1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
32 
33 #include "ixgbe.h"
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
36 
37 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
38 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
40 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
43                                         u16 count);
44 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
48 
49 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
50 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
51 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
52 					     u16 words, u16 *data);
53 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
54 					     u16 words, u16 *data);
55 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
56 						 u16 offset);
57 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
58 
59 /**
60  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
61  *  control
62  *  @hw: pointer to hardware structure
63  *
64  *  There are several phys that do not support autoneg flow control. This
65  *  function check the device id to see if the associated phy supports
66  *  autoneg flow control.
67  **/
68 s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
69 {
70 
71 	switch (hw->device_id) {
72 	case IXGBE_DEV_ID_X540T:
73 	case IXGBE_DEV_ID_X540T1:
74 	case IXGBE_DEV_ID_82599_T3_LOM:
75 		return 0;
76 	default:
77 		return IXGBE_ERR_FC_NOT_SUPPORTED;
78 	}
79 }
80 
81 /**
82  *  ixgbe_setup_fc - Set up flow control
83  *  @hw: pointer to hardware structure
84  *
85  *  Called at init time to set up flow control.
86  **/
87 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
88 {
89 	s32 ret_val = 0;
90 	u32 reg = 0, reg_bp = 0;
91 	u16 reg_cu = 0;
92 	bool got_lock = false;
93 
94 	/*
95 	 * Validate the requested mode.  Strict IEEE mode does not allow
96 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
97 	 */
98 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
99 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
100 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
101 		goto out;
102 	}
103 
104 	/*
105 	 * 10gig parts do not have a word in the EEPROM to determine the
106 	 * default flow control setting, so we explicitly set it to full.
107 	 */
108 	if (hw->fc.requested_mode == ixgbe_fc_default)
109 		hw->fc.requested_mode = ixgbe_fc_full;
110 
111 	/*
112 	 * Set up the 1G and 10G flow control advertisement registers so the
113 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
114 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
115 	 */
116 	switch (hw->phy.media_type) {
117 	case ixgbe_media_type_fiber:
118 	case ixgbe_media_type_backplane:
119 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
120 		reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
121 		break;
122 	case ixgbe_media_type_copper:
123 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
124 					MDIO_MMD_AN, &reg_cu);
125 		break;
126 	default:
127 		break;
128 	}
129 
130 	/*
131 	 * The possible values of fc.requested_mode are:
132 	 * 0: Flow control is completely disabled
133 	 * 1: Rx flow control is enabled (we can receive pause frames,
134 	 *    but not send pause frames).
135 	 * 2: Tx flow control is enabled (we can send pause frames but
136 	 *    we do not support receiving pause frames).
137 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
138 	 * other: Invalid.
139 	 */
140 	switch (hw->fc.requested_mode) {
141 	case ixgbe_fc_none:
142 		/* Flow control completely disabled by software override. */
143 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
144 		if (hw->phy.media_type == ixgbe_media_type_backplane)
145 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
146 				    IXGBE_AUTOC_ASM_PAUSE);
147 		else if (hw->phy.media_type == ixgbe_media_type_copper)
148 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
149 		break;
150 	case ixgbe_fc_tx_pause:
151 		/*
152 		 * Tx Flow control is enabled, and Rx Flow control is
153 		 * disabled by software override.
154 		 */
155 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
156 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
157 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
158 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
159 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
160 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
161 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
162 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
163 		}
164 		break;
165 	case ixgbe_fc_rx_pause:
166 		/*
167 		 * Rx Flow control is enabled and Tx Flow control is
168 		 * disabled by software override. Since there really
169 		 * isn't a way to advertise that we are capable of RX
170 		 * Pause ONLY, we will advertise that we support both
171 		 * symmetric and asymmetric Rx PAUSE, as such we fall
172 		 * through to the fc_full statement.  Later, we will
173 		 * disable the adapter's ability to send PAUSE frames.
174 		 */
175 	case ixgbe_fc_full:
176 		/* Flow control (both Rx and Tx) is enabled by SW override. */
177 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
178 		if (hw->phy.media_type == ixgbe_media_type_backplane)
179 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
180 				  IXGBE_AUTOC_ASM_PAUSE;
181 		else if (hw->phy.media_type == ixgbe_media_type_copper)
182 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
183 		break;
184 	default:
185 		hw_dbg(hw, "Flow control param set incorrectly\n");
186 		ret_val = IXGBE_ERR_CONFIG;
187 		goto out;
188 		break;
189 	}
190 
191 	if (hw->mac.type != ixgbe_mac_X540) {
192 		/*
193 		 * Enable auto-negotiation between the MAC & PHY;
194 		 * the MAC will advertise clause 37 flow control.
195 		 */
196 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
197 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
198 
199 		/* Disable AN timeout */
200 		if (hw->fc.strict_ieee)
201 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
202 
203 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
204 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
205 	}
206 
207 	/*
208 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
209 	 * and copper. There is no need to set the PCS1GCTL register.
210 	 *
211 	 */
212 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
213 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
214 		 * LESM is on, likewise reset_pipeline requries the lock as
215 		 * it also writes AUTOC.
216 		 */
217 		if ((hw->mac.type == ixgbe_mac_82599EB) &&
218 		    ixgbe_verify_lesm_fw_enabled_82599(hw)) {
219 			ret_val = hw->mac.ops.acquire_swfw_sync(hw,
220 							IXGBE_GSSR_MAC_CSR_SM);
221 			if (ret_val)
222 				goto out;
223 
224 			got_lock = true;
225 		}
226 
227 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
228 
229 		if (hw->mac.type == ixgbe_mac_82599EB)
230 			ixgbe_reset_pipeline_82599(hw);
231 
232 		if (got_lock)
233 			hw->mac.ops.release_swfw_sync(hw,
234 						      IXGBE_GSSR_MAC_CSR_SM);
235 
236 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
237 		    (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
238 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
239 				      MDIO_MMD_AN, reg_cu);
240 	}
241 
242 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
243 out:
244 	return ret_val;
245 }
246 
247 /**
248  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
249  *  @hw: pointer to hardware structure
250  *
251  *  Starts the hardware by filling the bus info structure and media type, clears
252  *  all on chip counters, initializes receive address registers, multicast
253  *  table, VLAN filter table, calls routine to set up link and flow control
254  *  settings, and leaves transmit and receive units disabled and uninitialized
255  **/
256 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
257 {
258 	u32 ctrl_ext;
259 
260 	/* Set the media type */
261 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
262 
263 	/* Identify the PHY */
264 	hw->phy.ops.identify(hw);
265 
266 	/* Clear the VLAN filter table */
267 	hw->mac.ops.clear_vfta(hw);
268 
269 	/* Clear statistics registers */
270 	hw->mac.ops.clear_hw_cntrs(hw);
271 
272 	/* Set No Snoop Disable */
273 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
274 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
275 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
276 	IXGBE_WRITE_FLUSH(hw);
277 
278 	/* Setup flow control */
279 	ixgbe_setup_fc(hw);
280 
281 	/* Clear adapter stopped flag */
282 	hw->adapter_stopped = false;
283 
284 	return 0;
285 }
286 
287 /**
288  *  ixgbe_start_hw_gen2 - Init sequence for common device family
289  *  @hw: pointer to hw structure
290  *
291  * Performs the init sequence common to the second generation
292  * of 10 GbE devices.
293  * Devices in the second generation:
294  *     82599
295  *     X540
296  **/
297 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
298 {
299 	u32 i;
300 	u32 regval;
301 
302 	/* Clear the rate limiters */
303 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
304 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
305 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
306 	}
307 	IXGBE_WRITE_FLUSH(hw);
308 
309 	/* Disable relaxed ordering */
310 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
311 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
312 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
313 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
314 	}
315 
316 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
317 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
318 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
319 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
320 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
321 	}
322 
323 	return 0;
324 }
325 
326 /**
327  *  ixgbe_init_hw_generic - Generic hardware initialization
328  *  @hw: pointer to hardware structure
329  *
330  *  Initialize the hardware by resetting the hardware, filling the bus info
331  *  structure and media type, clears all on chip counters, initializes receive
332  *  address registers, multicast table, VLAN filter table, calls routine to set
333  *  up link and flow control settings, and leaves transmit and receive units
334  *  disabled and uninitialized
335  **/
336 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
337 {
338 	s32 status;
339 
340 	/* Reset the hardware */
341 	status = hw->mac.ops.reset_hw(hw);
342 
343 	if (status == 0) {
344 		/* Start the HW */
345 		status = hw->mac.ops.start_hw(hw);
346 	}
347 
348 	return status;
349 }
350 
351 /**
352  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
353  *  @hw: pointer to hardware structure
354  *
355  *  Clears all hardware statistics counters by reading them from the hardware
356  *  Statistics counters are clear on read.
357  **/
358 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
359 {
360 	u16 i = 0;
361 
362 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
363 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
364 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
365 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
366 	for (i = 0; i < 8; i++)
367 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
368 
369 	IXGBE_READ_REG(hw, IXGBE_MLFC);
370 	IXGBE_READ_REG(hw, IXGBE_MRFC);
371 	IXGBE_READ_REG(hw, IXGBE_RLEC);
372 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
373 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
374 	if (hw->mac.type >= ixgbe_mac_82599EB) {
375 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
376 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
377 	} else {
378 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
379 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
380 	}
381 
382 	for (i = 0; i < 8; i++) {
383 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
384 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
385 		if (hw->mac.type >= ixgbe_mac_82599EB) {
386 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
387 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
388 		} else {
389 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
390 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
391 		}
392 	}
393 	if (hw->mac.type >= ixgbe_mac_82599EB)
394 		for (i = 0; i < 8; i++)
395 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
396 	IXGBE_READ_REG(hw, IXGBE_PRC64);
397 	IXGBE_READ_REG(hw, IXGBE_PRC127);
398 	IXGBE_READ_REG(hw, IXGBE_PRC255);
399 	IXGBE_READ_REG(hw, IXGBE_PRC511);
400 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
401 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
402 	IXGBE_READ_REG(hw, IXGBE_GPRC);
403 	IXGBE_READ_REG(hw, IXGBE_BPRC);
404 	IXGBE_READ_REG(hw, IXGBE_MPRC);
405 	IXGBE_READ_REG(hw, IXGBE_GPTC);
406 	IXGBE_READ_REG(hw, IXGBE_GORCL);
407 	IXGBE_READ_REG(hw, IXGBE_GORCH);
408 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
409 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
410 	if (hw->mac.type == ixgbe_mac_82598EB)
411 		for (i = 0; i < 8; i++)
412 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
413 	IXGBE_READ_REG(hw, IXGBE_RUC);
414 	IXGBE_READ_REG(hw, IXGBE_RFC);
415 	IXGBE_READ_REG(hw, IXGBE_ROC);
416 	IXGBE_READ_REG(hw, IXGBE_RJC);
417 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
418 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
419 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
420 	IXGBE_READ_REG(hw, IXGBE_TORL);
421 	IXGBE_READ_REG(hw, IXGBE_TORH);
422 	IXGBE_READ_REG(hw, IXGBE_TPR);
423 	IXGBE_READ_REG(hw, IXGBE_TPT);
424 	IXGBE_READ_REG(hw, IXGBE_PTC64);
425 	IXGBE_READ_REG(hw, IXGBE_PTC127);
426 	IXGBE_READ_REG(hw, IXGBE_PTC255);
427 	IXGBE_READ_REG(hw, IXGBE_PTC511);
428 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
429 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
430 	IXGBE_READ_REG(hw, IXGBE_MPTC);
431 	IXGBE_READ_REG(hw, IXGBE_BPTC);
432 	for (i = 0; i < 16; i++) {
433 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
434 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
435 		if (hw->mac.type >= ixgbe_mac_82599EB) {
436 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
437 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
438 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
439 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
440 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
441 		} else {
442 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
443 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
444 		}
445 	}
446 
447 	if (hw->mac.type == ixgbe_mac_X540) {
448 		if (hw->phy.id == 0)
449 			hw->phy.ops.identify(hw);
450 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
451 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
452 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
453 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
454 	}
455 
456 	return 0;
457 }
458 
459 /**
460  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
461  *  @hw: pointer to hardware structure
462  *  @pba_num: stores the part number string from the EEPROM
463  *  @pba_num_size: part number string buffer length
464  *
465  *  Reads the part number string from the EEPROM.
