1 /******************************************************************************* 2 3 Intel 10 Gigabit PCI Express Linux driver 4 Copyright(c) 1999 - 2014 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 #include <linux/pci.h> 30 #include <linux/delay.h> 31 #include <linux/sched.h> 32 33 #include "ixgbe.h" 34 #include "ixgbe_phy.h" 35 36 static void ixgbe_i2c_start(struct ixgbe_hw *hw); 37 static void ixgbe_i2c_stop(struct ixgbe_hw *hw); 38 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data); 39 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data); 40 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw); 41 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data); 42 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data); 43 static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl); 44 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl); 45 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data); 46 static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl); 47 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw); 48 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id); 49 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw); 50 static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw); 51 52 /** 53 * ixgbe_out_i2c_byte_ack - Send I2C byte with ack 54 * @hw: pointer to the hardware structure 55 * @byte: byte to send 56 * 57 * Returns an error code on error. 58 **/ 59 static s32 ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte) 60 { 61 s32 status; 62 63 status = ixgbe_clock_out_i2c_byte(hw, byte); 64 if (status) 65 return status; 66 return ixgbe_get_i2c_ack(hw); 67 } 68 69 /** 70 * ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack 71 * @hw: pointer to the hardware structure 72 * @byte: pointer to a u8 to receive the byte 73 * 74 * Returns an error code on error. 75 **/ 76 static s32 ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte) 77 { 78 s32 status; 79 80 status = ixgbe_clock_in_i2c_byte(hw, byte); 81 if (status) 82 return status; 83 /* ACK */ 84 return ixgbe_clock_out_i2c_bit(hw, false); 85 } 86 87 /** 88 * ixgbe_ones_comp_byte_add - Perform one's complement addition 89 * @add1: addend 1 90 * @add2: addend 2 91 * 92 * Returns one's complement 8-bit sum. 93 **/ 94 static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2) 95 { 96 u16 sum = add1 + add2; 97 98 sum = (sum & 0xFF) + (sum >> 8); 99 return sum & 0xFF; 100 } 101 102 /** 103 * ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation 104 * @hw: pointer to the hardware structure 105 * @addr: I2C bus address to read from 106 * @reg: I2C device register to read from 107 * @val: pointer to location to receive read value 108 * @lock: true if to take and release semaphore 109 * 110 * Returns an error code on error. 111 */ 112 s32 ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr, 113 u16 reg, u16 *val, bool lock) 114 { 115 u32 swfw_mask = hw->phy.phy_semaphore_mask; 116 int max_retry = 3; 117 int retry = 0; 118 u8 csum_byte; 119 u8 high_bits; 120 u8 low_bits; 121 u8 reg_high; 122 u8 csum; 123 124 reg_high = ((reg >> 7) & 0xFE) | 1; /* Indicate read combined */ 125 csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF); 126 csum = ~csum; 127 do { 128 if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 129 return IXGBE_ERR_SWFW_SYNC; 130 ixgbe_i2c_start(hw); 131 /* Device Address and write indication */ 132 if (ixgbe_out_i2c_byte_ack(hw, addr)) 133 goto fail; 134 /* Write bits 14:8 */ 135 if (ixgbe_out_i2c_byte_ack(hw, reg_high)) 136 goto fail; 137 /* Write bits 7:0 */ 138 if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF)) 139 goto fail; 140 /* Write csum */ 141 if (ixgbe_out_i2c_byte_ack(hw, csum)) 142 goto fail; 143 /* Re-start condition */ 144 ixgbe_i2c_start(hw); 145 /* Device Address and read indication */ 146 if (ixgbe_out_i2c_byte_ack(hw, addr | 1)) 147 goto fail; 148 /* Get upper bits */ 149 if (ixgbe_in_i2c_byte_ack(hw, &high_bits)) 150 goto fail; 151 /* Get low bits */ 152 if (ixgbe_in_i2c_byte_ack(hw, &low_bits)) 153 goto fail; 154 /* Get csum */ 155 if (ixgbe_clock_in_i2c_byte(hw, &csum_byte)) 156 goto fail; 157 /* NACK */ 158 if (ixgbe_clock_out_i2c_bit(hw, false)) 159 goto fail; 160 ixgbe_i2c_stop(hw); 161 if (lock) 162 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 163 *val = (high_bits << 8) | low_bits; 164 return 0; 165 166 fail: 167 ixgbe_i2c_bus_clear(hw); 168 if (lock) 169 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 170 retry++; 171 if (retry < max_retry) 172 hw_dbg(hw, "I2C byte read combined error - Retry.\n"); 173 else 174 hw_dbg(hw, "I2C byte read combined error.\n"); 175 } while (retry < max_retry); 176 177 return IXGBE_ERR_I2C; 178 } 179 180 /** 181 * ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation 182 * @hw: pointer to the hardware structure 183 * @addr: I2C bus address to write to 184 * @reg: I2C device register to write to 185 * @val: value to write 186 * @lock: true if to take and release semaphore 187 * 188 * Returns an error code on error. 189 */ 190 s32 ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr, 191 u16 reg, u16 val, bool lock) 192 { 193 u32 swfw_mask = hw->phy.phy_semaphore_mask; 194 int max_retry = 1; 195 int retry = 0; 196 u8 reg_high; 197 u8 csum; 198 199 reg_high = (reg >> 7) & 0xFE; /* Indicate write combined */ 200 csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF); 201 csum = ixgbe_ones_comp_byte_add(csum, val >> 8); 202 csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF); 203 csum = ~csum; 204 do { 205 if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 206 return IXGBE_ERR_SWFW_SYNC; 207 ixgbe_i2c_start(hw); 208 /* Device Address and write indication */ 209 if (ixgbe_out_i2c_byte_ack(hw, addr)) 210 goto fail; 211 /* Write bits 14:8 */ 212 if (ixgbe_out_i2c_byte_ack(hw, reg_high)) 213 goto fail; 214 /* Write bits 7:0 */ 215 if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF)) 216 goto fail; 217 /* Write data 15:8 */ 218 if (ixgbe_out_i2c_byte_ack(hw, val >> 8)) 219 goto fail; 220 /* Write data 7:0 */ 221 if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF)) 222 goto fail; 223 /* Write csum */ 224 if (ixgbe_out_i2c_byte_ack(hw, csum)) 225 goto fail; 226 ixgbe_i2c_stop(hw); 227 if (lock) 228 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 229 return 0; 230 231 fail: 232 ixgbe_i2c_bus_clear(hw); 233 if (lock) 234 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 235 retry++; 236 if (retry < max_retry) 237 hw_dbg(hw, "I2C byte write combined error - Retry.\n"); 238 else 239 hw_dbg(hw, "I2C byte write combined error.\n"); 240 } while (retry < max_retry); 241 242 return IXGBE_ERR_I2C; 243 } 244 245 /** 246 * ixgbe_probe_phy - Probe a single address for a PHY 247 * @hw: pointer to hardware structure 248 * @phy_addr: PHY address to probe 249 * 250 * Returns true if PHY found 251 **/ 252 static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr) 253 { 254 u16 ext_ability = 0; 255 256 hw->phy.mdio.prtad = phy_addr; 257 if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0) 258 return false; 259 260 if (ixgbe_get_phy_id(hw)) 261 return false; 262 263 hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id); 264 265 if (hw->phy.type == ixgbe_phy_unknown) { 266 hw->phy.ops.read_reg(hw, 267 MDIO_PMA_EXTABLE, 268 MDIO_MMD_PMAPMD, 269 &ext_ability); 270 if (ext_ability & 271 (MDIO_PMA_EXTABLE_10GBT | 272 MDIO_PMA_EXTABLE_1000BT)) 273 hw->phy.type = ixgbe_phy_cu_unknown; 274 else 275 hw->phy.type = ixgbe_phy_generic; 276 } 277 278 return true; 279 } 280 281 /** 282 * ixgbe_identify_phy_generic - Get physical layer module 283 * @hw: pointer to hardware structure 284 * 285 * Determines the physical layer module found on the current adapter. 286 **/ 287 s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw) 288 { 289 u32 phy_addr; 290 u32 status = IXGBE_ERR_PHY_ADDR_INVALID; 291 292 if (!hw->phy.phy_semaphore_mask) { 293 if (hw->bus.lan_id) 294 hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM; 295 else 296 hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM; 297 } 298 299 if (hw->phy.type != ixgbe_phy_unknown) 300 return 0; 301 302 if (hw->phy.nw_mng_if_sel) { 303 phy_addr = (hw->phy.nw_mng_if_sel & 304 IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD) >> 305 IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD_SHIFT; 306 if (ixgbe_probe_phy(hw, phy_addr)) 307 return 0; 308 else 309 return IXGBE_ERR_PHY_ADDR_INVALID; 310 } 311 312 for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) { 313 if (ixgbe_probe_phy(hw, phy_addr)) { 314 status = 0; 315 break; 316 } 317 } 318 319 /* Certain media types do not have a phy so an address will not 320 * be found and the code will take this path. Caller has to 321 * decide if it is an error or not. 322 */ 323 if (status) 324 hw->phy.mdio.prtad = MDIO_PRTAD_NONE; 325 326 return status; 327 } 328 329 /** 330 * ixgbe_check_reset_blocked - check status of MNG FW veto bit 331 * @hw: pointer to the hardware structure 332 * 333 * This function checks the MMNGC.MNG_VETO bit to see if there are 334 * any constraints on link from manageability. For MAC's that don't 335 * have this bit just return false since the link can not be blocked 336 * via this method. 