1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2014 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33 
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 					u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 					     u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 						 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59 
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 	IXGBE_MVALS_INIT(8259X)
63 };
64 
65 /**
66  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
67  *  control
68  *  @hw: pointer to hardware structure
69  *
70  *  There are several phys that do not support autoneg flow control. This
71  *  function check the device id to see if the associated phy supports
72  *  autoneg flow control.
73  **/
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75 {
76 	bool supported = false;
77 	ixgbe_link_speed speed;
78 	bool link_up;
79 
80 	switch (hw->phy.media_type) {
81 	case ixgbe_media_type_fiber:
82 		hw->mac.ops.check_link(hw, &speed, &link_up, false);
83 		/* if link is down, assume supported */
84 		if (link_up)
85 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
86 				true : false;
87 		else
88 			supported = true;
89 		break;
90 	case ixgbe_media_type_backplane:
91 		supported = true;
92 		break;
93 	case ixgbe_media_type_copper:
94 		/* only some copper devices support flow control autoneg */
95 		switch (hw->device_id) {
96 		case IXGBE_DEV_ID_82599_T3_LOM:
97 		case IXGBE_DEV_ID_X540T:
98 		case IXGBE_DEV_ID_X540T1:
99 		case IXGBE_DEV_ID_X550T:
100 		case IXGBE_DEV_ID_X550EM_X_10G_T:
101 			supported = true;
102 			break;
103 		default:
104 			break;
105 		}
106 	default:
107 		break;
108 	}
109 
110 	return supported;
111 }
112 
113 /**
114  *  ixgbe_setup_fc - Set up flow control
115  *  @hw: pointer to hardware structure
116  *
117  *  Called at init time to set up flow control.
118  **/
119 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
120 {
121 	s32 ret_val = 0;
122 	u32 reg = 0, reg_bp = 0;
123 	u16 reg_cu = 0;
124 	bool locked = false;
125 
126 	/*
127 	 * Validate the requested mode.  Strict IEEE mode does not allow
128 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
129 	 */
130 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
131 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
132 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
133 	}
134 
135 	/*
136 	 * 10gig parts do not have a word in the EEPROM to determine the
137 	 * default flow control setting, so we explicitly set it to full.
138 	 */
139 	if (hw->fc.requested_mode == ixgbe_fc_default)
140 		hw->fc.requested_mode = ixgbe_fc_full;
141 
142 	/*
143 	 * Set up the 1G and 10G flow control advertisement registers so the
144 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
145 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
146 	 */
147 	switch (hw->phy.media_type) {
148 	case ixgbe_media_type_backplane:
149 		/* some MAC's need RMW protection on AUTOC */
150 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
151 		if (ret_val)
152 			return ret_val;
153 
154 		/* only backplane uses autoc so fall though */
155 	case ixgbe_media_type_fiber:
156 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
157 
158 		break;
159 	case ixgbe_media_type_copper:
160 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
161 					MDIO_MMD_AN, &reg_cu);
162 		break;
163 	default:
164 		break;
165 	}
166 
167 	/*
168 	 * The possible values of fc.requested_mode are:
169 	 * 0: Flow control is completely disabled
170 	 * 1: Rx flow control is enabled (we can receive pause frames,
171 	 *    but not send pause frames).
172 	 * 2: Tx flow control is enabled (we can send pause frames but
173 	 *    we do not support receiving pause frames).
174 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
175 	 * other: Invalid.
176 	 */
177 	switch (hw->fc.requested_mode) {
178 	case ixgbe_fc_none:
179 		/* Flow control completely disabled by software override. */
180 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
181 		if (hw->phy.media_type == ixgbe_media_type_backplane)
182 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
183 				    IXGBE_AUTOC_ASM_PAUSE);
184 		else if (hw->phy.media_type == ixgbe_media_type_copper)
185 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
186 		break;
187 	case ixgbe_fc_tx_pause:
188 		/*
189 		 * Tx Flow control is enabled, and Rx Flow control is
190 		 * disabled by software override.
191 		 */
192 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
193 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
194 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
195 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
196 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
197 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
198 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
199 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
200 		}
201 		break;
202 	case ixgbe_fc_rx_pause:
203 		/*
204 		 * Rx Flow control is enabled and Tx Flow control is
205 		 * disabled by software override. Since there really
206 		 * isn't a way to advertise that we are capable of RX
207 		 * Pause ONLY, we will advertise that we support both
208 		 * symmetric and asymmetric Rx PAUSE, as such we fall
209 		 * through to the fc_full statement.  Later, we will
210 		 * disable the adapter's ability to send PAUSE frames.
211 		 */
212 	case ixgbe_fc_full:
213 		/* Flow control (both Rx and Tx) is enabled by SW override. */
214 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
215 		if (hw->phy.media_type == ixgbe_media_type_backplane)
216 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
217 				  IXGBE_AUTOC_ASM_PAUSE;
218 		else if (hw->phy.media_type == ixgbe_media_type_copper)
219 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
220 		break;
221 	default:
222 		hw_dbg(hw, "Flow control param set incorrectly\n");
223 		return IXGBE_ERR_CONFIG;
224 	}
225 
226 	if (hw->mac.type != ixgbe_mac_X540) {
227 		/*
228 		 * Enable auto-negotiation between the MAC & PHY;
229 		 * the MAC will advertise clause 37 flow control.
230 		 */
231 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
232 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
233 
234 		/* Disable AN timeout */
235 		if (hw->fc.strict_ieee)
236 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
237 
238 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
239 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
240 	}
241 
242 	/*
243 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
244 	 * and copper. There is no need to set the PCS1GCTL register.
245 	 *
246 	 */
247 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
248 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
249 		 * LESM is on, likewise reset_pipeline requries the lock as
250 		 * it also writes AUTOC.
251 		 */
252 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
253 		if (ret_val)
254 			return ret_val;
255 
256 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
257 		   ixgbe_device_supports_autoneg_fc(hw)) {
258 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
259 				      MDIO_MMD_AN, reg_cu);
260 	}
261 
262 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
263 	return ret_val;
264 }
265 
266 /**
267  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
268  *  @hw: pointer to hardware structure
269  *
270  *  Starts the hardware by filling the bus info structure and media type, clears
271  *  all on chip counters, initializes receive address registers, multicast
272  *  table, VLAN filter table, calls routine to set up link and flow control
273  *  settings, and leaves transmit and receive units disabled and uninitialized
274  **/
275 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
276 {
277 	s32 ret_val;
278 	u32 ctrl_ext;
279 
280 	/* Set the media type */
281 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
282 
283 	/* Identify the PHY */
284 	hw->phy.ops.identify(hw);
285 
286 	/* Clear the VLAN filter table */
287 	hw->mac.ops.clear_vfta(hw);
288 
289 	/* Clear statistics registers */
290 	hw->mac.ops.clear_hw_cntrs(hw);
291 
292 	/* Set No Snoop Disable */
293 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
294 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
295 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
296 	IXGBE_WRITE_FLUSH(hw);
297 
298 	/* Setup flow control */
299 	ret_val = ixgbe_setup_fc(hw);
300 	if (ret_val)
301 		return ret_val;
302 
303 	/* Clear adapter stopped flag */
304 	hw->adapter_stopped = false;
305 
306 	return 0;
307 }
308 
309 /**
310  *  ixgbe_start_hw_gen2 - Init sequence for common device family
311  *  @hw: pointer to hw structure
312  *
313  * Performs the init sequence common to the second generation
314  * of 10 GbE devices.
315  * Devices in the second generation:
316  *     82599
317  *     X540
318  **/
319 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
320 {
321 	u32 i;
322 
323 	/* Clear the rate limiters */
324 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
325 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
326 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
327 	}
328 	IXGBE_WRITE_FLUSH(hw);
329 
330 #ifndef CONFIG_SPARC
331 	/* Disable relaxed ordering */
332 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
333 		u32 regval;
334 
335 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
336 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
337 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
338 	}
339 
340 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
341 		u32 regval;
342 
343 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
344 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
345 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
346 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
347 	}
348 #endif
349 	return 0;
350 }
351 
352 /**
353  *  ixgbe_init_hw_generic - Generic hardware initialization
354  *  @hw: pointer to hardware structure
355  *
356  *  Initialize the hardware by resetting the hardware, filling the bus info
357  *  structure and media type, clears all on chip counters, initializes receive
358  *  address registers, multicast table, VLAN filter table, calls routine to set
359  *  up link and flow control settings, and leaves transmit and receive units
360  *  disabled and uninitialized
361  **/
362 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
363 {
364 	s32 status;
365 
366 	/* Reset the hardware */
367 	status = hw->mac.ops.reset_hw(hw);
368 
369 	if (status == 0) {
370 		/* Start the HW */
371 		status = hw->mac.ops.start_hw(hw);
372 	}
373 
374 	return status;
375 }
376 
377 /**
378  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
379  *  @hw: pointer to hardware structure
380  *
381  *  Clears all hardware statistics counters by reading them from the hardware
382  *  Statistics counters are clear on read.
383  **/
384 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
385 {
386 	u16 i = 0;
387 
388 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
389 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
390 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
391 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
392 	for (i = 0; i < 8; i++)
393 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
394 
395 	IXGBE_READ_REG(hw, IXGBE_MLFC);
396 	IXGBE_READ_REG(hw, IXGBE_MRFC);
397 	IXGBE_READ_REG(hw, IXGBE_RLEC);
398 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
399 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
400 	if (hw->mac.type >= ixgbe_mac_82599EB) {
401 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
402 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
403 	} else {
404 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
405 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
406 	}
407 
408 	for (i = 0; i < 8; i++) {
409 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
410 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
411 		if (hw->mac.type >= ixgbe_mac_82599EB) {
412 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
413 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
414 		} else {
415 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
416 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
417 		}
418 	}
419 	if (hw->mac.type >= ixgbe_mac_82599EB)
420 		for (i = 0; i < 8; i++)
421 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
422 	IXGBE_READ_REG(hw, IXGBE_PRC64);
423 	IXGBE_READ_REG(hw, IXGBE_PRC127);
424 	IXGBE_READ_REG(hw, IXGBE_PRC255);
425 	IXGBE_READ_REG(hw, IXGBE_PRC511);
426 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
427 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
428 	IXGBE_READ_REG(hw, IXGBE_GPRC);
429 	IXGBE_READ_REG(hw, IXGBE_BPRC);
430 	IXGBE_READ_REG(hw, IXGBE_MPRC);
431 	IXGBE_READ_REG(hw, IXGBE_GPTC);
432 	IXGBE_READ_REG(hw, IXGBE_GORCL);
433 	IXGBE_READ_REG(hw, IXGBE_GORCH);
434 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
435 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
436 	if (hw->mac.type == ixgbe_mac_82598EB)
437 		for (i = 0; i < 8; i++)
438 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
439 	IXGBE_READ_REG(hw, IXGBE_RUC);
440 	IXGBE_READ_REG(hw, IXGBE_RFC);
441 	IXGBE_READ_REG(hw, IXGBE_ROC);
442 	IXGBE_READ_REG(hw, IXGBE_RJC);
443 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
444 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
445 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
446 	IXGBE_READ_REG(hw, IXGBE_TORL);
447 	IXGBE_READ_REG(hw, IXGBE_TORH);
448 	IXGBE_READ_REG(hw, IXGBE_TPR);
449 	IXGBE_READ_REG(hw, IXGBE_TPT);
450 	IXGBE_READ_REG(hw, IXGBE_PTC64);
451 	IXGBE_READ_REG(hw, IXGBE_PTC127);
452 	IXGBE_READ_REG(hw, IXGBE_PTC255);
453 	IXGBE_READ_REG(hw, IXGBE_PTC511);
454 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
455 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
456 	IXGBE_READ_REG(hw, IXGBE_MPTC);
457 	IXGBE_READ_REG(hw, IXGBE_BPTC);
458 	for (i = 0; i < 16; i++) {
459 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
460 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
461 		if (hw->mac.type >= ixgbe_mac_82599EB) {
462 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
463 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
464 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
465 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
466 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
467 		} else {
468 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
469 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
470 		}
471 	}
472 
473 	if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
474 		if (hw->phy.id == 0)
475 			hw->phy.ops.identify(hw);
476 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
477 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
478 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
479 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
480 	}
481 
482 	return 0;
483 }
484 
485 /**
486  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
487  *  @hw: pointer to hardware structure
488  *  @pba_num: stores the part number string from the EEPROM
489  *  @pba_num_size: part number string buffer length
490  *
491  *  Reads the part number string from the EEPROM.