466  **/
467 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
468                                   u32 pba_num_size)
469 {
470 	s32 ret_val;
471 	u16 data;
472 	u16 pba_ptr;
473 	u16 offset;
474 	u16 length;
475 
476 	if (pba_num == NULL) {
477 		hw_dbg(hw, "PBA string buffer was null\n");
478 		return IXGBE_ERR_INVALID_ARGUMENT;
479 	}
480 
481 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
482 	if (ret_val) {
483 		hw_dbg(hw, "NVM Read Error\n");
484 		return ret_val;
485 	}
486 
487 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
488 	if (ret_val) {
489 		hw_dbg(hw, "NVM Read Error\n");
490 		return ret_val;
491 	}
492 
493 	/*
494 	 * if data is not ptr guard the PBA must be in legacy format which
495 	 * means pba_ptr is actually our second data word for the PBA number
496 	 * and we can decode it into an ascii string
497 	 */
498 	if (data != IXGBE_PBANUM_PTR_GUARD) {
499 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
500 
501 		/* we will need 11 characters to store the PBA */
502 		if (pba_num_size < 11) {
503 			hw_dbg(hw, "PBA string buffer too small\n");
504 			return IXGBE_ERR_NO_SPACE;
505 		}
506 
507 		/* extract hex string from data and pba_ptr */
508 		pba_num[0] = (data >> 12) & 0xF;
509 		pba_num[1] = (data >> 8) & 0xF;
510 		pba_num[2] = (data >> 4) & 0xF;
511 		pba_num[3] = data & 0xF;
512 		pba_num[4] = (pba_ptr >> 12) & 0xF;
513 		pba_num[5] = (pba_ptr >> 8) & 0xF;
514 		pba_num[6] = '-';
515 		pba_num[7] = 0;
516 		pba_num[8] = (pba_ptr >> 4) & 0xF;
517 		pba_num[9] = pba_ptr & 0xF;
518 
519 		/* put a null character on the end of our string */
520 		pba_num[10] = '\0';
521 
522 		/* switch all the data but the '-' to hex char */
523 		for (offset = 0; offset < 10; offset++) {
524 			if (pba_num[offset] < 0xA)
525 				pba_num[offset] += '0';
526 			else if (pba_num[offset] < 0x10)
527 				pba_num[offset] += 'A' - 0xA;
528 		}
529 
530 		return 0;
531 	}
532 
533 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
534 	if (ret_val) {
535 		hw_dbg(hw, "NVM Read Error\n");
536 		return ret_val;
537 	}
538 
539 	if (length == 0xFFFF || length == 0) {
540 		hw_dbg(hw, "NVM PBA number section invalid length\n");
541 		return IXGBE_ERR_PBA_SECTION;
542 	}
543 
544 	/* check if pba_num buffer is big enough */
545 	if (pba_num_size  < (((u32)length * 2) - 1)) {
546 		hw_dbg(hw, "PBA string buffer too small\n");
547 		return IXGBE_ERR_NO_SPACE;
548 	}
549 
550 	/* trim pba length from start of string */
551 	pba_ptr++;
552 	length--;
553 
554 	for (offset = 0; offset < length; offset++) {
555 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
556 		if (ret_val) {
557 			hw_dbg(hw, "NVM Read Error\n");
558 			return ret_val;
559 		}
560 		pba_num[offset * 2] = (u8)(data >> 8);
561 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
562 	}
563 	pba_num[offset * 2] = '\0';
564 
565 	return 0;
566 }
567 
568 /**
569  *  ixgbe_get_mac_addr_generic - Generic get MAC address
570  *  @hw: pointer to hardware structure
571  *  @mac_addr: Adapter MAC address
572  *
573  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
574  *  A reset of the adapter must be performed prior to calling this function
575  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
576  **/
577 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
578 {
579 	u32 rar_high;
580 	u32 rar_low;
581 	u16 i;
582 
583 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
584 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
585 
586 	for (i = 0; i < 4; i++)
587 		mac_addr[i] = (u8)(rar_low >> (i*8));
588 
589 	for (i = 0; i < 2; i++)
590 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
591 
592 	return 0;
593 }
594 
595 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
596 {
597 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
598 	case IXGBE_PCI_LINK_WIDTH_1:
599 		return ixgbe_bus_width_pcie_x1;
600 	case IXGBE_PCI_LINK_WIDTH_2:
601 		return ixgbe_bus_width_pcie_x2;
602 	case IXGBE_PCI_LINK_WIDTH_4:
603 		return ixgbe_bus_width_pcie_x4;
604 	case IXGBE_PCI_LINK_WIDTH_8:
605 		return ixgbe_bus_width_pcie_x8;
606 	default:
607 		return ixgbe_bus_width_unknown;
608 	}
609 }
610 
611 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
612 {
613 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
614 	case IXGBE_PCI_LINK_SPEED_2500:
615 		return ixgbe_bus_speed_2500;
616 	case IXGBE_PCI_LINK_SPEED_5000:
617 		return ixgbe_bus_speed_5000;
618 	case IXGBE_PCI_LINK_SPEED_8000:
619 		return ixgbe_bus_speed_8000;
620 	default:
621 		return ixgbe_bus_speed_unknown;
622 	}
623 }
624 
625 /**
626  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
627  *  @hw: pointer to hardware structure
628  *
629  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
630  **/
631 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
632 {
633 	struct ixgbe_adapter *adapter = hw->back;
634 	struct ixgbe_mac_info *mac = &hw->mac;
635 	u16 link_status;
636 
637 	hw->bus.type = ixgbe_bus_type_pci_express;
638 
639 	/* Get the negotiated link width and speed from PCI config space */
640 	pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
641 	                     &link_status);
642 
643 	hw->bus.width = ixgbe_convert_bus_width(link_status);
644 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
645 
646 	mac->ops.set_lan_id(hw);
647 
648 	return 0;
649 }
650 
651 /**
652  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
653  *  @hw: pointer to the HW structure
654  *
655  *  Determines the LAN function id by reading memory-mapped registers
656  *  and swaps the port value if requested.
657  **/
658 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
659 {
660 	struct ixgbe_bus_info *bus = &hw->bus;
661 	u32 reg;
662 
663 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
664 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
665 	bus->lan_id = bus->func;
666 
667 	/* check for a port swap */
668 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
669 	if (reg & IXGBE_FACTPS_LFS)
670 		bus->func ^= 0x1;
671 }
672 
673 /**
674  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
675  *  @hw: pointer to hardware structure
676  *
677  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
678  *  disables transmit and receive units. The adapter_stopped flag is used by
679  *  the shared code and drivers to determine if the adapter is in a stopped
680  *  state and should not touch the hardware.
681  **/
682 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
683 {
684 	u32 reg_val;
685 	u16 i;
686 
687 	/*
688 	 * Set the adapter_stopped flag so other driver functions stop touching
689 	 * the hardware
690 	 */
691 	hw->adapter_stopped = true;
692 
693 	/* Disable the receive unit */
694 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, 0);
695 
696 	/* Clear interrupt mask to stop interrupts from being generated */
697 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
698 
699 	/* Clear any pending interrupts, flush previous writes */
700 	IXGBE_READ_REG(hw, IXGBE_EICR);
701 
702 	/* Disable the transmit unit.  Each queue must be disabled. */
703 	for (i = 0; i < hw->mac.max_tx_queues; i++)
704 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
705 
706 	/* Disable the receive unit by stopping each queue */
707 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
708 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
709 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
710 		reg_val |= IXGBE_RXDCTL_SWFLSH;
711 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
712 	}
713 
714 	/* flush all queues disables */
715 	IXGBE_WRITE_FLUSH(hw);
716 	usleep_range(1000, 2000);
717 
718 	/*
719 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
720 	 * access and verify no pending requests
721 	 */
722 	return ixgbe_disable_pcie_master(hw);
723 }
724 
725 /**
726  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
727  *  @hw: pointer to hardware structure
728  *  @index: led number to turn on
729  **/
730 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
731 {
732 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
733 
734 	/* To turn on the LED, set mode to ON. */
735 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
736 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
737 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
738 	IXGBE_WRITE_FLUSH(hw);
739 
740 	return 0;
741 }
742 
743 /**
744  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
745  *  @hw: pointer to hardware structure
746  *  @index: led number to turn off
747  **/
748 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
749 {
750 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
751 
752 	/* To turn off the LED, set mode to OFF. */
753 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
754 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
755 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
756 	IXGBE_WRITE_FLUSH(hw);
757 
758 	return 0;
759 }
760 
761 /**
762  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
763  *  @hw: pointer to hardware structure
764  *
765  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
766  *  ixgbe_hw struct in order to set up EEPROM access.
767  **/
768 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
769 {
770 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
771 	u32 eec;
772 	u16 eeprom_size;
773 
774 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
775 		eeprom->type = ixgbe_eeprom_none;
776 		/* Set default semaphore delay to 10ms which is a well
777 		 * tested value */
778 		eeprom->semaphore_delay = 10;
779 		/* Clear EEPROM page size, it will be initialized as needed */
780 		eeprom->word_page_size = 0;
781 
782 		/*
783 		 * Check for EEPROM present first.
784 		 * If not present leave as none
785 		 */
786 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
787 		if (eec & IXGBE_EEC_PRES) {
788 			eeprom->type = ixgbe_eeprom_spi;
789 
790 			/*
791 			 * SPI EEPROM is assumed here.  This code would need to
792 			 * change if a future EEPROM is not SPI.
793 			 */
794 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
795 					    IXGBE_EEC_SIZE_SHIFT);
796 			eeprom->word_size = 1 << (eeprom_size +
797 						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
798 		}
799 
800 		if (eec & IXGBE_EEC_ADDR_SIZE)
801 			eeprom->address_bits = 16;
802 		else
803 			eeprom->address_bits = 8;
804 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
805 			  "%d\n", eeprom->type, eeprom->word_size,
806 			  eeprom->address_bits);
807 	}
808 
809 	return 0;
810 }
811 
812 /**
813  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
814  *  @hw: pointer to hardware structure
815  *  @offset: offset within the EEPROM to write
816  *  @words: number of words
817  *  @data: 16 bit word(s) to write to EEPROM
818  *
819  *  Reads 16 bit word(s) from EEPROM through bit-bang method
820  **/
821 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
822 					       u16 words, u16 *data)
823 {
824 	s32 status = 0;
825 	u16 i, count;
826 
827 	hw->eeprom.ops.init_params(hw);
828 
829 	if (words == 0) {
830 		status = IXGBE_ERR_INVALID_ARGUMENT;
831 		goto out;
832 	}
833 
834 	if (offset + words > hw->eeprom.word_size) {
835 		status = IXGBE_ERR_EEPROM;
836 		goto out;
837 	}
838 
839 	/*
840 	 * The EEPROM page size cannot be queried from the chip. We do lazy
841 	 * initialization. It is worth to do that when we write large buffer.
842 	 */
843 	if ((hw->eeprom.word_page_size == 0) &&
844 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
845 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
846 
847 	/*
848 	 * We cannot hold synchronization semaphores for too long
849 	 * to avoid other entity starvation. However it is more efficient
850 	 * to read in bursts than synchronizing access for each word.
851 	 */
852 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
853 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
854 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
855 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
856 							    count, &data[i]);
857 
858 		if (status != 0)
859 			break;
860 	}
861 
862 out:
863 	return status;
864 }
865 
866 /**
867  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
868  *  @hw: pointer to hardware structure
869  *  @offset: offset within the EEPROM to be written to
870  *  @words: number of word(s)
871  *  @data: 16 bit word(s) to be written to the EEPROM
872  *
873  *  If ixgbe_eeprom_update_checksum is not called after this function, the
874  *  EEPROM will most likely contain an invalid checksum.
875  **/
876 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
877 					      u16 words, u16 *data)
878 {
879 	s32 status;
880 	u16 word;
881 	u16 page_size;
882 	u16 i;
883 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
884 
885 	/* Prepare the EEPROM for writing  */
886 	status = ixgbe_acquire_eeprom(hw);
887 
888 	if (status == 0) {
889 		if (ixgbe_ready_eeprom(hw) != 0) {
890 			ixgbe_release_eeprom(hw);
891 			status = IXGBE_ERR_EEPROM;
892 		}
893 	}
894 
895 	if (status == 0) {
896 		for (i = 0; i < words; i++) {
897 			ixgbe_standby_eeprom(hw);
898 
899 			/*  Send the WRITE ENABLE command (8 bit opcode )  */
900 			ixgbe_shift_out_eeprom_bits(hw,
901 						  IXGBE_EEPROM_WREN_OPCODE_SPI,
902 						  IXGBE_EEPROM_OPCODE_BITS);
903 
904 			ixgbe_standby_eeprom(hw);
905 
906 			/*
907 			 * Some SPI eeproms use the 8th address bit embedded
908 			 * in the opcode
909 			 */
910 			if ((hw->eeprom.address_bits == 8) &&
911 			    ((offset + i) >= 128))
912 				write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
913 
914 			/* Send the Write command (8-bit opcode + addr) */
915 			ixgbe_shift_out_eeprom_bits(hw, write_opcode,
916 						    IXGBE_EEPROM_OPCODE_BITS);
917 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
918 						    hw->eeprom.address_bits);
919 
920 			page_size = hw->eeprom.word_page_size;
921 
922 			/* Send the data in burst via SPI*/
923 			do {
924 				word = data[i];
925 				word = (word >> 8) | (word << 8);
926 				ixgbe_shift_out_eeprom_bits(hw, word, 16);
927 
928 				if (page_size == 0)
929 					break;
930 
931 				/* do not wrap around page */
932 				if (((offset + i) & (page_size - 1)) ==
933 				    (page_size - 1))
934 					break;
935 			} while (++i < words);
936 
937 			ixgbe_standby_eeprom(hw);
938 			usleep_range(10000, 20000);
939 		}
940 		/* Done with writing - release the EEPROM */
941 		ixgbe_release_eeprom(hw);
942 	}
943 
944 	return status;
945 }
946 
947 /**
948  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
949  *  @hw: pointer to hardware structure
950  *  @offset: offset within the EEPROM to be written to
951  *  @data: 16 bit word to be written to the EEPROM
952  *
953  *  If ixgbe_eeprom_update_checksum is not called after this function, the
954  *  EEPROM will most likely contain an invalid checksum.
