xref: /openbmc/linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c (revision fe17b91a7777df140d0f1433991da67ba658796c)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #include <linux/pci.h>
5 #include <linux/delay.h>
6 #include <linux/sched.h>
7 #include <linux/netdevice.h>
8 
9 #include "ixgbe.h"
10 #include "ixgbe_common.h"
11 #include "ixgbe_phy.h"
12 
13 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
14 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
15 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
16 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
17 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
18 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
19 					u16 count);
20 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
21 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
22 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
23 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
24 
25 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
26 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
27 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
28 					     u16 words, u16 *data);
29 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
30 					     u16 words, u16 *data);
31 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
32 						 u16 offset);
33 static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw);
34 
35 /* Base table for registers values that change by MAC */
36 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
37 	IXGBE_MVALS_INIT(8259X)
38 };
39 
40 /**
41  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
42  *  control
43  *  @hw: pointer to hardware structure
44  *
45  *  There are several phys that do not support autoneg flow control. This
46  *  function check the device id to see if the associated phy supports
47  *  autoneg flow control.
48  **/
49 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
50 {
51 	bool supported = false;
52 	ixgbe_link_speed speed;
53 	bool link_up;
54 
55 	switch (hw->phy.media_type) {
56 	case ixgbe_media_type_fiber:
57 		/* flow control autoneg black list */
58 		switch (hw->device_id) {
59 		case IXGBE_DEV_ID_X550EM_A_SFP:
60 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
61 			supported = false;
62 			break;
63 		default:
64 			hw->mac.ops.check_link(hw, &speed, &link_up, false);
65 			/* if link is down, assume supported */
66 			if (link_up)
67 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL;
68 			else
69 				supported = true;
70 		}
71 
72 		break;
73 	case ixgbe_media_type_backplane:
74 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
75 			supported = false;
76 		else
77 			supported = true;
78 		break;
79 	case ixgbe_media_type_copper:
80 		/* only some copper devices support flow control autoneg */
81 		switch (hw->device_id) {
82 		case IXGBE_DEV_ID_82599_T3_LOM:
83 		case IXGBE_DEV_ID_X540T:
84 		case IXGBE_DEV_ID_X540T1:
85 		case IXGBE_DEV_ID_X550T:
86 		case IXGBE_DEV_ID_X550T1:
87 		case IXGBE_DEV_ID_X550EM_X_10G_T:
88 		case IXGBE_DEV_ID_X550EM_A_10G_T:
89 		case IXGBE_DEV_ID_X550EM_A_1G_T:
90 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
91 			supported = true;
92 			break;
93 		default:
94 			break;
95 		}
96 		break;
97 	default:
98 		break;
99 	}
100 
101 	if (!supported)
102 		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
103 		       hw->device_id);
104 
105 	return supported;
106 }
107 
108 /**
109  *  ixgbe_setup_fc_generic - Set up flow control
110  *  @hw: pointer to hardware structure
111  *
112  *  Called at init time to set up flow control.
113  **/
114 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
115 {
116 	s32 ret_val = 0;
117 	u32 reg = 0, reg_bp = 0;
118 	u16 reg_cu = 0;
119 	bool locked = false;
120 
121 	/*
122 	 * Validate the requested mode.  Strict IEEE mode does not allow
123 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
124 	 */
125 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
126 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
127 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
128 	}
129 
130 	/*
131 	 * 10gig parts do not have a word in the EEPROM to determine the
132 	 * default flow control setting, so we explicitly set it to full.
133 	 */
134 	if (hw->fc.requested_mode == ixgbe_fc_default)
135 		hw->fc.requested_mode = ixgbe_fc_full;
136 
137 	/*
138 	 * Set up the 1G and 10G flow control advertisement registers so the
139 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
140 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
141 	 */
142 	switch (hw->phy.media_type) {
143 	case ixgbe_media_type_backplane:
144 		/* some MAC's need RMW protection on AUTOC */
145 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
146 		if (ret_val)
147 			return ret_val;
148 
149 		fallthrough; /* only backplane uses autoc */
150 	case ixgbe_media_type_fiber:
151 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
152 
153 		break;
154 	case ixgbe_media_type_copper:
155 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
156 					MDIO_MMD_AN, &reg_cu);
157 		break;
158 	default:
159 		break;
160 	}
161 
162 	/*
163 	 * The possible values of fc.requested_mode are:
164 	 * 0: Flow control is completely disabled
165 	 * 1: Rx flow control is enabled (we can receive pause frames,
166 	 *    but not send pause frames).
167 	 * 2: Tx flow control is enabled (we can send pause frames but
168 	 *    we do not support receiving pause frames).
169 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
170 	 * other: Invalid.
171 	 */
172 	switch (hw->fc.requested_mode) {
173 	case ixgbe_fc_none:
174 		/* Flow control completely disabled by software override. */
175 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
176 		if (hw->phy.media_type == ixgbe_media_type_backplane)
177 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
178 				    IXGBE_AUTOC_ASM_PAUSE);
179 		else if (hw->phy.media_type == ixgbe_media_type_copper)
180 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
181 		break;
182 	case ixgbe_fc_tx_pause:
183 		/*
184 		 * Tx Flow control is enabled, and Rx Flow control is
185 		 * disabled by software override.
186 		 */
187 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
188 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
189 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
190 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
191 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
192 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
193 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
194 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
195 		}
196 		break;
197 	case ixgbe_fc_rx_pause:
198 		/*
199 		 * Rx Flow control is enabled and Tx Flow control is
200 		 * disabled by software override. Since there really
201 		 * isn't a way to advertise that we are capable of RX
202 		 * Pause ONLY, we will advertise that we support both
203 		 * symmetric and asymmetric Rx PAUSE, as such we fall
204 		 * through to the fc_full statement.  Later, we will
205 		 * disable the adapter's ability to send PAUSE frames.
206 		 */
207 	case ixgbe_fc_full:
208 		/* Flow control (both Rx and Tx) is enabled by SW override. */
209 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
210 		if (hw->phy.media_type == ixgbe_media_type_backplane)
211 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
212 				  IXGBE_AUTOC_ASM_PAUSE;
213 		else if (hw->phy.media_type == ixgbe_media_type_copper)
214 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
215 		break;
216 	default:
217 		hw_dbg(hw, "Flow control param set incorrectly\n");
218 		return IXGBE_ERR_CONFIG;
219 	}
220 
221 	if (hw->mac.type != ixgbe_mac_X540) {
222 		/*
223 		 * Enable auto-negotiation between the MAC & PHY;
224 		 * the MAC will advertise clause 37 flow control.
225 		 */
226 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
227 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
228 
229 		/* Disable AN timeout */
230 		if (hw->fc.strict_ieee)
231 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
232 
233 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
234 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
235 	}
236 
237 	/*
238 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
239 	 * and copper. There is no need to set the PCS1GCTL register.
240 	 *
241 	 */
242 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
243 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
244 		 * LESM is on, likewise reset_pipeline requries the lock as
245 		 * it also writes AUTOC.
246 		 */
247 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
248 		if (ret_val)
249 			return ret_val;
250 
251 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
252 		   ixgbe_device_supports_autoneg_fc(hw)) {
253 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
254 				      MDIO_MMD_AN, reg_cu);
255 	}
256 
257 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
258 	return ret_val;
259 }
260 
261 /**
262  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
263  *  @hw: pointer to hardware structure
264  *
265  *  Starts the hardware by filling the bus info structure and media type, clears
266  *  all on chip counters, initializes receive address registers, multicast
267  *  table, VLAN filter table, calls routine to set up link and flow control
268  *  settings, and leaves transmit and receive units disabled and uninitialized
269  **/
270 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
271 {
272 	s32 ret_val;
273 	u32 ctrl_ext;
274 	u16 device_caps;
275 
276 	/* Set the media type */
277 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
278 
279 	/* Identify the PHY */
280 	hw->phy.ops.identify(hw);
281 
282 	/* Clear the VLAN filter table */
283 	hw->mac.ops.clear_vfta(hw);
284 
285 	/* Clear statistics registers */
286 	hw->mac.ops.clear_hw_cntrs(hw);
287 
288 	/* Set No Snoop Disable */
289 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
290 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
291 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
292 	IXGBE_WRITE_FLUSH(hw);
293 
294 	/* Setup flow control if method for doing so */
295 	if (hw->mac.ops.setup_fc) {
296 		ret_val = hw->mac.ops.setup_fc(hw);
297 		if (ret_val)
298 			return ret_val;
299 	}
300 
301 	/* Cashe bit indicating need for crosstalk fix */
302 	switch (hw->mac.type) {
303 	case ixgbe_mac_82599EB:
304 	case ixgbe_mac_X550EM_x:
305 	case ixgbe_mac_x550em_a:
306 		hw->mac.ops.get_device_caps(hw, &device_caps);
307 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
308 			hw->need_crosstalk_fix = false;
309 		else
310 			hw->need_crosstalk_fix = true;
311 		break;
312 	default:
313 		hw->need_crosstalk_fix = false;
314 		break;
315 	}
316 
317 	/* Clear adapter stopped flag */
318 	hw->adapter_stopped = false;
319 
320 	return 0;
321 }
322 
323 /**
324  *  ixgbe_start_hw_gen2 - Init sequence for common device family
325  *  @hw: pointer to hw structure
326  *
327  * Performs the init sequence common to the second generation
328  * of 10 GbE devices.
329  * Devices in the second generation:
330  *     82599
331  *     X540
332  **/
333 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
334 {
335 	u32 i;
336 
337 	/* Clear the rate limiters */
338 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
339 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
340 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
341 	}
342 	IXGBE_WRITE_FLUSH(hw);
343 
344 	return 0;
345 }
346 
347 /**
348  *  ixgbe_init_hw_generic - Generic hardware initialization
349  *  @hw: pointer to hardware structure
350  *
351  *  Initialize the hardware by resetting the hardware, filling the bus info
352  *  structure and media type, clears all on chip counters, initializes receive
353  *  address registers, multicast table, VLAN filter table, calls routine to set
354  *  up link and flow control settings, and leaves transmit and receive units
355  *  disabled and uninitialized
356  **/
357 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
358 {
359 	s32 status;
360 
361 	/* Reset the hardware */
362 	status = hw->mac.ops.reset_hw(hw);
363 
364 	if (status == 0) {
365 		/* Start the HW */
366 		status = hw->mac.ops.start_hw(hw);
367 	}
368 
369 	/* Initialize the LED link active for LED blink support */
370 	if (hw->mac.ops.init_led_link_act)
371 		hw->mac.ops.init_led_link_act(hw);
372 
373 	return status;
374 }
375 
376 /**
377  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
378  *  @hw: pointer to hardware structure
379  *
380  *  Clears all hardware statistics counters by reading them from the hardware
381  *  Statistics counters are clear on read.
382  **/
383 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
384 {
385 	u16 i = 0;
386 
387 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
388 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
389 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
390 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
391 	for (i = 0; i < 8; i++)
392 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
393 
394 	IXGBE_READ_REG(hw, IXGBE_MLFC);
395 	IXGBE_READ_REG(hw, IXGBE_MRFC);
396 	IXGBE_READ_REG(hw, IXGBE_RLEC);
397 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
398 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
399 	if (hw->mac.type >= ixgbe_mac_82599EB) {
400 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
401 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
402 	} else {
403 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
404 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
405 	}
406 
407 	for (i = 0; i < 8; i++) {
408 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
409 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
410 		if (hw->mac.type >= ixgbe_mac_82599EB) {
411 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
412 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
413 		} else {
414 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
415 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
416 		}
417 	}
418 	if (hw->mac.type >= ixgbe_mac_82599EB)
419 		for (i = 0; i < 8; i++)
420 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
421 	IXGBE_READ_REG(hw, IXGBE_PRC64);
422 	IXGBE_READ_REG(hw, IXGBE_PRC127);
423 	IXGBE_READ_REG(hw, IXGBE_PRC255);
424 	IXGBE_READ_REG(hw, IXGBE_PRC511);
425 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
426 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
427 	IXGBE_READ_REG(hw, IXGBE_GPRC);
428 	IXGBE_READ_REG(hw, IXGBE_BPRC);
429 	IXGBE_READ_REG(hw, IXGBE_MPRC);
430 	IXGBE_READ_REG(hw, IXGBE_GPTC);
431 	IXGBE_READ_REG(hw, IXGBE_GORCL);
432 	IXGBE_READ_REG(hw, IXGBE_GORCH);
433 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
434 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
435 	if (hw->mac.type == ixgbe_mac_82598EB)
436 		for (i = 0; i < 8; i++)
437 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
438 	IXGBE_READ_REG(hw, IXGBE_RUC);
439 	IXGBE_READ_REG(hw, IXGBE_RFC);
440 	IXGBE_READ_REG(hw, IXGBE_ROC);
441 	IXGBE_READ_REG(hw, IXGBE_RJC);
442 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
443 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
444 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
445 	IXGBE_READ_REG(hw, IXGBE_TORL);
446 	IXGBE_READ_REG(hw, IXGBE_TORH);
447 	IXGBE_READ_REG(hw, IXGBE_TPR);
448 	IXGBE_READ_REG(hw, IXGBE_TPT);
449 	IXGBE_READ_REG(hw, IXGBE_PTC64);
450 	IXGBE_READ_REG(hw, IXGBE_PTC127);
451 	IXGBE_READ_REG(hw, IXGBE_PTC255);
452 	IXGBE_READ_REG(hw, IXGBE_PTC511);
453 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
454 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
455 	IXGBE_READ_REG(hw, IXGBE_MPTC);
456 	IXGBE_READ_REG(hw, IXGBE_BPTC);
457 	for (i = 0; i < 16; i++) {
458 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
459 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
460 		if (hw->mac.type >= ixgbe_mac_82599EB) {
461 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
462 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
463 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
464 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
465 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
466 		} else {
467 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
468 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
469 		}
470 	}
471 
472 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
473 		if (hw->phy.id == 0)
474 			hw->phy.ops.identify(hw);
475 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
476 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
477 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
478 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
479 	}
480 
481 	return 0;
482 }
483 
484 /**
485  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
486  *  @hw: pointer to hardware structure
487  *  @pba_num: stores the part number string from the EEPROM
488  *  @pba_num_size: part number string buffer length
489  *
490  *  Reads the part number string from the EEPROM.