337 **/ 338 bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw) 339 { 340 u32 mmngc; 341 342 /* If we don't have this bit, it can't be blocking */ 343 if (hw->mac.type == ixgbe_mac_82598EB) 344 return false; 345 346 mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC); 347 if (mmngc & IXGBE_MMNGC_MNG_VETO) { 348 hw_dbg(hw, "MNG_VETO bit detected.\n"); 349 return true; 350 } 351 352 return false; 353 } 354 355 /** 356 * ixgbe_get_phy_id - Get the phy type 357 * @hw: pointer to hardware structure 358 * 359 **/ 360 static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw) 361 { 362 s32 status; 363 u16 phy_id_high = 0; 364 u16 phy_id_low = 0; 365 366 status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD, 367 &phy_id_high); 368 369 if (!status) { 370 hw->phy.id = (u32)(phy_id_high << 16); 371 status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD, 372 &phy_id_low); 373 hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK); 374 hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK); 375 } 376 return status; 377 } 378 379 /** 380 * ixgbe_get_phy_type_from_id - Get the phy type 381 * @phy_id: hardware phy id 382 * 383 **/ 384 static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id) 385 { 386 enum ixgbe_phy_type phy_type; 387 388 switch (phy_id) { 389 case TN1010_PHY_ID: 390 phy_type = ixgbe_phy_tn; 391 break; 392 case X550_PHY_ID2: 393 case X550_PHY_ID3: 394 case X540_PHY_ID: 395 phy_type = ixgbe_phy_aq; 396 break; 397 case QT2022_PHY_ID: 398 phy_type = ixgbe_phy_qt; 399 break; 400 case ATH_PHY_ID: 401 phy_type = ixgbe_phy_nl; 402 break; 403 case X557_PHY_ID: 404 case X557_PHY_ID2: 405 phy_type = ixgbe_phy_x550em_ext_t; 406 break; 407 default: 408 phy_type = ixgbe_phy_unknown; 409 break; 410 } 411 412 return phy_type; 413 } 414 415 /** 416 * ixgbe_reset_phy_generic - Performs a PHY reset 417 * @hw: pointer to hardware structure 418 **/ 419 s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw) 420 { 421 u32 i; 422 u16 ctrl = 0; 423 s32 status = 0; 424 425 if (hw->phy.type == ixgbe_phy_unknown) 426 status = ixgbe_identify_phy_generic(hw); 427 428 if (status != 0 || hw->phy.type == ixgbe_phy_none) 429 return status; 430 431 /* Don't reset PHY if it's shut down due to overtemp. */ 432 if (!hw->phy.reset_if_overtemp && 433 (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw))) 434 return 0; 435 436 /* Blocked by MNG FW so bail */ 437 if (ixgbe_check_reset_blocked(hw)) 438 return 0; 439 440 /* 441 * Perform soft PHY reset to the PHY_XS. 442 * This will cause a soft reset to the PHY 443 */ 444 hw->phy.ops.write_reg(hw, MDIO_CTRL1, 445 MDIO_MMD_PHYXS, 446 MDIO_CTRL1_RESET); 447 448 /* 449 * Poll for reset bit to self-clear indicating reset is complete. 450 * Some PHYs could take up to 3 seconds to complete and need about 451 * 1.7 usec delay after the reset is complete. 452 */ 453 for (i = 0; i < 30; i++) { 454 msleep(100); 455 if (hw->phy.type == ixgbe_phy_x550em_ext_t) { 456 status = hw->phy.ops.read_reg(hw, 457 IXGBE_MDIO_TX_VENDOR_ALARMS_3, 458 MDIO_MMD_PMAPMD, &ctrl); 459 if (status) 460 return status; 461 462 if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) { 463 udelay(2); 464 break; 465 } 466 } else { 467 status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, 468 MDIO_MMD_PHYXS, &ctrl); 469 if (status) 470 return status; 471 472 if (!(ctrl & MDIO_CTRL1_RESET)) { 473 udelay(2); 474 break; 475 } 476 } 477 } 478 479 if (ctrl & MDIO_CTRL1_RESET) { 480 hw_dbg(hw, "PHY reset polling failed to complete.\n"); 481 return IXGBE_ERR_RESET_FAILED; 482 } 483 484 return 0; 485 } 486 487 /** 488 * ixgbe_read_phy_mdi - Reads a value from a specified PHY register without 489 * the SWFW lock 490 * @hw: pointer to hardware structure 491 * @reg_addr: 32 bit address of PHY register to read 492 * @device_type: 5 bit device type 493 * @phy_data: Pointer to read data from PHY register 494 **/ 495 s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type, 496 u16 *phy_data) 497 { 498 u32 i, data, command; 499 500 /* Setup and write the address cycle command */ 501 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) | 502 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) | 503 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) | 504 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND)); 505 506 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command); 507 508 /* Check every 10 usec to see if the address cycle completed. 509 * The MDI Command bit will clear when the operation is 510 * complete 511 */ 512 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) { 513 udelay(10); 514 515 command = IXGBE_READ_REG(hw, IXGBE_MSCA); 516 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0) 517 break; 518 } 519 520 521 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) { 522 hw_dbg(hw, "PHY address command did not complete.\n"); 523 return IXGBE_ERR_PHY; 524 } 525 526 /* Address cycle complete, setup and write the read 527 * command 528 */ 529 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) | 530 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) | 531 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) | 532 (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND)); 533 534 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command); 535 536 /* Check every 10 usec to see if the address cycle 537 * completed. The MDI Command bit will clear when the 538 * operation is complete 539 */ 540 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) { 541 udelay(10); 542 543 command = IXGBE_READ_REG(hw, IXGBE_MSCA); 544 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0) 545 break; 546 } 547 548 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) { 549 hw_dbg(hw, "PHY read command didn't complete\n"); 550 return IXGBE_ERR_PHY; 551 } 552 553 /* Read operation is complete. Get the data 554 * from MSRWD 555 */ 556 data = IXGBE_READ_REG(hw, IXGBE_MSRWD); 557 data >>= IXGBE_MSRWD_READ_DATA_SHIFT; 558 *phy_data = (u16)(data); 559 560 return 0; 561 } 562 563 /** 564 * ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register 565 * using the SWFW lock - this function is needed in most cases 566 * @hw: pointer to hardware structure 567 * @reg_addr: 32 bit address of PHY register to read 568 * @device_type: 5 bit device type 569 * @phy_data: Pointer to read data from PHY register 570 **/ 571 s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr, 572 u32 device_type, u16 *phy_data) 573 { 574 s32 status; 575 u32 gssr = hw->phy.phy_semaphore_mask; 576 577 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) { 578 status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type, 579 phy_data); 580 hw->mac.ops.release_swfw_sync(hw, gssr); 581 } else { 582 return IXGBE_ERR_SWFW_SYNC; 583 } 584 585 return status; 586 } 587 588 /** 589 * ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register 590 * without SWFW lock 591 * @hw: pointer to hardware structure 592 * @reg_addr: 32 bit PHY register to write 593 * @device_type: 5 bit device type 594 * @phy_data: Data to write to the PHY register 595 **/ 596 s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, 597 u32 device_type, u16 phy_data) 598 { 599 u32 i, command; 600 601 /* Put the data in the MDI single read and write data register*/ 602 IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data); 603 604 /* Setup and write the address cycle command */ 605 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) | 606 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) | 607 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) | 608 (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND)); 609 610 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command); 611 612 /* 613 * Check every 10 usec to see if the address cycle completed. 