1 /*******************************************************************************
2 
3   Intel 10 Gigabit PCI Express Linux driver
4   Copyright(c) 1999 - 2014 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33 
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37 
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 					u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49 
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 					     u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 					     u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 						 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59 
60 /**
61  *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
62  *  control
63  *  @hw: pointer to hardware structure
64  *
65  *  There are several phys that do not support autoneg flow control. This
66  *  function check the device id to see if the associated phy supports
67  *  autoneg flow control.
68  **/
69 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
70 {
71 	bool supported = false;
72 	ixgbe_link_speed speed;
73 	bool link_up;
74 
75 	switch (hw->phy.media_type) {
76 	case ixgbe_media_type_fiber:
77 		hw->mac.ops.check_link(hw, &speed, &link_up, false);
78 		/* if link is down, assume supported */
79 		if (link_up)
80 			supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
81 				true : false;
82 		else
83 			supported = true;
84 		break;
85 	case ixgbe_media_type_backplane:
86 		supported = true;
87 		break;
88 	case ixgbe_media_type_copper:
89 		/* only some copper devices support flow control autoneg */
90 		switch (hw->device_id) {
91 		case IXGBE_DEV_ID_82599_T3_LOM:
92 		case IXGBE_DEV_ID_X540T:
93 		case IXGBE_DEV_ID_X540T1:
94 			supported = true;
95 			break;
96 		default:
97 			break;
98 		}
99 	default:
100 		break;
101 	}
102 
103 	return supported;
104 }
105 
106 /**
107  *  ixgbe_setup_fc - Set up flow control
108  *  @hw: pointer to hardware structure
109  *
110  *  Called at init time to set up flow control.
111  **/
112 static s32 ixgbe_setup_fc(struct ixgbe_hw *hw)
113 {
114 	s32 ret_val = 0;
115 	u32 reg = 0, reg_bp = 0;
116 	u16 reg_cu = 0;
117 	bool locked = false;
118 
119 	/*
120 	 * Validate the requested mode.  Strict IEEE mode does not allow
121 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
122 	 */
123 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
124 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
125 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
126 	}
127 
128 	/*
129 	 * 10gig parts do not have a word in the EEPROM to determine the
130 	 * default flow control setting, so we explicitly set it to full.
131 	 */
132 	if (hw->fc.requested_mode == ixgbe_fc_default)
133 		hw->fc.requested_mode = ixgbe_fc_full;
134 
135 	/*
136 	 * Set up the 1G and 10G flow control advertisement registers so the
137 	 * HW will be able to do fc autoneg once the cable is plugged in.  If
138 	 * we link at 10G, the 1G advertisement is harmless and vice versa.
139 	 */
140 	switch (hw->phy.media_type) {
141 	case ixgbe_media_type_backplane:
142 		/* some MAC's need RMW protection on AUTOC */
143 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
144 		if (ret_val)
145 			return ret_val;
146 
147 		/* only backplane uses autoc so fall though */
148 	case ixgbe_media_type_fiber:
149 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
150 
151 		break;
152 	case ixgbe_media_type_copper:
153 		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
154 					MDIO_MMD_AN, &reg_cu);
155 		break;
156 	default:
157 		break;
158 	}
159 
160 	/*
161 	 * The possible values of fc.requested_mode are:
162 	 * 0: Flow control is completely disabled
163 	 * 1: Rx flow control is enabled (we can receive pause frames,
164 	 *    but not send pause frames).
165 	 * 2: Tx flow control is enabled (we can send pause frames but
166 	 *    we do not support receiving pause frames).
167 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
168 	 * other: Invalid.
169 	 */
170 	switch (hw->fc.requested_mode) {
171 	case ixgbe_fc_none:
172 		/* Flow control completely disabled by software override. */
173 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
174 		if (hw->phy.media_type == ixgbe_media_type_backplane)
175 			reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
176 				    IXGBE_AUTOC_ASM_PAUSE);
177 		else if (hw->phy.media_type == ixgbe_media_type_copper)
178 			reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
179 		break;
180 	case ixgbe_fc_tx_pause:
181 		/*
182 		 * Tx Flow control is enabled, and Rx Flow control is
183 		 * disabled by software override.
184 		 */
185 		reg |= IXGBE_PCS1GANA_ASM_PAUSE;
186 		reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
187 		if (hw->phy.media_type == ixgbe_media_type_backplane) {
188 			reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
189 			reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
190 		} else if (hw->phy.media_type == ixgbe_media_type_copper) {
191 			reg_cu |= IXGBE_TAF_ASM_PAUSE;
192 			reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
193 		}
194 		break;
195 	case ixgbe_fc_rx_pause:
196 		/*
197 		 * Rx Flow control is enabled and Tx Flow control is
198 		 * disabled by software override. Since there really
199 		 * isn't a way to advertise that we are capable of RX
200 		 * Pause ONLY, we will advertise that we support both
201 		 * symmetric and asymmetric Rx PAUSE, as such we fall
202 		 * through to the fc_full statement.  Later, we will
203 		 * disable the adapter's ability to send PAUSE frames.
204 		 */
205 	case ixgbe_fc_full:
206 		/* Flow control (both Rx and Tx) is enabled by SW override. */
207 		reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
208 		if (hw->phy.media_type == ixgbe_media_type_backplane)
209 			reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
210 				  IXGBE_AUTOC_ASM_PAUSE;
211 		else if (hw->phy.media_type == ixgbe_media_type_copper)
212 			reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
213 		break;
214 	default:
215 		hw_dbg(hw, "Flow control param set incorrectly\n");
216 		return IXGBE_ERR_CONFIG;
217 	}
218 
219 	if (hw->mac.type != ixgbe_mac_X540) {
220 		/*
221 		 * Enable auto-negotiation between the MAC & PHY;
222 		 * the MAC will advertise clause 37 flow control.
223 		 */
224 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
225 		reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
226 
227 		/* Disable AN timeout */
228 		if (hw->fc.strict_ieee)
229 			reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
230 
231 		IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
232 		hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
233 	}
234 
235 	/*
236 	 * AUTOC restart handles negotiation of 1G and 10G on backplane
237 	 * and copper. There is no need to set the PCS1GCTL register.
238 	 *
239 	 */
240 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
241 		/* Need the SW/FW semaphore around AUTOC writes if 82599 and
242 		 * LESM is on, likewise reset_pipeline requries the lock as
243 		 * it also writes AUTOC.
244 		 */
245 		ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
246 		if (ret_val)
247 			return ret_val;
248 
249 	} else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
250 		   ixgbe_device_supports_autoneg_fc(hw)) {
251 		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
252 				      MDIO_MMD_AN, reg_cu);
253 	}
254 
255 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
256 	return ret_val;
257 }
258 
259 /**
260  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
261  *  @hw: pointer to hardware structure
262  *
263  *  Starts the hardware by filling the bus info structure and media type, clears
264  *  all on chip counters, initializes receive address registers, multicast
265  *  table, VLAN filter table, calls routine to set up link and flow control
266  *  settings, and leaves transmit and receive units disabled and uninitialized
267  **/
268 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
269 {
270 	s32 ret_val;
271 	u32 ctrl_ext;
272 
273 	/* Set the media type */
274 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
275 
276 	/* Identify the PHY */
277 	hw->phy.ops.identify(hw);
278 
279 	/* Clear the VLAN filter table */
280 	hw->mac.ops.clear_vfta(hw);
281 
282 	/* Clear statistics registers */
283 	hw->mac.ops.clear_hw_cntrs(hw);
284 
285 	/* Set No Snoop Disable */
286 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
287 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
288 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
289 	IXGBE_WRITE_FLUSH(hw);
290 
291 	/* Setup flow control */
292 	ret_val = ixgbe_setup_fc(hw);
293 	if (!ret_val)
294 		return 0;
295 
296 	/* Clear adapter stopped flag */
297 	hw->adapter_stopped = false;
298 
299 	return ret_val;
300 }
301 
302 /**
303  *  ixgbe_start_hw_gen2 - Init sequence for common device family
304  *  @hw: pointer to hw structure
305  *
306  * Performs the init sequence common to the second generation
307  * of 10 GbE devices.