491  **/
492 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
493 				  u32 pba_num_size)
494 {
495 	s32 ret_val;
496 	u16 data;
497 	u16 pba_ptr;
498 	u16 offset;
499 	u16 length;
500 
501 	if (pba_num == NULL) {
502 		hw_dbg(hw, "PBA string buffer was null\n");
503 		return IXGBE_ERR_INVALID_ARGUMENT;
504 	}
505 
506 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
507 	if (ret_val) {
508 		hw_dbg(hw, "NVM Read Error\n");
509 		return ret_val;
510 	}
511 
512 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
513 	if (ret_val) {
514 		hw_dbg(hw, "NVM Read Error\n");
515 		return ret_val;
516 	}
517 
518 	/*
519 	 * if data is not ptr guard the PBA must be in legacy format which
520 	 * means pba_ptr is actually our second data word for the PBA number
521 	 * and we can decode it into an ascii string
522 	 */
523 	if (data != IXGBE_PBANUM_PTR_GUARD) {
524 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
525 
526 		/* we will need 11 characters to store the PBA */
527 		if (pba_num_size < 11) {
528 			hw_dbg(hw, "PBA string buffer too small\n");
529 			return IXGBE_ERR_NO_SPACE;
530 		}
531 
532 		/* extract hex string from data and pba_ptr */
533 		pba_num[0] = (data >> 12) & 0xF;
534 		pba_num[1] = (data >> 8) & 0xF;
535 		pba_num[2] = (data >> 4) & 0xF;
536 		pba_num[3] = data & 0xF;
537 		pba_num[4] = (pba_ptr >> 12) & 0xF;
538 		pba_num[5] = (pba_ptr >> 8) & 0xF;
539 		pba_num[6] = '-';
540 		pba_num[7] = 0;
541 		pba_num[8] = (pba_ptr >> 4) & 0xF;
542 		pba_num[9] = pba_ptr & 0xF;
543 
544 		/* put a null character on the end of our string */
545 		pba_num[10] = '\0';
546 
547 		/* switch all the data but the '-' to hex char */
548 		for (offset = 0; offset < 10; offset++) {
549 			if (pba_num[offset] < 0xA)
550 				pba_num[offset] += '0';
551 			else if (pba_num[offset] < 0x10)
552 				pba_num[offset] += 'A' - 0xA;
553 		}
554 
555 		return 0;
556 	}
557 
558 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
559 	if (ret_val) {
560 		hw_dbg(hw, "NVM Read Error\n");
561 		return ret_val;
562 	}
563 
564 	if (length == 0xFFFF || length == 0) {
565 		hw_dbg(hw, "NVM PBA number section invalid length\n");
566 		return IXGBE_ERR_PBA_SECTION;
567 	}
568 
569 	/* check if pba_num buffer is big enough */
570 	if (pba_num_size  < (((u32)length * 2) - 1)) {
571 		hw_dbg(hw, "PBA string buffer too small\n");
572 		return IXGBE_ERR_NO_SPACE;
573 	}
574 
575 	/* trim pba length from start of string */
576 	pba_ptr++;
577 	length--;
578 
579 	for (offset = 0; offset < length; offset++) {
580 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
581 		if (ret_val) {
582 			hw_dbg(hw, "NVM Read Error\n");
583 			return ret_val;
584 		}
585 		pba_num[offset * 2] = (u8)(data >> 8);
586 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
587 	}
588 	pba_num[offset * 2] = '\0';
589 
590 	return 0;
591 }
592 
593 /**
594  *  ixgbe_get_mac_addr_generic - Generic get MAC address
595  *  @hw: pointer to hardware structure
596  *  @mac_addr: Adapter MAC address
597  *
598  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
599  *  A reset of the adapter must be performed prior to calling this function
600  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
601  **/
602 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
603 {
604 	u32 rar_high;
605 	u32 rar_low;
606 	u16 i;
607 
608 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
609 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
610 
611 	for (i = 0; i < 4; i++)
612 		mac_addr[i] = (u8)(rar_low >> (i*8));
613 
614 	for (i = 0; i < 2; i++)
615 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
616 
617 	return 0;
618 }
619 
620 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
621 {
622 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
623 	case IXGBE_PCI_LINK_WIDTH_1:
624 		return ixgbe_bus_width_pcie_x1;
625 	case IXGBE_PCI_LINK_WIDTH_2:
626 		return ixgbe_bus_width_pcie_x2;
627 	case IXGBE_PCI_LINK_WIDTH_4:
628 		return ixgbe_bus_width_pcie_x4;
629 	case IXGBE_PCI_LINK_WIDTH_8:
630 		return ixgbe_bus_width_pcie_x8;
631 	default:
632 		return ixgbe_bus_width_unknown;
633 	}
634 }
635 
636 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
637 {
638 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
639 	case IXGBE_PCI_LINK_SPEED_2500:
640 		return ixgbe_bus_speed_2500;
641 	case IXGBE_PCI_LINK_SPEED_5000:
642 		return ixgbe_bus_speed_5000;
643 	case IXGBE_PCI_LINK_SPEED_8000:
644 		return ixgbe_bus_speed_8000;
645 	default:
646 		return ixgbe_bus_speed_unknown;
647 	}
648 }
649 
650 /**
651  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
652  *  @hw: pointer to hardware structure
653  *
654  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
655  **/
656 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
657 {
658 	u16 link_status;
659 
660 	hw->bus.type = ixgbe_bus_type_pci_express;
661 
662 	/* Get the negotiated link width and speed from PCI config space */
663 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
664 
665 	hw->bus.width = ixgbe_convert_bus_width(link_status);
666 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
667 
668 	hw->mac.ops.set_lan_id(hw);
669 
670 	return 0;
671 }
672 
673 /**
674  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
675  *  @hw: pointer to the HW structure
676  *
677  *  Determines the LAN function id by reading memory-mapped registers
678  *  and swaps the port value if requested.
679  **/
680 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
681 {
682 	struct ixgbe_bus_info *bus = &hw->bus;
683 	u16 ee_ctrl_4;
684 	u32 reg;
685 
686 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
687 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
688 	bus->lan_id = bus->func;
689 
690 	/* check for a port swap */
691 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
692 	if (reg & IXGBE_FACTPS_LFS)
693 		bus->func ^= 0x1;
694 
695 	/* Get MAC instance from EEPROM for configuring CS4227 */
696 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
697 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
698 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
699 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
700 	}
701 }
702 
703 /**
704  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
705  *  @hw: pointer to hardware structure
706  *
707  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
708  *  disables transmit and receive units. The adapter_stopped flag is used by
709  *  the shared code and drivers to determine if the adapter is in a stopped
710  *  state and should not touch the hardware.
711  **/
712 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
713 {
714 	u32 reg_val;
715 	u16 i;
716 
717 	/*
718 	 * Set the adapter_stopped flag so other driver functions stop touching
719 	 * the hardware
720 	 */
721 	hw->adapter_stopped = true;
722 
723 	/* Disable the receive unit */
724 	hw->mac.ops.disable_rx(hw);
725 
726 	/* Clear interrupt mask to stop interrupts from being generated */
727 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
728 
729 	/* Clear any pending interrupts, flush previous writes */
730 	IXGBE_READ_REG(hw, IXGBE_EICR);
731 
732 	/* Disable the transmit unit.  Each queue must be disabled. */
733 	for (i = 0; i < hw->mac.max_tx_queues; i++)
734 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
735 
736 	/* Disable the receive unit by stopping each queue */
737 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
738 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
739 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
740 		reg_val |= IXGBE_RXDCTL_SWFLSH;
741 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
742 	}
743 
744 	/* flush all queues disables */
745 	IXGBE_WRITE_FLUSH(hw);
746 	usleep_range(1000, 2000);
747 
748 	/*
749 	 * Prevent the PCI-E bus from hanging by disabling PCI-E primary
750 	 * access and verify no pending requests
751 	 */
752 	return ixgbe_disable_pcie_primary(hw);
753 }
754 
755 /**
756  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
757  *  @hw: pointer to hardware structure
758  *
759  *  Store the index for the link active LED. This will be used to support
760  *  blinking the LED.
761  **/
762 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
763 {
764 	struct ixgbe_mac_info *mac = &hw->mac;
765 	u32 led_reg, led_mode;
766 	u16 i;
767 
768 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
769 
770 	/* Get LED link active from the LEDCTL register */
771 	for (i = 0; i < 4; i++) {
772 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
773 
774 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
775 		    IXGBE_LED_LINK_ACTIVE) {
776 			mac->led_link_act = i;
777 			return 0;
778 		}
779 	}
780 
781 	/* If LEDCTL register does not have the LED link active set, then use
782 	 * known MAC defaults.
783 	 */
784 	switch (hw->mac.type) {
785 	case ixgbe_mac_x550em_a:
786 		mac->led_link_act = 0;
787 		break;
788 	case ixgbe_mac_X550EM_x:
789 		mac->led_link_act = 1;
790 		break;
791 	default:
792 		mac->led_link_act = 2;
793 	}
794 
795 	return 0;
796 }
797 
798 /**
799  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
800  *  @hw: pointer to hardware structure
801  *  @index: led number to turn on
802  **/
803 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
804 {
805 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
806 
807 	if (index > 3)
808 		return IXGBE_ERR_PARAM;
809 
810 	/* To turn on the LED, set mode to ON. */
811 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
812 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
813 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
814 	IXGBE_WRITE_FLUSH(hw);
815 
816 	return 0;
817 }
818 
819 /**
820  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
821  *  @hw: pointer to hardware structure
822  *  @index: led number to turn off
823  **/
824 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
825 {
826 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
827 
828 	if (index > 3)
829 		return IXGBE_ERR_PARAM;
830 
831 	/* To turn off the LED, set mode to OFF. */
832 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
833 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
834 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
835 	IXGBE_WRITE_FLUSH(hw);
836 
837 	return 0;
838 }
839 
840 /**
841  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
842  *  @hw: pointer to hardware structure
843  *
844  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
845  *  ixgbe_hw struct in order to set up EEPROM access.
846  **/
847 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
848 {
849 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
850 	u32 eec;
851 	u16 eeprom_size;
852 
853 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
854 		eeprom->type = ixgbe_eeprom_none;
855 		/* Set default semaphore delay to 10ms which is a well
856 		 * tested value */
857 		eeprom->semaphore_delay = 10;
858 		/* Clear EEPROM page size, it will be initialized as needed */
859 		eeprom->word_page_size = 0;
860 
861 		/*
862 		 * Check for EEPROM present first.
863 		 * If not present leave as none
864 		 */
865 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
866 		if (eec & IXGBE_EEC_PRES) {
867 			eeprom->type = ixgbe_eeprom_spi;
868 
869 			/*
870 			 * SPI EEPROM is assumed here.  This code would need to
871 			 * change if a future EEPROM is not SPI.
872 			 */
873 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
874 					    IXGBE_EEC_SIZE_SHIFT);
875 			eeprom->word_size = BIT(eeprom_size +
876 						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
877 		}
878 
879 		if (eec & IXGBE_EEC_ADDR_SIZE)
880 			eeprom->address_bits = 16;
881 		else
882 			eeprom->address_bits = 8;
883 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
884 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
885 	}
886 
887 	return 0;
888 }
889 
890 /**
891  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
892  *  @hw: pointer to hardware structure
893  *  @offset: offset within the EEPROM to write
894  *  @words: number of words
895  *  @data: 16 bit word(s) to write to EEPROM
896  *
897  *  Reads 16 bit word(s) from EEPROM through bit-bang method
898  **/
899 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
900 					       u16 words, u16 *data)
901 {
902 	s32 status;
903 	u16 i, count;
904 
905 	hw->eeprom.ops.init_params(hw);
906 
907 	if (words == 0)
908 		return IXGBE_ERR_INVALID_ARGUMENT;
909 
910 	if (offset + words > hw->eeprom.word_size)
911 		return IXGBE_ERR_EEPROM;
912 
913 	/*
914 	 * The EEPROM page size cannot be queried from the chip. We do lazy
915 	 * initialization. It is worth to do that when we write large buffer.
916 	 */
917 	if ((hw->eeprom.word_page_size == 0) &&
918 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
919 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
920 
921 	/*
922 	 * We cannot hold synchronization semaphores for too long
923 	 * to avoid other entity starvation. However it is more efficient
924 	 * to read in bursts than synchronizing access for each word.
925 	 */
926 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
927 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
928 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
929 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
930 							    count, &data[i]);
931 
932 		if (status != 0)
933 			break;
934 	}
935 
936 	return status;
937 }
938 
939 /**
940  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
941  *  @hw: pointer to hardware structure
942  *  @offset: offset within the EEPROM to be written to
943  *  @words: number of word(s)
944  *  @data: 16 bit word(s) to be written to the EEPROM
945  *
946  *  If ixgbe_eeprom_update_checksum is not called after this function, the
947  *  EEPROM will most likely contain an invalid checksum.
948  **/
949 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
950 					      u16 words, u16 *data)
951 {
952 	s32 status;
953 	u16 word;
954 	u16 page_size;
955 	u16 i;
956 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
957 
958 	/* Prepare the EEPROM for writing  */
959 	status = ixgbe_acquire_eeprom(hw);
960 	if (status)
961 		return status;
962 
963 	if (ixgbe_ready_eeprom(hw) != 0) {
964 		ixgbe_release_eeprom(hw);
965 		return IXGBE_ERR_EEPROM;
966 	}
967 
968 	for (i = 0; i < words; i++) {
969 		ixgbe_standby_eeprom(hw);
970 
971 		/* Send the WRITE ENABLE command (8 bit opcode) */
972 		ixgbe_shift_out_eeprom_bits(hw,
973 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
974 					    IXGBE_EEPROM_OPCODE_BITS);
975 
976 		ixgbe_standby_eeprom(hw);
977 
978 		/* Some SPI eeproms use the 8th address bit embedded
979 		 * in the opcode
980 		 */
981 		if ((hw->eeprom.address_bits == 8) &&
982 		    ((offset + i) >= 128))
983 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
984 
985 		/* Send the Write command (8-bit opcode + addr) */
986 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
987 					    IXGBE_EEPROM_OPCODE_BITS);
988 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
989 					    hw->eeprom.address_bits);
990 
991 		page_size = hw->eeprom.word_page_size;
992 
993 		/* Send the data in burst via SPI */
994 		do {
995 			word = data[i];
996 			word = (word >> 8) | (word << 8);
997 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
998 
999 			if (page_size == 0)
1000 				break;
1001 
1002 			/* do not wrap around page */
1003 			if (((offset + i) & (page_size - 1)) ==
1004 			    (page_size - 1))
1005 				break;
1006 		} while (++i < words);
1007 
1008 		ixgbe_standby_eeprom(hw);
1009 		usleep_range(10000, 20000);
1010 	}
1011 	/* Done with writing - release the EEPROM */
1012 	ixgbe_release_eeprom(hw);
1013 
1014 	return 0;
1015 }
1016 
1017 /**
1018  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1019  *  @hw: pointer to hardware structure
1020  *  @offset: offset within the EEPROM to be written to
1021  *  @data: 16 bit word to be written to the EEPROM
1022  *
1023  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1024  *  EEPROM will most likely contain an invalid checksum.
1025  **/
1026 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1027 {
1028 	hw->eeprom.ops.init_params(hw);
1029 
1030 	if (offset >= hw->eeprom.word_size)
1031 		return IXGBE_ERR_EEPROM;
1032 
1033 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1034 }
1035 
1036 /**
1037  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1038  *  @hw: pointer to hardware structure
1039  *  @offset: offset within the EEPROM to be read
1040  *  @words: number of word(s)
1041  *  @data: read 16 bit words(s) from EEPROM
1042  *
1043  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1044  **/
1045 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1046 					      u16 words, u16 *data)
1047 {
1048 	s32 status;
1049 	u16 i, count;
1050 
1051 	hw->eeprom.ops.init_params(hw);
1052 
1053 	if (words == 0)
1054 		return IXGBE_ERR_INVALID_ARGUMENT;
1055 
1056 	if (offset + words > hw->eeprom.word_size)
1057 		return IXGBE_ERR_EEPROM;
1058 
1059 	/*
1060 	 * We cannot hold synchronization semaphores for too long
1061 	 * to avoid other entity starvation. However it is more efficient
1062 	 * to read in bursts than synchronizing access for each word.
