1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 #include "ixgbe.h"
28 #include <linux/export.h>
29 #include <linux/ptp_classify.h>
30 
31 /*
32  * The 82599 and the X540 do not have true 64bit nanosecond scale
33  * counter registers. Instead, SYSTIME is defined by a fixed point
34  * system which allows the user to define the scale counter increment
35  * value at every level change of the oscillator driving the SYSTIME
36  * value. For both devices the TIMINCA:IV field defines this
37  * increment. On the X540 device, 31 bits are provided. However on the
38  * 82599 only provides 24 bits. The time unit is determined by the
39  * clock frequency of the oscillator in combination with the TIMINCA
40  * register. When these devices link at 10Gb the oscillator has a
41  * period of 6.4ns. In order to convert the scale counter into
42  * nanoseconds the cyclecounter and timecounter structures are
43  * used. The SYSTIME registers need to be converted to ns values by use
44  * of only a right shift (division by power of 2). The following math
45  * determines the largest incvalue that will fit into the available
46  * bits in the TIMINCA register.
47  *
48  * PeriodWidth: Number of bits to store the clock period
49  * MaxWidth: The maximum width value of the TIMINCA register
50  * Period: The clock period for the oscillator
51  * round(): discard the fractional portion of the calculation
52  *
53  * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
54  *
55  * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
56  * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
57  *
58  * The period also changes based on the link speed:
59  * At 10Gb link or no link, the period remains the same.
60  * At 1Gb link, the period is multiplied by 10. (64ns)
61  * At 100Mb link, the period is multiplied by 100. (640ns)
62  *
63  * The calculated value allows us to right shift the SYSTIME register
64  * value in order to quickly convert it into a nanosecond clock,
65  * while allowing for the maximum possible adjustment value.
66  *
67  * These diagrams are only for the 10Gb link period
68  *
69  *           SYSTIMEH            SYSTIMEL
70  *       +--------------+  +--------------+
71  * X540  |      32      |  | 1 | 3 |  28  |
72  *       *--------------+  +--------------+
73  *        \________ 36 bits ______/  fract
74  *
75  *       +--------------+  +--------------+
76  * 82599 |      32      |  | 8 | 3 |  21  |
77  *       *--------------+  +--------------+
78  *        \________ 43 bits ______/  fract
79  *
80  * The 36 bit X540 SYSTIME overflows every
81  *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
82  *
83  * The 43 bit 82599 SYSTIME overflows every
84  *   2^43 * 10^-9 / 3600 = 2.4 hours
85  */
86 #define IXGBE_INCVAL_10GB 0x66666666
87 #define IXGBE_INCVAL_1GB  0x40000000
88 #define IXGBE_INCVAL_100  0x50000000
89 
90 #define IXGBE_INCVAL_SHIFT_10GB  28
91 #define IXGBE_INCVAL_SHIFT_1GB   24
92 #define IXGBE_INCVAL_SHIFT_100   21
93 
94 #define IXGBE_INCVAL_SHIFT_82599 7
95 #define IXGBE_INCPER_SHIFT_82599 24
96 #define IXGBE_MAX_TIMEADJ_VALUE  0x7FFFFFFFFFFFFFFFULL
97 
98 #define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
99 #define IXGBE_PTP_TX_TIMEOUT     (HZ * 15)
100 
101 #ifndef NSECS_PER_SEC
102 #define NSECS_PER_SEC 1000000000ULL
103 #endif
104 
105 /**
106  * ixgbe_ptp_setup_sdp
107  * @hw: the hardware private structure
108  *
109  * this function enables or disables the clock out feature on SDP0 for
110  * the X540 device. It will create a 1second periodic output that can
111  * be used as the PPS (via an interrupt).
112  *
113  * It calculates when the systime will be on an exact second, and then
114  * aligns the start of the PPS signal to that value. The shift is
115  * necessary because it can change based on the link speed.
