1 // SPDX-License-Identifier: GPL-2.0
2 /*******************************************************************************
3 
4   Intel 10 Gigabit PCI Express Linux driver
5   Copyright(c) 1999 - 2016 Intel Corporation.
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 
28 *******************************************************************************/
29 
30 #include <linux/pci.h>
31 #include <linux/delay.h>
32 #include <linux/sched.h>
33 #include <linux/netdevice.h>
34 
35 #include "ixgbe.h"
36 #include "ixgbe_common.h"
37 #include "ixgbe_phy.h"
38 
39 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
40 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
41 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
42 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
44 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
45 					u16 count);
46 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
47 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
49 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
50 
51 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
52 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
53 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
54 					     u16 words, u16 *data);
55 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
56 					     u16 words, u16 *data);
57 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
58 						 u16 offset);
59 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
60 
61 /* Base table for registers values that change by MAC */
62 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
63 	IXGBE_MVALS_INIT(8259X)
64 };
65 
66 /**
67  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
68  *  control
69  *  @hw: pointer to hardware structure
70  *
71  *  There are several phys that do not support autoneg flow control. This
72  *  function check the device id to see if the associated phy supports
73  *  autoneg flow control.
74  **/
75 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
76 {
77 	bool supported = false;
78 	ixgbe_link_speed speed;
79 	bool link_up;
80 
81 	switch (hw->phy.media_type) {
82 	case ixgbe_media_type_fiber:
83 		/* flow control autoneg black list */
84 		switch (hw->device_id) {
85 		case IXGBE_DEV_ID_X550EM_A_SFP:
86 		case IXGBE_DEV_ID_X550EM_A_SFP_N:
87 			supported = false;
88 			break;
89 		default:
90 			hw->mac.ops.check_link(hw, &speed, &link_up, false);
91 			/* if link is down, assume supported */
92 			if (link_up)
93 				supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
94 				true : false;
95 			else
96 				supported = true;
97 		}
98 
99 		break;
100 	case ixgbe_media_type_backplane:
101 		if (hw->device_id == IXGBE_DEV_ID_X550EM_X_XFI)
102 			supported = false;
103 		else
104 			supported = true;
105 		break;
106 	case ixgbe_media_type_copper:
107 		/* only some copper devices support flow control autoneg */
108 		switch (hw->device_id) {
109 		case IXGBE_DEV_ID_82599_T3_LOM:
110 		case IXGBE_DEV_ID_X540T:
111 		case IXGBE_DEV_ID_X540T1:
112 		case IXGBE_DEV_ID_X550T:
113 		case IXGBE_DEV_ID_X550T1:
114 		case IXGBE_DEV_ID_X550EM_X_10G_T:
115 		case IXGBE_DEV_ID_X550EM_A_10G_T:
116 		case IXGBE_DEV_ID_X550EM_A_1G_T:
117 		case IXGBE_DEV_ID_X550EM_A_1G_T_L:
118 			supported = true;
119 			break;
120 		default:
121 			break;
122 		}
123 	default:
124 		break;
125 	}
126 
127 	if (!supported)
128 		hw_dbg(hw, "Device %x does not support flow control autoneg\n",
129 		       hw->device_id);
130 
131 	return supported;
132 }
133 
134 /**
135  *  ixgbe_setup_fc_generic - Set up flow control
136  *  @hw: pointer to hardware structure
137  *
138  *  Called at init time to set up flow control.
139  **/
140 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
141 {
142 	s32 ret_val = 0;
143 	u32 reg = 0, reg_bp = 0;
144 	u16 reg_cu = 0;
145 	bool locked = false;
146 
147 	/*
148 	 * Validate the requested mode.  Strict IEEE mode does not allow
149 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
150 	 */
151 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
152 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
153 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
154 	}
155 
156 	/*
157 	 * 10gig parts do not have a word in the EEPROM to determine the
158 	 * default flow control setting, so we explicitly set it to full.
159 	 */
160 	if (hw->fc.requested_mode == ixgbe_fc_default)
161 		hw->fc.requested_mode = ixgbe_fc_full;
162 
163 	/*
164 	 * Set up the 1G and 10G flow control advertisement registers so the
165 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
166 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
167 	 */
168 	switch (hw->phy.media_type) {
169 	case ixgbe_media_type_backplane:
170 		/* some MAC's need RMW protection on AUTOC */
171 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
172 		if (ret_val)
173 			return ret_val;
174 
175 		/* fall through - only backplane uses autoc */
176 	case ixgbe_media_type_fiber:
177 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
178 
179 		break;
180 	case ixgbe_media_type_copper:
181 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
182 					MDIO_MMD_AN, &reg_cu);
183 		break;
184 	default:
185 		break;
186 	}
187 
188 	/*
189 	 * The possible values of fc.requested_mode are:
190 	 * 0: Flow control is completely disabled
191 	 * 1: Rx flow control is enabled (we can receive pause frames,
192 	 *    but not send pause frames).
193 	 * 2: Tx flow control is enabled (we can send pause frames but
194 	 *    we do not support receiving pause frames).
195 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
196 	 * other: Invalid.
197 	 */
198 	switch (hw->fc.requested_mode) {
199 	case ixgbe_fc_none:
200 		/* Flow control completely disabled by software override. */
201 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
202 		if (hw->phy.media_type == ixgbe_media_type_backplane)
203 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
204 				    IXGBE_AUTOC_ASM_PAUSE);
205 		else if (hw->phy.media_type == ixgbe_media_type_copper)
206 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
207 		break;
208 	case ixgbe_fc_tx_pause:
209 		/*
210 		 * Tx Flow control is enabled, and Rx Flow control is
211 		 * disabled by software override.
212 		 */
213 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
214 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
215 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
216 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
217 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
218 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
219 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
220 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
221 		}
222 		break;
223 	case ixgbe_fc_rx_pause:
224 		/*
225 		 * Rx Flow control is enabled and Tx Flow control is
226 		 * disabled by software override. Since there really
227 		 * isn't a way to advertise that we are capable of RX
228 		 * Pause ONLY, we will advertise that we support both
229 		 * symmetric and asymmetric Rx PAUSE, as such we fall
230 		 * through to the fc_full statement.  Later, we will
231 		 * disable the adapter's ability to send PAUSE frames.
232 		 */
233 	case ixgbe_fc_full:
234 		/* Flow control (both Rx and Tx) is enabled by SW override. */
235 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
236 		if (hw->phy.media_type == ixgbe_media_type_backplane)
237 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
238 				  IXGBE_AUTOC_ASM_PAUSE;
239 		else if (hw->phy.media_type == ixgbe_media_type_copper)
240 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
241 		break;
242 	default:
243 		hw_dbg(hw, "Flow control param set incorrectly\n");
244 		return IXGBE_ERR_CONFIG;
245 	}
246 
247 	if (hw->mac.type != ixgbe_mac_X540) {
248 		/*
249 		 * Enable auto-negotiation between the MAC & PHY;
250 		 * the MAC will advertise clause 37 flow control.
251 		 */
252 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
253 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
254 
255 		/* Disable AN timeout */
256 		if (hw->fc.strict_ieee)
257 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
258 
259 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
260 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
261 	}
262 
263 	/*
264 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
265 	 * and copper. There is no need to set the PCS1GCTL register.
266 	 *
267 	 */
268 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
269 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
270 		 * LESM is on, likewise reset_pipeline requries the lock as
271 		 * it also writes AUTOC.
272 		 */
273 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
274 		if (ret_val)
275 			return ret_val;
276 
277 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
278 		   ixgbe_device_supports_autoneg_fc(hw)) {
279 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
280 				      MDIO_MMD_AN, reg_cu);
281 	}
282 
283 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
284 	return ret_val;
285 }
286 
287 /**
288  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
289  *  @hw: pointer to hardware structure
290  *
291  *  Starts the hardware by filling the bus info structure and media type, clears
292  *  all on chip counters, initializes receive address registers, multicast
293  *  table, VLAN filter table, calls routine to set up link and flow control
294  *  settings, and leaves transmit and receive units disabled and uninitialized
295  **/
296 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
297 {
298 	s32 ret_val;
299 	u32 ctrl_ext;
300 	u16 device_caps;
301 
302 	/* Set the media type */
303 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
304 
305 	/* Identify the PHY */
306 	hw->phy.ops.identify(hw);
307 
308 	/* Clear the VLAN filter table */
309 	hw->mac.ops.clear_vfta(hw);
310 
311 	/* Clear statistics registers */
312 	hw->mac.ops.clear_hw_cntrs(hw);
313 
314 	/* Set No Snoop Disable */
315 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
316 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
317 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
318 	IXGBE_WRITE_FLUSH(hw);
319 
320 	/* Setup flow control if method for doing so */
321 	if (hw->mac.ops.setup_fc) {
322 		ret_val = hw->mac.ops.setup_fc(hw);
323 		if (ret_val)
324 			return ret_val;
325 	}
326 
327 	/* Cashe bit indicating need for crosstalk fix */
328 	switch (hw->mac.type) {
329 	case ixgbe_mac_82599EB:
330 	case ixgbe_mac_X550EM_x:
331 	case ixgbe_mac_x550em_a:
332 		hw->mac.ops.get_device_caps(hw, &device_caps);
333 		if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
334 			hw->need_crosstalk_fix = false;
335 		else
336 			hw->need_crosstalk_fix = true;
337 		break;
338 	default:
339 		hw->need_crosstalk_fix = false;
340 		break;
341 	}
342 
343 	/* Clear adapter stopped flag */
344 	hw->adapter_stopped = false;
345 
346 	return 0;
347 }
348 
349 /**
350  *  ixgbe_start_hw_gen2 - Init sequence for common device family
351  *  @hw: pointer to hw structure
352  *
353  * Performs the init sequence common to the second generation
354  * of 10 GbE devices.
355  * Devices in the second generation:
356  *     82599
357  *     X540
358  **/
359 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
360 {
361 	u32 i;
362 
363 	/* Clear the rate limiters */
364 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
365 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
366 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
367 	}
368 	IXGBE_WRITE_FLUSH(hw);
369 
370 	return 0;
371 }
372 
373 /**
374  *  ixgbe_init_hw_generic - Generic hardware initialization
375  *  @hw: pointer to hardware structure
376  *
377  *  Initialize the hardware by resetting the hardware, filling the bus info
378  *  structure and media type, clears all on chip counters, initializes receive
379  *  address registers, multicast table, VLAN filter table, calls routine to set
380  *  up link and flow control settings, and leaves transmit and receive units
381  *  disabled and uninitialized
382  **/
383 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
384 {
385 	s32 status;
386 
387 	/* Reset the hardware */
388 	status = hw->mac.ops.reset_hw(hw);
389 
390 	if (status == 0) {
391 		/* Start the HW */
392 		status = hw->mac.ops.start_hw(hw);
393 	}
394 
395 	/* Initialize the LED link active for LED blink support */
396 	if (hw->mac.ops.init_led_link_act)
397 		hw->mac.ops.init_led_link_act(hw);
398 
399 	return status;
400 }
401 
402 /**
403  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
404  *  @hw: pointer to hardware structure
405  *
406  *  Clears all hardware statistics counters by reading them from the hardware
407  *  Statistics counters are clear on read.
408  **/
409 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
410 {
411 	u16 i = 0;
412 
413 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
414 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
415 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
416 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
417 	for (i = 0; i < 8; i++)
418 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
419 
420 	IXGBE_READ_REG(hw, IXGBE_MLFC);
421 	IXGBE_READ_REG(hw, IXGBE_MRFC);
422 	IXGBE_READ_REG(hw, IXGBE_RLEC);
423 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
424 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
425 	if (hw->mac.type >= ixgbe_mac_82599EB) {
426 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
427 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
428 	} else {
429 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
430 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
431 	}
432 
433 	for (i = 0; i < 8; i++) {
434 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
435 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
436 		if (hw->mac.type >= ixgbe_mac_82599EB) {
437 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
438 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
439 		} else {
440 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
441 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
442 		}
443 	}
444 	if (hw->mac.type >= ixgbe_mac_82599EB)
445 		for (i = 0; i < 8; i++)
446 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
447 	IXGBE_READ_REG(hw, IXGBE_PRC64);
448 	IXGBE_READ_REG(hw, IXGBE_PRC127);
449 	IXGBE_READ_REG(hw, IXGBE_PRC255);
450 	IXGBE_READ_REG(hw, IXGBE_PRC511);
451 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
452 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
453 	IXGBE_READ_REG(hw, IXGBE_GPRC);
454 	IXGBE_READ_REG(hw, IXGBE_BPRC);
455 	IXGBE_READ_REG(hw, IXGBE_MPRC);
456 	IXGBE_READ_REG(hw, IXGBE_GPTC);
457 	IXGBE_READ_REG(hw, IXGBE_GORCL);
458 	IXGBE_READ_REG(hw, IXGBE_GORCH);
459 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
460 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
461 	if (hw->mac.type == ixgbe_mac_82598EB)
462 		for (i = 0; i < 8; i++)
463 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
464 	IXGBE_READ_REG(hw, IXGBE_RUC);
465 	IXGBE_READ_REG(hw, IXGBE_RFC);
466 	IXGBE_READ_REG(hw, IXGBE_ROC);
467 	IXGBE_READ_REG(hw, IXGBE_RJC);
468 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
469 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
470 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
471 	IXGBE_READ_REG(hw, IXGBE_TORL);
472 	IXGBE_READ_REG(hw, IXGBE_TORH);
473 	IXGBE_READ_REG(hw, IXGBE_TPR);
474 	IXGBE_READ_REG(hw, IXGBE_TPT);
475 	IXGBE_READ_REG(hw, IXGBE_PTC64);
476 	IXGBE_READ_REG(hw, IXGBE_PTC127);
477 	IXGBE_READ_REG(hw, IXGBE_PTC255);
478 	IXGBE_READ_REG(hw, IXGBE_PTC511);
479 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
480 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
481 	IXGBE_READ_REG(hw, IXGBE_MPTC);
482 	IXGBE_READ_REG(hw, IXGBE_BPTC);
483 	for (i = 0; i < 16; i++) {
484 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
485 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
486 		if (hw->mac.type >= ixgbe_mac_82599EB) {
487 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
488 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
489 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
490 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
491 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
492 		} else {
493 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
494 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
495 		}
496 	}
497 
498 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
499 		if (hw->phy.id == 0)
500 			hw->phy.ops.identify(hw);
501 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
502 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
503 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
504 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
505 	}
506 
507 	return 0;
508 }
509 
510 /**
511  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
512  *  @hw: pointer to hardware structure
513  *  @pba_num: stores the part number string from the EEPROM
514  *  @pba_num_size: part number string buffer length
515  *
516  *  Reads the part number string from the EEPROM.