1063 	 */
1064 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1065 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1066 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1067 
1068 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1069 							   count, &data[i]);
1070 
1071 		if (status)
1072 			return status;
1073 	}
1074 
1075 	return 0;
1076 }
1077 
1078 /**
1079  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1080  *  @hw: pointer to hardware structure
1081  *  @offset: offset within the EEPROM to be read
1082  *  @words: number of word(s)
1083  *  @data: read 16 bit word(s) from EEPROM
1084  *
1085  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1086  **/
1087 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1088 					     u16 words, u16 *data)
1089 {
1090 	s32 status;
1091 	u16 word_in;
1092 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1093 	u16 i;
1094 
1095 	/* Prepare the EEPROM for reading  */
1096 	status = ixgbe_acquire_eeprom(hw);
1097 	if (status)
1098 		return status;
1099 
1100 	if (ixgbe_ready_eeprom(hw) != 0) {
1101 		ixgbe_release_eeprom(hw);
1102 		return IXGBE_ERR_EEPROM;
1103 	}
1104 
1105 	for (i = 0; i < words; i++) {
1106 		ixgbe_standby_eeprom(hw);
1107 		/* Some SPI eeproms use the 8th address bit embedded
1108 		 * in the opcode
1109 		 */
1110 		if ((hw->eeprom.address_bits == 8) &&
1111 		    ((offset + i) >= 128))
1112 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1113 
1114 		/* Send the READ command (opcode + addr) */
1115 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1116 					    IXGBE_EEPROM_OPCODE_BITS);
1117 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1118 					    hw->eeprom.address_bits);
1119 
1120 		/* Read the data. */
1121 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1122 		data[i] = (word_in >> 8) | (word_in << 8);
1123 	}
1124 
1125 	/* End this read operation */
1126 	ixgbe_release_eeprom(hw);
1127 
1128 	return 0;
1129 }
1130 
1131 /**
1132  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1133  *  @hw: pointer to hardware structure
1134  *  @offset: offset within the EEPROM to be read
1135  *  @data: read 16 bit value from EEPROM
1136  *
1137  *  Reads 16 bit value from EEPROM through bit-bang method
1138  **/
1139 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1140 				       u16 *data)
1141 {
1142 	hw->eeprom.ops.init_params(hw);
1143 
1144 	if (offset >= hw->eeprom.word_size)
1145 		return IXGBE_ERR_EEPROM;
1146 
1147 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1148 }
1149 
1150 /**
1151  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1152  *  @hw: pointer to hardware structure
1153  *  @offset: offset of word in the EEPROM to read
1154  *  @words: number of word(s)
1155  *  @data: 16 bit word(s) from the EEPROM
1156  *
1157  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1158  **/
1159 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1160 				   u16 words, u16 *data)
1161 {
1162 	u32 eerd;
1163 	s32 status;
1164 	u32 i;
1165 
1166 	hw->eeprom.ops.init_params(hw);
1167 
1168 	if (words == 0)
1169 		return IXGBE_ERR_INVALID_ARGUMENT;
1170 
1171 	if (offset >= hw->eeprom.word_size)
1172 		return IXGBE_ERR_EEPROM;
1173 
1174 	for (i = 0; i < words; i++) {
1175 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1176 		       IXGBE_EEPROM_RW_REG_START;
1177 
1178 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1179 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1180 
1181 		if (status == 0) {
1182 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1183 				   IXGBE_EEPROM_RW_REG_DATA);
1184 		} else {
1185 			hw_dbg(hw, "Eeprom read timed out\n");
1186 			return status;
1187 		}
1188 	}
1189 
1190 	return 0;
1191 }
1192 
1193 /**
1194  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1195  *  @hw: pointer to hardware structure
1196  *  @offset: offset within the EEPROM to be used as a scratch pad
1197  *
1198  *  Discover EEPROM page size by writing marching data at given offset.
1199  *  This function is called only when we are writing a new large buffer
1200  *  at given offset so the data would be overwritten anyway.
1201  **/
1202 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1203 						 u16 offset)
1204 {
1205 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1206 	s32 status;
1207 	u16 i;
1208 
1209 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1210 		data[i] = i;
1211 
1212 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1213 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1214 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1215 	hw->eeprom.word_page_size = 0;
1216 	if (status)
1217 		return status;
1218 
1219 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1220 	if (status)
1221 		return status;
1222 
1223 	/*
1224 	 * When writing in burst more than the actual page size
1225 	 * EEPROM address wraps around current page.
1226 	 */
1227 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1228 
1229 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1230 	       hw->eeprom.word_page_size);
1231 	return 0;
1232 }
1233 
1234 /**
1235  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1236  *  @hw: pointer to hardware structure
1237  *  @offset: offset of  word in the EEPROM to read
1238  *  @data: word read from the EEPROM
1239  *
1240  *  Reads a 16 bit word from the EEPROM using the EERD register.
1241  **/
1242 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1243 {
1244 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1245 }
1246 
1247 /**
1248  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1249  *  @hw: pointer to hardware structure
1250  *  @offset: offset of  word in the EEPROM to write
1251  *  @words: number of words
1252  *  @data: word(s) write to the EEPROM
1253  *
1254  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1255  **/
1256 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1257 				    u16 words, u16 *data)
1258 {
1259 	u32 eewr;
1260 	s32 status;
1261 	u16 i;
1262 
1263 	hw->eeprom.ops.init_params(hw);
1264 
1265 	if (words == 0)
1266 		return IXGBE_ERR_INVALID_ARGUMENT;
1267 
1268 	if (offset >= hw->eeprom.word_size)
1269 		return IXGBE_ERR_EEPROM;
1270 
1271 	for (i = 0; i < words; i++) {
1272 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1273 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1274 		       IXGBE_EEPROM_RW_REG_START;
1275 
1276 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1277 		if (status) {
1278 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1279 			return status;
1280 		}
1281 
1282 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1283 
1284 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1285 		if (status) {
1286 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1287 			return status;
1288 		}
1289 	}
1290 
1291 	return 0;
1292 }
1293 
1294 /**
1295  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1296  *  @hw: pointer to hardware structure
1297  *  @offset: offset of  word in the EEPROM to write
1298  *  @data: word write to the EEPROM
1299  *
1300  *  Write a 16 bit word to the EEPROM using the EEWR register.
1301  **/
1302 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1303 {
1304 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1305 }
1306 
1307 /**
1308  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1309  *  @hw: pointer to hardware structure
1310  *  @ee_reg: EEPROM flag for polling
1311  *
1312  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1313  *  read or write is done respectively.
1314  **/
1315 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1316 {
1317 	u32 i;
1318 	u32 reg;
1319 
1320 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1321 		if (ee_reg == IXGBE_NVM_POLL_READ)
1322 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1323 		else
1324 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1325 
1326 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1327 			return 0;
1328 		}
1329 		udelay(5);
1330 	}
1331 	return IXGBE_ERR_EEPROM;
1332 }
1333 
1334 /**
1335  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1336  *  @hw: pointer to hardware structure
1337  *
1338  *  Prepares EEPROM for access using bit-bang method. This function should
1339  *  be called before issuing a command to the EEPROM.
1340  **/
1341 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1342 {
1343 	u32 eec;
1344 	u32 i;
1345 
1346 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1347 		return IXGBE_ERR_SWFW_SYNC;
1348 
1349 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1350 
1351 	/* Request EEPROM Access */
1352 	eec |= IXGBE_EEC_REQ;
1353 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1354 
1355 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1356 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1357 		if (eec & IXGBE_EEC_GNT)
1358 			break;
1359 		udelay(5);
1360 	}
1361 
1362 	/* Release if grant not acquired */
1363 	if (!(eec & IXGBE_EEC_GNT)) {
1364 		eec &= ~IXGBE_EEC_REQ;
1365 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1366 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1367 
1368 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1369 		return IXGBE_ERR_EEPROM;
1370 	}
1371 
1372 	/* Setup EEPROM for Read/Write */
1373 	/* Clear CS and SK */
1374 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1375 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1376 	IXGBE_WRITE_FLUSH(hw);
1377 	udelay(1);
1378 	return 0;
1379 }
1380 
1381 /**
1382  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1383  *  @hw: pointer to hardware structure
1384  *
1385  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1386  **/
1387 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1388 {
1389 	u32 timeout = 2000;
1390 	u32 i;
1391 	u32 swsm;
1392 
1393 	/* Get SMBI software semaphore between device drivers first */
1394 	for (i = 0; i < timeout; i++) {
1395 		/*
1396 		 * If the SMBI bit is 0 when we read it, then the bit will be
1397 		 * set and we have the semaphore
1398 		 */
1399 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1400 		if (!(swsm & IXGBE_SWSM_SMBI))
1401 			break;
1402 		usleep_range(50, 100);
1403 	}
1404 
1405 	if (i == timeout) {
1406 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1407 		/* this release is particularly important because our attempts
1408 		 * above to get the semaphore may have succeeded, and if there
1409 		 * was a timeout, we should unconditionally clear the semaphore
1410 		 * bits to free the driver to make progress
1411 		 */
1412 		ixgbe_release_eeprom_semaphore(hw);
1413 
1414 		usleep_range(50, 100);
1415 		/* one last try
1416 		 * If the SMBI bit is 0 when we read it, then the bit will be
1417 		 * set and we have the semaphore
1418 		 */
1419 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1420 		if (swsm & IXGBE_SWSM_SMBI) {
1421 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1422 			return IXGBE_ERR_EEPROM;
1423 		}
1424 	}
1425 
1426 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1427 	for (i = 0; i < timeout; i++) {
1428 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1429 
1430 		/* Set the SW EEPROM semaphore bit to request access */
1431 		swsm |= IXGBE_SWSM_SWESMBI;
1432 		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1433 
1434 		/* If we set the bit successfully then we got the
1435 		 * semaphore.
1436 		 */
1437 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1438 		if (swsm & IXGBE_SWSM_SWESMBI)
1439 			break;
1440 
1441 		usleep_range(50, 100);
1442 	}
1443 
1444 	/* Release semaphores and return error if SW EEPROM semaphore
1445 	 * was not granted because we don't have access to the EEPROM
1446 	 */
1447 	if (i >= timeout) {
1448 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1449 		ixgbe_release_eeprom_semaphore(hw);
1450 		return IXGBE_ERR_EEPROM;
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 /**
1457  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1458  *  @hw: pointer to hardware structure
1459  *
1460  *  This function clears hardware semaphore bits.
1461  **/
1462 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1463 {
1464 	u32 swsm;
1465 
1466 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1467 
1468 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1469 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1470 	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1471 	IXGBE_WRITE_FLUSH(hw);
1472 }
1473 
1474 /**
1475  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1476  *  @hw: pointer to hardware structure
1477  **/
1478 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1479 {
1480 	u16 i;
1481 	u8 spi_stat_reg;
1482 
1483 	/*
1484 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1485 	 * EEPROM will signal that the command has been completed by clearing
1486 	 * bit 0 of the internal status register.  If it's not cleared within
1487 	 * 5 milliseconds, then error out.
1488 	 */
1489 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1490 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1491 					    IXGBE_EEPROM_OPCODE_BITS);
1492 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1493 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1494 			break;
1495 
1496 		udelay(5);
1497 		ixgbe_standby_eeprom(hw);
1498 	}
1499 
1500 	/*
1501 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1502 	 * devices (and only 0-5mSec on 5V devices)
1503 	 */
1504 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1505 		hw_dbg(hw, "SPI EEPROM Status error\n");
1506 		return IXGBE_ERR_EEPROM;
1507 	}
1508 
1509 	return 0;
1510 }
1511 
1512 /**
1513  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1514  *  @hw: pointer to hardware structure
1515  **/
1516 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1517 {
1518 	u32 eec;
1519 
1520 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1521 
1522 	/* Toggle CS to flush commands */
1523 	eec |= IXGBE_EEC_CS;
1524 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1525 	IXGBE_WRITE_FLUSH(hw);
1526 	udelay(1);
1527 	eec &= ~IXGBE_EEC_CS;
1528 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1529 	IXGBE_WRITE_FLUSH(hw);
1530 	udelay(1);
1531 }
1532 
1533 /**
1534  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1535  *  @hw: pointer to hardware structure
1536  *  @data: data to send to the EEPROM
1537  *  @count: number of bits to shift out
1538  **/
1539 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1540 					u16 count)
1541 {
1542 	u32 eec;
1543 	u32 mask;
1544 	u32 i;
1545 
1546 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1547 
1548 	/*
1549 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1550 	 * one bit at a time.  Determine the starting bit based on count
1551 	 */
1552 	mask = BIT(count - 1);
1553 
1554 	for (i = 0; i < count; i++) {
1555 		/*
1556 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1557 		 * "1", and then raising and then lowering the clock (the SK
1558 		 * bit controls the clock input to the EEPROM).  A "0" is
1559 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1560 		 * raising and then lowering the clock.
1561 		 */
1562 		if (data & mask)
1563 			eec |= IXGBE_EEC_DI;
1564 		else
1565 			eec &= ~IXGBE_EEC_DI;
1566 
1567 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1568 		IXGBE_WRITE_FLUSH(hw);
1569 
1570 		udelay(1);
1571 
1572 		ixgbe_raise_eeprom_clk(hw, &eec);
1573 		ixgbe_lower_eeprom_clk(hw, &eec);
1574 
1575 		/*
1576 		 * Shift mask to signify next bit of data to shift in to the
1577 		 * EEPROM
1578 		 */
1579 		mask = mask >> 1;
1580 	}
1581 
1582 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1583 	eec &= ~IXGBE_EEC_DI;
1584 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1585 	IXGBE_WRITE_FLUSH(hw);
1586 }
1587 
1588 /**
1589  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1590  *  @hw: pointer to hardware structure
1591  *  @count: number of bits to shift
1592  **/
1593 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1594 {
1595 	u32 eec;
1596 	u32 i;
1597 	u16 data = 0;
1598 
1599 	/*
1600 	 * In order to read a register from the EEPROM, we need to shift
1601 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1602 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1603 	 * the value of the "DO" bit.  During this "shifting in" process the
1604 	 * "DI" bit should always be clear.
