1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #include <linux/pci.h>
5 #include <linux/delay.h>
6 #include <linux/iopoll.h>
7 #include <linux/sched.h>
8 
9 #include "ixgbe.h"
10 #include "ixgbe_phy.h"
11 
12 static void ixgbe_i2c_start(struct ixgbe_hw *hw);
13 static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
14 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
15 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
16 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
17 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
18 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
19 static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
20 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
21 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
22 static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
23 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
24 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
25 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
26 static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
27 
28 /**
29  *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
30  *  @hw: pointer to the hardware structure
31  *  @byte: byte to send
32  *
33  *  Returns an error code on error.
34  **/
35 static s32 ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
36 {
37 	s32 status;
38 
39 	status = ixgbe_clock_out_i2c_byte(hw, byte);
40 	if (status)
41 		return status;
42 	return ixgbe_get_i2c_ack(hw);
43 }
44 
45 /**
46  *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
47  *  @hw: pointer to the hardware structure
48  *  @byte: pointer to a u8 to receive the byte
49  *
50  *  Returns an error code on error.
51  **/
52 static s32 ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
53 {
54 	s32 status;
55 
56 	status = ixgbe_clock_in_i2c_byte(hw, byte);
57 	if (status)
58 		return status;
59 	/* ACK */
60 	return ixgbe_clock_out_i2c_bit(hw, false);
61 }
62 
63 /**
64  *  ixgbe_ones_comp_byte_add - Perform one's complement addition
65  *  @add1: addend 1
66  *  @add2: addend 2
67  *
68  *  Returns one's complement 8-bit sum.
69  **/
70 static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
71 {
72 	u16 sum = add1 + add2;
73 
74 	sum = (sum & 0xFF) + (sum >> 8);
75 	return sum & 0xFF;
76 }
77 
78 /**
79  *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
80  *  @hw: pointer to the hardware structure
81  *  @addr: I2C bus address to read from
82  *  @reg: I2C device register to read from
83  *  @val: pointer to location to receive read value
84  *  @lock: true if to take and release semaphore
85  *
86  *  Returns an error code on error.
87  */
88 s32 ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
89 					u16 reg, u16 *val, bool lock)
90 {
91 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
92 	int max_retry = 3;
93 	int retry = 0;
94 	u8 csum_byte;
95 	u8 high_bits;
96 	u8 low_bits;
97 	u8 reg_high;
98 	u8 csum;
99 
100 	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
101 	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
102 	csum = ~csum;
103 	do {
104 		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
105 			return -EBUSY;
106 		ixgbe_i2c_start(hw);
107 		/* Device Address and write indication */
108 		if (ixgbe_out_i2c_byte_ack(hw, addr))
109 			goto fail;
110 		/* Write bits 14:8 */
111 		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
112 			goto fail;
113 		/* Write bits 7:0 */
114 		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
115 			goto fail;
116 		/* Write csum */
117 		if (ixgbe_out_i2c_byte_ack(hw, csum))
118 			goto fail;
119 		/* Re-start condition */
120 		ixgbe_i2c_start(hw);
121 		/* Device Address and read indication */
122 		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
123 			goto fail;
124 		/* Get upper bits */
125 		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
126 			goto fail;
127 		/* Get low bits */
128 		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
129 			goto fail;
130 		/* Get csum */
131 		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
132 			goto fail;
133 		/* NACK */
134 		if (ixgbe_clock_out_i2c_bit(hw, false))
135 			goto fail;
136 		ixgbe_i2c_stop(hw);
137 		if (lock)
138 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
139 		*val = (high_bits << 8) | low_bits;
140 		return 0;
141 
142 fail:
143 		ixgbe_i2c_bus_clear(hw);
144 		if (lock)
145 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
146 		retry++;
147 		if (retry < max_retry)
148 			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
149 		else
150 			hw_dbg(hw, "I2C byte read combined error.\n");
151 	} while (retry < max_retry);
152 
153 	return -EIO;
154 }
155 
156 /**
157  *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
158  *  @hw: pointer to the hardware structure
159  *  @addr: I2C bus address to write to
160  *  @reg: I2C device register to write to
161  *  @val: value to write
162  *  @lock: true if to take and release semaphore
163  *
164  *  Returns an error code on error.
165  */
166 s32 ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
167 					 u16 reg, u16 val, bool lock)
168 {
169 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
170 	int max_retry = 1;
171 	int retry = 0;
172 	u8 reg_high;
173 	u8 csum;
174 
175 	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
176 	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
177 	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
178 	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
179 	csum = ~csum;
180 	do {
181 		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
182 			return -EBUSY;
183 		ixgbe_i2c_start(hw);
184 		/* Device Address and write indication */
185 		if (ixgbe_out_i2c_byte_ack(hw, addr))
186 			goto fail;
187 		/* Write bits 14:8 */
188 		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
189 			goto fail;
190 		/* Write bits 7:0 */
191 		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
192 			goto fail;
193 		/* Write data 15:8 */
194 		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
195 			goto fail;
196 		/* Write data 7:0 */
197 		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
198 			goto fail;
199 		/* Write csum */
200 		if (ixgbe_out_i2c_byte_ack(hw, csum))
201 			goto fail;
202 		ixgbe_i2c_stop(hw);
203 		if (lock)
204 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
205 		return 0;
206 
207 fail:
208 		ixgbe_i2c_bus_clear(hw);
209 		if (lock)
210 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
211 		retry++;
212 		if (retry < max_retry)
213 			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
214 		else
215 			hw_dbg(hw, "I2C byte write combined error.\n");
216 	} while (retry < max_retry);
217 
218 	return -EIO;
219 }
220 
221 /**
222  *  ixgbe_probe_phy - Probe a single address for a PHY
223  *  @hw: pointer to hardware structure
224  *  @phy_addr: PHY address to probe
225  *
226  *  Returns true if PHY found
227  **/
228 static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
229 {
230 	u16 ext_ability = 0;
231 
232 	hw->phy.mdio.prtad = phy_addr;
233 	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
234 		return false;
235 
236 	if (ixgbe_get_phy_id(hw))
237 		return false;
238 
239 	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
240 
241 	if (hw->phy.type == ixgbe_phy_unknown) {
242 		hw->phy.ops.read_reg(hw,
243 				     MDIO_PMA_EXTABLE,
244 				     MDIO_MMD_PMAPMD,
245 				     &ext_ability);
246 		if (ext_ability &
247 		    (MDIO_PMA_EXTABLE_10GBT |
248 		     MDIO_PMA_EXTABLE_1000BT))
249 			hw->phy.type = ixgbe_phy_cu_unknown;
250 		else
251 			hw->phy.type = ixgbe_phy_generic;
252 	}
253 
254 	return true;
255 }
256 
257 /**
258  *  ixgbe_identify_phy_generic - Get physical layer module
259  *  @hw: pointer to hardware structure
260  *
261  *  Determines the physical layer module found on the current adapter.
262  **/
263 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
264 {
265 	u32 status = -EFAULT;
266 	u32 phy_addr;
267 
268 	if (!hw->phy.phy_semaphore_mask) {
269 		if (hw->bus.lan_id)
270 			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
271 		else
272 			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
273 	}
274 
275 	if (hw->phy.type != ixgbe_phy_unknown)
276 		return 0;
277 
278 	if (hw->phy.nw_mng_if_sel) {
279 		phy_addr = FIELD_GET(IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD,
280 				     hw->phy.nw_mng_if_sel);
281 		if (ixgbe_probe_phy(hw, phy_addr))
282 			return 0;
283 		else
284 			return -EFAULT;
285 	}
286 
287 	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
288 		if (ixgbe_probe_phy(hw, phy_addr)) {
289 			status = 0;
290 			break;
291 		}
292 	}
293 
294 	/* Certain media types do not have a phy so an address will not
295 	 * be found and the code will take this path.  Caller has to
296 	 * decide if it is an error or not.
297 	 */
298 	if (status)
299 		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
300 
301 	return status;
302 }
303 
304 /**
305  * ixgbe_check_reset_blocked - check status of MNG FW veto bit
306  * @hw: pointer to the hardware structure
307  *
308  * This function checks the MMNGC.MNG_VETO bit to see if there are
309  * any constraints on link from manageability.  For MAC's that don't
310  * have this bit just return false since the link can not be blocked
311  * via this method.
312  **/
313 bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
314 {
315 	u32 mmngc;
316 
317 	/* If we don't have this bit, it can't be blocking */
318 	if (hw->mac.type == ixgbe_mac_82598EB)
319 		return false;
320 
321 	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
322 	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
323 		hw_dbg(hw, "MNG_VETO bit detected.\n");
324 		return true;
325 	}
326 
327 	return false;
328 }
329 
330 /**
331  *  ixgbe_get_phy_id - Get the phy type
332  *  @hw: pointer to hardware structure
333  *
334  **/
335 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
336 {
337 	s32 status;
338 	u16 phy_id_high = 0;
339 	u16 phy_id_low = 0;
340 
341 	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
342 				      &phy_id_high);
343 
344 	if (!status) {
345 		hw->phy.id = (u32)(phy_id_high << 16);
346 		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
347 					      &phy_id_low);
348 		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
349 		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
350 	}
351 	return status;
352 }
353 
354 /**
355  *  ixgbe_get_phy_type_from_id - Get the phy type
356  *  @phy_id: hardware phy id
357  *
358  **/
359 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
360 {
361 	enum ixgbe_phy_type phy_type;
362 
363 	switch (phy_id) {
364 	case TN1010_PHY_ID:
365 		phy_type = ixgbe_phy_tn;
366 		break;
367 	case X550_PHY_ID2:
368 	case X550_PHY_ID3:
369 	case X540_PHY_ID:
370 		phy_type = ixgbe_phy_aq;
371 		break;
372 	case QT2022_PHY_ID:
373 		phy_type = ixgbe_phy_qt;
374 		break;
375 	case ATH_PHY_ID:
376 		phy_type = ixgbe_phy_nl;
377 		break;
378 	case X557_PHY_ID:
379 	case X557_PHY_ID2:
380 		phy_type = ixgbe_phy_x550em_ext_t;
381 		break;
382 	case BCM54616S_E_PHY_ID:
383 		phy_type = ixgbe_phy_ext_1g_t;
384 		break;
385 	default:
386 		phy_type = ixgbe_phy_unknown;
387 		break;
388 	}
389 
390 	return phy_type;
391 }
392 
393 /**
394  *  ixgbe_reset_phy_generic - Performs a PHY reset
395  *  @hw: pointer to hardware structure
396  **/
397 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
398 {
399 	u32 i;
400 	u16 ctrl = 0;
401 	s32 status = 0;
402 
403 	if (hw->phy.type == ixgbe_phy_unknown)
404 		status = ixgbe_identify_phy_generic(hw);
405 
406 	if (status != 0 || hw->phy.type == ixgbe_phy_none)
407 		return status;
408 
409 	/* Don't reset PHY if it's shut down due to overtemp. */
410 	if (!hw->phy.reset_if_overtemp && hw->phy.ops.check_overtemp(hw))
411 		return 0;
412 
413 	/* Blocked by MNG FW so bail */
414 	if (ixgbe_check_reset_blocked(hw))
415 		return 0;
416 
417 	/*
418 	 * Perform soft PHY reset to the PHY_XS.