955  **/
956 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
957 {
958 	s32 status;
959 
960 	hw->eeprom.ops.init_params(hw);
961 
962 	if (offset >= hw->eeprom.word_size) {
963 		status = IXGBE_ERR_EEPROM;
964 		goto out;
965 	}
966 
967 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
968 
969 out:
970 	return status;
971 }
972 
973 /**
974  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
975  *  @hw: pointer to hardware structure
976  *  @offset: offset within the EEPROM to be read
977  *  @words: number of word(s)
978  *  @data: read 16 bit words(s) from EEPROM
979  *
980  *  Reads 16 bit word(s) from EEPROM through bit-bang method
981  **/
982 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
983 					      u16 words, u16 *data)
984 {
985 	s32 status = 0;
986 	u16 i, count;
987 
988 	hw->eeprom.ops.init_params(hw);
989 
990 	if (words == 0) {
991 		status = IXGBE_ERR_INVALID_ARGUMENT;
992 		goto out;
993 	}
994 
995 	if (offset + words > hw->eeprom.word_size) {
996 		status = IXGBE_ERR_EEPROM;
997 		goto out;
998 	}
999 
1000 	/*
1001 	 * We cannot hold synchronization semaphores for too long
1002 	 * to avoid other entity starvation. However it is more efficient
1003 	 * to read in bursts than synchronizing access for each word.
1004 	 */
1005 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1006 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1007 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1008 
1009 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1010 							   count, &data[i]);
1011 
1012 		if (status != 0)
1013 			break;
1014 	}
1015 
1016 out:
1017 	return status;
1018 }
1019 
1020 /**
1021  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1022  *  @hw: pointer to hardware structure
1023  *  @offset: offset within the EEPROM to be read
1024  *  @words: number of word(s)
1025  *  @data: read 16 bit word(s) from EEPROM
1026  *
1027  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1028  **/
1029 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1030 					     u16 words, u16 *data)
1031 {
1032 	s32 status;
1033 	u16 word_in;
1034 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1035 	u16 i;
1036 
1037 	/* Prepare the EEPROM for reading  */
1038 	status = ixgbe_acquire_eeprom(hw);
1039 
1040 	if (status == 0) {
1041 		if (ixgbe_ready_eeprom(hw) != 0) {
1042 			ixgbe_release_eeprom(hw);
1043 			status = IXGBE_ERR_EEPROM;
1044 		}
1045 	}
1046 
1047 	if (status == 0) {
1048 		for (i = 0; i < words; i++) {
1049 			ixgbe_standby_eeprom(hw);
1050 			/*
1051 			 * Some SPI eeproms use the 8th address bit embedded
1052 			 * in the opcode
1053 			 */
1054 			if ((hw->eeprom.address_bits == 8) &&
1055 			    ((offset + i) >= 128))
1056 				read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1057 
1058 			/* Send the READ command (opcode + addr) */
1059 			ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1060 						    IXGBE_EEPROM_OPCODE_BITS);
1061 			ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1062 						    hw->eeprom.address_bits);
1063 
1064 			/* Read the data. */
1065 			word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1066 			data[i] = (word_in >> 8) | (word_in << 8);
1067 		}
1068 
1069 		/* End this read operation */
1070 		ixgbe_release_eeprom(hw);
1071 	}
1072 
1073 	return status;
1074 }
1075 
1076 /**
1077  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1078  *  @hw: pointer to hardware structure
1079  *  @offset: offset within the EEPROM to be read
1080  *  @data: read 16 bit value from EEPROM
1081  *
1082  *  Reads 16 bit value from EEPROM through bit-bang method
1083  **/
1084 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1085 				       u16 *data)
1086 {
1087 	s32 status;
1088 
1089 	hw->eeprom.ops.init_params(hw);
1090 
1091 	if (offset >= hw->eeprom.word_size) {
1092 		status = IXGBE_ERR_EEPROM;
1093 		goto out;
1094 	}
1095 
1096 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1097 
1098 out:
1099 	return status;
1100 }
1101 
1102 /**
1103  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1104  *  @hw: pointer to hardware structure
1105  *  @offset: offset of word in the EEPROM to read
1106  *  @words: number of word(s)
1107  *  @data: 16 bit word(s) from the EEPROM
1108  *
1109  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1110  **/
1111 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1112 				   u16 words, u16 *data)
1113 {
1114 	u32 eerd;
1115 	s32 status = 0;
1116 	u32 i;
1117 
1118 	hw->eeprom.ops.init_params(hw);
1119 
1120 	if (words == 0) {
1121 		status = IXGBE_ERR_INVALID_ARGUMENT;
1122 		goto out;
1123 	}
1124 
1125 	if (offset >= hw->eeprom.word_size) {
1126 		status = IXGBE_ERR_EEPROM;
1127 		goto out;
1128 	}
1129 
1130 	for (i = 0; i < words; i++) {
1131 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1132 		       IXGBE_EEPROM_RW_REG_START;
1133 
1134 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1135 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1136 
1137 		if (status == 0) {
1138 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1139 				   IXGBE_EEPROM_RW_REG_DATA);
1140 		} else {
1141 			hw_dbg(hw, "Eeprom read timed out\n");
1142 			goto out;
1143 		}
1144 	}
1145 out:
1146 	return status;
1147 }
1148 
1149 /**
1150  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1151  *  @hw: pointer to hardware structure
1152  *  @offset: offset within the EEPROM to be used as a scratch pad
1153  *
1154  *  Discover EEPROM page size by writing marching data at given offset.
1155  *  This function is called only when we are writing a new large buffer
1156  *  at given offset so the data would be overwritten anyway.
1157  **/
1158 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1159 						 u16 offset)
1160 {
1161 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1162 	s32 status = 0;
1163 	u16 i;
1164 
1165 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1166 		data[i] = i;
1167 
1168 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1169 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1170 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1171 	hw->eeprom.word_page_size = 0;
1172 	if (status != 0)
1173 		goto out;
1174 
1175 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1176 	if (status != 0)
1177 		goto out;
1178 
1179 	/*
1180 	 * When writing in burst more than the actual page size
1181 	 * EEPROM address wraps around current page.
1182 	 */
1183 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1184 
1185 	hw_dbg(hw, "Detected EEPROM page size = %d words.",
1186 	       hw->eeprom.word_page_size);
1187 out:
1188 	return status;
1189 }
1190 
1191 /**
1192  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1193  *  @hw: pointer to hardware structure
1194  *  @offset: offset of  word in the EEPROM to read
1195  *  @data: word read from the EEPROM
1196  *
1197  *  Reads a 16 bit word from the EEPROM using the EERD register.
1198  **/
1199 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1200 {
1201 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1202 }
1203 
1204 /**
1205  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1206  *  @hw: pointer to hardware structure
1207  *  @offset: offset of  word in the EEPROM to write
1208  *  @words: number of words
1209  *  @data: word(s) write to the EEPROM
1210  *
1211  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1212  **/
1213 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1214 				    u16 words, u16 *data)
1215 {
1216 	u32 eewr;
1217 	s32 status = 0;
1218 	u16 i;
1219 
1220 	hw->eeprom.ops.init_params(hw);
1221 
1222 	if (words == 0) {
1223 		status = IXGBE_ERR_INVALID_ARGUMENT;
1224 		goto out;
1225 	}
1226 
1227 	if (offset >= hw->eeprom.word_size) {
1228 		status = IXGBE_ERR_EEPROM;
1229 		goto out;
1230 	}
1231 
1232 	for (i = 0; i < words; i++) {
1233 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1234 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1235 		       IXGBE_EEPROM_RW_REG_START;
1236 
1237 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1238 		if (status != 0) {
1239 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1240 			goto out;
1241 		}
1242 
1243 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1244 
1245 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1246 		if (status != 0) {
1247 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1248 			goto out;
1249 		}
1250 	}
1251 
1252 out:
1253 	return status;
1254 }
1255 
1256 /**
1257  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1258  *  @hw: pointer to hardware structure
1259  *  @offset: offset of  word in the EEPROM to write
1260  *  @data: word write to the EEPROM
1261  *
1262  *  Write a 16 bit word to the EEPROM using the EEWR register.
1263  **/
1264 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1265 {
1266 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1267 }
1268 
1269 /**
1270  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1271  *  @hw: pointer to hardware structure
1272  *  @ee_reg: EEPROM flag for polling
1273  *
1274  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1275  *  read or write is done respectively.
1276  **/
1277 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1278 {
1279 	u32 i;
1280 	u32 reg;
1281 	s32 status = IXGBE_ERR_EEPROM;
1282 
1283 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1284 		if (ee_reg == IXGBE_NVM_POLL_READ)
1285 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1286 		else
1287 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1288 
1289 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1290 			status = 0;
1291 			break;
1292 		}
1293 		udelay(5);
1294 	}
1295 	return status;
1296 }
1297 
1298 /**
1299  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1300  *  @hw: pointer to hardware structure
1301  *
1302  *  Prepares EEPROM for access using bit-bang method. This function should
1303  *  be called before issuing a command to the EEPROM.
1304  **/
1305 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1306 {
1307 	s32 status = 0;
1308 	u32 eec;
1309 	u32 i;
1310 
1311 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1312 		status = IXGBE_ERR_SWFW_SYNC;
1313 
1314 	if (status == 0) {
1315 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1316 
1317 		/* Request EEPROM Access */
1318 		eec |= IXGBE_EEC_REQ;
1319 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1320 
1321 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1322 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1323 			if (eec & IXGBE_EEC_GNT)
1324 				break;
1325 			udelay(5);
1326 		}
1327 
1328 		/* Release if grant not acquired */
1329 		if (!(eec & IXGBE_EEC_GNT)) {
1330 			eec &= ~IXGBE_EEC_REQ;
1331 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1332 			hw_dbg(hw, "Could not acquire EEPROM grant\n");
1333 
1334 			hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1335 			status = IXGBE_ERR_EEPROM;
1336 		}
1337 
1338 		/* Setup EEPROM for Read/Write */
1339 		if (status == 0) {
1340 			/* Clear CS and SK */
1341 			eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1342 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1343 			IXGBE_WRITE_FLUSH(hw);
1344 			udelay(1);
1345 		}
1346 	}
1347 	return status;
1348 }
1349 
1350 /**
1351  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1352  *  @hw: pointer to hardware structure
1353  *
1354  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1355  **/
1356 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1357 {
1358 	s32 status = IXGBE_ERR_EEPROM;
1359 	u32 timeout = 2000;
1360 	u32 i;
1361 	u32 swsm;
1362 
1363 	/* Get SMBI software semaphore between device drivers first */
1364 	for (i = 0; i < timeout; i++) {
1365 		/*
1366 		 * If the SMBI bit is 0 when we read it, then the bit will be
1367 		 * set and we have the semaphore
1368 		 */
1369 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1370 		if (!(swsm & IXGBE_SWSM_SMBI)) {
1371 			status = 0;
1372 			break;
1373 		}
1374 		udelay(50);
1375 	}
1376 
1377 	if (i == timeout) {
1378 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1379 		       "not granted.\n");
1380 		/*
1381 		 * this release is particularly important because our attempts
1382 		 * above to get the semaphore may have succeeded, and if there
1383 		 * was a timeout, we should unconditionally clear the semaphore
1384 		 * bits to free the driver to make progress
1385 		 */
1386 		ixgbe_release_eeprom_semaphore(hw);
1387 
1388 		udelay(50);
1389 		/*
1390 		 * one last try
1391 		 * If the SMBI bit is 0 when we read it, then the bit will be
1392 		 * set and we have the semaphore
1393 		 */
1394 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1395 		if (!(swsm & IXGBE_SWSM_SMBI))
1396 			status = 0;
1397 	}
1398 
1399 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1400 	if (status == 0) {
1401 		for (i = 0; i < timeout; i++) {
1402 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1403 
1404 			/* Set the SW EEPROM semaphore bit to request access */
1405 			swsm |= IXGBE_SWSM_SWESMBI;
1406 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1407 
1408 			/*
1409 			 * If we set the bit successfully then we got the
1410 			 * semaphore.
1411 			 */
1412 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1413 			if (swsm & IXGBE_SWSM_SWESMBI)
1414 				break;
1415 
1416 			udelay(50);
1417 		}
1418 
1419 		/*
1420 		 * Release semaphores and return error if SW EEPROM semaphore
1421 		 * was not granted because we don't have access to the EEPROM
1422 		 */
1423 		if (i >= timeout) {
1424 			hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1425 			       "not granted.\n");
1426 			ixgbe_release_eeprom_semaphore(hw);
1427 			status = IXGBE_ERR_EEPROM;
1428 		}
1429 	} else {
1430 		hw_dbg(hw, "Software semaphore SMBI between device drivers "
1431 		       "not granted.\n");
1432 	}
1433 
1434 	return status;
1435 }
1436 
1437 /**
1438  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1439  *  @hw: pointer to hardware structure
1440  *
1441  *  This function clears hardware semaphore bits.