1605 	 */
1606 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1607 
1608 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1609 
1610 	for (i = 0; i < count; i++) {
1611 		data = data << 1;
1612 		ixgbe_raise_eeprom_clk(hw, &eec);
1613 
1614 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1615 
1616 		eec &= ~(IXGBE_EEC_DI);
1617 		if (eec & IXGBE_EEC_DO)
1618 			data |= 1;
1619 
1620 		ixgbe_lower_eeprom_clk(hw, &eec);
1621 	}
1622 
1623 	return data;
1624 }
1625 
1626 /**
1627  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1628  *  @hw: pointer to hardware structure
1629  *  @eec: EEC register's current value
1630  **/
1631 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1632 {
1633 	/*
1634 	 * Raise the clock input to the EEPROM
1635 	 * (setting the SK bit), then delay
1636 	 */
1637 	*eec = *eec | IXGBE_EEC_SK;
1638 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1639 	IXGBE_WRITE_FLUSH(hw);
1640 	udelay(1);
1641 }
1642 
1643 /**
1644  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1645  *  @hw: pointer to hardware structure
1646  *  @eec: EEC's current value
1647  **/
1648 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1649 {
1650 	/*
1651 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1652 	 * delay
1653 	 */
1654 	*eec = *eec & ~IXGBE_EEC_SK;
1655 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1656 	IXGBE_WRITE_FLUSH(hw);
1657 	udelay(1);
1658 }
1659 
1660 /**
1661  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1662  *  @hw: pointer to hardware structure
1663  **/
1664 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1665 {
1666 	u32 eec;
1667 
1668 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1669 
1670 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1671 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1672 
1673 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1674 	IXGBE_WRITE_FLUSH(hw);
1675 
1676 	udelay(1);
1677 
1678 	/* Stop requesting EEPROM access */
1679 	eec &= ~IXGBE_EEC_REQ;
1680 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1681 
1682 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1683 
1684 	/*
1685 	 * Delay before attempt to obtain semaphore again to allow FW
1686 	 * access. semaphore_delay is in ms we need us for usleep_range
1687 	 */
1688 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1689 		     hw->eeprom.semaphore_delay * 2000);
1690 }
1691 
1692 /**
1693  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1694  *  @hw: pointer to hardware structure
1695  **/
1696 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1697 {
1698 	u16 i;
1699 	u16 j;
1700 	u16 checksum = 0;
1701 	u16 length = 0;
1702 	u16 pointer = 0;
1703 	u16 word = 0;
1704 
1705 	/* Include 0x0-0x3F in the checksum */
1706 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1707 		if (hw->eeprom.ops.read(hw, i, &word)) {
1708 			hw_dbg(hw, "EEPROM read failed\n");
1709 			break;
1710 		}
1711 		checksum += word;
1712 	}
1713 
1714 	/* Include all data from pointers except for the fw pointer */
1715 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1716 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1717 			hw_dbg(hw, "EEPROM read failed\n");
1718 			return IXGBE_ERR_EEPROM;
1719 		}
1720 
1721 		/* If the pointer seems invalid */
1722 		if (pointer == 0xFFFF || pointer == 0)
1723 			continue;
1724 
1725 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1726 			hw_dbg(hw, "EEPROM read failed\n");
1727 			return IXGBE_ERR_EEPROM;
1728 		}
1729 
1730 		if (length == 0xFFFF || length == 0)
1731 			continue;
1732 
1733 		for (j = pointer + 1; j <= pointer + length; j++) {
1734 			if (hw->eeprom.ops.read(hw, j, &word)) {
1735 				hw_dbg(hw, "EEPROM read failed\n");
1736 				return IXGBE_ERR_EEPROM;
1737 			}
1738 			checksum += word;
1739 		}
1740 	}
1741 
1742 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1743 
1744 	return (s32)checksum;
1745 }
1746 
1747 /**
1748  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1749  *  @hw: pointer to hardware structure
1750  *  @checksum_val: calculated checksum
1751  *
1752  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1753  *  caller does not need checksum_val, the value can be NULL.
1754  **/
1755 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1756 					   u16 *checksum_val)
1757 {
1758 	s32 status;
1759 	u16 checksum;
1760 	u16 read_checksum = 0;
1761 
1762 	/*
1763 	 * Read the first word from the EEPROM. If this times out or fails, do
1764 	 * not continue or we could be in for a very long wait while every
1765 	 * EEPROM read fails
1766 	 */
1767 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1768 	if (status) {
1769 		hw_dbg(hw, "EEPROM read failed\n");
1770 		return status;
1771 	}
1772 
1773 	status = hw->eeprom.ops.calc_checksum(hw);
1774 	if (status < 0)
1775 		return status;
1776 
1777 	checksum = (u16)(status & 0xffff);
1778 
1779 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1780 	if (status) {
1781 		hw_dbg(hw, "EEPROM read failed\n");
1782 		return status;
1783 	}
1784 
1785 	/* Verify read checksum from EEPROM is the same as
1786 	 * calculated checksum
1787 	 */
1788 	if (read_checksum != checksum)
1789 		status = IXGBE_ERR_EEPROM_CHECKSUM;
1790 
1791 	/* If the user cares, return the calculated checksum */
1792 	if (checksum_val)
1793 		*checksum_val = checksum;
1794 
1795 	return status;
1796 }
1797 
1798 /**
1799  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1800  *  @hw: pointer to hardware structure
1801  **/
1802 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1803 {
1804 	s32 status;
1805 	u16 checksum;
1806 
1807 	/*
1808 	 * Read the first word from the EEPROM. If this times out or fails, do
1809 	 * not continue or we could be in for a very long wait while every
1810 	 * EEPROM read fails
1811 	 */
1812 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1813 	if (status) {
1814 		hw_dbg(hw, "EEPROM read failed\n");
1815 		return status;
1816 	}
1817 
1818 	status = hw->eeprom.ops.calc_checksum(hw);
1819 	if (status < 0)
1820 		return status;
1821 
1822 	checksum = (u16)(status & 0xffff);
1823 
1824 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1825 
1826 	return status;
1827 }
1828 
1829 /**
1830  *  ixgbe_set_rar_generic - Set Rx address register
1831  *  @hw: pointer to hardware structure
1832  *  @index: Receive address register to write
1833  *  @addr: Address to put into receive address register
1834  *  @vmdq: VMDq "set" or "pool" index
1835  *  @enable_addr: set flag that address is active
1836  *
1837  *  Puts an ethernet address into a receive address register.
1838  **/
1839 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1840 			  u32 enable_addr)
1841 {
1842 	u32 rar_low, rar_high;
1843 	u32 rar_entries = hw->mac.num_rar_entries;
1844 
1845 	/* Make sure we are using a valid rar index range */
1846 	if (index >= rar_entries) {
1847 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1848 		return IXGBE_ERR_INVALID_ARGUMENT;
1849 	}
1850 
1851 	/* setup VMDq pool selection before this RAR gets enabled */
1852 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1853 
1854 	/*
1855 	 * HW expects these in little endian so we reverse the byte
1856 	 * order from network order (big endian) to little endian
1857 	 */
1858 	rar_low = ((u32)addr[0] |
1859 		   ((u32)addr[1] << 8) |
1860 		   ((u32)addr[2] << 16) |
1861 		   ((u32)addr[3] << 24));
1862 	/*
1863 	 * Some parts put the VMDq setting in the extra RAH bits,
1864 	 * so save everything except the lower 16 bits that hold part
1865 	 * of the address and the address valid bit.
1866 	 */
1867 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1868 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1869 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1870 
1871 	if (enable_addr != 0)
1872 		rar_high |= IXGBE_RAH_AV;
1873 
1874 	/* Record lower 32 bits of MAC address and then make
1875 	 * sure that write is flushed to hardware before writing
1876 	 * the upper 16 bits and setting the valid bit.
1877 	 */
1878 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1879 	IXGBE_WRITE_FLUSH(hw);
1880 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1881 
1882 	return 0;
1883 }
1884 
1885 /**
1886  *  ixgbe_clear_rar_generic - Remove Rx address register
1887  *  @hw: pointer to hardware structure
1888  *  @index: Receive address register to write
1889  *
1890  *  Clears an ethernet address from a receive address register.
1891  **/
1892 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1893 {
1894 	u32 rar_high;
1895 	u32 rar_entries = hw->mac.num_rar_entries;
1896 
1897 	/* Make sure we are using a valid rar index range */
1898 	if (index >= rar_entries) {
1899 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1900 		return IXGBE_ERR_INVALID_ARGUMENT;
1901 	}
1902 
1903 	/*
1904 	 * Some parts put the VMDq setting in the extra RAH bits,
1905 	 * so save everything except the lower 16 bits that hold part
1906 	 * of the address and the address valid bit.
1907 	 */
1908 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1909 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1910 
1911 	/* Clear the address valid bit and upper 16 bits of the address
1912 	 * before clearing the lower bits. This way we aren't updating
1913 	 * a live filter.
1914 	 */
1915 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1916 	IXGBE_WRITE_FLUSH(hw);
1917 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1918 
1919 	/* clear VMDq pool/queue selection for this RAR */
1920 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1921 
1922 	return 0;
1923 }
1924 
1925 /**
1926  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1927  *  @hw: pointer to hardware structure
1928  *
1929  *  Places the MAC address in receive address register 0 and clears the rest
1930  *  of the receive address registers. Clears the multicast table. Assumes
1931  *  the receiver is in reset when the routine is called.
1932  **/
1933 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1934 {
1935 	u32 i;
1936 	u32 rar_entries = hw->mac.num_rar_entries;
1937 
1938 	/*
1939 	 * If the current mac address is valid, assume it is a software override
1940 	 * to the permanent address.
1941 	 * Otherwise, use the permanent address from the eeprom.
1942 	 */
1943 	if (!is_valid_ether_addr(hw->mac.addr)) {
1944 		/* Get the MAC address from the RAR0 for later reference */
1945 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1946 
1947 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1948 	} else {
1949 		/* Setup the receive address. */
1950 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1951 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1952 
1953 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1954 	}
1955 
1956 	/*  clear VMDq pool/queue selection for RAR 0 */
1957 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1958 
1959 	hw->addr_ctrl.overflow_promisc = 0;
1960 
1961 	hw->addr_ctrl.rar_used_count = 1;
1962 
1963 	/* Zero out the other receive addresses. */
1964 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1965 	for (i = 1; i < rar_entries; i++) {
1966 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1967 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1968 	}
1969 
1970 	/* Clear the MTA */
1971 	hw->addr_ctrl.mta_in_use = 0;
1972 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1973 
1974 	hw_dbg(hw, " Clearing MTA\n");
1975 	for (i = 0; i < hw->mac.mcft_size; i++)
1976 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1977 
1978 	if (hw->mac.ops.init_uta_tables)
1979 		hw->mac.ops.init_uta_tables(hw);
1980 
1981 	return 0;
1982 }
1983 
1984 /**
1985  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1986  *  @hw: pointer to hardware structure
1987  *  @mc_addr: the multicast address
1988  *
1989  *  Extracts the 12 bits, from a multicast address, to determine which
1990  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1991  *  incoming rx multicast addresses, to determine the bit-vector to check in
1992  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1993  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1994  *  to mc_filter_type.
1995  **/
1996 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1997 {
1998 	u32 vector = 0;
1999 
2000 	switch (hw->mac.mc_filter_type) {
2001 	case 0:   /* use bits [47:36] of the address */
2002 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2003 		break;
2004 	case 1:   /* use bits [46:35] of the address */
2005 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2006 		break;
2007 	case 2:   /* use bits [45:34] of the address */
2008 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2009 		break;
2010 	case 3:   /* use bits [43:32] of the address */
2011 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2012 		break;
2013 	default:  /* Invalid mc_filter_type */
2014 		hw_dbg(hw, "MC filter type param set incorrectly\n");
2015 		break;
2016 	}
2017 
2018 	/* vector can only be 12-bits or boundary will be exceeded */
2019 	vector &= 0xFFF;
2020 	return vector;
2021 }
2022 
2023 /**
2024  *  ixgbe_set_mta - Set bit-vector in multicast table
2025  *  @hw: pointer to hardware structure
2026  *  @mc_addr: Multicast address
2027  *
2028  *  Sets the bit-vector in the multicast table.
2029  **/
2030 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2031 {
2032 	u32 vector;
2033 	u32 vector_bit;
2034 	u32 vector_reg;
2035 
2036 	hw->addr_ctrl.mta_in_use++;
2037 
2038 	vector = ixgbe_mta_vector(hw, mc_addr);
2039 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2040 
2041 	/*
2042 	 * The MTA is a register array of 128 32-bit registers. It is treated
2043 	 * like an array of 4096 bits.  We want to set bit
2044 	 * BitArray[vector_value]. So we figure out what register the bit is
2045 	 * in, read it, OR in the new bit, then write back the new value.  The
2046 	 * register is determined by the upper 7 bits of the vector value and
2047 	 * the bit within that register are determined by the lower 5 bits of
2048 	 * the value.
2049 	 */
2050 	vector_reg = (vector >> 5) & 0x7F;
2051 	vector_bit = vector & 0x1F;
2052 	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2053 }
2054 
2055 /**
2056  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2057  *  @hw: pointer to hardware structure
2058  *  @netdev: pointer to net device structure
2059  *
2060  *  The given list replaces any existing list. Clears the MC addrs from receive
2061  *  address registers and the multicast table. Uses unused receive address
2062  *  registers for the first multicast addresses, and hashes the rest into the
2063  *  multicast table.
2064  **/
2065 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2066 				      struct net_device *netdev)
2067 {
2068 	struct netdev_hw_addr *ha;
2069 	u32 i;
2070 
2071 	/*
2072 	 * Set the new number of MC addresses that we are being requested to
2073 	 * use.
2074 	 */
2075 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2076 	hw->addr_ctrl.mta_in_use = 0;
2077 
2078 	/* Clear mta_shadow */
2079 	hw_dbg(hw, " Clearing MTA\n");
2080 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2081 
2082 	/* Update mta shadow */
2083 	netdev_for_each_mc_addr(ha, netdev) {
2084 		hw_dbg(hw, " Adding the multicast addresses:\n");
2085 		ixgbe_set_mta(hw, ha->addr);
2086 	}
2087 
2088 	/* Enable mta */
2089 	for (i = 0; i < hw->mac.mcft_size; i++)
2090 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2091 				      hw->mac.mta_shadow[i]);
2092 
2093 	if (hw->addr_ctrl.mta_in_use > 0)
2094 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2095 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2096 
2097 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2098 	return 0;
2099 }
2100 
2101 /**
2102  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2103  *  @hw: pointer to hardware structure
2104  *
2105  *  Enables multicast address in RAR and the use of the multicast hash table.
2106  **/
2107 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2108 {
2109 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2110 
2111 	if (a->mta_in_use > 0)
2112 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2113 				hw->mac.mc_filter_type);
2114 
2115 	return 0;
2116 }
2117 
2118 /**
2119  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2120  *  @hw: pointer to hardware structure
2121  *
2122  *  Disables multicast address in RAR and the use of the multicast hash table.
2123  **/
2124 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2125 {
2126 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2127 
2128 	if (a->mta_in_use > 0)
2129 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2130 
2131 	return 0;
2132 }
2133 
2134 /**
2135  *  ixgbe_fc_enable_generic - Enable flow control
2136  *  @hw: pointer to hardware structure
2137  *
2138  *  Enable flow control according to the current settings.
2139  **/
2140 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2141 {
2142 	u32 mflcn_reg, fccfg_reg;
2143 	u32 reg;
2144 	u32 fcrtl, fcrth;
2145 	int i;
2146 
2147 	/* Validate the water mark configuration. */
2148 	if (!hw->fc.pause_time)
2149 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2150 
2151 	/* Low water mark of zero causes XOFF floods */
2152 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2153 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2154 		    hw->fc.high_water[i]) {
2155 			if (!hw->fc.low_water[i] ||
2156 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2157 				hw_dbg(hw, "Invalid water mark configuration\n");
2158 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2159 			}
2160 		}
2161 	}
2162 
2163 	/* Negotiate the fc mode to use */
2164 	hw->mac.ops.fc_autoneg(hw);
2165 
2166 	/* Disable any previous flow control settings */
2167 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2168 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2169 
2170 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2171 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2172 
2173 	/*
2174 	 * The possible values of fc.current_mode are:
2175 	 * 0: Flow control is completely disabled
2176 	 * 1: Rx flow control is enabled (we can receive pause frames,
2177 	 *    but not send pause frames).
2178 	 * 2: Tx flow control is enabled (we can send pause frames but
2179 	 *    we do not support receiving pause frames).
2180 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2181 	 * other: Invalid.
2182 	 */
2183 	switch (hw->fc.current_mode) {
2184 	case ixgbe_fc_none:
2185 		/*
2186 		 * Flow control is disabled by software override or autoneg.
2187 		 * The code below will actually disable it in the HW.