492  **/
493 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
494 				  u32 pba_num_size)
495 {
496 	s32 ret_val;
497 	u16 data;
498 	u16 pba_ptr;
499 	u16 offset;
500 	u16 length;
501 
502 	if (pba_num == NULL) {
503 		hw_dbg(hw, "PBA string buffer was null\n");
504 		return IXGBE_ERR_INVALID_ARGUMENT;
505 	}
506 
507 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
508 	if (ret_val) {
509 		hw_dbg(hw, "NVM Read Error\n");
510 		return ret_val;
511 	}
512 
513 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
514 	if (ret_val) {
515 		hw_dbg(hw, "NVM Read Error\n");
516 		return ret_val;
517 	}
518 
519 	/*
520 	 * if data is not ptr guard the PBA must be in legacy format which
521 	 * means pba_ptr is actually our second data word for the PBA number
522 	 * and we can decode it into an ascii string
523 	 */
524 	if (data != IXGBE_PBANUM_PTR_GUARD) {
525 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
526 
527 		/* we will need 11 characters to store the PBA */
528 		if (pba_num_size < 11) {
529 			hw_dbg(hw, "PBA string buffer too small\n");
530 			return IXGBE_ERR_NO_SPACE;
531 		}
532 
533 		/* extract hex string from data and pba_ptr */
534 		pba_num[0] = (data >> 12) & 0xF;
535 		pba_num[1] = (data >> 8) & 0xF;
536 		pba_num[2] = (data >> 4) & 0xF;
537 		pba_num[3] = data & 0xF;
538 		pba_num[4] = (pba_ptr >> 12) & 0xF;
539 		pba_num[5] = (pba_ptr >> 8) & 0xF;
540 		pba_num[6] = '-';
541 		pba_num[7] = 0;
542 		pba_num[8] = (pba_ptr >> 4) & 0xF;
543 		pba_num[9] = pba_ptr & 0xF;
544 
545 		/* put a null character on the end of our string */
546 		pba_num[10] = '\0';
547 
548 		/* switch all the data but the '-' to hex char */
549 		for (offset = 0; offset < 10; offset++) {
550 			if (pba_num[offset] < 0xA)
551 				pba_num[offset] += '0';
552 			else if (pba_num[offset] < 0x10)
553 				pba_num[offset] += 'A' - 0xA;
554 		}
555 
556 		return 0;
557 	}
558 
559 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
560 	if (ret_val) {
561 		hw_dbg(hw, "NVM Read Error\n");
562 		return ret_val;
563 	}
564 
565 	if (length == 0xFFFF || length == 0) {
566 		hw_dbg(hw, "NVM PBA number section invalid length\n");
567 		return IXGBE_ERR_PBA_SECTION;
568 	}
569 
570 	/* check if pba_num buffer is big enough */
571 	if (pba_num_size  < (((u32)length * 2) - 1)) {
572 		hw_dbg(hw, "PBA string buffer too small\n");
573 		return IXGBE_ERR_NO_SPACE;
574 	}
575 
576 	/* trim pba length from start of string */
577 	pba_ptr++;
578 	length--;
579 
580 	for (offset = 0; offset < length; offset++) {
581 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
582 		if (ret_val) {
583 			hw_dbg(hw, "NVM Read Error\n");
584 			return ret_val;
585 		}
586 		pba_num[offset * 2] = (u8)(data >> 8);
587 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
588 	}
589 	pba_num[offset * 2] = '\0';
590 
591 	return 0;
592 }
593 
594 /**
595  *  ixgbe_get_mac_addr_generic - Generic get MAC address
596  *  @hw: pointer to hardware structure
597  *  @mac_addr: Adapter MAC address
598  *
599  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
600  *  A reset of the adapter must be performed prior to calling this function
601  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
602  **/
603 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
604 {
605 	u32 rar_high;
606 	u32 rar_low;
607 	u16 i;
608 
609 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
610 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
611 
612 	for (i = 0; i < 4; i++)
613 		mac_addr[i] = (u8)(rar_low >> (i*8));
614 
615 	for (i = 0; i < 2; i++)
616 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
617 
618 	return 0;
619 }
620 
621 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
622 {
623 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
624 	case IXGBE_PCI_LINK_WIDTH_1:
625 		return ixgbe_bus_width_pcie_x1;
626 	case IXGBE_PCI_LINK_WIDTH_2:
627 		return ixgbe_bus_width_pcie_x2;
628 	case IXGBE_PCI_LINK_WIDTH_4:
629 		return ixgbe_bus_width_pcie_x4;
630 	case IXGBE_PCI_LINK_WIDTH_8:
631 		return ixgbe_bus_width_pcie_x8;
632 	default:
633 		return ixgbe_bus_width_unknown;
634 	}
635 }
636 
637 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
638 {
639 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
640 	case IXGBE_PCI_LINK_SPEED_2500:
641 		return ixgbe_bus_speed_2500;
642 	case IXGBE_PCI_LINK_SPEED_5000:
643 		return ixgbe_bus_speed_5000;
644 	case IXGBE_PCI_LINK_SPEED_8000:
645 		return ixgbe_bus_speed_8000;
646 	default:
647 		return ixgbe_bus_speed_unknown;
648 	}
649 }
650 
651 /**
652  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
653  *  @hw: pointer to hardware structure
654  *
655  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
656  **/
657 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
658 {
659 	u16 link_status;
660 
661 	hw->bus.type = ixgbe_bus_type_pci_express;
662 
663 	/* Get the negotiated link width and speed from PCI config space */
664 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
665 
666 	hw->bus.width = ixgbe_convert_bus_width(link_status);
667 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
668 
669 	hw->mac.ops.set_lan_id(hw);
670 
671 	return 0;
672 }
673 
674 /**
675  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
676  *  @hw: pointer to the HW structure
677  *
678  *  Determines the LAN function id by reading memory-mapped registers
679  *  and swaps the port value if requested.
680  **/
681 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
682 {
683 	struct ixgbe_bus_info *bus = &hw->bus;
684 	u32 reg;
685 
686 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
687 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
688 	bus->lan_id = bus->func;
689 
690 	/* check for a port swap */
691 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
692 	if (reg & IXGBE_FACTPS_LFS)
693 		bus->func ^= 0x1;
694 }
695 
696 /**
697  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
698  *  @hw: pointer to hardware structure
699  *
700  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
701  *  disables transmit and receive units. The adapter_stopped flag is used by
702  *  the shared code and drivers to determine if the adapter is in a stopped
703  *  state and should not touch the hardware.
704  **/
705 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
706 {
707 	u32 reg_val;
708 	u16 i;
709 
710 	/*
711 	 * Set the adapter_stopped flag so other driver functions stop touching
712 	 * the hardware
713 	 */
714 	hw->adapter_stopped = true;
715 
716 	/* Disable the receive unit */
717 	hw->mac.ops.disable_rx(hw);
718 
719 	/* Clear interrupt mask to stop interrupts from being generated */
720 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
721 
722 	/* Clear any pending interrupts, flush previous writes */
723 	IXGBE_READ_REG(hw, IXGBE_EICR);
724 
725 	/* Disable the transmit unit.  Each queue must be disabled. */
726 	for (i = 0; i < hw->mac.max_tx_queues; i++)
727 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
728 
729 	/* Disable the receive unit by stopping each queue */
730 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
731 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
732 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
733 		reg_val |= IXGBE_RXDCTL_SWFLSH;
734 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
735 	}
736 
737 	/* flush all queues disables */
738 	IXGBE_WRITE_FLUSH(hw);
739 	usleep_range(1000, 2000);
740 
741 	/*
742 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
743 	 * access and verify no pending requests
744 	 */
745 	return ixgbe_disable_pcie_master(hw);
746 }
747 
748 /**
749  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
750  *  @hw: pointer to hardware structure
751  *  @index: led number to turn on
752  **/
753 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
754 {
755 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
756 
757 	/* To turn on the LED, set mode to ON. */
758 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
759 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
760 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
761 	IXGBE_WRITE_FLUSH(hw);
762 
763 	return 0;
764 }
765 
766 /**
767  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
768  *  @hw: pointer to hardware structure
769  *  @index: led number to turn off
770  **/
771 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
772 {
773 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
774 
775 	/* To turn off the LED, set mode to OFF. */
776 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
777 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
778 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
779 	IXGBE_WRITE_FLUSH(hw);
780 
781 	return 0;
782 }
783 
784 /**
785  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
786  *  @hw: pointer to hardware structure
787  *
788  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
789  *  ixgbe_hw struct in order to set up EEPROM access.
790  **/
791 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
792 {
793 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
794 	u32 eec;
795 	u16 eeprom_size;
796 
797 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
798 		eeprom->type = ixgbe_eeprom_none;
799 		/* Set default semaphore delay to 10ms which is a well
800 		 * tested value */
801 		eeprom->semaphore_delay = 10;
802 		/* Clear EEPROM page size, it will be initialized as needed */
803 		eeprom->word_page_size = 0;
804 
805 		/*
806 		 * Check for EEPROM present first.
807 		 * If not present leave as none
808 		 */
809 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
810 		if (eec & IXGBE_EEC_PRES) {
811 			eeprom->type = ixgbe_eeprom_spi;
812 
813 			/*
814 			 * SPI EEPROM is assumed here.  This code would need to
815 			 * change if a future EEPROM is not SPI.
816 			 */
817 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
818 					    IXGBE_EEC_SIZE_SHIFT);
819 			eeprom->word_size = 1 << (eeprom_size +
820 						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
821 		}
822 
823 		if (eec & IXGBE_EEC_ADDR_SIZE)
824 			eeprom->address_bits = 16;
825 		else
826 			eeprom->address_bits = 8;
827 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
828 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
829 	}
830 
831 	return 0;
832 }
833 
834 /**
835  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
836  *  @hw: pointer to hardware structure
837  *  @offset: offset within the EEPROM to write
838  *  @words: number of words
839  *  @data: 16 bit word(s) to write to EEPROM
840  *
841  *  Reads 16 bit word(s) from EEPROM through bit-bang method
842  **/
843 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
844 					       u16 words, u16 *data)
845 {
846 	s32 status;
847 	u16 i, count;
848 
849 	hw->eeprom.ops.init_params(hw);
850 
851 	if (words == 0)
852 		return IXGBE_ERR_INVALID_ARGUMENT;
853 
854 	if (offset + words > hw->eeprom.word_size)
855 		return IXGBE_ERR_EEPROM;
856 
857 	/*
858 	 * The EEPROM page size cannot be queried from the chip. We do lazy
859 	 * initialization. It is worth to do that when we write large buffer.
860 	 */
861 	if ((hw->eeprom.word_page_size == 0) &&
862 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
863 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
864 
865 	/*
866 	 * We cannot hold synchronization semaphores for too long
867 	 * to avoid other entity starvation. However it is more efficient
868 	 * to read in bursts than synchronizing access for each word.
869 	 */
870 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
871 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
872 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
873 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
874 							    count, &data[i]);
875 
876 		if (status != 0)
877 			break;
878 	}
879 
880 	return status;
881 }
882 
883 /**
884  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
885  *  @hw: pointer to hardware structure
886  *  @offset: offset within the EEPROM to be written to
887  *  @words: number of word(s)
888  *  @data: 16 bit word(s) to be written to the EEPROM
889  *
890  *  If ixgbe_eeprom_update_checksum is not called after this function, the
891  *  EEPROM will most likely contain an invalid checksum.
892  **/
893 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
894 					      u16 words, u16 *data)
895 {
896 	s32 status;
897 	u16 word;
898 	u16 page_size;
899 	u16 i;
900 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
901 
902 	/* Prepare the EEPROM for writing  */
903 	status = ixgbe_acquire_eeprom(hw);
904 	if (status)
905 		return status;
906 
907 	if (ixgbe_ready_eeprom(hw) != 0) {
908 		ixgbe_release_eeprom(hw);
909 		return IXGBE_ERR_EEPROM;
910 	}
911 
912 	for (i = 0; i < words; i++) {
913 		ixgbe_standby_eeprom(hw);
914 
915 		/* Send the WRITE ENABLE command (8 bit opcode) */
916 		ixgbe_shift_out_eeprom_bits(hw,
917 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
918 					    IXGBE_EEPROM_OPCODE_BITS);
919 
920 		ixgbe_standby_eeprom(hw);
921 
922 		/* Some SPI eeproms use the 8th address bit embedded
923 		 * in the opcode
924 		 */
925 		if ((hw->eeprom.address_bits == 8) &&
926 		    ((offset + i) >= 128))
927 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
928 
929 		/* Send the Write command (8-bit opcode + addr) */
930 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
931 					    IXGBE_EEPROM_OPCODE_BITS);
932 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
933 					    hw->eeprom.address_bits);
934 
935 		page_size = hw->eeprom.word_page_size;
936 
937 		/* Send the data in burst via SPI */
938 		do {
939 			word = data[i];
940 			word = (word >> 8) | (word << 8);
941 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
942 
943 			if (page_size == 0)
944 				break;
945 
946 			/* do not wrap around page */
947 			if (((offset + i) & (page_size - 1)) ==
948 			    (page_size - 1))
949 				break;
950 		} while (++i < words);
951 
952 		ixgbe_standby_eeprom(hw);
953 		usleep_range(10000, 20000);
954 	}
955 	/* Done with writing - release the EEPROM */
956 	ixgbe_release_eeprom(hw);
957 
958 	return 0;
959 }
960 
961 /**
962  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
963  *  @hw: pointer to hardware structure
964  *  @offset: offset within the EEPROM to be written to
965  *  @data: 16 bit word to be written to the EEPROM
966  *
967  *  If ixgbe_eeprom_update_checksum is not called after this function, the
968  *  EEPROM will most likely contain an invalid checksum.
969  **/
970 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
971 {
972 	hw->eeprom.ops.init_params(hw);
973 
974 	if (offset >= hw->eeprom.word_size)
975 		return IXGBE_ERR_EEPROM;
976 
977 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
978 }
979 
980 /**
981  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
982  *  @hw: pointer to hardware structure
983  *  @offset: offset within the EEPROM to be read
984  *  @words: number of word(s)
985  *  @data: read 16 bit words(s) from EEPROM
986  *
987  *  Reads 16 bit word(s) from EEPROM through bit-bang method
988  **/
989 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
990 					      u16 words, u16 *data)
991 {
992 	s32 status;
993 	u16 i, count;
994 
995 	hw->eeprom.ops.init_params(hw);
996 
997 	if (words == 0)
998 		return IXGBE_ERR_INVALID_ARGUMENT;
999 
1000 	if (offset + words > hw->eeprom.word_size)
1001 		return IXGBE_ERR_EEPROM;
1002 
1003 	/*
1004 	 * We cannot hold synchronization semaphores for too long
1005 	 * to avoid other entity starvation. However it is more efficient
1006 	 * to read in bursts than synchronizing access for each word.