517  **/
518 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
519 				  u32 pba_num_size)
520 {
521 	s32 ret_val;
522 	u16 data;
523 	u16 pba_ptr;
524 	u16 offset;
525 	u16 length;
526 
527 	if (pba_num == NULL) {
528 		hw_dbg(hw, "PBA string buffer was null\n");
529 		return IXGBE_ERR_INVALID_ARGUMENT;
530 	}
531 
532 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
533 	if (ret_val) {
534 		hw_dbg(hw, "NVM Read Error\n");
535 		return ret_val;
536 	}
537 
538 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
539 	if (ret_val) {
540 		hw_dbg(hw, "NVM Read Error\n");
541 		return ret_val;
542 	}
543 
544 	/*
545 	 * if data is not ptr guard the PBA must be in legacy format which
546 	 * means pba_ptr is actually our second data word for the PBA number
547 	 * and we can decode it into an ascii string
548 	 */
549 	if (data != IXGBE_PBANUM_PTR_GUARD) {
550 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
551 
552 		/* we will need 11 characters to store the PBA */
553 		if (pba_num_size < 11) {
554 			hw_dbg(hw, "PBA string buffer too small\n");
555 			return IXGBE_ERR_NO_SPACE;
556 		}
557 
558 		/* extract hex string from data and pba_ptr */
559 		pba_num[0] = (data >> 12) & 0xF;
560 		pba_num[1] = (data >> 8) & 0xF;
561 		pba_num[2] = (data >> 4) & 0xF;
562 		pba_num[3] = data & 0xF;
563 		pba_num[4] = (pba_ptr >> 12) & 0xF;
564 		pba_num[5] = (pba_ptr >> 8) & 0xF;
565 		pba_num[6] = '-';
566 		pba_num[7] = 0;
567 		pba_num[8] = (pba_ptr >> 4) & 0xF;
568 		pba_num[9] = pba_ptr & 0xF;
569 
570 		/* put a null character on the end of our string */
571 		pba_num[10] = '\0';
572 
573 		/* switch all the data but the '-' to hex char */
574 		for (offset = 0; offset < 10; offset++) {
575 			if (pba_num[offset] < 0xA)
576 				pba_num[offset] += '0';
577 			else if (pba_num[offset] < 0x10)
578 				pba_num[offset] += 'A' - 0xA;
579 		}
580 
581 		return 0;
582 	}
583 
584 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
585 	if (ret_val) {
586 		hw_dbg(hw, "NVM Read Error\n");
587 		return ret_val;
588 	}
589 
590 	if (length == 0xFFFF || length == 0) {
591 		hw_dbg(hw, "NVM PBA number section invalid length\n");
592 		return IXGBE_ERR_PBA_SECTION;
593 	}
594 
595 	/* check if pba_num buffer is big enough */
596 	if (pba_num_size  < (((u32)length * 2) - 1)) {
597 		hw_dbg(hw, "PBA string buffer too small\n");
598 		return IXGBE_ERR_NO_SPACE;
599 	}
600 
601 	/* trim pba length from start of string */
602 	pba_ptr++;
603 	length--;
604 
605 	for (offset = 0; offset < length; offset++) {
606 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
607 		if (ret_val) {
608 			hw_dbg(hw, "NVM Read Error\n");
609 			return ret_val;
610 		}
611 		pba_num[offset * 2] = (u8)(data >> 8);
612 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
613 	}
614 	pba_num[offset * 2] = '\0';
615 
616 	return 0;
617 }
618 
619 /**
620  *  ixgbe_get_mac_addr_generic - Generic get MAC address
621  *  @hw: pointer to hardware structure
622  *  @mac_addr: Adapter MAC address
623  *
624  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
625  *  A reset of the adapter must be performed prior to calling this function
626  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
627  **/
628 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
629 {
630 	u32 rar_high;
631 	u32 rar_low;
632 	u16 i;
633 
634 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
635 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
636 
637 	for (i = 0; i < 4; i++)
638 		mac_addr[i] = (u8)(rar_low >> (i*8));
639 
640 	for (i = 0; i < 2; i++)
641 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
642 
643 	return 0;
644 }
645 
646 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
647 {
648 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
649 	case IXGBE_PCI_LINK_WIDTH_1:
650 		return ixgbe_bus_width_pcie_x1;
651 	case IXGBE_PCI_LINK_WIDTH_2:
652 		return ixgbe_bus_width_pcie_x2;
653 	case IXGBE_PCI_LINK_WIDTH_4:
654 		return ixgbe_bus_width_pcie_x4;
655 	case IXGBE_PCI_LINK_WIDTH_8:
656 		return ixgbe_bus_width_pcie_x8;
657 	default:
658 		return ixgbe_bus_width_unknown;
659 	}
660 }
661 
662 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
663 {
664 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
665 	case IXGBE_PCI_LINK_SPEED_2500:
666 		return ixgbe_bus_speed_2500;
667 	case IXGBE_PCI_LINK_SPEED_5000:
668 		return ixgbe_bus_speed_5000;
669 	case IXGBE_PCI_LINK_SPEED_8000:
670 		return ixgbe_bus_speed_8000;
671 	default:
672 		return ixgbe_bus_speed_unknown;
673 	}
674 }
675 
676 /**
677  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
678  *  @hw: pointer to hardware structure
679  *
680  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
681  **/
682 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
683 {
684 	u16 link_status;
685 
686 	hw->bus.type = ixgbe_bus_type_pci_express;
687 
688 	/* Get the negotiated link width and speed from PCI config space */
689 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
690 
691 	hw->bus.width = ixgbe_convert_bus_width(link_status);
692 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
693 
694 	hw->mac.ops.set_lan_id(hw);
695 
696 	return 0;
697 }
698 
699 /**
700  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
701  *  @hw: pointer to the HW structure
702  *
703  *  Determines the LAN function id by reading memory-mapped registers
704  *  and swaps the port value if requested.
705  **/
706 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
707 {
708 	struct ixgbe_bus_info *bus = &hw->bus;
709 	u16 ee_ctrl_4;
710 	u32 reg;
711 
712 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
713 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
714 	bus->lan_id = bus->func;
715 
716 	/* check for a port swap */
717 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
718 	if (reg & IXGBE_FACTPS_LFS)
719 		bus->func ^= 0x1;
720 
721 	/* Get MAC instance from EEPROM for configuring CS4227 */
722 	if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
723 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
724 		bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
725 				   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
726 	}
727 }
728 
729 /**
730  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
731  *  @hw: pointer to hardware structure
732  *
733  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
734  *  disables transmit and receive units. The adapter_stopped flag is used by
735  *  the shared code and drivers to determine if the adapter is in a stopped
736  *  state and should not touch the hardware.
737  **/
738 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
739 {
740 	u32 reg_val;
741 	u16 i;
742 
743 	/*
744 	 * Set the adapter_stopped flag so other driver functions stop touching
745 	 * the hardware
746 	 */
747 	hw->adapter_stopped = true;
748 
749 	/* Disable the receive unit */
750 	hw->mac.ops.disable_rx(hw);
751 
752 	/* Clear interrupt mask to stop interrupts from being generated */
753 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
754 
755 	/* Clear any pending interrupts, flush previous writes */
756 	IXGBE_READ_REG(hw, IXGBE_EICR);
757 
758 	/* Disable the transmit unit.  Each queue must be disabled. */
759 	for (i = 0; i < hw->mac.max_tx_queues; i++)
760 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
761 
762 	/* Disable the receive unit by stopping each queue */
763 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
764 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
765 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
766 		reg_val |= IXGBE_RXDCTL_SWFLSH;
767 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
768 	}
769 
770 	/* flush all queues disables */
771 	IXGBE_WRITE_FLUSH(hw);
772 	usleep_range(1000, 2000);
773 
774 	/*
775 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
776 	 * access and verify no pending requests
777 	 */
778 	return ixgbe_disable_pcie_master(hw);
779 }
780 
781 /**
782  *  ixgbe_init_led_link_act_generic - Store the LED index link/activity.
783  *  @hw: pointer to hardware structure
784  *
785  *  Store the index for the link active LED. This will be used to support
786  *  blinking the LED.
787  **/
788 s32 ixgbe_init_led_link_act_generic(struct ixgbe_hw *hw)
789 {
790 	struct ixgbe_mac_info *mac = &hw->mac;
791 	u32 led_reg, led_mode;
792 	u16 i;
793 
794 	led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
795 
796 	/* Get LED link active from the LEDCTL register */
797 	for (i = 0; i < 4; i++) {
798 		led_mode = led_reg >> IXGBE_LED_MODE_SHIFT(i);
799 
800 		if ((led_mode & IXGBE_LED_MODE_MASK_BASE) ==
801 		    IXGBE_LED_LINK_ACTIVE) {
802 			mac->led_link_act = i;
803 			return 0;
804 		}
805 	}
806 
807 	/* If LEDCTL register does not have the LED link active set, then use
808 	 * known MAC defaults.
809 	 */
810 	switch (hw->mac.type) {
811 	case ixgbe_mac_x550em_a:
812 		mac->led_link_act = 0;
813 		break;
814 	case ixgbe_mac_X550EM_x:
815 		mac->led_link_act = 1;
816 		break;
817 	default:
818 		mac->led_link_act = 2;
819 	}
820 
821 	return 0;
822 }
823 
824 /**
825  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
826  *  @hw: pointer to hardware structure
827  *  @index: led number to turn on
828  **/
829 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
830 {
831 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
832 
833 	if (index > 3)
834 		return IXGBE_ERR_PARAM;
835 
836 	/* To turn on the LED, set mode to ON. */
837 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
838 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
839 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
840 	IXGBE_WRITE_FLUSH(hw);
841 
842 	return 0;
843 }
844 
845 /**
846  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
847  *  @hw: pointer to hardware structure
848  *  @index: led number to turn off
849  **/
850 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
851 {
852 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
853 
854 	if (index > 3)
855 		return IXGBE_ERR_PARAM;
856 
857 	/* To turn off the LED, set mode to OFF. */
858 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
859 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
860 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
861 	IXGBE_WRITE_FLUSH(hw);
862 
863 	return 0;
864 }
865 
866 /**
867  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
868  *  @hw: pointer to hardware structure
869  *
870  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
871  *  ixgbe_hw struct in order to set up EEPROM access.
872  **/
873 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
874 {
875 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
876 	u32 eec;
877 	u16 eeprom_size;
878 
879 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
880 		eeprom->type = ixgbe_eeprom_none;
881 		/* Set default semaphore delay to 10ms which is a well
882 		 * tested value */
883 		eeprom->semaphore_delay = 10;
884 		/* Clear EEPROM page size, it will be initialized as needed */
885 		eeprom->word_page_size = 0;
886 
887 		/*
888 		 * Check for EEPROM present first.
889 		 * If not present leave as none
890 		 */
891 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
892 		if (eec & IXGBE_EEC_PRES) {
893 			eeprom->type = ixgbe_eeprom_spi;
894 
895 			/*
896 			 * SPI EEPROM is assumed here.  This code would need to
897 			 * change if a future EEPROM is not SPI.
898 			 */
899 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
900 					    IXGBE_EEC_SIZE_SHIFT);
901 			eeprom->word_size = BIT(eeprom_size +
902 						 IXGBE_EEPROM_WORD_SIZE_SHIFT);
903 		}
904 
905 		if (eec & IXGBE_EEC_ADDR_SIZE)
906 			eeprom->address_bits = 16;
907 		else
908 			eeprom->address_bits = 8;
909 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
910 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
911 	}
912 
913 	return 0;
914 }
915 
916 /**
917  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
918  *  @hw: pointer to hardware structure
919  *  @offset: offset within the EEPROM to write
920  *  @words: number of words
921  *  @data: 16 bit word(s) to write to EEPROM
922  *
923  *  Reads 16 bit word(s) from EEPROM through bit-bang method
924  **/
925 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
926 					       u16 words, u16 *data)
927 {
928 	s32 status;
929 	u16 i, count;
930 
931 	hw->eeprom.ops.init_params(hw);
932 
933 	if (words == 0)
934 		return IXGBE_ERR_INVALID_ARGUMENT;
935 
936 	if (offset + words > hw->eeprom.word_size)
937 		return IXGBE_ERR_EEPROM;
938 
939 	/*
940 	 * The EEPROM page size cannot be queried from the chip. We do lazy
941 	 * initialization. It is worth to do that when we write large buffer.
942 	 */
943 	if ((hw->eeprom.word_page_size == 0) &&
944 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
945 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
946 
947 	/*
948 	 * We cannot hold synchronization semaphores for too long
949 	 * to avoid other entity starvation. However it is more efficient
950 	 * to read in bursts than synchronizing access for each word.
951 	 */
952 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
953 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
954 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
955 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
956 							    count, &data[i]);
957 
958 		if (status != 0)
959 			break;
960 	}
961 
962 	return status;
963 }
964 
965 /**
966  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
967  *  @hw: pointer to hardware structure
968  *  @offset: offset within the EEPROM to be written to
969  *  @words: number of word(s)
970  *  @data: 16 bit word(s) to be written to the EEPROM
971  *
972  *  If ixgbe_eeprom_update_checksum is not called after this function, the
973  *  EEPROM will most likely contain an invalid checksum.
974  **/
975 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
976 					      u16 words, u16 *data)
977 {
978 	s32 status;
979 	u16 word;
980 	u16 page_size;
981 	u16 i;
982 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
983 
984 	/* Prepare the EEPROM for writing  */
985 	status = ixgbe_acquire_eeprom(hw);
986 	if (status)
987 		return status;
988 
989 	if (ixgbe_ready_eeprom(hw) != 0) {
990 		ixgbe_release_eeprom(hw);
991 		return IXGBE_ERR_EEPROM;
992 	}
993 
994 	for (i = 0; i < words; i++) {
995 		ixgbe_standby_eeprom(hw);
996 
997 		/* Send the WRITE ENABLE command (8 bit opcode) */
998 		ixgbe_shift_out_eeprom_bits(hw,
999 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
1000 					    IXGBE_EEPROM_OPCODE_BITS);
1001 
1002 		ixgbe_standby_eeprom(hw);
1003 
1004 		/* Some SPI eeproms use the 8th address bit embedded
1005 		 * in the opcode
1006 		 */
1007 		if ((hw->eeprom.address_bits == 8) &&
1008 		    ((offset + i) >= 128))
1009 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1010 
1011 		/* Send the Write command (8-bit opcode + addr) */
1012 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
1013 					    IXGBE_EEPROM_OPCODE_BITS);
1014 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1015 					    hw->eeprom.address_bits);
1016 
1017 		page_size = hw->eeprom.word_page_size;
1018 
1019 		/* Send the data in burst via SPI */
1020 		do {
1021 			word = data[i];
1022 			word = (word >> 8) | (word << 8);
1023 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
1024 
1025 			if (page_size == 0)
1026 				break;
1027 
1028 			/* do not wrap around page */
1029 			if (((offset + i) & (page_size - 1)) ==
1030 			    (page_size - 1))
1031 				break;
1032 		} while (++i < words);
1033 
1034 		ixgbe_standby_eeprom(hw);
1035 		usleep_range(10000, 20000);
1036 	}
1037 	/* Done with writing - release the EEPROM */
1038 	ixgbe_release_eeprom(hw);
1039 
1040 	return 0;
1041 }
1042 
1043 /**
1044  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
1045  *  @hw: pointer to hardware structure
1046  *  @offset: offset within the EEPROM to be written to
1047  *  @data: 16 bit word to be written to the EEPROM
1048  *
1049  *  If ixgbe_eeprom_update_checksum is not called after this function, the
1050  *  EEPROM will most likely contain an invalid checksum.
1051  **/
1052 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1053 {
1054 	hw->eeprom.ops.init_params(hw);
1055 
1056 	if (offset >= hw->eeprom.word_size)
1057 		return IXGBE_ERR_EEPROM;
1058 
1059 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1060 }
1061 
1062 /**
1063  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1064  *  @hw: pointer to hardware structure
1065  *  @offset: offset within the EEPROM to be read
1066  *  @words: number of word(s)
1067  *  @data: read 16 bit words(s) from EEPROM
1068  *
1069  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1070  **/
1071 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1072 					      u16 words, u16 *data)
1073 {
1074 	s32 status;
1075 	u16 i, count;
1076 
1077 	hw->eeprom.ops.init_params(hw);
1078 
1079 	if (words == 0)
1080 		return IXGBE_ERR_INVALID_ARGUMENT;
1081 
1082 	if (offset + words > hw->eeprom.word_size)
1083 		return IXGBE_ERR_EEPROM;
1084 
1085 	/*
1086 	 * We cannot hold synchronization semaphores for too long
1087 	 * to avoid other entity starvation. However it is more efficient
1088 	 * to read in bursts than synchronizing access for each word.