116  */
117 static void ixgbe_ptp_setup_sdp(struct ixgbe_adapter *adapter)
118 {
119 	struct ixgbe_hw *hw = &adapter->hw;
120 	int shift = adapter->cc.shift;
121 	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
122 	u64 ns = 0, clock_edge = 0;
123 
124 	if ((adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED) &&
125 	    (hw->mac.type == ixgbe_mac_X540)) {
126 
127 		/* disable the pin first */
128 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
129 		IXGBE_WRITE_FLUSH(hw);
130 
131 		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
132 
133 		/*
134 		 * enable the SDP0 pin as output, and connected to the
135 		 * native function for Timesync (ClockOut)
136 		 */
137 		esdp |= (IXGBE_ESDP_SDP0_DIR |
138 			 IXGBE_ESDP_SDP0_NATIVE);
139 
140 		/*
141 		 * enable the Clock Out feature on SDP0, and allow
142 		 * interrupts to occur when the pin changes
143 		 */
144 		tsauxc = (IXGBE_TSAUXC_EN_CLK |
145 			  IXGBE_TSAUXC_SYNCLK |
146 			  IXGBE_TSAUXC_SDP0_INT);
147 
148 		/* clock period (or pulse length) */
149 		clktiml = (u32)(NSECS_PER_SEC << shift);
150 		clktimh = (u32)((NSECS_PER_SEC << shift) >> 32);
151 
152 		/*
153 		 * Account for the cyclecounter wrap-around value by
154 		 * using the converted ns value of the current time to
155 		 * check for when the next aligned second would occur.
156 		 */
157 		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
158 		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
159 		ns = timecounter_cyc2time(&adapter->tc, clock_edge);
160 
161 		div_u64_rem(ns, NSECS_PER_SEC, &rem);
162 		clock_edge += ((NSECS_PER_SEC - (u64)rem) << shift);
163 
164 		/* specify the initial clock start time */
165 		trgttiml = (u32)clock_edge;
166 		trgttimh = (u32)(clock_edge >> 32);
167 
168 		IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
169 		IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
170 		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
171 		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
172 
173 		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
174 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
175 	} else {
176 		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
177 	}
178 
179 	IXGBE_WRITE_FLUSH(hw);
180 }
181 
182 /**
183  * ixgbe_ptp_read - read raw cycle counter (to be used by time counter)
184  * @cc: the cyclecounter structure
185  *
186  * this function reads the cyclecounter registers and is called by the
187  * cyclecounter structure used to construct a ns counter from the
188  * arbitrary fixed point registers
189  */
190 static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
191 {
192 	struct ixgbe_adapter *adapter =
193 		container_of(cc, struct ixgbe_adapter, cc);
194 	struct ixgbe_hw *hw = &adapter->hw;
195 	u64 stamp = 0;
196 
197 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
198 	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
199 
200 	return stamp;
201 }
202 
203 /**
204  * ixgbe_ptp_adjfreq
205  * @ptp: the ptp clock structure
206  * @ppb: parts per billion adjustment from base
207  *
208  * adjust the frequency of the ptp cycle counter by the
209  * indicated ppb from the base frequency.
210  */
211 static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
212 {
213 	struct ixgbe_adapter *adapter =
214 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
215 	struct ixgbe_hw *hw = &adapter->hw;
216 	u64 freq;
217 	u32 diff, incval;
218 	int neg_adj = 0;
219 
220 	if (ppb < 0) {
221 		neg_adj = 1;
222 		ppb = -ppb;
223 	}
224 
225 	smp_mb();
226 	incval = ACCESS_ONCE(adapter->base_incval);
227 
228 	freq = incval;
229 	freq *= ppb;
230 	diff = div_u64(freq, 1000000000ULL);
231 
232 	incval = neg_adj ? (incval - diff) : (incval + diff);
233 
234 	switch (hw->mac.type) {
235 	case ixgbe_mac_X540:
236 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
237 		break;
238 	case ixgbe_mac_82599EB:
239 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
240 				(1 << IXGBE_INCPER_SHIFT_82599) |
241 				incval);
242 		break;
243 	default:
244 		break;
245 	}
246 
247 	return 0;
248 }
249 
250 /**
251  * ixgbe_ptp_adjtime
252  * @ptp: the ptp clock structure
253  * @delta: offset to adjust the cycle counter by
254  *
255  * adjust the timer by resetting the timecounter structure.