308  * Devices in the second generation:
309  *     82599
310  *     X540
311  **/
312 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
313 {
314 	u32 i;
315 
316 	/* Clear the rate limiters */
317 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
318 		IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
319 		IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
320 	}
321 	IXGBE_WRITE_FLUSH(hw);
322 
323 #ifndef CONFIG_SPARC
324 	/* Disable relaxed ordering */
325 	for (i = 0; i < hw->mac.max_tx_queues; i++) {
326 		u32 regval;
327 
328 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
329 		regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
330 		IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
331 	}
332 
333 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
334 		u32 regval;
335 
336 		regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
337 		regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
338 			    IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
339 		IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
340 	}
341 #endif
342 	return 0;
343 }
344 
345 /**
346  *  ixgbe_init_hw_generic - Generic hardware initialization
347  *  @hw: pointer to hardware structure
348  *
349  *  Initialize the hardware by resetting the hardware, filling the bus info
350  *  structure and media type, clears all on chip counters, initializes receive
351  *  address registers, multicast table, VLAN filter table, calls routine to set
352  *  up link and flow control settings, and leaves transmit and receive units
353  *  disabled and uninitialized
354  **/
355 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
356 {
357 	s32 status;
358 
359 	/* Reset the hardware */
360 	status = hw->mac.ops.reset_hw(hw);
361 
362 	if (status == 0) {
363 		/* Start the HW */
364 		status = hw->mac.ops.start_hw(hw);
365 	}
366 
367 	return status;
368 }
369 
370 /**
371  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
372  *  @hw: pointer to hardware structure
373  *
374  *  Clears all hardware statistics counters by reading them from the hardware
375  *  Statistics counters are clear on read.
376  **/
377 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
378 {
379 	u16 i = 0;
380 
381 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
382 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
383 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
384 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
385 	for (i = 0; i < 8; i++)
386 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
387 
388 	IXGBE_READ_REG(hw, IXGBE_MLFC);
389 	IXGBE_READ_REG(hw, IXGBE_MRFC);
390 	IXGBE_READ_REG(hw, IXGBE_RLEC);
391 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
392 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
393 	if (hw->mac.type >= ixgbe_mac_82599EB) {
394 		IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
395 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
396 	} else {
397 		IXGBE_READ_REG(hw, IXGBE_LXONRXC);
398 		IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
399 	}
400 
401 	for (i = 0; i < 8; i++) {
402 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
403 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
404 		if (hw->mac.type >= ixgbe_mac_82599EB) {
405 			IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
406 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
407 		} else {
408 			IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
409 			IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
410 		}
411 	}
412 	if (hw->mac.type >= ixgbe_mac_82599EB)
413 		for (i = 0; i < 8; i++)
414 			IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
415 	IXGBE_READ_REG(hw, IXGBE_PRC64);
416 	IXGBE_READ_REG(hw, IXGBE_PRC127);
417 	IXGBE_READ_REG(hw, IXGBE_PRC255);
418 	IXGBE_READ_REG(hw, IXGBE_PRC511);
419 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
420 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
421 	IXGBE_READ_REG(hw, IXGBE_GPRC);
422 	IXGBE_READ_REG(hw, IXGBE_BPRC);
423 	IXGBE_READ_REG(hw, IXGBE_MPRC);
424 	IXGBE_READ_REG(hw, IXGBE_GPTC);
425 	IXGBE_READ_REG(hw, IXGBE_GORCL);
426 	IXGBE_READ_REG(hw, IXGBE_GORCH);
427 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
428 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
429 	if (hw->mac.type == ixgbe_mac_82598EB)
430 		for (i = 0; i < 8; i++)
431 			IXGBE_READ_REG(hw, IXGBE_RNBC(i));
432 	IXGBE_READ_REG(hw, IXGBE_RUC);
433 	IXGBE_READ_REG(hw, IXGBE_RFC);
434 	IXGBE_READ_REG(hw, IXGBE_ROC);
435 	IXGBE_READ_REG(hw, IXGBE_RJC);
436 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
437 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
438 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
439 	IXGBE_READ_REG(hw, IXGBE_TORL);
440 	IXGBE_READ_REG(hw, IXGBE_TORH);
441 	IXGBE_READ_REG(hw, IXGBE_TPR);
442 	IXGBE_READ_REG(hw, IXGBE_TPT);
443 	IXGBE_READ_REG(hw, IXGBE_PTC64);
444 	IXGBE_READ_REG(hw, IXGBE_PTC127);
445 	IXGBE_READ_REG(hw, IXGBE_PTC255);
446 	IXGBE_READ_REG(hw, IXGBE_PTC511);
447 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
448 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
449 	IXGBE_READ_REG(hw, IXGBE_MPTC);
450 	IXGBE_READ_REG(hw, IXGBE_BPTC);
451 	for (i = 0; i < 16; i++) {
452 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
453 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
454 		if (hw->mac.type >= ixgbe_mac_82599EB) {
455 			IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
456 			IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
457 			IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
458 			IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
459 			IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
460 		} else {
461 			IXGBE_READ_REG(hw, IXGBE_QBRC(i));
462 			IXGBE_READ_REG(hw, IXGBE_QBTC(i));
463 		}
464 	}
465 
466 	if (hw->mac.type == ixgbe_mac_X540) {
467 		if (hw->phy.id == 0)
468 			hw->phy.ops.identify(hw);
469 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
470 		hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
471 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
472 		hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
473 	}
474 
475 	return 0;
476 }
477 
478 /**
479  *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
480  *  @hw: pointer to hardware structure
481  *  @pba_num: stores the part number string from the EEPROM
482  *  @pba_num_size: part number string buffer length
483  *
484  *  Reads the part number string from the EEPROM.