1007 	 */
1008 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1009 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1010 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1011 
1012 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1013 							   count, &data[i]);
1014 
1015 		if (status)
1016 			return status;
1017 	}
1018 
1019 	return 0;
1020 }
1021 
1022 /**
1023  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1024  *  @hw: pointer to hardware structure
1025  *  @offset: offset within the EEPROM to be read
1026  *  @words: number of word(s)
1027  *  @data: read 16 bit word(s) from EEPROM
1028  *
1029  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1030  **/
1031 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1032 					     u16 words, u16 *data)
1033 {
1034 	s32 status;
1035 	u16 word_in;
1036 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1037 	u16 i;
1038 
1039 	/* Prepare the EEPROM for reading  */
1040 	status = ixgbe_acquire_eeprom(hw);
1041 	if (status)
1042 		return status;
1043 
1044 	if (ixgbe_ready_eeprom(hw) != 0) {
1045 		ixgbe_release_eeprom(hw);
1046 		return IXGBE_ERR_EEPROM;
1047 	}
1048 
1049 	for (i = 0; i < words; i++) {
1050 		ixgbe_standby_eeprom(hw);
1051 		/* Some SPI eeproms use the 8th address bit embedded
1052 		 * in the opcode
1053 		 */
1054 		if ((hw->eeprom.address_bits == 8) &&
1055 		    ((offset + i) >= 128))
1056 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1057 
1058 		/* Send the READ command (opcode + addr) */
1059 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1060 					    IXGBE_EEPROM_OPCODE_BITS);
1061 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1062 					    hw->eeprom.address_bits);
1063 
1064 		/* Read the data. */
1065 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1066 		data[i] = (word_in >> 8) | (word_in << 8);
1067 	}
1068 
1069 	/* End this read operation */
1070 	ixgbe_release_eeprom(hw);
1071 
1072 	return 0;
1073 }
1074 
1075 /**
1076  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1077  *  @hw: pointer to hardware structure
1078  *  @offset: offset within the EEPROM to be read
1079  *  @data: read 16 bit value from EEPROM
1080  *
1081  *  Reads 16 bit value from EEPROM through bit-bang method
1082  **/
1083 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1084 				       u16 *data)
1085 {
1086 	hw->eeprom.ops.init_params(hw);
1087 
1088 	if (offset >= hw->eeprom.word_size)
1089 		return IXGBE_ERR_EEPROM;
1090 
1091 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1092 }
1093 
1094 /**
1095  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1096  *  @hw: pointer to hardware structure
1097  *  @offset: offset of word in the EEPROM to read
1098  *  @words: number of word(s)
1099  *  @data: 16 bit word(s) from the EEPROM
1100  *
1101  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1102  **/
1103 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1104 				   u16 words, u16 *data)
1105 {
1106 	u32 eerd;
1107 	s32 status;
1108 	u32 i;
1109 
1110 	hw->eeprom.ops.init_params(hw);
1111 
1112 	if (words == 0)
1113 		return IXGBE_ERR_INVALID_ARGUMENT;
1114 
1115 	if (offset >= hw->eeprom.word_size)
1116 		return IXGBE_ERR_EEPROM;
1117 
1118 	for (i = 0; i < words; i++) {
1119 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1120 		       IXGBE_EEPROM_RW_REG_START;
1121 
1122 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1123 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1124 
1125 		if (status == 0) {
1126 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1127 				   IXGBE_EEPROM_RW_REG_DATA);
1128 		} else {
1129 			hw_dbg(hw, "Eeprom read timed out\n");
1130 			return status;
1131 		}
1132 	}
1133 
1134 	return 0;
1135 }
1136 
1137 /**
1138  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1139  *  @hw: pointer to hardware structure
1140  *  @offset: offset within the EEPROM to be used as a scratch pad
1141  *
1142  *  Discover EEPROM page size by writing marching data at given offset.
1143  *  This function is called only when we are writing a new large buffer
1144  *  at given offset so the data would be overwritten anyway.
1145  **/
1146 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1147 						 u16 offset)
1148 {
1149 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1150 	s32 status;
1151 	u16 i;
1152 
1153 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1154 		data[i] = i;
1155 
1156 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1157 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1158 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1159 	hw->eeprom.word_page_size = 0;
1160 	if (status)
1161 		return status;
1162 
1163 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1164 	if (status)
1165 		return status;
1166 
1167 	/*
1168 	 * When writing in burst more than the actual page size
1169 	 * EEPROM address wraps around current page.
1170 	 */
1171 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1172 
1173 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1174 	       hw->eeprom.word_page_size);
1175 	return 0;
1176 }
1177 
1178 /**
1179  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1180  *  @hw: pointer to hardware structure
1181  *  @offset: offset of  word in the EEPROM to read
1182  *  @data: word read from the EEPROM
1183  *
1184  *  Reads a 16 bit word from the EEPROM using the EERD register.
1185  **/
1186 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1187 {
1188 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1189 }
1190 
1191 /**
1192  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1193  *  @hw: pointer to hardware structure
1194  *  @offset: offset of  word in the EEPROM to write
1195  *  @words: number of words
1196  *  @data: word(s) write to the EEPROM
1197  *
1198  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1199  **/
1200 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1201 				    u16 words, u16 *data)
1202 {
1203 	u32 eewr;
1204 	s32 status;
1205 	u16 i;
1206 
1207 	hw->eeprom.ops.init_params(hw);
1208 
1209 	if (words == 0)
1210 		return IXGBE_ERR_INVALID_ARGUMENT;
1211 
1212 	if (offset >= hw->eeprom.word_size)
1213 		return IXGBE_ERR_EEPROM;
1214 
1215 	for (i = 0; i < words; i++) {
1216 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1217 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1218 		       IXGBE_EEPROM_RW_REG_START;
1219 
1220 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1221 		if (status) {
1222 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1223 			return status;
1224 		}
1225 
1226 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1227 
1228 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1229 		if (status) {
1230 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1231 			return status;
1232 		}
1233 	}
1234 
1235 	return 0;
1236 }
1237 
1238 /**
1239  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1240  *  @hw: pointer to hardware structure
1241  *  @offset: offset of  word in the EEPROM to write
1242  *  @data: word write to the EEPROM
1243  *
1244  *  Write a 16 bit word to the EEPROM using the EEWR register.
1245  **/
1246 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1247 {
1248 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1249 }
1250 
1251 /**
1252  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1253  *  @hw: pointer to hardware structure
1254  *  @ee_reg: EEPROM flag for polling
1255  *
1256  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1257  *  read or write is done respectively.
1258  **/
1259 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1260 {
1261 	u32 i;
1262 	u32 reg;
1263 
1264 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1265 		if (ee_reg == IXGBE_NVM_POLL_READ)
1266 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1267 		else
1268 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1269 
1270 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1271 			return 0;
1272 		}
1273 		udelay(5);
1274 	}
1275 	return IXGBE_ERR_EEPROM;
1276 }
1277 
1278 /**
1279  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1280  *  @hw: pointer to hardware structure
1281  *
1282  *  Prepares EEPROM for access using bit-bang method. This function should
1283  *  be called before issuing a command to the EEPROM.
1284  **/
1285 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1286 {
1287 	u32 eec;
1288 	u32 i;
1289 
1290 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1291 		return IXGBE_ERR_SWFW_SYNC;
1292 
1293 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1294 
1295 	/* Request EEPROM Access */
1296 	eec |= IXGBE_EEC_REQ;
1297 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1298 
1299 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1300 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1301 		if (eec & IXGBE_EEC_GNT)
1302 			break;
1303 		udelay(5);
1304 	}
1305 
1306 	/* Release if grant not acquired */
1307 	if (!(eec & IXGBE_EEC_GNT)) {
1308 		eec &= ~IXGBE_EEC_REQ;
1309 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1310 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1311 
1312 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1313 		return IXGBE_ERR_EEPROM;
1314 	}
1315 
1316 	/* Setup EEPROM for Read/Write */
1317 	/* Clear CS and SK */
1318 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1319 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1320 	IXGBE_WRITE_FLUSH(hw);
1321 	udelay(1);
1322 	return 0;
1323 }
1324 
1325 /**
1326  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1327  *  @hw: pointer to hardware structure
1328  *
1329  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1330  **/
1331 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1332 {
1333 	u32 timeout = 2000;
1334 	u32 i;
1335 	u32 swsm;
1336 
1337 	/* Get SMBI software semaphore between device drivers first */
1338 	for (i = 0; i < timeout; i++) {
1339 		/*
1340 		 * If the SMBI bit is 0 when we read it, then the bit will be
1341 		 * set and we have the semaphore
1342 		 */
1343 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1344 		if (!(swsm & IXGBE_SWSM_SMBI))
1345 			break;
1346 		usleep_range(50, 100);
1347 	}
1348 
1349 	if (i == timeout) {
1350 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1351 		/* this release is particularly important because our attempts
1352 		 * above to get the semaphore may have succeeded, and if there
1353 		 * was a timeout, we should unconditionally clear the semaphore
1354 		 * bits to free the driver to make progress
1355 		 */
1356 		ixgbe_release_eeprom_semaphore(hw);
1357 
1358 		usleep_range(50, 100);
1359 		/* one last try
1360 		 * If the SMBI bit is 0 when we read it, then the bit will be
1361 		 * set and we have the semaphore
1362 		 */
1363 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1364 		if (swsm & IXGBE_SWSM_SMBI) {
1365 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1366 			return IXGBE_ERR_EEPROM;
1367 		}
1368 	}
1369 
1370 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1371 	for (i = 0; i < timeout; i++) {
1372 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1373 
1374 		/* Set the SW EEPROM semaphore bit to request access */
1375 		swsm |= IXGBE_SWSM_SWESMBI;
1376 		IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1377 
1378 		/* If we set the bit successfully then we got the
1379 		 * semaphore.
1380 		 */
1381 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1382 		if (swsm & IXGBE_SWSM_SWESMBI)
1383 			break;
1384 
1385 		usleep_range(50, 100);
1386 	}
1387 
1388 	/* Release semaphores and return error if SW EEPROM semaphore
1389 	 * was not granted because we don't have access to the EEPROM
1390 	 */
1391 	if (i >= timeout) {
1392 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1393 		ixgbe_release_eeprom_semaphore(hw);
1394 		return IXGBE_ERR_EEPROM;
1395 	}
1396 
1397 	return 0;
1398 }
1399 
1400 /**
1401  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1402  *  @hw: pointer to hardware structure
1403  *
1404  *  This function clears hardware semaphore bits.
1405  **/
1406 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1407 {
1408 	u32 swsm;
1409 
1410 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1411 
1412 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1413 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1414 	IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1415 	IXGBE_WRITE_FLUSH(hw);
1416 }
1417 
1418 /**
1419  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1420  *  @hw: pointer to hardware structure
1421  **/
1422 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1423 {
1424 	u16 i;
1425 	u8 spi_stat_reg;
1426 
1427 	/*
1428 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1429 	 * EEPROM will signal that the command has been completed by clearing
1430 	 * bit 0 of the internal status register.  If it's not cleared within
1431 	 * 5 milliseconds, then error out.
1432 	 */
1433 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1434 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1435 					    IXGBE_EEPROM_OPCODE_BITS);
1436 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1437 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1438 			break;
1439 
1440 		udelay(5);
1441 		ixgbe_standby_eeprom(hw);
1442 	}
1443 
1444 	/*
1445 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1446 	 * devices (and only 0-5mSec on 5V devices)
1447 	 */
1448 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1449 		hw_dbg(hw, "SPI EEPROM Status error\n");
1450 		return IXGBE_ERR_EEPROM;
1451 	}
1452 
1453 	return 0;
1454 }
1455 
1456 /**
1457  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1458  *  @hw: pointer to hardware structure
1459  **/
1460 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1461 {
1462 	u32 eec;
1463 
1464 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1465 
1466 	/* Toggle CS to flush commands */
1467 	eec |= IXGBE_EEC_CS;
1468 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1469 	IXGBE_WRITE_FLUSH(hw);
1470 	udelay(1);
1471 	eec &= ~IXGBE_EEC_CS;
1472 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1473 	IXGBE_WRITE_FLUSH(hw);
1474 	udelay(1);
1475 }
1476 
1477 /**
1478  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1479  *  @hw: pointer to hardware structure
1480  *  @data: data to send to the EEPROM
1481  *  @count: number of bits to shift out
1482  **/
1483 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1484 					u16 count)
1485 {
1486 	u32 eec;
1487 	u32 mask;
1488 	u32 i;
1489 
1490 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1491 
1492 	/*
1493 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1494 	 * one bit at a time.  Determine the starting bit based on count
1495 	 */
1496 	mask = 0x01 << (count - 1);
1497 
1498 	for (i = 0; i < count; i++) {
1499 		/*
1500 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1501 		 * "1", and then raising and then lowering the clock (the SK
1502 		 * bit controls the clock input to the EEPROM).  A "0" is
1503 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1504 		 * raising and then lowering the clock.
1505 		 */
1506 		if (data & mask)
1507 			eec |= IXGBE_EEC_DI;
1508 		else
1509 			eec &= ~IXGBE_EEC_DI;
1510 
1511 		IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1512 		IXGBE_WRITE_FLUSH(hw);
1513 
1514 		udelay(1);
1515 
1516 		ixgbe_raise_eeprom_clk(hw, &eec);
1517 		ixgbe_lower_eeprom_clk(hw, &eec);
1518 
1519 		/*
1520 		 * Shift mask to signify next bit of data to shift in to the
1521 		 * EEPROM
1522 		 */
1523 		mask = mask >> 1;
1524 	}
1525 
1526 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1527 	eec &= ~IXGBE_EEC_DI;
1528 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1529 	IXGBE_WRITE_FLUSH(hw);
1530 }
1531 
1532 /**
1533  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1534  *  @hw: pointer to hardware structure
1535  **/
1536 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1537 {
1538 	u32 eec;
1539 	u32 i;
1540 	u16 data = 0;
1541 
1542 	/*
1543 	 * In order to read a register from the EEPROM, we need to shift
1544 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1545 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1546 	 * the value of the "DO" bit.  During this "shifting in" process the
1547 	 * "DI" bit should always be clear.