256  */
257 static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
258 {
259 	struct ixgbe_adapter *adapter =
260 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
261 	unsigned long flags;
262 	u64 now;
263 
264 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
265 
266 	now = timecounter_read(&adapter->tc);
267 	now += delta;
268 
269 	/* reset the timecounter */
270 	timecounter_init(&adapter->tc,
271 			 &adapter->cc,
272 			 now);
273 
274 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
275 
276 	ixgbe_ptp_setup_sdp(adapter);
277 
278 	return 0;
279 }
280 
281 /**
282  * ixgbe_ptp_gettime
283  * @ptp: the ptp clock structure
284  * @ts: timespec structure to hold the current time value
285  *
286  * read the timecounter and return the correct value on ns,
287  * after converting it into a struct timespec.
288  */
289 static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec *ts)
290 {
291 	struct ixgbe_adapter *adapter =
292 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
293 	u64 ns;
294 	u32 remainder;
295 	unsigned long flags;
296 
297 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
298 	ns = timecounter_read(&adapter->tc);
299 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
300 
301 	ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
302 	ts->tv_nsec = remainder;
303 
304 	return 0;
305 }
306 
307 /**
308  * ixgbe_ptp_settime
309  * @ptp: the ptp clock structure
310  * @ts: the timespec containing the new time for the cycle counter
311  *
312  * reset the timecounter to use a new base value instead of the kernel
313  * wall timer value.
314  */
315 static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
316 			     const struct timespec *ts)
317 {
318 	struct ixgbe_adapter *adapter =
319 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
320 	u64 ns;
321 	unsigned long flags;
322 
323 	ns = ts->tv_sec * 1000000000ULL;
324 	ns += ts->tv_nsec;
325 
326 	/* reset the timecounter */
327 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
328 	timecounter_init(&adapter->tc, &adapter->cc, ns);
329 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
330 
331 	ixgbe_ptp_setup_sdp(adapter);
332 	return 0;
333 }
334 
335 /**
336  * ixgbe_ptp_enable
337  * @ptp: the ptp clock structure
338  * @rq: the requested feature to change
339  * @on: whether to enable or disable the feature
340  *
341  * enable (or disable) ancillary features of the phc subsystem.
342  * our driver only supports the PPS feature on the X540
343  */
344 static int ixgbe_ptp_enable(struct ptp_clock_info *ptp,
345 			    struct ptp_clock_request *rq, int on)
346 {
347 	struct ixgbe_adapter *adapter =
348 		container_of(ptp, struct ixgbe_adapter, ptp_caps);
349 
350 	/**
351 	 * When PPS is enabled, unmask the interrupt for the ClockOut
352 	 * feature, so that the interrupt handler can send the PPS
353 	 * event when the clock SDP triggers. Clear mask when PPS is
354 	 * disabled
355 	 */
356 	if (rq->type == PTP_CLK_REQ_PPS) {
357 		switch (adapter->hw.mac.type) {
358 		case ixgbe_mac_X540:
359 			if (on)
360 				adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
361 			else
362 				adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
363 
364 			ixgbe_ptp_setup_sdp(adapter);
365 			return 0;
366 		default:
367 			break;
368 		}
369 	}
370 
371 	return -ENOTSUPP;
372 }
373 
374 /**
375  * ixgbe_ptp_check_pps_event
376  * @adapter: the private adapter structure
377  * @eicr: the interrupt cause register value
378  *
379  * This function is called by the interrupt routine when checking for
380  * interrupts. It will check and handle a pps event.
381  */
382 void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr)
383 {
384 	struct ixgbe_hw *hw = &adapter->hw;
385 	struct ptp_clock_event event;
386 
387 	event.type = PTP_CLOCK_PPS;
388 
389 	/* this check is necessary in case the interrupt was enabled via some
390 	 * alternative means (ex. debug_fs). Better to check here than
391 	 * everywhere that calls this function.
392 	 */
393 	if (!adapter->ptp_clock)
394 		return;
395 
396 	switch (hw->mac.type) {
397 	case ixgbe_mac_X540:
398 		ptp_clock_event(adapter->ptp_clock, &event);
399 		break;
400 	default:
401 		break;
402 	}
403 }
404 
405 /**
406  * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
407  * @adapter: private adapter struct
408  *
409  * this watchdog task periodically reads the timecounter
410  * in order to prevent missing when the system time registers wrap
411  * around. This needs to be run approximately twice a minute.