419 	 * This will cause a soft reset to the PHY
420 	 */
421 	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
422 			      MDIO_MMD_PHYXS,
423 			      MDIO_CTRL1_RESET);
424 
425 	/*
426 	 * Poll for reset bit to self-clear indicating reset is complete.
427 	 * Some PHYs could take up to 3 seconds to complete and need about
428 	 * 1.7 usec delay after the reset is complete.
429 	 */
430 	for (i = 0; i < 30; i++) {
431 		msleep(100);
432 		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
433 			status = hw->phy.ops.read_reg(hw,
434 						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
435 						  MDIO_MMD_PMAPMD, &ctrl);
436 			if (status)
437 				return status;
438 
439 			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
440 				udelay(2);
441 				break;
442 			}
443 		} else {
444 			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
445 						      MDIO_MMD_PHYXS, &ctrl);
446 			if (status)
447 				return status;
448 
449 			if (!(ctrl & MDIO_CTRL1_RESET)) {
450 				udelay(2);
451 				break;
452 			}
453 		}
454 	}
455 
456 	if (ctrl & MDIO_CTRL1_RESET) {
457 		hw_dbg(hw, "PHY reset polling failed to complete.\n");
458 		return -EIO;
459 	}
460 
461 	return 0;
462 }
463 
464 /**
465  *  ixgbe_read_phy_reg_mdi - read PHY register
466  *  @hw: pointer to hardware structure
467  *  @reg_addr: 32 bit address of PHY register to read
468  *  @device_type: 5 bit device type
469  *  @phy_data: Pointer to read data from PHY register
470  *
471  *  Reads a value from a specified PHY register without the SWFW lock
472  **/
473 s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
474 		       u16 *phy_data)
475 {
476 	u32 i, data, command;
477 
478 	/* Setup and write the address cycle command */
479 	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
480 		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
481 		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
482 		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
483 
484 	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
485 
486 	/* Check every 10 usec to see if the address cycle completed.
487 	 * The MDI Command bit will clear when the operation is
488 	 * complete
489 	 */
490 	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
491 		udelay(10);
492 
493 		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
494 		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
495 				break;
496 	}
497 
498 
499 	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
500 		hw_dbg(hw, "PHY address command did not complete.\n");
501 		return -EIO;
502 	}
503 
504 	/* Address cycle complete, setup and write the read
505 	 * command
506 	 */
507 	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
508 		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
509 		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
510 		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
511 
512 	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
513 
514 	/* Check every 10 usec to see if the address cycle
515 	 * completed. The MDI Command bit will clear when the
516 	 * operation is complete
517 	 */
518 	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
519 		udelay(10);
520 
521 		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
522 		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
523 			break;
524 	}
525 
526 	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
527 		hw_dbg(hw, "PHY read command didn't complete\n");
528 		return -EIO;
529 	}
530 
531 	/* Read operation is complete.  Get the data
532 	 * from MSRWD
533 	 */
534 	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
535 	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
536 	*phy_data = (u16)(data);
537 
538 	return 0;
539 }
540 
541 /**
542  *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
543  *  using the SWFW lock - this function is needed in most cases
544  *  @hw: pointer to hardware structure
545  *  @reg_addr: 32 bit address of PHY register to read
546  *  @device_type: 5 bit device type
547  *  @phy_data: Pointer to read data from PHY register
548  **/
549 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
550 			       u32 device_type, u16 *phy_data)
551 {
552 	s32 status;
553 	u32 gssr = hw->phy.phy_semaphore_mask;
554 
555 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
556 		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
557 						phy_data);
558 		hw->mac.ops.release_swfw_sync(hw, gssr);
559 	} else {
560 		return -EBUSY;
561 	}
562 
563 	return status;
564 }
565 
566 /**
567  *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
568  *  without SWFW lock
569  *  @hw: pointer to hardware structure
570  *  @reg_addr: 32 bit PHY register to write
571  *  @device_type: 5 bit device type
572  *  @phy_data: Data to write to the PHY register
573  **/
574 s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr,
575 				u32 device_type, u16 phy_data)
576 {
577 	u32 i, command;
578 
579 	/* Put the data in the MDI single read and write data register*/
580 	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
581 
582 	/* Setup and write the address cycle command */
583 	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
584 		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
585 		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
586 		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
587 
588 	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
589 
590 	/*
591 	 * Check every 10 usec to see if the address cycle completed.
592 	 * The MDI Command bit will clear when the operation is
593 	 * complete
594 	 */
595 	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
596 		udelay(10);
597 
598 		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
599 		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
600 			break;
601 	}
602 
603 	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
604 		hw_dbg(hw, "PHY address cmd didn't complete\n");
605 		return -EIO;
606 	}
607 
608 	/*
609 	 * Address cycle complete, setup and write the write
610 	 * command
611 	 */
612 	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
613 		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
614 		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
615 		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
616 
617 	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
618 
619 	/* Check every 10 usec to see if the address cycle
620 	 * completed. The MDI Command bit will clear when the
621 	 * operation is complete
622 	 */
623 	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
624 		udelay(10);
625 
626 		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
627 		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
628 			break;
629 	}
630 
631 	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
632 		hw_dbg(hw, "PHY write cmd didn't complete\n");
633 		return -EIO;
634 	}
635 
636 	return 0;
637 }
638 
639 /**
640  *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
641  *  using SWFW lock- this function is needed in most cases
642  *  @hw: pointer to hardware structure
643  *  @reg_addr: 32 bit PHY register to write
644  *  @device_type: 5 bit device type
645  *  @phy_data: Data to write to the PHY register
646  **/
647 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
648 				u32 device_type, u16 phy_data)
649 {
650 	s32 status;
651 	u32 gssr = hw->phy.phy_semaphore_mask;
652 
653 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
654 		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
655 						 phy_data);
656 		hw->mac.ops.release_swfw_sync(hw, gssr);
657 	} else {
658 		return -EBUSY;
659 	}
660 
661 	return status;
662 }
663 
664 #define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
665 
666 /**
667  *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
668  *  @hw: pointer to hardware structure
669  *  @cmd: command register value to write
670  **/
671 static s32 ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
672 {
673 	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
674 
675 	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
676 				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
677 				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
678 }
679 
680 /**
681  *  ixgbe_mii_bus_read_generic_c22 - Read a clause 22 register with gssr flags
682  *  @hw: pointer to hardware structure
683  *  @addr: address
684  *  @regnum: register number
685  *  @gssr: semaphore flags to acquire
686  **/
687 static s32 ixgbe_mii_bus_read_generic_c22(struct ixgbe_hw *hw, int addr,
688 					  int regnum, u32 gssr)
689 {
690 	u32 hwaddr, cmd;
691 	s32 data;
692 
693 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
694 		return -EBUSY;
695 
696 	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
697 	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
698 	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
699 		IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
700 
701 	data = ixgbe_msca_cmd(hw, cmd);
702 	if (data < 0)
703 		goto mii_bus_read_done;
704 
705 	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
706 	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
707 
708 mii_bus_read_done:
709 	hw->mac.ops.release_swfw_sync(hw, gssr);
710 	return data;
711 }
712 
713 /**
714  *  ixgbe_mii_bus_read_generic_c45 - Read a clause 45 register with gssr flags
715  *  @hw: pointer to hardware structure
716  *  @addr: address
717  *  @devad: device address to read
718  *  @regnum: register number
719  *  @gssr: semaphore flags to acquire
720  **/
721 static s32 ixgbe_mii_bus_read_generic_c45(struct ixgbe_hw *hw, int addr,
722 					  int devad, int regnum, u32 gssr)
723 {
724 	u32 hwaddr, cmd;
725 	s32 data;
726 
727 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
728 		return -EBUSY;
729 
730 	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
731 	hwaddr |= devad << 16 | regnum;
732 	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
733 
734 	data = ixgbe_msca_cmd(hw, cmd);
735 	if (data < 0)
736 		goto mii_bus_read_done;
737 
738 	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
739 	data = ixgbe_msca_cmd(hw, cmd);
740 	if (data < 0)
741 		goto mii_bus_read_done;
742 
743 	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
744 	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
745 
746 mii_bus_read_done:
747 	hw->mac.ops.release_swfw_sync(hw, gssr);
748 	return data;
749 }
750 
751 /**
752  *  ixgbe_mii_bus_write_generic_c22 - Write a clause 22 register with gssr flags
753  *  @hw: pointer to hardware structure
754  *  @addr: address
755  *  @regnum: register number
756  *  @val: value to write
757  *  @gssr: semaphore flags to acquire
758  **/
759 static s32 ixgbe_mii_bus_write_generic_c22(struct ixgbe_hw *hw, int addr,