1089 	 */
1090 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1091 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1092 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1093 
1094 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1095 							   count, &data[i]);
1096 
1097 		if (status)
1098 			return status;
1099 	}
1100 
1101 	return 0;
1102 }
1103 
1104 /**
1105  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1106  *  @hw: pointer to hardware structure
1107  *  @offset: offset within the EEPROM to be read
1108  *  @words: number of word(s)
1109  *  @data: read 16 bit word(s) from EEPROM
1110  *
1111  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1112  **/
1113 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1114 					     u16 words, u16 *data)
1115 {
1116 	s32 status;
1117 	u16 word_in;
1118 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1119 	u16 i;
1120 
1121 	/* Prepare the EEPROM for reading  */
1122 	status = ixgbe_acquire_eeprom(hw);
1123 	if (status)
1124 		return status;
1125 
1126 	if (ixgbe_ready_eeprom(hw) != 0) {
1127 		ixgbe_release_eeprom(hw);
1128 		return IXGBE_ERR_EEPROM;
1129 	}
1130 
1131 	for (i = 0; i < words; i++) {
1132 		ixgbe_standby_eeprom(hw);
1133 		/* Some SPI eeproms use the 8th address bit embedded
1134 		 * in the opcode
1135 		 */
1136 		if ((hw->eeprom.address_bits == 8) &&
1137 		    ((offset + i) >= 128))
1138 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1139 
1140 		/* Send the READ command (opcode + addr) */
1141 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1142 					    IXGBE_EEPROM_OPCODE_BITS);
1143 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1144 					    hw->eeprom.address_bits);
1145 
1146 		/* Read the data. */
1147 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1148 		data[i] = (word_in >> 8) | (word_in << 8);
1149 	}
1150 
1151 	/* End this read operation */
1152 	ixgbe_release_eeprom(hw);
1153 
1154 	return 0;
1155 }
1156 
1157 /**
1158  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1159  *  @hw: pointer to hardware structure
1160  *  @offset: offset within the EEPROM to be read
1161  *  @data: read 16 bit value from EEPROM
1162  *
1163  *  Reads 16 bit value from EEPROM through bit-bang method
1164  **/
1165 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1166 				       u16 *data)
1167 {
1168 	hw->eeprom.ops.init_params(hw);
1169 
1170 	if (offset >= hw->eeprom.word_size)
1171 		return IXGBE_ERR_EEPROM;
1172 
1173 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1174 }
1175 
1176 /**
1177  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1178  *  @hw: pointer to hardware structure
1179  *  @offset: offset of word in the EEPROM to read
1180  *  @words: number of word(s)
1181  *  @data: 16 bit word(s) from the EEPROM
1182  *
1183  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1184  **/
1185 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1186 				   u16 words, u16 *data)
1187 {
1188 	u32 eerd;
1189 	s32 status;
1190 	u32 i;
1191 
1192 	hw->eeprom.ops.init_params(hw);
1193 
1194 	if (words == 0)
1195 		return IXGBE_ERR_INVALID_ARGUMENT;
1196 
1197 	if (offset >= hw->eeprom.word_size)
1198 		return IXGBE_ERR_EEPROM;
1199 
1200 	for (i = 0; i < words; i++) {
1201 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1202 		       IXGBE_EEPROM_RW_REG_START;
1203 
1204 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1205 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1206 
1207 		if (status == 0) {
1208 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1209 				   IXGBE_EEPROM_RW_REG_DATA);
1210 		} else {
1211 			hw_dbg(hw, "Eeprom read timed out\n");
1212 			return status;
1213 		}
1214 	}
1215 
1216 	return 0;
1217 }
1218 
1219 /**
1220  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1221  *  @hw: pointer to hardware structure
1222  *  @offset: offset within the EEPROM to be used as a scratch pad
1223  *
1224  *  Discover EEPROM page size by writing marching data at given offset.
1225  *  This function is called only when we are writing a new large buffer
1226  *  at given offset so the data would be overwritten anyway.
1227  **/
1228 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1229 						 u16 offset)
1230 {
1231 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1232 	s32 status;
1233 	u16 i;
1234 
1235 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1236 		data[i] = i;
1237 
1238 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1239 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1240 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1241 	hw->eeprom.word_page_size = 0;
1242 	if (status)
1243 		return status;
1244 
1245 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1246 	if (status)
1247 		return status;
1248 
1249 	/*
1250 	 * When writing in burst more than the actual page size
1251 	 * EEPROM address wraps around current page.
1252 	 */
1253 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1254 
1255 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1256 	       hw->eeprom.word_page_size);
1257 	return 0;
1258 }
1259 
1260 /**
1261  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1262  *  @hw: pointer to hardware structure
1263  *  @offset: offset of  word in the EEPROM to read
1264  *  @data: word read from the EEPROM
1265  *
1266  *  Reads a 16 bit word from the EEPROM using the EERD register.
1267  **/
1268 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1269 {
1270 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1271 }
1272 
1273 /**
1274  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1275  *  @hw: pointer to hardware structure
1276  *  @offset: offset of  word in the EEPROM to write
1277  *  @words: number of words
1278  *  @data: word(s) write to the EEPROM
1279  *
1280  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1281  **/
1282 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1283 				    u16 words, u16 *data)
1284 {
1285 	u32 eewr;
1286 	s32 status;
1287 	u16 i;
1288 
1289 	hw->eeprom.ops.init_params(hw);
1290 
1291 	if (words == 0)
1292 		return IXGBE_ERR_INVALID_ARGUMENT;
1293 
1294 	if (offset >= hw->eeprom.word_size)
1295 		return IXGBE_ERR_EEPROM;
1296 
1297 	for (i = 0; i < words; i++) {
1298 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1299 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1300 		       IXGBE_EEPROM_RW_REG_START;
1301 
1302 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1303 		if (status) {
1304 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1305 			return status;
1306 		}
1307 
1308 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1309 
1310 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1311 		if (status) {
1312 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1313 			return status;
1314 		}
1315 	}
1316 
1317 	return 0;
1318 }
1319 
1320 /**
1321  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1322  *  @hw: pointer to hardware structure
1323  *  @offset: offset of  word in the EEPROM to write
1324  *  @data: word write to the EEPROM
1325  *
1326  *  Write a 16 bit word to the EEPROM using the EEWR register.
1327  **/
1328 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1329 {
1330 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1331 }
1332 
1333 /**
1334  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1335  *  @hw: pointer to hardware structure
1336  *  @ee_reg: EEPROM flag for polling
1337  *
1338  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1339  *  read or write is done respectively.
1340  **/
1341 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1342 {
1343 	u32 i;
1344 	u32 reg;
1345 
1346 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1347 		if (ee_reg == IXGBE_NVM_POLL_READ)
1348 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1349 		else
1350 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1351 
1352 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1353 			return 0;
1354 		}
1355 		udelay(5);
1356 	}
1357 	return IXGBE_ERR_EEPROM;
1358 }
1359 
1360 /**
1361  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1362  *  @hw: pointer to hardware structure
1363  *
1364  *  Prepares EEPROM for access using bit-bang method. This function should
1365  *  be called before issuing a command to the EEPROM.
1366  **/
1367 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1368 {
1369 	u32 eec;
1370 	u32 i;
1371 
1372 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1373 		return IXGBE_ERR_SWFW_SYNC;
1374 
1375 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1376 
1377 	/* Request EEPROM Access */
1378 	eec |= IXGBE_EEC_REQ;
1379 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1380 
1381 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1382 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1383 		if (eec & IXGBE_EEC_GNT)
1384 			break;
1385 		udelay(5);
1386 	}
1387 
1388 	/* Release if grant not acquired */
1389 	if (!(eec & IXGBE_EEC_GNT)) {
1390 		eec &= ~IXGBE_EEC_REQ;
1391 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1392 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1393 
1394 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1395 		return IXGBE_ERR_EEPROM;
1396 	}
1397 
1398 	/* Setup EEPROM for Read/Write */
1399 	/* Clear CS and SK */
1400 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1401 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1402 	IXGBE_WRITE_FLUSH(hw);
1403 	udelay(1);
1404 	return 0;
1405 }
1406 
1407 /**
1408  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1409  *  @hw: pointer to hardware structure
1410  *
1411  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1412  **/
1413 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1414 {
1415 	u32 timeout = 2000;
1416 	u32 i;
1417 	u32 swsm;
1418 
1419 	/* Get SMBI software semaphore between device drivers first */
1420 	for (i = 0; i < timeout; i++) {
1421 		/*
1422 		 * If the SMBI bit is 0 when we read it, then the bit will be
1423 		 * set and we have the semaphore
1424 		 */
1425 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1426 		if (!(swsm & IXGBE_SWSM_SMBI))
1427 			break;
1428 		usleep_range(50, 100);
1429 	}
1430 
1431 	if (i == timeout) {
1432 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1433 		/* this release is particularly important because our attempts
1434 		 * above to get the semaphore may have succeeded, and if there
1435 		 * was a timeout, we should unconditionally clear the semaphore
1436 		 * bits to free the driver to make progress
1437 		 */
1438 		ixgbe_release_eeprom_semaphore(hw);
1439 
1440 		usleep_range(50, 100);
1441 		/* one last try
1442 		 * If the SMBI bit is 0 when we read it, then the bit will be
1443 		 * set and we have the semaphore
1444 		 */
1445 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1446 		if (swsm & IXGBE_SWSM_SMBI) {
1447 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1448 			return IXGBE_ERR_EEPROM;
1449 		}
1450 	}
1451 
1452 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1453 	for (i = 0; i < timeout; i++) {
1454 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1455 
1456 		/* Set the SW EEPROM semaphore bit to request access */
1457 		swsm |= IXGBE_SWSM_SWESMBI;
1458 		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1459 
1460 		/* If we set the bit successfully then we got the
1461 		 * semaphore.
1462 		 */
1463 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1464 		if (swsm & IXGBE_SWSM_SWESMBI)
1465 			break;
1466 
1467 		usleep_range(50, 100);
1468 	}
1469 
1470 	/* Release semaphores and return error if SW EEPROM semaphore
1471 	 * was not granted because we don't have access to the EEPROM
1472 	 */
1473 	if (i >= timeout) {
1474 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1475 		ixgbe_release_eeprom_semaphore(hw);
1476 		return IXGBE_ERR_EEPROM;
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 /**
1483  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1484  *  @hw: pointer to hardware structure
1485  *
1486  *  This function clears hardware semaphore bits.
1487  **/
1488 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1489 {
1490 	u32 swsm;
1491 
1492 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1493 
1494 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1495 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1496 	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1497 	IXGBE_WRITE_FLUSH(hw);
1498 }
1499 
1500 /**
1501  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1502  *  @hw: pointer to hardware structure
1503  **/
1504 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1505 {
1506 	u16 i;
1507 	u8 spi_stat_reg;
1508 
1509 	/*
1510 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1511 	 * EEPROM will signal that the command has been completed by clearing
1512 	 * bit 0 of the internal status register.  If it's not cleared within
1513 	 * 5 milliseconds, then error out.
1514 	 */
1515 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1516 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1517 					    IXGBE_EEPROM_OPCODE_BITS);
1518 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1519 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1520 			break;
1521 
1522 		udelay(5);
1523 		ixgbe_standby_eeprom(hw);
1524 	}
1525 
1526 	/*
1527 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1528 	 * devices (and only 0-5mSec on 5V devices)
1529 	 */
1530 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1531 		hw_dbg(hw, "SPI EEPROM Status error\n");
1532 		return IXGBE_ERR_EEPROM;
1533 	}
1534 
1535 	return 0;
1536 }
1537 
1538 /**
1539  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1540  *  @hw: pointer to hardware structure
1541  **/
1542 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1543 {
1544 	u32 eec;
1545 
1546 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1547 
1548 	/* Toggle CS to flush commands */
1549 	eec |= IXGBE_EEC_CS;
1550 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1551 	IXGBE_WRITE_FLUSH(hw);
1552 	udelay(1);
1553 	eec &= ~IXGBE_EEC_CS;
1554 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1555 	IXGBE_WRITE_FLUSH(hw);
1556 	udelay(1);
1557 }
1558 
1559 /**
1560  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1561  *  @hw: pointer to hardware structure
1562  *  @data: data to send to the EEPROM
1563  *  @count: number of bits to shift out
1564  **/
1565 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1566 					u16 count)
1567 {
1568 	u32 eec;
1569 	u32 mask;
1570 	u32 i;
1571 
1572 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1573 
1574 	/*
1575 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1576 	 * one bit at a time.  Determine the starting bit based on count
1577 	 */
1578 	mask = BIT(count - 1);
1579 
1580 	for (i = 0; i < count; i++) {
1581 		/*
1582 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1583 		 * "1", and then raising and then lowering the clock (the SK
1584 		 * bit controls the clock input to the EEPROM).  A "0" is
1585 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1586 		 * raising and then lowering the clock.
1587 		 */
1588 		if (data & mask)
1589 			eec |= IXGBE_EEC_DI;
1590 		else
1591 			eec &= ~IXGBE_EEC_DI;
1592 
1593 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1594 		IXGBE_WRITE_FLUSH(hw);
1595 
1596 		udelay(1);
1597 
1598 		ixgbe_raise_eeprom_clk(hw, &eec);
1599 		ixgbe_lower_eeprom_clk(hw, &eec);
1600 
1601 		/*
1602 		 * Shift mask to signify next bit of data to shift in to the
1603 		 * EEPROM
1604 		 */
1605 		mask = mask >> 1;
1606 	}
1607 
1608 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1609 	eec &= ~IXGBE_EEC_DI;
1610 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1611 	IXGBE_WRITE_FLUSH(hw);
1612 }
1613 
1614 /**
1615  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1616  *  @hw: pointer to hardware structure
1617  *  @count: number of bits to shift
1618  **/
1619 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1620 {
1621 	u32 eec;
1622 	u32 i;
1623 	u16 data = 0;
1624 
1625 	/*
1626 	 * In order to read a register from the EEPROM, we need to shift
1627 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1628 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1629 	 * the value of the "DO" bit.  During this "shifting in" process the
1630 	 * "DI" bit should always be clear.
1631 	 */
1632 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1633 
1634 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1635 
1636 	for (i = 0; i < count; i++) {
1637 		data = data << 1;
1638 		ixgbe_raise_eeprom_clk(hw, &eec);
1639 
1640 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1641 
1642 		eec &= ~(IXGBE_EEC_DI);
1643 		if (eec & IXGBE_EEC_DO)
1644 			data |= 1;
1645 
1646 		ixgbe_lower_eeprom_clk(hw, &eec);
1647 	}
1648 
1649 	return data;
1650 }
1651 
1652 /**
1653  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1654  *  @hw: pointer to hardware structure
1655  *  @eec: EEC register's current value
1656  **/
1657 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1658 {
1659 	/*
1660 	 * Raise the clock input to the EEPROM
1661 	 * (setting the SK bit), then delay
1662 	 */
1663 	*eec = *eec | IXGBE_EEC_SK;
1664 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1665 	IXGBE_WRITE_FLUSH(hw);
1666 	udelay(1);
1667 }
1668 
1669 /**
1670  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1671  *  @hw: pointer to hardware structure
1672  *  @eec: EEC's current value
1673  **/
1674 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1675 {
1676 	/*
1677 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1678 	 * delay
1679 	 */
1680 	*eec = *eec & ~IXGBE_EEC_SK;
1681 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1682 	IXGBE_WRITE_FLUSH(hw);
1683 	udelay(1);
1684 }
1685 
1686 /**
1687  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1688  *  @hw: pointer to hardware structure
1689  **/
1690 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1691 {
1692 	u32 eec;
1693 
1694 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1695 
1696 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1697 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1698 
1699 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1700 	IXGBE_WRITE_FLUSH(hw);
1701 
1702 	udelay(1);
1703 
1704 	/* Stop requesting EEPROM access */
1705 	eec &= ~IXGBE_EEC_REQ;
1706 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1707 
1708 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1709 
1710 	/*
1711 	 * Delay before attempt to obtain semaphore again to allow FW
1712 	 * access. semaphore_delay is in ms we need us for usleep_range
1713 	 */
1714 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1715 		     hw->eeprom.semaphore_delay * 2000);
1716 }
1717 
1718 /**
1719  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1720  *  @hw: pointer to hardware structure
1721  **/
1722 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1723 {
1724 	u16 i;
1725 	u16 j;
1726 	u16 checksum = 0;
1727 	u16 length = 0;
1728 	u16 pointer = 0;
1729 	u16 word = 0;
1730 
1731 	/* Include 0x0-0x3F in the checksum */
1732 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1733 		if (hw->eeprom.ops.read(hw, i, &word)) {
1734 			hw_dbg(hw, "EEPROM read failed\n");
1735 			break;
1736 		}
1737 		checksum += word;
1738 	}
1739 
1740 	/* Include all data from pointers except for the fw pointer */
1741 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1742 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1743 			hw_dbg(hw, "EEPROM read failed\n");
1744 			return IXGBE_ERR_EEPROM;
1745 		}
1746 
1747 		/* If the pointer seems invalid */
1748 		if (pointer == 0xFFFF || pointer == 0)
1749 			continue;
1750 
1751 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1752 			hw_dbg(hw, "EEPROM read failed\n");
1753 			return IXGBE_ERR_EEPROM;
1754 		}
1755 
1756 		if (length == 0xFFFF || length == 0)
1757 			continue;
1758 
1759 		for (j = pointer + 1; j <= pointer + length; j++) {
1760 			if (hw->eeprom.ops.read(hw, j, &word)) {
1761 				hw_dbg(hw, "EEPROM read failed\n");
1762 				return IXGBE_ERR_EEPROM;
1763 			}
1764 			checksum += word;
1765 		}
1766 	}
1767 
1768 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1769 
1770 	return (s32)checksum;
1771 }
1772 
1773 /**
1774  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1775  *  @hw: pointer to hardware structure
1776  *  @checksum_val: calculated checksum
1777  *
1778  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1779  *  caller does not need checksum_val, the value can be NULL.