485  **/
486 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
487 				  u32 pba_num_size)
488 {
489 	s32 ret_val;
490 	u16 data;
491 	u16 pba_ptr;
492 	u16 offset;
493 	u16 length;
494 
495 	if (pba_num == NULL) {
496 		hw_dbg(hw, "PBA string buffer was null\n");
497 		return IXGBE_ERR_INVALID_ARGUMENT;
498 	}
499 
500 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
501 	if (ret_val) {
502 		hw_dbg(hw, "NVM Read Error\n");
503 		return ret_val;
504 	}
505 
506 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
507 	if (ret_val) {
508 		hw_dbg(hw, "NVM Read Error\n");
509 		return ret_val;
510 	}
511 
512 	/*
513 	 * if data is not ptr guard the PBA must be in legacy format which
514 	 * means pba_ptr is actually our second data word for the PBA number
515 	 * and we can decode it into an ascii string
516 	 */
517 	if (data != IXGBE_PBANUM_PTR_GUARD) {
518 		hw_dbg(hw, "NVM PBA number is not stored as string\n");
519 
520 		/* we will need 11 characters to store the PBA */
521 		if (pba_num_size < 11) {
522 			hw_dbg(hw, "PBA string buffer too small\n");
523 			return IXGBE_ERR_NO_SPACE;
524 		}
525 
526 		/* extract hex string from data and pba_ptr */
527 		pba_num[0] = (data >> 12) & 0xF;
528 		pba_num[1] = (data >> 8) & 0xF;
529 		pba_num[2] = (data >> 4) & 0xF;
530 		pba_num[3] = data & 0xF;
531 		pba_num[4] = (pba_ptr >> 12) & 0xF;
532 		pba_num[5] = (pba_ptr >> 8) & 0xF;
533 		pba_num[6] = '-';
534 		pba_num[7] = 0;
535 		pba_num[8] = (pba_ptr >> 4) & 0xF;
536 		pba_num[9] = pba_ptr & 0xF;
537 
538 		/* put a null character on the end of our string */
539 		pba_num[10] = '\0';
540 
541 		/* switch all the data but the '-' to hex char */
542 		for (offset = 0; offset < 10; offset++) {
543 			if (pba_num[offset] < 0xA)
544 				pba_num[offset] += '0';
545 			else if (pba_num[offset] < 0x10)
546 				pba_num[offset] += 'A' - 0xA;
547 		}
548 
549 		return 0;
550 	}
551 
552 	ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
553 	if (ret_val) {
554 		hw_dbg(hw, "NVM Read Error\n");
555 		return ret_val;
556 	}
557 
558 	if (length == 0xFFFF || length == 0) {
559 		hw_dbg(hw, "NVM PBA number section invalid length\n");
560 		return IXGBE_ERR_PBA_SECTION;
561 	}
562 
563 	/* check if pba_num buffer is big enough */
564 	if (pba_num_size  < (((u32)length * 2) - 1)) {
565 		hw_dbg(hw, "PBA string buffer too small\n");
566 		return IXGBE_ERR_NO_SPACE;
567 	}
568 
569 	/* trim pba length from start of string */
570 	pba_ptr++;
571 	length--;
572 
573 	for (offset = 0; offset < length; offset++) {
574 		ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
575 		if (ret_val) {
576 			hw_dbg(hw, "NVM Read Error\n");
577 			return ret_val;
578 		}
579 		pba_num[offset * 2] = (u8)(data >> 8);
580 		pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
581 	}
582 	pba_num[offset * 2] = '\0';
583 
584 	return 0;
585 }
586 
587 /**
588  *  ixgbe_get_mac_addr_generic - Generic get MAC address
589  *  @hw: pointer to hardware structure
590  *  @mac_addr: Adapter MAC address
591  *
592  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
593  *  A reset of the adapter must be performed prior to calling this function
594  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
595  **/
596 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
597 {
598 	u32 rar_high;
599 	u32 rar_low;
600 	u16 i;
601 
602 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
603 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
604 
605 	for (i = 0; i < 4; i++)
606 		mac_addr[i] = (u8)(rar_low >> (i*8));
607 
608 	for (i = 0; i < 2; i++)
609 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
610 
611 	return 0;
612 }
613 
614 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
615 {
616 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
617 	case IXGBE_PCI_LINK_WIDTH_1:
618 		return ixgbe_bus_width_pcie_x1;
619 	case IXGBE_PCI_LINK_WIDTH_2:
620 		return ixgbe_bus_width_pcie_x2;
621 	case IXGBE_PCI_LINK_WIDTH_4:
622 		return ixgbe_bus_width_pcie_x4;
623 	case IXGBE_PCI_LINK_WIDTH_8:
624 		return ixgbe_bus_width_pcie_x8;
625 	default:
626 		return ixgbe_bus_width_unknown;
627 	}
628 }
629 
630 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
631 {
632 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
633 	case IXGBE_PCI_LINK_SPEED_2500:
634 		return ixgbe_bus_speed_2500;
635 	case IXGBE_PCI_LINK_SPEED_5000:
636 		return ixgbe_bus_speed_5000;
637 	case IXGBE_PCI_LINK_SPEED_8000:
638 		return ixgbe_bus_speed_8000;
639 	default:
640 		return ixgbe_bus_speed_unknown;
641 	}
642 }
643 
644 /**
645  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
646  *  @hw: pointer to hardware structure
647  *
648  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
649  **/
650 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
651 {
652 	u16 link_status;
653 
654 	hw->bus.type = ixgbe_bus_type_pci_express;
655 
656 	/* Get the negotiated link width and speed from PCI config space */
657 	link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
658 
659 	hw->bus.width = ixgbe_convert_bus_width(link_status);
660 	hw->bus.speed = ixgbe_convert_bus_speed(link_status);
661 
662 	hw->mac.ops.set_lan_id(hw);
663 
664 	return 0;
665 }
666 
667 /**
668  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
669  *  @hw: pointer to the HW structure
670  *
671  *  Determines the LAN function id by reading memory-mapped registers
672  *  and swaps the port value if requested.
673  **/
674 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
675 {
676 	struct ixgbe_bus_info *bus = &hw->bus;
677 	u32 reg;
678 
679 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
680 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
681 	bus->lan_id = bus->func;
682 
683 	/* check for a port swap */
684 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
685 	if (reg & IXGBE_FACTPS_LFS)
686 		bus->func ^= 0x1;
687 }
688 
689 /**
690  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
691  *  @hw: pointer to hardware structure
692  *
693  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
694  *  disables transmit and receive units. The adapter_stopped flag is used by
695  *  the shared code and drivers to determine if the adapter is in a stopped
696  *  state and should not touch the hardware.
697  **/
698 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
699 {
700 	u32 reg_val;
701 	u16 i;
702 
703 	/*
704 	 * Set the adapter_stopped flag so other driver functions stop touching
705 	 * the hardware
706 	 */
707 	hw->adapter_stopped = true;
708 
709 	/* Disable the receive unit */
710 	hw->mac.ops.disable_rx(hw);
711 
712 	/* Clear interrupt mask to stop interrupts from being generated */
713 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
714 
715 	/* Clear any pending interrupts, flush previous writes */
716 	IXGBE_READ_REG(hw, IXGBE_EICR);
717 
718 	/* Disable the transmit unit.  Each queue must be disabled. */
719 	for (i = 0; i < hw->mac.max_tx_queues; i++)
720 		IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
721 
722 	/* Disable the receive unit by stopping each queue */
723 	for (i = 0; i < hw->mac.max_rx_queues; i++) {
724 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
725 		reg_val &= ~IXGBE_RXDCTL_ENABLE;
726 		reg_val |= IXGBE_RXDCTL_SWFLSH;
727 		IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
728 	}
729 
730 	/* flush all queues disables */
731 	IXGBE_WRITE_FLUSH(hw);
732 	usleep_range(1000, 2000);
733 
734 	/*
735 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
736 	 * access and verify no pending requests
737 	 */
738 	return ixgbe_disable_pcie_master(hw);
739 }
740 
741 /**
742  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
743  *  @hw: pointer to hardware structure
744  *  @index: led number to turn on
745  **/
746 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
747 {
748 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
749 
750 	/* To turn on the LED, set mode to ON. */
751 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
752 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
753 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
754 	IXGBE_WRITE_FLUSH(hw);
755 
756 	return 0;
757 }
758 
759 /**
760  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
761  *  @hw: pointer to hardware structure
762  *  @index: led number to turn off
763  **/
764 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
765 {
766 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
767 
768 	/* To turn off the LED, set mode to OFF. */
769 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
770 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
771 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
772 	IXGBE_WRITE_FLUSH(hw);
773 
774 	return 0;
775 }
776 
777 /**
778  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
779  *  @hw: pointer to hardware structure
780  *
781  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
782  *  ixgbe_hw struct in order to set up EEPROM access.