760 					   int regnum, u16 val, u32 gssr)
761 {
762 	u32 hwaddr, cmd;
763 	s32 err;
764 
765 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
766 		return -EBUSY;
767 
768 	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
769 
770 	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
771 	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
772 	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
773 		IXGBE_MSCA_MDI_COMMAND;
774 
775 	err = ixgbe_msca_cmd(hw, cmd);
776 
777 	hw->mac.ops.release_swfw_sync(hw, gssr);
778 	return err;
779 }
780 
781 /**
782  *  ixgbe_mii_bus_write_generic_c45 - Write a clause 45 register with gssr flags
783  *  @hw: pointer to hardware structure
784  *  @addr: address
785  *  @devad: device address to read
786  *  @regnum: register number
787  *  @val: value to write
788  *  @gssr: semaphore flags to acquire
789  **/
790 static s32 ixgbe_mii_bus_write_generic_c45(struct ixgbe_hw *hw, int addr,
791 					   int devad, int regnum, u16 val,
792 					   u32 gssr)
793 {
794 	u32 hwaddr, cmd;
795 	s32 err;
796 
797 	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
798 		return -EBUSY;
799 
800 	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
801 
802 	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
803 	hwaddr |= devad << 16 | regnum;
804 	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
805 
806 	err = ixgbe_msca_cmd(hw, cmd);
807 	if (err < 0)
808 		goto mii_bus_write_done;
809 
810 	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
811 	err = ixgbe_msca_cmd(hw, cmd);
812 
813 mii_bus_write_done:
814 	hw->mac.ops.release_swfw_sync(hw, gssr);
815 	return err;
816 }
817 
818 /**
819  *  ixgbe_mii_bus_read_c22 - Read a clause 22 register
820  *  @bus: pointer to mii_bus structure which points to our driver private
821  *  @addr: address
822  *  @regnum: register number
823  **/
824 static s32 ixgbe_mii_bus_read_c22(struct mii_bus *bus, int addr, int regnum)
825 {
826 	struct ixgbe_adapter *adapter = bus->priv;
827 	struct ixgbe_hw *hw = &adapter->hw;
828 	u32 gssr = hw->phy.phy_semaphore_mask;
829 
830 	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
831 }
832 
833 /**
834  *  ixgbe_mii_bus_read_c45 - Read a clause 45 register
835  *  @bus: pointer to mii_bus structure which points to our driver private
836  *  @devad: device address to read
837  *  @addr: address
838  *  @regnum: register number
839  **/
840 static s32 ixgbe_mii_bus_read_c45(struct mii_bus *bus, int devad, int addr,
841 				  int regnum)
842 {
843 	struct ixgbe_adapter *adapter = bus->priv;
844 	struct ixgbe_hw *hw = &adapter->hw;
845 	u32 gssr = hw->phy.phy_semaphore_mask;
846 
847 	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
848 }
849 
850 /**
851  *  ixgbe_mii_bus_write_c22 - Write a clause 22 register
852  *  @bus: pointer to mii_bus structure which points to our driver private
853  *  @addr: address
854  *  @regnum: register number
855  *  @val: value to write
856  **/
857 static s32 ixgbe_mii_bus_write_c22(struct mii_bus *bus, int addr, int regnum,
858 				   u16 val)
859 {
860 	struct ixgbe_adapter *adapter = bus->priv;
861 	struct ixgbe_hw *hw = &adapter->hw;
862 	u32 gssr = hw->phy.phy_semaphore_mask;
863 
864 	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
865 }
866 
867 /**
868  *  ixgbe_mii_bus_write_c45 - Write a clause 45 register
869  *  @bus: pointer to mii_bus structure which points to our driver private
870  *  @addr: address
871  *  @devad: device address to read
872  *  @regnum: register number
873  *  @val: value to write
874  **/
875 static s32 ixgbe_mii_bus_write_c45(struct mii_bus *bus, int addr, int devad,
876 				   int regnum, u16 val)
877 {
878 	struct ixgbe_adapter *adapter = bus->priv;
879 	struct ixgbe_hw *hw = &adapter->hw;
880 	u32 gssr = hw->phy.phy_semaphore_mask;
881 
882 	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
883 					       gssr);
884 }
885 
886 /**
887  *  ixgbe_x550em_a_mii_bus_read_c22 - Read a clause 22 register on x550em_a
888  *  @bus: pointer to mii_bus structure which points to our driver private
889  *  @addr: address
890  *  @regnum: register number
891  **/
892 static s32 ixgbe_x550em_a_mii_bus_read_c22(struct mii_bus *bus, int addr,
893 					   int regnum)
894 {
895 	struct ixgbe_adapter *adapter = bus->priv;
896 	struct ixgbe_hw *hw = &adapter->hw;
897 	u32 gssr = hw->phy.phy_semaphore_mask;
898 
899 	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
900 	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
901 }
902 
903 /**
904  *  ixgbe_x550em_a_mii_bus_read_c45 - Read a clause 45 register on x550em_a
905  *  @bus: pointer to mii_bus structure which points to our driver private
906  *  @addr: address
907  *  @devad: device address to read
908  *  @regnum: register number
909  **/
910 static s32 ixgbe_x550em_a_mii_bus_read_c45(struct mii_bus *bus, int addr,
911 					   int devad, int regnum)
912 {
913 	struct ixgbe_adapter *adapter = bus->priv;
914 	struct ixgbe_hw *hw = &adapter->hw;
915 	u32 gssr = hw->phy.phy_semaphore_mask;
916 
917 	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
918 	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
919 }
920 
921 /**
922  *  ixgbe_x550em_a_mii_bus_write_c22 - Write a clause 22 register on x550em_a
923  *  @bus: pointer to mii_bus structure which points to our driver private
924  *  @addr: address
925  *  @regnum: register number
926  *  @val: value to write
927  **/
928 static s32 ixgbe_x550em_a_mii_bus_write_c22(struct mii_bus *bus, int addr,
929 					    int regnum, u16 val)
930 {
931 	struct ixgbe_adapter *adapter = bus->priv;
932 	struct ixgbe_hw *hw = &adapter->hw;
933 	u32 gssr = hw->phy.phy_semaphore_mask;
934 
935 	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
936 	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
937 }
938 
939 /**
940  *  ixgbe_x550em_a_mii_bus_write_c45 - Write a clause 45 register on x550em_a
941  *  @bus: pointer to mii_bus structure which points to our driver private
942  *  @addr: address
943  *  @devad: device address to read
944  *  @regnum: register number
945  *  @val: value to write
946  **/
947 static s32 ixgbe_x550em_a_mii_bus_write_c45(struct mii_bus *bus, int addr,
948 					    int devad, int regnum, u16 val)
949 {
950 	struct ixgbe_adapter *adapter = bus->priv;
951 	struct ixgbe_hw *hw = &adapter->hw;
952 	u32 gssr = hw->phy.phy_semaphore_mask;
953 
954 	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
955 	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
956 					       gssr);
957 }
958 
959 /**
960  * ixgbe_get_first_secondary_devfn - get first device downstream of root port
961  * @devfn: PCI_DEVFN of root port on domain 0, bus 0
962  *
963  * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
964  * on domain 0, bus 0, devfn = 'devfn'
965  **/
966 static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
967 {
968 	struct pci_dev *rp_pdev;
969 	int bus;
970 
971 	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
972 	if (rp_pdev && rp_pdev->subordinate) {
973 		bus = rp_pdev->subordinate->number;
974 		pci_dev_put(rp_pdev);
975 		return pci_get_domain_bus_and_slot(0, bus, 0);
976 	}
977 
978 	pci_dev_put(rp_pdev);
979 	return NULL;
980 }
981 
982 /**
983  * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
984  * @hw: pointer to hardware structure
985  *
986  * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
987  * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
988  * but we only want to register one MDIO bus.
989  **/
990 static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
991 {
992 	struct ixgbe_adapter *adapter = hw->back;
993 	struct pci_dev *pdev = adapter->pdev;
994 	struct pci_dev *func0_pdev;
995 	bool has_mii = false;
996 
997 	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
998 	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
999 	 * It's not valid for function 0 to be disabled and function 1 is up,
1000 	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
1001 	 * of those two root ports
1002 	 */
1003 	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
1004 	if (func0_pdev) {
1005 		if (func0_pdev == pdev)
1006 			has_mii = true;
1007 		goto out;
1008 	}
1009 	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
1010 	if (func0_pdev == pdev)
1011 		has_mii = true;
1012 
1013 out:
1014 	pci_dev_put(func0_pdev);
1015 	return has_mii;
1016 }
1017 
1018 /**
1019  * ixgbe_mii_bus_init - mii_bus structure setup
1020  * @hw: pointer to hardware structure
1021  *
1022  * Returns 0 on success, negative on failure
1023  *
1024  * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
1025  **/
1026 s32 ixgbe_mii_bus_init(struct ixgbe_hw *hw)
1027 {
1028 	s32 (*write_c22)(struct mii_bus *bus, int addr, int regnum, u16 val);
1029 	s32 (*read_c22)(struct mii_bus *bus, int addr, int regnum);
1030 	s32 (*write_c45)(struct mii_bus *bus, int addr, int devad, int regnum,
1031 			 u16 val);
1032 	s32 (*read_c45)(struct mii_bus *bus, int addr, int devad, int regnum);
1033 	struct ixgbe_adapter *adapter = hw->back;
1034 	struct pci_dev *pdev = adapter->pdev;
1035 	struct device *dev = &adapter->netdev->dev;
1036 	struct mii_bus *bus;
1037 
1038 	switch (hw->device_id) {
1039 	/* C3000 SoCs */
1040 	case IXGBE_DEV_ID_X550EM_A_KR:
1041 	case IXGBE_DEV_ID_X550EM_A_KR_L:
1042 	case IXGBE_DEV_ID_X550EM_A_SFP_N:
1043 	case IXGBE_DEV_ID_X550EM_A_SGMII:
1044 	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
1045 	case IXGBE_DEV_ID_X550EM_A_10G_T:
1046 	case IXGBE_DEV_ID_X550EM_A_SFP:
1047 	case IXGBE_DEV_ID_X550EM_A_1G_T:
1048 	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
1049 		if (!ixgbe_x550em_a_has_mii(hw))
1050 			return 0;
1051 		read_c22 = ixgbe_x550em_a_mii_bus_read_c22;
1052 		write_c22 = ixgbe_x550em_a_mii_bus_write_c22;
1053 		read_c45 = ixgbe_x550em_a_mii_bus_read_c45;
1054 		write_c45 = ixgbe_x550em_a_mii_bus_write_c45;
1055 		break;
1056 	default:
1057 		read_c22 = ixgbe_mii_bus_read_c22;
1058 		write_c22 = ixgbe_mii_bus_write_c22;
1059 		read_c45 = ixgbe_mii_bus_read_c45;
1060 		write_c45 = ixgbe_mii_bus_write_c45;
1061 		break;
1062 	}
1063 
1064 	bus = devm_mdiobus_alloc(dev);
1065 	if (!bus)
1066 		return -ENOMEM;
1067 
1068 	bus->read = read_c22;
1069 	bus->write = write_c22;
1070 	bus->read_c45 = read_c45;
1071 	bus->write_c45 = write_c45;
1072 
1073 	/* Use the position of the device in the PCI hierarchy as the id */
1074 	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
1075 		 pci_name(pdev));
1076 
1077 	bus->name = "ixgbe-mdio";
1078 	bus->priv = adapter;
1079 	bus->parent = dev;
1080 	bus->phy_mask = GENMASK(31, 0);
1081 
1082 	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
1083 	 * unfortunately that causes some clause 22 frames to be sent with
1084 	 * clause 45 addressing.  We don't want that.