614 * The MDI Command bit will clear when the operation is 615 * complete 616 */ 617 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) { 618 udelay(10); 619 620 command = IXGBE_READ_REG(hw, IXGBE_MSCA); 621 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0) 622 break; 623 } 624 625 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) { 626 hw_dbg(hw, "PHY address cmd didn't complete\n"); 627 return IXGBE_ERR_PHY; 628 } 629 630 /* 631 * Address cycle complete, setup and write the write 632 * command 633 */ 634 command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT) | 635 (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) | 636 (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) | 637 (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND)); 638 639 IXGBE_WRITE_REG(hw, IXGBE_MSCA, command); 640 641 /* Check every 10 usec to see if the address cycle 642 * completed. The MDI Command bit will clear when the 643 * operation is complete 644 */ 645 for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) { 646 udelay(10); 647 648 command = IXGBE_READ_REG(hw, IXGBE_MSCA); 649 if ((command & IXGBE_MSCA_MDI_COMMAND) == 0) 650 break; 651 } 652 653 if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) { 654 hw_dbg(hw, "PHY write cmd didn't complete\n"); 655 return IXGBE_ERR_PHY; 656 } 657 658 return 0; 659 } 660 661 /** 662 * ixgbe_write_phy_reg_generic - Writes a value to specified PHY register 663 * using SWFW lock- this function is needed in most cases 664 * @hw: pointer to hardware structure 665 * @reg_addr: 32 bit PHY register to write 666 * @device_type: 5 bit device type 667 * @phy_data: Data to write to the PHY register 668 **/ 669 s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr, 670 u32 device_type, u16 phy_data) 671 { 672 s32 status; 673 u32 gssr = hw->phy.phy_semaphore_mask; 674 675 if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) { 676 status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type, 677 phy_data); 678 hw->mac.ops.release_swfw_sync(hw, gssr); 679 } else { 680 return IXGBE_ERR_SWFW_SYNC; 681 } 682 683 return status; 684 } 685 686 /** 687 * ixgbe_setup_phy_link_generic - Set and restart autoneg 688 * @hw: pointer to hardware structure 689 * 690 * Restart autonegotiation and PHY and waits for completion. 691 **/ 692 s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw) 693 { 694 s32 status = 0; 695 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG; 696 bool autoneg = false; 697 ixgbe_link_speed speed; 698 699 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg); 700 701 /* Set or unset auto-negotiation 10G advertisement */ 702 hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg); 703 704 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G; 705 if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) && 706 (speed & IXGBE_LINK_SPEED_10GB_FULL)) 707 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G; 708 709 hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg); 710 711 hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG, 712 MDIO_MMD_AN, &autoneg_reg); 713 714 if (hw->mac.type == ixgbe_mac_X550) { 715 /* Set or unset auto-negotiation 5G advertisement */ 716 autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE; 717 if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) && 718 (speed & IXGBE_LINK_SPEED_5GB_FULL)) 719 autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE; 720 721 /* Set or unset auto-negotiation 2.5G advertisement */ 722 autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE; 723 if ((hw->phy.autoneg_advertised & 724 IXGBE_LINK_SPEED_2_5GB_FULL) && 725 (speed & IXGBE_LINK_SPEED_2_5GB_FULL)) 726 autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE; 727 } 728 729 /* Set or unset auto-negotiation 1G advertisement */ 730 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE; 731 if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) && 732 (speed & IXGBE_LINK_SPEED_1GB_FULL)) 733 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE; 734 735 hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG, 736 MDIO_MMD_AN, autoneg_reg); 737 738 /* Set or unset auto-negotiation 100M advertisement */ 739 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg); 740 741 autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF); 742 if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) && 743 (speed & IXGBE_LINK_SPEED_100_FULL)) 744 autoneg_reg |= ADVERTISE_100FULL; 745 746 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg); 747 748 /* Blocked by MNG FW so don't reset PHY */ 749 if (ixgbe_check_reset_blocked(hw)) 750 return 0; 751 752 /* Restart PHY autonegotiation and wait for completion */ 753 hw->phy.ops.read_reg(hw, MDIO_CTRL1, 754 MDIO_MMD_AN, &autoneg_reg); 755 756 autoneg_reg |= MDIO_AN_CTRL1_RESTART; 757 758 hw->phy.ops.write_reg(hw, MDIO_CTRL1, 759 MDIO_MMD_AN, autoneg_reg); 760 761 return status; 762 } 763 764 /** 765 * ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities 766 * @hw: pointer to hardware structure 767 * @speed: new link speed 768 * @autoneg_wait_to_complete: unused 769 **/ 770 s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw, 771 ixgbe_link_speed speed, 772 bool autoneg_wait_to_complete) 773 { 774 /* Clear autoneg_advertised and set new values based on input link 775 * speed. 776 */ 777 hw->phy.autoneg_advertised = 0; 778 779 if (speed & IXGBE_LINK_SPEED_10GB_FULL) 780 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL; 781 782 if (speed & IXGBE_LINK_SPEED_5GB_FULL) 783 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL; 784 785 if (speed & IXGBE_LINK_SPEED_2_5GB_FULL) 786 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL; 787 788 if (speed & IXGBE_LINK_SPEED_1GB_FULL) 789 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL; 790 791 if (speed & IXGBE_LINK_SPEED_100_FULL) 792 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL; 793 794 if (speed & IXGBE_LINK_SPEED_10_FULL) 795 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL; 796 797 /* Setup link based on the new speed settings */ 798 if (hw->phy.ops.setup_link) 799 hw->phy.ops.setup_link(hw); 800 801 return 0; 802 } 803 804 /** 805 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy 806 * @hw: pointer to hardware structure 807 * 808 * Determines the supported link capabilities by reading the PHY auto 809 * negotiation register. 810 */ 811 static s32 ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw) 812 { 813 u16 speed_ability; 814 s32 status; 815 816 status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD, 817 &speed_ability); 818 if (status) 819 return status; 820 821 if (speed_ability & MDIO_SPEED_10G) 822 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL; 823 if (speed_ability & MDIO_PMA_SPEED_1000) 824 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL; 825 if (speed_ability & MDIO_PMA_SPEED_100) 826 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL; 827 828 switch (hw->mac.type) { 829 case ixgbe_mac_X550: 830 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL; 831 hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL; 832 break; 833 case ixgbe_mac_X550EM_x: 834 case ixgbe_mac_x550em_a: 835 hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL; 836 break; 837 default: 838 break; 839 } 840 841 return 0; 842 } 843 844 /** 845 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities 846 * @hw: pointer to hardware structure 847 * @speed: pointer to link speed 848 * @autoneg: boolean auto-negotiation value 849 */ 850 s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw, 851 ixgbe_link_speed *speed, 852 bool *autoneg) 853 { 854 s32 status = 0; 855 856 *autoneg = true; 857 if (!hw->phy.speeds_supported) 858 status = ixgbe_get_copper_speeds_supported(hw); 859 860 *speed = hw->phy.speeds_supported; 861 return status; 862 } 863 864 /** 865 * ixgbe_check_phy_link_tnx - Determine link and speed status 866 * @hw: pointer to hardware structure 867 * @speed: link speed 868 * @link_up: status of link 869 * 870 * Reads the VS1 register to determine if link is up and the current speed for 871 * the PHY. 872 **/ 873 s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed, 874 bool *link_up) 875 { 876 s32 status; 877 u32 time_out; 878 u32 max_time_out = 10; 879 u16 phy_link = 0; 880 u16 phy_speed = 0; 881 u16 phy_data = 0; 882 883 /* Initialize speed and link to default case */ 884 *link_up = false; 885 *speed = IXGBE_LINK_SPEED_10GB_FULL; 886 887 /* 888 * Check current speed and link status of the PHY register. 889 * This is a vendor specific register and may have to 890 * be changed for other copper PHYs. 891 */ 892 for (time_out = 0; time_out < max_time_out; time_out++) { 893 udelay(10); 894 status = hw->phy.ops.read_reg(hw, 895 MDIO_STAT1, 896 MDIO_MMD_VEND1, 897 &phy_data); 898 phy_link = phy_data & 899 IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS; 900 phy_speed = phy_data & 901 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS; 902 if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) { 903 *link_up = true; 904 if (phy_speed == 905 IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS) 906 *speed = IXGBE_LINK_SPEED_1GB_FULL; 907 break; 908 } 909 } 910 911 return status; 912 } 913 914 /** 915 * ixgbe_setup_phy_link_tnx - Set and restart autoneg 916 * @hw: pointer to hardware structure 917 * 918 * Restart autonegotiation and PHY and waits for completion. 