412  */
413 void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
414 {
415 	bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
416 					     IXGBE_OVERFLOW_PERIOD);
417 	struct timespec ts;
418 
419 	if (timeout) {
420 		ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
421 		adapter->last_overflow_check = jiffies;
422 	}
423 }
424 
425 /**
426  * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
427  * @adapter: private network adapter structure
428  *
429  * this watchdog task is scheduled to detect error case where hardware has
430  * dropped an Rx packet that was timestamped when the ring is full. The
431  * particular error is rare but leaves the device in a state unable to timestamp
432  * any future packets.
433  */
434 void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
435 {
436 	struct ixgbe_hw *hw = &adapter->hw;
437 	struct ixgbe_ring *rx_ring;
438 	u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
439 	unsigned long rx_event;
440 	int n;
441 
442 	/* if we don't have a valid timestamp in the registers, just update the
443 	 * timeout counter and exit
444 	 */
445 	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
446 		adapter->last_rx_ptp_check = jiffies;
447 		return;
448 	}
449 
450 	/* determine the most recent watchdog or rx_timestamp event */
451 	rx_event = adapter->last_rx_ptp_check;
452 	for (n = 0; n < adapter->num_rx_queues; n++) {
453 		rx_ring = adapter->rx_ring[n];
454 		if (time_after(rx_ring->last_rx_timestamp, rx_event))
455 			rx_event = rx_ring->last_rx_timestamp;
456 	}
457 
458 	/* only need to read the high RXSTMP register to clear the lock */
459 	if (time_is_before_jiffies(rx_event + 5*HZ)) {
460 		IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
461 		adapter->last_rx_ptp_check = jiffies;
462 
463 		e_warn(drv, "clearing RX Timestamp hang");
464 	}
465 }
466 
467 /**
468  * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
469  * @adapter: the private adapter struct
470  *
471  * if the timestamp is valid, we convert it into the timecounter ns
472  * value, then store that result into the shhwtstamps structure which
473  * is passed up the network stack
474  */
475 static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
476 {
477 	struct ixgbe_hw *hw = &adapter->hw;
478 	struct skb_shared_hwtstamps shhwtstamps;
479 	u64 regval = 0, ns;
480 	unsigned long flags;
481 
482 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
483 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
484 
485 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
486 	ns = timecounter_cyc2time(&adapter->tc, regval);
487 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
488 
489 	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
490 	shhwtstamps.hwtstamp = ns_to_ktime(ns);
491 	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
492 
493 	dev_kfree_skb_any(adapter->ptp_tx_skb);
494 	adapter->ptp_tx_skb = NULL;
495 }
496 
497 /**
498  * ixgbe_ptp_tx_hwtstamp_work
499  * @work: pointer to the work struct
500  *
501  * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
502  * timestamp has been taken for the current skb. It is necesary, because the
503  * descriptor's "done" bit does not correlate with the timestamp event.
504  */
505 static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
506 {
507 	struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
508 						     ptp_tx_work);
509 	struct ixgbe_hw *hw = &adapter->hw;
510 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
511 					      IXGBE_PTP_TX_TIMEOUT);
512 	u32 tsynctxctl;
513 
514 	/* we have to have a valid skb */
515 	if (!adapter->ptp_tx_skb)
516 		return;
517 
518 	if (timeout) {
519 		dev_kfree_skb_any(adapter->ptp_tx_skb);
520 		adapter->ptp_tx_skb = NULL;
521 		e_warn(drv, "clearing Tx Timestamp hang");
522 		return;
523 	}
524 
525 	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
526 	if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID)
527 		ixgbe_ptp_tx_hwtstamp(adapter);
528 	else
529 		/* reschedule to keep checking if it's not available yet */
530 		schedule_work(&adapter->ptp_tx_work);
531 }
532 
533 /**
534  * __ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp
535  * @q_vector: structure containing interrupt and ring information
536  * @skb: particular skb to send timestamp with
537  *
538  * if the timestamp is valid, we convert it into the timecounter ns
539  * value, then store that result into the shhwtstamps structure which
540  * is passed up the network stack
541  */
542 void __ixgbe_ptp_rx_hwtstamp(struct ixgbe_q_vector *q_vector,
543 			     struct sk_buff *skb)
544 {
545 	struct ixgbe_adapter *adapter;
546 	struct ixgbe_hw *hw;
547 	struct skb_shared_hwtstamps *shhwtstamps;
548 	u64 regval = 0, ns;
549 	u32 tsyncrxctl;
550 	unsigned long flags;
551 
552 	/* we cannot process timestamps on a ring without a q_vector */
553 	if (!q_vector || !q_vector->adapter)
554 		return;
555 
556 	adapter = q_vector->adapter;
557 	hw = &adapter->hw;
558 
559 	/*
560 	 * Read the tsyncrxctl register afterwards in order to prevent taking an
561 	 * I/O hit on every packet.