1442  **/
1443 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1444 {
1445 	u32 swsm;
1446 
1447 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1448 
1449 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1450 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1451 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1452 	IXGBE_WRITE_FLUSH(hw);
1453 }
1454 
1455 /**
1456  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1457  *  @hw: pointer to hardware structure
1458  **/
1459 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1460 {
1461 	s32 status = 0;
1462 	u16 i;
1463 	u8 spi_stat_reg;
1464 
1465 	/*
1466 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1467 	 * EEPROM will signal that the command has been completed by clearing
1468 	 * bit 0 of the internal status register.  If it's not cleared within
1469 	 * 5 milliseconds, then error out.
1470 	 */
1471 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1472 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1473 		                            IXGBE_EEPROM_OPCODE_BITS);
1474 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1475 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1476 			break;
1477 
1478 		udelay(5);
1479 		ixgbe_standby_eeprom(hw);
1480 	}
1481 
1482 	/*
1483 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1484 	 * devices (and only 0-5mSec on 5V devices)
1485 	 */
1486 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1487 		hw_dbg(hw, "SPI EEPROM Status error\n");
1488 		status = IXGBE_ERR_EEPROM;
1489 	}
1490 
1491 	return status;
1492 }
1493 
1494 /**
1495  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1496  *  @hw: pointer to hardware structure
1497  **/
1498 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1499 {
1500 	u32 eec;
1501 
1502 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1503 
1504 	/* Toggle CS to flush commands */
1505 	eec |= IXGBE_EEC_CS;
1506 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1507 	IXGBE_WRITE_FLUSH(hw);
1508 	udelay(1);
1509 	eec &= ~IXGBE_EEC_CS;
1510 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1511 	IXGBE_WRITE_FLUSH(hw);
1512 	udelay(1);
1513 }
1514 
1515 /**
1516  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1517  *  @hw: pointer to hardware structure
1518  *  @data: data to send to the EEPROM
1519  *  @count: number of bits to shift out
1520  **/
1521 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1522                                         u16 count)
1523 {
1524 	u32 eec;
1525 	u32 mask;
1526 	u32 i;
1527 
1528 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1529 
1530 	/*
1531 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1532 	 * one bit at a time.  Determine the starting bit based on count
1533 	 */
1534 	mask = 0x01 << (count - 1);
1535 
1536 	for (i = 0; i < count; i++) {
1537 		/*
1538 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1539 		 * "1", and then raising and then lowering the clock (the SK
1540 		 * bit controls the clock input to the EEPROM).  A "0" is
1541 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1542 		 * raising and then lowering the clock.
1543 		 */
1544 		if (data & mask)
1545 			eec |= IXGBE_EEC_DI;
1546 		else
1547 			eec &= ~IXGBE_EEC_DI;
1548 
1549 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1550 		IXGBE_WRITE_FLUSH(hw);
1551 
1552 		udelay(1);
1553 
1554 		ixgbe_raise_eeprom_clk(hw, &eec);
1555 		ixgbe_lower_eeprom_clk(hw, &eec);
1556 
1557 		/*
1558 		 * Shift mask to signify next bit of data to shift in to the
1559 		 * EEPROM
1560 		 */
1561 		mask = mask >> 1;
1562 	}
1563 
1564 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1565 	eec &= ~IXGBE_EEC_DI;
1566 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1567 	IXGBE_WRITE_FLUSH(hw);
1568 }
1569 
1570 /**
1571  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1572  *  @hw: pointer to hardware structure
1573  **/
1574 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1575 {
1576 	u32 eec;
1577 	u32 i;
1578 	u16 data = 0;
1579 
1580 	/*
1581 	 * In order to read a register from the EEPROM, we need to shift
1582 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1583 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1584 	 * the value of the "DO" bit.  During this "shifting in" process the
1585 	 * "DI" bit should always be clear.
1586 	 */
1587 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1588 
1589 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1590 
1591 	for (i = 0; i < count; i++) {
1592 		data = data << 1;
1593 		ixgbe_raise_eeprom_clk(hw, &eec);
1594 
1595 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1596 
1597 		eec &= ~(IXGBE_EEC_DI);
1598 		if (eec & IXGBE_EEC_DO)
1599 			data |= 1;
1600 
1601 		ixgbe_lower_eeprom_clk(hw, &eec);
1602 	}
1603 
1604 	return data;
1605 }
1606 
1607 /**
1608  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1609  *  @hw: pointer to hardware structure
1610  *  @eec: EEC register's current value
1611  **/
1612 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1613 {
1614 	/*
1615 	 * Raise the clock input to the EEPROM
1616 	 * (setting the SK bit), then delay
1617 	 */
1618 	*eec = *eec | IXGBE_EEC_SK;
1619 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1620 	IXGBE_WRITE_FLUSH(hw);
1621 	udelay(1);
1622 }
1623 
1624 /**
1625  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1626  *  @hw: pointer to hardware structure
1627  *  @eecd: EECD's current value
1628  **/
1629 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1630 {
1631 	/*
1632 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1633 	 * delay
1634 	 */
1635 	*eec = *eec & ~IXGBE_EEC_SK;
1636 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1637 	IXGBE_WRITE_FLUSH(hw);
1638 	udelay(1);
1639 }
1640 
1641 /**
1642  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1643  *  @hw: pointer to hardware structure
1644  **/
1645 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1646 {
1647 	u32 eec;
1648 
1649 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1650 
1651 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1652 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1653 
1654 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1655 	IXGBE_WRITE_FLUSH(hw);
1656 
1657 	udelay(1);
1658 
1659 	/* Stop requesting EEPROM access */
1660 	eec &= ~IXGBE_EEC_REQ;
1661 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1662 
1663 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1664 
1665 	/*
1666 	 * Delay before attempt to obtain semaphore again to allow FW
1667 	 * access. semaphore_delay is in ms we need us for usleep_range
1668 	 */
1669 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1670 		     hw->eeprom.semaphore_delay * 2000);
1671 }
1672 
1673 /**
1674  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1675  *  @hw: pointer to hardware structure
1676  **/
1677 u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1678 {
1679 	u16 i;
1680 	u16 j;
1681 	u16 checksum = 0;
1682 	u16 length = 0;
1683 	u16 pointer = 0;
1684 	u16 word = 0;
1685 
1686 	/* Include 0x0-0x3F in the checksum */
1687 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1688 		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1689 			hw_dbg(hw, "EEPROM read failed\n");
1690 			break;
1691 		}
1692 		checksum += word;
1693 	}
1694 
1695 	/* Include all data from pointers except for the fw pointer */
1696 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1697 		hw->eeprom.ops.read(hw, i, &pointer);
1698 
1699 		/* Make sure the pointer seems valid */
1700 		if (pointer != 0xFFFF && pointer != 0) {
1701 			hw->eeprom.ops.read(hw, pointer, &length);
1702 
1703 			if (length != 0xFFFF && length != 0) {
1704 				for (j = pointer+1; j <= pointer+length; j++) {
1705 					hw->eeprom.ops.read(hw, j, &word);
1706 					checksum += word;
1707 				}
1708 			}
1709 		}
1710 	}
1711 
1712 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1713 
1714 	return checksum;
1715 }
1716 
1717 /**
1718  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1719  *  @hw: pointer to hardware structure
1720  *  @checksum_val: calculated checksum
1721  *
1722  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1723  *  caller does not need checksum_val, the value can be NULL.
1724  **/
1725 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1726                                            u16 *checksum_val)
1727 {
1728 	s32 status;
1729 	u16 checksum;
1730 	u16 read_checksum = 0;
1731 
1732 	/*
1733 	 * Read the first word from the EEPROM. If this times out or fails, do
1734 	 * not continue or we could be in for a very long wait while every
1735 	 * EEPROM read fails
1736 	 */
1737 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1738 
1739 	if (status == 0) {
1740 		checksum = hw->eeprom.ops.calc_checksum(hw);
1741 
1742 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1743 
1744 		/*
1745 		 * Verify read checksum from EEPROM is the same as
1746 		 * calculated checksum
1747 		 */
1748 		if (read_checksum != checksum)
1749 			status = IXGBE_ERR_EEPROM_CHECKSUM;
1750 
1751 		/* If the user cares, return the calculated checksum */
1752 		if (checksum_val)
1753 			*checksum_val = checksum;
1754 	} else {
1755 		hw_dbg(hw, "EEPROM read failed\n");
1756 	}
1757 
1758 	return status;
1759 }
1760 
1761 /**
1762  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1763  *  @hw: pointer to hardware structure
1764  **/
1765 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1766 {
1767 	s32 status;
1768 	u16 checksum;
1769 
1770 	/*
1771 	 * Read the first word from the EEPROM. If this times out or fails, do
1772 	 * not continue or we could be in for a very long wait while every
1773 	 * EEPROM read fails
1774 	 */
1775 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1776 
1777 	if (status == 0) {
1778 		checksum = hw->eeprom.ops.calc_checksum(hw);
1779 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1780 					      checksum);
1781 	} else {
1782 		hw_dbg(hw, "EEPROM read failed\n");
1783 	}
1784 
1785 	return status;
1786 }
1787 
1788 /**
1789  *  ixgbe_set_rar_generic - Set Rx address register
1790  *  @hw: pointer to hardware structure
1791  *  @index: Receive address register to write
1792  *  @addr: Address to put into receive address register
1793  *  @vmdq: VMDq "set" or "pool" index
1794  *  @enable_addr: set flag that address is active
1795  *
1796  *  Puts an ethernet address into a receive address register.
1797  **/
1798 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1799                           u32 enable_addr)
1800 {
1801 	u32 rar_low, rar_high;
1802 	u32 rar_entries = hw->mac.num_rar_entries;
1803 
1804 	/* Make sure we are using a valid rar index range */
1805 	if (index >= rar_entries) {
1806 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1807 		return IXGBE_ERR_INVALID_ARGUMENT;
1808 	}
1809 
1810 	/* setup VMDq pool selection before this RAR gets enabled */
1811 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1812 
1813 	/*
1814 	 * HW expects these in little endian so we reverse the byte
1815 	 * order from network order (big endian) to little endian
1816 	 */
1817 	rar_low = ((u32)addr[0] |
1818 		   ((u32)addr[1] << 8) |
1819 		   ((u32)addr[2] << 16) |
1820 		   ((u32)addr[3] << 24));
1821 	/*
1822 	 * Some parts put the VMDq setting in the extra RAH bits,
1823 	 * so save everything except the lower 16 bits that hold part
1824 	 * of the address and the address valid bit.
1825 	 */
1826 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1827 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1828 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1829 
1830 	if (enable_addr != 0)
1831 		rar_high |= IXGBE_RAH_AV;
1832 
1833 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1834 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1835 
1836 	return 0;
1837 }
1838 
1839 /**
1840  *  ixgbe_clear_rar_generic - Remove Rx address register
1841  *  @hw: pointer to hardware structure
1842  *  @index: Receive address register to write
1843  *
1844  *  Clears an ethernet address from a receive address register.
1845  **/
1846 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1847 {
1848 	u32 rar_high;
1849 	u32 rar_entries = hw->mac.num_rar_entries;
1850 
1851 	/* Make sure we are using a valid rar index range */
1852 	if (index >= rar_entries) {
1853 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1854 		return IXGBE_ERR_INVALID_ARGUMENT;
1855 	}
1856 
1857 	/*
1858 	 * Some parts put the VMDq setting in the extra RAH bits,
1859 	 * so save everything except the lower 16 bits that hold part
1860 	 * of the address and the address valid bit.
1861 	 */
1862 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1863 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1864 
1865 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1866 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1867 
1868 	/* clear VMDq pool/queue selection for this RAR */
1869 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1870 
1871 	return 0;
1872 }
1873 
1874 /**
1875  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1876  *  @hw: pointer to hardware structure
1877  *
1878  *  Places the MAC address in receive address register 0 and clears the rest
1879  *  of the receive address registers. Clears the multicast table. Assumes
1880  *  the receiver is in reset when the routine is called.
1881  **/
1882 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1883 {
1884 	u32 i;
1885 	u32 rar_entries = hw->mac.num_rar_entries;
1886 
1887 	/*
1888 	 * If the current mac address is valid, assume it is a software override
1889 	 * to the permanent address.
1890 	 * Otherwise, use the permanent address from the eeprom.
1891 	 */
1892 	if (!is_valid_ether_addr(hw->mac.addr)) {
1893 		/* Get the MAC address from the RAR0 for later reference */
1894 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1895 
1896 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1897 	} else {
1898 		/* Setup the receive address. */
1899 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1900 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1901 
1902 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1903 
1904 		/*  clear VMDq pool/queue selection for RAR 0 */
1905 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1906 	}
1907 	hw->addr_ctrl.overflow_promisc = 0;
1908 
1909 	hw->addr_ctrl.rar_used_count = 1;
1910 
1911 	/* Zero out the other receive addresses. */
1912 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1913 	for (i = 1; i < rar_entries; i++) {
1914 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1915 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1916 	}
1917 
1918 	/* Clear the MTA */
1919 	hw->addr_ctrl.mta_in_use = 0;
1920 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1921 
1922 	hw_dbg(hw, " Clearing MTA\n");
1923 	for (i = 0; i < hw->mac.mcft_size; i++)
1924 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1925 
1926 	if (hw->mac.ops.init_uta_tables)
1927 		hw->mac.ops.init_uta_tables(hw);
1928 
1929 	return 0;
1930 }
1931 
1932 /**
1933  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1934  *  @hw: pointer to hardware structure
1935  *  @mc_addr: the multicast address
1936  *
1937  *  Extracts the 12 bits, from a multicast address, to determine which
1938  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1939  *  incoming rx multicast addresses, to determine the bit-vector to check in
1940  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1941  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1942  *  to mc_filter_type.