1085 	 */
1086 	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
1087 
1088 	adapter->mii_bus = bus;
1089 	return mdiobus_register(bus);
1090 }
1091 
1092 /**
1093  *  ixgbe_setup_phy_link_generic - Set and restart autoneg
1094  *  @hw: pointer to hardware structure
1095  *
1096  *  Restart autonegotiation and PHY and waits for completion.
1097  **/
1098 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
1099 {
1100 	s32 status = 0;
1101 	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1102 	bool autoneg = false;
1103 	ixgbe_link_speed speed;
1104 
1105 	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1106 
1107 	/* Set or unset auto-negotiation 10G advertisement */
1108 	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
1109 
1110 	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1111 	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
1112 	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
1113 		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1114 
1115 	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
1116 
1117 	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1118 			     MDIO_MMD_AN, &autoneg_reg);
1119 
1120 	if (hw->mac.type == ixgbe_mac_X550) {
1121 		/* Set or unset auto-negotiation 5G advertisement */
1122 		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
1123 		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
1124 		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
1125 			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
1126 
1127 		/* Set or unset auto-negotiation 2.5G advertisement */
1128 		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
1129 		if ((hw->phy.autoneg_advertised &
1130 		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
1131 		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
1132 			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
1133 	}
1134 
1135 	/* Set or unset auto-negotiation 1G advertisement */
1136 	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
1137 	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1138 	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1139 		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1140 
1141 	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1142 			      MDIO_MMD_AN, autoneg_reg);
1143 
1144 	/* Set or unset auto-negotiation 100M advertisement */
1145 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
1146 
1147 	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1148 	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1149 	    (speed & IXGBE_LINK_SPEED_100_FULL))
1150 		autoneg_reg |= ADVERTISE_100FULL;
1151 
1152 	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
1153 
1154 	/* Blocked by MNG FW so don't reset PHY */
1155 	if (ixgbe_check_reset_blocked(hw))
1156 		return 0;
1157 
1158 	/* Restart PHY autonegotiation and wait for completion */
1159 	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1160 			     MDIO_MMD_AN, &autoneg_reg);
1161 
1162 	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1163 
1164 	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1165 			      MDIO_MMD_AN, autoneg_reg);
1166 
1167 	return status;
1168 }
1169 
1170 /**
1171  *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1172  *  @hw: pointer to hardware structure
1173  *  @speed: new link speed
1174  *  @autoneg_wait_to_complete: unused
1175  **/
1176 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1177 				       ixgbe_link_speed speed,
1178 				       bool autoneg_wait_to_complete)
1179 {
1180 	/* Clear autoneg_advertised and set new values based on input link
1181 	 * speed.
1182 	 */
1183 	hw->phy.autoneg_advertised = 0;
1184 
1185 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1186 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1187 
1188 	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1189 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1190 
1191 	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1192 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1193 
1194 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1195 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1196 
1197 	if (speed & IXGBE_LINK_SPEED_100_FULL)
1198 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1199 
1200 	if (speed & IXGBE_LINK_SPEED_10_FULL)
1201 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1202 
1203 	/* Setup link based on the new speed settings */
1204 	if (hw->phy.ops.setup_link)
1205 		hw->phy.ops.setup_link(hw);
1206 
1207 	return 0;
1208 }
1209 
1210 /**
1211  * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1212  * @hw: pointer to hardware structure
1213  *
1214  * Determines the supported link capabilities by reading the PHY auto
1215  * negotiation register.
1216  */
1217 static s32 ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
1218 {
1219 	u16 speed_ability;
1220 	s32 status;
1221 
1222 	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1223 				      &speed_ability);
1224 	if (status)
1225 		return status;
1226 
1227 	if (speed_ability & MDIO_SPEED_10G)
1228 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1229 	if (speed_ability & MDIO_PMA_SPEED_1000)
1230 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1231 	if (speed_ability & MDIO_PMA_SPEED_100)
1232 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1233 
1234 	switch (hw->mac.type) {
1235 	case ixgbe_mac_X550:
1236 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1237 		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1238 		break;
1239 	case ixgbe_mac_X550EM_x:
1240 	case ixgbe_mac_x550em_a:
1241 		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1242 		break;
1243 	default:
1244 		break;
1245 	}
1246 
1247 	return 0;
1248 }
1249 
1250 /**
1251  * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1252  * @hw: pointer to hardware structure
1253  * @speed: pointer to link speed
1254  * @autoneg: boolean auto-negotiation value
1255  */
1256 s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1257 					       ixgbe_link_speed *speed,
1258 					       bool *autoneg)
1259 {
1260 	s32 status = 0;
1261 
1262 	*autoneg = true;
1263 	if (!hw->phy.speeds_supported)
1264 		status = ixgbe_get_copper_speeds_supported(hw);
1265 
1266 	*speed = hw->phy.speeds_supported;
1267 	return status;
1268 }
1269 
1270 /**
1271  *  ixgbe_check_phy_link_tnx - Determine link and speed status
1272  *  @hw: pointer to hardware structure
1273  *  @speed: link speed
1274  *  @link_up: status of link
1275  *
1276  *  Reads the VS1 register to determine if link is up and the current speed for
1277  *  the PHY.
1278  **/
1279 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1280 			     bool *link_up)
1281 {
1282 	s32 status;
1283 	u32 time_out;
1284 	u32 max_time_out = 10;
1285 	u16 phy_link = 0;
1286 	u16 phy_speed = 0;
1287 	u16 phy_data = 0;
1288 
1289 	/* Initialize speed and link to default case */
1290 	*link_up = false;
1291 	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1292 
1293 	/*
1294 	 * Check current speed and link status of the PHY register.
1295 	 * This is a vendor specific register and may have to
1296 	 * be changed for other copper PHYs.
1297 	 */
1298 	for (time_out = 0; time_out < max_time_out; time_out++) {
1299 		udelay(10);
1300 		status = hw->phy.ops.read_reg(hw,
1301 					      MDIO_STAT1,
1302 					      MDIO_MMD_VEND1,
1303 					      &phy_data);
1304 		phy_link = phy_data &
1305 			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1306 		phy_speed = phy_data &
1307 			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1308 		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1309 			*link_up = true;
1310 			if (phy_speed ==
1311 			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1312 				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1313 			break;
1314 		}
1315 	}
1316 
1317 	return status;
1318 }
1319 
1320 /**
1321  *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1322  *	@hw: pointer to hardware structure
1323  *
1324  *	Restart autonegotiation and PHY and waits for completion.
1325  *      This function always returns success, this is nessary since
1326  *	it is called via a function pointer that could call other
1327  *	functions that could return an error.