1780  **/
1781 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1782 					   u16 *checksum_val)
1783 {
1784 	s32 status;
1785 	u16 checksum;
1786 	u16 read_checksum = 0;
1787 
1788 	/*
1789 	 * Read the first word from the EEPROM. If this times out or fails, do
1790 	 * not continue or we could be in for a very long wait while every
1791 	 * EEPROM read fails
1792 	 */
1793 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1794 	if (status) {
1795 		hw_dbg(hw, "EEPROM read failed\n");
1796 		return status;
1797 	}
1798 
1799 	status = hw->eeprom.ops.calc_checksum(hw);
1800 	if (status < 0)
1801 		return status;
1802 
1803 	checksum = (u16)(status & 0xffff);
1804 
1805 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1806 	if (status) {
1807 		hw_dbg(hw, "EEPROM read failed\n");
1808 		return status;
1809 	}
1810 
1811 	/* Verify read checksum from EEPROM is the same as
1812 	 * calculated checksum
1813 	 */
1814 	if (read_checksum != checksum)
1815 		status = IXGBE_ERR_EEPROM_CHECKSUM;
1816 
1817 	/* If the user cares, return the calculated checksum */
1818 	if (checksum_val)
1819 		*checksum_val = checksum;
1820 
1821 	return status;
1822 }
1823 
1824 /**
1825  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1826  *  @hw: pointer to hardware structure
1827  **/
1828 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1829 {
1830 	s32 status;
1831 	u16 checksum;
1832 
1833 	/*
1834 	 * Read the first word from the EEPROM. If this times out or fails, do
1835 	 * not continue or we could be in for a very long wait while every
1836 	 * EEPROM read fails
1837 	 */
1838 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1839 	if (status) {
1840 		hw_dbg(hw, "EEPROM read failed\n");
1841 		return status;
1842 	}
1843 
1844 	status = hw->eeprom.ops.calc_checksum(hw);
1845 	if (status < 0)
1846 		return status;
1847 
1848 	checksum = (u16)(status & 0xffff);
1849 
1850 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1851 
1852 	return status;
1853 }
1854 
1855 /**
1856  *  ixgbe_set_rar_generic - Set Rx address register
1857  *  @hw: pointer to hardware structure
1858  *  @index: Receive address register to write
1859  *  @addr: Address to put into receive address register
1860  *  @vmdq: VMDq "set" or "pool" index
1861  *  @enable_addr: set flag that address is active
1862  *
1863  *  Puts an ethernet address into a receive address register.
1864  **/
1865 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1866 			  u32 enable_addr)
1867 {
1868 	u32 rar_low, rar_high;
1869 	u32 rar_entries = hw->mac.num_rar_entries;
1870 
1871 	/* Make sure we are using a valid rar index range */
1872 	if (index >= rar_entries) {
1873 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1874 		return IXGBE_ERR_INVALID_ARGUMENT;
1875 	}
1876 
1877 	/* setup VMDq pool selection before this RAR gets enabled */
1878 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1879 
1880 	/*
1881 	 * HW expects these in little endian so we reverse the byte
1882 	 * order from network order (big endian) to little endian
1883 	 */
1884 	rar_low = ((u32)addr[0] |
1885 		   ((u32)addr[1] << 8) |
1886 		   ((u32)addr[2] << 16) |
1887 		   ((u32)addr[3] << 24));
1888 	/*
1889 	 * Some parts put the VMDq setting in the extra RAH bits,
1890 	 * so save everything except the lower 16 bits that hold part
1891 	 * of the address and the address valid bit.
1892 	 */
1893 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1894 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1895 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1896 
1897 	if (enable_addr != 0)
1898 		rar_high |= IXGBE_RAH_AV;
1899 
1900 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1901 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1902 
1903 	return 0;
1904 }
1905 
1906 /**
1907  *  ixgbe_clear_rar_generic - Remove Rx address register
1908  *  @hw: pointer to hardware structure
1909  *  @index: Receive address register to write
1910  *
1911  *  Clears an ethernet address from a receive address register.
1912  **/
1913 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1914 {
1915 	u32 rar_high;
1916 	u32 rar_entries = hw->mac.num_rar_entries;
1917 
1918 	/* Make sure we are using a valid rar index range */
1919 	if (index >= rar_entries) {
1920 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1921 		return IXGBE_ERR_INVALID_ARGUMENT;
1922 	}
1923 
1924 	/*
1925 	 * Some parts put the VMDq setting in the extra RAH bits,
1926 	 * so save everything except the lower 16 bits that hold part
1927 	 * of the address and the address valid bit.
1928 	 */
1929 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1930 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1931 
1932 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1933 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1934 
1935 	/* clear VMDq pool/queue selection for this RAR */
1936 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1937 
1938 	return 0;
1939 }
1940 
1941 /**
1942  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1943  *  @hw: pointer to hardware structure
1944  *
1945  *  Places the MAC address in receive address register 0 and clears the rest
1946  *  of the receive address registers. Clears the multicast table. Assumes
1947  *  the receiver is in reset when the routine is called.
1948  **/
1949 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1950 {
1951 	u32 i;
1952 	u32 rar_entries = hw->mac.num_rar_entries;
1953 
1954 	/*
1955 	 * If the current mac address is valid, assume it is a software override
1956 	 * to the permanent address.
1957 	 * Otherwise, use the permanent address from the eeprom.
1958 	 */
1959 	if (!is_valid_ether_addr(hw->mac.addr)) {
1960 		/* Get the MAC address from the RAR0 for later reference */
1961 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1962 
1963 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1964 	} else {
1965 		/* Setup the receive address. */
1966 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1967 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1968 
1969 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1970 	}
1971 
1972 	/*  clear VMDq pool/queue selection for RAR 0 */
1973 	hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1974 
1975 	hw->addr_ctrl.overflow_promisc = 0;
1976 
1977 	hw->addr_ctrl.rar_used_count = 1;
1978 
1979 	/* Zero out the other receive addresses. */
1980 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1981 	for (i = 1; i < rar_entries; i++) {
1982 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1983 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1984 	}
1985 
1986 	/* Clear the MTA */
1987 	hw->addr_ctrl.mta_in_use = 0;
1988 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1989 
1990 	hw_dbg(hw, " Clearing MTA\n");
1991 	for (i = 0; i < hw->mac.mcft_size; i++)
1992 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1993 
1994 	if (hw->mac.ops.init_uta_tables)
1995 		hw->mac.ops.init_uta_tables(hw);
1996 
1997 	return 0;
1998 }
1999 
2000 /**
2001  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
2002  *  @hw: pointer to hardware structure
2003  *  @mc_addr: the multicast address
2004  *
2005  *  Extracts the 12 bits, from a multicast address, to determine which
2006  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
2007  *  incoming rx multicast addresses, to determine the bit-vector to check in
2008  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
2009  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
2010  *  to mc_filter_type.
2011  **/
2012 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
2013 {
2014 	u32 vector = 0;
2015 
2016 	switch (hw->mac.mc_filter_type) {
2017 	case 0:   /* use bits [47:36] of the address */
2018 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
2019 		break;
2020 	case 1:   /* use bits [46:35] of the address */
2021 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
2022 		break;
2023 	case 2:   /* use bits [45:34] of the address */
2024 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
2025 		break;
2026 	case 3:   /* use bits [43:32] of the address */
2027 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
2028 		break;
2029 	default:  /* Invalid mc_filter_type */
2030 		hw_dbg(hw, "MC filter type param set incorrectly\n");
2031 		break;
2032 	}
2033 
2034 	/* vector can only be 12-bits or boundary will be exceeded */
2035 	vector &= 0xFFF;
2036 	return vector;
2037 }
2038 
2039 /**
2040  *  ixgbe_set_mta - Set bit-vector in multicast table
2041  *  @hw: pointer to hardware structure
2042  *  @mc_addr: Multicast address
2043  *
2044  *  Sets the bit-vector in the multicast table.
2045  **/
2046 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
2047 {
2048 	u32 vector;
2049 	u32 vector_bit;
2050 	u32 vector_reg;
2051 
2052 	hw->addr_ctrl.mta_in_use++;
2053 
2054 	vector = ixgbe_mta_vector(hw, mc_addr);
2055 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2056 
2057 	/*
2058 	 * The MTA is a register array of 128 32-bit registers. It is treated
2059 	 * like an array of 4096 bits.  We want to set bit
2060 	 * BitArray[vector_value]. So we figure out what register the bit is
2061 	 * in, read it, OR in the new bit, then write back the new value.  The
2062 	 * register is determined by the upper 7 bits of the vector value and
2063 	 * the bit within that register are determined by the lower 5 bits of
2064 	 * the value.
2065 	 */
2066 	vector_reg = (vector >> 5) & 0x7F;
2067 	vector_bit = vector & 0x1F;
2068 	hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2069 }
2070 
2071 /**
2072  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2073  *  @hw: pointer to hardware structure
2074  *  @netdev: pointer to net device structure
2075  *
2076  *  The given list replaces any existing list. Clears the MC addrs from receive
2077  *  address registers and the multicast table. Uses unused receive address
2078  *  registers for the first multicast addresses, and hashes the rest into the
2079  *  multicast table.
2080  **/
2081 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2082 				      struct net_device *netdev)
2083 {
2084 	struct netdev_hw_addr *ha;
2085 	u32 i;
2086 
2087 	/*
2088 	 * Set the new number of MC addresses that we are being requested to
2089 	 * use.
2090 	 */
2091 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2092 	hw->addr_ctrl.mta_in_use = 0;
2093 
2094 	/* Clear mta_shadow */
2095 	hw_dbg(hw, " Clearing MTA\n");
2096 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2097 
2098 	/* Update mta shadow */
2099 	netdev_for_each_mc_addr(ha, netdev) {
2100 		hw_dbg(hw, " Adding the multicast addresses:\n");
2101 		ixgbe_set_mta(hw, ha->addr);
2102 	}
2103 
2104 	/* Enable mta */
2105 	for (i = 0; i < hw->mac.mcft_size; i++)
2106 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2107 				      hw->mac.mta_shadow[i]);
2108 
2109 	if (hw->addr_ctrl.mta_in_use > 0)
2110 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2111 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2112 
2113 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2114 	return 0;
2115 }
2116 
2117 /**
2118  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2119  *  @hw: pointer to hardware structure
2120  *
2121  *  Enables multicast address in RAR and the use of the multicast hash table.
2122  **/
2123 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2124 {
2125 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2126 
2127 	if (a->mta_in_use > 0)
2128 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2129 				hw->mac.mc_filter_type);
2130 
2131 	return 0;
2132 }
2133 
2134 /**
2135  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2136  *  @hw: pointer to hardware structure
2137  *
2138  *  Disables multicast address in RAR and the use of the multicast hash table.
2139  **/
2140 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2141 {
2142 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2143 
2144 	if (a->mta_in_use > 0)
2145 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2146 
2147 	return 0;
2148 }
2149 
2150 /**
2151  *  ixgbe_fc_enable_generic - Enable flow control
2152  *  @hw: pointer to hardware structure
2153  *
2154  *  Enable flow control according to the current settings.
2155  **/
2156 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2157 {
2158 	u32 mflcn_reg, fccfg_reg;
2159 	u32 reg;
2160 	u32 fcrtl, fcrth;
2161 	int i;
2162 
2163 	/* Validate the water mark configuration. */
2164 	if (!hw->fc.pause_time)
2165 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2166 
2167 	/* Low water mark of zero causes XOFF floods */
2168 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2169 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2170 		    hw->fc.high_water[i]) {
2171 			if (!hw->fc.low_water[i] ||
2172 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2173 				hw_dbg(hw, "Invalid water mark configuration\n");
2174 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2175 			}
2176 		}
2177 	}
2178 
2179 	/* Negotiate the fc mode to use */
2180 	hw->mac.ops.fc_autoneg(hw);
2181 
2182 	/* Disable any previous flow control settings */
2183 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2184 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2185 
2186 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2187 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2188 
2189 	/*
2190 	 * The possible values of fc.current_mode are:
2191 	 * 0: Flow control is completely disabled
2192 	 * 1: Rx flow control is enabled (we can receive pause frames,
2193 	 *    but not send pause frames).
2194 	 * 2: Tx flow control is enabled (we can send pause frames but
2195 	 *    we do not support receiving pause frames).
2196 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2197 	 * other: Invalid.
2198 	 */
2199 	switch (hw->fc.current_mode) {
2200 	case ixgbe_fc_none:
2201 		/*
2202 		 * Flow control is disabled by software override or autoneg.
2203 		 * The code below will actually disable it in the HW.
2204 		 */
2205 		break;
2206 	case ixgbe_fc_rx_pause:
2207 		/*
2208 		 * Rx Flow control is enabled and Tx Flow control is
2209 		 * disabled by software override. Since there really
2210 		 * isn't a way to advertise that we are capable of RX
2211 		 * Pause ONLY, we will advertise that we support both
2212 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2213 		 * disable the adapter's ability to send PAUSE frames.
2214 		 */
2215 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2216 		break;
2217 	case ixgbe_fc_tx_pause:
2218 		/*
2219 		 * Tx Flow control is enabled, and Rx Flow control is
2220 		 * disabled by software override.
2221 		 */
2222 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2223 		break;
2224 	case ixgbe_fc_full:
2225 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2226 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2227 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2228 		break;
2229 	default:
2230 		hw_dbg(hw, "Flow control param set incorrectly\n");
2231 		return IXGBE_ERR_CONFIG;
2232 	}
2233 
2234 	/* Set 802.3x based flow control settings. */
2235 	mflcn_reg |= IXGBE_MFLCN_DPF;
2236 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2237 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2238 
2239 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2240 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2241 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2242 		    hw->fc.high_water[i]) {
2243 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2244 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2245 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2246 		} else {
2247 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2248 			/*
2249 			 * In order to prevent Tx hangs when the internal Tx
2250 			 * switch is enabled we must set the high water mark
2251 			 * to the Rx packet buffer size - 24KB.  This allows
2252 			 * the Tx switch to function even under heavy Rx
2253 			 * workloads.