919 * This function always returns success, this is nessary since 920 * it is called via a function pointer that could call other 921 * functions that could return an error. 922 **/ 923 s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw) 924 { 925 u16 autoneg_reg = IXGBE_MII_AUTONEG_REG; 926 bool autoneg = false; 927 ixgbe_link_speed speed; 928 929 ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg); 930 931 if (speed & IXGBE_LINK_SPEED_10GB_FULL) { 932 /* Set or unset auto-negotiation 10G advertisement */ 933 hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, 934 MDIO_MMD_AN, 935 &autoneg_reg); 936 937 autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G; 938 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) 939 autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G; 940 941 hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, 942 MDIO_MMD_AN, 943 autoneg_reg); 944 } 945 946 if (speed & IXGBE_LINK_SPEED_1GB_FULL) { 947 /* Set or unset auto-negotiation 1G advertisement */ 948 hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG, 949 MDIO_MMD_AN, 950 &autoneg_reg); 951 952 autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX; 953 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) 954 autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX; 955 956 hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG, 957 MDIO_MMD_AN, 958 autoneg_reg); 959 } 960 961 if (speed & IXGBE_LINK_SPEED_100_FULL) { 962 /* Set or unset auto-negotiation 100M advertisement */ 963 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, 964 MDIO_MMD_AN, 965 &autoneg_reg); 966 967 autoneg_reg &= ~(ADVERTISE_100FULL | 968 ADVERTISE_100HALF); 969 if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) 970 autoneg_reg |= ADVERTISE_100FULL; 971 972 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, 973 MDIO_MMD_AN, 974 autoneg_reg); 975 } 976 977 /* Blocked by MNG FW so don't reset PHY */ 978 if (ixgbe_check_reset_blocked(hw)) 979 return 0; 980 981 /* Restart PHY autonegotiation and wait for completion */ 982 hw->phy.ops.read_reg(hw, MDIO_CTRL1, 983 MDIO_MMD_AN, &autoneg_reg); 984 985 autoneg_reg |= MDIO_AN_CTRL1_RESTART; 986 987 hw->phy.ops.write_reg(hw, MDIO_CTRL1, 988 MDIO_MMD_AN, autoneg_reg); 989 return 0; 990 } 991 992 /** 993 * ixgbe_reset_phy_nl - Performs a PHY reset 994 * @hw: pointer to hardware structure 995 **/ 996 s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw) 997 { 998 u16 phy_offset, control, eword, edata, block_crc; 999 bool end_data = false; 1000 u16 list_offset, data_offset; 1001 u16 phy_data = 0; 1002 s32 ret_val; 1003 u32 i; 1004 1005 /* Blocked by MNG FW so bail */ 1006 if (ixgbe_check_reset_blocked(hw)) 1007 return 0; 1008 1009 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data); 1010 1011 /* reset the PHY and poll for completion */ 1012 hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, 1013 (phy_data | MDIO_CTRL1_RESET)); 1014 1015 for (i = 0; i < 100; i++) { 1016 hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, 1017 &phy_data); 1018 if ((phy_data & MDIO_CTRL1_RESET) == 0) 1019 break; 1020 usleep_range(10000, 20000); 1021 } 1022 1023 if ((phy_data & MDIO_CTRL1_RESET) != 0) { 1024 hw_dbg(hw, "PHY reset did not complete.\n"); 1025 return IXGBE_ERR_PHY; 1026 } 1027 1028 /* Get init offsets */ 1029 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset, 1030 &data_offset); 1031 if (ret_val) 1032 return ret_val; 1033 1034 ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc); 1035 data_offset++; 1036 while (!end_data) { 1037 /* 1038 * Read control word from PHY init contents offset 1039 */ 1040 ret_val = hw->eeprom.ops.read(hw, data_offset, &eword); 1041 if (ret_val) 1042 goto err_eeprom; 1043 control = (eword & IXGBE_CONTROL_MASK_NL) >> 1044 IXGBE_CONTROL_SHIFT_NL; 1045 edata = eword & IXGBE_DATA_MASK_NL; 1046 switch (control) { 1047 case IXGBE_DELAY_NL: 1048 data_offset++; 1049 hw_dbg(hw, "DELAY: %d MS\n", edata); 1050 usleep_range(edata * 1000, edata * 2000); 1051 break; 1052 case IXGBE_DATA_NL: 1053 hw_dbg(hw, "DATA:\n"); 1054 data_offset++; 1055 ret_val = hw->eeprom.ops.read(hw, data_offset++, 1056 &phy_offset); 1057 if (ret_val) 1058 goto err_eeprom; 1059 for (i = 0; i < edata; i++) { 1060 ret_val = hw->eeprom.ops.read(hw, data_offset, 1061 &eword); 1062 if (ret_val) 1063 goto err_eeprom; 1064 hw->phy.ops.write_reg(hw, phy_offset, 1065 MDIO_MMD_PMAPMD, eword); 1066 hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword, 1067 phy_offset); 1068 data_offset++; 1069 phy_offset++; 1070 } 1071 break; 1072 case IXGBE_CONTROL_NL: 1073 data_offset++; 1074 hw_dbg(hw, "CONTROL:\n"); 1075 if (edata == IXGBE_CONTROL_EOL_NL) { 1076 hw_dbg(hw, "EOL\n"); 1077 end_data = true; 1078 } else if (edata == IXGBE_CONTROL_SOL_NL) { 1079 hw_dbg(hw, "SOL\n"); 1080 } else { 1081 hw_dbg(hw, "Bad control value\n"); 1082 return IXGBE_ERR_PHY; 1083 } 1084 break; 1085 default: 1086 hw_dbg(hw, "Bad control type\n"); 1087 return IXGBE_ERR_PHY; 1088 } 1089 } 1090 1091 return ret_val; 1092 1093 err_eeprom: 1094 hw_err(hw, "eeprom read at offset %d failed\n", data_offset); 1095 return IXGBE_ERR_PHY; 1096 } 1097 1098 /** 1099 * ixgbe_identify_module_generic - Identifies module type 1100 * @hw: pointer to hardware structure 1101 * 1102 * Determines HW type and calls appropriate function. 1103 **/ 1104 s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw) 1105 { 1106 switch (hw->mac.ops.get_media_type(hw)) { 1107 case ixgbe_media_type_fiber: 1108 return ixgbe_identify_sfp_module_generic(hw); 1109 case ixgbe_media_type_fiber_qsfp: 1110 return ixgbe_identify_qsfp_module_generic(hw); 1111 default: 1112 hw->phy.sfp_type = ixgbe_sfp_type_not_present; 1113 return IXGBE_ERR_SFP_NOT_PRESENT; 1114 } 1115 1116 return IXGBE_ERR_SFP_NOT_PRESENT; 1117 } 1118 1119 /** 1120 * ixgbe_identify_sfp_module_generic - Identifies SFP modules 1121 * @hw: pointer to hardware structure 1122 * 1123 * Searches for and identifies the SFP module and assigns appropriate PHY type. 1124 **/ 1125 s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw) 1126 { 1127 struct ixgbe_adapter *adapter = hw->back; 1128 s32 status; 1129 u32 vendor_oui = 0; 1130 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type; 1131 u8 identifier = 0; 1132 u8 comp_codes_1g = 0; 1133 u8 comp_codes_10g = 0; 1134 u8 oui_bytes[3] = {0, 0, 0}; 1135 u8 cable_tech = 0; 1136 u8 cable_spec = 0; 1137 u16 enforce_sfp = 0; 1138 1139 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) { 1140 hw->phy.sfp_type = ixgbe_sfp_type_not_present; 1141 return IXGBE_ERR_SFP_NOT_PRESENT; 1142 } 1143 1144 /* LAN ID is needed for sfp_type determination */ 1145 hw->mac.ops.set_lan_id(hw); 1146 1147 status = hw->phy.ops.read_i2c_eeprom(hw, 1148 IXGBE_SFF_IDENTIFIER, 1149 &identifier); 1150 1151 if (status) 1152 goto err_read_i2c_eeprom; 1153 1154 if (identifier != IXGBE_SFF_IDENTIFIER_SFP) { 1155 hw->phy.type = ixgbe_phy_sfp_unsupported; 1156 return IXGBE_ERR_SFP_NOT_SUPPORTED; 1157 } 1158 status = hw->phy.ops.read_i2c_eeprom(hw, 1159 IXGBE_SFF_1GBE_COMP_CODES, 1160 &comp_codes_1g); 1161 1162 if (status) 1163 goto err_read_i2c_eeprom; 1164 1165 status = hw->phy.ops.read_i2c_eeprom(hw, 1166 IXGBE_SFF_10GBE_COMP_CODES, 1167 &comp_codes_10g); 1168 1169 if (status) 1170 goto err_read_i2c_eeprom; 1171 status = hw->phy.ops.read_i2c_eeprom(hw, 1172 IXGBE_SFF_CABLE_TECHNOLOGY, 1173 &cable_tech); 1174 1175 if (status) 1176 goto err_read_i2c_eeprom; 1177 1178 /* ID Module 1179 * ========= 1180 * 0 SFP_DA_CU 1181 * 1 SFP_SR 1182 * 2 SFP_LR 1183 * 3 SFP_DA_CORE0 - 82599-specific 1184 * 4 SFP_DA_CORE1 - 82599-specific 1185 * 5 SFP_SR/LR_CORE0 - 82599-specific 1186 * 6 SFP_SR/LR_CORE1 - 82599-specific 1187 * 7 SFP_act_lmt_DA_CORE0 - 82599-specific 1188 * 8 SFP_act_lmt_DA_CORE1 - 82599-specific 1189 * 9 SFP_1g_cu_CORE0 - 82599-specific 1190 * 10 SFP_1g_cu_CORE1 - 82599-specific 1191 * 11 SFP_1g_sx_CORE0 - 82599-specific 1192 * 12 SFP_1g_sx_CORE1 - 82599-specific 1193 */ 1194 if (hw->mac.type == ixgbe_mac_82598EB) { 1195 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) 1196 hw->phy.sfp_type = ixgbe_sfp_type_da_cu; 1197 else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE) 1198 hw->phy.sfp_type = ixgbe_sfp_type_sr; 1199 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE) 1200 hw->phy.sfp_type = ixgbe_sfp_type_lr; 1201 else 1202 hw->phy.sfp_type = ixgbe_sfp_type_unknown; 1203 } else { 1204 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) { 1205 if (hw->bus.lan_id == 0) 1206 hw->phy.sfp_type = 1207 ixgbe_sfp_type_da_cu_core0; 1208 else 1209 hw->phy.sfp_type = 1210 ixgbe_sfp_type_da_cu_core1; 