562 	 */
563 	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
564 	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
565 		return;
566 
567 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
568 	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
569 
570 
571 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
572 	ns = timecounter_cyc2time(&adapter->tc, regval);
573 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
574 
575 	shhwtstamps = skb_hwtstamps(skb);
576 	shhwtstamps->hwtstamp = ns_to_ktime(ns);
577 }
578 
579 /**
580  * ixgbe_ptp_hwtstamp_ioctl - control hardware time stamping
581  * @adapter: pointer to adapter struct
582  * @ifreq: ioctl data
583  * @cmd: particular ioctl requested
584  *
585  * Outgoing time stamping can be enabled and disabled. Play nice and
586  * disable it when requested, although it shouldn't case any overhead
587  * when no packet needs it. At most one packet in the queue may be
588  * marked for time stamping, otherwise it would be impossible to tell
589  * for sure to which packet the hardware time stamp belongs.
590  *
591  * Incoming time stamping has to be configured via the hardware
592  * filters. Not all combinations are supported, in particular event
593  * type has to be specified. Matching the kind of event packet is
594  * not supported, with the exception of "all V2 events regardless of
595  * level 2 or 4".
596  *
597  * Since hardware always timestamps Path delay packets when timestamping V2
598  * packets, regardless of the type specified in the register, only use V2
599  * Event mode. This more accurately tells the user what the hardware is going
600  * to do anyways.
601  */
602 int ixgbe_ptp_hwtstamp_ioctl(struct ixgbe_adapter *adapter,
603 			     struct ifreq *ifr, int cmd)
604 {
605 	struct ixgbe_hw *hw = &adapter->hw;
606 	struct hwtstamp_config config;
607 	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
608 	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
609 	u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
610 	bool is_l2 = false;
611 	u32 regval;
612 
613 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
614 		return -EFAULT;
615 
616 	/* reserved for future extensions */
617 	if (config.flags)
618 		return -EINVAL;
619 
620 	switch (config.tx_type) {
621 	case HWTSTAMP_TX_OFF:
622 		tsync_tx_ctl = 0;
623 	case HWTSTAMP_TX_ON:
624 		break;
625 	default:
626 		return -ERANGE;
627 	}
628 
629 	switch (config.rx_filter) {
630 	case HWTSTAMP_FILTER_NONE:
631 		tsync_rx_ctl = 0;
632 		tsync_rx_mtrl = 0;
633 		break;
634 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
635 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
636 		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
637 		break;
638 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
639 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
640 		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
641 		break;
642 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
643 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
644 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
645 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
646 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
647 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
648 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
649 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
650 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
651 		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
652 		is_l2 = true;
653 		config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
654 		break;
655 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
656 	case HWTSTAMP_FILTER_ALL:
657 	default:
658 		/*
659 		 * register RXMTRL must be set in order to do V1 packets,
660 		 * therefore it is not possible to time stamp both V1 Sync and
661 		 * Delay_Req messages and hardware does not support
662 		 * timestamping all packets => return error
663 		 */
664 		config.rx_filter = HWTSTAMP_FILTER_NONE;
665 		return -ERANGE;
666 	}
667 
668 	if (hw->mac.type == ixgbe_mac_82598EB) {
669 		if (tsync_rx_ctl | tsync_tx_ctl)
670 			return -ERANGE;
671 		return 0;
672 	}
673 
674 	/* define ethertype filter for timestamping L2 packets */
675 	if (is_l2)
676 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
677 				(IXGBE_ETQF_FILTER_EN | /* enable filter */
678 				 IXGBE_ETQF_1588 | /* enable timestamping */
679 				 ETH_P_1588));     /* 1588 eth protocol type */
680 	else
681 		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
682 
683 
684 	/* enable/disable TX */
685 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
686 	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
687 	regval |= tsync_tx_ctl;
688 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
689 
690 	/* enable/disable RX */
691 	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
692 	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
693 	regval |= tsync_rx_ctl;
694 	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
695 
696 	/* define which PTP packets are time stamped */
697 	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
698 
699 	IXGBE_WRITE_FLUSH(hw);
700 
701 	/* clear TX/RX time stamp registers, just to be sure */
702 	regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
703 	regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
704 
705 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
706 		-EFAULT : 0;
707 }
708 
709 /**
710  * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
711  * @adapter: pointer to the adapter structure
712  *
713  * This function should be called to set the proper values for the TIMINCA
714  * register and tell the cyclecounter structure what the tick rate of SYSTIME
715  * is. It does not directly modify SYSTIME registers or the timecounter
716  * structure. It should be called whenever a new TIMINCA value is necessary,
717  * such as during initialization or when the link speed changes.