2254 			 */
2255 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2256 		}
2257 
2258 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2259 	}
2260 
2261 	/* Configure pause time (2 TCs per register) */
2262 	reg = hw->fc.pause_time * 0x00010001;
2263 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2264 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2265 
2266 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2267 
2268 	return 0;
2269 }
2270 
2271 /**
2272  *  ixgbe_negotiate_fc - Negotiate flow control
2273  *  @hw: pointer to hardware structure
2274  *  @adv_reg: flow control advertised settings
2275  *  @lp_reg: link partner's flow control settings
2276  *  @adv_sym: symmetric pause bit in advertisement
2277  *  @adv_asm: asymmetric pause bit in advertisement
2278  *  @lp_sym: symmetric pause bit in link partner advertisement
2279  *  @lp_asm: asymmetric pause bit in link partner advertisement
2280  *
2281  *  Find the intersection between advertised settings and link partner's
2282  *  advertised settings
2283  **/
2284 s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2285 		       u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2286 {
2287 	if ((!(adv_reg)) ||  (!(lp_reg)))
2288 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2289 
2290 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2291 		/*
2292 		 * Now we need to check if the user selected Rx ONLY
2293 		 * of pause frames.  In this case, we had to advertise
2294 		 * FULL flow control because we could not advertise RX
2295 		 * ONLY. Hence, we must now check to see if we need to
2296 		 * turn OFF the TRANSMISSION of PAUSE frames.
2297 		 */
2298 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2299 			hw->fc.current_mode = ixgbe_fc_full;
2300 			hw_dbg(hw, "Flow Control = FULL.\n");
2301 		} else {
2302 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2303 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2304 		}
2305 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2306 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2307 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2308 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2309 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2310 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2311 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2312 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2313 	} else {
2314 		hw->fc.current_mode = ixgbe_fc_none;
2315 		hw_dbg(hw, "Flow Control = NONE.\n");
2316 	}
2317 	return 0;
2318 }
2319 
2320 /**
2321  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2322  *  @hw: pointer to hardware structure
2323  *
2324  *  Enable flow control according on 1 gig fiber.
2325  **/
2326 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2327 {
2328 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2329 	s32 ret_val;
2330 
2331 	/*
2332 	 * On multispeed fiber at 1g, bail out if
2333 	 * - link is up but AN did not complete, or if
2334 	 * - link is up and AN completed but timed out
2335 	 */
2336 
2337 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2338 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2339 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2340 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2341 
2342 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2343 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2344 
2345 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2346 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2347 			       IXGBE_PCS1GANA_ASM_PAUSE,
2348 			       IXGBE_PCS1GANA_SYM_PAUSE,
2349 			       IXGBE_PCS1GANA_ASM_PAUSE);
2350 
2351 	return ret_val;
2352 }
2353 
2354 /**
2355  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2356  *  @hw: pointer to hardware structure
2357  *
2358  *  Enable flow control according to IEEE clause 37.
2359  **/
2360 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2361 {
2362 	u32 links2, anlp1_reg, autoc_reg, links;
2363 	s32 ret_val;
2364 
2365 	/*
2366 	 * On backplane, bail out if
2367 	 * - backplane autoneg was not completed, or if
2368 	 * - we are 82599 and link partner is not AN enabled
2369 	 */
2370 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2371 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2372 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2373 
2374 	if (hw->mac.type == ixgbe_mac_82599EB) {
2375 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2376 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2377 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2378 	}
2379 	/*
2380 	 * Read the 10g AN autoc and LP ability registers and resolve
2381 	 * local flow control settings accordingly
2382 	 */
2383 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2384 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2385 
2386 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2387 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2388 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2389 
2390 	return ret_val;
2391 }
2392 
2393 /**
2394  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2395  *  @hw: pointer to hardware structure
2396  *
2397  *  Enable flow control according to IEEE clause 37.
2398  **/
2399 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2400 {
2401 	u16 technology_ability_reg = 0;
2402 	u16 lp_technology_ability_reg = 0;
2403 
2404 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2405 			     MDIO_MMD_AN,
2406 			     &technology_ability_reg);
2407 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2408 			     MDIO_MMD_AN,
2409 			     &lp_technology_ability_reg);
2410 
2411 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2412 				  (u32)lp_technology_ability_reg,
2413 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2414 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2415 }
2416 
2417 /**
2418  *  ixgbe_fc_autoneg - Configure flow control
2419  *  @hw: pointer to hardware structure
2420  *
2421  *  Compares our advertised flow control capabilities to those advertised by
2422  *  our link partner, and determines the proper flow control mode to use.
2423  **/
2424 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2425 {
2426 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2427 	ixgbe_link_speed speed;
2428 	bool link_up;
2429 
2430 	/*
2431 	 * AN should have completed when the cable was plugged in.
2432 	 * Look for reasons to bail out.  Bail out if:
2433 	 * - FC autoneg is disabled, or if
2434 	 * - link is not up.
2435 	 *
2436 	 * Since we're being called from an LSC, link is already known to be up.
2437 	 * So use link_up_wait_to_complete=false.
2438 	 */
2439 	if (hw->fc.disable_fc_autoneg)
2440 		goto out;
2441 
2442 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2443 	if (!link_up)
2444 		goto out;
2445 
2446 	switch (hw->phy.media_type) {
2447 	/* Autoneg flow control on fiber adapters */
2448 	case ixgbe_media_type_fiber:
2449 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2450 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2451 		break;
2452 
2453 	/* Autoneg flow control on backplane adapters */
2454 	case ixgbe_media_type_backplane:
2455 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2456 		break;
2457 
2458 	/* Autoneg flow control on copper adapters */
2459 	case ixgbe_media_type_copper:
2460 		if (ixgbe_device_supports_autoneg_fc(hw))
2461 			ret_val = ixgbe_fc_autoneg_copper(hw);
2462 		break;
2463 
2464 	default:
2465 		break;
2466 	}
2467 
2468 out:
2469 	if (ret_val == 0) {
2470 		hw->fc.fc_was_autonegged = true;
2471 	} else {
2472 		hw->fc.fc_was_autonegged = false;
2473 		hw->fc.current_mode = hw->fc.requested_mode;
2474 	}
2475 }
2476 
2477 /**
2478  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2479  * @hw: pointer to hardware structure
2480  *
2481  * System-wide timeout range is encoded in PCIe Device Control2 register.
2482  *
2483  *  Add 10% to specified maximum and return the number of times to poll for
2484  *  completion timeout, in units of 100 microsec.  Never return less than
2485  *  800 = 80 millisec.
2486  **/
2487 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2488 {
2489 	s16 devctl2;
2490 	u32 pollcnt;
2491 
2492 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2493 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2494 
2495 	switch (devctl2) {
2496 	case IXGBE_PCIDEVCTRL2_65_130ms:
2497 		 pollcnt = 1300;         /* 130 millisec */
2498 		break;
2499 	case IXGBE_PCIDEVCTRL2_260_520ms:
2500 		pollcnt = 5200;         /* 520 millisec */
2501 		break;
2502 	case IXGBE_PCIDEVCTRL2_1_2s:
2503 		pollcnt = 20000;        /* 2 sec */
2504 		break;
2505 	case IXGBE_PCIDEVCTRL2_4_8s:
2506 		pollcnt = 80000;        /* 8 sec */
2507 		break;
2508 	case IXGBE_PCIDEVCTRL2_17_34s:
2509 		pollcnt = 34000;        /* 34 sec */
2510 		break;
2511 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2512 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2513 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2514 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2515 	default:
2516 		pollcnt = 800;          /* 80 millisec minimum */
2517 		break;
2518 	}
2519 
2520 	/* add 10% to spec maximum */
2521 	return (pollcnt * 11) / 10;
2522 }
2523 
2524 /**
2525  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2526  *  @hw: pointer to hardware structure
2527  *
2528  *  Disables PCI-Express master access and verifies there are no pending
2529  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2530  *  bit hasn't caused the master requests to be disabled, else 0
2531  *  is returned signifying master requests disabled.
2532  **/
2533 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2534 {
2535 	u32 i, poll;
2536 	u16 value;
2537 
2538 	/* Always set this bit to ensure any future transactions are blocked */
2539 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2540 
2541 	/* Poll for bit to read as set */
2542 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2543 		if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2544 			break;
2545 		usleep_range(100, 120);
2546 	}
2547 	if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2548 		hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2549 		goto gio_disable_fail;
2550 	}
2551 
2552 	/* Exit if master requests are blocked */
2553 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2554 	    ixgbe_removed(hw->hw_addr))
2555 		return 0;
2556 
2557 	/* Poll for master request bit to clear */
2558 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2559 		udelay(100);
2560 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2561 			return 0;
2562 	}
2563 
2564 	/*
2565 	 * Two consecutive resets are required via CTRL.RST per datasheet
2566 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2567 	 * of this need.  The first reset prevents new master requests from
2568 	 * being issued by our device.  We then must wait 1usec or more for any
2569 	 * remaining completions from the PCIe bus to trickle in, and then reset
2570 	 * again to clear out any effects they may have had on our device.
2571 	 */
2572 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2573 gio_disable_fail:
2574 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2575 
2576 	if (hw->mac.type >= ixgbe_mac_X550)
2577 		return 0;
2578 
2579 	/*
2580 	 * Before proceeding, make sure that the PCIe block does not have
2581 	 * transactions pending.
2582 	 */
2583 	poll = ixgbe_pcie_timeout_poll(hw);
2584 	for (i = 0; i < poll; i++) {
2585 		udelay(100);
2586 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2587 		if (ixgbe_removed(hw->hw_addr))
2588 			return 0;
2589 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2590 			return 0;
2591 	}
2592 
2593 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2594 	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2595 }
2596 
2597 /**
2598  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2599  *  @hw: pointer to hardware structure
2600  *  @mask: Mask to specify which semaphore to acquire
2601  *
2602  *  Acquires the SWFW semaphore through the GSSR register for the specified
2603  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2604  **/
2605 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2606 {
2607 	u32 gssr = 0;
2608 	u32 swmask = mask;
2609 	u32 fwmask = mask << 5;
2610 	u32 timeout = 200;
2611 	u32 i;
2612 
2613 	for (i = 0; i < timeout; i++) {
2614 		/*
2615 		 * SW NVM semaphore bit is used for access to all
2616 		 * SW_FW_SYNC bits (not just NVM)
2617 		 */
2618 		if (ixgbe_get_eeprom_semaphore(hw))
2619 			return IXGBE_ERR_SWFW_SYNC;
2620 
2621 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2622 		if (!(gssr & (fwmask | swmask))) {
2623 			gssr |= swmask;
2624 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2625 			ixgbe_release_eeprom_semaphore(hw);
2626 			return 0;
2627 		} else {
2628 			/* Resource is currently in use by FW or SW */
2629 			ixgbe_release_eeprom_semaphore(hw);
2630 			usleep_range(5000, 10000);
2631 		}
2632 	}
2633 
2634 	/* If time expired clear the bits holding the lock and retry */
2635 	if (gssr & (fwmask | swmask))
2636 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2637 
2638 	usleep_range(5000, 10000);
2639 	return IXGBE_ERR_SWFW_SYNC;
2640 }
2641 
2642 /**
2643  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2644  *  @hw: pointer to hardware structure
2645  *  @mask: Mask to specify which semaphore to release
2646  *
2647  *  Releases the SWFW semaphore through the GSSR register for the specified
2648  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2649  **/
2650 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2651 {
2652 	u32 gssr;
2653 	u32 swmask = mask;
2654 
2655 	ixgbe_get_eeprom_semaphore(hw);
2656 
2657 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2658 	gssr &= ~swmask;
2659 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2660 
2661 	ixgbe_release_eeprom_semaphore(hw);
2662 }
2663 
2664 /**
2665  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2666  * @hw: pointer to hardware structure
2667  * @reg_val: Value we read from AUTOC
2668  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2669  *	    true in this the generic case.
2670  *
2671  * The default case requires no protection so just to the register read.
2672  **/
2673 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2674 {
2675 	*locked = false;
2676 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2677 	return 0;
2678 }
2679 
2680 /**
2681  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2682  * @hw: pointer to hardware structure
2683  * @reg_val: value to write to AUTOC
2684  * @locked: bool to indicate whether the SW/FW lock was already taken by
2685  *	    previous read.
2686  **/
2687 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2688 {
2689 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2690 	return 0;
2691 }
2692 
2693 /**
2694  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2695  *  @hw: pointer to hardware structure
2696  *
2697  *  Stops the receive data path and waits for the HW to internally
2698  *  empty the Rx security block.
2699  **/
2700 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2701 {
2702 #define IXGBE_MAX_SECRX_POLL 40
2703 	int i;
2704 	int secrxreg;
2705 
2706 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2707 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2708 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2709 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2710 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2711 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2712 			break;
2713 		else
2714 			/* Use interrupt-safe sleep just in case */
2715 			udelay(1000);
2716 	}
2717 
2718 	/* For informational purposes only */
2719 	if (i >= IXGBE_MAX_SECRX_POLL)
2720 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2721 
2722 	return 0;
2723 
2724 }
2725 
2726 /**
2727  *  ixgbe_enable_rx_buff - Enables the receive data path
2728  *  @hw: pointer to hardware structure
2729  *
2730  *  Enables the receive data path
2731  **/
2732 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2733 {
2734 	u32 secrxreg;
2735 
2736 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2737 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2738 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2739 	IXGBE_WRITE_FLUSH(hw);
2740 
2741 	return 0;
2742 }
2743 
2744 /**
2745  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2746  *  @hw: pointer to hardware structure
2747  *  @regval: register value to write to RXCTRL
2748  *
2749  *  Enables the Rx DMA unit
2750  **/
2751 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2752 {
2753 	if (regval & IXGBE_RXCTRL_RXEN)
2754 		hw->mac.ops.enable_rx(hw);
2755 	else
2756 		hw->mac.ops.disable_rx(hw);
2757 
2758 	return 0;
2759 }
2760 
2761 /**
2762  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2763  *  @hw: pointer to hardware structure
2764  *  @index: led number to blink
2765  **/
2766 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2767 {
2768 	ixgbe_link_speed speed = 0;
2769 	bool link_up = false;
2770 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2771 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2772 	bool locked = false;
2773 	s32 ret_val;
2774 
2775 	if (index > 3)
2776 		return IXGBE_ERR_PARAM;
2777 
2778 	/*
2779 	 * Link must be up to auto-blink the LEDs;
2780 	 * Force it if link is down.
2781 	 */
2782 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2783 
2784 	if (!link_up) {
2785 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2786 		if (ret_val)
2787 			return ret_val;
2788 
2789 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2790 		autoc_reg |= IXGBE_AUTOC_FLU;
2791 
2792 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2793 		if (ret_val)
2794 			return ret_val;
2795 
2796 		IXGBE_WRITE_FLUSH(hw);
2797 
2798 		usleep_range(10000, 20000);
2799 	}
2800 
2801 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2802 	led_reg |= IXGBE_LED_BLINK(index);
2803 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2804 	IXGBE_WRITE_FLUSH(hw);
2805 
2806 	return 0;
2807 }
2808 
2809 /**
2810  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2811  *  @hw: pointer to hardware structure
2812  *  @index: led number to stop blinking
2813  **/
2814 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2815 {
2816 	u32 autoc_reg = 0;
2817 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2818 	bool locked = false;
2819 	s32 ret_val;
2820 
2821 	if (index > 3)
2822 		return IXGBE_ERR_PARAM;
2823 
2824 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2825 	if (ret_val)
2826 		return ret_val;
2827 
2828 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2829 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2830 
2831 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2832 	if (ret_val)
2833 		return ret_val;
2834 
2835 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2836 	led_reg &= ~IXGBE_LED_BLINK(index);
2837 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2838 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2839 	IXGBE_WRITE_FLUSH(hw);
2840 
2841 	return 0;
2842 }
2843 
2844 /**
2845  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2846  *  @hw: pointer to hardware structure
2847  *  @san_mac_offset: SAN MAC address offset
2848  *
2849  *  This function will read the EEPROM location for the SAN MAC address
2850  *  pointer, and returns the value at that location.  This is used in both
2851  *  get and set mac_addr routines.