1328  **/
1329 s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1330 {
1331 	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1332 	bool autoneg = false;
1333 	ixgbe_link_speed speed;
1334 
1335 	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1336 
1337 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1338 		/* Set or unset auto-negotiation 10G advertisement */
1339 		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1340 				     MDIO_MMD_AN,
1341 				     &autoneg_reg);
1342 
1343 		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1344 		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1345 			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1346 
1347 		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1348 				      MDIO_MMD_AN,
1349 				      autoneg_reg);
1350 	}
1351 
1352 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1353 		/* Set or unset auto-negotiation 1G advertisement */
1354 		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1355 				     MDIO_MMD_AN,
1356 				     &autoneg_reg);
1357 
1358 		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1359 		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1360 			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1361 
1362 		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1363 				      MDIO_MMD_AN,
1364 				      autoneg_reg);
1365 	}
1366 
1367 	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1368 		/* Set or unset auto-negotiation 100M advertisement */
1369 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1370 				     MDIO_MMD_AN,
1371 				     &autoneg_reg);
1372 
1373 		autoneg_reg &= ~(ADVERTISE_100FULL |
1374 				 ADVERTISE_100HALF);
1375 		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1376 			autoneg_reg |= ADVERTISE_100FULL;
1377 
1378 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1379 				      MDIO_MMD_AN,
1380 				      autoneg_reg);
1381 	}
1382 
1383 	/* Blocked by MNG FW so don't reset PHY */
1384 	if (ixgbe_check_reset_blocked(hw))
1385 		return 0;
1386 
1387 	/* Restart PHY autonegotiation and wait for completion */
1388 	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1389 			     MDIO_MMD_AN, &autoneg_reg);
1390 
1391 	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1392 
1393 	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1394 			      MDIO_MMD_AN, autoneg_reg);
1395 	return 0;
1396 }
1397 
1398 /**
1399  *  ixgbe_reset_phy_nl - Performs a PHY reset
1400  *  @hw: pointer to hardware structure
1401  **/
1402 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1403 {
1404 	u16 phy_offset, control, eword, edata, block_crc;
1405 	bool end_data = false;
1406 	u16 list_offset, data_offset;
1407 	u16 phy_data = 0;
1408 	s32 ret_val;
1409 	u32 i;
1410 
1411 	/* Blocked by MNG FW so bail */
1412 	if (ixgbe_check_reset_blocked(hw))
1413 		return 0;
1414 
1415 	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1416 
1417 	/* reset the PHY and poll for completion */
1418 	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1419 			      (phy_data | MDIO_CTRL1_RESET));
1420 
1421 	for (i = 0; i < 100; i++) {
1422 		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1423 				     &phy_data);
1424 		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1425 			break;
1426 		usleep_range(10000, 20000);
1427 	}
1428 
1429 	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1430 		hw_dbg(hw, "PHY reset did not complete.\n");
1431 		return -EIO;
1432 	}
1433 
1434 	/* Get init offsets */
1435 	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1436 						      &data_offset);
1437 	if (ret_val)
1438 		return ret_val;
1439 
1440 	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1441 	data_offset++;
1442 	while (!end_data) {
1443 		/*
1444 		 * Read control word from PHY init contents offset
1445 		 */
1446 		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1447 		if (ret_val)
1448 			goto err_eeprom;
1449 		control = FIELD_GET(IXGBE_CONTROL_MASK_NL, eword);
1450 		edata = eword & IXGBE_DATA_MASK_NL;
1451 		switch (control) {
1452 		case IXGBE_DELAY_NL:
1453 			data_offset++;
1454 			hw_dbg(hw, "DELAY: %d MS\n", edata);
1455 			usleep_range(edata * 1000, edata * 2000);
1456 			break;
1457 		case IXGBE_DATA_NL:
1458 			hw_dbg(hw, "DATA:\n");
1459 			data_offset++;
1460 			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1461 						      &phy_offset);
1462 			if (ret_val)
1463 				goto err_eeprom;
1464 			for (i = 0; i < edata; i++) {
1465 				ret_val = hw->eeprom.ops.read(hw, data_offset,
1466 							      &eword);
1467 				if (ret_val)
1468 					goto err_eeprom;
1469 				hw->phy.ops.write_reg(hw, phy_offset,
1470 						      MDIO_MMD_PMAPMD, eword);
1471 				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1472 				       phy_offset);
1473 				data_offset++;
1474 				phy_offset++;
1475 			}
1476 			break;
1477 		case IXGBE_CONTROL_NL:
1478 			data_offset++;
1479 			hw_dbg(hw, "CONTROL:\n");
1480 			if (edata == IXGBE_CONTROL_EOL_NL) {
1481 				hw_dbg(hw, "EOL\n");
1482 				end_data = true;
1483 			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1484 				hw_dbg(hw, "SOL\n");
1485 			} else {
1486 				hw_dbg(hw, "Bad control value\n");
1487 				return -EIO;
1488 			}
1489 			break;
1490 		default:
1491 			hw_dbg(hw, "Bad control type\n");
1492 			return -EIO;
1493 		}
1494 	}
1495 
1496 	return ret_val;
1497 
1498 err_eeprom:
1499 	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1500 	return -EIO;
1501 }
1502 
1503 /**
1504  *  ixgbe_identify_module_generic - Identifies module type
1505  *  @hw: pointer to hardware structure
1506  *
1507  *  Determines HW type and calls appropriate function.
1508  **/
1509 s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1510 {
1511 	switch (hw->mac.ops.get_media_type(hw)) {
1512 	case ixgbe_media_type_fiber:
1513 		return ixgbe_identify_sfp_module_generic(hw);
1514 	case ixgbe_media_type_fiber_qsfp:
1515 		return ixgbe_identify_qsfp_module_generic(hw);
1516 	default:
1517 		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1518 		return -ENOENT;
1519 	}
1520 
1521 	return -ENOENT;
1522 }
1523 
1524 /**
1525  *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1526  *  @hw: pointer to hardware structure
1527  *
1528  *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1529  **/
1530 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1531 {
1532 	struct ixgbe_adapter *adapter = hw->back;
1533 	s32 status;
1534 	u32 vendor_oui = 0;
1535 	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1536 	u8 identifier = 0;
1537 	u8 comp_codes_1g = 0;
1538 	u8 comp_codes_10g = 0;
1539 	u8 oui_bytes[3] = {0, 0, 0};
1540 	u8 cable_tech = 0;
1541 	u8 cable_spec = 0;
1542 	u16 enforce_sfp = 0;
1543 
1544 	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1545 		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1546 		return -ENOENT;
1547 	}
1548 
1549 	/* LAN ID is needed for sfp_type determination */
1550 	hw->mac.ops.set_lan_id(hw);
1551 
1552 	status = hw->phy.ops.read_i2c_eeprom(hw,
1553 					     IXGBE_SFF_IDENTIFIER,
1554 					     &identifier);
1555 
1556 	if (status)
1557 		goto err_read_i2c_eeprom;
1558 
1559 	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1560 		hw->phy.type = ixgbe_phy_sfp_unsupported;
1561 		return -EOPNOTSUPP;
1562 	}
1563 	status = hw->phy.ops.read_i2c_eeprom(hw,
1564 					     IXGBE_SFF_1GBE_COMP_CODES,
1565 					     &comp_codes_1g);
1566 
1567 	if (status)
1568 		goto err_read_i2c_eeprom;
1569 
1570 	status = hw->phy.ops.read_i2c_eeprom(hw,
1571 					     IXGBE_SFF_10GBE_COMP_CODES,
1572 					     &comp_codes_10g);
1573 
1574 	if (status)
1575 		goto err_read_i2c_eeprom;
1576 	status = hw->phy.ops.read_i2c_eeprom(hw,
1577 					     IXGBE_SFF_CABLE_TECHNOLOGY,
1578 					     &cable_tech);
1579 
1580 	if (status)
1581 		goto err_read_i2c_eeprom;
1582 
1583 	 /* ID Module
1584 	  * =========
1585 	  * 0   SFP_DA_CU
1586 	  * 1   SFP_SR
1587 	  * 2   SFP_LR
1588 	  * 3   SFP_DA_CORE0 - 82599-specific
1589 	  * 4   SFP_DA_CORE1 - 82599-specific
1590 	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1591 	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1592 	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1593 	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1594 	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1595 	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1596 	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1597 	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1598 	  */
1599 	if (hw->mac.type == ixgbe_mac_82598EB) {
1600 		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1601 			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1602 		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1603 			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1604 		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1605 			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1606 		else
1607 			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1608 	} else {
1609 		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1610 			if (hw->bus.lan_id == 0)
1611 				hw->phy.sfp_type =
1612 					     ixgbe_sfp_type_da_cu_core0;
1613 			else
1614 				hw->phy.sfp_type =
1615 					     ixgbe_sfp_type_da_cu_core1;
1616 		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1617 			hw->phy.ops.read_i2c_eeprom(
1618 					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1619 					&cable_spec);
1620 			if (cable_spec &
1621 			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1622 				if (hw->bus.lan_id == 0)
1623 					hw->phy.sfp_type =
1624 					ixgbe_sfp_type_da_act_lmt_core0;
1625 				else
1626 					hw->phy.sfp_type =
1627 					ixgbe_sfp_type_da_act_lmt_core1;
1628 			} else {
1629 				hw->phy.sfp_type =
1630 						ixgbe_sfp_type_unknown;
1631 			}
1632 		} else if (comp_codes_10g &
1633 			   (IXGBE_SFF_10GBASESR_CAPABLE |
1634 			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1635 			if (hw->bus.lan_id == 0)
1636 				hw->phy.sfp_type =
1637 					      ixgbe_sfp_type_srlr_core0;
1638 			else
1639 				hw->phy.sfp_type =
1640 					      ixgbe_sfp_type_srlr_core1;
1641 		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1642 			if (hw->bus.lan_id == 0)
1643 				hw->phy.sfp_type =
1644 					ixgbe_sfp_type_1g_cu_core0;
1645 			else
1646 				hw->phy.sfp_type =
1647 					ixgbe_sfp_type_1g_cu_core1;
1648 		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1649 			if (hw->bus.lan_id == 0)
1650 				hw->phy.sfp_type =
1651 					ixgbe_sfp_type_1g_sx_core0;
1652 			else
1653 				hw->phy.sfp_type =
1654 					ixgbe_sfp_type_1g_sx_core1;
1655 		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1656 			if (hw->bus.lan_id == 0)
1657 				hw->phy.sfp_type =
1658 					ixgbe_sfp_type_1g_lx_core0;
1659 			else
1660 				hw->phy.sfp_type =
1661 					ixgbe_sfp_type_1g_lx_core1;
1662 		} else {
1663 			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1664 		}
1665 	}
1666 
1667 	if (hw->phy.sfp_type != stored_sfp_type)
1668 		hw->phy.sfp_setup_needed = true;
1669 
1670 	/* Determine if the SFP+ PHY is dual speed or not. */
1671 	hw->phy.multispeed_fiber = false;
1672 	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1673 	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1674 	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1675 	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1676 		hw->phy.multispeed_fiber = true;
1677 
1678 	/* Determine PHY vendor */
1679 	if (hw->phy.type != ixgbe_phy_nl) {
1680 		hw->phy.id = identifier;
1681 		status = hw->phy.ops.read_i2c_eeprom(hw,
1682 					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1683 					    &oui_bytes[0]);
1684 
1685 		if (status != 0)
1686 			goto err_read_i2c_eeprom;
1687 
1688 		status = hw->phy.ops.read_i2c_eeprom(hw,
1689 					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1690 					    &oui_bytes[1]);
1691 
1692 		if (status != 0)
1693 			goto err_read_i2c_eeprom;
1694 
1695 		status = hw->phy.ops.read_i2c_eeprom(hw,
1696 					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1697 					    &oui_bytes[2]);
1698 
1699 		if (status != 0)
1700 			goto err_read_i2c_eeprom;