718  */
719 void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
720 {
721 	struct ixgbe_hw *hw = &adapter->hw;
722 	u32 incval = 0;
723 	u32 shift = 0;
724 	unsigned long flags;
725 
726 	/**
727 	 * Scale the NIC cycle counter by a large factor so that
728 	 * relatively small corrections to the frequency can be added
729 	 * or subtracted. The drawbacks of a large factor include
730 	 * (a) the clock register overflows more quickly, (b) the cycle
731 	 * counter structure must be able to convert the systime value
732 	 * to nanoseconds using only a multiplier and a right-shift,
733 	 * and (c) the value must fit within the timinca register space
734 	 * => math based on internal DMA clock rate and available bits
735 	 *
736 	 * Note that when there is no link, internal DMA clock is same as when
737 	 * link speed is 10Gb. Set the registers correctly even when link is
738 	 * down to preserve the clock setting
739 	 */
740 	switch (adapter->link_speed) {
741 	case IXGBE_LINK_SPEED_100_FULL:
742 		incval = IXGBE_INCVAL_100;
743 		shift = IXGBE_INCVAL_SHIFT_100;
744 		break;
745 	case IXGBE_LINK_SPEED_1GB_FULL:
746 		incval = IXGBE_INCVAL_1GB;
747 		shift = IXGBE_INCVAL_SHIFT_1GB;
748 		break;
749 	case IXGBE_LINK_SPEED_10GB_FULL:
750 	default:
751 		incval = IXGBE_INCVAL_10GB;
752 		shift = IXGBE_INCVAL_SHIFT_10GB;
753 		break;
754 	}
755 
756 	/**
757 	 * Modify the calculated values to fit within the correct
758 	 * number of bits specified by the hardware. The 82599 doesn't
759 	 * have the same space as the X540, so bitshift the calculated
760 	 * values to fit.
761 	 */
762 	switch (hw->mac.type) {
763 	case ixgbe_mac_X540:
764 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
765 		break;
766 	case ixgbe_mac_82599EB:
767 		incval >>= IXGBE_INCVAL_SHIFT_82599;
768 		shift -= IXGBE_INCVAL_SHIFT_82599;
769 		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
770 				(1 << IXGBE_INCPER_SHIFT_82599) |
771 				incval);
772 		break;
773 	default:
774 		/* other devices aren't supported */
775 		return;
776 	}
777 
778 	/* update the base incval used to calculate frequency adjustment */
779 	ACCESS_ONCE(adapter->base_incval) = incval;
780 	smp_mb();
781 
782 	/* need lock to prevent incorrect read while modifying cyclecounter */
783 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
784 
785 	memset(&adapter->cc, 0, sizeof(adapter->cc));
786 	adapter->cc.read = ixgbe_ptp_read;
787 	adapter->cc.mask = CLOCKSOURCE_MASK(64);
788 	adapter->cc.shift = shift;
789 	adapter->cc.mult = 1;
790 
791 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
792 }
793 
794 /**
795  * ixgbe_ptp_reset
796  * @adapter: the ixgbe private board structure
797  *
798  * When the MAC resets, all timesync features are reset. This function should be
799  * called to re-enable the PTP clock structure. It will re-init the timecounter
800  * structure based on the kernel time as well as setup the cycle counter data.