1548 	 */
1549 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1550 
1551 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1552 
1553 	for (i = 0; i < count; i++) {
1554 		data = data << 1;
1555 		ixgbe_raise_eeprom_clk(hw, &eec);
1556 
1557 		eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1558 
1559 		eec &= ~(IXGBE_EEC_DI);
1560 		if (eec & IXGBE_EEC_DO)
1561 			data |= 1;
1562 
1563 		ixgbe_lower_eeprom_clk(hw, &eec);
1564 	}
1565 
1566 	return data;
1567 }
1568 
1569 /**
1570  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1571  *  @hw: pointer to hardware structure
1572  *  @eec: EEC register's current value
1573  **/
1574 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1575 {
1576 	/*
1577 	 * Raise the clock input to the EEPROM
1578 	 * (setting the SK bit), then delay
1579 	 */
1580 	*eec = *eec | IXGBE_EEC_SK;
1581 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1582 	IXGBE_WRITE_FLUSH(hw);
1583 	udelay(1);
1584 }
1585 
1586 /**
1587  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1588  *  @hw: pointer to hardware structure
1589  *  @eecd: EECD's current value
1590  **/
1591 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1592 {
1593 	/*
1594 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1595 	 * delay
1596 	 */
1597 	*eec = *eec & ~IXGBE_EEC_SK;
1598 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1599 	IXGBE_WRITE_FLUSH(hw);
1600 	udelay(1);
1601 }
1602 
1603 /**
1604  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1605  *  @hw: pointer to hardware structure
1606  **/
1607 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1608 {
1609 	u32 eec;
1610 
1611 	eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1612 
1613 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1614 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1615 
1616 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1617 	IXGBE_WRITE_FLUSH(hw);
1618 
1619 	udelay(1);
1620 
1621 	/* Stop requesting EEPROM access */
1622 	eec &= ~IXGBE_EEC_REQ;
1623 	IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1624 
1625 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1626 
1627 	/*
1628 	 * Delay before attempt to obtain semaphore again to allow FW
1629 	 * access. semaphore_delay is in ms we need us for usleep_range
1630 	 */
1631 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1632 		     hw->eeprom.semaphore_delay * 2000);
1633 }
1634 
1635 /**
1636  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1637  *  @hw: pointer to hardware structure
1638  **/
1639 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1640 {
1641 	u16 i;
1642 	u16 j;
1643 	u16 checksum = 0;
1644 	u16 length = 0;
1645 	u16 pointer = 0;
1646 	u16 word = 0;
1647 
1648 	/* Include 0x0-0x3F in the checksum */
1649 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1650 		if (hw->eeprom.ops.read(hw, i, &word)) {
1651 			hw_dbg(hw, "EEPROM read failed\n");
1652 			break;
1653 		}
1654 		checksum += word;
1655 	}
1656 
1657 	/* Include all data from pointers except for the fw pointer */
1658 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1659 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1660 			hw_dbg(hw, "EEPROM read failed\n");
1661 			return IXGBE_ERR_EEPROM;
1662 		}
1663 
1664 		/* If the pointer seems invalid */
1665 		if (pointer == 0xFFFF || pointer == 0)
1666 			continue;
1667 
1668 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1669 			hw_dbg(hw, "EEPROM read failed\n");
1670 			return IXGBE_ERR_EEPROM;
1671 		}
1672 
1673 		if (length == 0xFFFF || length == 0)
1674 			continue;
1675 
1676 		for (j = pointer + 1; j <= pointer + length; j++) {
1677 			if (hw->eeprom.ops.read(hw, j, &word)) {
1678 				hw_dbg(hw, "EEPROM read failed\n");
1679 				return IXGBE_ERR_EEPROM;
1680 			}
1681 			checksum += word;
1682 		}
1683 	}
1684 
1685 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1686 
1687 	return (s32)checksum;
1688 }
1689 
1690 /**
1691  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1692  *  @hw: pointer to hardware structure
1693  *  @checksum_val: calculated checksum
1694  *
1695  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1696  *  caller does not need checksum_val, the value can be NULL.
1697  **/
1698 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1699 					   u16 *checksum_val)
1700 {
1701 	s32 status;
1702 	u16 checksum;
1703 	u16 read_checksum = 0;
1704 
1705 	/*
1706 	 * Read the first word from the EEPROM. If this times out or fails, do
1707 	 * not continue or we could be in for a very long wait while every
1708 	 * EEPROM read fails
1709 	 */
1710 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1711 	if (status) {
1712 		hw_dbg(hw, "EEPROM read failed\n");
1713 		return status;
1714 	}
1715 
1716 	status = hw->eeprom.ops.calc_checksum(hw);
1717 	if (status < 0)
1718 		return status;
1719 
1720 	checksum = (u16)(status & 0xffff);
1721 
1722 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1723 	if (status) {
1724 		hw_dbg(hw, "EEPROM read failed\n");
1725 		return status;
1726 	}
1727 
1728 	/* Verify read checksum from EEPROM is the same as
1729 	 * calculated checksum
1730 	 */
1731 	if (read_checksum != checksum)
1732 		status = IXGBE_ERR_EEPROM_CHECKSUM;
1733 
1734 	/* If the user cares, return the calculated checksum */
1735 	if (checksum_val)
1736 		*checksum_val = checksum;
1737 
1738 	return status;
1739 }
1740 
1741 /**
1742  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1743  *  @hw: pointer to hardware structure
1744  **/
1745 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1746 {
1747 	s32 status;
1748 	u16 checksum;
1749 
1750 	/*
1751 	 * Read the first word from the EEPROM. If this times out or fails, do
1752 	 * not continue or we could be in for a very long wait while every
1753 	 * EEPROM read fails
1754 	 */
1755 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1756 	if (status) {
1757 		hw_dbg(hw, "EEPROM read failed\n");
1758 		return status;
1759 	}
1760 
1761 	status = hw->eeprom.ops.calc_checksum(hw);
1762 	if (status < 0)
1763 		return status;
1764 
1765 	checksum = (u16)(status & 0xffff);
1766 
1767 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1768 
1769 	return status;
1770 }
1771 
1772 /**
1773  *  ixgbe_set_rar_generic - Set Rx address register
1774  *  @hw: pointer to hardware structure
1775  *  @index: Receive address register to write
1776  *  @addr: Address to put into receive address register
1777  *  @vmdq: VMDq "set" or "pool" index
1778  *  @enable_addr: set flag that address is active
1779  *
1780  *  Puts an ethernet address into a receive address register.
1781  **/
1782 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1783 			  u32 enable_addr)
1784 {
1785 	u32 rar_low, rar_high;
1786 	u32 rar_entries = hw->mac.num_rar_entries;
1787 
1788 	/* Make sure we are using a valid rar index range */
1789 	if (index >= rar_entries) {
1790 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1791 		return IXGBE_ERR_INVALID_ARGUMENT;
1792 	}
1793 
1794 	/* setup VMDq pool selection before this RAR gets enabled */
1795 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1796 
1797 	/*
1798 	 * HW expects these in little endian so we reverse the byte
1799 	 * order from network order (big endian) to little endian
1800 	 */
1801 	rar_low = ((u32)addr[0] |
1802 		   ((u32)addr[1] << 8) |
1803 		   ((u32)addr[2] << 16) |
1804 		   ((u32)addr[3] << 24));
1805 	/*
1806 	 * Some parts put the VMDq setting in the extra RAH bits,
1807 	 * so save everything except the lower 16 bits that hold part
1808 	 * of the address and the address valid bit.
1809 	 */
1810 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1811 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1812 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1813 
1814 	if (enable_addr != 0)
1815 		rar_high |= IXGBE_RAH_AV;
1816 
1817 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1818 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1819 
1820 	return 0;
1821 }
1822 
1823 /**
1824  *  ixgbe_clear_rar_generic - Remove Rx address register
1825  *  @hw: pointer to hardware structure
1826  *  @index: Receive address register to write
1827  *
1828  *  Clears an ethernet address from a receive address register.
1829  **/
1830 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1831 {
1832 	u32 rar_high;
1833 	u32 rar_entries = hw->mac.num_rar_entries;
1834 
1835 	/* Make sure we are using a valid rar index range */
1836 	if (index >= rar_entries) {
1837 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1838 		return IXGBE_ERR_INVALID_ARGUMENT;
1839 	}
1840 
1841 	/*
1842 	 * Some parts put the VMDq setting in the extra RAH bits,
1843 	 * so save everything except the lower 16 bits that hold part
1844 	 * of the address and the address valid bit.
1845 	 */
1846 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1847 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1848 
1849 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1850 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1851 
1852 	/* clear VMDq pool/queue selection for this RAR */
1853 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1854 
1855 	return 0;
1856 }
1857 
1858 /**
1859  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1860  *  @hw: pointer to hardware structure
1861  *
1862  *  Places the MAC address in receive address register 0 and clears the rest
1863  *  of the receive address registers. Clears the multicast table. Assumes
1864  *  the receiver is in reset when the routine is called.
1865  **/
1866 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1867 {
1868 	u32 i;
1869 	u32 rar_entries = hw->mac.num_rar_entries;
1870 
1871 	/*
1872 	 * If the current mac address is valid, assume it is a software override
1873 	 * to the permanent address.
1874 	 * Otherwise, use the permanent address from the eeprom.
1875 	 */
1876 	if (!is_valid_ether_addr(hw->mac.addr)) {
1877 		/* Get the MAC address from the RAR0 for later reference */
1878 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1879 
1880 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1881 	} else {
1882 		/* Setup the receive address. */
1883 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1884 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1885 
1886 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1887 
1888 		/*  clear VMDq pool/queue selection for RAR 0 */
1889 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1890 	}
1891 	hw->addr_ctrl.overflow_promisc = 0;
1892 
1893 	hw->addr_ctrl.rar_used_count = 1;
1894 
1895 	/* Zero out the other receive addresses. */
1896 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1897 	for (i = 1; i < rar_entries; i++) {
1898 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1899 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1900 	}
1901 
1902 	/* Clear the MTA */
1903 	hw->addr_ctrl.mta_in_use = 0;
1904 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1905 
1906 	hw_dbg(hw, " Clearing MTA\n");
1907 	for (i = 0; i < hw->mac.mcft_size; i++)
1908 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1909 
1910 	if (hw->mac.ops.init_uta_tables)
1911 		hw->mac.ops.init_uta_tables(hw);
1912 
1913 	return 0;
1914 }
1915 
1916 /**
1917  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1918  *  @hw: pointer to hardware structure
1919  *  @mc_addr: the multicast address
1920  *
1921  *  Extracts the 12 bits, from a multicast address, to determine which
1922  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1923  *  incoming rx multicast addresses, to determine the bit-vector to check in
1924  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1925  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1926  *  to mc_filter_type.
1927  **/
1928 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1929 {
1930 	u32 vector = 0;
1931 
1932 	switch (hw->mac.mc_filter_type) {
1933 	case 0:   /* use bits [47:36] of the address */
1934 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1935 		break;
1936 	case 1:   /* use bits [46:35] of the address */
1937 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1938 		break;
1939 	case 2:   /* use bits [45:34] of the address */
1940 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1941 		break;
1942 	case 3:   /* use bits [43:32] of the address */
1943 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1944 		break;
1945 	default:  /* Invalid mc_filter_type */
1946 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1947 		break;
1948 	}
1949 
1950 	/* vector can only be 12-bits or boundary will be exceeded */
1951 	vector &= 0xFFF;
1952 	return vector;
1953 }
1954 
1955 /**
1956  *  ixgbe_set_mta - Set bit-vector in multicast table
1957  *  @hw: pointer to hardware structure
1958  *  @hash_value: Multicast address hash value
1959  *
1960  *  Sets the bit-vector in the multicast table.
1961  **/
1962 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1963 {
1964 	u32 vector;
1965 	u32 vector_bit;
1966 	u32 vector_reg;
1967 
1968 	hw->addr_ctrl.mta_in_use++;
1969 
1970 	vector = ixgbe_mta_vector(hw, mc_addr);
1971 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1972 
1973 	/*
1974 	 * The MTA is a register array of 128 32-bit registers. It is treated
1975 	 * like an array of 4096 bits.  We want to set bit
1976 	 * BitArray[vector_value]. So we figure out what register the bit is
1977 	 * in, read it, OR in the new bit, then write back the new value.  The
1978 	 * register is determined by the upper 7 bits of the vector value and
1979 	 * the bit within that register are determined by the lower 5 bits of
1980 	 * the value.
1981 	 */
1982 	vector_reg = (vector >> 5) & 0x7F;
1983 	vector_bit = vector & 0x1F;
1984 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1985 }
1986 
1987 /**
1988  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1989  *  @hw: pointer to hardware structure
1990  *  @netdev: pointer to net device structure
1991  *
1992  *  The given list replaces any existing list. Clears the MC addrs from receive
1993  *  address registers and the multicast table. Uses unused receive address
1994  *  registers for the first multicast addresses, and hashes the rest into the
1995  *  multicast table.
1996  **/
1997 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1998 				      struct net_device *netdev)
1999 {
2000 	struct netdev_hw_addr *ha;
2001 	u32 i;
2002 
2003 	/*
2004 	 * Set the new number of MC addresses that we are being requested to
2005 	 * use.
2006 	 */
2007 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2008 	hw->addr_ctrl.mta_in_use = 0;
2009 
2010 	/* Clear mta_shadow */
2011 	hw_dbg(hw, " Clearing MTA\n");
2012 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2013 
2014 	/* Update mta shadow */
2015 	netdev_for_each_mc_addr(ha, netdev) {
2016 		hw_dbg(hw, " Adding the multicast addresses:\n");
2017 		ixgbe_set_mta(hw, ha->addr);
2018 	}
2019 
2020 	/* Enable mta */
2021 	for (i = 0; i < hw->mac.mcft_size; i++)
2022 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2023 				      hw->mac.mta_shadow[i]);
2024 
2025 	if (hw->addr_ctrl.mta_in_use > 0)
2026 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2027 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2028 
2029 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2030 	return 0;
2031 }
2032 
2033 /**
2034  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2035  *  @hw: pointer to hardware structure
2036  *
2037  *  Enables multicast address in RAR and the use of the multicast hash table.
2038  **/
2039 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2040 {
2041 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2042 
2043 	if (a->mta_in_use > 0)
2044 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2045 				hw->mac.mc_filter_type);
2046 
2047 	return 0;
2048 }
2049 
2050 /**
2051  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2052  *  @hw: pointer to hardware structure
2053  *
2054  *  Disables multicast address in RAR and the use of the multicast hash table.
2055  **/
2056 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2057 {
2058 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2059 
2060 	if (a->mta_in_use > 0)
2061 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2062 
2063 	return 0;
2064 }
2065 
2066 /**
2067  *  ixgbe_fc_enable_generic - Enable flow control
2068  *  @hw: pointer to hardware structure
2069  *
2070  *  Enable flow control according to the current settings.
2071  **/
2072 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2073 {
2074 	u32 mflcn_reg, fccfg_reg;
2075 	u32 reg;
2076 	u32 fcrtl, fcrth;
2077 	int i;
2078 
2079 	/* Validate the water mark configuration. */
2080 	if (!hw->fc.pause_time)
2081 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2082 
2083 	/* Low water mark of zero causes XOFF floods */
2084 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2085 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2086 		    hw->fc.high_water[i]) {
2087 			if (!hw->fc.low_water[i] ||
2088 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2089 				hw_dbg(hw, "Invalid water mark configuration\n");
2090 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2091 			}
2092 		}
2093 	}
2094 
2095 	/* Negotiate the fc mode to use */
2096 	ixgbe_fc_autoneg(hw);
2097 
2098 	/* Disable any previous flow control settings */
2099 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2100 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2101 
2102 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2103 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2104 
2105 	/*
2106 	 * The possible values of fc.current_mode are:
2107 	 * 0: Flow control is completely disabled
2108 	 * 1: Rx flow control is enabled (we can receive pause frames,
2109 	 *    but not send pause frames).
2110 	 * 2: Tx flow control is enabled (we can send pause frames but
2111 	 *    we do not support receiving pause frames).