1943  **/
1944 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1945 {
1946 	u32 vector = 0;
1947 
1948 	switch (hw->mac.mc_filter_type) {
1949 	case 0:   /* use bits [47:36] of the address */
1950 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1951 		break;
1952 	case 1:   /* use bits [46:35] of the address */
1953 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1954 		break;
1955 	case 2:   /* use bits [45:34] of the address */
1956 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1957 		break;
1958 	case 3:   /* use bits [43:32] of the address */
1959 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1960 		break;
1961 	default:  /* Invalid mc_filter_type */
1962 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1963 		break;
1964 	}
1965 
1966 	/* vector can only be 12-bits or boundary will be exceeded */
1967 	vector &= 0xFFF;
1968 	return vector;
1969 }
1970 
1971 /**
1972  *  ixgbe_set_mta - Set bit-vector in multicast table
1973  *  @hw: pointer to hardware structure
1974  *  @hash_value: Multicast address hash value
1975  *
1976  *  Sets the bit-vector in the multicast table.
1977  **/
1978 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1979 {
1980 	u32 vector;
1981 	u32 vector_bit;
1982 	u32 vector_reg;
1983 
1984 	hw->addr_ctrl.mta_in_use++;
1985 
1986 	vector = ixgbe_mta_vector(hw, mc_addr);
1987 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1988 
1989 	/*
1990 	 * The MTA is a register array of 128 32-bit registers. It is treated
1991 	 * like an array of 4096 bits.  We want to set bit
1992 	 * BitArray[vector_value]. So we figure out what register the bit is
1993 	 * in, read it, OR in the new bit, then write back the new value.  The
1994 	 * register is determined by the upper 7 bits of the vector value and
1995 	 * the bit within that register are determined by the lower 5 bits of
1996 	 * the value.
1997 	 */
1998 	vector_reg = (vector >> 5) & 0x7F;
1999 	vector_bit = vector & 0x1F;
2000 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
2001 }
2002 
2003 /**
2004  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2005  *  @hw: pointer to hardware structure
2006  *  @netdev: pointer to net device structure
2007  *
2008  *  The given list replaces any existing list. Clears the MC addrs from receive
2009  *  address registers and the multicast table. Uses unused receive address
2010  *  registers for the first multicast addresses, and hashes the rest into the
2011  *  multicast table.
2012  **/
2013 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2014 				      struct net_device *netdev)
2015 {
2016 	struct netdev_hw_addr *ha;
2017 	u32 i;
2018 
2019 	/*
2020 	 * Set the new number of MC addresses that we are being requested to
2021 	 * use.
2022 	 */
2023 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2024 	hw->addr_ctrl.mta_in_use = 0;
2025 
2026 	/* Clear mta_shadow */
2027 	hw_dbg(hw, " Clearing MTA\n");
2028 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2029 
2030 	/* Update mta shadow */
2031 	netdev_for_each_mc_addr(ha, netdev) {
2032 		hw_dbg(hw, " Adding the multicast addresses:\n");
2033 		ixgbe_set_mta(hw, ha->addr);
2034 	}
2035 
2036 	/* Enable mta */
2037 	for (i = 0; i < hw->mac.mcft_size; i++)
2038 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2039 				      hw->mac.mta_shadow[i]);
2040 
2041 	if (hw->addr_ctrl.mta_in_use > 0)
2042 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2043 		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2044 
2045 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2046 	return 0;
2047 }
2048 
2049 /**
2050  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2051  *  @hw: pointer to hardware structure
2052  *
2053  *  Enables multicast address in RAR and the use of the multicast hash table.
2054  **/
2055 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2056 {
2057 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2058 
2059 	if (a->mta_in_use > 0)
2060 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2061 		                hw->mac.mc_filter_type);
2062 
2063 	return 0;
2064 }
2065 
2066 /**
2067  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2068  *  @hw: pointer to hardware structure
2069  *
2070  *  Disables multicast address in RAR and the use of the multicast hash table.
2071  **/
2072 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2073 {
2074 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2075 
2076 	if (a->mta_in_use > 0)
2077 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2078 
2079 	return 0;
2080 }
2081 
2082 /**
2083  *  ixgbe_fc_enable_generic - Enable flow control
2084  *  @hw: pointer to hardware structure
2085  *
2086  *  Enable flow control according to the current settings.
2087  **/
2088 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2089 {
2090 	s32 ret_val = 0;
2091 	u32 mflcn_reg, fccfg_reg;
2092 	u32 reg;
2093 	u32 fcrtl, fcrth;
2094 	int i;
2095 
2096 	/*
2097 	 * Validate the water mark configuration for packet buffer 0.  Zero
2098 	 * water marks indicate that the packet buffer was not configured
2099 	 * and the watermarks for packet buffer 0 should always be configured.
2100 	 */
2101 	if (!hw->fc.low_water ||
2102 	    !hw->fc.high_water[0] ||
2103 	    !hw->fc.pause_time) {
2104 		hw_dbg(hw, "Invalid water mark configuration\n");
2105 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2106 		goto out;
2107 	}
2108 
2109 	/* Negotiate the fc mode to use */
2110 	ixgbe_fc_autoneg(hw);
2111 
2112 	/* Disable any previous flow control settings */
2113 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2114 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2115 
2116 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2117 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2118 
2119 	/*
2120 	 * The possible values of fc.current_mode are:
2121 	 * 0: Flow control is completely disabled
2122 	 * 1: Rx flow control is enabled (we can receive pause frames,
2123 	 *    but not send pause frames).
2124 	 * 2: Tx flow control is enabled (we can send pause frames but
2125 	 *    we do not support receiving pause frames).
2126 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2127 	 * other: Invalid.
2128 	 */
2129 	switch (hw->fc.current_mode) {
2130 	case ixgbe_fc_none:
2131 		/*
2132 		 * Flow control is disabled by software override or autoneg.
2133 		 * The code below will actually disable it in the HW.
2134 		 */
2135 		break;
2136 	case ixgbe_fc_rx_pause:
2137 		/*
2138 		 * Rx Flow control is enabled and Tx Flow control is
2139 		 * disabled by software override. Since there really
2140 		 * isn't a way to advertise that we are capable of RX
2141 		 * Pause ONLY, we will advertise that we support both
2142 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2143 		 * disable the adapter's ability to send PAUSE frames.
2144 		 */
2145 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2146 		break;
2147 	case ixgbe_fc_tx_pause:
2148 		/*
2149 		 * Tx Flow control is enabled, and Rx Flow control is
2150 		 * disabled by software override.
2151 		 */
2152 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2153 		break;
2154 	case ixgbe_fc_full:
2155 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2156 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2157 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2158 		break;
2159 	default:
2160 		hw_dbg(hw, "Flow control param set incorrectly\n");
2161 		ret_val = IXGBE_ERR_CONFIG;
2162 		goto out;
2163 		break;
2164 	}
2165 
2166 	/* Set 802.3x based flow control settings. */
2167 	mflcn_reg |= IXGBE_MFLCN_DPF;
2168 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2169 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2170 
2171 	fcrtl = (hw->fc.low_water << 10) | IXGBE_FCRTL_XONE;
2172 
2173 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2174 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2175 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2176 		    hw->fc.high_water[i]) {
2177 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2178 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2179 		} else {
2180 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2181 			/*
2182 			 * In order to prevent Tx hangs when the internal Tx
2183 			 * switch is enabled we must set the high water mark
2184 			 * to the maximum FCRTH value.  This allows the Tx
2185 			 * switch to function even under heavy Rx workloads.
2186 			 */
2187 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2188 		}
2189 
2190 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2191 	}
2192 
2193 	/* Configure pause time (2 TCs per register) */
2194 	reg = hw->fc.pause_time * 0x00010001;
2195 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2196 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2197 
2198 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2199 
2200 out:
2201 	return ret_val;
2202 }
2203 
2204 /**
2205  *  ixgbe_negotiate_fc - Negotiate flow control
2206  *  @hw: pointer to hardware structure
2207  *  @adv_reg: flow control advertised settings
2208  *  @lp_reg: link partner's flow control settings
2209  *  @adv_sym: symmetric pause bit in advertisement
2210  *  @adv_asm: asymmetric pause bit in advertisement
2211  *  @lp_sym: symmetric pause bit in link partner advertisement
2212  *  @lp_asm: asymmetric pause bit in link partner advertisement
2213  *
2214  *  Find the intersection between advertised settings and link partner's
2215  *  advertised settings
2216  **/
2217 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2218 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2219 {
2220 	if ((!(adv_reg)) ||  (!(lp_reg)))
2221 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2222 
2223 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2224 		/*
2225 		 * Now we need to check if the user selected Rx ONLY
2226 		 * of pause frames.  In this case, we had to advertise
2227 		 * FULL flow control because we could not advertise RX
2228 		 * ONLY. Hence, we must now check to see if we need to
2229 		 * turn OFF the TRANSMISSION of PAUSE frames.
2230 		 */
2231 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2232 			hw->fc.current_mode = ixgbe_fc_full;
2233 			hw_dbg(hw, "Flow Control = FULL.\n");
2234 		} else {
2235 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2236 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2237 		}
2238 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2239 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2240 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2241 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2242 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2243 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2244 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2245 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2246 	} else {
2247 		hw->fc.current_mode = ixgbe_fc_none;
2248 		hw_dbg(hw, "Flow Control = NONE.\n");
2249 	}
2250 	return 0;
2251 }
2252 
2253 /**
2254  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2255  *  @hw: pointer to hardware structure
2256  *
2257  *  Enable flow control according on 1 gig fiber.
2258  **/
2259 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2260 {
2261 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2262 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2263 
2264 	/*
2265 	 * On multispeed fiber at 1g, bail out if
2266 	 * - link is up but AN did not complete, or if
2267 	 * - link is up and AN completed but timed out
2268 	 */
2269 
2270 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2271 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2272 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2273 		goto out;
2274 
2275 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2276 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2277 
2278 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2279 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2280 			       IXGBE_PCS1GANA_ASM_PAUSE,
2281 			       IXGBE_PCS1GANA_SYM_PAUSE,
2282 			       IXGBE_PCS1GANA_ASM_PAUSE);
2283 
2284 out:
2285 	return ret_val;
2286 }
2287 
2288 /**
2289  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2290  *  @hw: pointer to hardware structure
2291  *
2292  *  Enable flow control according to IEEE clause 37.
2293  **/
2294 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2295 {
2296 	u32 links2, anlp1_reg, autoc_reg, links;
2297 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2298 
2299 	/*
2300 	 * On backplane, bail out if
2301 	 * - backplane autoneg was not completed, or if
2302 	 * - we are 82599 and link partner is not AN enabled
2303 	 */
2304 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2305 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2306 		goto out;
2307 
2308 	if (hw->mac.type == ixgbe_mac_82599EB) {
2309 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2310 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2311 			goto out;
2312 	}
2313 	/*
2314 	 * Read the 10g AN autoc and LP ability registers and resolve
2315 	 * local flow control settings accordingly
2316 	 */
2317 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2318 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2319 
2320 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2321 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2322 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2323 
2324 out:
2325 	return ret_val;
2326 }
2327 
2328 /**
2329  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2330  *  @hw: pointer to hardware structure
2331  *
2332  *  Enable flow control according to IEEE clause 37.
2333  **/
2334 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2335 {
2336 	u16 technology_ability_reg = 0;
2337 	u16 lp_technology_ability_reg = 0;
2338 
2339 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2340 			     MDIO_MMD_AN,
2341 			     &technology_ability_reg);
2342 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2343 			     MDIO_MMD_AN,
2344 			     &lp_technology_ability_reg);
2345 
2346 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2347 				  (u32)lp_technology_ability_reg,
2348 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2349 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2350 }
2351 
2352 /**
2353  *  ixgbe_fc_autoneg - Configure flow control
2354  *  @hw: pointer to hardware structure
2355  *
2356  *  Compares our advertised flow control capabilities to those advertised by
2357  *  our link partner, and determines the proper flow control mode to use.
2358  **/
2359 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2360 {
2361 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2362 	ixgbe_link_speed speed;
2363 	bool link_up;
2364 
2365 	/*
2366 	 * AN should have completed when the cable was plugged in.
2367 	 * Look for reasons to bail out.  Bail out if:
2368 	 * - FC autoneg is disabled, or if
2369 	 * - link is not up.
2370 	 *
2371 	 * Since we're being called from an LSC, link is already known to be up.
2372 	 * So use link_up_wait_to_complete=false.