783  **/
784 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
785 {
786 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
787 	u32 eec;
788 	u16 eeprom_size;
789 
790 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
791 		eeprom->type = ixgbe_eeprom_none;
792 		/* Set default semaphore delay to 10ms which is a well
793 		 * tested value */
794 		eeprom->semaphore_delay = 10;
795 		/* Clear EEPROM page size, it will be initialized as needed */
796 		eeprom->word_page_size = 0;
797 
798 		/*
799 		 * Check for EEPROM present first.
800 		 * If not present leave as none
801 		 */
802 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
803 		if (eec & IXGBE_EEC_PRES) {
804 			eeprom->type = ixgbe_eeprom_spi;
805 
806 			/*
807 			 * SPI EEPROM is assumed here.  This code would need to
808 			 * change if a future EEPROM is not SPI.
809 			 */
810 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
811 					    IXGBE_EEC_SIZE_SHIFT);
812 			eeprom->word_size = 1 << (eeprom_size +
813 						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
814 		}
815 
816 		if (eec & IXGBE_EEC_ADDR_SIZE)
817 			eeprom->address_bits = 16;
818 		else
819 			eeprom->address_bits = 8;
820 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
821 		       eeprom->type, eeprom->word_size, eeprom->address_bits);
822 	}
823 
824 	return 0;
825 }
826 
827 /**
828  *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
829  *  @hw: pointer to hardware structure
830  *  @offset: offset within the EEPROM to write
831  *  @words: number of words
832  *  @data: 16 bit word(s) to write to EEPROM
833  *
834  *  Reads 16 bit word(s) from EEPROM through bit-bang method
835  **/
836 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
837 					       u16 words, u16 *data)
838 {
839 	s32 status;
840 	u16 i, count;
841 
842 	hw->eeprom.ops.init_params(hw);
843 
844 	if (words == 0)
845 		return IXGBE_ERR_INVALID_ARGUMENT;
846 
847 	if (offset + words > hw->eeprom.word_size)
848 		return IXGBE_ERR_EEPROM;
849 
850 	/*
851 	 * The EEPROM page size cannot be queried from the chip. We do lazy
852 	 * initialization. It is worth to do that when we write large buffer.
853 	 */
854 	if ((hw->eeprom.word_page_size == 0) &&
855 	    (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
856 		ixgbe_detect_eeprom_page_size_generic(hw, offset);
857 
858 	/*
859 	 * We cannot hold synchronization semaphores for too long
860 	 * to avoid other entity starvation. However it is more efficient
861 	 * to read in bursts than synchronizing access for each word.
862 	 */
863 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
864 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
865 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
866 		status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
867 							    count, &data[i]);
868 
869 		if (status != 0)
870 			break;
871 	}
872 
873 	return status;
874 }
875 
876 /**
877  *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
878  *  @hw: pointer to hardware structure
879  *  @offset: offset within the EEPROM to be written to
880  *  @words: number of word(s)
881  *  @data: 16 bit word(s) to be written to the EEPROM
882  *
883  *  If ixgbe_eeprom_update_checksum is not called after this function, the
884  *  EEPROM will most likely contain an invalid checksum.
885  **/
886 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
887 					      u16 words, u16 *data)
888 {
889 	s32 status;
890 	u16 word;
891 	u16 page_size;
892 	u16 i;
893 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
894 
895 	/* Prepare the EEPROM for writing  */
896 	status = ixgbe_acquire_eeprom(hw);
897 	if (status)
898 		return status;
899 
900 	if (ixgbe_ready_eeprom(hw) != 0) {
901 		ixgbe_release_eeprom(hw);
902 		return IXGBE_ERR_EEPROM;
903 	}
904 
905 	for (i = 0; i < words; i++) {
906 		ixgbe_standby_eeprom(hw);
907 
908 		/* Send the WRITE ENABLE command (8 bit opcode) */
909 		ixgbe_shift_out_eeprom_bits(hw,
910 					    IXGBE_EEPROM_WREN_OPCODE_SPI,
911 					    IXGBE_EEPROM_OPCODE_BITS);
912 
913 		ixgbe_standby_eeprom(hw);
914 
915 		/* Some SPI eeproms use the 8th address bit embedded
916 		 * in the opcode
917 		 */
918 		if ((hw->eeprom.address_bits == 8) &&
919 		    ((offset + i) >= 128))
920 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
921 
922 		/* Send the Write command (8-bit opcode + addr) */
923 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
924 					    IXGBE_EEPROM_OPCODE_BITS);
925 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
926 					    hw->eeprom.address_bits);
927 
928 		page_size = hw->eeprom.word_page_size;
929 
930 		/* Send the data in burst via SPI */
931 		do {
932 			word = data[i];
933 			word = (word >> 8) | (word << 8);
934 			ixgbe_shift_out_eeprom_bits(hw, word, 16);
935 
936 			if (page_size == 0)
937 				break;
938 
939 			/* do not wrap around page */
940 			if (((offset + i) & (page_size - 1)) ==
941 			    (page_size - 1))
942 				break;
943 		} while (++i < words);
944 
945 		ixgbe_standby_eeprom(hw);
946 		usleep_range(10000, 20000);
947 	}
948 	/* Done with writing - release the EEPROM */
949 	ixgbe_release_eeprom(hw);
950 
951 	return 0;
952 }
953 
954 /**
955  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
956  *  @hw: pointer to hardware structure
957  *  @offset: offset within the EEPROM to be written to
958  *  @data: 16 bit word to be written to the EEPROM
959  *
960  *  If ixgbe_eeprom_update_checksum is not called after this function, the
961  *  EEPROM will most likely contain an invalid checksum.
962  **/
963 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
964 {
965 	hw->eeprom.ops.init_params(hw);
966 
967 	if (offset >= hw->eeprom.word_size)
968 		return IXGBE_ERR_EEPROM;
969 
970 	return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
971 }
972 
973 /**
974  *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
975  *  @hw: pointer to hardware structure
976  *  @offset: offset within the EEPROM to be read
977  *  @words: number of word(s)
978  *  @data: read 16 bit words(s) from EEPROM
979  *
980  *  Reads 16 bit word(s) from EEPROM through bit-bang method
981  **/
982 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
983 					      u16 words, u16 *data)
984 {
985 	s32 status;
986 	u16 i, count;
987 
988 	hw->eeprom.ops.init_params(hw);
989 
990 	if (words == 0)
991 		return IXGBE_ERR_INVALID_ARGUMENT;
992 
993 	if (offset + words > hw->eeprom.word_size)
994 		return IXGBE_ERR_EEPROM;
995 
996 	/*
997 	 * We cannot hold synchronization semaphores for too long
998 	 * to avoid other entity starvation. However it is more efficient
999 	 * to read in bursts than synchronizing access for each word.