2112 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2113 	 * other: Invalid.
2114 	 */
2115 	switch (hw->fc.current_mode) {
2116 	case ixgbe_fc_none:
2117 		/*
2118 		 * Flow control is disabled by software override or autoneg.
2119 		 * The code below will actually disable it in the HW.
2120 		 */
2121 		break;
2122 	case ixgbe_fc_rx_pause:
2123 		/*
2124 		 * Rx Flow control is enabled and Tx Flow control is
2125 		 * disabled by software override. Since there really
2126 		 * isn't a way to advertise that we are capable of RX
2127 		 * Pause ONLY, we will advertise that we support both
2128 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2129 		 * disable the adapter's ability to send PAUSE frames.
2130 		 */
2131 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2132 		break;
2133 	case ixgbe_fc_tx_pause:
2134 		/*
2135 		 * Tx Flow control is enabled, and Rx Flow control is
2136 		 * disabled by software override.
2137 		 */
2138 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2139 		break;
2140 	case ixgbe_fc_full:
2141 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2142 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2143 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2144 		break;
2145 	default:
2146 		hw_dbg(hw, "Flow control param set incorrectly\n");
2147 		return IXGBE_ERR_CONFIG;
2148 	}
2149 
2150 	/* Set 802.3x based flow control settings. */
2151 	mflcn_reg |= IXGBE_MFLCN_DPF;
2152 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2153 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2154 
2155 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2156 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2157 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2158 		    hw->fc.high_water[i]) {
2159 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2160 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2161 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2162 		} else {
2163 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2164 			/*
2165 			 * In order to prevent Tx hangs when the internal Tx
2166 			 * switch is enabled we must set the high water mark
2167 			 * to the Rx packet buffer size - 24KB.  This allows
2168 			 * the Tx switch to function even under heavy Rx
2169 			 * workloads.
2170 			 */
2171 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2172 		}
2173 
2174 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2175 	}
2176 
2177 	/* Configure pause time (2 TCs per register) */
2178 	reg = hw->fc.pause_time * 0x00010001;
2179 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2180 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2181 
2182 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2183 
2184 	return 0;
2185 }
2186 
2187 /**
2188  *  ixgbe_negotiate_fc - Negotiate flow control
2189  *  @hw: pointer to hardware structure
2190  *  @adv_reg: flow control advertised settings
2191  *  @lp_reg: link partner's flow control settings
2192  *  @adv_sym: symmetric pause bit in advertisement
2193  *  @adv_asm: asymmetric pause bit in advertisement
2194  *  @lp_sym: symmetric pause bit in link partner advertisement
2195  *  @lp_asm: asymmetric pause bit in link partner advertisement
2196  *
2197  *  Find the intersection between advertised settings and link partner's
2198  *  advertised settings
2199  **/
2200 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2201 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2202 {
2203 	if ((!(adv_reg)) ||  (!(lp_reg)))
2204 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2205 
2206 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2207 		/*
2208 		 * Now we need to check if the user selected Rx ONLY
2209 		 * of pause frames.  In this case, we had to advertise
2210 		 * FULL flow control because we could not advertise RX
2211 		 * ONLY. Hence, we must now check to see if we need to
2212 		 * turn OFF the TRANSMISSION of PAUSE frames.
2213 		 */
2214 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2215 			hw->fc.current_mode = ixgbe_fc_full;
2216 			hw_dbg(hw, "Flow Control = FULL.\n");
2217 		} else {
2218 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2219 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2220 		}
2221 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2222 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2223 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2224 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2225 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2226 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2227 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2228 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2229 	} else {
2230 		hw->fc.current_mode = ixgbe_fc_none;
2231 		hw_dbg(hw, "Flow Control = NONE.\n");
2232 	}
2233 	return 0;
2234 }
2235 
2236 /**
2237  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2238  *  @hw: pointer to hardware structure
2239  *
2240  *  Enable flow control according on 1 gig fiber.
2241  **/
2242 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2243 {
2244 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2245 	s32 ret_val;
2246 
2247 	/*
2248 	 * On multispeed fiber at 1g, bail out if
2249 	 * - link is up but AN did not complete, or if
2250 	 * - link is up and AN completed but timed out
2251 	 */
2252 
2253 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2254 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2255 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2256 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2257 
2258 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2259 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2260 
2261 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2262 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2263 			       IXGBE_PCS1GANA_ASM_PAUSE,
2264 			       IXGBE_PCS1GANA_SYM_PAUSE,
2265 			       IXGBE_PCS1GANA_ASM_PAUSE);
2266 
2267 	return ret_val;
2268 }
2269 
2270 /**
2271  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2272  *  @hw: pointer to hardware structure
2273  *
2274  *  Enable flow control according to IEEE clause 37.
2275  **/
2276 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2277 {
2278 	u32 links2, anlp1_reg, autoc_reg, links;
2279 	s32 ret_val;
2280 
2281 	/*
2282 	 * On backplane, bail out if
2283 	 * - backplane autoneg was not completed, or if
2284 	 * - we are 82599 and link partner is not AN enabled
2285 	 */
2286 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2287 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2288 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2289 
2290 	if (hw->mac.type == ixgbe_mac_82599EB) {
2291 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2292 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2293 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2294 	}
2295 	/*
2296 	 * Read the 10g AN autoc and LP ability registers and resolve
2297 	 * local flow control settings accordingly
2298 	 */
2299 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2300 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2301 
2302 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2303 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2304 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2305 
2306 	return ret_val;
2307 }
2308 
2309 /**
2310  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2311  *  @hw: pointer to hardware structure
2312  *
2313  *  Enable flow control according to IEEE clause 37.
2314  **/
2315 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2316 {
2317 	u16 technology_ability_reg = 0;
2318 	u16 lp_technology_ability_reg = 0;
2319 
2320 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2321 			     MDIO_MMD_AN,
2322 			     &technology_ability_reg);
2323 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2324 			     MDIO_MMD_AN,
2325 			     &lp_technology_ability_reg);
2326 
2327 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2328 				  (u32)lp_technology_ability_reg,
2329 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2330 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2331 }
2332 
2333 /**
2334  *  ixgbe_fc_autoneg - Configure flow control
2335  *  @hw: pointer to hardware structure
2336  *
2337  *  Compares our advertised flow control capabilities to those advertised by
2338  *  our link partner, and determines the proper flow control mode to use.
2339  **/
2340 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2341 {
2342 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2343 	ixgbe_link_speed speed;
2344 	bool link_up;
2345 
2346 	/*
2347 	 * AN should have completed when the cable was plugged in.
2348 	 * Look for reasons to bail out.  Bail out if:
2349 	 * - FC autoneg is disabled, or if
2350 	 * - link is not up.
2351 	 *
2352 	 * Since we're being called from an LSC, link is already known to be up.
2353 	 * So use link_up_wait_to_complete=false.
2354 	 */
2355 	if (hw->fc.disable_fc_autoneg)
2356 		goto out;
2357 
2358 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2359 	if (!link_up)
2360 		goto out;
2361 
2362 	switch (hw->phy.media_type) {
2363 	/* Autoneg flow control on fiber adapters */
2364 	case ixgbe_media_type_fiber:
2365 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2366 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2367 		break;
2368 
2369 	/* Autoneg flow control on backplane adapters */
2370 	case ixgbe_media_type_backplane:
2371 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2372 		break;
2373 
2374 	/* Autoneg flow control on copper adapters */
2375 	case ixgbe_media_type_copper:
2376 		if (ixgbe_device_supports_autoneg_fc(hw))
2377 			ret_val = ixgbe_fc_autoneg_copper(hw);
2378 		break;
2379 
2380 	default:
2381 		break;
2382 	}
2383 
2384 out:
2385 	if (ret_val == 0) {
2386 		hw->fc.fc_was_autonegged = true;
2387 	} else {
2388 		hw->fc.fc_was_autonegged = false;
2389 		hw->fc.current_mode = hw->fc.requested_mode;
2390 	}
2391 }
2392 
2393 /**
2394  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2395  * @hw: pointer to hardware structure
2396  *
2397  * System-wide timeout range is encoded in PCIe Device Control2 register.
2398  *
2399  *  Add 10% to specified maximum and return the number of times to poll for
2400  *  completion timeout, in units of 100 microsec.  Never return less than
2401  *  800 = 80 millisec.
2402  **/
2403 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2404 {
2405 	s16 devctl2;
2406 	u32 pollcnt;
2407 
2408 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2409 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2410 
2411 	switch (devctl2) {
2412 	case IXGBE_PCIDEVCTRL2_65_130ms:
2413 		 pollcnt = 1300;         /* 130 millisec */
2414 		break;
2415 	case IXGBE_PCIDEVCTRL2_260_520ms:
2416 		pollcnt = 5200;         /* 520 millisec */
2417 		break;
2418 	case IXGBE_PCIDEVCTRL2_1_2s:
2419 		pollcnt = 20000;        /* 2 sec */
2420 		break;
2421 	case IXGBE_PCIDEVCTRL2_4_8s:
2422 		pollcnt = 80000;        /* 8 sec */
2423 		break;
2424 	case IXGBE_PCIDEVCTRL2_17_34s:
2425 		pollcnt = 34000;        /* 34 sec */
2426 		break;
2427 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2428 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2429 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2430 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2431 	default:
2432 		pollcnt = 800;          /* 80 millisec minimum */
2433 		break;
2434 	}
2435 
2436 	/* add 10% to spec maximum */
2437 	return (pollcnt * 11) / 10;
2438 }
2439 
2440 /**
2441  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2442  *  @hw: pointer to hardware structure
2443  *
2444  *  Disables PCI-Express master access and verifies there are no pending
2445  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2446  *  bit hasn't caused the master requests to be disabled, else 0
2447  *  is returned signifying master requests disabled.
2448  **/
2449 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2450 {
2451 	u32 i, poll;
2452 	u16 value;
2453 
2454 	/* Always set this bit to ensure any future transactions are blocked */
2455 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2456 
2457 	/* Exit if master requests are blocked */
2458 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2459 	    ixgbe_removed(hw->hw_addr))
2460 		return 0;
2461 
2462 	/* Poll for master request bit to clear */
2463 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2464 		udelay(100);
2465 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2466 			return 0;
2467 	}
2468 
2469 	/*
2470 	 * Two consecutive resets are required via CTRL.RST per datasheet
2471 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2472 	 * of this need.  The first reset prevents new master requests from
2473 	 * being issued by our device.  We then must wait 1usec or more for any
2474 	 * remaining completions from the PCIe bus to trickle in, and then reset
2475 	 * again to clear out any effects they may have had on our device.
2476 	 */
2477 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2478 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2479 
2480 	if (hw->mac.type >= ixgbe_mac_X550)
2481 		return 0;
2482 
2483 	/*
2484 	 * Before proceeding, make sure that the PCIe block does not have
2485 	 * transactions pending.
2486 	 */
2487 	poll = ixgbe_pcie_timeout_poll(hw);
2488 	for (i = 0; i < poll; i++) {
2489 		udelay(100);
2490 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2491 		if (ixgbe_removed(hw->hw_addr))
2492 			return 0;
2493 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2494 			return 0;
2495 	}
2496 
2497 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2498 	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2499 }
2500 
2501 /**
2502  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2503  *  @hw: pointer to hardware structure
2504  *  @mask: Mask to specify which semaphore to acquire
2505  *
2506  *  Acquires the SWFW semaphore through the GSSR register for the specified
2507  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2508  **/
2509 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2510 {
2511 	u32 gssr = 0;
2512 	u32 swmask = mask;
2513 	u32 fwmask = mask << 5;
2514 	u32 timeout = 200;
2515 	u32 i;
2516 
2517 	for (i = 0; i < timeout; i++) {
2518 		/*
2519 		 * SW NVM semaphore bit is used for access to all
2520 		 * SW_FW_SYNC bits (not just NVM)
2521 		 */
2522 		if (ixgbe_get_eeprom_semaphore(hw))
2523 			return IXGBE_ERR_SWFW_SYNC;
2524 
2525 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2526 		if (!(gssr & (fwmask | swmask))) {
2527 			gssr |= swmask;
2528 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2529 			ixgbe_release_eeprom_semaphore(hw);
2530 			return 0;
2531 		} else {
2532 			/* Resource is currently in use by FW or SW */
2533 			ixgbe_release_eeprom_semaphore(hw);
2534 			usleep_range(5000, 10000);
2535 		}
2536 	}
2537 
2538 	/* If time expired clear the bits holding the lock and retry */
2539 	if (gssr & (fwmask | swmask))
2540 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2541 
2542 	usleep_range(5000, 10000);
2543 	return IXGBE_ERR_SWFW_SYNC;
2544 }
2545 
2546 /**
2547  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2548  *  @hw: pointer to hardware structure
2549  *  @mask: Mask to specify which semaphore to release
2550  *
2551  *  Releases the SWFW semaphore through the GSSR register for the specified
2552  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2553  **/
2554 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2555 {
2556 	u32 gssr;
2557 	u32 swmask = mask;
2558 
2559 	ixgbe_get_eeprom_semaphore(hw);
2560 
2561 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2562 	gssr &= ~swmask;
2563 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2564 
2565 	ixgbe_release_eeprom_semaphore(hw);
2566 }
2567 
2568 /**
2569  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2570  * @hw: pointer to hardware structure
2571  * @reg_val: Value we read from AUTOC
2572  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2573  *	    true in this the generic case.
2574  *
2575  * The default case requires no protection so just to the register read.
2576  **/
2577 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2578 {
2579 	*locked = false;
2580 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2581 	return 0;
2582 }
2583 
2584 /**
2585  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2586  * @hw: pointer to hardware structure
2587  * @reg_val: value to write to AUTOC
2588  * @locked: bool to indicate whether the SW/FW lock was already taken by
2589  *	    previous read.
2590  **/
2591 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2592 {
2593 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2594 	return 0;
2595 }
2596 
2597 /**
2598  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2599  *  @hw: pointer to hardware structure
2600  *
2601  *  Stops the receive data path and waits for the HW to internally
2602  *  empty the Rx security block.