2373 	 */
2374 	if (hw->fc.disable_fc_autoneg)
2375 		goto out;
2376 
2377 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2378 	if (!link_up)
2379 		goto out;
2380 
2381 	switch (hw->phy.media_type) {
2382 	/* Autoneg flow control on fiber adapters */
2383 	case ixgbe_media_type_fiber:
2384 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2385 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2386 		break;
2387 
2388 	/* Autoneg flow control on backplane adapters */
2389 	case ixgbe_media_type_backplane:
2390 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2391 		break;
2392 
2393 	/* Autoneg flow control on copper adapters */
2394 	case ixgbe_media_type_copper:
2395 		if (ixgbe_device_supports_autoneg_fc(hw) == 0)
2396 			ret_val = ixgbe_fc_autoneg_copper(hw);
2397 		break;
2398 
2399 	default:
2400 		break;
2401 	}
2402 
2403 out:
2404 	if (ret_val == 0) {
2405 		hw->fc.fc_was_autonegged = true;
2406 	} else {
2407 		hw->fc.fc_was_autonegged = false;
2408 		hw->fc.current_mode = hw->fc.requested_mode;
2409 	}
2410 }
2411 
2412 /**
2413  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2414  *  @hw: pointer to hardware structure
2415  *
2416  *  Disables PCI-Express master access and verifies there are no pending
2417  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2418  *  bit hasn't caused the master requests to be disabled, else 0
2419  *  is returned signifying master requests disabled.
2420  **/
2421 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2422 {
2423 	struct ixgbe_adapter *adapter = hw->back;
2424 	s32 status = 0;
2425 	u32 i;
2426 	u16 value;
2427 
2428 	/* Always set this bit to ensure any future transactions are blocked */
2429 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2430 
2431 	/* Exit if master requests are blocked */
2432 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2433 		goto out;
2434 
2435 	/* Poll for master request bit to clear */
2436 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2437 		udelay(100);
2438 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2439 			goto out;
2440 	}
2441 
2442 	/*
2443 	 * Two consecutive resets are required via CTRL.RST per datasheet
2444 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2445 	 * of this need.  The first reset prevents new master requests from
2446 	 * being issued by our device.  We then must wait 1usec or more for any
2447 	 * remaining completions from the PCIe bus to trickle in, and then reset
2448 	 * again to clear out any effects they may have had on our device.
2449 	 */
2450 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2451 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2452 
2453 	/*
2454 	 * Before proceeding, make sure that the PCIe block does not have
2455 	 * transactions pending.
2456 	 */
2457 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2458 		udelay(100);
2459 		pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2460 							 &value);
2461 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2462 			goto out;
2463 	}
2464 
2465 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2466 	status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2467 
2468 out:
2469 	return status;
2470 }
2471 
2472 /**
2473  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2474  *  @hw: pointer to hardware structure
2475  *  @mask: Mask to specify which semaphore to acquire
2476  *
2477  *  Acquires the SWFW semaphore through the GSSR register for the specified
2478  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2479  **/
2480 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2481 {
2482 	u32 gssr;
2483 	u32 swmask = mask;
2484 	u32 fwmask = mask << 5;
2485 	s32 timeout = 200;
2486 
2487 	while (timeout) {
2488 		/*
2489 		 * SW EEPROM semaphore bit is used for access to all
2490 		 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2491 		 */
2492 		if (ixgbe_get_eeprom_semaphore(hw))
2493 			return IXGBE_ERR_SWFW_SYNC;
2494 
2495 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2496 		if (!(gssr & (fwmask | swmask)))
2497 			break;
2498 
2499 		/*
2500 		 * Firmware currently using resource (fwmask) or other software
2501 		 * thread currently using resource (swmask)
2502 		 */
2503 		ixgbe_release_eeprom_semaphore(hw);
2504 		usleep_range(5000, 10000);
2505 		timeout--;
2506 	}
2507 
2508 	if (!timeout) {
2509 		hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2510 		return IXGBE_ERR_SWFW_SYNC;
2511 	}
2512 
2513 	gssr |= swmask;
2514 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2515 
2516 	ixgbe_release_eeprom_semaphore(hw);
2517 	return 0;
2518 }
2519 
2520 /**
2521  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2522  *  @hw: pointer to hardware structure
2523  *  @mask: Mask to specify which semaphore to release
2524  *
2525  *  Releases the SWFW semaphore through the GSSR register for the specified
2526  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2527  **/
2528 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2529 {
2530 	u32 gssr;
2531 	u32 swmask = mask;
2532 
2533 	ixgbe_get_eeprom_semaphore(hw);
2534 
2535 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2536 	gssr &= ~swmask;
2537 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2538 
2539 	ixgbe_release_eeprom_semaphore(hw);
2540 }
2541 
2542 /**
2543  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2544  *  @hw: pointer to hardware structure
2545  *
2546  *  Stops the receive data path and waits for the HW to internally
2547  *  empty the Rx security block.
2548  **/
2549 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2550 {
2551 #define IXGBE_MAX_SECRX_POLL 40
2552 	int i;
2553 	int secrxreg;
2554 
2555 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2556 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2557 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2558 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2559 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2560 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2561 			break;
2562 		else
2563 			/* Use interrupt-safe sleep just in case */
2564 			udelay(1000);
2565 	}
2566 
2567 	/* For informational purposes only */
2568 	if (i >= IXGBE_MAX_SECRX_POLL)
2569 		hw_dbg(hw, "Rx unit being enabled before security "
2570 		       "path fully disabled.  Continuing with init.\n");
2571 
2572 	return 0;
2573 
2574 }
2575 
2576 /**
2577  *  ixgbe_enable_rx_buff - Enables the receive data path
2578  *  @hw: pointer to hardware structure
2579  *
2580  *  Enables the receive data path
2581  **/
2582 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2583 {
2584 	int secrxreg;
2585 
2586 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2587 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2588 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2589 	IXGBE_WRITE_FLUSH(hw);
2590 
2591 	return 0;
2592 }
2593 
2594 /**
2595  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2596  *  @hw: pointer to hardware structure
2597  *  @regval: register value to write to RXCTRL
2598  *
2599  *  Enables the Rx DMA unit
2600  **/
2601 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2602 {
2603 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2604 
2605 	return 0;
2606 }
2607 
2608 /**
2609  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2610  *  @hw: pointer to hardware structure
2611  *  @index: led number to blink
2612  **/
2613 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2614 {
2615 	ixgbe_link_speed speed = 0;
2616 	bool link_up = false;
2617 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2618 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2619 	s32 ret_val = 0;
2620 
2621 	/*
2622 	 * Link must be up to auto-blink the LEDs;
2623 	 * Force it if link is down.
2624 	 */
2625 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2626 
2627 	if (!link_up) {
2628 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
2629 		 * LESM is on.
2630 		 */
2631 		bool got_lock = false;
2632 
2633 		if ((hw->mac.type == ixgbe_mac_82599EB) &&
2634 		    ixgbe_verify_lesm_fw_enabled_82599(hw)) {
2635 			ret_val = hw->mac.ops.acquire_swfw_sync(hw,
2636 							IXGBE_GSSR_MAC_CSR_SM);
2637 			if (ret_val)
2638 				goto out;
2639 
2640 			got_lock = true;
2641 		}
2642 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2643 		autoc_reg |= IXGBE_AUTOC_FLU;
2644 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2645 		IXGBE_WRITE_FLUSH(hw);
2646 
2647 		if (got_lock)
2648 			hw->mac.ops.release_swfw_sync(hw,
2649 						      IXGBE_GSSR_MAC_CSR_SM);
2650 		usleep_range(10000, 20000);
2651 	}
2652 
2653 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2654 	led_reg |= IXGBE_LED_BLINK(index);
2655 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2656 	IXGBE_WRITE_FLUSH(hw);
2657 
2658 out:
2659 	return ret_val;
2660 }
2661 
2662 /**
2663  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2664  *  @hw: pointer to hardware structure
2665  *  @index: led number to stop blinking
2666  **/
2667 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2668 {
2669 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2670 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2671 	s32 ret_val = 0;
2672 	bool got_lock = false;
2673 
2674 	/* Need the SW/FW semaphore around AUTOC writes if 82599 and
2675 	 * LESM is on.
2676 	 */
2677 	if ((hw->mac.type == ixgbe_mac_82599EB) &&
2678 	    ixgbe_verify_lesm_fw_enabled_82599(hw)) {
2679 		ret_val = hw->mac.ops.acquire_swfw_sync(hw,
2680 						IXGBE_GSSR_MAC_CSR_SM);
2681 		if (ret_val)
2682 			goto out;
2683 
2684 		got_lock = true;
2685 	}
2686 
2687 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2688 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2689 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2690 
2691 	if (hw->mac.type == ixgbe_mac_82599EB)
2692 		ixgbe_reset_pipeline_82599(hw);
2693 
2694 	if (got_lock)
2695 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
2696 
2697 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2698 	led_reg &= ~IXGBE_LED_BLINK(index);
2699 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2700 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2701 	IXGBE_WRITE_FLUSH(hw);
2702 
2703 out:
2704 	return ret_val;
2705 }
2706 
2707 /**
2708  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2709  *  @hw: pointer to hardware structure
2710  *  @san_mac_offset: SAN MAC address offset
2711  *
2712  *  This function will read the EEPROM location for the SAN MAC address
2713  *  pointer, and returns the value at that location.  This is used in both
2714  *  get and set mac_addr routines.
2715  **/
2716 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2717                                         u16 *san_mac_offset)
2718 {
2719 	/*
2720 	 * First read the EEPROM pointer to see if the MAC addresses are
2721 	 * available.
2722 	 */
2723 	hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2724 
2725 	return 0;
2726 }
2727 
2728 /**
2729  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2730  *  @hw: pointer to hardware structure
2731  *  @san_mac_addr: SAN MAC address
2732  *
2733  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2734  *  per-port, so set_lan_id() must be called before reading the addresses.
2735  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2736  *  upon for non-SFP connections, so we must call it here.
2737  **/
2738 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2739 {
2740 	u16 san_mac_data, san_mac_offset;
2741 	u8 i;
2742 
2743 	/*
2744 	 * First read the EEPROM pointer to see if the MAC addresses are
2745 	 * available.  If they're not, no point in calling set_lan_id() here.
2746 	 */
2747 	ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2748 
2749 	if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2750 		/*
2751 		 * No addresses available in this EEPROM.  It's not an
2752 		 * error though, so just wipe the local address and return.
2753 		 */
2754 		for (i = 0; i < 6; i++)
2755 			san_mac_addr[i] = 0xFF;
2756 
2757 		goto san_mac_addr_out;
2758 	}
2759 
2760 	/* make sure we know which port we need to program */
2761 	hw->mac.ops.set_lan_id(hw);
2762 	/* apply the port offset to the address offset */
2763 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2764 	                 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2765 	for (i = 0; i < 3; i++) {
2766 		hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2767 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2768 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2769 		san_mac_offset++;
2770 	}
2771 
2772 san_mac_addr_out:
2773 	return 0;
2774 }
2775 
2776 /**
2777  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2778  *  @hw: pointer to hardware structure
2779  *
2780  *  Read PCIe configuration space, and get the MSI-X vector count from
2781  *  the capabilities table.
2782  **/
2783 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2784 {
2785 	struct ixgbe_adapter *adapter = hw->back;
2786 	u16 msix_count = 1;
2787 	u16 max_msix_count;
2788 	u16 pcie_offset;
2789 
2790 	switch (hw->mac.type) {
2791 	case ixgbe_mac_82598EB:
2792 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2793 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2794 		break;
2795 	case ixgbe_mac_82599EB:
2796 	case ixgbe_mac_X540:
2797 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2798 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2799 		break;
2800 	default:
2801 		return msix_count;
2802 	}
2803 
2804 	pci_read_config_word(adapter->pdev, pcie_offset, &msix_count);
2805 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2806 
2807 	/* MSI-X count is zero-based in HW */
2808 	msix_count++;
2809 
2810 	if (msix_count > max_msix_count)
2811 		msix_count = max_msix_count;
2812 
2813 	return msix_count;
2814 }
2815 
2816 /**
2817  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2818  *  @hw: pointer to hardware struct
2819  *  @rar: receive address register index to disassociate
2820  *  @vmdq: VMDq pool index to remove from the rar
2821  **/
2822 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2823 {
2824 	u32 mpsar_lo, mpsar_hi;
2825 	u32 rar_entries = hw->mac.num_rar_entries;
2826 
2827 	/* Make sure we are using a valid rar index range */
2828 	if (rar >= rar_entries) {
2829 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2830 		return IXGBE_ERR_INVALID_ARGUMENT;
2831 	}
2832 
2833 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2834 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2835 
2836 	if (!mpsar_lo && !mpsar_hi)
2837 		goto done;
2838 
2839 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2840 		if (mpsar_lo) {
2841 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2842 			mpsar_lo = 0;
2843 		}
2844 		if (mpsar_hi) {
2845 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2846 			mpsar_hi = 0;
2847 		}
2848 	} else if (vmdq < 32) {
2849 		mpsar_lo &= ~(1 << vmdq);
2850 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2851 	} else {
2852 		mpsar_hi &= ~(1 << (vmdq - 32));
2853 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2854 	}
2855 
2856 	/* was that the last pool using this rar? */
2857 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2858 		hw->mac.ops.clear_rar(hw, rar);
2859 done:
2860 	return 0;
2861 }
2862 
2863 /**
2864  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2865  *  @hw: pointer to hardware struct
2866  *  @rar: receive address register index to associate with a VMDq index
2867  *  @vmdq: VMDq pool index
2868  **/
2869 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2870 {
2871 	u32 mpsar;
2872 	u32 rar_entries = hw->mac.num_rar_entries;
2873 
2874 	/* Make sure we are using a valid rar index range */
2875 	if (rar >= rar_entries) {
2876 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2877 		return IXGBE_ERR_INVALID_ARGUMENT;
2878 	}
2879 
2880 	if (vmdq < 32) {
2881 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2882 		mpsar |= 1 << vmdq;
2883 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2884 	} else {
2885 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2886 		mpsar |= 1 << (vmdq - 32);
2887 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2888 	}
2889 	return 0;
2890 }
2891 
2892 /**
2893  *  This function should only be involved in the IOV mode.