1211 } else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) { 1212 hw->phy.ops.read_i2c_eeprom( 1213 hw, IXGBE_SFF_CABLE_SPEC_COMP, 1214 &cable_spec); 1215 if (cable_spec & 1216 IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) { 1217 if (hw->bus.lan_id == 0) 1218 hw->phy.sfp_type = 1219 ixgbe_sfp_type_da_act_lmt_core0; 1220 else 1221 hw->phy.sfp_type = 1222 ixgbe_sfp_type_da_act_lmt_core1; 1223 } else { 1224 hw->phy.sfp_type = 1225 ixgbe_sfp_type_unknown; 1226 } 1227 } else if (comp_codes_10g & 1228 (IXGBE_SFF_10GBASESR_CAPABLE | 1229 IXGBE_SFF_10GBASELR_CAPABLE)) { 1230 if (hw->bus.lan_id == 0) 1231 hw->phy.sfp_type = 1232 ixgbe_sfp_type_srlr_core0; 1233 else 1234 hw->phy.sfp_type = 1235 ixgbe_sfp_type_srlr_core1; 1236 } else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) { 1237 if (hw->bus.lan_id == 0) 1238 hw->phy.sfp_type = 1239 ixgbe_sfp_type_1g_cu_core0; 1240 else 1241 hw->phy.sfp_type = 1242 ixgbe_sfp_type_1g_cu_core1; 1243 } else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) { 1244 if (hw->bus.lan_id == 0) 1245 hw->phy.sfp_type = 1246 ixgbe_sfp_type_1g_sx_core0; 1247 else 1248 hw->phy.sfp_type = 1249 ixgbe_sfp_type_1g_sx_core1; 1250 } else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) { 1251 if (hw->bus.lan_id == 0) 1252 hw->phy.sfp_type = 1253 ixgbe_sfp_type_1g_lx_core0; 1254 else 1255 hw->phy.sfp_type = 1256 ixgbe_sfp_type_1g_lx_core1; 1257 } else { 1258 hw->phy.sfp_type = ixgbe_sfp_type_unknown; 1259 } 1260 } 1261 1262 if (hw->phy.sfp_type != stored_sfp_type) 1263 hw->phy.sfp_setup_needed = true; 1264 1265 /* Determine if the SFP+ PHY is dual speed or not. */ 1266 hw->phy.multispeed_fiber = false; 1267 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) && 1268 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) || 1269 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) && 1270 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE))) 1271 hw->phy.multispeed_fiber = true; 1272 1273 /* Determine PHY vendor */ 1274 if (hw->phy.type != ixgbe_phy_nl) { 1275 hw->phy.id = identifier; 1276 status = hw->phy.ops.read_i2c_eeprom(hw, 1277 IXGBE_SFF_VENDOR_OUI_BYTE0, 1278 &oui_bytes[0]); 1279 1280 if (status != 0) 1281 goto err_read_i2c_eeprom; 1282 1283 status = hw->phy.ops.read_i2c_eeprom(hw, 1284 IXGBE_SFF_VENDOR_OUI_BYTE1, 1285 &oui_bytes[1]); 1286 1287 if (status != 0) 1288 goto err_read_i2c_eeprom; 1289 1290 status = hw->phy.ops.read_i2c_eeprom(hw, 1291 IXGBE_SFF_VENDOR_OUI_BYTE2, 1292 &oui_bytes[2]); 1293 1294 if (status != 0) 1295 goto err_read_i2c_eeprom; 1296 1297 vendor_oui = 1298 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) | 1299 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) | 1300 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT)); 1301 1302 switch (vendor_oui) { 1303 case IXGBE_SFF_VENDOR_OUI_TYCO: 1304 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) 1305 hw->phy.type = 1306 ixgbe_phy_sfp_passive_tyco; 1307 break; 1308 case IXGBE_SFF_VENDOR_OUI_FTL: 1309 if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) 1310 hw->phy.type = ixgbe_phy_sfp_ftl_active; 1311 else 1312 hw->phy.type = ixgbe_phy_sfp_ftl; 1313 break; 1314 case IXGBE_SFF_VENDOR_OUI_AVAGO: 1315 hw->phy.type = ixgbe_phy_sfp_avago; 1316 break; 1317 case IXGBE_SFF_VENDOR_OUI_INTEL: 1318 hw->phy.type = ixgbe_phy_sfp_intel; 1319 break; 1320 default: 1321 if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) 1322 hw->phy.type = 1323 ixgbe_phy_sfp_passive_unknown; 1324 else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) 1325 hw->phy.type = 1326 ixgbe_phy_sfp_active_unknown; 1327 else 1328 hw->phy.type = ixgbe_phy_sfp_unknown; 1329 break; 1330 } 1331 } 1332 1333 /* Allow any DA cable vendor */ 1334 if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE | 1335 IXGBE_SFF_DA_ACTIVE_CABLE)) 1336 return 0; 1337 1338 /* Verify supported 1G SFP modules */ 1339 if (comp_codes_10g == 0 && 1340 !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 || 1341 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 || 1342 hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 || 1343 hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 || 1344 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 || 1345 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) { 1346 hw->phy.type = ixgbe_phy_sfp_unsupported; 1347 return IXGBE_ERR_SFP_NOT_SUPPORTED; 1348 } 1349 1350 /* Anything else 82598-based is supported */ 1351 if (hw->mac.type == ixgbe_mac_82598EB) 1352 return 0; 1353 1354 hw->mac.ops.get_device_caps(hw, &enforce_sfp); 1355 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) && 1356 !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 || 1357 hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 || 1358 hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 || 1359 hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 || 1360 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 || 1361 hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) { 1362 /* Make sure we're a supported PHY type */ 1363 if (hw->phy.type == ixgbe_phy_sfp_intel) 1364 return 0; 1365 if (hw->allow_unsupported_sfp) { 1366 e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n"); 1367 return 0; 1368 } 1369 hw_dbg(hw, "SFP+ module not supported\n"); 1370 hw->phy.type = ixgbe_phy_sfp_unsupported; 1371 return IXGBE_ERR_SFP_NOT_SUPPORTED; 1372 } 1373 return 0; 1374 1375 err_read_i2c_eeprom: 1376 hw->phy.sfp_type = ixgbe_sfp_type_not_present; 1377 if (hw->phy.type != ixgbe_phy_nl) { 1378 hw->phy.id = 0; 1379 hw->phy.type = ixgbe_phy_unknown; 1380 } 1381 return IXGBE_ERR_SFP_NOT_PRESENT; 1382 } 1383 1384 /** 1385 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules 1386 * @hw: pointer to hardware structure 1387 * 1388 * Searches for and identifies the QSFP module and assigns appropriate PHY type 1389 **/ 1390 static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw) 1391 { 1392 struct ixgbe_adapter *adapter = hw->back; 1393 s32 status; 1394 u32 vendor_oui = 0; 1395 enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type; 1396 u8 identifier = 0; 1397 u8 comp_codes_1g = 0; 1398 u8 comp_codes_10g = 0; 1399 u8 oui_bytes[3] = {0, 0, 0}; 1400 u16 enforce_sfp = 0; 1401 u8 connector = 0; 1402 u8 cable_length = 0; 1403 u8 device_tech = 0; 1404 bool active_cable = false; 1405 1406 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) { 1407 hw->phy.sfp_type = ixgbe_sfp_type_not_present; 1408 return IXGBE_ERR_SFP_NOT_PRESENT; 1409 } 1410 1411 /* LAN ID is needed for sfp_type determination */ 1412 hw->mac.ops.set_lan_id(hw); 1413 1414 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER, 1415 &identifier); 1416 1417 if (status != 0) 1418 goto err_read_i2c_eeprom; 1419 1420 if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) { 1421 hw->phy.type = ixgbe_phy_sfp_unsupported; 1422 return IXGBE_ERR_SFP_NOT_SUPPORTED; 1423 } 1424 1425 hw->phy.id = identifier; 1426 1427 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP, 1428 &comp_codes_10g); 1429 1430 if (status != 0) 1431 goto err_read_i2c_eeprom; 1432 1433 status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP, 1434 &comp_codes_1g); 1435 1436 if (status != 0) 1437 goto err_read_i2c_eeprom; 1438 1439 if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) { 1440 hw->phy.type = ixgbe_phy_qsfp_passive_unknown; 1441 if (hw->bus.lan_id == 0) 1442 hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0; 1443 else 1444 hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1; 1445 } else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE | 1446 IXGBE_SFF_10GBASELR_CAPABLE)) { 1447 if (hw->bus.lan_id == 0) 1448 hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0; 1449 else 1450 hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1; 1451 } else { 1452 if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE) 1453 active_cable = true; 1454 1455 if (!active_cable) { 1456 /* check for active DA cables that pre-date 1457 * SFF-8436 v3.6 1458 */ 1459 hw->phy.ops.read_i2c_eeprom(hw, 1460 IXGBE_SFF_QSFP_CONNECTOR, 1461 &connector); 1462 1463 hw->phy.ops.read_i2c_eeprom(hw, 1464 IXGBE_SFF_QSFP_CABLE_LENGTH, 1465 &cable_length); 1466 1467 hw->phy.ops.read_i2c_eeprom(hw, 1468 IXGBE_SFF_QSFP_DEVICE_TECH, 1469 &device_tech); 1470 1471 if ((connector == 1472 IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) && 1473 (cable_length > 0) && 1474 ((device_tech >> 4) == 1475 IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL)) 1476 active_cable = true; 1477 } 1478 1479 if (active_cable) { 1480 hw->phy.type = ixgbe_phy_qsfp_active_unknown; 1481 if (hw->bus.lan_id == 0) 1482 hw->phy.sfp_type = 1483 ixgbe_sfp_type_da_act_lmt_core0; 1484 else 1485 hw->phy.sfp_type = 1486 ixgbe_sfp_type_da_act_lmt_core1; 1487 } else { 