1701 
1702 		vendor_oui =
1703 		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1704 		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1705 		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1706 
1707 		switch (vendor_oui) {
1708 		case IXGBE_SFF_VENDOR_OUI_TYCO:
1709 			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1710 				hw->phy.type =
1711 					    ixgbe_phy_sfp_passive_tyco;
1712 			break;
1713 		case IXGBE_SFF_VENDOR_OUI_FTL:
1714 			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1715 				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1716 			else
1717 				hw->phy.type = ixgbe_phy_sfp_ftl;
1718 			break;
1719 		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1720 			hw->phy.type = ixgbe_phy_sfp_avago;
1721 			break;
1722 		case IXGBE_SFF_VENDOR_OUI_INTEL:
1723 			hw->phy.type = ixgbe_phy_sfp_intel;
1724 			break;
1725 		default:
1726 			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1727 				hw->phy.type =
1728 					 ixgbe_phy_sfp_passive_unknown;
1729 			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1730 				hw->phy.type =
1731 					ixgbe_phy_sfp_active_unknown;
1732 			else
1733 				hw->phy.type = ixgbe_phy_sfp_unknown;
1734 			break;
1735 		}
1736 	}
1737 
1738 	/* Allow any DA cable vendor */
1739 	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1740 	    IXGBE_SFF_DA_ACTIVE_CABLE))
1741 		return 0;
1742 
1743 	/* Verify supported 1G SFP modules */
1744 	if (comp_codes_10g == 0 &&
1745 	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1746 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1747 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1748 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1749 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1750 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1751 		hw->phy.type = ixgbe_phy_sfp_unsupported;
1752 		return -EOPNOTSUPP;
1753 	}
1754 
1755 	/* Anything else 82598-based is supported */
1756 	if (hw->mac.type == ixgbe_mac_82598EB)
1757 		return 0;
1758 
1759 	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1760 	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1761 	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1762 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1763 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1764 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1765 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1766 	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
1767 		/* Make sure we're a supported PHY type */
1768 		if (hw->phy.type == ixgbe_phy_sfp_intel)
1769 			return 0;
1770 		if (hw->allow_unsupported_sfp) {
1771 			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1772 			return 0;
1773 		}
1774 		hw_dbg(hw, "SFP+ module not supported\n");
1775 		hw->phy.type = ixgbe_phy_sfp_unsupported;
1776 		return -EOPNOTSUPP;
1777 	}
1778 	return 0;
1779 
1780 err_read_i2c_eeprom:
1781 	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1782 	if (hw->phy.type != ixgbe_phy_nl) {
1783 		hw->phy.id = 0;
1784 		hw->phy.type = ixgbe_phy_unknown;
1785 	}
1786 	return -ENOENT;
1787 }
1788 
1789 /**
1790  * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1791  * @hw: pointer to hardware structure
1792  *
1793  * Searches for and identifies the QSFP module and assigns appropriate PHY type
1794  **/
1795 static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1796 {
1797 	struct ixgbe_adapter *adapter = hw->back;
1798 	s32 status;
1799 	u32 vendor_oui = 0;
1800 	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1801 	u8 identifier = 0;
1802 	u8 comp_codes_1g = 0;
1803 	u8 comp_codes_10g = 0;
1804 	u8 oui_bytes[3] = {0, 0, 0};
1805 	u16 enforce_sfp = 0;
1806 	u8 connector = 0;
1807 	u8 cable_length = 0;
1808 	u8 device_tech = 0;
1809 	bool active_cable = false;
1810 
1811 	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1812 		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1813 		return -ENOENT;
1814 	}
1815 
1816 	/* LAN ID is needed for sfp_type determination */
1817 	hw->mac.ops.set_lan_id(hw);
1818 
1819 	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1820 					     &identifier);
1821 
1822 	if (status != 0)
1823 		goto err_read_i2c_eeprom;
1824 
1825 	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1826 		hw->phy.type = ixgbe_phy_sfp_unsupported;
1827 		return -EOPNOTSUPP;
1828 	}
1829 
1830 	hw->phy.id = identifier;
1831 
1832 	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1833 					     &comp_codes_10g);
1834 
1835 	if (status != 0)
1836 		goto err_read_i2c_eeprom;
1837 
1838 	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1839 					     &comp_codes_1g);
1840 
1841 	if (status != 0)
1842 		goto err_read_i2c_eeprom;
1843 
1844 	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1845 		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1846 		if (hw->bus.lan_id == 0)
1847 			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1848 		else
1849 			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1850 	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1851 				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1852 		if (hw->bus.lan_id == 0)
1853 			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1854 		else
1855 			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1856 	} else {
1857 		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1858 			active_cable = true;
1859 
1860 		if (!active_cable) {
1861 			/* check for active DA cables that pre-date
1862 			 * SFF-8436 v3.6
1863 			 */
1864 			hw->phy.ops.read_i2c_eeprom(hw,
1865 					IXGBE_SFF_QSFP_CONNECTOR,
1866 					&connector);
1867 
1868 			hw->phy.ops.read_i2c_eeprom(hw,
1869 					IXGBE_SFF_QSFP_CABLE_LENGTH,
1870 					&cable_length);
1871 
1872 			hw->phy.ops.read_i2c_eeprom(hw,
1873 					IXGBE_SFF_QSFP_DEVICE_TECH,
1874 					&device_tech);
1875 
1876 			if ((connector ==
1877 				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1878 			    (cable_length > 0) &&
1879 			    ((device_tech >> 4) ==
1880 				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1881 				active_cable = true;
1882 		}
1883 
1884 		if (active_cable) {
1885 			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1886 			if (hw->bus.lan_id == 0)
1887 				hw->phy.sfp_type =
1888 						ixgbe_sfp_type_da_act_lmt_core0;
1889 			else
1890 				hw->phy.sfp_type =
1891 						ixgbe_sfp_type_da_act_lmt_core1;
1892 		} else {
1893 			/* unsupported module type */
1894 			hw->phy.type = ixgbe_phy_sfp_unsupported;
1895 			return -EOPNOTSUPP;
1896 		}
1897 	}
1898 
1899 	if (hw->phy.sfp_type != stored_sfp_type)
1900 		hw->phy.sfp_setup_needed = true;
1901 
1902 	/* Determine if the QSFP+ PHY is dual speed or not. */
1903 	hw->phy.multispeed_fiber = false;
1904 	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1905 	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1906 	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1907 	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1908 		hw->phy.multispeed_fiber = true;
1909 
1910 	/* Determine PHY vendor for optical modules */
1911 	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1912 			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1913 		status = hw->phy.ops.read_i2c_eeprom(hw,
1914 					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1915 					&oui_bytes[0]);
1916 
1917 		if (status != 0)
1918 			goto err_read_i2c_eeprom;
1919 
1920 		status = hw->phy.ops.read_i2c_eeprom(hw,
1921 					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1922 					&oui_bytes[1]);
1923 
1924 		if (status != 0)
1925 			goto err_read_i2c_eeprom;
1926 
1927 		status = hw->phy.ops.read_i2c_eeprom(hw,
1928 					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1929 					&oui_bytes[2]);
1930 
1931 		if (status != 0)
1932 			goto err_read_i2c_eeprom;
1933 
1934 		vendor_oui =
1935 			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1936 			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1937 			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1938 
1939 		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1940 			hw->phy.type = ixgbe_phy_qsfp_intel;
1941 		else
1942 			hw->phy.type = ixgbe_phy_qsfp_unknown;
1943 
1944 		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1945 		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1946 			/* Make sure we're a supported PHY type */
1947 			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1948 				return 0;
1949 			if (hw->allow_unsupported_sfp) {
1950 				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1951 				return 0;
1952 			}
1953 			hw_dbg(hw, "QSFP module not supported\n");
1954 			hw->phy.type = ixgbe_phy_sfp_unsupported;
1955 			return -EOPNOTSUPP;
1956 		}
1957 		return 0;
1958 	}
1959 	return 0;
1960 
1961 err_read_i2c_eeprom:
1962 	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1963 	hw->phy.id = 0;
1964 	hw->phy.type = ixgbe_phy_unknown;
1965 
1966 	return -ENOENT;
1967 }
1968 
1969 /**
1970  *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1971  *  @hw: pointer to hardware structure
1972  *  @list_offset: offset to the SFP ID list
1973  *  @data_offset: offset to the SFP data block
1974  *
1975  *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1976  *  so it returns the offsets to the phy init sequence block.
1977  **/
1978 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1979 					u16 *list_offset,
1980 					u16 *data_offset)
1981 {
1982 	u16 sfp_id;
1983 	u16 sfp_type = hw->phy.sfp_type;
1984 
1985 	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1986 		return -EOPNOTSUPP;
1987 
1988 	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1989 		return -ENOENT;
1990 
1991 	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1992 	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1993 		return -EOPNOTSUPP;
1994 
1995 	/*
1996 	 * Limiting active cables and 1G Phys must be initialized as
1997 	 * SR modules
1998 	 */
1999 	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
2000 	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
2001 	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
2002 	    sfp_type == ixgbe_sfp_type_1g_sx_core0)
2003 		sfp_type = ixgbe_sfp_type_srlr_core0;
2004 	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
2005 		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
2006 		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
2007 		 sfp_type == ixgbe_sfp_type_1g_sx_core1)
2008 		sfp_type = ixgbe_sfp_type_srlr_core1;
2009 
2010 	/* Read offset to PHY init contents */
2011 	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
2012 		hw_err(hw, "eeprom read at %d failed\n",
2013 		       IXGBE_PHY_INIT_OFFSET_NL);
2014 		return -EIO;
2015 	}
2016 
2017 	if ((!*list_offset) || (*list_offset == 0xFFFF))
2018 		return -EIO;
2019 
2020 	/* Shift offset to first ID word */
2021 	(*list_offset)++;
2022 
2023 	/*
2024 	 * Find the matching SFP ID in the EEPROM
2025 	 * and program the init sequence
2026 	 */
2027 	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2028 		goto err_phy;
2029 
2030 	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
2031 		if (sfp_id == sfp_type) {
2032 			(*list_offset)++;
2033 			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
2034 				goto err_phy;
2035 			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
2036 				hw_dbg(hw, "SFP+ module not supported\n");
2037 				return -EOPNOTSUPP;
2038 			} else {
2039 				break;
2040 			}
2041 		} else {
2042 			(*list_offset) += 2;
2043 			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2044 				goto err_phy;
2045 		}
2046 	}
2047 
2048 	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
2049 		hw_dbg(hw, "No matching SFP+ module found\n");
2050 		return -EOPNOTSUPP;
2051 	}
2052 
2053 	return 0;
2054 
2055 err_phy:
2056 	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
2057 	return -EIO;
2058 }
2059 
2060 /**
2061  *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
2062  *  @hw: pointer to hardware structure
2063  *  @byte_offset: EEPROM byte offset to read
2064  *  @eeprom_data: value read
2065  *
2066  *  Performs byte read operation to SFP module's EEPROM over I2C interface.