2894  *  In IOV mode, Default pool is next pool after the number of
2895  *  VFs advertized and not 0.
2896  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2897  *
2898  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2899  *  @hw: pointer to hardware struct
2900  *  @vmdq: VMDq pool index
2901  **/
2902 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2903 {
2904 	u32 rar = hw->mac.san_mac_rar_index;
2905 
2906 	if (vmdq < 32) {
2907 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2908 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2909 	} else {
2910 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2911 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2912 	}
2913 
2914 	return 0;
2915 }
2916 
2917 /**
2918  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2919  *  @hw: pointer to hardware structure
2920  **/
2921 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2922 {
2923 	int i;
2924 
2925 	for (i = 0; i < 128; i++)
2926 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2927 
2928 	return 0;
2929 }
2930 
2931 /**
2932  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2933  *  @hw: pointer to hardware structure
2934  *  @vlan: VLAN id to write to VLAN filter
2935  *
2936  *  return the VLVF index where this VLAN id should be placed
2937  *
2938  **/
2939 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2940 {
2941 	u32 bits = 0;
2942 	u32 first_empty_slot = 0;
2943 	s32 regindex;
2944 
2945 	/* short cut the special case */
2946 	if (vlan == 0)
2947 		return 0;
2948 
2949 	/*
2950 	  * Search for the vlan id in the VLVF entries. Save off the first empty
2951 	  * slot found along the way
2952 	  */
2953 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2954 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2955 		if (!bits && !(first_empty_slot))
2956 			first_empty_slot = regindex;
2957 		else if ((bits & 0x0FFF) == vlan)
2958 			break;
2959 	}
2960 
2961 	/*
2962 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2963 	  * in the VLVF. Else use the first empty VLVF register for this
2964 	  * vlan id.
2965 	  */
2966 	if (regindex >= IXGBE_VLVF_ENTRIES) {
2967 		if (first_empty_slot)
2968 			regindex = first_empty_slot;
2969 		else {
2970 			hw_dbg(hw, "No space in VLVF.\n");
2971 			regindex = IXGBE_ERR_NO_SPACE;
2972 		}
2973 	}
2974 
2975 	return regindex;
2976 }
2977 
2978 /**
2979  *  ixgbe_set_vfta_generic - Set VLAN filter table
2980  *  @hw: pointer to hardware structure
2981  *  @vlan: VLAN id to write to VLAN filter
2982  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2983  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2984  *
2985  *  Turn on/off specified VLAN in the VLAN filter table.
2986  **/
2987 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2988                            bool vlan_on)
2989 {
2990 	s32 regindex;
2991 	u32 bitindex;
2992 	u32 vfta;
2993 	u32 bits;
2994 	u32 vt;
2995 	u32 targetbit;
2996 	bool vfta_changed = false;
2997 
2998 	if (vlan > 4095)
2999 		return IXGBE_ERR_PARAM;
3000 
3001 	/*
3002 	 * this is a 2 part operation - first the VFTA, then the
3003 	 * VLVF and VLVFB if VT Mode is set
3004 	 * We don't write the VFTA until we know the VLVF part succeeded.
3005 	 */
3006 
3007 	/* Part 1
3008 	 * The VFTA is a bitstring made up of 128 32-bit registers
3009 	 * that enable the particular VLAN id, much like the MTA:
3010 	 *    bits[11-5]: which register
3011 	 *    bits[4-0]:  which bit in the register
3012 	 */
3013 	regindex = (vlan >> 5) & 0x7F;
3014 	bitindex = vlan & 0x1F;
3015 	targetbit = (1 << bitindex);
3016 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3017 
3018 	if (vlan_on) {
3019 		if (!(vfta & targetbit)) {
3020 			vfta |= targetbit;
3021 			vfta_changed = true;
3022 		}
3023 	} else {
3024 		if ((vfta & targetbit)) {
3025 			vfta &= ~targetbit;
3026 			vfta_changed = true;
3027 		}
3028 	}
3029 
3030 	/* Part 2
3031 	 * If VT Mode is set
3032 	 *   Either vlan_on
3033 	 *     make sure the vlan is in VLVF
3034 	 *     set the vind bit in the matching VLVFB
3035 	 *   Or !vlan_on
3036 	 *     clear the pool bit and possibly the vind
3037 	 */
3038 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3039 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3040 		s32 vlvf_index;
3041 
3042 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3043 		if (vlvf_index < 0)
3044 			return vlvf_index;
3045 
3046 		if (vlan_on) {
3047 			/* set the pool bit */
3048 			if (vind < 32) {
3049 				bits = IXGBE_READ_REG(hw,
3050 						IXGBE_VLVFB(vlvf_index*2));
3051 				bits |= (1 << vind);
3052 				IXGBE_WRITE_REG(hw,
3053 						IXGBE_VLVFB(vlvf_index*2),
3054 						bits);
3055 			} else {
3056 				bits = IXGBE_READ_REG(hw,
3057 						IXGBE_VLVFB((vlvf_index*2)+1));
3058 				bits |= (1 << (vind-32));
3059 				IXGBE_WRITE_REG(hw,
3060 						IXGBE_VLVFB((vlvf_index*2)+1),
3061 						bits);
3062 			}
3063 		} else {
3064 			/* clear the pool bit */
3065 			if (vind < 32) {
3066 				bits = IXGBE_READ_REG(hw,
3067 						IXGBE_VLVFB(vlvf_index*2));
3068 				bits &= ~(1 << vind);
3069 				IXGBE_WRITE_REG(hw,
3070 						IXGBE_VLVFB(vlvf_index*2),
3071 						bits);
3072 				bits |= IXGBE_READ_REG(hw,
3073 						IXGBE_VLVFB((vlvf_index*2)+1));
3074 			} else {
3075 				bits = IXGBE_READ_REG(hw,
3076 						IXGBE_VLVFB((vlvf_index*2)+1));
3077 				bits &= ~(1 << (vind-32));
3078 				IXGBE_WRITE_REG(hw,
3079 						IXGBE_VLVFB((vlvf_index*2)+1),
3080 						bits);
3081 				bits |= IXGBE_READ_REG(hw,
3082 						IXGBE_VLVFB(vlvf_index*2));
3083 			}
3084 		}
3085 
3086 		/*
3087 		 * If there are still bits set in the VLVFB registers
3088 		 * for the VLAN ID indicated we need to see if the
3089 		 * caller is requesting that we clear the VFTA entry bit.
3090 		 * If the caller has requested that we clear the VFTA
3091 		 * entry bit but there are still pools/VFs using this VLAN
3092 		 * ID entry then ignore the request.  We're not worried
3093 		 * about the case where we're turning the VFTA VLAN ID
3094 		 * entry bit on, only when requested to turn it off as
3095 		 * there may be multiple pools and/or VFs using the
3096 		 * VLAN ID entry.  In that case we cannot clear the
3097 		 * VFTA bit until all pools/VFs using that VLAN ID have also
3098 		 * been cleared.  This will be indicated by "bits" being
3099 		 * zero.
3100 		 */
3101 		if (bits) {
3102 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3103 					(IXGBE_VLVF_VIEN | vlan));
3104 			if (!vlan_on) {
3105 				/* someone wants to clear the vfta entry
3106 				 * but some pools/VFs are still using it.
3107 				 * Ignore it. */
3108 				vfta_changed = false;
3109 			}
3110 		}
3111 		else
3112 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3113 	}
3114 
3115 	if (vfta_changed)
3116 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3117 
3118 	return 0;
3119 }
3120 
3121 /**
3122  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3123  *  @hw: pointer to hardware structure
3124  *
3125  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3126  **/
3127 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3128 {
3129 	u32 offset;
3130 
3131 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3132 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3133 
3134 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3135 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3136 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3137 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3138 	}
3139 
3140 	return 0;
3141 }
3142 
3143 /**
3144  *  ixgbe_check_mac_link_generic - Determine link and speed status
3145  *  @hw: pointer to hardware structure
3146  *  @speed: pointer to link speed
3147  *  @link_up: true when link is up
3148  *  @link_up_wait_to_complete: bool used to wait for link up or not
3149  *
3150  *  Reads the links register to determine if link is up and the current speed
3151  **/
3152 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3153 				 bool *link_up, bool link_up_wait_to_complete)
3154 {
3155 	u32 links_reg, links_orig;
3156 	u32 i;
3157 
3158 	/* clear the old state */
3159 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3160 
3161 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3162 
3163 	if (links_orig != links_reg) {
3164 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3165 		       links_orig, links_reg);
3166 	}
3167 
3168 	if (link_up_wait_to_complete) {
3169 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3170 			if (links_reg & IXGBE_LINKS_UP) {
3171 				*link_up = true;
3172 				break;
3173 			} else {
3174 				*link_up = false;
3175 			}
3176 			msleep(100);
3177 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3178 		}
3179 	} else {
3180 		if (links_reg & IXGBE_LINKS_UP)
3181 			*link_up = true;
3182 		else
3183 			*link_up = false;
3184 	}
3185 
3186 	if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3187 	    IXGBE_LINKS_SPEED_10G_82599)
3188 		*speed = IXGBE_LINK_SPEED_10GB_FULL;
3189 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3190 		 IXGBE_LINKS_SPEED_1G_82599)
3191 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3192 	else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3193 		 IXGBE_LINKS_SPEED_100_82599)
3194 		*speed = IXGBE_LINK_SPEED_100_FULL;
3195 	else
3196 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3197 
3198 	return 0;
3199 }
3200 
3201 /**
3202  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3203  *  the EEPROM
3204  *  @hw: pointer to hardware structure
3205  *  @wwnn_prefix: the alternative WWNN prefix
3206  *  @wwpn_prefix: the alternative WWPN prefix
3207  *
3208  *  This function will read the EEPROM from the alternative SAN MAC address
3209  *  block to check the support for the alternative WWNN/WWPN prefix support.
3210  **/
3211 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3212                                         u16 *wwpn_prefix)
3213 {
3214 	u16 offset, caps;
3215 	u16 alt_san_mac_blk_offset;
3216 
3217 	/* clear output first */
3218 	*wwnn_prefix = 0xFFFF;
3219 	*wwpn_prefix = 0xFFFF;
3220 
3221 	/* check if alternative SAN MAC is supported */
3222 	hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3223 	                    &alt_san_mac_blk_offset);
3224 
3225 	if ((alt_san_mac_blk_offset == 0) ||
3226 	    (alt_san_mac_blk_offset == 0xFFFF))
3227 		goto wwn_prefix_out;
3228 
3229 	/* check capability in alternative san mac address block */
3230 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3231 	hw->eeprom.ops.read(hw, offset, &caps);
3232 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3233 		goto wwn_prefix_out;
3234 
3235 	/* get the corresponding prefix for WWNN/WWPN */
3236 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3237 	hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3238 
3239 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3240 	hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3241 
3242 wwn_prefix_out:
3243 	return 0;
3244 }
3245 
3246 /**
3247  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3248  *  @hw: pointer to hardware structure
3249  *  @enable: enable or disable switch for anti-spoofing
3250  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3251  *
3252  **/
3253 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3254 {
3255 	int j;
3256 	int pf_target_reg = pf >> 3;
3257 	int pf_target_shift = pf % 8;
3258 	u32 pfvfspoof = 0;
3259 
3260 	if (hw->mac.type == ixgbe_mac_82598EB)
3261 		return;
3262 
3263 	if (enable)
3264 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3265 
3266 	/*
3267 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3268 	 * MAC anti-spoof enables in each register array element.
3269 	 */
3270 	for (j = 0; j < pf_target_reg; j++)
3271 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3272 
3273 	/*
3274 	 * The PF should be allowed to spoof so that it can support
3275 	 * emulation mode NICs.  Do not set the bits assigned to the PF
3276 	 */
3277 	pfvfspoof &= (1 << pf_target_shift) - 1;
3278 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3279 
3280 	/*
3281 	 * Remaining pools belong to the PF so they do not need to have
3282 	 * anti-spoofing enabled.