1488 /* unsupported module type */ 1489 hw->phy.type = ixgbe_phy_sfp_unsupported; 1490 return IXGBE_ERR_SFP_NOT_SUPPORTED; 1491 } 1492 } 1493 1494 if (hw->phy.sfp_type != stored_sfp_type) 1495 hw->phy.sfp_setup_needed = true; 1496 1497 /* Determine if the QSFP+ PHY is dual speed or not. */ 1498 hw->phy.multispeed_fiber = false; 1499 if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) && 1500 (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) || 1501 ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) && 1502 (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE))) 1503 hw->phy.multispeed_fiber = true; 1504 1505 /* Determine PHY vendor for optical modules */ 1506 if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE | 1507 IXGBE_SFF_10GBASELR_CAPABLE)) { 1508 status = hw->phy.ops.read_i2c_eeprom(hw, 1509 IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0, 1510 &oui_bytes[0]); 1511 1512 if (status != 0) 1513 goto err_read_i2c_eeprom; 1514 1515 status = hw->phy.ops.read_i2c_eeprom(hw, 1516 IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1, 1517 &oui_bytes[1]); 1518 1519 if (status != 0) 1520 goto err_read_i2c_eeprom; 1521 1522 status = hw->phy.ops.read_i2c_eeprom(hw, 1523 IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2, 1524 &oui_bytes[2]); 1525 1526 if (status != 0) 1527 goto err_read_i2c_eeprom; 1528 1529 vendor_oui = 1530 ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) | 1531 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) | 1532 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT)); 1533 1534 if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL) 1535 hw->phy.type = ixgbe_phy_qsfp_intel; 1536 else 1537 hw->phy.type = ixgbe_phy_qsfp_unknown; 1538 1539 hw->mac.ops.get_device_caps(hw, &enforce_sfp); 1540 if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) { 1541 /* Make sure we're a supported PHY type */ 1542 if (hw->phy.type == ixgbe_phy_qsfp_intel) 1543 return 0; 1544 if (hw->allow_unsupported_sfp) { 1545 e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n"); 1546 return 0; 1547 } 1548 hw_dbg(hw, "QSFP module not supported\n"); 1549 hw->phy.type = ixgbe_phy_sfp_unsupported; 1550 return IXGBE_ERR_SFP_NOT_SUPPORTED; 1551 } 1552 return 0; 1553 } 1554 return 0; 1555 1556 err_read_i2c_eeprom: 1557 hw->phy.sfp_type = ixgbe_sfp_type_not_present; 1558 hw->phy.id = 0; 1559 hw->phy.type = ixgbe_phy_unknown; 1560 1561 return IXGBE_ERR_SFP_NOT_PRESENT; 1562 } 1563 1564 /** 1565 * ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence 1566 * @hw: pointer to hardware structure 1567 * @list_offset: offset to the SFP ID list 1568 * @data_offset: offset to the SFP data block 1569 * 1570 * Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if 1571 * so it returns the offsets to the phy init sequence block. 1572 **/ 1573 s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw, 1574 u16 *list_offset, 1575 u16 *data_offset) 1576 { 1577 u16 sfp_id; 1578 u16 sfp_type = hw->phy.sfp_type; 1579 1580 if (hw->phy.sfp_type == ixgbe_sfp_type_unknown) 1581 return IXGBE_ERR_SFP_NOT_SUPPORTED; 1582 1583 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present) 1584 return IXGBE_ERR_SFP_NOT_PRESENT; 1585 1586 if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) && 1587 (hw->phy.sfp_type == ixgbe_sfp_type_da_cu)) 1588 return IXGBE_ERR_SFP_NOT_SUPPORTED; 1589 1590 /* 1591 * Limiting active cables and 1G Phys must be initialized as 1592 * SR modules 1593 */ 1594 if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 || 1595 sfp_type == ixgbe_sfp_type_1g_lx_core0 || 1596 sfp_type == ixgbe_sfp_type_1g_cu_core0 || 1597 sfp_type == ixgbe_sfp_type_1g_sx_core0) 1598 sfp_type = ixgbe_sfp_type_srlr_core0; 1599 else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 || 1600 sfp_type == ixgbe_sfp_type_1g_lx_core1 || 1601 sfp_type == ixgbe_sfp_type_1g_cu_core1 || 1602 sfp_type == ixgbe_sfp_type_1g_sx_core1) 1603 sfp_type = ixgbe_sfp_type_srlr_core1; 1604 1605 /* Read offset to PHY init contents */ 1606 if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) { 1607 hw_err(hw, "eeprom read at %d failed\n", 1608 IXGBE_PHY_INIT_OFFSET_NL); 1609 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT; 1610 } 1611 1612 if ((!*list_offset) || (*list_offset == 0xFFFF)) 1613 return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT; 1614 1615 /* Shift offset to first ID word */ 1616 (*list_offset)++; 1617 1618 /* 1619 * Find the matching SFP ID in the EEPROM 1620 * and program the init sequence 1621 */ 1622 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id)) 1623 goto err_phy; 1624 1625 while (sfp_id != IXGBE_PHY_INIT_END_NL) { 1626 if (sfp_id == sfp_type) { 1627 (*list_offset)++; 1628 if (hw->eeprom.ops.read(hw, *list_offset, data_offset)) 1629 goto err_phy; 1630 if ((!*data_offset) || (*data_offset == 0xFFFF)) { 1631 hw_dbg(hw, "SFP+ module not supported\n"); 1632 return IXGBE_ERR_SFP_NOT_SUPPORTED; 1633 } else { 1634 break; 1635 } 1636 } else { 1637 (*list_offset) += 2; 1638 if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id)) 1639 goto err_phy; 1640 } 1641 } 1642 1643 if (sfp_id == IXGBE_PHY_INIT_END_NL) { 1644 hw_dbg(hw, "No matching SFP+ module found\n"); 1645 return IXGBE_ERR_SFP_NOT_SUPPORTED; 1646 } 1647 1648 return 0; 1649 1650 err_phy: 1651 hw_err(hw, "eeprom read at offset %d failed\n", *list_offset); 1652 return IXGBE_ERR_PHY; 1653 } 1654 1655 /** 1656 * ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface 1657 * @hw: pointer to hardware structure 1658 * @byte_offset: EEPROM byte offset to read 1659 * @eeprom_data: value read 1660 * 1661 * Performs byte read operation to SFP module's EEPROM over I2C interface. 1662 **/ 1663 s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset, 1664 u8 *eeprom_data) 1665 { 1666 return hw->phy.ops.read_i2c_byte(hw, byte_offset, 1667 IXGBE_I2C_EEPROM_DEV_ADDR, 1668 eeprom_data); 1669 } 1670 1671 /** 1672 * ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface 1673 * @hw: pointer to hardware structure 1674 * @byte_offset: byte offset at address 0xA2 1675 * @sff8472_data: value read 1676 * 1677 * Performs byte read operation to SFP module's SFF-8472 data over I2C 1678 **/ 1679 s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset, 1680 u8 *sff8472_data) 1681 { 1682 return hw->phy.ops.read_i2c_byte(hw, byte_offset, 1683 IXGBE_I2C_EEPROM_DEV_ADDR2, 1684 sff8472_data); 1685 } 1686 1687 /** 1688 * ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface 1689 * @hw: pointer to hardware structure 1690 * @byte_offset: EEPROM byte offset to write 1691 * @eeprom_data: value to write 1692 * 1693 * Performs byte write operation to SFP module's EEPROM over I2C interface. 1694 **/ 1695 s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset, 1696 u8 eeprom_data) 1697 { 1698 return hw->phy.ops.write_i2c_byte(hw, byte_offset, 1699 IXGBE_I2C_EEPROM_DEV_ADDR, 1700 eeprom_data); 1701 } 1702 1703 /** 1704 * ixgbe_is_sfp_probe - Returns true if SFP is being detected 1705 * @hw: pointer to hardware structure 1706 * @offset: eeprom offset to be read 1707 * @addr: I2C address to be read 1708 */ 1709 static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr) 1710 { 1711 if (addr == IXGBE_I2C_EEPROM_DEV_ADDR && 1712 offset == IXGBE_SFF_IDENTIFIER && 1713 hw->phy.sfp_type == ixgbe_sfp_type_not_present) 1714 return true; 1715 return false; 1716 } 1717 1718 /** 1719 * ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C 1720 * @hw: pointer to hardware structure 1721 * @byte_offset: byte offset to read 1722 * @dev_addr: device address 1723 * @data: value read 1724 * @lock: true if to take and release semaphore 1725 * 1726 * Performs byte read operation to SFP module's EEPROM over I2C interface at 1727 * a specified device address. 1728 */ 1729 static s32 ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset, 1730 u8 dev_addr, u8 *data, bool lock) 1731 { 1732 s32 status; 1733 u32 max_retry = 10; 1734 u32 retry = 0; 1735 u32 swfw_mask = hw->phy.phy_semaphore_mask; 1736 bool nack = true; 1737 1738 if (hw->mac.type >= ixgbe_mac_X550) 1739 max_retry = 3; 1740 if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr)) 1741 max_retry = IXGBE_SFP_DETECT_RETRIES; 1742 1743 *data = 0; 1744 1745 do { 1746 if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 1747 return IXGBE_ERR_SWFW_SYNC; 1748 1749 ixgbe_i2c_start(hw); 1750 1751 /* Device Address and write indication */ 1752 status = ixgbe_clock_out_i2c_byte(hw, dev_addr); 1753 if (status != 0) 1754 goto fail; 1755 1756 status = ixgbe_get_i2c_ack(hw); 1757 if (status != 0) 1758 goto fail; 1759 1760 status = ixgbe_clock_out_i2c_byte(hw, byte_offset); 1761 if (status != 0) 1762 goto fail; 1763 1764 status = ixgbe_get_i2c_ack(hw); 1765 if (status != 0) 1766 goto fail; 1767 1768 ixgbe_i2c_start(hw); 1769 1770 /* Device Address and read indication */ 1771 status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1)); 1772 if (status != 0) 1773 goto fail; 1774 1775 status = ixgbe_get_i2c_ack(hw); 1776 if (status != 0) 1777 goto fail; 1778 1779 status = ixgbe_clock_in_i2c_byte(hw, data); 1780 if (status != 0) 1781 goto fail; 1782 1783 status = ixgbe_clock_out_i2c_bit(hw, nack); 1784 if (status != 0) 1785 goto fail; 1786 1787 ixgbe_i2c_stop(hw); 1788 if (lock) 1789 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 1790 return 0; 1791 1792 fail: 1793 ixgbe_i2c_bus_clear(hw); 1794 if (lock) { 1795 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 1796 msleep(100); 1797 } 1798 retry++; 1799 if (retry < max_retry) 1800 hw_dbg(hw, "I2C byte read error - Retrying.