2852  **/
2853 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2854 					u16 *san_mac_offset)
2855 {
2856 	s32 ret_val;
2857 
2858 	/*
2859 	 * First read the EEPROM pointer to see if the MAC addresses are
2860 	 * available.
2861 	 */
2862 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2863 				      san_mac_offset);
2864 	if (ret_val)
2865 		hw_err(hw, "eeprom read at offset %d failed\n",
2866 		       IXGBE_SAN_MAC_ADDR_PTR);
2867 
2868 	return ret_val;
2869 }
2870 
2871 /**
2872  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2873  *  @hw: pointer to hardware structure
2874  *  @san_mac_addr: SAN MAC address
2875  *
2876  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2877  *  per-port, so set_lan_id() must be called before reading the addresses.
2878  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2879  *  upon for non-SFP connections, so we must call it here.
2880  **/
2881 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2882 {
2883 	u16 san_mac_data, san_mac_offset;
2884 	u8 i;
2885 	s32 ret_val;
2886 
2887 	/*
2888 	 * First read the EEPROM pointer to see if the MAC addresses are
2889 	 * available.  If they're not, no point in calling set_lan_id() here.
2890 	 */
2891 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2892 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2893 
2894 		goto san_mac_addr_clr;
2895 
2896 	/* make sure we know which port we need to program */
2897 	hw->mac.ops.set_lan_id(hw);
2898 	/* apply the port offset to the address offset */
2899 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2900 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2901 	for (i = 0; i < 3; i++) {
2902 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2903 					      &san_mac_data);
2904 		if (ret_val) {
2905 			hw_err(hw, "eeprom read at offset %d failed\n",
2906 			       san_mac_offset);
2907 			goto san_mac_addr_clr;
2908 		}
2909 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2910 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2911 		san_mac_offset++;
2912 	}
2913 	return 0;
2914 
2915 san_mac_addr_clr:
2916 	/* No addresses available in this EEPROM.  It's not necessarily an
2917 	 * error though, so just wipe the local address and return.
2918 	 */
2919 	for (i = 0; i < 6; i++)
2920 		san_mac_addr[i] = 0xFF;
2921 	return ret_val;
2922 }
2923 
2924 /**
2925  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2926  *  @hw: pointer to hardware structure
2927  *
2928  *  Read PCIe configuration space, and get the MSI-X vector count from
2929  *  the capabilities table.
2930  **/
2931 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2932 {
2933 	u16 msix_count;
2934 	u16 max_msix_count;
2935 	u16 pcie_offset;
2936 
2937 	switch (hw->mac.type) {
2938 	case ixgbe_mac_82598EB:
2939 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2940 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2941 		break;
2942 	case ixgbe_mac_82599EB:
2943 	case ixgbe_mac_X540:
2944 	case ixgbe_mac_X550:
2945 	case ixgbe_mac_X550EM_x:
2946 	case ixgbe_mac_x550em_a:
2947 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2948 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2949 		break;
2950 	default:
2951 		return 1;
2952 	}
2953 
2954 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2955 	if (ixgbe_removed(hw->hw_addr))
2956 		msix_count = 0;
2957 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2958 
2959 	/* MSI-X count is zero-based in HW */
2960 	msix_count++;
2961 
2962 	if (msix_count > max_msix_count)
2963 		msix_count = max_msix_count;
2964 
2965 	return msix_count;
2966 }
2967 
2968 /**
2969  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2970  *  @hw: pointer to hardware struct
2971  *  @rar: receive address register index to disassociate
2972  *  @vmdq: VMDq pool index to remove from the rar
2973  **/
2974 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2975 {
2976 	u32 mpsar_lo, mpsar_hi;
2977 	u32 rar_entries = hw->mac.num_rar_entries;
2978 
2979 	/* Make sure we are using a valid rar index range */
2980 	if (rar >= rar_entries) {
2981 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2982 		return IXGBE_ERR_INVALID_ARGUMENT;
2983 	}
2984 
2985 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2986 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2987 
2988 	if (ixgbe_removed(hw->hw_addr))
2989 		return 0;
2990 
2991 	if (!mpsar_lo && !mpsar_hi)
2992 		return 0;
2993 
2994 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2995 		if (mpsar_lo) {
2996 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2997 			mpsar_lo = 0;
2998 		}
2999 		if (mpsar_hi) {
3000 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3001 			mpsar_hi = 0;
3002 		}
3003 	} else if (vmdq < 32) {
3004 		mpsar_lo &= ~BIT(vmdq);
3005 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
3006 	} else {
3007 		mpsar_hi &= ~BIT(vmdq - 32);
3008 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
3009 	}
3010 
3011 	/* was that the last pool using this rar? */
3012 	if (mpsar_lo == 0 && mpsar_hi == 0 &&
3013 	    rar != 0 && rar != hw->mac.san_mac_rar_index)
3014 		hw->mac.ops.clear_rar(hw, rar);
3015 
3016 	return 0;
3017 }
3018 
3019 /**
3020  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
3021  *  @hw: pointer to hardware struct
3022  *  @rar: receive address register index to associate with a VMDq index
3023  *  @vmdq: VMDq pool index
3024  **/
3025 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
3026 {
3027 	u32 mpsar;
3028 	u32 rar_entries = hw->mac.num_rar_entries;
3029 
3030 	/* Make sure we are using a valid rar index range */
3031 	if (rar >= rar_entries) {
3032 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
3033 		return IXGBE_ERR_INVALID_ARGUMENT;
3034 	}
3035 
3036 	if (vmdq < 32) {
3037 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
3038 		mpsar |= BIT(vmdq);
3039 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
3040 	} else {
3041 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
3042 		mpsar |= BIT(vmdq - 32);
3043 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
3044 	}
3045 	return 0;
3046 }
3047 
3048 /**
3049  *  This function should only be involved in the IOV mode.
3050  *  In IOV mode, Default pool is next pool after the number of
3051  *  VFs advertized and not 0.
3052  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3053  *
3054  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3055  *  @hw: pointer to hardware struct
3056  *  @vmdq: VMDq pool index
3057  **/
3058 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3059 {
3060 	u32 rar = hw->mac.san_mac_rar_index;
3061 
3062 	if (vmdq < 32) {
3063 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3064 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3065 	} else {
3066 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3067 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3068 	}
3069 
3070 	return 0;
3071 }
3072 
3073 /**
3074  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3075  *  @hw: pointer to hardware structure
3076  **/
3077 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3078 {
3079 	int i;
3080 
3081 	for (i = 0; i < 128; i++)
3082 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3083 
3084 	return 0;
3085 }
3086 
3087 /**
3088  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3089  *  @hw: pointer to hardware structure
3090  *  @vlan: VLAN id to write to VLAN filter
3091  *  @vlvf_bypass: true to find vlanid only, false returns first empty slot if
3092  *		  vlanid not found
3093  *
3094  *  return the VLVF index where this VLAN id should be placed
3095  *
3096  **/
3097 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3098 {
3099 	s32 regindex, first_empty_slot;
3100 	u32 bits;
3101 
3102 	/* short cut the special case */
3103 	if (vlan == 0)
3104 		return 0;
3105 
3106 	/* if vlvf_bypass is set we don't want to use an empty slot, we
3107 	 * will simply bypass the VLVF if there are no entries present in the
3108 	 * VLVF that contain our VLAN
3109 	 */
3110 	first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3111 
3112 	/* add VLAN enable bit for comparison */
3113 	vlan |= IXGBE_VLVF_VIEN;
3114 
3115 	/* Search for the vlan id in the VLVF entries. Save off the first empty
3116 	 * slot found along the way.
3117 	 *
3118 	 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3119 	 */
3120 	for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3121 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3122 		if (bits == vlan)
3123 			return regindex;
3124 		if (!first_empty_slot && !bits)
3125 			first_empty_slot = regindex;
3126 	}
3127 
3128 	/* If we are here then we didn't find the VLAN.  Return first empty
3129 	 * slot we found during our search, else error.
3130 	 */
3131 	if (!first_empty_slot)
3132 		hw_dbg(hw, "No space in VLVF.\n");
3133 
3134 	return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3135 }
3136 
3137 /**
3138  *  ixgbe_set_vfta_generic - Set VLAN filter table
3139  *  @hw: pointer to hardware structure
3140  *  @vlan: VLAN id to write to VLAN filter
3141  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3142  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3143  *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3144  *
3145  *  Turn on/off specified VLAN in the VLAN filter table.
3146  **/
3147 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3148 			   bool vlan_on, bool vlvf_bypass)
3149 {
3150 	u32 regidx, vfta_delta, vfta, bits;
3151 	s32 vlvf_index;
3152 
3153 	if ((vlan > 4095) || (vind > 63))
3154 		return IXGBE_ERR_PARAM;
3155 
3156 	/*
3157 	 * this is a 2 part operation - first the VFTA, then the
3158 	 * VLVF and VLVFB if VT Mode is set
3159 	 * We don't write the VFTA until we know the VLVF part succeeded.
3160 	 */
3161 
3162 	/* Part 1
3163 	 * The VFTA is a bitstring made up of 128 32-bit registers
3164 	 * that enable the particular VLAN id, much like the MTA:
3165 	 *    bits[11-5]: which register
3166 	 *    bits[4-0]:  which bit in the register
3167 	 */
3168 	regidx = vlan / 32;
3169 	vfta_delta = BIT(vlan % 32);
3170 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3171 
3172 	/* vfta_delta represents the difference between the current value
3173 	 * of vfta and the value we want in the register.  Since the diff
3174 	 * is an XOR mask we can just update vfta using an XOR.
3175 	 */
3176 	vfta_delta &= vlan_on ? ~vfta : vfta;
3177 	vfta ^= vfta_delta;
3178 
3179 	/* Part 2
3180 	 * If VT Mode is set
3181 	 *   Either vlan_on
3182 	 *     make sure the vlan is in VLVF
3183 	 *     set the vind bit in the matching VLVFB
3184 	 *   Or !vlan_on
3185 	 *     clear the pool bit and possibly the vind
3186 	 */
3187 	if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3188 		goto vfta_update;
3189 
3190 	vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3191 	if (vlvf_index < 0) {
3192 		if (vlvf_bypass)
3193 			goto vfta_update;
3194 		return vlvf_index;
3195 	}
3196 
3197 	bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3198 
3199 	/* set the pool bit */
3200 	bits |= BIT(vind % 32);
3201 	if (vlan_on)
3202 		goto vlvf_update;
3203 
3204 	/* clear the pool bit */
3205 	bits ^= BIT(vind % 32);
3206 
3207 	if (!bits &&
3208 	    !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3209 		/* Clear VFTA first, then disable VLVF.  Otherwise
3210 		 * we run the risk of stray packets leaking into
3211 		 * the PF via the default pool
3212 		 */
3213 		if (vfta_delta)
3214 			IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3215 
3216 		/* disable VLVF and clear remaining bit from pool */
3217 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3218 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3219 
3220 		return 0;
3221 	}
3222 
3223 	/* If there are still bits set in the VLVFB registers
3224 	 * for the VLAN ID indicated we need to see if the
3225 	 * caller is requesting that we clear the VFTA entry bit.
3226 	 * If the caller has requested that we clear the VFTA
3227 	 * entry bit but there are still pools/VFs using this VLAN
3228 	 * ID entry then ignore the request.  We're not worried
3229 	 * about the case where we're turning the VFTA VLAN ID
3230 	 * entry bit on, only when requested to turn it off as
3231 	 * there may be multiple pools and/or VFs using the
3232 	 * VLAN ID entry.  In that case we cannot clear the
3233 	 * VFTA bit until all pools/VFs using that VLAN ID have also
3234 	 * been cleared.  This will be indicated by "bits" being
3235 	 * zero.
3236 	 */
3237 	vfta_delta = 0;
3238 
3239 vlvf_update:
3240 	/* record pool change and enable VLAN ID if not already enabled */
3241 	IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3242 	IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3243 
3244 vfta_update:
3245 	/* Update VFTA now that we are ready for traffic */
3246 	if (vfta_delta)
3247 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3248 
3249 	return 0;
3250 }
3251 
3252 /**
3253  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3254  *  @hw: pointer to hardware structure
3255  *
3256  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3257  **/
3258 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3259 {
3260 	u32 offset;
3261 
3262 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3263 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3264 
3265 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3266 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3267 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3268 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3269 	}
3270 
3271 	return 0;
3272 }
3273 
3274 /**
3275  *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3276  *  @hw: pointer to hardware structure
3277  *
3278  *  Contains the logic to identify if we need to verify link for the
3279  *  crosstalk fix
3280  **/
3281 static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3282 {
3283 	/* Does FW say we need the fix */
3284 	if (!hw->need_crosstalk_fix)
3285 		return false;
3286 
3287 	/* Only consider SFP+ PHYs i.e. media type fiber */
3288 	switch (hw->mac.ops.get_media_type(hw)) {
3289 	case ixgbe_media_type_fiber:
3290 	case ixgbe_media_type_fiber_qsfp:
3291 		break;
3292 	default:
3293 		return false;
3294 	}
3295 
3296 	return true;
3297 }
3298 
3299 /**
3300  *  ixgbe_check_mac_link_generic - Determine link and speed status
3301  *  @hw: pointer to hardware structure
3302  *  @speed: pointer to link speed
3303  *  @link_up: true when link is up
3304  *  @link_up_wait_to_complete: bool used to wait for link up or not
3305  *
3306  *  Reads the links register to determine if link is up and the current speed
3307  **/
3308 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3309 				 bool *link_up, bool link_up_wait_to_complete)
3310 {
3311 	u32 links_reg, links_orig;
3312 	u32 i;
3313 
3314 	/* If Crosstalk fix enabled do the sanity check of making sure
3315 	 * the SFP+ cage is full.
3316 	 */
3317 	if (ixgbe_need_crosstalk_fix(hw)) {
3318 		u32 sfp_cage_full;
3319 
3320 		switch (hw->mac.type) {
3321 		case ixgbe_mac_82599EB:
3322 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3323 					IXGBE_ESDP_SDP2;
3324 			break;
3325 		case ixgbe_mac_X550EM_x:
3326 		case ixgbe_mac_x550em_a:
3327 			sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3328 					IXGBE_ESDP_SDP0;
3329 			break;
3330 		default:
3331 			/* sanity check - No SFP+ devices here */
3332 			sfp_cage_full = false;
3333 			break;
3334 		}
3335 
3336 		if (!sfp_cage_full) {
3337 			*link_up = false;
3338 			*speed = IXGBE_LINK_SPEED_UNKNOWN;
3339 			return 0;
3340 		}
3341 	}
3342 
3343 	/* clear the old state */
3344 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3345 
3346 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3347 
3348 	if (links_orig != links_reg) {
3349 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3350 		       links_orig, links_reg);
3351 	}
3352 
3353 	if (link_up_wait_to_complete) {
3354 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3355 			if (links_reg & IXGBE_LINKS_UP) {
3356 				*link_up = true;
3357 				break;
3358 			} else {
3359 				*link_up = false;
3360 			}
3361 			msleep(100);
3362 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3363 		}
3364 	} else {
3365 		if (links_reg & IXGBE_LINKS_UP)
3366 			*link_up = true;
3367 		else
3368 			*link_up = false;
3369 	}
3370 
3371 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3372 	case IXGBE_LINKS_SPEED_10G_82599:
3373 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3374 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3375 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3376 		else
3377 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3378 		break;
3379 	case IXGBE_LINKS_SPEED_1G_82599:
3380 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3381 		break;
3382 	case IXGBE_LINKS_SPEED_100_82599:
3383 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3384 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3385 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3386 		else
3387 			*speed = IXGBE_LINK_SPEED_100_FULL;
3388 		break;
3389 	case IXGBE_LINKS_SPEED_10_X550EM_A:
3390 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3391 		if (hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T ||
3392 		    hw->device_id == IXGBE_DEV_ID_X550EM_A_1G_T_L) {
3393 			*speed = IXGBE_LINK_SPEED_10_FULL;
3394 		}
3395 		break;
3396 	default:
3397 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3398 	}
3399 
3400 	return 0;
3401 }
3402 
3403 /**
3404  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3405  *  the EEPROM
3406  *  @hw: pointer to hardware structure
3407  *  @wwnn_prefix: the alternative WWNN prefix
3408  *  @wwpn_prefix: the alternative WWPN prefix
3409  *
3410  *  This function will read the EEPROM from the alternative SAN MAC address
3411  *  block to check the support for the alternative WWNN/WWPN prefix support.