2603  **/
2604 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2605 {
2606 #define IXGBE_MAX_SECRX_POLL 40
2607 	int i;
2608 	int secrxreg;
2609 
2610 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2611 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2612 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2613 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2614 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2615 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2616 			break;
2617 		else
2618 			/* Use interrupt-safe sleep just in case */
2619 			udelay(1000);
2620 	}
2621 
2622 	/* For informational purposes only */
2623 	if (i >= IXGBE_MAX_SECRX_POLL)
2624 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2625 
2626 	return 0;
2627 
2628 }
2629 
2630 /**
2631  *  ixgbe_enable_rx_buff - Enables the receive data path
2632  *  @hw: pointer to hardware structure
2633  *
2634  *  Enables the receive data path
2635  **/
2636 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2637 {
2638 	int secrxreg;
2639 
2640 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2641 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2642 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2643 	IXGBE_WRITE_FLUSH(hw);
2644 
2645 	return 0;
2646 }
2647 
2648 /**
2649  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2650  *  @hw: pointer to hardware structure
2651  *  @regval: register value to write to RXCTRL
2652  *
2653  *  Enables the Rx DMA unit
2654  **/
2655 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2656 {
2657 	if (regval & IXGBE_RXCTRL_RXEN)
2658 		hw->mac.ops.enable_rx(hw);
2659 	else
2660 		hw->mac.ops.disable_rx(hw);
2661 
2662 	return 0;
2663 }
2664 
2665 /**
2666  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2667  *  @hw: pointer to hardware structure
2668  *  @index: led number to blink
2669  **/
2670 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2671 {
2672 	ixgbe_link_speed speed = 0;
2673 	bool link_up = false;
2674 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2675 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2676 	bool locked = false;
2677 	s32 ret_val;
2678 
2679 	/*
2680 	 * Link must be up to auto-blink the LEDs;
2681 	 * Force it if link is down.
2682 	 */
2683 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2684 
2685 	if (!link_up) {
2686 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2687 		if (ret_val)
2688 			return ret_val;
2689 
2690 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2691 		autoc_reg |= IXGBE_AUTOC_FLU;
2692 
2693 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2694 		if (ret_val)
2695 			return ret_val;
2696 
2697 		IXGBE_WRITE_FLUSH(hw);
2698 
2699 		usleep_range(10000, 20000);
2700 	}
2701 
2702 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2703 	led_reg |= IXGBE_LED_BLINK(index);
2704 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2705 	IXGBE_WRITE_FLUSH(hw);
2706 
2707 	return 0;
2708 }
2709 
2710 /**
2711  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2712  *  @hw: pointer to hardware structure
2713  *  @index: led number to stop blinking
2714  **/
2715 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2716 {
2717 	u32 autoc_reg = 0;
2718 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2719 	bool locked = false;
2720 	s32 ret_val;
2721 
2722 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2723 	if (ret_val)
2724 		return ret_val;
2725 
2726 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2727 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2728 
2729 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2730 	if (ret_val)
2731 		return ret_val;
2732 
2733 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2734 	led_reg &= ~IXGBE_LED_BLINK(index);
2735 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2736 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2737 	IXGBE_WRITE_FLUSH(hw);
2738 
2739 	return 0;
2740 }
2741 
2742 /**
2743  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2744  *  @hw: pointer to hardware structure
2745  *  @san_mac_offset: SAN MAC address offset
2746  *
2747  *  This function will read the EEPROM location for the SAN MAC address
2748  *  pointer, and returns the value at that location.  This is used in both
2749  *  get and set mac_addr routines.
2750  **/
2751 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2752 					u16 *san_mac_offset)
2753 {
2754 	s32 ret_val;
2755 
2756 	/*
2757 	 * First read the EEPROM pointer to see if the MAC addresses are
2758 	 * available.
2759 	 */
2760 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2761 				      san_mac_offset);
2762 	if (ret_val)
2763 		hw_err(hw, "eeprom read at offset %d failed\n",
2764 		       IXGBE_SAN_MAC_ADDR_PTR);
2765 
2766 	return ret_val;
2767 }
2768 
2769 /**
2770  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2771  *  @hw: pointer to hardware structure
2772  *  @san_mac_addr: SAN MAC address
2773  *
2774  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2775  *  per-port, so set_lan_id() must be called before reading the addresses.
2776  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2777  *  upon for non-SFP connections, so we must call it here.
2778  **/
2779 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2780 {
2781 	u16 san_mac_data, san_mac_offset;
2782 	u8 i;
2783 	s32 ret_val;
2784 
2785 	/*
2786 	 * First read the EEPROM pointer to see if the MAC addresses are
2787 	 * available.  If they're not, no point in calling set_lan_id() here.
2788 	 */
2789 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2790 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2791 
2792 		goto san_mac_addr_clr;
2793 
2794 	/* make sure we know which port we need to program */
2795 	hw->mac.ops.set_lan_id(hw);
2796 	/* apply the port offset to the address offset */
2797 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2798 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2799 	for (i = 0; i < 3; i++) {
2800 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2801 					      &san_mac_data);
2802 		if (ret_val) {
2803 			hw_err(hw, "eeprom read at offset %d failed\n",
2804 			       san_mac_offset);
2805 			goto san_mac_addr_clr;
2806 		}
2807 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2808 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2809 		san_mac_offset++;
2810 	}
2811 	return 0;
2812 
2813 san_mac_addr_clr:
2814 	/* No addresses available in this EEPROM.  It's not necessarily an
2815 	 * error though, so just wipe the local address and return.
2816 	 */
2817 	for (i = 0; i < 6; i++)
2818 		san_mac_addr[i] = 0xFF;
2819 	return ret_val;
2820 }
2821 
2822 /**
2823  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2824  *  @hw: pointer to hardware structure
2825  *
2826  *  Read PCIe configuration space, and get the MSI-X vector count from
2827  *  the capabilities table.
2828  **/
2829 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2830 {
2831 	u16 msix_count;
2832 	u16 max_msix_count;
2833 	u16 pcie_offset;
2834 
2835 	switch (hw->mac.type) {
2836 	case ixgbe_mac_82598EB:
2837 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2838 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2839 		break;
2840 	case ixgbe_mac_82599EB:
2841 	case ixgbe_mac_X540:
2842 	case ixgbe_mac_X550:
2843 	case ixgbe_mac_X550EM_x:
2844 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2845 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2846 		break;
2847 	default:
2848 		return 1;
2849 	}
2850 
2851 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2852 	if (ixgbe_removed(hw->hw_addr))
2853 		msix_count = 0;
2854 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2855 
2856 	/* MSI-X count is zero-based in HW */
2857 	msix_count++;
2858 
2859 	if (msix_count > max_msix_count)
2860 		msix_count = max_msix_count;
2861 
2862 	return msix_count;
2863 }
2864 
2865 /**
2866  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2867  *  @hw: pointer to hardware struct
2868  *  @rar: receive address register index to disassociate
2869  *  @vmdq: VMDq pool index to remove from the rar
2870  **/
2871 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2872 {
2873 	u32 mpsar_lo, mpsar_hi;
2874 	u32 rar_entries = hw->mac.num_rar_entries;
2875 
2876 	/* Make sure we are using a valid rar index range */
2877 	if (rar >= rar_entries) {
2878 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2879 		return IXGBE_ERR_INVALID_ARGUMENT;
2880 	}
2881 
2882 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2883 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2884 
2885 	if (ixgbe_removed(hw->hw_addr))
2886 		return 0;
2887 
2888 	if (!mpsar_lo && !mpsar_hi)
2889 		return 0;
2890 
2891 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2892 		if (mpsar_lo) {
2893 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2894 			mpsar_lo = 0;
2895 		}
2896 		if (mpsar_hi) {
2897 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2898 			mpsar_hi = 0;
2899 		}
2900 	} else if (vmdq < 32) {
2901 		mpsar_lo &= ~(1 << vmdq);
2902 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2903 	} else {
2904 		mpsar_hi &= ~(1 << (vmdq - 32));
2905 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2906 	}
2907 
2908 	/* was that the last pool using this rar? */
2909 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2910 		hw->mac.ops.clear_rar(hw, rar);
2911 	return 0;
2912 }
2913 
2914 /**
2915  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2916  *  @hw: pointer to hardware struct
2917  *  @rar: receive address register index to associate with a VMDq index
2918  *  @vmdq: VMDq pool index
2919  **/
2920 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2921 {
2922 	u32 mpsar;
2923 	u32 rar_entries = hw->mac.num_rar_entries;
2924 
2925 	/* Make sure we are using a valid rar index range */
2926 	if (rar >= rar_entries) {
2927 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2928 		return IXGBE_ERR_INVALID_ARGUMENT;
2929 	}
2930 
2931 	if (vmdq < 32) {
2932 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2933 		mpsar |= 1 << vmdq;
2934 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2935 	} else {
2936 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2937 		mpsar |= 1 << (vmdq - 32);
2938 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2939 	}
2940 	return 0;
2941 }
2942 
2943 /**
2944  *  This function should only be involved in the IOV mode.
2945  *  In IOV mode, Default pool is next pool after the number of
2946  *  VFs advertized and not 0.
2947  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2948  *
2949  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2950  *  @hw: pointer to hardware struct
2951  *  @vmdq: VMDq pool index
2952  **/
2953 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2954 {
2955 	u32 rar = hw->mac.san_mac_rar_index;
2956 
2957 	if (vmdq < 32) {
2958 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2959 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2960 	} else {
2961 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2962 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2963 	}
2964 
2965 	return 0;
2966 }
2967 
2968 /**
2969  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2970  *  @hw: pointer to hardware structure
2971  **/
2972 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2973 {
2974 	int i;
2975 
2976 	for (i = 0; i < 128; i++)
2977 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2978 
2979 	return 0;
2980 }
2981 
2982 /**
2983  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2984  *  @hw: pointer to hardware structure
2985  *  @vlan: VLAN id to write to VLAN filter
2986  *
2987  *  return the VLVF index where this VLAN id should be placed
2988  *
2989  **/
2990 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2991 {
2992 	u32 bits = 0;
2993 	u32 first_empty_slot = 0;
2994 	s32 regindex;
2995 
2996 	/* short cut the special case */
2997 	if (vlan == 0)
2998 		return 0;
2999 
3000 	/*
3001 	  * Search for the vlan id in the VLVF entries. Save off the first empty
3002 	  * slot found along the way
3003 	  */
3004 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
3005 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3006 		if (!bits && !(first_empty_slot))
3007 			first_empty_slot = regindex;
3008 		else if ((bits & 0x0FFF) == vlan)
3009 			break;
3010 	}
3011 
3012 	/*
3013 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3014 	  * in the VLVF. Else use the first empty VLVF register for this
3015 	  * vlan id.
3016 	  */
3017 	if (regindex >= IXGBE_VLVF_ENTRIES) {
3018 		if (first_empty_slot)
3019 			regindex = first_empty_slot;
3020 		else {
3021 			hw_dbg(hw, "No space in VLVF.\n");
3022 			regindex = IXGBE_ERR_NO_SPACE;
3023 		}
3024 	}
3025 
3026 	return regindex;
3027 }
3028 
3029 /**
3030  *  ixgbe_set_vfta_generic - Set VLAN filter table
3031  *  @hw: pointer to hardware structure
3032  *  @vlan: VLAN id to write to VLAN filter
3033  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3034  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3035  *
3036  *  Turn on/off specified VLAN in the VLAN filter table.
3037  **/
3038 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3039 			   bool vlan_on)
3040 {
3041 	s32 regindex;
3042 	u32 bitindex;
3043 	u32 vfta;
3044 	u32 bits;
3045 	u32 vt;
3046 	u32 targetbit;
3047 	bool vfta_changed = false;
3048 
3049 	if (vlan > 4095)
3050 		return IXGBE_ERR_PARAM;
3051 
3052 	/*
3053 	 * this is a 2 part operation - first the VFTA, then the
3054 	 * VLVF and VLVFB if VT Mode is set
3055 	 * We don't write the VFTA until we know the VLVF part succeeded.
3056 	 */
3057 
3058 	/* Part 1
3059 	 * The VFTA is a bitstring made up of 128 32-bit registers
3060 	 * that enable the particular VLAN id, much like the MTA:
3061 	 *    bits[11-5]: which register
3062 	 *    bits[4-0]:  which bit in the register
3063 	 */
3064 	regindex = (vlan >> 5) & 0x7F;
3065 	bitindex = vlan & 0x1F;
3066 	targetbit = (1 << bitindex);
3067 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3068 
3069 	if (vlan_on) {
3070 		if (!(vfta & targetbit)) {
3071 			vfta |= targetbit;
3072 			vfta_changed = true;
3073 		}
3074 	} else {
3075 		if ((vfta & targetbit)) {
3076 			vfta &= ~targetbit;
3077 			vfta_changed = true;
3078 		}
3079 	}
3080 
3081 	/* Part 2
3082 	 * If VT Mode is set
3083 	 *   Either vlan_on
3084 	 *     make sure the vlan is in VLVF
3085 	 *     set the vind bit in the matching VLVFB
3086 	 *   Or !vlan_on
3087 	 *     clear the pool bit and possibly the vind
3088 	 */
3089 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3090 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3091 		s32 vlvf_index;
3092 
3093 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3094 		if (vlvf_index < 0)
3095 			return vlvf_index;
3096 
3097 		if (vlan_on) {
3098 			/* set the pool bit */
3099 			if (vind < 32) {
3100 				bits = IXGBE_READ_REG(hw,
3101 						IXGBE_VLVFB(vlvf_index*2));
3102 				bits |= (1 << vind);
3103 				IXGBE_WRITE_REG(hw,
3104 						IXGBE_VLVFB(vlvf_index*2),
3105 						bits);
3106 			} else {
3107 				bits = IXGBE_READ_REG(hw,
3108 						IXGBE_VLVFB((vlvf_index*2)+1));
3109 				bits |= (1 << (vind-32));
3110 				IXGBE_WRITE_REG(hw,
3111 						IXGBE_VLVFB((vlvf_index*2)+1),
3112 						bits);
3113 			}
3114 		} else {
3115 			/* clear the pool bit */
3116 			if (vind < 32) {
3117 				bits = IXGBE_READ_REG(hw,
3118 						IXGBE_VLVFB(vlvf_index*2));
3119 				bits &= ~(1 << vind);
3120 				IXGBE_WRITE_REG(hw,
3121 						IXGBE_VLVFB(vlvf_index*2),
3122 						bits);
3123 				bits |= IXGBE_READ_REG(hw,
3124 						IXGBE_VLVFB((vlvf_index*2)+1));
3125 			} else {
3126 				bits = IXGBE_READ_REG(hw,
3127 						IXGBE_VLVFB((vlvf_index*2)+1));
3128 				bits &= ~(1 << (vind-32));
3129 				IXGBE_WRITE_REG(hw,
3130 						IXGBE_VLVFB((vlvf_index*2)+1),
3131 						bits);
3132 				bits |= IXGBE_READ_REG(hw,
3133 						IXGBE_VLVFB(vlvf_index*2));
3134 			}
3135 		}
3136 
3137 		/*
3138 		 * If there are still bits set in the VLVFB registers
3139 		 * for the VLAN ID indicated we need to see if the
3140 		 * caller is requesting that we clear the VFTA entry bit.