\n"); 1801 else 1802 hw_dbg(hw, "I2C byte read error.\n"); 1803 1804 } while (retry < max_retry); 1805 1806 return status; 1807 } 1808 1809 /** 1810 * ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C 1811 * @hw: pointer to hardware structure 1812 * @byte_offset: byte offset to read 1813 * @dev_addr: device address 1814 * @data: value read 1815 * 1816 * Performs byte read operation to SFP module's EEPROM over I2C interface at 1817 * a specified device address. 1818 */ 1819 s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset, 1820 u8 dev_addr, u8 *data) 1821 { 1822 return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr, 1823 data, true); 1824 } 1825 1826 /** 1827 * ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C 1828 * @hw: pointer to hardware structure 1829 * @byte_offset: byte offset to read 1830 * @dev_addr: device address 1831 * @data: value read 1832 * 1833 * Performs byte read operation to SFP module's EEPROM over I2C interface at 1834 * a specified device address. 1835 */ 1836 s32 ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset, 1837 u8 dev_addr, u8 *data) 1838 { 1839 return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr, 1840 data, false); 1841 } 1842 1843 /** 1844 * ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C 1845 * @hw: pointer to hardware structure 1846 * @byte_offset: byte offset to write 1847 * @dev_addr: device address 1848 * @data: value to write 1849 * @lock: true if to take and release semaphore 1850 * 1851 * Performs byte write operation to SFP module's EEPROM over I2C interface at 1852 * a specified device address. 1853 */ 1854 static s32 ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset, 1855 u8 dev_addr, u8 data, bool lock) 1856 { 1857 s32 status; 1858 u32 max_retry = 1; 1859 u32 retry = 0; 1860 u32 swfw_mask = hw->phy.phy_semaphore_mask; 1861 1862 if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 1863 return IXGBE_ERR_SWFW_SYNC; 1864 1865 do { 1866 ixgbe_i2c_start(hw); 1867 1868 status = ixgbe_clock_out_i2c_byte(hw, dev_addr); 1869 if (status != 0) 1870 goto fail; 1871 1872 status = ixgbe_get_i2c_ack(hw); 1873 if (status != 0) 1874 goto fail; 1875 1876 status = ixgbe_clock_out_i2c_byte(hw, byte_offset); 1877 if (status != 0) 1878 goto fail; 1879 1880 status = ixgbe_get_i2c_ack(hw); 1881 if (status != 0) 1882 goto fail; 1883 1884 status = ixgbe_clock_out_i2c_byte(hw, data); 1885 if (status != 0) 1886 goto fail; 1887 1888 status = ixgbe_get_i2c_ack(hw); 1889 if (status != 0) 1890 goto fail; 1891 1892 ixgbe_i2c_stop(hw); 1893 if (lock) 1894 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 1895 return 0; 1896 1897 fail: 1898 ixgbe_i2c_bus_clear(hw); 1899 retry++; 1900 if (retry < max_retry) 1901 hw_dbg(hw, "I2C byte write error - Retrying.\n"); 1902 else 1903 hw_dbg(hw, "I2C byte write error.\n"); 1904 } while (retry < max_retry); 1905 1906 if (lock) 1907 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 1908 1909 return status; 1910 } 1911 1912 /** 1913 * ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C 1914 * @hw: pointer to hardware structure 1915 * @byte_offset: byte offset to write 1916 * @dev_addr: device address 1917 * @data: value to write 1918 * 1919 * Performs byte write operation to SFP module's EEPROM over I2C interface at 1920 * a specified device address. 1921 */ 1922 s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset, 1923 u8 dev_addr, u8 data) 1924 { 1925 return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr, 1926 data, true); 1927 } 1928 1929 /** 1930 * ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C 1931 * @hw: pointer to hardware structure 1932 * @byte_offset: byte offset to write 1933 * @dev_addr: device address 1934 * @data: value to write 1935 * 1936 * Performs byte write operation to SFP module's EEPROM over I2C interface at 1937 * a specified device address. 1938 */ 1939 s32 ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset, 1940 u8 dev_addr, u8 data) 1941 { 1942 return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr, 1943 data, false); 1944 } 1945 1946 /** 1947 * ixgbe_i2c_start - Sets I2C start condition 1948 * @hw: pointer to hardware structure 1949 * 1950 * Sets I2C start condition (High -> Low on SDA while SCL is High) 1951 * Set bit-bang mode on X550 hardware. 1952 **/ 1953 static void ixgbe_i2c_start(struct ixgbe_hw *hw) 1954 { 1955 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 1956 1957 i2cctl |= IXGBE_I2C_BB_EN(hw); 1958 1959 /* Start condition must begin with data and clock high */ 1960 ixgbe_set_i2c_data(hw, &i2cctl, 1); 1961 ixgbe_raise_i2c_clk(hw, &i2cctl); 1962 1963 /* Setup time for start condition (4.7us) */ 1964 udelay(IXGBE_I2C_T_SU_STA); 1965 1966 ixgbe_set_i2c_data(hw, &i2cctl, 0); 1967 1968 /* Hold time for start condition (4us) */ 1969 udelay(IXGBE_I2C_T_HD_STA); 1970 1971 ixgbe_lower_i2c_clk(hw, &i2cctl); 1972 1973 /* Minimum low period of clock is 4.7 us */ 1974 udelay(IXGBE_I2C_T_LOW); 1975 1976 } 1977 1978 /** 1979 * ixgbe_i2c_stop - Sets I2C stop condition 1980 * @hw: pointer to hardware structure 1981 * 1982 * Sets I2C stop condition (Low -> High on SDA while SCL is High) 1983 * Disables bit-bang mode and negates data output enable on X550 1984 * hardware. 1985 **/ 1986 static void ixgbe_i2c_stop(struct ixgbe_hw *hw) 1987 { 1988 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 1989 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw); 1990 u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw); 1991 u32 bb_en_bit = IXGBE_I2C_BB_EN(hw); 1992 1993 /* Stop condition must begin with data low and clock high */ 1994 ixgbe_set_i2c_data(hw, &i2cctl, 0); 1995 ixgbe_raise_i2c_clk(hw, &i2cctl); 1996 1997 /* Setup time for stop condition (4us) */ 1998 udelay(IXGBE_I2C_T_SU_STO); 1999 2000 ixgbe_set_i2c_data(hw, &i2cctl, 1); 2001 2002 /* bus free time between stop and start (4.7us)*/ 2003 udelay(IXGBE_I2C_T_BUF); 2004 2005 if (bb_en_bit || data_oe_bit || clk_oe_bit) { 2006 i2cctl &= ~bb_en_bit; 2007 i2cctl |= data_oe_bit | clk_oe_bit; 2008 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl); 2009 IXGBE_WRITE_FLUSH(hw); 2010 } 2011 } 2012 2013 /** 2014 * ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C 2015 * @hw: pointer to hardware structure 2016 * @data: data byte to clock in 2017 * 2018 * Clocks in one byte data via I2C data/clock 2019 **/ 2020 static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data) 2021 { 2022 s32 i; 2023 bool bit = false; 2024 2025 *data = 0; 2026 for (i = 7; i >= 0; i--) { 2027 ixgbe_clock_in_i2c_bit(hw, &bit); 2028 *data |= bit << i; 2029 } 2030 2031 return 0; 2032 } 2033 2034 /** 2035 * ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C 2036 * @hw: pointer to hardware structure 2037 * @data: data byte clocked out 2038 * 2039 * Clocks out one byte data via I2C data/clock 2040 **/ 2041 static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data) 2042 { 2043 s32 status; 2044 s32 i; 2045 u32 i2cctl; 2046 bool bit = false; 2047 2048 for (i = 7; i >= 0; i--) { 2049 bit = (data >> i) & 0x1; 2050 status = ixgbe_clock_out_i2c_bit(hw, bit); 2051 2052 if (status != 0) 2053 break; 2054 } 2055 2056 /* Release SDA line (set high) */ 2057 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2058 i2cctl |= IXGBE_I2C_DATA_OUT(hw); 2059 i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw); 2060 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl); 2061 IXGBE_WRITE_FLUSH(hw); 2062 2063 return status; 2064 } 2065 2066 /** 2067 * ixgbe_get_i2c_ack - Polls for I2C ACK 2068 * @hw: pointer to hardware structure 2069 * 2070 * Clocks in/out one bit via I2C data/clock 2071 **/ 2072 static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw) 2073 { 2074 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw); 2075 s32 status = 0; 2076 u32 i = 0; 2077 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2078 u32 timeout = 10; 2079 bool ack = true; 2080 2081 if (data_oe_bit) { 2082 i2cctl |= IXGBE_I2C_DATA_OUT(hw); 2083 i2cctl |= data_oe_bit; 2084 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl); 2085 IXGBE_WRITE_FLUSH(hw); 2086 } 2087 ixgbe_raise_i2c_clk(hw, &i2cctl); 2088 2089 /* Minimum high period of clock is 4us */ 2090 udelay(IXGBE_I2C_T_HIGH); 2091 2092 /* Poll for ACK. Note that ACK in I2C spec is 2093 * transition from 1 to 0 */ 2094 for (i = 0; i < timeout; i++) { 2095 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2096 ack = ixgbe_get_i2c_data(hw, &i2cctl); 2097 2098 udelay(1); 2099 if (ack == 0) 2100 break; 2101 } 2102 2103 if (ack == 1) { 2104 hw_dbg(hw, "I2C ack was not received.