801  */
802 void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
803 {
804 	struct ixgbe_hw *hw = &adapter->hw;
805 	unsigned long flags;
806 
807 	/* set SYSTIME registers to 0 just in case */
808 	IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000);
809 	IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000);
810 	IXGBE_WRITE_FLUSH(hw);
811 
812 	ixgbe_ptp_start_cyclecounter(adapter);
813 
814 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
815 
816 	/* reset the ns time counter */
817 	timecounter_init(&adapter->tc, &adapter->cc,
818 			 ktime_to_ns(ktime_get_real()));
819 
820 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
821 
822 	/*
823 	 * Now that the shift has been calculated and the systime
824 	 * registers reset, (re-)enable the Clock out feature
825 	 */
826 	ixgbe_ptp_setup_sdp(adapter);
827 }
828 
829 /**
830  * ixgbe_ptp_init
831  * @adapter: the ixgbe private adapter structure
832  *
833  * This function performs the required steps for enabling ptp
834  * support. If ptp support has already been loaded it simply calls the
835  * cyclecounter init routine and exits.
836  */
837 void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
838 {
839 	struct net_device *netdev = adapter->netdev;
840 
841 	switch (adapter->hw.mac.type) {
842 	case ixgbe_mac_X540:
843 		snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
844 		adapter->ptp_caps.owner = THIS_MODULE;
845 		adapter->ptp_caps.max_adj = 250000000;
846 		adapter->ptp_caps.n_alarm = 0;
847 		adapter->ptp_caps.n_ext_ts = 0;
848 		adapter->ptp_caps.n_per_out = 0;
849 		adapter->ptp_caps.pps = 1;
850 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
851 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
852 		adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
853 		adapter->ptp_caps.settime = ixgbe_ptp_settime;
854 		adapter->ptp_caps.enable = ixgbe_ptp_enable;
855 		break;
856 	case ixgbe_mac_82599EB:
857 		snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
858 		adapter->ptp_caps.owner = THIS_MODULE;
859 		adapter->ptp_caps.max_adj = 250000000;
860 		adapter->ptp_caps.n_alarm = 0;
861 		adapter->ptp_caps.n_ext_ts = 0;
862 		adapter->ptp_caps.n_per_out = 0;
863 		adapter->ptp_caps.pps = 0;
864 		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
865 		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
866 		adapter->ptp_caps.gettime = ixgbe_ptp_gettime;
867 		adapter->ptp_caps.settime = ixgbe_ptp_settime;
868 		adapter->ptp_caps.enable = ixgbe_ptp_enable;
869 		break;
870 	default:
871 		adapter->ptp_clock = NULL;
872 		return;
873 	}
874 
875 	spin_lock_init(&adapter->tmreg_lock);
876 	INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
877 
878 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
879 						&adapter->pdev->dev);
880 	if (IS_ERR(adapter->ptp_clock)) {
881 		adapter->ptp_clock = NULL;
882 		e_dev_err("ptp_clock_register failed\n");
883 	} else
884 		e_dev_info("registered PHC device on %s\n", netdev->name);
885 
886 	ixgbe_ptp_reset(adapter);
887 
888 	/* enter the IXGBE_PTP_RUNNING state */
889 	set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
890 
891 	return;
892 }
893 
894 /**
895  * ixgbe_ptp_stop - disable ptp device and stop the overflow check
896  * @adapter: pointer to adapter struct
897  *
898  * this function stops the ptp support, and cancels the delayed work.
899  */
900 void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
901 {
902 	/* Leave the IXGBE_PTP_RUNNING state. */
903 	if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
904 		return;
905 
906 	/* stop the PPS signal */
907 	adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
908 	ixgbe_ptp_setup_sdp(adapter);
909 
910 	cancel_work_sync(&adapter->ptp_tx_work);
911 	if (adapter->ptp_tx_skb) {
912 		dev_kfree_skb_any(adapter->ptp_tx_skb);
913 		adapter->ptp_tx_skb = NULL;
914 	}
915 
916 	if (adapter->ptp_clock) {
917 		ptp_clock_unregister(adapter->ptp_clock);
918 		adapter->ptp_clock = NULL;
919 		e_dev_info("removed PHC on %s\n",
920 			   adapter->netdev->name);
921 	}
922 }
923