1000 	 */
1001 	for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1002 		count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1003 			 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1004 
1005 		status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1006 							   count, &data[i]);
1007 
1008 		if (status)
1009 			return status;
1010 	}
1011 
1012 	return 0;
1013 }
1014 
1015 /**
1016  *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1017  *  @hw: pointer to hardware structure
1018  *  @offset: offset within the EEPROM to be read
1019  *  @words: number of word(s)
1020  *  @data: read 16 bit word(s) from EEPROM
1021  *
1022  *  Reads 16 bit word(s) from EEPROM through bit-bang method
1023  **/
1024 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1025 					     u16 words, u16 *data)
1026 {
1027 	s32 status;
1028 	u16 word_in;
1029 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1030 	u16 i;
1031 
1032 	/* Prepare the EEPROM for reading  */
1033 	status = ixgbe_acquire_eeprom(hw);
1034 	if (status)
1035 		return status;
1036 
1037 	if (ixgbe_ready_eeprom(hw) != 0) {
1038 		ixgbe_release_eeprom(hw);
1039 		return IXGBE_ERR_EEPROM;
1040 	}
1041 
1042 	for (i = 0; i < words; i++) {
1043 		ixgbe_standby_eeprom(hw);
1044 		/* Some SPI eeproms use the 8th address bit embedded
1045 		 * in the opcode
1046 		 */
1047 		if ((hw->eeprom.address_bits == 8) &&
1048 		    ((offset + i) >= 128))
1049 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1050 
1051 		/* Send the READ command (opcode + addr) */
1052 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1053 					    IXGBE_EEPROM_OPCODE_BITS);
1054 		ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1055 					    hw->eeprom.address_bits);
1056 
1057 		/* Read the data. */
1058 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1059 		data[i] = (word_in >> 8) | (word_in << 8);
1060 	}
1061 
1062 	/* End this read operation */
1063 	ixgbe_release_eeprom(hw);
1064 
1065 	return 0;
1066 }
1067 
1068 /**
1069  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1070  *  @hw: pointer to hardware structure
1071  *  @offset: offset within the EEPROM to be read
1072  *  @data: read 16 bit value from EEPROM
1073  *
1074  *  Reads 16 bit value from EEPROM through bit-bang method
1075  **/
1076 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1077 				       u16 *data)
1078 {
1079 	hw->eeprom.ops.init_params(hw);
1080 
1081 	if (offset >= hw->eeprom.word_size)
1082 		return IXGBE_ERR_EEPROM;
1083 
1084 	return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1085 }
1086 
1087 /**
1088  *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1089  *  @hw: pointer to hardware structure
1090  *  @offset: offset of word in the EEPROM to read
1091  *  @words: number of word(s)
1092  *  @data: 16 bit word(s) from the EEPROM
1093  *
1094  *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1095  **/
1096 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1097 				   u16 words, u16 *data)
1098 {
1099 	u32 eerd;
1100 	s32 status;
1101 	u32 i;
1102 
1103 	hw->eeprom.ops.init_params(hw);
1104 
1105 	if (words == 0)
1106 		return IXGBE_ERR_INVALID_ARGUMENT;
1107 
1108 	if (offset >= hw->eeprom.word_size)
1109 		return IXGBE_ERR_EEPROM;
1110 
1111 	for (i = 0; i < words; i++) {
1112 		eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1113 		       IXGBE_EEPROM_RW_REG_START;
1114 
1115 		IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1116 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1117 
1118 		if (status == 0) {
1119 			data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1120 				   IXGBE_EEPROM_RW_REG_DATA);
1121 		} else {
1122 			hw_dbg(hw, "Eeprom read timed out\n");
1123 			return status;
1124 		}
1125 	}
1126 
1127 	return 0;
1128 }
1129 
1130 /**
1131  *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1132  *  @hw: pointer to hardware structure
1133  *  @offset: offset within the EEPROM to be used as a scratch pad
1134  *
1135  *  Discover EEPROM page size by writing marching data at given offset.
1136  *  This function is called only when we are writing a new large buffer
1137  *  at given offset so the data would be overwritten anyway.
1138  **/
1139 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1140 						 u16 offset)
1141 {
1142 	u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1143 	s32 status;
1144 	u16 i;
1145 
1146 	for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1147 		data[i] = i;
1148 
1149 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1150 	status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1151 					     IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1152 	hw->eeprom.word_page_size = 0;
1153 	if (status)
1154 		return status;
1155 
1156 	status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1157 	if (status)
1158 		return status;
1159 
1160 	/*
1161 	 * When writing in burst more than the actual page size
1162 	 * EEPROM address wraps around current page.
1163 	 */
1164 	hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1165 
1166 	hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1167 	       hw->eeprom.word_page_size);
1168 	return 0;
1169 }
1170 
1171 /**
1172  *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1173  *  @hw: pointer to hardware structure
1174  *  @offset: offset of  word in the EEPROM to read
1175  *  @data: word read from the EEPROM
1176  *
1177  *  Reads a 16 bit word from the EEPROM using the EERD register.
1178  **/
1179 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1180 {
1181 	return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1182 }
1183 
1184 /**
1185  *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1186  *  @hw: pointer to hardware structure
1187  *  @offset: offset of  word in the EEPROM to write
1188  *  @words: number of words
1189  *  @data: word(s) write to the EEPROM
1190  *
1191  *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1192  **/
1193 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1194 				    u16 words, u16 *data)
1195 {
1196 	u32 eewr;
1197 	s32 status;
1198 	u16 i;
1199 
1200 	hw->eeprom.ops.init_params(hw);
1201 
1202 	if (words == 0)
1203 		return IXGBE_ERR_INVALID_ARGUMENT;
1204 
1205 	if (offset >= hw->eeprom.word_size)
1206 		return IXGBE_ERR_EEPROM;
1207 
1208 	for (i = 0; i < words; i++) {
1209 		eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1210 		       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1211 		       IXGBE_EEPROM_RW_REG_START;
1212 
1213 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1214 		if (status) {
1215 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1216 			return status;
1217 		}
1218 
1219 		IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1220 
1221 		status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1222 		if (status) {
1223 			hw_dbg(hw, "Eeprom write EEWR timed out\n");
1224 			return status;
1225 		}
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 /**
1232  *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1233  *  @hw: pointer to hardware structure
1234  *  @offset: offset of  word in the EEPROM to write
1235  *  @data: word write to the EEPROM
1236  *
1237  *  Write a 16 bit word to the EEPROM using the EEWR register.
1238  **/
1239 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1240 {
1241 	return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1242 }
1243 
1244 /**
1245  *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1246  *  @hw: pointer to hardware structure
1247  *  @ee_reg: EEPROM flag for polling
1248  *
1249  *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1250  *  read or write is done respectively.
1251  **/
1252 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1253 {
1254 	u32 i;
1255 	u32 reg;
1256 
1257 	for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1258 		if (ee_reg == IXGBE_NVM_POLL_READ)
1259 			reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1260 		else
1261 			reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1262 
1263 		if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1264 			return 0;
1265 		}
1266 		udelay(5);
1267 	}
1268 	return IXGBE_ERR_EEPROM;
1269 }
1270 
1271 /**
1272  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1273  *  @hw: pointer to hardware structure
1274  *
1275  *  Prepares EEPROM for access using bit-bang method. This function should
1276  *  be called before issuing a command to the EEPROM.
