * designed to represent seconds and nanoseconds when this is
1115 		 * the case. However, some revisions of hardware have a 400Mhz
1116 		 * clock and we have to compensate for this frequency
1117 		 * variation using corrected mult and shift values.
1118 		 */
1119 		fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
1120 		if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
1121 			cc.mult = 3;
1122 			cc.shift = 2;
1123 		}
1124 		/* fallthrough */
1125 	case ixgbe_mac_x550em_a:
1126 	case ixgbe_mac_X550:
1127 		cc.read = ixgbe_ptp_read_X550;
1128 
1129 		/* enable SYSTIME counter */
1130 		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
1131 		IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
1132 		IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
1133 		tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
1134 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
1135 				tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
1136 		IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
1137 		IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
1138 
1139 		IXGBE_WRITE_FLUSH(hw);
1140 		break;
1141 	case ixgbe_mac_X540:
1142 		cc.read = ixgbe_ptp_read_82599;
1143 
1144 		ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1145 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
1146 		break;
1147 	case ixgbe_mac_82599EB:
1148 		cc.read = ixgbe_ptp_read_82599;
1149 
1150 		ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
1151 		incval >>= IXGBE_INCVAL_SHIFT_82599;
1152 		cc.shift -= IXGBE_INCVAL_SHIFT_82599;
1153 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
1154 				BIT(IXGBE_INCPER_SHIFT_82599) | incval);
1155 		break;
1156 	default:
1157 		/* other devices aren't supported */
1158 		return;
1159 	}
1160 
1161 	/* update the base incval used to calculate frequency adjustment */
1162 	WRITE_ONCE(adapter->base_incval, incval);
1163 	smp_mb();
1164 
1165 	/* need lock to prevent incorrect read while modifying cyclecounter */
1166 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1167 	memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
1168 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1169 }
1170 
1171 /**
1172  * ixgbe_ptp_reset
1173  * @adapter: the ixgbe private board structure
1174  *
1175  * When the MAC resets, all the hardware bits for timesync are reset. This
1176  * function is used to re-enable the device for PTP based on current settings.
1177  * We do lose the current clock time, so just reset the cyclecounter to the
1178  * system real clock time.
1179  *
1180  * This function will maintain hwtstamp_config settings, and resets the SDP
1181  * output if it was enabled.
1182  */
1183 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
1184 {
1185 	struct ixgbe_hw *hw = &adapter->hw;
1186 	unsigned long flags;
1187 
1188 	/* reset the hardware timestamping mode */
1189 	ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1190 
1191 	/* 82598 does not support PTP */
1192 	if (hw->mac.type == ixgbe_mac_82598EB)
1193 		return;
1194 
1195 	ixgbe_ptp_start_cyclecounter(adapter);
1196 
1197 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1198 	timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
1199 			 ktime_to_ns(ktime_get_real()));
1200 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1201 
1202 	adapter->last_overflow_check = jiffies;
1203 
1204 	/* Now that the shift has been calculated and the systime
1205 	 * registers reset, (re-)enable the Clock out feature
1206 	 */
1207 	if (adapter->ptp_setup_sdp)
1208 		adapter->ptp_setup_sdp(adapter);
1209 }
1210 
1211 /**
1212  * ixgbe_ptp_create_clock
1213  * @adapter: the ixgbe private adapter structure
1214  *
1215  * This function performs setup of the user entry point function table and
1216  * initializes the PTP clock device, which is used to access the clock-like
1217  * features of the PTP core. It will be called by ixgbe_ptp_init, and may
1218  * reuse a previously initialized clock (such as during a suspend/resume
1219  * cycle).