2067  **/
2068 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2069 				  u8 *eeprom_data)
2070 {
2071 	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2072 					 IXGBE_I2C_EEPROM_DEV_ADDR,
2073 					 eeprom_data);
2074 }
2075 
2076 /**
2077  *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
2078  *  @hw: pointer to hardware structure
2079  *  @byte_offset: byte offset at address 0xA2
2080  *  @sff8472_data: value read
2081  *
2082  *  Performs byte read operation to SFP module's SFF-8472 data over I2C
2083  **/
2084 s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
2085 				   u8 *sff8472_data)
2086 {
2087 	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2088 					 IXGBE_I2C_EEPROM_DEV_ADDR2,
2089 					 sff8472_data);
2090 }
2091 
2092 /**
2093  *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
2094  *  @hw: pointer to hardware structure
2095  *  @byte_offset: EEPROM byte offset to write
2096  *  @eeprom_data: value to write
2097  *
2098  *  Performs byte write operation to SFP module's EEPROM over I2C interface.
2099  **/
2100 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2101 				   u8 eeprom_data)
2102 {
2103 	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
2104 					  IXGBE_I2C_EEPROM_DEV_ADDR,
2105 					  eeprom_data);
2106 }
2107 
2108 /**
2109  * ixgbe_is_sfp_probe - Returns true if SFP is being detected
2110  * @hw: pointer to hardware structure
2111  * @offset: eeprom offset to be read
2112  * @addr: I2C address to be read
2113  */
2114 static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
2115 {
2116 	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
2117 	    offset == IXGBE_SFF_IDENTIFIER &&
2118 	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2119 		return true;
2120 	return false;
2121 }
2122 
2123 /**
2124  *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
2125  *  @hw: pointer to hardware structure
2126  *  @byte_offset: byte offset to read
2127  *  @dev_addr: device address
2128  *  @data: value read
2129  *  @lock: true if to take and release semaphore
2130  *
2131  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2132  *  a specified device address.
2133  */
2134 static s32 ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2135 					   u8 dev_addr, u8 *data, bool lock)
2136 {
2137 	s32 status;
2138 	u32 max_retry = 10;
2139 	u32 retry = 0;
2140 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2141 	bool nack = true;
2142 
2143 	if (hw->mac.type >= ixgbe_mac_X550)
2144 		max_retry = 3;
2145 	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2146 		max_retry = IXGBE_SFP_DETECT_RETRIES;
2147 
2148 	*data = 0;
2149 
2150 	do {
2151 		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2152 			return -EBUSY;
2153 
2154 		ixgbe_i2c_start(hw);
2155 
2156 		/* Device Address and write indication */
2157 		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2158 		if (status != 0)
2159 			goto fail;
2160 
2161 		status = ixgbe_get_i2c_ack(hw);
2162 		if (status != 0)
2163 			goto fail;
2164 
2165 		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2166 		if (status != 0)
2167 			goto fail;
2168 
2169 		status = ixgbe_get_i2c_ack(hw);
2170 		if (status != 0)
2171 			goto fail;
2172 
2173 		ixgbe_i2c_start(hw);
2174 
2175 		/* Device Address and read indication */
2176 		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2177 		if (status != 0)
2178 			goto fail;
2179 
2180 		status = ixgbe_get_i2c_ack(hw);
2181 		if (status != 0)
2182 			goto fail;
2183 
2184 		status = ixgbe_clock_in_i2c_byte(hw, data);
2185 		if (status != 0)
2186 			goto fail;
2187 
2188 		status = ixgbe_clock_out_i2c_bit(hw, nack);
2189 		if (status != 0)
2190 			goto fail;
2191 
2192 		ixgbe_i2c_stop(hw);
2193 		if (lock)
2194 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2195 		return 0;
2196 
2197 fail:
2198 		ixgbe_i2c_bus_clear(hw);
2199 		if (lock) {
2200 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2201 			msleep(100);
2202 		}
2203 		retry++;
2204 		if (retry < max_retry)
2205 			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2206 		else
2207 			hw_dbg(hw, "I2C byte read error.\n");
2208 
2209 	} while (retry < max_retry);
2210 
2211 	return status;
2212 }
2213 
2214 /**
2215  *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2216  *  @hw: pointer to hardware structure
2217  *  @byte_offset: byte offset to read
2218  *  @dev_addr: device address
2219  *  @data: value read
2220  *
2221  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2222  *  a specified device address.
2223  */
2224 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2225 				u8 dev_addr, u8 *data)
2226 {
2227 	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2228 					       data, true);
2229 }
2230 
2231 /**
2232  *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2233  *  @hw: pointer to hardware structure
2234  *  @byte_offset: byte offset to read
2235  *  @dev_addr: device address
2236  *  @data: value read
2237  *
2238  *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2239  *  a specified device address.
2240  */
2241 s32 ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2242 					 u8 dev_addr, u8 *data)
2243 {
2244 	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2245 					       data, false);
2246 }
2247 
2248 /**
2249  *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2250  *  @hw: pointer to hardware structure
2251  *  @byte_offset: byte offset to write
2252  *  @dev_addr: device address
2253  *  @data: value to write
2254  *  @lock: true if to take and release semaphore
2255  *
2256  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2257  *  a specified device address.
2258  */
2259 static s32 ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2260 					    u8 dev_addr, u8 data, bool lock)
2261 {
2262 	s32 status;
2263 	u32 max_retry = 1;
2264 	u32 retry = 0;
2265 	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2266 
2267 	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2268 		return -EBUSY;
2269 
2270 	do {
2271 		ixgbe_i2c_start(hw);
2272 
2273 		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2274 		if (status != 0)
2275 			goto fail;
2276 
2277 		status = ixgbe_get_i2c_ack(hw);
2278 		if (status != 0)
2279 			goto fail;
2280 
2281 		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2282 		if (status != 0)
2283 			goto fail;
2284 
2285 		status = ixgbe_get_i2c_ack(hw);
2286 		if (status != 0)
2287 			goto fail;
2288 
2289 		status = ixgbe_clock_out_i2c_byte(hw, data);
2290 		if (status != 0)
2291 			goto fail;
2292 
2293 		status = ixgbe_get_i2c_ack(hw);
2294 		if (status != 0)
2295 			goto fail;
2296 
2297 		ixgbe_i2c_stop(hw);
2298 		if (lock)
2299 			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2300 		return 0;
2301 
2302 fail:
2303 		ixgbe_i2c_bus_clear(hw);
2304 		retry++;
2305 		if (retry < max_retry)
2306 			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2307 		else
2308 			hw_dbg(hw, "I2C byte write error.\n");
2309 	} while (retry < max_retry);
2310 
2311 	if (lock)
2312 		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2313 
2314 	return status;
2315 }
2316 
2317 /**
2318  *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2319  *  @hw: pointer to hardware structure
2320  *  @byte_offset: byte offset to write
2321  *  @dev_addr: device address
2322  *  @data: value to write
2323  *
2324  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2325  *  a specified device address.
2326  */
2327 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2328 				 u8 dev_addr, u8 data)
2329 {
2330 	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2331 						data, true);
2332 }
2333 
2334 /**
2335  *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2336  *  @hw: pointer to hardware structure
2337  *  @byte_offset: byte offset to write
2338  *  @dev_addr: device address
2339  *  @data: value to write
2340  *
2341  *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2342  *  a specified device address.
2343  */
2344 s32 ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2345 					  u8 dev_addr, u8 data)
2346 {
2347 	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2348 						data, false);
2349 }
2350 
2351 /**
2352  *  ixgbe_i2c_start - Sets I2C start condition
2353  *  @hw: pointer to hardware structure
2354  *
2355  *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2356  *  Set bit-bang mode on X550 hardware.
2357  **/
2358 static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2359 {
2360 	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2361 
2362 	i2cctl |= IXGBE_I2C_BB_EN(hw);
2363 
2364 	/* Start condition must begin with data and clock high */
2365 	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2366 	ixgbe_raise_i2c_clk(hw, &i2cctl);
2367 
2368 	/* Setup time for start condition (4.7us) */
2369 	udelay(IXGBE_I2C_T_SU_STA);
2370 
2371 	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2372 
2373 	/* Hold time for start condition (4us) */
2374 	udelay(IXGBE_I2C_T_HD_STA);
2375 
2376 	ixgbe_lower_i2c_clk(hw, &i2cctl);
2377 
2378 	/* Minimum low period of clock is 4.7 us */
2379 	udelay(IXGBE_I2C_T_LOW);
2380 
2381 }
2382 
2383 /**
2384  *  ixgbe_i2c_stop - Sets I2C stop condition
2385  *  @hw: pointer to hardware structure
2386  *
2387  *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2388  *  Disables bit-bang mode and negates data output enable on X550
2389  *  hardware.