3412  **/
3413 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3414 					u16 *wwpn_prefix)
3415 {
3416 	u16 offset, caps;
3417 	u16 alt_san_mac_blk_offset;
3418 
3419 	/* clear output first */
3420 	*wwnn_prefix = 0xFFFF;
3421 	*wwpn_prefix = 0xFFFF;
3422 
3423 	/* check if alternative SAN MAC is supported */
3424 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3425 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3426 		goto wwn_prefix_err;
3427 
3428 	if ((alt_san_mac_blk_offset == 0) ||
3429 	    (alt_san_mac_blk_offset == 0xFFFF))
3430 		return 0;
3431 
3432 	/* check capability in alternative san mac address block */
3433 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3434 	if (hw->eeprom.ops.read(hw, offset, &caps))
3435 		goto wwn_prefix_err;
3436 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3437 		return 0;
3438 
3439 	/* get the corresponding prefix for WWNN/WWPN */
3440 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3441 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3442 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3443 
3444 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3445 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3446 		goto wwn_prefix_err;
3447 
3448 	return 0;
3449 
3450 wwn_prefix_err:
3451 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3452 	return 0;
3453 }
3454 
3455 /**
3456  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3457  *  @hw: pointer to hardware structure
3458  *  @enable: enable or disable switch for MAC anti-spoofing
3459  *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3460  *
3461  **/
3462 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3463 {
3464 	int vf_target_reg = vf >> 3;
3465 	int vf_target_shift = vf % 8;
3466 	u32 pfvfspoof;
3467 
3468 	if (hw->mac.type == ixgbe_mac_82598EB)
3469 		return;
3470 
3471 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3472 	if (enable)
3473 		pfvfspoof |= BIT(vf_target_shift);
3474 	else
3475 		pfvfspoof &= ~BIT(vf_target_shift);
3476 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3477 }
3478 
3479 /**
3480  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3481  *  @hw: pointer to hardware structure
3482  *  @enable: enable or disable switch for VLAN anti-spoofing
3483  *  @vf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3484  *
3485  **/
3486 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3487 {
3488 	int vf_target_reg = vf >> 3;
3489 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3490 	u32 pfvfspoof;
3491 
3492 	if (hw->mac.type == ixgbe_mac_82598EB)
3493 		return;
3494 
3495 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3496 	if (enable)
3497 		pfvfspoof |= BIT(vf_target_shift);
3498 	else
3499 		pfvfspoof &= ~BIT(vf_target_shift);
3500 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3501 }
3502 
3503 /**
3504  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3505  *  @hw: pointer to hardware structure
3506  *  @device_caps: the EEPROM word with the extra device capabilities
3507  *
3508  *  This function will read the EEPROM location for the device capabilities,
3509  *  and return the word through device_caps.
3510  **/
3511 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3512 {
3513 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3514 
3515 	return 0;
3516 }
3517 
3518 /**
3519  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3520  * @hw: pointer to hardware structure
3521  * @num_pb: number of packet buffers to allocate
3522  * @headroom: reserve n KB of headroom
3523  * @strategy: packet buffer allocation strategy
3524  **/
3525 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3526 			     int num_pb,
3527 			     u32 headroom,
3528 			     int strategy)
3529 {
3530 	u32 pbsize = hw->mac.rx_pb_size;
3531 	int i = 0;
3532 	u32 rxpktsize, txpktsize, txpbthresh;
3533 
3534 	/* Reserve headroom */
3535 	pbsize -= headroom;
3536 
3537 	if (!num_pb)
3538 		num_pb = 1;
3539 
3540 	/* Divide remaining packet buffer space amongst the number
3541 	 * of packet buffers requested using supplied strategy.
3542 	 */
3543 	switch (strategy) {
3544 	case (PBA_STRATEGY_WEIGHTED):
3545 		/* pba_80_48 strategy weight first half of packet buffer with
3546 		 * 5/8 of the packet buffer space.
3547 		 */
3548 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3549 		pbsize -= rxpktsize * (num_pb / 2);
3550 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3551 		for (; i < (num_pb / 2); i++)
3552 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3553 		/* fall through - configure remaining packet buffers */
3554 	case (PBA_STRATEGY_EQUAL):
3555 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3556 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3557 		for (; i < num_pb; i++)
3558 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3559 		break;
3560 	default:
3561 		break;
3562 	}
3563 
3564 	/*
3565 	 * Setup Tx packet buffer and threshold equally for all TCs
3566 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3567 	 * 10 since the largest packet we support is just over 9K.
3568 	 */
3569 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3570 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3571 	for (i = 0; i < num_pb; i++) {
3572 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3573 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3574 	}
3575 
3576 	/* Clear unused TCs, if any, to zero buffer size*/
3577 	for (; i < IXGBE_MAX_PB; i++) {
3578 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3579 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3580 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3581 	}
3582 }
3583 
3584 /**
3585  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3586  *  @buffer: pointer to EEPROM
3587  *  @length: size of EEPROM to calculate a checksum for
3588  *
3589  *  Calculates the checksum for some buffer on a specified length.  The
3590  *  checksum calculated is returned.
3591  **/
3592 u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3593 {
3594 	u32 i;
3595 	u8 sum = 0;
3596 
3597 	if (!buffer)
3598 		return 0;
3599 
3600 	for (i = 0; i < length; i++)
3601 		sum += buffer[i];
3602 
3603 	return (u8) (0 - sum);
3604 }
3605 
3606 /**
3607  *  ixgbe_hic_unlocked - Issue command to manageability block unlocked
3608  *  @hw: pointer to the HW structure
3609  *  @buffer: command to write and where the return status will be placed
3610  *  @length: length of buffer, must be multiple of 4 bytes
3611  *  @timeout: time in ms to wait for command completion
3612  *
3613  *  Communicates with the manageability block. On success return 0
3614  *  else returns semaphore error when encountering an error acquiring
3615  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3616  *
3617  *  This function assumes that the IXGBE_GSSR_SW_MNG_SM semaphore is held
3618  *  by the caller.
3619  **/
3620 s32 ixgbe_hic_unlocked(struct ixgbe_hw *hw, u32 *buffer, u32 length,
3621 		       u32 timeout)
3622 {
3623 	u32 hicr, i, fwsts;
3624 	u16 dword_len;
3625 
3626 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3627 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3628 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3629 	}
3630 
3631 	/* Set bit 9 of FWSTS clearing FW reset indication */
3632 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3633 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3634 
3635 	/* Check that the host interface is enabled. */
3636 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3637 	if (!(hicr & IXGBE_HICR_EN)) {
3638 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3639 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3640 	}
3641 
3642 	/* Calculate length in DWORDs. We must be DWORD aligned */
3643 	if (length % sizeof(u32)) {
3644 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3645 		return IXGBE_ERR_INVALID_ARGUMENT;
3646 	}
3647 
3648 	dword_len = length >> 2;
3649 
3650 	/* The device driver writes the relevant command block
3651 	 * into the ram area.
3652 	 */
3653 	for (i = 0; i < dword_len; i++)
3654 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3655 				      i, cpu_to_le32(buffer[i]));
3656 
3657 	/* Setting this bit tells the ARC that a new command is pending. */
3658 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3659 
3660 	for (i = 0; i < timeout; i++) {
3661 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3662 		if (!(hicr & IXGBE_HICR_C))
3663 			break;
3664 		usleep_range(1000, 2000);
3665 	}
3666 
3667 	/* Check command successful completion. */
3668 	if ((timeout && i == timeout) ||
3669 	    !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))
3670 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3671 
3672 	return 0;
3673 }
3674 
3675 /**
3676  *  ixgbe_host_interface_command - Issue command to manageability block
3677  *  @hw: pointer to the HW structure
3678  *  @buffer: contains the command to write and where the return status will
3679  *           be placed
3680  *  @length: length of buffer, must be multiple of 4 bytes
3681  *  @timeout: time in ms to wait for command completion
3682  *  @return_data: read and return data from the buffer (true) or not (false)
3683  *  Needed because FW structures are big endian and decoding of
3684  *  these fields can be 8 bit or 16 bit based on command. Decoding
3685  *  is not easily understood without making a table of commands.
3686  *  So we will leave this up to the caller to read back the data
3687  *  in these cases.
3688  *
3689  *  Communicates with the manageability block.  On success return 0
3690  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3691  **/
3692 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3693 				 u32 length, u32 timeout,
3694 				 bool return_data)
3695 {
3696 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3697 	union {
3698 		struct ixgbe_hic_hdr hdr;
3699 		u32 u32arr[1];
3700 	} *bp = buffer;
3701 	u16 buf_len, dword_len;
3702 	s32 status;
3703 	u32 bi;
3704 
3705 	if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3706 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3707 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3708 	}
3709 	/* Take management host interface semaphore */
3710 	status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3711 	if (status)
3712 		return status;
3713 
3714 	status = ixgbe_hic_unlocked(hw, buffer, length, timeout);
3715 	if (status)
3716 		goto rel_out;
3717 
3718 	if (!return_data)
3719 		goto rel_out;
3720 
3721 	/* Calculate length in DWORDs */
3722 	dword_len = hdr_size >> 2;
3723 
3724 	/* first pull in the header so we know the buffer length */
3725 	for (bi = 0; bi < dword_len; bi++) {
3726 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3727 		le32_to_cpus(&bp->u32arr[bi]);
3728 	}
3729 
3730 	/* If there is any thing in data position pull it in */
3731 	buf_len = bp->hdr.buf_len;
3732 	if (!buf_len)
3733 		goto rel_out;
3734 
3735 	if (length < round_up(buf_len, 4) + hdr_size) {
3736 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3737 		status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3738 		goto rel_out;
3739 	}
3740 
3741 	/* Calculate length in DWORDs, add 3 for odd lengths */
3742 	dword_len = (buf_len + 3) >> 2;
3743 
3744 	/* Pull in the rest of the buffer (bi is where we left off) */
3745 	for (; bi <= dword_len; bi++) {
3746 		bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3747 		le32_to_cpus(&bp->u32arr[bi]);
3748 	}
3749 
3750 rel_out:
3751 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3752 
3753 	return status;
3754 }
3755 
3756 /**
3757  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3758  *  @hw: pointer to the HW structure
3759  *  @maj: driver version major number
3760  *  @min: driver version minor number
3761  *  @build: driver version build number
3762  *  @sub: driver version sub build number
3763  *  @len: length of driver_ver string
3764  *  @driver_ver: driver string
3765  *
3766  *  Sends driver version number to firmware through the manageability
3767  *  block.  On success return 0
3768  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3769  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3770  **/
3771 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3772 				 u8 build, u8 sub, __always_unused u16 len,
3773 				 __always_unused const char *driver_ver)
3774 {
3775 	struct ixgbe_hic_drv_info fw_cmd;
3776 	int i;
3777 	s32 ret_val;
3778 
3779 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3780 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3781 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3782 	fw_cmd.port_num = hw->bus.func;
3783 	fw_cmd.ver_maj = maj;
3784 	fw_cmd.ver_min = min;
3785 	fw_cmd.ver_build = build;
3786 	fw_cmd.ver_sub = sub;
3787 	fw_cmd.hdr.checksum = 0;
3788 	fw_cmd.pad = 0;
3789 	fw_cmd.pad2 = 0;
3790 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3791 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3792 
3793 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3794 		ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3795 						       sizeof(fw_cmd),
3796 						       IXGBE_HI_COMMAND_TIMEOUT,
3797 						       true);
3798 		if (ret_val != 0)
3799 			continue;
3800 
3801 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3802 		    FW_CEM_RESP_STATUS_SUCCESS)
3803 			ret_val = 0;
3804 		else
3805 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3806 
3807 		break;
3808 	}
3809 
3810 	return ret_val;
3811 }
3812 
3813 /**
3814  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3815  * @hw: pointer to the hardware structure
3816  *
3817  * The 82599 and x540 MACs can experience issues if TX work is still pending
3818  * when a reset occurs.  This function prevents this by flushing the PCIe
3819  * buffers on the system.
3820  **/
3821 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3822 {
3823 	u32 gcr_ext, hlreg0, i, poll;
3824 	u16 value;
3825 
3826 	/*
3827 	 * If double reset is not requested then all transactions should
3828 	 * already be clear and as such there is no work to do
3829 	 */
3830 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3831 		return;
3832 
3833 	/*
3834 	 * Set loopback enable to prevent any transmits from being sent
3835 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3836 	 * has already been cleared.
3837 	 */
3838 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3839 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3840 
3841 	/* wait for a last completion before clearing buffers */
3842 	IXGBE_WRITE_FLUSH(hw);
3843 	usleep_range(3000, 6000);
3844 
3845 	/* Before proceeding, make sure that the PCIe block does not have
3846 	 * transactions pending.
3847 	 */
3848 	poll = ixgbe_pcie_timeout_poll(hw);
3849 	for (i = 0; i < poll; i++) {
3850 		usleep_range(100, 200);
3851 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3852 		if (ixgbe_removed(hw->hw_addr))
3853 			break;
3854 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3855 			break;
3856 	}
3857 
3858 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3859 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3860 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3861 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3862 
3863 	/* Flush all writes and allow 20usec for all transactions to clear */
3864 	IXGBE_WRITE_FLUSH(hw);
3865 	udelay(20);
3866 
3867 	/* restore previous register values */
3868 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3869 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3870 }
3871 
3872 static const u8 ixgbe_emc_temp_data[4] = {
3873 	IXGBE_EMC_INTERNAL_DATA,
3874 	IXGBE_EMC_DIODE1_DATA,
3875 	IXGBE_EMC_DIODE2_DATA,
3876 	IXGBE_EMC_DIODE3_DATA
3877 };
3878 static const u8 ixgbe_emc_therm_limit[4] = {
3879 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3880 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3881 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3882 	IXGBE_EMC_DIODE3_THERM_LIMIT
3883 };
3884 
3885 /**
3886  *  ixgbe_get_ets_data - Extracts the ETS bit data
3887  *  @hw: pointer to hardware structure
3888  *  @ets_cfg: extected ETS data
3889  *  @ets_offset: offset of ETS data
3890  *
3891  *  Returns error code.