2188 		 */
2189 		break;
2190 	case ixgbe_fc_rx_pause:
2191 		/*
2192 		 * Rx Flow control is enabled and Tx Flow control is
2193 		 * disabled by software override. Since there really
2194 		 * isn't a way to advertise that we are capable of RX
2195 		 * Pause ONLY, we will advertise that we support both
2196 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2197 		 * disable the adapter's ability to send PAUSE frames.
2198 		 */
2199 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2200 		break;
2201 	case ixgbe_fc_tx_pause:
2202 		/*
2203 		 * Tx Flow control is enabled, and Rx Flow control is
2204 		 * disabled by software override.
2205 		 */
2206 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2207 		break;
2208 	case ixgbe_fc_full:
2209 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2210 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2211 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2212 		break;
2213 	default:
2214 		hw_dbg(hw, "Flow control param set incorrectly\n");
2215 		return IXGBE_ERR_CONFIG;
2216 	}
2217 
2218 	/* Set 802.3x based flow control settings. */
2219 	mflcn_reg |= IXGBE_MFLCN_DPF;
2220 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2221 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2222 
2223 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2224 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2225 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2226 		    hw->fc.high_water[i]) {
2227 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2228 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2229 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2230 		} else {
2231 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2232 			/*
2233 			 * In order to prevent Tx hangs when the internal Tx
2234 			 * switch is enabled we must set the high water mark
2235 			 * to the Rx packet buffer size - 24KB.  This allows
2236 			 * the Tx switch to function even under heavy Rx
2237 			 * workloads.
2238 			 */
2239 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2240 		}
2241 
2242 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2243 	}
2244 
2245 	/* Configure pause time (2 TCs per register) */
2246 	reg = hw->fc.pause_time * 0x00010001U;
2247 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2248 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2249 
2250 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2251 
2252 	return 0;
2253 }
2254 
2255 /**
2256  *  ixgbe_negotiate_fc - Negotiate flow control
2257  *  @hw: pointer to hardware structure
2258  *  @adv_reg: flow control advertised settings
2259  *  @lp_reg: link partner's flow control settings
2260  *  @adv_sym: symmetric pause bit in advertisement
2261  *  @adv_asm: asymmetric pause bit in advertisement
2262  *  @lp_sym: symmetric pause bit in link partner advertisement
2263  *  @lp_asm: asymmetric pause bit in link partner advertisement
2264  *
2265  *  Find the intersection between advertised settings and link partner's
2266  *  advertised settings
2267  **/
2268 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2269 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2270 {
2271 	if ((!(adv_reg)) ||  (!(lp_reg)))
2272 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2273 
2274 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2275 		/*
2276 		 * Now we need to check if the user selected Rx ONLY
2277 		 * of pause frames.  In this case, we had to advertise
2278 		 * FULL flow control because we could not advertise RX
2279 		 * ONLY. Hence, we must now check to see if we need to
2280 		 * turn OFF the TRANSMISSION of PAUSE frames.
2281 		 */
2282 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2283 			hw->fc.current_mode = ixgbe_fc_full;
2284 			hw_dbg(hw, "Flow Control = FULL.\n");
2285 		} else {
2286 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2287 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2288 		}
2289 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2290 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2291 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2292 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2293 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2294 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2295 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2296 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2297 	} else {
2298 		hw->fc.current_mode = ixgbe_fc_none;
2299 		hw_dbg(hw, "Flow Control = NONE.\n");
2300 	}
2301 	return 0;
2302 }
2303 
2304 /**
2305  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2306  *  @hw: pointer to hardware structure
2307  *
2308  *  Enable flow control according on 1 gig fiber.
2309  **/
2310 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2311 {
2312 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2313 	s32 ret_val;
2314 
2315 	/*
2316 	 * On multispeed fiber at 1g, bail out if
2317 	 * - link is up but AN did not complete, or if
2318 	 * - link is up and AN completed but timed out
2319 	 */
2320 
2321 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2322 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2323 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2324 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2325 
2326 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2327 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2328 
2329 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2330 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2331 			       IXGBE_PCS1GANA_ASM_PAUSE,
2332 			       IXGBE_PCS1GANA_SYM_PAUSE,
2333 			       IXGBE_PCS1GANA_ASM_PAUSE);
2334 
2335 	return ret_val;
2336 }
2337 
2338 /**
2339  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2340  *  @hw: pointer to hardware structure
2341  *
2342  *  Enable flow control according to IEEE clause 37.
2343  **/
2344 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2345 {
2346 	u32 links2, anlp1_reg, autoc_reg, links;
2347 	s32 ret_val;
2348 
2349 	/*
2350 	 * On backplane, bail out if
2351 	 * - backplane autoneg was not completed, or if
2352 	 * - we are 82599 and link partner is not AN enabled
2353 	 */
2354 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2355 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2356 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2357 
2358 	if (hw->mac.type == ixgbe_mac_82599EB) {
2359 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2360 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2361 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2362 	}
2363 	/*
2364 	 * Read the 10g AN autoc and LP ability registers and resolve
2365 	 * local flow control settings accordingly
2366 	 */
2367 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2368 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2369 
2370 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2371 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2372 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2373 
2374 	return ret_val;
2375 }
2376 
2377 /**
2378  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2379  *  @hw: pointer to hardware structure
2380  *
2381  *  Enable flow control according to IEEE clause 37.
2382  **/
2383 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2384 {
2385 	u16 technology_ability_reg = 0;
2386 	u16 lp_technology_ability_reg = 0;
2387 
2388 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2389 			     MDIO_MMD_AN,
2390 			     &technology_ability_reg);
2391 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2392 			     MDIO_MMD_AN,
2393 			     &lp_technology_ability_reg);
2394 
2395 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2396 				  (u32)lp_technology_ability_reg,
2397 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2398 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2399 }
2400 
2401 /**
2402  *  ixgbe_fc_autoneg - Configure flow control
2403  *  @hw: pointer to hardware structure
2404  *
2405  *  Compares our advertised flow control capabilities to those advertised by
2406  *  our link partner, and determines the proper flow control mode to use.
2407  **/
2408 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2409 {
2410 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2411 	ixgbe_link_speed speed;
2412 	bool link_up;
2413 
2414 	/*
2415 	 * AN should have completed when the cable was plugged in.
2416 	 * Look for reasons to bail out.  Bail out if:
2417 	 * - FC autoneg is disabled, or if
2418 	 * - link is not up.
2419 	 *
2420 	 * Since we're being called from an LSC, link is already known to be up.
2421 	 * So use link_up_wait_to_complete=false.
2422 	 */
2423 	if (hw->fc.disable_fc_autoneg)
2424 		goto out;
2425 
2426 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2427 	if (!link_up)
2428 		goto out;
2429 
2430 	switch (hw->phy.media_type) {
2431 	/* Autoneg flow control on fiber adapters */
2432 	case ixgbe_media_type_fiber:
2433 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2434 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2435 		break;
2436 
2437 	/* Autoneg flow control on backplane adapters */
2438 	case ixgbe_media_type_backplane:
2439 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2440 		break;
2441 
2442 	/* Autoneg flow control on copper adapters */
2443 	case ixgbe_media_type_copper:
2444 		if (ixgbe_device_supports_autoneg_fc(hw))
2445 			ret_val = ixgbe_fc_autoneg_copper(hw);
2446 		break;
2447 
2448 	default:
2449 		break;
2450 	}
2451 
2452 out:
2453 	if (ret_val == 0) {
2454 		hw->fc.fc_was_autonegged = true;
2455 	} else {
2456 		hw->fc.fc_was_autonegged = false;
2457 		hw->fc.current_mode = hw->fc.requested_mode;
2458 	}
2459 }
2460 
2461 /**
2462  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2463  * @hw: pointer to hardware structure
2464  *
2465  * System-wide timeout range is encoded in PCIe Device Control2 register.
2466  *
2467  *  Add 10% to specified maximum and return the number of times to poll for
2468  *  completion timeout, in units of 100 microsec.  Never return less than
2469  *  800 = 80 millisec.
2470  **/
2471 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2472 {
2473 	s16 devctl2;
2474 	u32 pollcnt;
2475 
2476 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2477 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2478 
2479 	switch (devctl2) {
2480 	case IXGBE_PCIDEVCTRL2_65_130ms:
2481 		 pollcnt = 1300;         /* 130 millisec */
2482 		break;
2483 	case IXGBE_PCIDEVCTRL2_260_520ms:
2484 		pollcnt = 5200;         /* 520 millisec */
2485 		break;
2486 	case IXGBE_PCIDEVCTRL2_1_2s:
2487 		pollcnt = 20000;        /* 2 sec */
2488 		break;
2489 	case IXGBE_PCIDEVCTRL2_4_8s:
2490 		pollcnt = 80000;        /* 8 sec */
2491 		break;
2492 	case IXGBE_PCIDEVCTRL2_17_34s:
2493 		pollcnt = 34000;        /* 34 sec */
2494 		break;
2495 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2496 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2497 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2498 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2499 	default:
2500 		pollcnt = 800;          /* 80 millisec minimum */
2501 		break;
2502 	}
2503 
2504 	/* add 10% to spec maximum */
2505 	return (pollcnt * 11) / 10;
2506 }
2507 
2508 /**
2509  *  ixgbe_disable_pcie_primary - Disable PCI-express primary access
2510  *  @hw: pointer to hardware structure
2511  *
2512  *  Disables PCI-Express primary access and verifies there are no pending
2513  *  requests. IXGBE_ERR_PRIMARY_REQUESTS_PENDING is returned if primary disable
2514  *  bit hasn't caused the primary requests to be disabled, else 0
2515  *  is returned signifying primary requests disabled.
2516  **/
2517 static s32 ixgbe_disable_pcie_primary(struct ixgbe_hw *hw)
2518 {
2519 	u32 i, poll;
2520 	u16 value;
2521 
2522 	/* Always set this bit to ensure any future transactions are blocked */
2523 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2524 
2525 	/* Poll for bit to read as set */
2526 	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2527 		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2528 			break;
2529 		usleep_range(100, 120);
2530 	}
2531 	if (i >= IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT) {
2532 		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2533 		goto gio_disable_fail;
2534 	}
2535 
2536 	/* Exit if primary requests are blocked */
2537 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2538 	    ixgbe_removed(hw->hw_addr))
2539 		return 0;
2540 
2541 	/* Poll for primary request bit to clear */
2542 	for (i = 0; i < IXGBE_PCI_PRIMARY_DISABLE_TIMEOUT; i++) {
2543 		udelay(100);
2544 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2545 			return 0;
2546 	}
2547 
2548 	/*
2549 	 * Two consecutive resets are required via CTRL.RST per datasheet
2550 	 * 5.2.5.3.2 Primary Disable.  We set a flag to inform the reset routine
2551 	 * of this need.  The first reset prevents new primary requests from
2552 	 * being issued by our device.  We then must wait 1usec or more for any
2553 	 * remaining completions from the PCIe bus to trickle in, and then reset
2554 	 * again to clear out any effects they may have had on our device.
2555 	 */
2556 	hw_dbg(hw, "GIO Primary Disable bit didn't clear - requesting resets\n");
2557 gio_disable_fail:
2558 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2559 
2560 	if (hw->mac.type >= ixgbe_mac_X550)
2561 		return 0;
2562 
2563 	/*
2564 	 * Before proceeding, make sure that the PCIe block does not have
2565 	 * transactions pending.
2566 	 */
2567 	poll = ixgbe_pcie_timeout_poll(hw);
2568 	for (i = 0; i < poll; i++) {
2569 		udelay(100);
2570 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2571 		if (ixgbe_removed(hw->hw_addr))
2572 			return 0;
2573 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2574 			return 0;
2575 	}
2576 
2577 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2578 	return IXGBE_ERR_PRIMARY_REQUESTS_PENDING;
2579 }
2580 
2581 /**
2582  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2583  *  @hw: pointer to hardware structure
2584  *  @mask: Mask to specify which semaphore to acquire
2585  *
2586  *  Acquires the SWFW semaphore through the GSSR register for the specified
2587  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2588  **/
2589 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2590 {
2591 	u32 gssr = 0;
2592 	u32 swmask = mask;
2593 	u32 fwmask = mask << 5;
2594 	u32 timeout = 200;
2595 	u32 i;
2596 
2597 	for (i = 0; i < timeout; i++) {
2598 		/*
2599 		 * SW NVM semaphore bit is used for access to all
2600 		 * SW_FW_SYNC bits (not just NVM)
2601 		 */
2602 		if (ixgbe_get_eeprom_semaphore(hw))
2603 			return IXGBE_ERR_SWFW_SYNC;
2604 
2605 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2606 		if (!(gssr & (fwmask | swmask))) {
2607 			gssr |= swmask;
2608 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2609 			ixgbe_release_eeprom_semaphore(hw);
2610 			return 0;
2611 		} else {
2612 			/* Resource is currently in use by FW or SW */
2613 			ixgbe_release_eeprom_semaphore(hw);
2614 			usleep_range(5000, 10000);
2615 		}
2616 	}
2617 
2618 	/* If time expired clear the bits holding the lock and retry */
2619 	if (gssr & (fwmask | swmask))
2620 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2621 
2622 	usleep_range(5000, 10000);
2623 	return IXGBE_ERR_SWFW_SYNC;
2624 }
2625 
2626 /**
2627  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2628  *  @hw: pointer to hardware structure
2629  *  @mask: Mask to specify which semaphore to release
2630  *
2631  *  Releases the SWFW semaphore through the GSSR register for the specified
2632  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2633  **/
2634 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2635 {
2636 	u32 gssr;
2637 	u32 swmask = mask;
2638 
2639 	ixgbe_get_eeprom_semaphore(hw);
2640 
2641 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2642 	gssr &= ~swmask;
2643 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2644 
2645 	ixgbe_release_eeprom_semaphore(hw);
2646 }
2647 
2648 /**
2649  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2650  * @hw: pointer to hardware structure
2651  * @reg_val: Value we read from AUTOC
2652  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2653  *	    true in this the generic case.
2654  *
2655  * The default case requires no protection so just to the register read.
2656  **/
2657 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2658 {
2659 	*locked = false;
2660 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2661 	return 0;
2662 }
2663 
2664 /**
2665  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2666  * @hw: pointer to hardware structure
2667  * @reg_val: value to write to AUTOC
2668  * @locked: bool to indicate whether the SW/FW lock was already taken by
2669  *	    previous read.
2670  **/
2671 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2672 {
2673 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2674 	return 0;
2675 }
2676 
2677 /**
2678  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2679  *  @hw: pointer to hardware structure
2680  *
2681  *  Stops the receive data path and waits for the HW to internally
2682  *  empty the Rx security block.