3283 	 */
3284 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3285 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3286 }
3287 
3288 /**
3289  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3290  *  @hw: pointer to hardware structure
3291  *  @enable: enable or disable switch for VLAN anti-spoofing
3292  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3293  *
3294  **/
3295 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3296 {
3297 	int vf_target_reg = vf >> 3;
3298 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3299 	u32 pfvfspoof;
3300 
3301 	if (hw->mac.type == ixgbe_mac_82598EB)
3302 		return;
3303 
3304 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3305 	if (enable)
3306 		pfvfspoof |= (1 << vf_target_shift);
3307 	else
3308 		pfvfspoof &= ~(1 << vf_target_shift);
3309 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3310 }
3311 
3312 /**
3313  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3314  *  @hw: pointer to hardware structure
3315  *  @device_caps: the EEPROM word with the extra device capabilities
3316  *
3317  *  This function will read the EEPROM location for the device capabilities,
3318  *  and return the word through device_caps.
3319  **/
3320 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3321 {
3322 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3323 
3324 	return 0;
3325 }
3326 
3327 /**
3328  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3329  * @hw: pointer to hardware structure
3330  * @num_pb: number of packet buffers to allocate
3331  * @headroom: reserve n KB of headroom
3332  * @strategy: packet buffer allocation strategy
3333  **/
3334 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3335 			     int num_pb,
3336 			     u32 headroom,
3337 			     int strategy)
3338 {
3339 	u32 pbsize = hw->mac.rx_pb_size;
3340 	int i = 0;
3341 	u32 rxpktsize, txpktsize, txpbthresh;
3342 
3343 	/* Reserve headroom */
3344 	pbsize -= headroom;
3345 
3346 	if (!num_pb)
3347 		num_pb = 1;
3348 
3349 	/* Divide remaining packet buffer space amongst the number
3350 	 * of packet buffers requested using supplied strategy.
3351 	 */
3352 	switch (strategy) {
3353 	case (PBA_STRATEGY_WEIGHTED):
3354 		/* pba_80_48 strategy weight first half of packet buffer with
3355 		 * 5/8 of the packet buffer space.
3356 		 */
3357 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3358 		pbsize -= rxpktsize * (num_pb / 2);
3359 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3360 		for (; i < (num_pb / 2); i++)
3361 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3362 		/* Fall through to configure remaining packet buffers */
3363 	case (PBA_STRATEGY_EQUAL):
3364 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3365 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3366 		for (; i < num_pb; i++)
3367 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3368 		break;
3369 	default:
3370 		break;
3371 	}
3372 
3373 	/*
3374 	 * Setup Tx packet buffer and threshold equally for all TCs
3375 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3376 	 * 10 since the largest packet we support is just over 9K.
3377 	 */
3378 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3379 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3380 	for (i = 0; i < num_pb; i++) {
3381 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3382 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3383 	}
3384 
3385 	/* Clear unused TCs, if any, to zero buffer size*/
3386 	for (; i < IXGBE_MAX_PB; i++) {
3387 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3388 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3389 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3390 	}
3391 }
3392 
3393 /**
3394  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3395  *  @buffer: pointer to EEPROM
3396  *  @length: size of EEPROM to calculate a checksum for
3397  *
3398  *  Calculates the checksum for some buffer on a specified length.  The
3399  *  checksum calculated is returned.
3400  **/
3401 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3402 {
3403 	u32 i;
3404 	u8 sum = 0;
3405 
3406 	if (!buffer)
3407 		return 0;
3408 
3409 	for (i = 0; i < length; i++)
3410 		sum += buffer[i];
3411 
3412 	return (u8) (0 - sum);
3413 }
3414 
3415 /**
3416  *  ixgbe_host_interface_command - Issue command to manageability block
3417  *  @hw: pointer to the HW structure
3418  *  @buffer: contains the command to write and where the return status will
3419  *           be placed
3420  *  @length: length of buffer, must be multiple of 4 bytes
3421  *
3422  *  Communicates with the manageability block.  On success return 0
3423  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3424  **/
3425 static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3426 					u32 length)
3427 {
3428 	u32 hicr, i, bi;
3429 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3430 	u8 buf_len, dword_len;
3431 
3432 	s32 ret_val = 0;
3433 
3434 	if (length == 0 || length & 0x3 ||
3435 	    length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3436 		hw_dbg(hw, "Buffer length failure.\n");
3437 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3438 		goto out;
3439 	}
3440 
3441 	/* Check that the host interface is enabled. */
3442 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3443 	if ((hicr & IXGBE_HICR_EN) == 0) {
3444 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3445 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3446 		goto out;
3447 	}
3448 
3449 	/* Calculate length in DWORDs */
3450 	dword_len = length >> 2;
3451 
3452 	/*
3453 	 * The device driver writes the relevant command block
3454 	 * into the ram area.
3455 	 */
3456 	for (i = 0; i < dword_len; i++)
3457 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3458 				      i, cpu_to_le32(buffer[i]));
3459 
3460 	/* Setting this bit tells the ARC that a new command is pending. */
3461 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3462 
3463 	for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3464 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3465 		if (!(hicr & IXGBE_HICR_C))
3466 			break;
3467 		usleep_range(1000, 2000);
3468 	}
3469 
3470 	/* Check command successful completion. */
3471 	if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3472 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3473 		hw_dbg(hw, "Command has failed with no status valid.\n");
3474 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3475 		goto out;
3476 	}
3477 
3478 	/* Calculate length in DWORDs */
3479 	dword_len = hdr_size >> 2;
3480 
3481 	/* first pull in the header so we know the buffer length */
3482 	for (bi = 0; bi < dword_len; bi++) {
3483 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3484 		le32_to_cpus(&buffer[bi]);
3485 	}
3486 
3487 	/* If there is any thing in data position pull it in */
3488 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3489 	if (buf_len == 0)
3490 		goto out;
3491 
3492 	if (length < (buf_len + hdr_size)) {
3493 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3494 		ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3495 		goto out;
3496 	}
3497 
3498 	/* Calculate length in DWORDs, add 3 for odd lengths */
3499 	dword_len = (buf_len + 3) >> 2;
3500 
3501 	/* Pull in the rest of the buffer (bi is where we left off)*/
3502 	for (; bi <= dword_len; bi++) {
3503 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3504 		le32_to_cpus(&buffer[bi]);
3505 	}
3506 
3507 out:
3508 	return ret_val;
3509 }
3510 
3511 /**
3512  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3513  *  @hw: pointer to the HW structure
3514  *  @maj: driver version major number
3515  *  @min: driver version minor number
3516  *  @build: driver version build number
3517  *  @sub: driver version sub build number
3518  *
3519  *  Sends driver version number to firmware through the manageability
3520  *  block.  On success return 0
3521  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3522  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3523  **/
3524 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3525 				 u8 build, u8 sub)
3526 {
3527 	struct ixgbe_hic_drv_info fw_cmd;
3528 	int i;
3529 	s32 ret_val = 0;
3530 
3531 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3532 		ret_val = IXGBE_ERR_SWFW_SYNC;
3533 		goto out;
3534 	}
3535 
3536 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3537 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3538 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3539 	fw_cmd.port_num = (u8)hw->bus.func;
3540 	fw_cmd.ver_maj = maj;
3541 	fw_cmd.ver_min = min;
3542 	fw_cmd.ver_build = build;
3543 	fw_cmd.ver_sub = sub;
3544 	fw_cmd.hdr.checksum = 0;
3545 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3546 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3547 	fw_cmd.pad = 0;
3548 	fw_cmd.pad2 = 0;
3549 
3550 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3551 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3552 						       sizeof(fw_cmd));
3553 		if (ret_val != 0)
3554 			continue;
3555 
3556 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3557 		    FW_CEM_RESP_STATUS_SUCCESS)
3558 			ret_val = 0;
3559 		else
3560 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3561 
3562 		break;
3563 	}
3564 
3565 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3566 out:
3567 	return ret_val;
3568 }
3569 
3570 /**
3571  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3572  * @hw: pointer to the hardware structure
3573  *
3574  * The 82599 and x540 MACs can experience issues if TX work is still pending
3575  * when a reset occurs.  This function prevents this by flushing the PCIe
3576  * buffers on the system.
3577  **/
3578 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3579 {
3580 	u32 gcr_ext, hlreg0;
3581 
3582 	/*
3583 	 * If double reset is not requested then all transactions should
3584 	 * already be clear and as such there is no work to do
3585 	 */
3586 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3587 		return;
3588 
3589 	/*
3590 	 * Set loopback enable to prevent any transmits from being sent
3591 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3592 	 * has already been cleared.
3593 	 */
3594 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3595 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3596 
3597 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3598 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3599 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3600 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3601 
3602 	/* Flush all writes and allow 20usec for all transactions to clear */
3603 	IXGBE_WRITE_FLUSH(hw);
3604 	udelay(20);
3605 
3606 	/* restore previous register values */
3607 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3608 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3609 }
3610 
3611 static const u8 ixgbe_emc_temp_data[4] = {
3612 	IXGBE_EMC_INTERNAL_DATA,
3613 	IXGBE_EMC_DIODE1_DATA,
3614 	IXGBE_EMC_DIODE2_DATA,
3615 	IXGBE_EMC_DIODE3_DATA
3616 };
3617 static const u8 ixgbe_emc_therm_limit[4] = {
3618 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3619 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3620 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3621 	IXGBE_EMC_DIODE3_THERM_LIMIT
3622 };
3623 
3624 /**
3625  *  ixgbe_get_ets_data - Extracts the ETS bit data
3626  *  @hw: pointer to hardware structure
3627  *  @ets_cfg: extected ETS data
3628  *  @ets_offset: offset of ETS data
3629  *
3630  *  Returns error code.
3631  **/
3632 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3633 			      u16 *ets_offset)
3634 {
3635 	s32 status = 0;
3636 
3637 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3638 	if (status)
3639 		goto out;
3640 
3641 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF)) {
3642 		status = IXGBE_NOT_IMPLEMENTED;
3643 		goto out;
3644 	}
3645 
3646 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3647 	if (status)
3648 		goto out;
3649 
3650 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED) {
3651 		status = IXGBE_NOT_IMPLEMENTED;
3652 		goto out;
3653 	}
3654 
3655 out:
3656 	return status;
3657 }
3658 
3659 /**
3660  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3661  *  @hw: pointer to hardware structure
3662  *
3663  *  Returns the thermal sensor data structure
3664  **/
3665 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3666 {
3667 	s32 status = 0;
3668 	u16 ets_offset;
3669 	u16 ets_cfg;
3670 	u16 ets_sensor;
3671 	u8  num_sensors;
3672 	u8  i;
3673 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3674 
3675 	/* Only support thermal sensors attached to physical port 0 */
3676 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3677 		status = IXGBE_NOT_IMPLEMENTED;
3678 		goto out;
3679 	}
3680 
3681 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3682 	if (status)
3683 		goto out;
3684 
3685 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3686 	if (num_sensors > IXGBE_MAX_SENSORS)
3687 		num_sensors = IXGBE_MAX_SENSORS;
3688 
3689 	for (i = 0; i < num_sensors; i++) {
3690 		u8  sensor_index;
3691 		u8  sensor_location;
3692 
3693 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3694 					     &ets_sensor);
3695 		if (status)
3696 			goto out;
3697 
3698 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3699 				IXGBE_ETS_DATA_INDEX_SHIFT);
3700 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3701 				   IXGBE_ETS_DATA_LOC_SHIFT);
3702 
3703 		if (sensor_location != 0) {
3704 			status = hw->phy.ops.read_i2c_byte(hw,
3705 					ixgbe_emc_temp_data[sensor_index],
3706 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3707 					&data->sensor[i].temp);
3708 			if (status)
3709 				goto out;
3710 		}
3711 	}
3712 out:
3713 	return status;
3714 }
3715 
3716 /**
3717  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3718  * @hw: pointer to hardware structure
3719  *
3720  * Inits the thermal sensor thresholds according to the NVM map
3721  * and save off the threshold and location values into mac.thermal_sensor_data
3722  **/
3723 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3724 {
3725 	s32 status = 0;
3726 	u16 ets_offset;
3727 	u16 ets_cfg;
3728 	u16 ets_sensor;
3729 	u8  low_thresh_delta;
3730 	u8  num_sensors;
3731 	u8  therm_limit;
3732 	u8  i;
3733 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3734 
3735 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3736 
3737 	/* Only support thermal sensors attached to physical port 0 */
3738 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1)) {
3739 		status = IXGBE_NOT_IMPLEMENTED;
3740 		goto out;
3741 	}
3742 
3743 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3744 	if (status)
3745 		goto out;
3746 
3747 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3748 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3749 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3750 	if (num_sensors > IXGBE_MAX_SENSORS)
3751 		num_sensors = IXGBE_MAX_SENSORS;
3752 
3753 	for (i = 0; i < num_sensors; i++) {
3754 		u8  sensor_index;
3755 		u8  sensor_location;
3756 
3757 		hw->eeprom.ops.read(hw, (ets_offset + 1 + i), &ets_sensor);
3758 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3759 				IXGBE_ETS_DATA_INDEX_SHIFT);
3760 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3761 				   IXGBE_ETS_DATA_LOC_SHIFT);
3762 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3763 
3764 		hw->phy.ops.write_i2c_byte(hw,
3765 			ixgbe_emc_therm_limit[sensor_index],
3766 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3767 
3768 		if (sensor_location == 0)
3769 			continue;
3770 
3771 		data->sensor[i].location = sensor_location;
3772 		data->sensor[i].caution_thresh = therm_limit;
3773 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3774 	}
3775 out:
3776 	return status;
3777 }
3778 
3779