1220  */
1221 static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
1222 {
1223 	struct net_device *netdev = adapter->netdev;
1224 	long err;
1225 
1226 	/* do nothing if we already have a clock device */
1227 	if (!IS_ERR_OR_NULL(adapter->ptp_clock))
1228 		return 0;
1229 
1230 	switch (adapter->hw.mac.type) {
1231 	case ixgbe_mac_X540:
1232 		snprintf(adapter->ptp_caps.name,
1233 			 sizeof(adapter->ptp_caps.name),
1234 			 "%s", netdev->name);
1235 		adapter->ptp_caps.owner = THIS_MODULE;
1236 		adapter->ptp_caps.max_adj = 250000000;
1237 		adapter->ptp_caps.n_alarm = 0;
1238 		adapter->ptp_caps.n_ext_ts = 0;
1239 		adapter->ptp_caps.n_per_out = 0;
1240 		adapter->ptp_caps.pps = 1;
1241 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1242 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1243 		adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
1244 		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1245 		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1246 		adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_x540;
1247 		break;
1248 	case ixgbe_mac_82599EB:
1249 		snprintf(adapter->ptp_caps.name,
1250 			 sizeof(adapter->ptp_caps.name),
1251 			 "%s", netdev->name);
1252 		adapter->ptp_caps.owner = THIS_MODULE;
1253 		adapter->ptp_caps.max_adj = 250000000;
1254 		adapter->ptp_caps.n_alarm = 0;
1255 		adapter->ptp_caps.n_ext_ts = 0;
1256 		adapter->ptp_caps.n_per_out = 0;
1257 		adapter->ptp_caps.pps = 0;
1258 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_82599;
1259 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1260 		adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
1261 		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1262 		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1263 		break;
1264 	case ixgbe_mac_X550:
1265 	case ixgbe_mac_X550EM_x:
1266 	case ixgbe_mac_x550em_a:
1267 		snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
1268 		adapter->ptp_caps.owner = THIS_MODULE;
1269 		adapter->ptp_caps.max_adj = 30000000;
1270 		adapter->ptp_caps.n_alarm = 0;
1271 		adapter->ptp_caps.n_ext_ts = 0;
1272 		adapter->ptp_caps.n_per_out = 0;
1273 		adapter->ptp_caps.pps = 0;
1274 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq_X550;
1275 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
1276 		adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
1277 		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
1278 		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
1279 		adapter->ptp_setup_sdp = NULL;
1280 		break;
1281 	default:
1282 		adapter->ptp_clock = NULL;
1283 		adapter->ptp_setup_sdp = NULL;
1284 		return -EOPNOTSUPP;
1285 	}
1286 
1287 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1288 						&adapter->pdev->dev);
1289 	if (IS_ERR(adapter->ptp_clock)) {
1290 		err = PTR_ERR(adapter->ptp_clock);
1291 		adapter->ptp_clock = NULL;
1292 		e_dev_err("ptp_clock_register failed\n");
1293 		return err;
1294 	} else if (adapter->ptp_clock)
1295 		e_dev_info("registered PHC device on %s\n", netdev->name);
1296 
1297 	/* set default timestamp mode to disabled here. We do this in
1298 	 * create_clock instead of init, because we don't want to override the
1299 	 * previous settings during a resume cycle.
1300 	 */
1301 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1302 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1303 
1304 	return 0;
1305 }
1306 
1307 /**
1308  * ixgbe_ptp_init
1309  * @adapter: the ixgbe private adapter structure
1310  *
1311  * This function performs the required steps for enabling PTP
1312  * support. If PTP support has already been loaded it simply calls the
1313  * cyclecounter init routine and exits.
1314  */
1315 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
1316 {
1317 	/* initialize the spin lock first since we can't control when a user
1318 	 * will call the entry functions once we have initialized the clock
1319 	 * device
1320 	 */
1321 	spin_lock_init(&adapter->tmreg_lock);
1322 
1323 	/* obtain a PTP device, or re-use an existing device */
1324 	if (ixgbe_ptp_create_clock(adapter))
1325 		return;
1326 
1327 	/* we have a clock so we can initialize work now */
1328 	INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
1329 
1330 	/* reset the PTP related hardware bits */
1331 	ixgbe_ptp_reset(adapter);
1332 
1333 	/* enter the IXGBE_PTP_RUNNING state */
1334 	set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
1335 
1336 	return;
1337 }
1338 
1339 /**
1340  * ixgbe_ptp_suspend - stop PTP work items
1341  * @ adapter: pointer to adapter struct
1342  *
1343  * this function suspends PTP activity, and prevents more PTP work from being
1344  * generated, but does not destroy the PTP clock device.
1345  */
1346 void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
1347 {
1348 	/* Leave the IXGBE_PTP_RUNNING state. */
1349 	if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
1350 		return;
1351 
1352 	adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
1353 	if (adapter->ptp_setup_sdp)
1354 		adapter->ptp_setup_sdp(adapter);
1355 
1356 	/* ensure that we cancel any pending PTP Tx work item in progress */
1357 	cancel_work_sync(&adapter->ptp_tx_work);
1358 	ixgbe_ptp_clear_tx_timestamp(adapter);
1359 }
1360 
1361 /**
1362  * ixgbe_ptp_stop - close the PTP device
1363  * @adapter: pointer to adapter struct
1364  *
1365  * completely destroy the PTP device, should only be called when the device is
1366  * being fully closed.
1367  */
1368 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
1369 {
1370 	/* first, suspend PTP activity */
1371 	ixgbe_ptp_suspend(adapter);
1372 
1373 	/* disable the PTP clock device */
1374 	if (adapter->ptp_clock) {
1375 		ptp_clock_unregister(adapter->ptp_clock);
1376 		adapter->ptp_clock = NULL;
1377 		e_dev_info("removed PHC on %s\n",
1378 			   adapter->netdev->name);
1379 	}
1380 }
1381