3892  **/
3893 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3894 			      u16 *ets_offset)
3895 {
3896 	s32 status;
3897 
3898 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3899 	if (status)
3900 		return status;
3901 
3902 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3903 		return IXGBE_NOT_IMPLEMENTED;
3904 
3905 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3906 	if (status)
3907 		return status;
3908 
3909 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3910 		return IXGBE_NOT_IMPLEMENTED;
3911 
3912 	return 0;
3913 }
3914 
3915 /**
3916  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3917  *  @hw: pointer to hardware structure
3918  *
3919  *  Returns the thermal sensor data structure
3920  **/
3921 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3922 {
3923 	s32 status;
3924 	u16 ets_offset;
3925 	u16 ets_cfg;
3926 	u16 ets_sensor;
3927 	u8  num_sensors;
3928 	u8  i;
3929 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3930 
3931 	/* Only support thermal sensors attached to physical port 0 */
3932 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3933 		return IXGBE_NOT_IMPLEMENTED;
3934 
3935 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3936 	if (status)
3937 		return status;
3938 
3939 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3940 	if (num_sensors > IXGBE_MAX_SENSORS)
3941 		num_sensors = IXGBE_MAX_SENSORS;
3942 
3943 	for (i = 0; i < num_sensors; i++) {
3944 		u8  sensor_index;
3945 		u8  sensor_location;
3946 
3947 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3948 					     &ets_sensor);
3949 		if (status)
3950 			return status;
3951 
3952 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3953 				IXGBE_ETS_DATA_INDEX_SHIFT);
3954 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3955 				   IXGBE_ETS_DATA_LOC_SHIFT);
3956 
3957 		if (sensor_location != 0) {
3958 			status = hw->phy.ops.read_i2c_byte(hw,
3959 					ixgbe_emc_temp_data[sensor_index],
3960 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3961 					&data->sensor[i].temp);
3962 			if (status)
3963 				return status;
3964 		}
3965 	}
3966 
3967 	return 0;
3968 }
3969 
3970 /**
3971  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3972  * @hw: pointer to hardware structure
3973  *
3974  * Inits the thermal sensor thresholds according to the NVM map
3975  * and save off the threshold and location values into mac.thermal_sensor_data
3976  **/
3977 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3978 {
3979 	s32 status;
3980 	u16 ets_offset;
3981 	u16 ets_cfg;
3982 	u16 ets_sensor;
3983 	u8  low_thresh_delta;
3984 	u8  num_sensors;
3985 	u8  therm_limit;
3986 	u8  i;
3987 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3988 
3989 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3990 
3991 	/* Only support thermal sensors attached to physical port 0 */
3992 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3993 		return IXGBE_NOT_IMPLEMENTED;
3994 
3995 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3996 	if (status)
3997 		return status;
3998 
3999 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
4000 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
4001 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
4002 	if (num_sensors > IXGBE_MAX_SENSORS)
4003 		num_sensors = IXGBE_MAX_SENSORS;
4004 
4005 	for (i = 0; i < num_sensors; i++) {
4006 		u8  sensor_index;
4007 		u8  sensor_location;
4008 
4009 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
4010 			hw_err(hw, "eeprom read at offset %d failed\n",
4011 			       ets_offset + 1 + i);
4012 			continue;
4013 		}
4014 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
4015 				IXGBE_ETS_DATA_INDEX_SHIFT);
4016 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
4017 				   IXGBE_ETS_DATA_LOC_SHIFT);
4018 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
4019 
4020 		hw->phy.ops.write_i2c_byte(hw,
4021 			ixgbe_emc_therm_limit[sensor_index],
4022 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
4023 
4024 		if (sensor_location == 0)
4025 			continue;
4026 
4027 		data->sensor[i].location = sensor_location;
4028 		data->sensor[i].caution_thresh = therm_limit;
4029 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
4030 	}
4031 
4032 	return 0;
4033 }
4034 
4035 /**
4036  *  ixgbe_get_orom_version - Return option ROM from EEPROM
4037  *
4038  *  @hw: pointer to hardware structure
4039  *  @nvm_ver: pointer to output structure
4040  *
4041  *  if valid option ROM version, nvm_ver->or_valid set to true
4042  *  else nvm_ver->or_valid is false.
4043  **/
4044 void ixgbe_get_orom_version(struct ixgbe_hw *hw,
4045 			    struct ixgbe_nvm_version *nvm_ver)
4046 {
4047 	u16 offset, eeprom_cfg_blkh, eeprom_cfg_blkl;
4048 
4049 	nvm_ver->or_valid = false;
4050 	/* Option Rom may or may not be present.  Start with pointer */
4051 	hw->eeprom.ops.read(hw, NVM_OROM_OFFSET, &offset);
4052 
4053 	/* make sure offset is valid */
4054 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4055 		return;
4056 
4057 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_HI, &eeprom_cfg_blkh);
4058 	hw->eeprom.ops.read(hw, offset + NVM_OROM_BLK_LOW, &eeprom_cfg_blkl);
4059 
4060 	/* option rom exists and is valid */
4061 	if ((eeprom_cfg_blkl | eeprom_cfg_blkh) == 0x0 ||
4062 	    eeprom_cfg_blkl == NVM_VER_INVALID ||
4063 	    eeprom_cfg_blkh == NVM_VER_INVALID)
4064 		return;
4065 
4066 	nvm_ver->or_valid = true;
4067 	nvm_ver->or_major = eeprom_cfg_blkl >> NVM_OROM_SHIFT;
4068 	nvm_ver->or_build = (eeprom_cfg_blkl << NVM_OROM_SHIFT) |
4069 			    (eeprom_cfg_blkh >> NVM_OROM_SHIFT);
4070 	nvm_ver->or_patch = eeprom_cfg_blkh & NVM_OROM_PATCH_MASK;
4071 }
4072 
4073 /**
4074  *  ixgbe_get_oem_prod_version Etrack ID from EEPROM
4075  *
4076  *  @hw: pointer to hardware structure
4077  *  @nvm_ver: pointer to output structure
4078  *
4079  *  if valid OEM product version, nvm_ver->oem_valid set to true
4080  *  else nvm_ver->oem_valid is false.
4081  **/
4082 void ixgbe_get_oem_prod_version(struct ixgbe_hw *hw,
4083 				struct ixgbe_nvm_version *nvm_ver)
4084 {
4085 	u16 rel_num, prod_ver, mod_len, cap, offset;
4086 
4087 	nvm_ver->oem_valid = false;
4088 	hw->eeprom.ops.read(hw, NVM_OEM_PROD_VER_PTR, &offset);
4089 
4090 	/* Return is offset to OEM Product Version block is invalid */
4091 	if (offset == 0x0 || offset == NVM_INVALID_PTR)
4092 		return;
4093 
4094 	/* Read product version block */
4095 	hw->eeprom.ops.read(hw, offset, &mod_len);
4096 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_CAP_OFF, &cap);
4097 
4098 	/* Return if OEM product version block is invalid */
4099 	if (mod_len != NVM_OEM_PROD_VER_MOD_LEN ||
4100 	    (cap & NVM_OEM_PROD_VER_CAP_MASK) != 0x0)
4101 		return;
4102 
4103 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_L, &prod_ver);
4104 	hw->eeprom.ops.read(hw, offset + NVM_OEM_PROD_VER_OFF_H, &rel_num);
4105 
4106 	/* Return if version is invalid */
4107 	if ((rel_num | prod_ver) == 0x0 ||
4108 	    rel_num == NVM_VER_INVALID || prod_ver == NVM_VER_INVALID)
4109 		return;
4110 
4111 	nvm_ver->oem_major = prod_ver >> NVM_VER_SHIFT;
4112 	nvm_ver->oem_minor = prod_ver & NVM_VER_MASK;
4113 	nvm_ver->oem_release = rel_num;
4114 	nvm_ver->oem_valid = true;
4115 }
4116 
4117 /**
4118  *  ixgbe_get_etk_id - Return Etrack ID from EEPROM
4119  *
4120  *  @hw: pointer to hardware structure
4121  *  @nvm_ver: pointer to output structure
4122  *
4123  *  word read errors will return 0xFFFF
4124  **/
4125 void ixgbe_get_etk_id(struct ixgbe_hw *hw,
4126 		      struct ixgbe_nvm_version *nvm_ver)
4127 {
4128 	u16 etk_id_l, etk_id_h;
4129 
4130 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_LOW, &etk_id_l))
4131 		etk_id_l = NVM_VER_INVALID;
4132 	if (hw->eeprom.ops.read(hw, NVM_ETK_OFF_HI, &etk_id_h))
4133 		etk_id_h = NVM_VER_INVALID;
4134 
4135 	/* The word order for the version format is determined by high order
4136 	 * word bit 15.
4137 	 */
4138 	if ((etk_id_h & NVM_ETK_VALID) == 0) {
4139 		nvm_ver->etk_id = etk_id_h;
4140 		nvm_ver->etk_id |= (etk_id_l << NVM_ETK_SHIFT);
4141 	} else {
4142 		nvm_ver->etk_id = etk_id_l;
4143 		nvm_ver->etk_id |= (etk_id_h << NVM_ETK_SHIFT);
4144 	}
4145 }
4146 
4147 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
4148 {
4149 	u32 rxctrl;
4150 
4151 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4152 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
4153 		if (hw->mac.type != ixgbe_mac_82598EB) {
4154 			u32 pfdtxgswc;
4155 
4156 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4157 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
4158 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
4159 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4160 				hw->mac.set_lben = true;
4161 			} else {
4162 				hw->mac.set_lben = false;
4163 			}
4164 		}
4165 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
4166 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
4167 	}
4168 }
4169 
4170 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
4171 {
4172 	u32 rxctrl;
4173 
4174 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
4175 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
4176 
4177 	if (hw->mac.type != ixgbe_mac_82598EB) {
4178 		if (hw->mac.set_lben) {
4179 			u32 pfdtxgswc;
4180 
4181 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
4182 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
4183 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
4184 			hw->mac.set_lben = false;
4185 		}
4186 	}
4187 }
4188 
4189 /** ixgbe_mng_present - returns true when management capability is present
4190  * @hw: pointer to hardware structure
4191  **/
4192 bool ixgbe_mng_present(struct ixgbe_hw *hw)
4193 {
4194 	u32 fwsm;
4195 
4196 	if (hw->mac.type < ixgbe_mac_82599EB)
4197 		return false;
4198 
4199 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
4200 
4201 	return !!(fwsm & IXGBE_FWSM_FW_MODE_PT);
4202 }
4203 
4204 /**
4205  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4206  *  @hw: pointer to hardware structure
4207  *  @speed: new link speed
4208  *  @autoneg_wait_to_complete: true when waiting for completion is needed
4209  *
4210  *  Set the link speed in the MAC and/or PHY register and restarts link.
4211  */
4212 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4213 					  ixgbe_link_speed speed,
4214 					  bool autoneg_wait_to_complete)
4215 {
4216 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4217 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4218 	s32 status = 0;
4219 	u32 speedcnt = 0;
4220 	u32 i = 0;
4221 	bool autoneg, link_up = false;
4222 
4223 	/* Mask off requested but non-supported speeds */
4224 	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4225 	if (status)
4226 		return status;
4227 
4228 	speed &= link_speed;
4229 
4230 	/* Try each speed one by one, highest priority first.  We do this in
4231 	 * software because 10Gb fiber doesn't support speed autonegotiation.
4232 	 */
4233 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4234 		speedcnt++;
4235 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4236 
4237 		/* Set the module link speed */
4238 		switch (hw->phy.media_type) {
4239 		case ixgbe_media_type_fiber:
4240 			hw->mac.ops.set_rate_select_speed(hw,
4241 						    IXGBE_LINK_SPEED_10GB_FULL);
4242 			break;
4243 		case ixgbe_media_type_fiber_qsfp:
4244 			/* QSFP module automatically detects MAC link speed */
4245 			break;
4246 		default:
4247 			hw_dbg(hw, "Unexpected media type\n");
4248 			break;
4249 		}
4250 
4251 		/* Allow module to change analog characteristics (1G->10G) */
4252 		msleep(40);
4253 
4254 		status = hw->mac.ops.setup_mac_link(hw,
4255 						    IXGBE_LINK_SPEED_10GB_FULL,
4256 						    autoneg_wait_to_complete);
4257 		if (status)
4258 			return status;
4259 
4260 		/* Flap the Tx laser if it has not already been done */
4261 		if (hw->mac.ops.flap_tx_laser)
4262 			hw->mac.ops.flap_tx_laser(hw);
4263 
4264 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4265 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
4266 		 * attempted.  82599 uses the same timing for 10g SFI.
4267 		 */
4268 		for (i = 0; i < 5; i++) {
4269 			/* Wait for the link partner to also set speed */
4270 			msleep(100);
4271 
4272 			/* If we have link, just jump out */
4273 			status = hw->mac.ops.check_link(hw, &link_speed,
4274 							&link_up, false);
4275 			if (status)
4276 				return status;
4277 
4278 			if (link_up)
4279 				goto out;
4280 		}
4281 	}
4282 
4283 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4284 		speedcnt++;
4285 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4286 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4287 
4288 		/* Set the module link speed */
4289 		switch (hw->phy.media_type) {
4290 		case ixgbe_media_type_fiber:
4291 			hw->mac.ops.set_rate_select_speed(hw,
4292 						     IXGBE_LINK_SPEED_1GB_FULL);
4293 			break;
4294 		case ixgbe_media_type_fiber_qsfp:
4295 			/* QSFP module automatically detects link speed */
4296 			break;
4297 		default:
4298 			hw_dbg(hw, "Unexpected media type\n");
4299 			break;
4300 		}
4301 
4302 		/* Allow module to change analog characteristics (10G->1G) */
4303 		msleep(40);
4304 
4305 		status = hw->mac.ops.setup_mac_link(hw,
4306 						    IXGBE_LINK_SPEED_1GB_FULL,
4307 						    autoneg_wait_to_complete);
4308 		if (status)
4309 			return status;
4310 
4311 		/* Flap the Tx laser if it has not already been done */
4312 		if (hw->mac.ops.flap_tx_laser)
4313 			hw->mac.ops.flap_tx_laser(hw);
4314 
4315 		/* Wait for the link partner to also set speed */
4316 		msleep(100);
4317 
4318 		/* If we have link, just jump out */
4319 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4320 						false);
4321 		if (status)
4322 			return status;
4323 
4324 		if (link_up)
4325 			goto out;
4326 	}
4327 
4328 	/* We didn't get link.  Configure back to the highest speed we tried,
4329 	 * (if there was more than one).  We call ourselves back with just the
4330 	 * single highest speed that the user requested.
4331 	 */
4332 	if (speedcnt > 1)
4333 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4334 						      highest_link_speed,
4335 						      autoneg_wait_to_complete);
4336 
4337 out:
4338 	/* Set autoneg_advertised value based on input link speed */
4339 	hw->phy.autoneg_advertised = 0;
4340 
4341 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4342 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4343 
4344 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4345 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4346 
4347 	return status;
4348 }
4349 
4350 /**
4351  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4352  *  @hw: pointer to hardware structure
4353  *  @speed: link speed to set
4354  *
4355  *  Set module link speed via the soft rate select.
4356  */
4357 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4358 				      ixgbe_link_speed speed)
4359 {
4360 	s32 status;
4361 	u8 rs, eeprom_data;
4362 
4363 	switch (speed) {
4364 	case IXGBE_LINK_SPEED_10GB_FULL:
4365 		/* one bit mask same as setting on */
4366 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4367 		break;
4368 	case IXGBE_LINK_SPEED_1GB_FULL:
4369 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4370 		break;
4371 	default:
4372 		hw_dbg(hw, "Invalid fixed module speed\n");
4373 		return;
4374 	}
4375 
4376 	/* Set RS0 */
4377 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4378 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4379 					   &eeprom_data);
4380 	if (status) {
4381 		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4382 		return;
4383 	}
4384 
4385 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4386 
4387 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4388 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4389 					    eeprom_data);
4390 	if (status) {
4391 		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4392 		return;
4393 	}
4394 
4395 	/* Set RS1 */
4396 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4397 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4398 					   &eeprom_data);
4399 	if (status) {
4400 		hw_dbg(hw, "Failed to read Rx Rate Select RS1\n");
4401 		return;
4402 	}
4403 
4404 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4405 
4406 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_ESCB,
4407 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4408 					    eeprom_data);
4409 	if (status) {
4410 		hw_dbg(hw, "Failed to write Rx Rate Select RS1\n");
4411 		return;
4412 	}
4413 }
4414