2683  **/
2684 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2685 {
2686 #define IXGBE_MAX_SECRX_POLL 40
2687 	int i;
2688 	int secrxreg;
2689 
2690 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2691 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2692 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2693 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2694 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2695 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2696 			break;
2697 		else
2698 			/* Use interrupt-safe sleep just in case */
2699 			udelay(1000);
2700 	}
2701 
2702 	/* For informational purposes only */
2703 	if (i >= IXGBE_MAX_SECRX_POLL)
2704 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2705 
2706 	return 0;
2707 
2708 }
2709 
2710 /**
2711  *  ixgbe_enable_rx_buff_generic - Enables the receive data path
2712  *  @hw: pointer to hardware structure
2713  *
2714  *  Enables the receive data path
2715  **/
2716 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2717 {
2718 	u32 secrxreg;
2719 
2720 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2721 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2722 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2723 	IXGBE_WRITE_FLUSH(hw);
2724 
2725 	return 0;
2726 }
2727 
2728 /**
2729  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2730  *  @hw: pointer to hardware structure
2731  *  @regval: register value to write to RXCTRL
2732  *
2733  *  Enables the Rx DMA unit
2734  **/
2735 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2736 {
2737 	if (regval & IXGBE_RXCTRL_RXEN)
2738 		hw->mac.ops.enable_rx(hw);
2739 	else
2740 		hw->mac.ops.disable_rx(hw);
2741 
2742 	return 0;
2743 }
2744 
2745 /**
2746  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2747  *  @hw: pointer to hardware structure
2748  *  @index: led number to blink
2749  **/
2750 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2751 {
2752 	ixgbe_link_speed speed = 0;
2753 	bool link_up = false;
2754 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2755 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2756 	bool locked = false;
2757 	s32 ret_val;
2758 
2759 	if (index > 3)
2760 		return IXGBE_ERR_PARAM;
2761 
2762 	/*
2763 	 * Link must be up to auto-blink the LEDs;
2764 	 * Force it if link is down.
2765 	 */
2766 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2767 
2768 	if (!link_up) {
2769 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2770 		if (ret_val)
2771 			return ret_val;
2772 
2773 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2774 		autoc_reg |= IXGBE_AUTOC_FLU;
2775 
2776 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2777 		if (ret_val)
2778 			return ret_val;
2779 
2780 		IXGBE_WRITE_FLUSH(hw);
2781 
2782 		usleep_range(10000, 20000);
2783 	}
2784 
2785 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2786 	led_reg |= IXGBE_LED_BLINK(index);
2787 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2788 	IXGBE_WRITE_FLUSH(hw);
2789 
2790 	return 0;
2791 }
2792 
2793 /**
2794  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2795  *  @hw: pointer to hardware structure
2796  *  @index: led number to stop blinking
2797  **/
2798 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2799 {
2800 	u32 autoc_reg = 0;
2801 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2802 	bool locked = false;
2803 	s32 ret_val;
2804 
2805 	if (index > 3)
2806 		return IXGBE_ERR_PARAM;
2807 
2808 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2809 	if (ret_val)
2810 		return ret_val;
2811 
2812 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2813 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2814 
2815 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2816 	if (ret_val)
2817 		return ret_val;
2818 
2819 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2820 	led_reg &= ~IXGBE_LED_BLINK(index);
2821 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2822 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2823 	IXGBE_WRITE_FLUSH(hw);
2824 
2825 	return 0;
2826 }
2827 
2828 /**
2829  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2830  *  @hw: pointer to hardware structure
2831  *  @san_mac_offset: SAN MAC address offset
2832  *
2833  *  This function will read the EEPROM location for the SAN MAC address
2834  *  pointer, and returns the value at that location.  This is used in both
2835  *  get and set mac_addr routines.
2836  **/
2837 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2838 					u16 *san_mac_offset)
2839 {
2840 	s32 ret_val;
2841 
2842 	/*
2843 	 * First read the EEPROM pointer to see if the MAC addresses are
2844 	 * available.
2845 	 */
2846 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2847 				      san_mac_offset);
2848 	if (ret_val)
2849 		hw_err(hw, "eeprom read at offset %d failed\n",
2850 		       IXGBE_SAN_MAC_ADDR_PTR);
2851 
2852 	return ret_val;
2853 }
2854 
2855 /**
2856  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2857  *  @hw: pointer to hardware structure
2858  *  @san_mac_addr: SAN MAC address
2859  *
2860  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2861  *  per-port, so set_lan_id() must be called before reading the addresses.
2862  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2863  *  upon for non-SFP connections, so we must call it here.
2864  **/
2865 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2866 {
2867 	u16 san_mac_data, san_mac_offset;
2868 	u8 i;
2869 	s32 ret_val;
2870 
2871 	/*
2872 	 * First read the EEPROM pointer to see if the MAC addresses are
2873 	 * available.  If they're not, no point in calling set_lan_id() here.
2874 	 */
2875 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2876 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2877 
2878 		goto san_mac_addr_clr;
2879 
2880 	/* make sure we know which port we need to program */
2881 	hw->mac.ops.set_lan_id(hw);
2882 	/* apply the port offset to the address offset */
2883 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2884 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2885 	for (i = 0; i < 3; i++) {
2886 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2887 					      &san_mac_data);
2888 		if (ret_val) {
2889 			hw_err(hw, "eeprom read at offset %d failed\n",
2890 			       san_mac_offset);
2891 			goto san_mac_addr_clr;
2892 		}
2893 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2894 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2895 		san_mac_offset++;
2896 	}
2897 	return 0;
2898 
2899 san_mac_addr_clr:
2900 	/* No addresses available in this EEPROM.  It's not necessarily an
2901 	 * error though, so just wipe the local address and return.
2902 	 */
2903 	for (i = 0; i < 6; i++)
2904 		san_mac_addr[i] = 0xFF;
2905 	return ret_val;
2906 }
2907 
2908 /**
2909  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2910  *  @hw: pointer to hardware structure
2911  *
2912  *  Read PCIe configuration space, and get the MSI-X vector count from
2913  *  the capabilities table.
2914  **/
2915 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2916 {
2917 	u16 msix_count;
2918 	u16 max_msix_count;
2919 	u16 pcie_offset;
2920 
2921 	switch (hw->mac.type) {
2922 	case ixgbe_mac_82598EB:
2923 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2924 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2925 		break;
2926 	case ixgbe_mac_82599EB:
2927 	case ixgbe_mac_X540:
2928 	case ixgbe_mac_X550:
2929 	case ixgbe_mac_X550EM_x:
2930 	case ixgbe_mac_x550em_a:
2931 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2932 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2933 		break;
2934 	default:
2935 		return 1;
2936 	}
2937 
2938 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2939 	if (ixgbe_removed(hw->hw_addr))
2940 		msix_count = 0;
2941 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2942 
2943 	/* MSI-X count is zero-based in HW */
2944 	msix_count++;
2945 
2946 	if (msix_count > max_msix_count)
2947 		msix_count = max_msix_count;
2948 
2949 	return msix_count;
2950 }
2951 
2952 /**
2953  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2954  *  @hw: pointer to hardware struct
2955  *  @rar: receive address register index to disassociate
2956  *  @vmdq: VMDq pool index to remove from the rar
2957  **/
2958 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2959 {
2960 	u32 mpsar_lo, mpsar_hi;
2961 	u32 rar_entries = hw->mac.num_rar_entries;
2962 
2963 	/* Make sure we are using a valid rar index range */
2964 	if (rar >= rar_entries) {
2965 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2966 		return IXGBE_ERR_INVALID_ARGUMENT;
2967 	}
2968 
2969 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2970 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2971 
2972 	if (ixgbe_removed(hw->hw_addr))
2973 		return 0;
2974 
2975 	if (!mpsar_lo && !mpsar_hi)
2976 		return 0;
2977 
2978 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2979 		if (mpsar_lo) {
2980 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2981 			mpsar_lo = 0;
2982 		}
2983 		if (mpsar_hi) {
2984 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2985 			mpsar_hi = 0;
2986 		}
2987 	} else if (vmdq < 32) {
2988 		mpsar_lo &= ~BIT(vmdq);
2989 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2990 	} else {
2991 		mpsar_hi &= ~BIT(vmdq - 32);
2992 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2993 	}
2994 
2995 	/* was that the last pool using this rar? */
2996 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
2997 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
2998 		hw->mac.ops.clear_rar(hw, rar);
2999 
3000 	return 0;
3001 }
3002 
3003 /**
3004  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3005  *  @hw: pointer to hardware struct
3006  *  @rar: receive address register index to associate with a VMDq index
3007  *  @vmdq: VMDq pool index
3008  **/
3009 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3010 {
3011 	u32 mpsar;
3012 	u32 rar_entries = hw->mac.num_rar_entries;
3013 
3014 	/* Make sure we are using a valid rar index range */
3015 	if (rar >= rar_entries) {
3016 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3017 		return IXGBE_ERR_INVALID_ARGUMENT;
3018 	}
3019 
3020 	if (vmdq < 32) {
3021 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3022 		mpsar |= BIT(vmdq);
3023 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3024 	} else {
3025 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3026 		mpsar |= BIT(vmdq - 32);
3027 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3028 	}
3029 	return 0;
3030 }
3031 
3032 /**
3033  *  ixgbe_set_vmdq_san_mac_generic - Associate VMDq pool index with a rx address
3034  *  @hw: pointer to hardware struct
3035  *  @vmdq: VMDq pool index
3036  *
3037  *  This function should only be involved in the IOV mode.
3038  *  In IOV mode, Default pool is next pool after the number of
3039  *  VFs advertized and not 0.
3040  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3041  **/
3042 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3043 {
3044 	u32 rar = hw->mac.san_mac_rar_index;
3045 
3046 	if (vmdq < 32) {
3047 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3048 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3049 	} else {
3050 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3051 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3052 	}
3053 
3054 	return 0;
3055 }
3056 
3057 /**
3058  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3059  *  @hw: pointer to hardware structure
3060  **/
3061 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3062 {
3063 	int i;
3064 
3065 	for (i = 0; i < 128; i++)
3066 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3067 
3068 	return 0;
3069 }
3070 
3071 /**
3072  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3073  *  @hw: pointer to hardware structure
3074  *  @vlan: VLAN id to write to VLAN filter
3075  *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3076  *		  vlanid not found
3077  *
3078  *  return the VLVF index where this VLAN id should be placed
3079  *
3080  **/
3081 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3082 {
3083 	s32 regindex, first_empty_slot;
3084 	u32 bits;
3085 
3086 	/* short cut the special case */
3087 	if (vlan == 0)
3088 		return 0;
3089 
3090 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3091 	 * will simply bypass the VLVF if there are no entries present in the
3092 	 * VLVF that contain our VLAN
3093 	 */
3094 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3095 
3096 	/* add VLAN enable bit for comparison */
3097 	vlan |= IXGBE_VLVF_VIEN;
3098 
3099 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3100 	 * slot found along the way.
3101 	 *
3102 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3103 	 */
3104 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3105 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3106 		if (bits == vlan)
3107 			return regindex;
3108 		if (!first_empty_slot && !bits)
3109 			first_empty_slot = regindex;
3110 	}
3111 
3112 	/* If we are here then we didn't find the VLAN.  Return first empty
3113 	 * slot we found during our search, else error.
3114 	 */
3115 	if (!first_empty_slot)
3116 		hw_dbg(hw, "No space in VLVF.\n");
3117 
3118 	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3119 }
3120 
3121 /**
3122  *  ixgbe_set_vfta_generic - Set VLAN filter table
3123  *  @hw: pointer to hardware structure
3124  *  @vlan: VLAN id to write to VLAN filter
3125  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3126  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3127  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3128  *
3129  *  Turn on/off specified VLAN in the VLAN filter table.
3130  **/
3131 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3132 			   bool vlan_on, bool vlvf_bypass)
3133 {
3134 	u32 regidx, vfta_delta, vfta, bits;
3135 	s32 vlvf_index;
3136 
3137 	if ((vlan > 4095) || (vind > 63))
3138 		return IXGBE_ERR_PARAM;
3139 
3140 	/*
3141 	 * this is a 2 part operation - first the VFTA, then the
3142 	 * VLVF and VLVFB if VT Mode is set
3143 	 * We don't write the VFTA until we know the VLVF part succeeded.
3144 	 */
3145 
3146 	/* Part 1
3147 	 * The VFTA is a bitstring made up of 128 32-bit registers
3148 	 * that enable the particular VLAN id, much like the MTA:
3149 	 *    bits[11-5]: which register
3150 	 *    bits[4-0]:  which bit in the register
3151 	 */
3152 	regidx = vlan / 32;
3153 	vfta_delta = BIT(vlan % 32);
3154 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3155 
3156 	/* vfta_delta represents the difference between the current value
3157 	 * of vfta and the value we want in the register.  Since the diff
3158 	 * is an XOR mask we can just update vfta using an XOR.
3159 	 */
3160 	vfta_delta &= vlan_on ? ~vfta : vfta;
3161 	vfta ^= vfta_delta;
3162 
3163 	/* Part 2
3164 	 * If VT Mode is set
3165 	 *   Either vlan_on
3166 	 *     make sure the vlan is in VLVF
3167 	 *     set the vind bit in the matching VLVFB
3168 	 *   Or !vlan_on
3169 	 *     clear the pool bit and possibly the vind
3170 	 */
3171 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3172 		goto vfta_update;
3173 
3174 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3175 	if (vlvf_index < 0) {
3176 		if (vlvf_bypass)
3177 			goto vfta_update;
3178 		return vlvf_index;
3179 	}
3180 
3181 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3182 
3183 	/* set the pool bit */
3184 	bits |= BIT(vind % 32);
3185 	if (vlan_on)
3186 		goto vlvf_update;
3187 
3188 	/* clear the pool bit */
3189 	bits ^= BIT(vind % 32);
3190 
3191 	if (!bits &&
3192 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3193 		/* Clear VFTA first, then disable VLVF.  Otherwise
3194 		 * we run the risk of stray packets leaking into
3195 		 * the PF via the default pool
3196 		 */
3197 		if (vfta_delta)
3198 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3199 
3200 		/* disable VLVF and clear remaining bit from pool */
3201 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3202 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3203 
3204 		return 0;
3205 	}
3206 
3207 	/* If there are still bits set in the VLVFB registers
3208 	 * for the VLAN ID indicated we need to see if the
3209 	 * caller is requesting that we clear the VFTA entry bit.
3210 	 * If the caller has requested that we clear the VFTA
3211 	 * entry bit but there are still pools/VFs using this VLAN
3212 	 * ID entry then ignore the request.  We're not worried
3213 	 * about the case where we're turning the VFTA VLAN ID
3214 	 * entry bit on, only when requested to turn it off as
3215 	 * there may be multiple pools and/or VFs using the
3216 	 * VLAN ID entry.  In that case we cannot clear the
3217 	 * VFTA bit until all pools/VFs using that VLAN ID have also
3218 	 * been cleared.  This will be indicated by "bits" being
3219 	 * zero.
3220 	 */
3221 	vfta_delta = 0;
3222 
3223 vlvf_update:
3224 	/* record pool change and enable VLAN ID if not already enabled */
3225 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3226 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3227 
3228 vfta_update:
3229 	/* Update VFTA now that we are ready for traffic */
3230 	if (vfta_delta)
3231 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3232 
3233 	return 0;
3234 }
3235 
3236 /**
3237  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3238  *  @hw: pointer to hardware structure
3239  *
3240  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3241  **/
3242 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3243 {
3244 	u32 offset;
3245 
3246 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3247 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3248 
3249 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3250 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3251 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3252 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3253 	}
3254 
3255 	return 0;
3256 }
3257 
3258 /**
3259  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3260  *  @hw: pointer to hardware structure
3261  *
3262  *  Contains the logic to identify if we need to verify link for the
3263  *  crosstalk fix
3264  **/
3265 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3266 {
3267 	/* Does FW say we need the fix */
3268 	if (!hw->need_crosstalk_fix)
3269 		return false;
3270 
3271 	/* Only consider SFP+ PHYs i.e. media type fiber */
3272 	switch (hw->mac.ops.get_media_type(hw)) {
3273 	case ixgbe_media_type_fiber:
3274 	case ixgbe_media_type_fiber_qsfp:
3275 		break;
3276 	default:
3277 		return false;
3278 	}
3279 
3280 	return true;
3281 }
3282 
3283 /**
3284  *  ixgbe_check_mac_link_generic - Determine link and speed status
3285  *  @hw: pointer to hardware structure
3286  *  @speed: pointer to link speed
3287  *  @link_up: true when link is up
3288  *  @link_up_wait_to_complete: bool used to wait for link up or not
3289  *
3290  *  Reads the links register to determine if link is up and the current speed
3291  **/
3292 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3293 				 bool *link_up, bool link_up_wait_to_complete)
3294 {
3295 	u32 links_reg, links_orig;
3296 	u32 i;
3297 
3298 	/* If Crosstalk fix enabled do the sanity check of making sure
3299 	 * the SFP+ cage is full.