3141 		 * If the caller has requested that we clear the VFTA
3142 		 * entry bit but there are still pools/VFs using this VLAN
3143 		 * ID entry then ignore the request.  We're not worried
3144 		 * about the case where we're turning the VFTA VLAN ID
3145 		 * entry bit on, only when requested to turn it off as
3146 		 * there may be multiple pools and/or VFs using the
3147 		 * VLAN ID entry.  In that case we cannot clear the
3148 		 * VFTA bit until all pools/VFs using that VLAN ID have also
3149 		 * been cleared.  This will be indicated by "bits" being
3150 		 * zero.
3151 		 */
3152 		if (bits) {
3153 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3154 					(IXGBE_VLVF_VIEN | vlan));
3155 			if (!vlan_on) {
3156 				/* someone wants to clear the vfta entry
3157 				 * but some pools/VFs are still using it.
3158 				 * Ignore it. */
3159 				vfta_changed = false;
3160 			}
3161 		} else {
3162 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3163 		}
3164 	}
3165 
3166 	if (vfta_changed)
3167 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3168 
3169 	return 0;
3170 }
3171 
3172 /**
3173  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3174  *  @hw: pointer to hardware structure
3175  *
3176  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3177  **/
3178 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3179 {
3180 	u32 offset;
3181 
3182 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3183 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3184 
3185 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3186 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3187 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3188 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3189 	}
3190 
3191 	return 0;
3192 }
3193 
3194 /**
3195  *  ixgbe_check_mac_link_generic - Determine link and speed status
3196  *  @hw: pointer to hardware structure
3197  *  @speed: pointer to link speed
3198  *  @link_up: true when link is up
3199  *  @link_up_wait_to_complete: bool used to wait for link up or not
3200  *
3201  *  Reads the links register to determine if link is up and the current speed
3202  **/
3203 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3204 				 bool *link_up, bool link_up_wait_to_complete)
3205 {
3206 	u32 links_reg, links_orig;
3207 	u32 i;
3208 
3209 	/* clear the old state */
3210 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3211 
3212 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3213 
3214 	if (links_orig != links_reg) {
3215 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3216 		       links_orig, links_reg);
3217 	}
3218 
3219 	if (link_up_wait_to_complete) {
3220 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3221 			if (links_reg & IXGBE_LINKS_UP) {
3222 				*link_up = true;
3223 				break;
3224 			} else {
3225 				*link_up = false;
3226 			}
3227 			msleep(100);
3228 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3229 		}
3230 	} else {
3231 		if (links_reg & IXGBE_LINKS_UP)
3232 			*link_up = true;
3233 		else
3234 			*link_up = false;
3235 	}
3236 
3237 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3238 	case IXGBE_LINKS_SPEED_10G_82599:
3239 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3240 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3241 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3242 		else
3243 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3244 		break;
3245 	case IXGBE_LINKS_SPEED_1G_82599:
3246 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3247 		break;
3248 	case IXGBE_LINKS_SPEED_100_82599:
3249 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3250 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3251 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3252 		else
3253 			*speed = IXGBE_LINK_SPEED_100_FULL;
3254 		break;
3255 	default:
3256 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3257 	}
3258 
3259 	return 0;
3260 }
3261 
3262 /**
3263  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3264  *  the EEPROM
3265  *  @hw: pointer to hardware structure
3266  *  @wwnn_prefix: the alternative WWNN prefix
3267  *  @wwpn_prefix: the alternative WWPN prefix
3268  *
3269  *  This function will read the EEPROM from the alternative SAN MAC address
3270  *  block to check the support for the alternative WWNN/WWPN prefix support.
3271  **/
3272 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3273 					u16 *wwpn_prefix)
3274 {
3275 	u16 offset, caps;
3276 	u16 alt_san_mac_blk_offset;
3277 
3278 	/* clear output first */
3279 	*wwnn_prefix = 0xFFFF;
3280 	*wwpn_prefix = 0xFFFF;
3281 
3282 	/* check if alternative SAN MAC is supported */
3283 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3284 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3285 		goto wwn_prefix_err;
3286 
3287 	if ((alt_san_mac_blk_offset == 0) ||
3288 	    (alt_san_mac_blk_offset == 0xFFFF))
3289 		return 0;
3290 
3291 	/* check capability in alternative san mac address block */
3292 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3293 	if (hw->eeprom.ops.read(hw, offset, &caps))
3294 		goto wwn_prefix_err;
3295 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3296 		return 0;
3297 
3298 	/* get the corresponding prefix for WWNN/WWPN */
3299 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3300 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3301 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3302 
3303 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3304 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3305 		goto wwn_prefix_err;
3306 
3307 	return 0;
3308 
3309 wwn_prefix_err:
3310 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3311 	return 0;
3312 }
3313 
3314 /**
3315  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3316  *  @hw: pointer to hardware structure
3317  *  @enable: enable or disable switch for anti-spoofing
3318  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3319  *
3320  **/
3321 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3322 {
3323 	int j;
3324 	int pf_target_reg = pf >> 3;
3325 	int pf_target_shift = pf % 8;
3326 	u32 pfvfspoof = 0;
3327 
3328 	if (hw->mac.type == ixgbe_mac_82598EB)
3329 		return;
3330 
3331 	if (enable)
3332 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3333 
3334 	/*
3335 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3336 	 * MAC anti-spoof enables in each register array element.
3337 	 */
3338 	for (j = 0; j < pf_target_reg; j++)
3339 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3340 
3341 	/*
3342 	 * The PF should be allowed to spoof so that it can support
3343 	 * emulation mode NICs.  Do not set the bits assigned to the PF
3344 	 */
3345 	pfvfspoof &= (1 << pf_target_shift) - 1;
3346 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3347 
3348 	/*
3349 	 * Remaining pools belong to the PF so they do not need to have
3350 	 * anti-spoofing enabled.
3351 	 */
3352 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3353 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3354 }
3355 
3356 /**
3357  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3358  *  @hw: pointer to hardware structure
3359  *  @enable: enable or disable switch for VLAN anti-spoofing
3360  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3361  *
3362  **/
3363 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3364 {
3365 	int vf_target_reg = vf >> 3;
3366 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3367 	u32 pfvfspoof;
3368 
3369 	if (hw->mac.type == ixgbe_mac_82598EB)
3370 		return;
3371 
3372 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3373 	if (enable)
3374 		pfvfspoof |= (1 << vf_target_shift);
3375 	else
3376 		pfvfspoof &= ~(1 << vf_target_shift);
3377 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3378 }
3379 
3380 /**
3381  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3382  *  @hw: pointer to hardware structure
3383  *  @device_caps: the EEPROM word with the extra device capabilities
3384  *
3385  *  This function will read the EEPROM location for the device capabilities,
3386  *  and return the word through device_caps.
3387  **/
3388 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3389 {
3390 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3391 
3392 	return 0;
3393 }
3394 
3395 /**
3396  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3397  * @hw: pointer to hardware structure
3398  * @num_pb: number of packet buffers to allocate
3399  * @headroom: reserve n KB of headroom
3400  * @strategy: packet buffer allocation strategy
3401  **/
3402 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3403 			     int num_pb,
3404 			     u32 headroom,
3405 			     int strategy)
3406 {
3407 	u32 pbsize = hw->mac.rx_pb_size;
3408 	int i = 0;
3409 	u32 rxpktsize, txpktsize, txpbthresh;
3410 
3411 	/* Reserve headroom */
3412 	pbsize -= headroom;
3413 
3414 	if (!num_pb)
3415 		num_pb = 1;
3416 
3417 	/* Divide remaining packet buffer space amongst the number
3418 	 * of packet buffers requested using supplied strategy.
3419 	 */
3420 	switch (strategy) {
3421 	case (PBA_STRATEGY_WEIGHTED):
3422 		/* pba_80_48 strategy weight first half of packet buffer with
3423 		 * 5/8 of the packet buffer space.
3424 		 */
3425 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3426 		pbsize -= rxpktsize * (num_pb / 2);
3427 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3428 		for (; i < (num_pb / 2); i++)
3429 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3430 		/* Fall through to configure remaining packet buffers */
3431 	case (PBA_STRATEGY_EQUAL):
3432 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3433 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3434 		for (; i < num_pb; i++)
3435 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3436 		break;
3437 	default:
3438 		break;
3439 	}
3440 
3441 	/*
3442 	 * Setup Tx packet buffer and threshold equally for all TCs
3443 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3444 	 * 10 since the largest packet we support is just over 9K.
3445 	 */
3446 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3447 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3448 	for (i = 0; i < num_pb; i++) {
3449 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3450 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3451 	}
3452 
3453 	/* Clear unused TCs, if any, to zero buffer size*/
3454 	for (; i < IXGBE_MAX_PB; i++) {
3455 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3456 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3457 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3458 	}
3459 }
3460 
3461 /**
3462  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3463  *  @buffer: pointer to EEPROM
3464  *  @length: size of EEPROM to calculate a checksum for
3465  *
3466  *  Calculates the checksum for some buffer on a specified length.  The
3467  *  checksum calculated is returned.
3468  **/
3469 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3470 {
3471 	u32 i;
3472 	u8 sum = 0;
3473 
3474 	if (!buffer)
3475 		return 0;
3476 
3477 	for (i = 0; i < length; i++)
3478 		sum += buffer[i];
3479 
3480 	return (u8) (0 - sum);
3481 }
3482 
3483 /**
3484  *  ixgbe_host_interface_command - Issue command to manageability block
3485  *  @hw: pointer to the HW structure
3486  *  @buffer: contains the command to write and where the return status will
3487  *           be placed
3488  *  @length: length of buffer, must be multiple of 4 bytes
3489  *  @timeout: time in ms to wait for command completion
3490  *  @return_data: read and return data from the buffer (true) or not (false)
3491  *  Needed because FW structures are big endian and decoding of
3492  *  these fields can be 8 bit or 16 bit based on command. Decoding
3493  *  is not easily understood without making a table of commands.
3494  *  So we will leave this up to the caller to read back the data
3495  *  in these cases.
3496  *
3497  *  Communicates with the manageability block.  On success return 0
3498  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3499  **/
3500 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3501 				 u32 length, u32 timeout,
3502 				 bool return_data)
3503 {
3504 	u32 hicr, i, bi, fwsts;
3505 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3506 	u16 buf_len, dword_len;
3507 
3508 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3509 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3510 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3511 	}
3512 
3513 	/* Set bit 9 of FWSTS clearing FW reset indication */
3514 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3515 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3516 
3517 	/* Check that the host interface is enabled. */
3518 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3519 	if ((hicr & IXGBE_HICR_EN) == 0) {
3520 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3521 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3522 	}
3523 
3524 	/* Calculate length in DWORDs. We must be DWORD aligned */
3525 	if ((length % (sizeof(u32))) != 0) {
3526 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3527 		return IXGBE_ERR_INVALID_ARGUMENT;
3528 	}
3529 
3530 	dword_len = length >> 2;
3531 
3532 	/*
3533 	 * The device driver writes the relevant command block
3534 	 * into the ram area.
3535 	 */
3536 	for (i = 0; i < dword_len; i++)
3537 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3538 				      i, cpu_to_le32(buffer[i]));
3539 
3540 	/* Setting this bit tells the ARC that a new command is pending. */
3541 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3542 
3543 	for (i = 0; i < timeout; i++) {
3544 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3545 		if (!(hicr & IXGBE_HICR_C))
3546 			break;
3547 		usleep_range(1000, 2000);
3548 	}
3549 
3550 	/* Check command successful completion. */
3551 	if ((timeout != 0 && i == timeout) ||
3552 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3553 		hw_dbg(hw, "Command has failed with no status valid.\n");
3554 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3555 	}
3556 
3557 	if (!return_data)
3558 		return 0;
3559 
3560 	/* Calculate length in DWORDs */
3561 	dword_len = hdr_size >> 2;
3562 
3563 	/* first pull in the header so we know the buffer length */
3564 	for (bi = 0; bi < dword_len; bi++) {
3565 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3566 		le32_to_cpus(&buffer[bi]);
3567 	}
3568 
3569 	/* If there is any thing in data position pull it in */
3570 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3571 	if (buf_len == 0)
3572 		return 0;
3573 
3574 	if (length < (buf_len + hdr_size)) {
3575 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3576 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3577 	}
3578 
3579 	/* Calculate length in DWORDs, add 3 for odd lengths */
3580 	dword_len = (buf_len + 3) >> 2;
3581 
3582 	/* Pull in the rest of the buffer (bi is where we left off)*/
3583 	for (; bi <= dword_len; bi++) {
3584 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3585 		le32_to_cpus(&buffer[bi]);
3586 	}
3587 
3588 	return 0;
3589 }
3590 
3591 /**
3592  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3593  *  @hw: pointer to the HW structure
3594  *  @maj: driver version major number
3595  *  @min: driver version minor number
3596  *  @build: driver version build number
3597  *  @sub: driver version sub build number
3598  *
3599  *  Sends driver version number to firmware through the manageability
3600  *  block.  On success return 0
3601  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3602  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3603  **/
3604 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3605 				 u8 build, u8 sub)
3606 {
3607 	struct ixgbe_hic_drv_info fw_cmd;
3608 	int i;
3609 	s32 ret_val;
3610 
3611 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM))
3612 		return IXGBE_ERR_SWFW_SYNC;
3613 
3614 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3615 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3616 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3617 	fw_cmd.port_num = (u8)hw->bus.func;
3618 	fw_cmd.ver_maj = maj;
3619 	fw_cmd.ver_min = min;
3620 	fw_cmd.ver_build = build;
3621 	fw_cmd.ver_sub = sub;
3622 	fw_cmd.hdr.checksum = 0;
3623 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3624 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3625 	fw_cmd.pad = 0;
3626 	fw_cmd.pad2 = 0;
3627 
3628 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3629 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3630 						       sizeof(fw_cmd),
3631 						       IXGBE_HI_COMMAND_TIMEOUT,
3632 						       true);
3633 		if (ret_val != 0)
3634 			continue;
3635 
3636 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3637 		    FW_CEM_RESP_STATUS_SUCCESS)
3638 			ret_val = 0;
3639 		else
3640 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3641 
3642 		break;
3643 	}
3644 
3645 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3646 	return ret_val;
3647 }
3648 
3649 /**
3650  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3651  * @hw: pointer to the hardware structure
3652  *
3653  * The 82599 and x540 MACs can experience issues if TX work is still pending
3654  * when a reset occurs.  This function prevents this by flushing the PCIe
3655  * buffers on the system.