1277  **/
1278 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1279 {
1280 	u32 eec;
1281 	u32 i;
1282 
1283 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1284 		return IXGBE_ERR_SWFW_SYNC;
1285 
1286 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1287 
1288 	/* Request EEPROM Access */
1289 	eec |= IXGBE_EEC_REQ;
1290 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1291 
1292 	for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1293 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1294 		if (eec & IXGBE_EEC_GNT)
1295 			break;
1296 		udelay(5);
1297 	}
1298 
1299 	/* Release if grant not acquired */
1300 	if (!(eec & IXGBE_EEC_GNT)) {
1301 		eec &= ~IXGBE_EEC_REQ;
1302 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1303 		hw_dbg(hw, "Could not acquire EEPROM grant\n");
1304 
1305 		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1306 		return IXGBE_ERR_EEPROM;
1307 	}
1308 
1309 	/* Setup EEPROM for Read/Write */
1310 	/* Clear CS and SK */
1311 	eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1312 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1313 	IXGBE_WRITE_FLUSH(hw);
1314 	udelay(1);
1315 	return 0;
1316 }
1317 
1318 /**
1319  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1320  *  @hw: pointer to hardware structure
1321  *
1322  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1323  **/
1324 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1325 {
1326 	u32 timeout = 2000;
1327 	u32 i;
1328 	u32 swsm;
1329 
1330 	/* Get SMBI software semaphore between device drivers first */
1331 	for (i = 0; i < timeout; i++) {
1332 		/*
1333 		 * If the SMBI bit is 0 when we read it, then the bit will be
1334 		 * set and we have the semaphore
1335 		 */
1336 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1337 		if (!(swsm & IXGBE_SWSM_SMBI))
1338 			break;
1339 		usleep_range(50, 100);
1340 	}
1341 
1342 	if (i == timeout) {
1343 		hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1344 		/* this release is particularly important because our attempts
1345 		 * above to get the semaphore may have succeeded, and if there
1346 		 * was a timeout, we should unconditionally clear the semaphore
1347 		 * bits to free the driver to make progress
1348 		 */
1349 		ixgbe_release_eeprom_semaphore(hw);
1350 
1351 		usleep_range(50, 100);
1352 		/* one last try
1353 		 * If the SMBI bit is 0 when we read it, then the bit will be
1354 		 * set and we have the semaphore
1355 		 */
1356 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1357 		if (swsm & IXGBE_SWSM_SMBI) {
1358 			hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1359 			return IXGBE_ERR_EEPROM;
1360 		}
1361 	}
1362 
1363 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
1364 	for (i = 0; i < timeout; i++) {
1365 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1366 
1367 		/* Set the SW EEPROM semaphore bit to request access */
1368 		swsm |= IXGBE_SWSM_SWESMBI;
1369 		IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1370 
1371 		/* If we set the bit successfully then we got the
1372 		 * semaphore.
1373 		 */
1374 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1375 		if (swsm & IXGBE_SWSM_SWESMBI)
1376 			break;
1377 
1378 		usleep_range(50, 100);
1379 	}
1380 
1381 	/* Release semaphores and return error if SW EEPROM semaphore
1382 	 * was not granted because we don't have access to the EEPROM
1383 	 */
1384 	if (i >= timeout) {
1385 		hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1386 		ixgbe_release_eeprom_semaphore(hw);
1387 		return IXGBE_ERR_EEPROM;
1388 	}
1389 
1390 	return 0;
1391 }
1392 
1393 /**
1394  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1395  *  @hw: pointer to hardware structure
1396  *
1397  *  This function clears hardware semaphore bits.
1398  **/
1399 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1400 {
1401 	u32 swsm;
1402 
1403 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1404 
1405 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1406 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1407 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1408 	IXGBE_WRITE_FLUSH(hw);
1409 }
1410 
1411 /**
1412  *  ixgbe_ready_eeprom - Polls for EEPROM ready
1413  *  @hw: pointer to hardware structure
1414  **/
1415 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1416 {
1417 	u16 i;
1418 	u8 spi_stat_reg;
1419 
1420 	/*
1421 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
1422 	 * EEPROM will signal that the command has been completed by clearing
1423 	 * bit 0 of the internal status register.  If it's not cleared within
1424 	 * 5 milliseconds, then error out.
1425 	 */
1426 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1427 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1428 					    IXGBE_EEPROM_OPCODE_BITS);
1429 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1430 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1431 			break;
1432 
1433 		udelay(5);
1434 		ixgbe_standby_eeprom(hw);
1435 	}
1436 
1437 	/*
1438 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1439 	 * devices (and only 0-5mSec on 5V devices)
1440 	 */
1441 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1442 		hw_dbg(hw, "SPI EEPROM Status error\n");
1443 		return IXGBE_ERR_EEPROM;
1444 	}
1445 
1446 	return 0;
1447 }
1448 
1449 /**
1450  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1451  *  @hw: pointer to hardware structure
1452  **/
1453 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1454 {
1455 	u32 eec;
1456 
1457 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1458 
1459 	/* Toggle CS to flush commands */
1460 	eec |= IXGBE_EEC_CS;
1461 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1462 	IXGBE_WRITE_FLUSH(hw);
1463 	udelay(1);
1464 	eec &= ~IXGBE_EEC_CS;
1465 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1466 	IXGBE_WRITE_FLUSH(hw);
1467 	udelay(1);
1468 }
1469 
1470 /**
1471  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1472  *  @hw: pointer to hardware structure
1473  *  @data: data to send to the EEPROM
1474  *  @count: number of bits to shift out
1475  **/
1476 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1477 					u16 count)
1478 {
1479 	u32 eec;
1480 	u32 mask;
1481 	u32 i;
1482 
1483 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1484 
1485 	/*
1486 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
1487 	 * one bit at a time.  Determine the starting bit based on count
1488 	 */
1489 	mask = 0x01 << (count - 1);
1490 
1491 	for (i = 0; i < count; i++) {
1492 		/*
1493 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1494 		 * "1", and then raising and then lowering the clock (the SK
1495 		 * bit controls the clock input to the EEPROM).  A "0" is
1496 		 * shifted out to the EEPROM by setting "DI" to "0" and then
1497 		 * raising and then lowering the clock.
1498 		 */
1499 		if (data & mask)
1500 			eec |= IXGBE_EEC_DI;
1501 		else
1502 			eec &= ~IXGBE_EEC_DI;
1503 
1504 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1505 		IXGBE_WRITE_FLUSH(hw);
1506 
1507 		udelay(1);
1508 
1509 		ixgbe_raise_eeprom_clk(hw, &eec);
1510 		ixgbe_lower_eeprom_clk(hw, &eec);
1511 
1512 		/*
1513 		 * Shift mask to signify next bit of data to shift in to the
1514 		 * EEPROM
1515 		 */
1516 		mask = mask >> 1;
1517 	}
1518 
1519 	/* We leave the "DI" bit set to "0" when we leave this routine. */
1520 	eec &= ~IXGBE_EEC_DI;
1521 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1522 	IXGBE_WRITE_FLUSH(hw);
1523 }
1524 
1525 /**
1526  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1527  *  @hw: pointer to hardware structure
1528  **/
1529 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1530 {
1531 	u32 eec;
1532 	u32 i;
1533 	u16 data = 0;
1534 
1535 	/*
1536 	 * In order to read a register from the EEPROM, we need to shift
1537 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1538 	 * the clock input to the EEPROM (setting the SK bit), and then reading
1539 	 * the value of the "DO" bit.  During this "shifting in" process the
1540 	 * "DI" bit should always be clear.