3300 	 */
3301 	if (ixgbe_need_crosstalk_fix(hw)) {
3302 		u32 sfp_cage_full;
3303 
3304 		switch (hw->mac.type) {
3305 		case ixgbe_mac_82599EB:
3306 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3307 					IXGBE_ESDP_SDP2;
3308 			break;
3309 		case ixgbe_mac_X550EM_x:
3310 		case ixgbe_mac_x550em_a:
3311 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3312 					IXGBE_ESDP_SDP0;
3313 			break;
3314 		default:
3315 			/* sanity check - No SFP+ devices here */
3316 			sfp_cage_full = false;
3317 			break;
3318 		}
3319 
3320 		if (!sfp_cage_full) {
3321 			*link_up = false;
3322 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3323 			return 0;
3324 		}
3325 	}
3326 
3327 	/* clear the old state */
3328 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3329 
3330 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3331 
3332 	if (links_orig != links_reg) {
3333 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3334 		       links_orig, links_reg);
3335 	}
3336 
3337 	if (link_up_wait_to_complete) {
3338 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3339 			if (links_reg & IXGBE_LINKS_UP) {
3340 				*link_up = true;
3341 				break;
3342 			} else {
3343 				*link_up = false;
3344 			}
3345 			msleep(100);
3346 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3347 		}
3348 	} else {
3349 		if (links_reg & IXGBE_LINKS_UP)
3350 			*link_up = true;
3351 		else
3352 			*link_up = false;
3353 	}
3354 
3355 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3356 	case IXGBE_LINKS_SPEED_10G_82599:
3357 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3358 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3359 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3360 		else
3361 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3362 		break;
3363 	case IXGBE_LINKS_SPEED_1G_82599:
3364 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3365 		break;
3366 	case IXGBE_LINKS_SPEED_100_82599:
3367 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3368 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3369 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3370 		else
3371 			*speed = IXGBE_LINK_SPEED_100_FULL;
3372 		break;
3373 	case IXGBE_LINKS_SPEED_10_X550EM_A:
3374 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3375 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3376 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3377 			*speed = IXGBE_LINK_SPEED_10_FULL;
3378 		}
3379 		break;
3380 	default:
3381 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3382 	}
3383 
3384 	return 0;
3385 }
3386 
3387 /**
3388  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3389  *  the EEPROM
3390  *  @hw: pointer to hardware structure
3391  *  @wwnn_prefix: the alternative WWNN prefix
3392  *  @wwpn_prefix: the alternative WWPN prefix
3393  *
3394  *  This function will read the EEPROM from the alternative SAN MAC address
3395  *  block to check the support for the alternative WWNN/WWPN prefix support.
3396  **/
3397 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3398 					u16 *wwpn_prefix)
3399 {
3400 	u16 offset, caps;
3401 	u16 alt_san_mac_blk_offset;
3402 
3403 	/* clear output first */
3404 	*wwnn_prefix = 0xFFFF;
3405 	*wwpn_prefix = 0xFFFF;
3406 
3407 	/* check if alternative SAN MAC is supported */
3408 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3409 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3410 		goto wwn_prefix_err;
3411 
3412 	if ((alt_san_mac_blk_offset == 0) ||
3413 	    (alt_san_mac_blk_offset == 0xFFFF))
3414 		return 0;
3415 
3416 	/* check capability in alternative san mac address block */
3417 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3418 	if (hw->eeprom.ops.read(hw, offset, &caps))
3419 		goto wwn_prefix_err;
3420 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3421 		return 0;
3422 
3423 	/* get the corresponding prefix for WWNN/WWPN */
3424 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3425 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3426 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3427 
3428 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3429 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3430 		goto wwn_prefix_err;
3431 
3432 	return 0;
3433 
3434 wwn_prefix_err:
3435 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3436 	return 0;
3437 }
3438 
3439 /**
3440  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3441  *  @hw: pointer to hardware structure
3442  *  @enable: enable or disable switch for MAC anti-spoofing
3443  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3444  *
3445  **/
3446 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3447 {
3448 	int vf_target_reg = vf >> 3;
3449 	int vf_target_shift = vf % 8;
3450 	u32 pfvfspoof;
3451 
3452 	if (hw->mac.type == ixgbe_mac_82598EB)
3453 		return;
3454 
3455 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3456 	if (enable)
3457 		pfvfspoof |= BIT(vf_target_shift);
3458 	else
3459 		pfvfspoof &= ~BIT(vf_target_shift);
3460 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3461 }
3462 
3463 /**
3464  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3465  *  @hw: pointer to hardware structure
3466  *  @enable: enable or disable switch for VLAN anti-spoofing
3467  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3468  *
3469  **/
3470 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3471 {
3472 	int vf_target_reg = vf >> 3;
3473 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3474 	u32 pfvfspoof;
3475 
3476 	if (hw->mac.type == ixgbe_mac_82598EB)
3477 		return;
3478 
3479 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3480 	if (enable)
3481 		pfvfspoof |= BIT(vf_target_shift);
3482 	else
3483 		pfvfspoof &= ~BIT(vf_target_shift);
3484 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3485 }
3486 
3487 /**
3488  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3489  *  @hw: pointer to hardware structure
3490  *  @device_caps: the EEPROM word with the extra device capabilities
3491  *
3492  *  This function will read the EEPROM location for the device capabilities,
3493  *  and return the word through device_caps.
3494  **/
3495 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3496 {
3497 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3498 
3499 	return 0;
3500 }
3501 
3502 /**
3503  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3504  * @hw: pointer to hardware structure
3505  * @num_pb: number of packet buffers to allocate
3506  * @headroom: reserve n KB of headroom
3507  * @strategy: packet buffer allocation strategy
3508  **/
3509 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3510 			     int num_pb,
3511 			     u32 headroom,
3512 			     int strategy)
3513 {
3514 	u32 pbsize = hw->mac.rx_pb_size;
3515 	int i = 0;
3516 	u32 rxpktsize, txpktsize, txpbthresh;
3517 
3518 	/* Reserve headroom */
3519 	pbsize -= headroom;
3520 
3521 	if (!num_pb)
3522 		num_pb = 1;
3523 
3524 	/* Divide remaining packet buffer space amongst the number
3525 	 * of packet buffers requested using supplied strategy.
3526 	 */
3527 	switch (strategy) {
3528 	case (PBA_STRATEGY_WEIGHTED):
3529 		/* pba_80_48 strategy weight first half of packet buffer with
3530 		 * 5/8 of the packet buffer space.
3531 		 */
3532 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3533 		pbsize -= rxpktsize * (num_pb / 2);
3534 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3535 		for (; i < (num_pb / 2); i++)
3536 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3537 		fallthrough; /* configure remaining packet buffers */
3538 	case (PBA_STRATEGY_EQUAL):
3539 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3540 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3541 		for (; i < num_pb; i++)
3542 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3543 		break;
3544 	default:
3545 		break;
3546 	}
3547 
3548 	/*
3549 	 * Setup Tx packet buffer and threshold equally for all TCs
3550 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3551 	 * 10 since the largest packet we support is just over 9K.
3552 	 */
3553 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3554 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3555 	for (i = 0; i < num_pb; i++) {
3556 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3557 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3558 	}
3559 
3560 	/* Clear unused TCs, if any, to zero buffer size*/
3561 	for (; i < IXGBE_MAX_PB; i++) {
3562 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3563 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3564 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3565 	}
3566 }
3567 
3568 /**
3569  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3570  *  @buffer: pointer to EEPROM
3571  *  @length: size of EEPROM to calculate a checksum for
3572  *
3573  *  Calculates the checksum for some buffer on a specified length.  The
3574  *  checksum calculated is returned.
3575  **/
3576 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3577 {
3578 	u32 i;
3579 	u8 sum = 0;
3580 
3581 	if (!buffer)
3582 		return 0;
3583 
3584 	for (i = 0; i < length; i++)
3585 		sum += buffer[i];
3586 
3587 	return (u8) (0 - sum);
3588 }
3589 
3590 /**
3591  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3592  *  @hw: pointer to the HW structure
3593  *  @buffer: command to write and where the return status will be placed
3594  *  @length: length of buffer, must be multiple of 4 bytes
3595  *  @timeout: time in ms to wait for command completion
3596  *
3597  *  Communicates with the manageability block. On success return 0
3598  *  else returns semaphore error when encountering an error acquiring
3599  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3600  *
3601  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3602  *  by the caller.
3603  **/
3604 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3605 		       u32 timeout)
3606 {
3607 	u32 hicr, i, fwsts;
3608 	u16 dword_len;
3609 
3610 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3611 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3612 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3613 	}
3614 
3615 	/* Set bit 9 of FWSTS clearing FW reset indication */
3616 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3617 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3618 
3619 	/* Check that the host interface is enabled. */
3620 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3621 	if (!(hicr & IXGBE_HICR_EN)) {
3622 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3623 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3624 	}
3625 
3626 	/* Calculate length in DWORDs. We must be DWORD aligned */
3627 	if (length % sizeof(u32)) {
3628 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3629 		return IXGBE_ERR_INVALID_ARGUMENT;
3630 	}
3631 
3632 	dword_len = length >> 2;
3633 
3634 	/* The device driver writes the relevant command block
3635 	 * into the ram area.
3636 	 */
3637 	for (i = 0; i < dword_len; i++)
3638 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3639 				      i, (__force u32)cpu_to_le32(buffer[i]));
3640 
3641 	/* Setting this bit tells the ARC that a new command is pending. */
3642 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3643 
3644 	for (i = 0; i < timeout; i++) {
3645 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3646 		if (!(hicr & IXGBE_HICR_C))
3647 			break;
3648 		usleep_range(1000, 2000);
3649 	}
3650 
3651 	/* Check command successful completion. */
3652 	if ((timeout && i == timeout) ||
3653 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3654 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3655 
3656 	return 0;
3657 }
3658 
3659 /**
3660  *  ixgbe_host_interface_command - Issue command to manageability block
3661  *  @hw: pointer to the HW structure
3662  *  @buffer: contains the command to write and where the return status will
3663  *           be placed
3664  *  @length: length of buffer, must be multiple of 4 bytes
3665  *  @timeout: time in ms to wait for command completion
3666  *  @return_data: read and return data from the buffer (true) or not (false)
3667  *  Needed because FW structures are big endian and decoding of
3668  *  these fields can be 8 bit or 16 bit based on command. Decoding
3669  *  is not easily understood without making a table of commands.
3670  *  So we will leave this up to the caller to read back the data
3671  *  in these cases.
3672  *
3673  *  Communicates with the manageability block.  On success return 0
3674  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3675  **/
3676 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3677 				 u32 length, u32 timeout,
3678 				 bool return_data)
3679 {
3680 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3681 	struct ixgbe_hic_hdr *hdr = buffer;
3682 	u32 *u32arr = buffer;
3683 	u16 buf_len, dword_len;
3684 	s32 status;
3685 	u32 bi;
3686 
3687 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3688 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3689 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3690 	}
3691 	/* Take management host interface semaphore */
3692 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3693 	if (status)
3694 		return status;
3695 
3696 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3697 	if (status)
3698 		goto rel_out;
3699 
3700 	if (!return_data)
3701 		goto rel_out;
3702 
3703 	/* Calculate length in DWORDs */
3704 	dword_len = hdr_size >> 2;
3705 
3706 	/* first pull in the header so we know the buffer length */
3707 	for (bi = 0; bi < dword_len; bi++) {
3708 		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3709 		le32_to_cpus(&u32arr[bi]);
3710 	}
3711 
3712 	/* If there is any thing in data position pull it in */
3713 	buf_len = hdr->buf_len;
3714 	if (!buf_len)
3715 		goto rel_out;
3716 
3717 	if (length < round_up(buf_len, 4) + hdr_size) {
3718 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3719 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3720 		goto rel_out;
3721 	}
3722 
3723 	/* Calculate length in DWORDs, add 3 for odd lengths */
3724 	dword_len = (buf_len + 3) >> 2;
3725 
3726 	/* Pull in the rest of the buffer (bi is where we left off) */
3727 	for (; bi <= dword_len; bi++) {
3728 		u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3729 		le32_to_cpus(&u32arr[bi]);
3730 	}
3731 
3732 rel_out:
3733 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3734 
3735 	return status;
3736 }
3737 
3738 /**
3739  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3740  *  @hw: pointer to the HW structure
3741  *  @maj: driver version major number
3742  *  @min: driver version minor number
3743  *  @build: driver version build number
3744  *  @sub: driver version sub build number
3745  *  @len: length of driver_ver string
3746  *  @driver_ver: driver string
3747  *
3748  *  Sends driver version number to firmware through the manageability
3749  *  block.  On success return 0
3750  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3751  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3752  **/
3753 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3754 				 u8 build, u8 sub, __always_unused u16 len,
3755 				 __always_unused const char *driver_ver)
3756 {
3757 	struct ixgbe_hic_drv_info fw_cmd;
3758 	int i;
3759 	s32 ret_val;
3760 
3761 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3762 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3763 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3764 	fw_cmd.port_num = hw->bus.func;
3765 	fw_cmd.ver_maj = maj;
3766 	fw_cmd.ver_min = min;
3767 	fw_cmd.ver_build = build;
3768 	fw_cmd.ver_sub = sub;
3769 	fw_cmd.hdr.checksum = 0;
3770 	fw_cmd.pad = 0;
3771 	fw_cmd.pad2 = 0;
3772 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3773 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3774 
3775 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3776 		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3777 						       sizeof(fw_cmd),
3778 						       IXGBE_HI_COMMAND_TIMEOUT,
3779 						       true);
3780 		if (ret_val != 0)
3781 			continue;
3782 
3783 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3784 		    FW_CEM_RESP_STATUS_SUCCESS)
3785 			ret_val = 0;
3786 		else
3787 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3788 
3789 		break;
3790 	}
3791 
3792 	return ret_val;
3793 }
3794 
3795 /**
3796  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3797  * @hw: pointer to the hardware structure
3798  *
3799  * The 82599 and x540 MACs can experience issues if TX work is still pending
3800  * when a reset occurs.  This function prevents this by flushing the PCIe
3801  * buffers on the system.
3802  **/
3803 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3804 {
3805 	u32 gcr_ext, hlreg0, i, poll;
3806 	u16 value;
3807 
3808 	/*
3809 	 * If double reset is not requested then all transactions should
3810 	 * already be clear and as such there is no work to do
3811 	 */
3812 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3813 		return;
3814 
3815 	/*
3816 	 * Set loopback enable to prevent any transmits from being sent
3817 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3818 	 * has already been cleared.
3819 	 */
3820 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3821 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3822 
3823 	/* wait for a last completion before clearing buffers */
3824 	IXGBE_WRITE_FLUSH(hw);
3825 	usleep_range(3000, 6000);
3826 
3827 	/* Before proceeding, make sure that the PCIe block does not have
3828 	 * transactions pending.