3656  **/
3657 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3658 {
3659 	u32 gcr_ext, hlreg0, i, poll;
3660 	u16 value;
3661 
3662 	/*
3663 	 * If double reset is not requested then all transactions should
3664 	 * already be clear and as such there is no work to do
3665 	 */
3666 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3667 		return;
3668 
3669 	/*
3670 	 * Set loopback enable to prevent any transmits from being sent
3671 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3672 	 * has already been cleared.
3673 	 */
3674 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3675 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3676 
3677 	/* wait for a last completion before clearing buffers */
3678 	IXGBE_WRITE_FLUSH(hw);
3679 	usleep_range(3000, 6000);
3680 
3681 	/* Before proceeding, make sure that the PCIe block does not have
3682 	 * transactions pending.
3683 	 */
3684 	poll = ixgbe_pcie_timeout_poll(hw);
3685 	for (i = 0; i < poll; i++) {
3686 		usleep_range(100, 200);
3687 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3688 		if (ixgbe_removed(hw->hw_addr))
3689 			break;
3690 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3691 			break;
3692 	}
3693 
3694 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3695 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3696 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3697 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3698 
3699 	/* Flush all writes and allow 20usec for all transactions to clear */
3700 	IXGBE_WRITE_FLUSH(hw);
3701 	udelay(20);
3702 
3703 	/* restore previous register values */
3704 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3705 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3706 }
3707 
3708 static const u8 ixgbe_emc_temp_data[4] = {
3709 	IXGBE_EMC_INTERNAL_DATA,
3710 	IXGBE_EMC_DIODE1_DATA,
3711 	IXGBE_EMC_DIODE2_DATA,
3712 	IXGBE_EMC_DIODE3_DATA
3713 };
3714 static const u8 ixgbe_emc_therm_limit[4] = {
3715 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3716 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3717 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3718 	IXGBE_EMC_DIODE3_THERM_LIMIT
3719 };
3720 
3721 /**
3722  *  ixgbe_get_ets_data - Extracts the ETS bit data
3723  *  @hw: pointer to hardware structure
3724  *  @ets_cfg: extected ETS data
3725  *  @ets_offset: offset of ETS data
3726  *
3727  *  Returns error code.
3728  **/
3729 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3730 			      u16 *ets_offset)
3731 {
3732 	s32 status;
3733 
3734 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3735 	if (status)
3736 		return status;
3737 
3738 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3739 		return IXGBE_NOT_IMPLEMENTED;
3740 
3741 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3742 	if (status)
3743 		return status;
3744 
3745 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3746 		return IXGBE_NOT_IMPLEMENTED;
3747 
3748 	return 0;
3749 }
3750 
3751 /**
3752  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3753  *  @hw: pointer to hardware structure
3754  *
3755  *  Returns the thermal sensor data structure
3756  **/
3757 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3758 {
3759 	s32 status;
3760 	u16 ets_offset;
3761 	u16 ets_cfg;
3762 	u16 ets_sensor;
3763 	u8  num_sensors;
3764 	u8  i;
3765 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3766 
3767 	/* Only support thermal sensors attached to physical port 0 */
3768 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3769 		return IXGBE_NOT_IMPLEMENTED;
3770 
3771 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3772 	if (status)
3773 		return status;
3774 
3775 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3776 	if (num_sensors > IXGBE_MAX_SENSORS)
3777 		num_sensors = IXGBE_MAX_SENSORS;
3778 
3779 	for (i = 0; i < num_sensors; i++) {
3780 		u8  sensor_index;
3781 		u8  sensor_location;
3782 
3783 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3784 					     &ets_sensor);
3785 		if (status)
3786 			return status;
3787 
3788 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3789 				IXGBE_ETS_DATA_INDEX_SHIFT);
3790 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3791 				   IXGBE_ETS_DATA_LOC_SHIFT);
3792 
3793 		if (sensor_location != 0) {
3794 			status = hw->phy.ops.read_i2c_byte(hw,
3795 					ixgbe_emc_temp_data[sensor_index],
3796 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3797 					&data->sensor[i].temp);
3798 			if (status)
3799 				return status;
3800 		}
3801 	}
3802 
3803 	return 0;
3804 }
3805 
3806 /**
3807  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3808  * @hw: pointer to hardware structure
3809  *
3810  * Inits the thermal sensor thresholds according to the NVM map
3811  * and save off the threshold and location values into mac.thermal_sensor_data
3812  **/
3813 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3814 {
3815 	s32 status;
3816 	u16 ets_offset;
3817 	u16 ets_cfg;
3818 	u16 ets_sensor;
3819 	u8  low_thresh_delta;
3820 	u8  num_sensors;
3821 	u8  therm_limit;
3822 	u8  i;
3823 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3824 
3825 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3826 
3827 	/* Only support thermal sensors attached to physical port 0 */
3828 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3829 		return IXGBE_NOT_IMPLEMENTED;
3830 
3831 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3832 	if (status)
3833 		return status;
3834 
3835 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3836 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3837 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3838 	if (num_sensors > IXGBE_MAX_SENSORS)
3839 		num_sensors = IXGBE_MAX_SENSORS;
3840 
3841 	for (i = 0; i < num_sensors; i++) {
3842 		u8  sensor_index;
3843 		u8  sensor_location;
3844 
3845 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3846 			hw_err(hw, "eeprom read at offset %d failed\n",
3847 			       ets_offset + 1 + i);
3848 			continue;
3849 		}
3850 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3851 				IXGBE_ETS_DATA_INDEX_SHIFT);
3852 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3853 				   IXGBE_ETS_DATA_LOC_SHIFT);
3854 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3855 
3856 		hw->phy.ops.write_i2c_byte(hw,
3857 			ixgbe_emc_therm_limit[sensor_index],
3858 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3859 
3860 		if (sensor_location == 0)
3861 			continue;
3862 
3863 		data->sensor[i].location = sensor_location;
3864 		data->sensor[i].caution_thresh = therm_limit;
3865 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3866 	}
3867 
3868 	return 0;
3869 }
3870 
3871 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
3872 {
3873 	u32 rxctrl;
3874 
3875 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3876 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
3877 		if (hw->mac.type != ixgbe_mac_82598EB) {
3878 			u32 pfdtxgswc;
3879 
3880 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3881 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
3882 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
3883 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3884 				hw->mac.set_lben = true;
3885 			} else {
3886 				hw->mac.set_lben = false;
3887 			}
3888 		}
3889 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
3890 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
3891 	}
3892 }
3893 
3894 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
3895 {
3896 	u32 rxctrl;
3897 
3898 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3899 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
3900 
3901 	if (hw->mac.type != ixgbe_mac_82598EB) {
3902 		if (hw->mac.set_lben) {
3903 			u32 pfdtxgswc;
3904 
3905 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3906 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
3907 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3908 			hw->mac.set_lben = false;
3909 		}
3910 	}
3911 }
3912 
3913 /** ixgbe_mng_present - returns true when management capability is present
3914  * @hw: pointer to hardware structure
3915  **/
3916 bool ixgbe_mng_present(struct ixgbe_hw *hw)
3917 {
3918 	u32 fwsm;
3919 
3920 	if (hw->mac.type < ixgbe_mac_82599EB)
3921 		return false;
3922 
3923 	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
3924 	fwsm &= IXGBE_FWSM_MODE_MASK;
3925 	return fwsm == IXGBE_FWSM_FW_MODE_PT;
3926 }
3927 
3928 /**
3929  *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
3930  *  @hw: pointer to hardware structure
3931  *  @speed: new link speed
3932  *  @autoneg_wait_to_complete: true when waiting for completion is needed
3933  *
3934  *  Set the link speed in the MAC and/or PHY register and restarts link.
3935  */
3936 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
3937 					  ixgbe_link_speed speed,
3938 					  bool autoneg_wait_to_complete)
3939 {
3940 	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
3941 	ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
3942 	s32 status = 0;
3943 	u32 speedcnt = 0;
3944 	u32 i = 0;
3945 	bool autoneg, link_up = false;
3946 
3947 	/* Mask off requested but non-supported speeds */
3948 	status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
3949 	if (status)
3950 		return status;
3951 
3952 	speed &= link_speed;
3953 
3954 	/* Try each speed one by one, highest priority first.  We do this in
3955 	 * software because 10Gb fiber doesn't support speed autonegotiation.
3956 	 */
3957 	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
3958 		speedcnt++;
3959 		highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
3960 
3961 		/* If we already have link at this speed, just jump out */
3962 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
3963 						false);
3964 		if (status)
3965 			return status;
3966 
3967 		if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
3968 			goto out;
3969 
3970 		/* Set the module link speed */
3971 		switch (hw->phy.media_type) {
3972 		case ixgbe_media_type_fiber:
3973 			hw->mac.ops.set_rate_select_speed(hw,
3974 						    IXGBE_LINK_SPEED_10GB_FULL);
3975 			break;
3976 		case ixgbe_media_type_fiber_qsfp:
3977 			/* QSFP module automatically detects MAC link speed */
3978 			break;
3979 		default:
3980 			hw_dbg(hw, "Unexpected media type\n");
3981 			break;
3982 		}
3983 
3984 		/* Allow module to change analog characteristics (1G->10G) */
3985 		msleep(40);
3986 
3987 		status = hw->mac.ops.setup_mac_link(hw,
3988 						    IXGBE_LINK_SPEED_10GB_FULL,
3989 						    autoneg_wait_to_complete);
3990 		if (status)
3991 			return status;
3992 
3993 		/* Flap the Tx laser if it has not already been done */
3994 		if (hw->mac.ops.flap_tx_laser)
3995 			hw->mac.ops.flap_tx_laser(hw);
3996 
3997 		/* Wait for the controller to acquire link.  Per IEEE 802.3ap,
3998 		 * Section 73.10.2, we may have to wait up to 500ms if KR is
3999 		 * attempted.  82599 uses the same timing for 10g SFI.
4000 		 */
4001 		for (i = 0; i < 5; i++) {
4002 			/* Wait for the link partner to also set speed */
4003 			msleep(100);
4004 
4005 			/* If we have link, just jump out */
4006 			status = hw->mac.ops.check_link(hw, &link_speed,
4007 							&link_up, false);
4008 			if (status)
4009 				return status;
4010 
4011 			if (link_up)
4012 				goto out;
4013 		}
4014 	}
4015 
4016 	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4017 		speedcnt++;
4018 		if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4019 			highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4020 
4021 		/* If we already have link at this speed, just jump out */
4022 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4023 						false);
4024 		if (status)
4025 			return status;
4026 
4027 		if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
4028 			goto out;
4029 
4030 		/* Set the module link speed */
4031 		switch (hw->phy.media_type) {
4032 		case ixgbe_media_type_fiber:
4033 			hw->mac.ops.set_rate_select_speed(hw,
4034 						     IXGBE_LINK_SPEED_1GB_FULL);
4035 			break;
4036 		case ixgbe_media_type_fiber_qsfp:
4037 			/* QSFP module automatically detects link speed */
4038 			break;
4039 		default:
4040 			hw_dbg(hw, "Unexpected media type\n");
4041 			break;
4042 		}
4043 
4044 		/* Allow module to change analog characteristics (10G->1G) */
4045 		msleep(40);
4046 
4047 		status = hw->mac.ops.setup_mac_link(hw,
4048 						    IXGBE_LINK_SPEED_1GB_FULL,
4049 						    autoneg_wait_to_complete);
4050 		if (status)
4051 			return status;
4052 
4053 		/* Flap the Tx laser if it has not already been done */
4054 		if (hw->mac.ops.flap_tx_laser)
4055 			hw->mac.ops.flap_tx_laser(hw);
4056 
4057 		/* Wait for the link partner to also set speed */
4058 		msleep(100);
4059 
4060 		/* If we have link, just jump out */
4061 		status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4062 						false);
4063 		if (status)
4064 			return status;
4065 
4066 		if (link_up)
4067 			goto out;
4068 	}
4069 
4070 	/* We didn't get link.  Configure back to the highest speed we tried,
4071 	 * (if there was more than one).  We call ourselves back with just the
4072 	 * single highest speed that the user requested.
4073 	 */
4074 	if (speedcnt > 1)
4075 		status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4076 						      highest_link_speed,
4077 						      autoneg_wait_to_complete);
4078 
4079 out:
4080 	/* Set autoneg_advertised value based on input link speed */
4081 	hw->phy.autoneg_advertised = 0;
4082 
4083 	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4084 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4085 
4086 	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4087 		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4088 
4089 	return status;
4090 }
4091 
4092 /**
4093  *  ixgbe_set_soft_rate_select_speed - Set module link speed
4094  *  @hw: pointer to hardware structure
4095  *  @speed: link speed to set
4096  *
4097  *  Set module link speed via the soft rate select.
4098  */
4099 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4100 				      ixgbe_link_speed speed)
4101 {
4102 	s32 status;
4103 	u8 rs, eeprom_data;
4104 
4105 	switch (speed) {
4106 	case IXGBE_LINK_SPEED_10GB_FULL:
4107 		/* one bit mask same as setting on */
4108 		rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4109 		break;
4110 	case IXGBE_LINK_SPEED_1GB_FULL:
4111 		rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4112 		break;
4113 	default:
4114 		hw_dbg(hw, "Invalid fixed module speed\n");
4115 		return;
4116 	}
4117 
4118 	/* Set RS0 */
4119 	status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4120 					   IXGBE_I2C_EEPROM_DEV_ADDR2,
4121 					   &eeprom_data);
4122 	if (status) {
4123 		hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4124 		return;
4125 	}
4126 
4127 	eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4128 
4129 	status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4130 					    IXGBE_I2C_EEPROM_DEV_ADDR2,
4131 					    eeprom_data);
4132 	if (status) {
4133 		hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4134 		return;
4135 	}
4136 }
4137