1541 	 */
1542 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1543 
1544 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1545 
1546 	for (i = 0; i < count; i++) {
1547 		data = data << 1;
1548 		ixgbe_raise_eeprom_clk(hw, &eec);
1549 
1550 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1551 
1552 		eec &= ~(IXGBE_EEC_DI);
1553 		if (eec & IXGBE_EEC_DO)
1554 			data |= 1;
1555 
1556 		ixgbe_lower_eeprom_clk(hw, &eec);
1557 	}
1558 
1559 	return data;
1560 }
1561 
1562 /**
1563  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1564  *  @hw: pointer to hardware structure
1565  *  @eec: EEC register's current value
1566  **/
1567 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1568 {
1569 	/*
1570 	 * Raise the clock input to the EEPROM
1571 	 * (setting the SK bit), then delay
1572 	 */
1573 	*eec = *eec | IXGBE_EEC_SK;
1574 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1575 	IXGBE_WRITE_FLUSH(hw);
1576 	udelay(1);
1577 }
1578 
1579 /**
1580  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1581  *  @hw: pointer to hardware structure
1582  *  @eecd: EECD's current value
1583  **/
1584 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1585 {
1586 	/*
1587 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
1588 	 * delay
1589 	 */
1590 	*eec = *eec & ~IXGBE_EEC_SK;
1591 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1592 	IXGBE_WRITE_FLUSH(hw);
1593 	udelay(1);
1594 }
1595 
1596 /**
1597  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1598  *  @hw: pointer to hardware structure
1599  **/
1600 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1601 {
1602 	u32 eec;
1603 
1604 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1605 
1606 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
1607 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1608 
1609 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1610 	IXGBE_WRITE_FLUSH(hw);
1611 
1612 	udelay(1);
1613 
1614 	/* Stop requesting EEPROM access */
1615 	eec &= ~IXGBE_EEC_REQ;
1616 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1617 
1618 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1619 
1620 	/*
1621 	 * Delay before attempt to obtain semaphore again to allow FW
1622 	 * access. semaphore_delay is in ms we need us for usleep_range
1623 	 */
1624 	usleep_range(hw->eeprom.semaphore_delay * 1000,
1625 		     hw->eeprom.semaphore_delay * 2000);
1626 }
1627 
1628 /**
1629  *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1630  *  @hw: pointer to hardware structure
1631  **/
1632 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1633 {
1634 	u16 i;
1635 	u16 j;
1636 	u16 checksum = 0;
1637 	u16 length = 0;
1638 	u16 pointer = 0;
1639 	u16 word = 0;
1640 
1641 	/* Include 0x0-0x3F in the checksum */
1642 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1643 		if (hw->eeprom.ops.read(hw, i, &word)) {
1644 			hw_dbg(hw, "EEPROM read failed\n");
1645 			break;
1646 		}
1647 		checksum += word;
1648 	}
1649 
1650 	/* Include all data from pointers except for the fw pointer */
1651 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1652 		if (hw->eeprom.ops.read(hw, i, &pointer)) {
1653 			hw_dbg(hw, "EEPROM read failed\n");
1654 			return IXGBE_ERR_EEPROM;
1655 		}
1656 
1657 		/* If the pointer seems invalid */
1658 		if (pointer == 0xFFFF || pointer == 0)
1659 			continue;
1660 
1661 		if (hw->eeprom.ops.read(hw, pointer, &length)) {
1662 			hw_dbg(hw, "EEPROM read failed\n");
1663 			return IXGBE_ERR_EEPROM;
1664 		}
1665 
1666 		if (length == 0xFFFF || length == 0)
1667 			continue;
1668 
1669 		for (j = pointer + 1; j <= pointer + length; j++) {
1670 			if (hw->eeprom.ops.read(hw, j, &word)) {
1671 				hw_dbg(hw, "EEPROM read failed\n");
1672 				return IXGBE_ERR_EEPROM;
1673 			}
1674 			checksum += word;
1675 		}
1676 	}
1677 
1678 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1679 
1680 	return (s32)checksum;
1681 }
1682 
1683 /**
1684  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1685  *  @hw: pointer to hardware structure
1686  *  @checksum_val: calculated checksum
1687  *
1688  *  Performs checksum calculation and validates the EEPROM checksum.  If the
1689  *  caller does not need checksum_val, the value can be NULL.
1690  **/
1691 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1692 					   u16 *checksum_val)
1693 {
1694 	s32 status;
1695 	u16 checksum;
1696 	u16 read_checksum = 0;
1697 
1698 	/*
1699 	 * Read the first word from the EEPROM. If this times out or fails, do
1700 	 * not continue or we could be in for a very long wait while every
1701 	 * EEPROM read fails
1702 	 */
1703 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1704 	if (status) {
1705 		hw_dbg(hw, "EEPROM read failed\n");
1706 		return status;
1707 	}
1708 
1709 	status = hw->eeprom.ops.calc_checksum(hw);
1710 	if (status < 0)
1711 		return status;
1712 
1713 	checksum = (u16)(status & 0xffff);
1714 
1715 	status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1716 	if (status) {
1717 		hw_dbg(hw, "EEPROM read failed\n");
1718 		return status;
1719 	}
1720 
1721 	/* Verify read checksum from EEPROM is the same as
1722 	 * calculated checksum
1723 	 */
1724 	if (read_checksum != checksum)
1725 		status = IXGBE_ERR_EEPROM_CHECKSUM;
1726 
1727 	/* If the user cares, return the calculated checksum */
1728 	if (checksum_val)
1729 		*checksum_val = checksum;
1730 
1731 	return status;
1732 }
1733 
1734 /**
1735  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1736  *  @hw: pointer to hardware structure
1737  **/
1738 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1739 {
1740 	s32 status;
1741 	u16 checksum;
1742 
1743 	/*
1744 	 * Read the first word from the EEPROM. If this times out or fails, do
1745 	 * not continue or we could be in for a very long wait while every
1746 	 * EEPROM read fails
1747 	 */
1748 	status = hw->eeprom.ops.read(hw, 0, &checksum);
1749 	if (status) {
1750 		hw_dbg(hw, "EEPROM read failed\n");
1751 		return status;
1752 	}
1753 
1754 	status = hw->eeprom.ops.calc_checksum(hw);
1755 	if (status < 0)
1756 		return status;
1757 
1758 	checksum = (u16)(status & 0xffff);
1759 
1760 	status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1761 
1762 	return status;
1763 }
1764 
1765 /**
1766  *  ixgbe_set_rar_generic - Set Rx address register
1767  *  @hw: pointer to hardware structure
1768  *  @index: Receive address register to write
1769  *  @addr: Address to put into receive address register
1770  *  @vmdq: VMDq "set" or "pool" index
1771  *  @enable_addr: set flag that address is active
1772  *
1773  *  Puts an ethernet address into a receive address register.
1774  **/
1775 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1776 			  u32 enable_addr)
1777 {
1778 	u32 rar_low, rar_high;
1779 	u32 rar_entries = hw->mac.num_rar_entries;
1780 
1781 	/* Make sure we are using a valid rar index range */
1782 	if (index >= rar_entries) {
1783 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1784 		return IXGBE_ERR_INVALID_ARGUMENT;
1785 	}
1786 
1787 	/* setup VMDq pool selection before this RAR gets enabled */
1788 	hw->mac.ops.set_vmdq(hw, index, vmdq);
1789 
1790 	/*
1791 	 * HW expects these in little endian so we reverse the byte
1792 	 * order from network order (big endian) to little endian
1793 	 */
1794 	rar_low = ((u32)addr[0] |
1795 		   ((u32)addr[1] << 8) |
1796 		   ((u32)addr[2] << 16) |
1797 		   ((u32)addr[3] << 24));
1798 	/*
1799 	 * Some parts put the VMDq setting in the extra RAH bits,
1800 	 * so save everything except the lower 16 bits that hold part
1801 	 * of the address and the address valid bit.
1802 	 */
1803 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1804 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1805 	rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1806 
1807 	if (enable_addr != 0)
1808 		rar_high |= IXGBE_RAH_AV;
1809 
1810 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1811 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1812 
1813 	return 0;
1814 }
1815 
1816 /**
1817  *  ixgbe_clear_rar_generic - Remove Rx address register
1818  *  @hw: pointer to hardware structure
1819  *  @index: Receive address register to write
1820  *
1821  *  Clears an ethernet address from a receive address register.
1822  **/
1823 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1824 {
1825 	u32 rar_high;
1826 	u32 rar_entries = hw->mac.num_rar_entries;
1827 
1828 	/* Make sure we are using a valid rar index range */
1829 	if (index >= rar_entries) {
1830 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
1831 		return IXGBE_ERR_INVALID_ARGUMENT;
1832 	}
1833 
1834 	/*
1835 	 * Some parts put the VMDq setting in the extra RAH bits,
1836 	 * so save everything except the lower 16 bits that hold part
1837 	 * of the address and the address valid bit.