2390  **/
2391 static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2392 {
2393 	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2394 	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2395 	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2396 	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2397 
2398 	/* Stop condition must begin with data low and clock high */
2399 	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2400 	ixgbe_raise_i2c_clk(hw, &i2cctl);
2401 
2402 	/* Setup time for stop condition (4us) */
2403 	udelay(IXGBE_I2C_T_SU_STO);
2404 
2405 	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2406 
2407 	/* bus free time between stop and start (4.7us)*/
2408 	udelay(IXGBE_I2C_T_BUF);
2409 
2410 	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2411 		i2cctl &= ~bb_en_bit;
2412 		i2cctl |= data_oe_bit | clk_oe_bit;
2413 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2414 		IXGBE_WRITE_FLUSH(hw);
2415 	}
2416 }
2417 
2418 /**
2419  *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2420  *  @hw: pointer to hardware structure
2421  *  @data: data byte to clock in
2422  *
2423  *  Clocks in one byte data via I2C data/clock
2424  **/
2425 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2426 {
2427 	s32 i;
2428 	bool bit = false;
2429 
2430 	*data = 0;
2431 	for (i = 7; i >= 0; i--) {
2432 		ixgbe_clock_in_i2c_bit(hw, &bit);
2433 		*data |= bit << i;
2434 	}
2435 
2436 	return 0;
2437 }
2438 
2439 /**
2440  *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2441  *  @hw: pointer to hardware structure
2442  *  @data: data byte clocked out
2443  *
2444  *  Clocks out one byte data via I2C data/clock
2445  **/
2446 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2447 {
2448 	s32 status;
2449 	s32 i;
2450 	u32 i2cctl;
2451 	bool bit = false;
2452 
2453 	for (i = 7; i >= 0; i--) {
2454 		bit = (data >> i) & 0x1;
2455 		status = ixgbe_clock_out_i2c_bit(hw, bit);
2456 
2457 		if (status != 0)
2458 			break;
2459 	}
2460 
2461 	/* Release SDA line (set high) */
2462 	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2463 	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2464 	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2465 	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2466 	IXGBE_WRITE_FLUSH(hw);
2467 
2468 	return status;
2469 }
2470 
2471 /**
2472  *  ixgbe_get_i2c_ack - Polls for I2C ACK
2473  *  @hw: pointer to hardware structure
2474  *
2475  *  Clocks in/out one bit via I2C data/clock
2476  **/
2477 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2478 {
2479 	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2480 	s32 status = 0;
2481 	u32 i = 0;
2482 	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2483 	u32 timeout = 10;
2484 	bool ack = true;
2485 
2486 	if (data_oe_bit) {
2487 		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2488 		i2cctl |= data_oe_bit;
2489 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2490 		IXGBE_WRITE_FLUSH(hw);
2491 	}
2492 	ixgbe_raise_i2c_clk(hw, &i2cctl);
2493 
2494 	/* Minimum high period of clock is 4us */
2495 	udelay(IXGBE_I2C_T_HIGH);
2496 
2497 	/* Poll for ACK.  Note that ACK in I2C spec is
2498 	 * transition from 1 to 0 */
2499 	for (i = 0; i < timeout; i++) {
2500 		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2501 		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2502 
2503 		udelay(1);
2504 		if (ack == 0)
2505 			break;
2506 	}
2507 
2508 	if (ack == 1) {
2509 		hw_dbg(hw, "I2C ack was not received.\n");
2510 		status = -EIO;
2511 	}
2512 
2513 	ixgbe_lower_i2c_clk(hw, &i2cctl);
2514 
2515 	/* Minimum low period of clock is 4.7 us */
2516 	udelay(IXGBE_I2C_T_LOW);
2517 
2518 	return status;
2519 }
2520 
2521 /**
2522  *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2523  *  @hw: pointer to hardware structure
2524  *  @data: read data value
2525  *
2526  *  Clocks in one bit via I2C data/clock
2527  **/
2528 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2529 {
2530 	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2531 	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2532 
2533 	if (data_oe_bit) {
2534 		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2535 		i2cctl |= data_oe_bit;
2536 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2537 		IXGBE_WRITE_FLUSH(hw);
2538 	}
2539 	ixgbe_raise_i2c_clk(hw, &i2cctl);
2540 
2541 	/* Minimum high period of clock is 4us */
2542 	udelay(IXGBE_I2C_T_HIGH);
2543 
2544 	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2545 	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2546 
2547 	ixgbe_lower_i2c_clk(hw, &i2cctl);
2548 
2549 	/* Minimum low period of clock is 4.7 us */
2550 	udelay(IXGBE_I2C_T_LOW);
2551 
2552 	return 0;
2553 }
2554 
2555 /**
2556  *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2557  *  @hw: pointer to hardware structure
2558  *  @data: data value to write
2559  *
2560  *  Clocks out one bit via I2C data/clock
2561  **/
2562 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2563 {
2564 	s32 status;
2565 	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2566 
2567 	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2568 	if (status == 0) {
2569 		ixgbe_raise_i2c_clk(hw, &i2cctl);
2570 
2571 		/* Minimum high period of clock is 4us */
2572 		udelay(IXGBE_I2C_T_HIGH);
2573 
2574 		ixgbe_lower_i2c_clk(hw, &i2cctl);
2575 
2576 		/* Minimum low period of clock is 4.7 us.
2577 		 * This also takes care of the data hold time.
2578 		 */
2579 		udelay(IXGBE_I2C_T_LOW);
2580 	} else {
2581 		hw_dbg(hw, "I2C data was not set to %X\n", data);
2582 		return -EIO;
2583 	}
2584 
2585 	return 0;
2586 }
2587 /**
2588  *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2589  *  @hw: pointer to hardware structure
2590  *  @i2cctl: Current value of I2CCTL register
2591  *
2592  *  Raises the I2C clock line '0'->'1'
2593  *  Negates the I2C clock output enable on X550 hardware.
2594  **/
2595 static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2596 {
2597 	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2598 	u32 i = 0;
2599 	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2600 	u32 i2cctl_r = 0;
2601 
2602 	if (clk_oe_bit) {
2603 		*i2cctl |= clk_oe_bit;
2604 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2605 	}
2606 
2607 	for (i = 0; i < timeout; i++) {
2608 		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2609 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2610 		IXGBE_WRITE_FLUSH(hw);
2611 		/* SCL rise time (1000ns) */
2612 		udelay(IXGBE_I2C_T_RISE);
2613 
2614 		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2615 		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2616 			break;
2617 	}
2618 }
2619 
2620 /**
2621  *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2622  *  @hw: pointer to hardware structure
2623  *  @i2cctl: Current value of I2CCTL register
2624  *
2625  *  Lowers the I2C clock line '1'->'0'
2626  *  Asserts the I2C clock output enable on X550 hardware.
2627  **/
2628 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2629 {
2630 
2631 	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2632 	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2633 
2634 	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2635 	IXGBE_WRITE_FLUSH(hw);
2636 
2637 	/* SCL fall time (300ns) */
2638 	udelay(IXGBE_I2C_T_FALL);
2639 }
2640 
2641 /**
2642  *  ixgbe_set_i2c_data - Sets the I2C data bit
2643  *  @hw: pointer to hardware structure
2644  *  @i2cctl: Current value of I2CCTL register
2645  *  @data: I2C data value (0 or 1) to set
2646  *
2647  *  Sets the I2C data bit
2648  *  Asserts the I2C data output enable on X550 hardware.
2649  **/
2650 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2651 {
2652 	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2653 
2654 	if (data)
2655 		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2656 	else
2657 		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2658 	*i2cctl &= ~data_oe_bit;
2659 
2660 	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2661 	IXGBE_WRITE_FLUSH(hw);
2662 
2663 	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2664 	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2665 
2666 	if (!data)	/* Can't verify data in this case */
2667 		return 0;
2668 	if (data_oe_bit) {
2669 		*i2cctl |= data_oe_bit;
2670 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2671 		IXGBE_WRITE_FLUSH(hw);
2672 	}
2673 
2674 	/* Verify data was set correctly */
2675 	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2676 	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2677 		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2678 		return -EIO;
2679 	}
2680 
2681 	return 0;
2682 }
2683 
2684 /**
2685  *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2686  *  @hw: pointer to hardware structure
2687  *  @i2cctl: Current value of I2CCTL register
2688  *
2689  *  Returns the I2C data bit value
2690  *  Negates the I2C data output enable on X550 hardware.
2691  **/
2692 static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2693 {
2694 	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2695 
2696 	if (data_oe_bit) {
2697 		*i2cctl |= data_oe_bit;
2698 		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2699 		IXGBE_WRITE_FLUSH(hw);
2700 		udelay(IXGBE_I2C_T_FALL);
2701 	}
2702 
2703 	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2704 		return true;
2705 	return false;
2706 }
2707 
2708 /**
2709  *  ixgbe_i2c_bus_clear - Clears the I2C bus
2710  *  @hw: pointer to hardware structure
2711  *
2712  *  Clears the I2C bus by sending nine clock pulses.
2713  *  Used when data line is stuck low.
2714  **/
2715 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2716 {
2717 	u32 i2cctl;
2718 	u32 i;
2719 
2720 	ixgbe_i2c_start(hw);
2721 	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2722 
2723 	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2724 
2725 	for (i = 0; i < 9; i++) {
2726 		ixgbe_raise_i2c_clk(hw, &i2cctl);
2727 
2728 		/* Min high period of clock is 4us */
2729 		udelay(IXGBE_I2C_T_HIGH);
2730 
2731 		ixgbe_lower_i2c_clk(hw, &i2cctl);
2732 
2733 		/* Min low period of clock is 4.7us*/
2734 		udelay(IXGBE_I2C_T_LOW);
2735 	}
2736 
2737 	ixgbe_i2c_start(hw);
2738 
2739 	/* Put the i2c bus back to default state */
2740 	ixgbe_i2c_stop(hw);
2741 }
2742 
2743 /**
2744  *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2745  *  @hw: pointer to hardware structure
2746  *
2747  *  Checks if the LASI temp alarm status was triggered due to overtemp
2748  *
2749  *  Return true when an overtemp event detected, otherwise false.
2750  **/
2751 bool ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2752 {
2753 	u16 phy_data = 0;
2754 	u32 status;
2755 
2756 	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2757 		return false;
2758 
2759 	/* Check that the LASI temp alarm status was triggered */
2760 	status = hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2761 				      MDIO_MMD_PMAPMD, &phy_data);
2762 	if (status)
2763 		return false;
2764 
2765 	return !!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM);
2766 }
2767 
2768 /** ixgbe_set_copper_phy_power - Control power for copper phy
2769  *  @hw: pointer to hardware structure
2770  *  @on: true for on, false for off
2771  **/
2772 s32 ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2773 {
2774 	u32 status;
2775 	u16 reg;
2776 
2777 	/* Bail if we don't have copper phy */
2778 	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2779 		return 0;
2780 
2781 	if (!on && ixgbe_mng_present(hw))
2782 		return 0;
2783 
2784 	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
2785 	if (status)
2786 		return status;
2787 
2788 	if (on) {
2789 		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2790 	} else {
2791 		if (ixgbe_check_reset_blocked(hw))
2792 			return 0;
2793 		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2794 	}
2795 
2796 	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
2797 	return status;
2798 }
2799