3829 	 */
3830 	poll = ixgbe_pcie_timeout_poll(hw);
3831 	for (i = 0; i < poll; i++) {
3832 		usleep_range(100, 200);
3833 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3834 		if (ixgbe_removed(hw->hw_addr))
3835 			break;
3836 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3837 			break;
3838 	}
3839 
3840 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3841 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3842 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3843 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3844 
3845 	/* Flush all writes and allow 20usec for all transactions to clear */
3846 	IXGBE_WRITE_FLUSH(hw);
3847 	udelay(20);
3848 
3849 	/* restore previous register values */
3850 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3851 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3852 }
3853 
3854 static const u8 ixgbe_emc_temp_data[4] = {
3855 	IXGBE_EMC_INTERNAL_DATA,
3856 	IXGBE_EMC_DIODE1_DATA,
3857 	IXGBE_EMC_DIODE2_DATA,
3858 	IXGBE_EMC_DIODE3_DATA
3859 };
3860 static const u8 ixgbe_emc_therm_limit[4] = {
3861 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3862 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3863 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3864 	IXGBE_EMC_DIODE3_THERM_LIMIT
3865 };
3866 
3867 /**
3868  *  ixgbe_get_ets_data - Extracts the ETS bit data
3869  *  @hw: pointer to hardware structure
3870  *  @ets_cfg: extected ETS data
3871  *  @ets_offset: offset of ETS data
3872  *
3873  *  Returns error code.
3874  **/
3875 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3876 			      u16 *ets_offset)
3877 {
3878 	s32 status;
3879 
3880 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3881 	if (status)
3882 		return status;
3883 
3884 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3885 		return IXGBE_NOT_IMPLEMENTED;
3886 
3887 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3888 	if (status)
3889 		return status;
3890 
3891 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3892 		return IXGBE_NOT_IMPLEMENTED;
3893 
3894 	return 0;
3895 }
3896 
3897 /**
3898  *  ixgbe_get_thermal_sensor_data_generic - Gathers thermal sensor data
3899  *  @hw: pointer to hardware structure
3900  *
3901  *  Returns the thermal sensor data structure
3902  **/
3903 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3904 {
3905 	s32 status;
3906 	u16 ets_offset;
3907 	u16 ets_cfg;
3908 	u16 ets_sensor;
3909 	u8  num_sensors;
3910 	u8  i;
3911 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3912 
3913 	/* Only support thermal sensors attached to physical port 0 */
3914 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3915 		return IXGBE_NOT_IMPLEMENTED;
3916 
3917 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3918 	if (status)
3919 		return status;
3920 
3921 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3922 	if (num_sensors > IXGBE_MAX_SENSORS)
3923 		num_sensors = IXGBE_MAX_SENSORS;
3924 
3925 	for (i = 0; i < num_sensors; i++) {
3926 		u8  sensor_index;
3927 		u8  sensor_location;
3928 
3929 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3930 					     &ets_sensor);
3931 		if (status)
3932 			return status;
3933 
3934 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3935 				IXGBE_ETS_DATA_INDEX_SHIFT);
3936 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3937 				   IXGBE_ETS_DATA_LOC_SHIFT);
3938 
3939 		if (sensor_location != 0) {
3940 			status = hw->phy.ops.read_i2c_byte(hw,
3941 					ixgbe_emc_temp_data[sensor_index],
3942 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3943 					&data->sensor[i].temp);
3944 			if (status)
3945 				return status;
3946 		}
3947 	}
3948 
3949 	return 0;
3950 }
3951 
3952 /**
3953  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3954  * @hw: pointer to hardware structure
3955  *
3956  * Inits the thermal sensor thresholds according to the NVM map
3957  * and save off the threshold and location values into mac.thermal_sensor_data
3958  **/
3959 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3960 {
3961 	s32 status;
3962 	u16 ets_offset;
3963 	u16 ets_cfg;
3964 	u16 ets_sensor;
3965 	u8  low_thresh_delta;
3966 	u8  num_sensors;
3967 	u8  therm_limit;
3968 	u8  i;
3969 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3970 
3971 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3972 
3973 	/* Only support thermal sensors attached to physical port 0 */
3974 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3975 		return IXGBE_NOT_IMPLEMENTED;
3976 
3977 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3978 	if (status)
3979 		return status;
3980 
3981 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3982 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3983 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3984 	if (num_sensors > IXGBE_MAX_SENSORS)
3985 		num_sensors = IXGBE_MAX_SENSORS;
3986 
3987 	for (i = 0; i < num_sensors; i++) {
3988 		u8  sensor_index;
3989 		u8  sensor_location;
3990 
3991 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3992 			hw_err(hw, "eeprom read at offset %d failed\n",
3993 			       ets_offset + 1 + i);
3994 			continue;
3995 		}
3996 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3997 				IXGBE_ETS_DATA_INDEX_SHIFT);
3998 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3999 				   IXGBE_ETS_DATA_LOC_SHIFT);
4000 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4001 
4002 		hw->phy.ops.write_i2c_byte(hw,
4003 			ixgbe_emc_therm_limit[sensor_index],
4004 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4005 
4006 		if (sensor_location == 0)
4007 			continue;
4008 
4009 		data->sensor[i].location = sensor_location;
4010 		data->sensor[i].caution_thresh = therm_limit;
4011 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4012 	}
4013 
4014 	return 0;
4015 }
4016 
4017 /**
4018  *  ixgbe_get_orom_version - Return option ROM from EEPROM
4019  *
4020  *  @hw: pointer to hardware structure
4021  *  @nvm_ver: pointer to output structure
4022  *
4023  *  if valid option ROM version, nvm_ver->or_valid set to true
4024  *  else nvm_ver->or_valid is false.
4025  **/
4026 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4027 			    struct ixgbe_nvm_version *nvm_ver)
4028 {
4029 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4030 
4031 	nvm_ver->or_valid = false;
4032 	/* Option Rom may or may not be present.  Start with pointer */
4033 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4034 
4035 	/* make sure offset is valid */
4036 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4037 		return;
4038 
4039 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4040 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4041 
4042 	/* option rom exists and is valid */
4043 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4044 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
4045 	    eeprom_cfg_blkh == NVM_VER_INVALID)
4046 		return;
4047 
4048 	nvm_ver->or_valid = true;
4049 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4050 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4051 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4052 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4053 }
4054 
4055 /**
4056  *  ixgbe_get_oem_prod_version - Etrack ID from EEPROM
4057  *  @hw: pointer to hardware structure
4058  *  @nvm_ver: pointer to output structure
4059  *
4060  *  if valid OEM product version, nvm_ver->oem_valid set to true
4061  *  else nvm_ver->oem_valid is false.
4062  **/
4063 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4064 				struct ixgbe_nvm_version *nvm_ver)
4065 {
4066 	u16 rel_num, prod_ver, mod_len, cap, offset;
4067 
4068 	nvm_ver->oem_valid = false;
4069 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4070 
4071 	/* Return is offset to OEM Product Version block is invalid */
4072 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4073 		return;
4074 
4075 	/* Read product version block */
4076 	hw->eeprom.ops.read(hw, offset, &mod_len);
4077 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4078 
4079 	/* Return if OEM product version block is invalid */
4080 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4081 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4082 		return;
4083 
4084 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4085 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4086 
4087 	/* Return if version is invalid */
4088 	if ((rel_num | prod_ver) == 0x0 ||
4089 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4090 		return;
4091 
4092 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4093 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4094 	nvm_ver->oem_release = rel_num;
4095 	nvm_ver->oem_valid = true;
4096 }
4097 
4098 /**
4099  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4100  *
4101  *  @hw: pointer to hardware structure
4102  *  @nvm_ver: pointer to output structure
4103  *
4104  *  word read errors will return 0xFFFF
4105  **/
4106 void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4107 		      struct ixgbe_nvm_version *nvm_ver)
4108 {
4109 	u16 etk_id_l, etk_id_h;
4110 
4111 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4112 		etk_id_l = NVM_VER_INVALID;
4113 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4114 		etk_id_h = NVM_VER_INVALID;
4115 
4116 	/* The word order for the version format is determined by high order
4117 	 * word bit 15.
4118 	 */
4119 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
4120 		nvm_ver->etk_id = etk_id_h;
4121 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4122 	} else {
4123 		nvm_ver->etk_id = etk_id_l;
4124 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4125 	}
4126 }
4127 
4128 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4129 {
4130 	u32 rxctrl;
4131 
4132 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4133 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4134 		if (hw->mac.type != ixgbe_mac_82598EB) {
4135 			u32 pfdtxgswc;
4136 
4137 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4138 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4139 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4140 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4141 				hw->mac.set_lben = true;
4142 			} else {
4143 				hw->mac.set_lben = false;
4144 			}
4145 		}
4146 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4147 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4148 	}
4149 }
4150 
4151 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4152 {
4153 	u32 rxctrl;
4154 
4155 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4156 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4157 
4158 	if (hw->mac.type != ixgbe_mac_82598EB) {
4159 		if (hw->mac.set_lben) {
4160 			u32 pfdtxgswc;
4161 
4162 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4163 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4164 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4165 			hw->mac.set_lben = false;
4166 		}
4167 	}
4168 }
4169 
4170 /** ixgbe_mng_present - returns true when management capability is present
4171  * @hw: pointer to hardware structure
4172  **/
4173 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4174 {
4175 	u32 fwsm;
4176 
4177 	if (hw->mac.type < ixgbe_mac_82599EB)
4178 		return false;
4179 
4180 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4181 
4182 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4183 }
4184 
4185 /**
4186  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4187  *  @hw: pointer to hardware structure
4188  *  @speed: new link speed
4189  *  @autoneg_wait_to_complete: true when waiting for completion is needed
4190  *
4191  *  Set the link speed in the MAC and/or PHY register and restarts link.
4192  */
4193 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4194 					  ixgbe_link_speed speed,
4195 					  bool autoneg_wait_to_complete)
4196 {
4197 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4198 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4199 	s32 status = 0;
4200 	u32 speedcnt = 0;
4201 	u32 i = 0;
4202 	bool autoneg, link_up = false;
4203 
4204 	/* Mask off requested but non-supported speeds */
4205 	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4206 	if (status)
4207 		return status;
4208 
4209 	speed &= link_speed;
4210 
4211 	/* Try each speed one by one, highest priority first.  We do this in
4212 	 * software because 10Gb fiber doesn't support speed autonegotiation.
4213 	 */
4214 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4215 		speedcnt++;
4216 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4217 
4218 		/* Set the module link speed */
4219 		switch (hw->phy.media_type) {
4220 		case ixgbe_media_type_fiber:
4221 			hw->mac.ops.set_rate_select_speed(hw,
4222 						    IXGBE_LINK_SPEED_10GB_FULL);
4223 			break;
4224 		case ixgbe_media_type_fiber_qsfp:
4225 			/* QSFP module automatically detects MAC link speed */
4226 			break;
4227 		default:
4228 			hw_dbg(hw, "Unexpected media type\n");
4229 			break;
4230 		}
4231 
4232 		/* Allow module to change analog characteristics (1G->10G) */
4233 		msleep(40);
4234 
4235 		status = hw->mac.ops.setup_mac_link(hw,
4236 						    IXGBE_LINK_SPEED_10GB_FULL,
4237 						    autoneg_wait_to_complete);
4238 		if (status)
4239 			return status;
4240 
4241 		/* Flap the Tx laser if it has not already been done */
4242 		if (hw->mac.ops.flap_tx_laser)
4243 			hw->mac.ops.flap_tx_laser(hw);
4244 
4245 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4246 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4247 		 * attempted.  82599 uses the same timing for 10g SFI.
4248 		 */
4249 		for (i = 0; i < 5; i++) {
4250 			/* Wait for the link partner to also set speed */
4251 			msleep(100);
4252 
4253 			/* If we have link, just jump out */
4254 			status = hw->mac.ops.check_link(hw, &link_speed,
4255 							&link_up, false);
4256 			if (status)
4257 				return status;
4258 
4259 			if (link_up)
4260 				goto out;
4261 		}
4262 	}
4263 
4264 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4265 		speedcnt++;
4266 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4267 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4268 
4269 		/* Set the module link speed */
4270 		switch (hw->phy.media_type) {
4271 		case ixgbe_media_type_fiber:
4272 			hw->mac.ops.set_rate_select_speed(hw,
4273 						     IXGBE_LINK_SPEED_1GB_FULL);
4274 			break;
4275 		case ixgbe_media_type_fiber_qsfp:
4276 			/* QSFP module automatically detects link speed */
4277 			break;
4278 		default:
4279 			hw_dbg(hw, "Unexpected media type\n");
4280 			break;
4281 		}
4282 
4283 		/* Allow module to change analog characteristics (10G->1G) */
4284 		msleep(40);
4285 
4286 		status = hw->mac.ops.setup_mac_link(hw,
4287 						    IXGBE_LINK_SPEED_1GB_FULL,
4288 						    autoneg_wait_to_complete);
4289 		if (status)
4290 			return status;
4291 
4292 		/* Flap the Tx laser if it has not already been done */
4293 		if (hw->mac.ops.flap_tx_laser)
4294 			hw->mac.ops.flap_tx_laser(hw);
4295 
4296 		/* Wait for the link partner to also set speed */
4297 		msleep(100);
4298 
4299 		/* If we have link, just jump out */
4300 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4301 						false);
4302 		if (status)
4303 			return status;
4304 
4305 		if (link_up)
4306 			goto out;
4307 	}
4308 
4309 	/* We didn't get link.  Configure back to the highest speed we tried,
4310 	 * (if there was more than one).  We call ourselves back with just the
4311 	 * single highest speed that the user requested.
4312 	 */
4313 	if (speedcnt > 1)
4314 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4315 						      highest_link_speed,
4316 						      autoneg_wait_to_complete);
4317 
4318 out:
4319 	/* Set autoneg_advertised value based on input link speed */
4320 	hw->phy.autoneg_advertised = 0;
4321 
4322 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4323 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4324 
4325 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4326 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4327 
4328 	return status;
4329 }
4330 
4331 /**
4332  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4333  *  @hw: pointer to hardware structure
4334  *  @speed: link speed to set
4335  *
4336  *  Set module link speed via the soft rate select.
4337  */
4338 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4339 				      ixgbe_link_speed speed)
4340 {
4341 	s32 status;
4342 	u8 rs, eeprom_data;
4343 
4344 	switch (speed) {
4345 	case IXGBE_LINK_SPEED_10GB_FULL:
4346 		/* one bit mask same as setting on */
4347 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4348 		break;
4349 	case IXGBE_LINK_SPEED_1GB_FULL:
4350 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4351 		break;
4352 	default:
4353 		hw_dbg(hw, "Invalid fixed module speed\n");
4354 		return;
4355 	}
4356 
4357 	/* Set RS0 */
4358 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4359 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4360 					   &eeprom_data);
4361 	if (status) {
4362 		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4363 		return;
4364 	}
4365 
4366 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4367 
4368 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4369 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4370 					    eeprom_data);
4371 	if (status) {
4372 		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4373 		return;
4374 	}
4375 
4376 	/* Set RS1 */
4377 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4378 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4379 					   &eeprom_data);
4380 	if (status) {
4381 		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4382 		return;
4383 	}
4384 
4385 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4386 
4387 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4388 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4389 					    eeprom_data);
4390 	if (status) {
4391 		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4392 		return;
4393 	}
4394 }
4395