\n"); 2105 status = IXGBE_ERR_I2C; 2106 } 2107 2108 ixgbe_lower_i2c_clk(hw, &i2cctl); 2109 2110 /* Minimum low period of clock is 4.7 us */ 2111 udelay(IXGBE_I2C_T_LOW); 2112 2113 return status; 2114 } 2115 2116 /** 2117 * ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock 2118 * @hw: pointer to hardware structure 2119 * @data: read data value 2120 * 2121 * Clocks in one bit via I2C data/clock 2122 **/ 2123 static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data) 2124 { 2125 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2126 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw); 2127 2128 if (data_oe_bit) { 2129 i2cctl |= IXGBE_I2C_DATA_OUT(hw); 2130 i2cctl |= data_oe_bit; 2131 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl); 2132 IXGBE_WRITE_FLUSH(hw); 2133 } 2134 ixgbe_raise_i2c_clk(hw, &i2cctl); 2135 2136 /* Minimum high period of clock is 4us */ 2137 udelay(IXGBE_I2C_T_HIGH); 2138 2139 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2140 *data = ixgbe_get_i2c_data(hw, &i2cctl); 2141 2142 ixgbe_lower_i2c_clk(hw, &i2cctl); 2143 2144 /* Minimum low period of clock is 4.7 us */ 2145 udelay(IXGBE_I2C_T_LOW); 2146 2147 return 0; 2148 } 2149 2150 /** 2151 * ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock 2152 * @hw: pointer to hardware structure 2153 * @data: data value to write 2154 * 2155 * Clocks out one bit via I2C data/clock 2156 **/ 2157 static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data) 2158 { 2159 s32 status; 2160 u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2161 2162 status = ixgbe_set_i2c_data(hw, &i2cctl, data); 2163 if (status == 0) { 2164 ixgbe_raise_i2c_clk(hw, &i2cctl); 2165 2166 /* Minimum high period of clock is 4us */ 2167 udelay(IXGBE_I2C_T_HIGH); 2168 2169 ixgbe_lower_i2c_clk(hw, &i2cctl); 2170 2171 /* Minimum low period of clock is 4.7 us. 2172 * This also takes care of the data hold time. 2173 */ 2174 udelay(IXGBE_I2C_T_LOW); 2175 } else { 2176 hw_dbg(hw, "I2C data was not set to %X\n", data); 2177 return IXGBE_ERR_I2C; 2178 } 2179 2180 return 0; 2181 } 2182 /** 2183 * ixgbe_raise_i2c_clk - Raises the I2C SCL clock 2184 * @hw: pointer to hardware structure 2185 * @i2cctl: Current value of I2CCTL register 2186 * 2187 * Raises the I2C clock line '0'->'1' 2188 * Negates the I2C clock output enable on X550 hardware. 2189 **/ 2190 static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl) 2191 { 2192 u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw); 2193 u32 i = 0; 2194 u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT; 2195 u32 i2cctl_r = 0; 2196 2197 if (clk_oe_bit) { 2198 *i2cctl |= clk_oe_bit; 2199 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl); 2200 } 2201 2202 for (i = 0; i < timeout; i++) { 2203 *i2cctl |= IXGBE_I2C_CLK_OUT(hw); 2204 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl); 2205 IXGBE_WRITE_FLUSH(hw); 2206 /* SCL rise time (1000ns) */ 2207 udelay(IXGBE_I2C_T_RISE); 2208 2209 i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2210 if (i2cctl_r & IXGBE_I2C_CLK_IN(hw)) 2211 break; 2212 } 2213 } 2214 2215 /** 2216 * ixgbe_lower_i2c_clk - Lowers the I2C SCL clock 2217 * @hw: pointer to hardware structure 2218 * @i2cctl: Current value of I2CCTL register 2219 * 2220 * Lowers the I2C clock line '1'->'0' 2221 * Asserts the I2C clock output enable on X550 hardware. 2222 **/ 2223 static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl) 2224 { 2225 2226 *i2cctl &= ~IXGBE_I2C_CLK_OUT(hw); 2227 *i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw); 2228 2229 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl); 2230 IXGBE_WRITE_FLUSH(hw); 2231 2232 /* SCL fall time (300ns) */ 2233 udelay(IXGBE_I2C_T_FALL); 2234 } 2235 2236 /** 2237 * ixgbe_set_i2c_data - Sets the I2C data bit 2238 * @hw: pointer to hardware structure 2239 * @i2cctl: Current value of I2CCTL register 2240 * @data: I2C data value (0 or 1) to set 2241 * 2242 * Sets the I2C data bit 2243 * Asserts the I2C data output enable on X550 hardware. 2244 **/ 2245 static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data) 2246 { 2247 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw); 2248 2249 if (data) 2250 *i2cctl |= IXGBE_I2C_DATA_OUT(hw); 2251 else 2252 *i2cctl &= ~IXGBE_I2C_DATA_OUT(hw); 2253 *i2cctl &= ~data_oe_bit; 2254 2255 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl); 2256 IXGBE_WRITE_FLUSH(hw); 2257 2258 /* Data rise/fall (1000ns/300ns) and set-up time (250ns) */ 2259 udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA); 2260 2261 if (!data) /* Can't verify data in this case */ 2262 return 0; 2263 if (data_oe_bit) { 2264 *i2cctl |= data_oe_bit; 2265 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl); 2266 IXGBE_WRITE_FLUSH(hw); 2267 } 2268 2269 /* Verify data was set correctly */ 2270 *i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2271 if (data != ixgbe_get_i2c_data(hw, i2cctl)) { 2272 hw_dbg(hw, "Error - I2C data was not set to %X.\n", data); 2273 return IXGBE_ERR_I2C; 2274 } 2275 2276 return 0; 2277 } 2278 2279 /** 2280 * ixgbe_get_i2c_data - Reads the I2C SDA data bit 2281 * @hw: pointer to hardware structure 2282 * @i2cctl: Current value of I2CCTL register 2283 * 2284 * Returns the I2C data bit value 2285 * Negates the I2C data output enable on X550 hardware. 2286 **/ 2287 static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl) 2288 { 2289 u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw); 2290 2291 if (data_oe_bit) { 2292 *i2cctl |= data_oe_bit; 2293 IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl); 2294 IXGBE_WRITE_FLUSH(hw); 2295 udelay(IXGBE_I2C_T_FALL); 2296 } 2297 2298 if (*i2cctl & IXGBE_I2C_DATA_IN(hw)) 2299 return true; 2300 return false; 2301 } 2302 2303 /** 2304 * ixgbe_i2c_bus_clear - Clears the I2C bus 2305 * @hw: pointer to hardware structure 2306 * 2307 * Clears the I2C bus by sending nine clock pulses. 2308 * Used when data line is stuck low. 2309 **/ 2310 static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw) 2311 { 2312 u32 i2cctl; 2313 u32 i; 2314 2315 ixgbe_i2c_start(hw); 2316 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw)); 2317 2318 ixgbe_set_i2c_data(hw, &i2cctl, 1); 2319 2320 for (i = 0; i < 9; i++) { 2321 ixgbe_raise_i2c_clk(hw, &i2cctl); 2322 2323 /* Min high period of clock is 4us */ 2324 udelay(IXGBE_I2C_T_HIGH); 2325 2326 ixgbe_lower_i2c_clk(hw, &i2cctl); 2327 2328 /* Min low period of clock is 4.7us*/ 2329 udelay(IXGBE_I2C_T_LOW); 2330 } 2331 2332 ixgbe_i2c_start(hw); 2333 2334 /* Put the i2c bus back to default state */ 2335 ixgbe_i2c_stop(hw); 2336 } 2337 2338 /** 2339 * ixgbe_tn_check_overtemp - Checks if an overtemp occurred. 2340 * @hw: pointer to hardware structure 2341 * 2342 * Checks if the LASI temp alarm status was triggered due to overtemp 2343 **/ 2344 s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw) 2345 { 2346 u16 phy_data = 0; 2347 2348 if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM) 2349 return 0; 2350 2351 /* Check that the LASI temp alarm status was triggered */ 2352 hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG, 2353 MDIO_MMD_PMAPMD, &phy_data); 2354 2355 if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM)) 2356 return 0; 2357 2358 return IXGBE_ERR_OVERTEMP; 2359 } 2360 2361 /** ixgbe_set_copper_phy_power - Control power for copper phy 2362 * @hw: pointer to hardware structure 2363 * @on: true for on, false for off 2364 **/ 2365 s32 ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on) 2366 { 2367 u32 status; 2368 u16 reg; 2369 2370 /* Bail if we don't have copper phy */ 2371 if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper) 2372 return 0; 2373 2374 if (!on && ixgbe_mng_present(hw)) 2375 return 0; 2376 2377 status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, ®); 2378 if (status) 2379 return status; 2380 2381 if (on) { 2382 reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE; 2383 } else { 2384 if (ixgbe_check_reset_blocked(hw)) 2385 return 0; 2386 reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE; 2387 } 2388 2389 status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg); 2390 return status; 2391 } 2392