1838 	 */
1839 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1840 	rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1841 
1842 	IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1843 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1844 
1845 	/* clear VMDq pool/queue selection for this RAR */
1846 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1847 
1848 	return 0;
1849 }
1850 
1851 /**
1852  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1853  *  @hw: pointer to hardware structure
1854  *
1855  *  Places the MAC address in receive address register 0 and clears the rest
1856  *  of the receive address registers. Clears the multicast table. Assumes
1857  *  the receiver is in reset when the routine is called.
1858  **/
1859 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1860 {
1861 	u32 i;
1862 	u32 rar_entries = hw->mac.num_rar_entries;
1863 
1864 	/*
1865 	 * If the current mac address is valid, assume it is a software override
1866 	 * to the permanent address.
1867 	 * Otherwise, use the permanent address from the eeprom.
1868 	 */
1869 	if (!is_valid_ether_addr(hw->mac.addr)) {
1870 		/* Get the MAC address from the RAR0 for later reference */
1871 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1872 
1873 		hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1874 	} else {
1875 		/* Setup the receive address. */
1876 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1877 		hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1878 
1879 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1880 
1881 		/*  clear VMDq pool/queue selection for RAR 0 */
1882 		hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1883 	}
1884 	hw->addr_ctrl.overflow_promisc = 0;
1885 
1886 	hw->addr_ctrl.rar_used_count = 1;
1887 
1888 	/* Zero out the other receive addresses. */
1889 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1890 	for (i = 1; i < rar_entries; i++) {
1891 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1892 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1893 	}
1894 
1895 	/* Clear the MTA */
1896 	hw->addr_ctrl.mta_in_use = 0;
1897 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1898 
1899 	hw_dbg(hw, " Clearing MTA\n");
1900 	for (i = 0; i < hw->mac.mcft_size; i++)
1901 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1902 
1903 	if (hw->mac.ops.init_uta_tables)
1904 		hw->mac.ops.init_uta_tables(hw);
1905 
1906 	return 0;
1907 }
1908 
1909 /**
1910  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1911  *  @hw: pointer to hardware structure
1912  *  @mc_addr: the multicast address
1913  *
1914  *  Extracts the 12 bits, from a multicast address, to determine which
1915  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1916  *  incoming rx multicast addresses, to determine the bit-vector to check in
1917  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1918  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1919  *  to mc_filter_type.
1920  **/
1921 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1922 {
1923 	u32 vector = 0;
1924 
1925 	switch (hw->mac.mc_filter_type) {
1926 	case 0:   /* use bits [47:36] of the address */
1927 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1928 		break;
1929 	case 1:   /* use bits [46:35] of the address */
1930 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1931 		break;
1932 	case 2:   /* use bits [45:34] of the address */
1933 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1934 		break;
1935 	case 3:   /* use bits [43:32] of the address */
1936 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1937 		break;
1938 	default:  /* Invalid mc_filter_type */
1939 		hw_dbg(hw, "MC filter type param set incorrectly\n");
1940 		break;
1941 	}
1942 
1943 	/* vector can only be 12-bits or boundary will be exceeded */
1944 	vector &= 0xFFF;
1945 	return vector;
1946 }
1947 
1948 /**
1949  *  ixgbe_set_mta - Set bit-vector in multicast table
1950  *  @hw: pointer to hardware structure
1951  *  @hash_value: Multicast address hash value
1952  *
1953  *  Sets the bit-vector in the multicast table.
1954  **/
1955 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1956 {
1957 	u32 vector;
1958 	u32 vector_bit;
1959 	u32 vector_reg;
1960 
1961 	hw->addr_ctrl.mta_in_use++;
1962 
1963 	vector = ixgbe_mta_vector(hw, mc_addr);
1964 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1965 
1966 	/*
1967 	 * The MTA is a register array of 128 32-bit registers. It is treated
1968 	 * like an array of 4096 bits.  We want to set bit
1969 	 * BitArray[vector_value]. So we figure out what register the bit is
1970 	 * in, read it, OR in the new bit, then write back the new value.  The
1971 	 * register is determined by the upper 7 bits of the vector value and
1972 	 * the bit within that register are determined by the lower 5 bits of
1973 	 * the value.
1974 	 */
1975 	vector_reg = (vector >> 5) & 0x7F;
1976 	vector_bit = vector & 0x1F;
1977 	hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1978 }
1979 
1980 /**
1981  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1982  *  @hw: pointer to hardware structure
1983  *  @netdev: pointer to net device structure
1984  *
1985  *  The given list replaces any existing list. Clears the MC addrs from receive
1986  *  address registers and the multicast table. Uses unused receive address
1987  *  registers for the first multicast addresses, and hashes the rest into the
1988  *  multicast table.
1989  **/
1990 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1991 				      struct net_device *netdev)
1992 {
1993 	struct netdev_hw_addr *ha;
1994 	u32 i;
1995 
1996 	/*
1997 	 * Set the new number of MC addresses that we are being requested to
1998 	 * use.
1999 	 */
2000 	hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2001 	hw->addr_ctrl.mta_in_use = 0;
2002 
2003 	/* Clear mta_shadow */
2004 	hw_dbg(hw, " Clearing MTA\n");
2005 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2006 
2007 	/* Update mta shadow */
2008 	netdev_for_each_mc_addr(ha, netdev) {
2009 		hw_dbg(hw, " Adding the multicast addresses:\n");
2010 		ixgbe_set_mta(hw, ha->addr);
2011 	}
2012 
2013 	/* Enable mta */
2014 	for (i = 0; i < hw->mac.mcft_size; i++)
2015 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2016 				      hw->mac.mta_shadow[i]);
2017 
2018 	if (hw->addr_ctrl.mta_in_use > 0)
2019 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2020 				IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2021 
2022 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2023 	return 0;
2024 }
2025 
2026 /**
2027  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2028  *  @hw: pointer to hardware structure
2029  *
2030  *  Enables multicast address in RAR and the use of the multicast hash table.
2031  **/
2032 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2033 {
2034 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2035 
2036 	if (a->mta_in_use > 0)
2037 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2038 				hw->mac.mc_filter_type);
2039 
2040 	return 0;
2041 }
2042 
2043 /**
2044  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2045  *  @hw: pointer to hardware structure
2046  *
2047  *  Disables multicast address in RAR and the use of the multicast hash table.
2048  **/
2049 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2050 {
2051 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2052 
2053 	if (a->mta_in_use > 0)
2054 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2055 
2056 	return 0;
2057 }
2058 
2059 /**
2060  *  ixgbe_fc_enable_generic - Enable flow control
2061  *  @hw: pointer to hardware structure
2062  *
2063  *  Enable flow control according to the current settings.
2064  **/
2065 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2066 {
2067 	u32 mflcn_reg, fccfg_reg;
2068 	u32 reg;
2069 	u32 fcrtl, fcrth;
2070 	int i;
2071 
2072 	/* Validate the water mark configuration. */
2073 	if (!hw->fc.pause_time)
2074 		return IXGBE_ERR_INVALID_LINK_SETTINGS;
2075 
2076 	/* Low water mark of zero causes XOFF floods */
2077 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2078 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2079 		    hw->fc.high_water[i]) {
2080 			if (!hw->fc.low_water[i] ||
2081 			    hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2082 				hw_dbg(hw, "Invalid water mark configuration\n");
2083 				return IXGBE_ERR_INVALID_LINK_SETTINGS;
2084 			}
2085 		}
2086 	}
2087 
2088 	/* Negotiate the fc mode to use */
2089 	ixgbe_fc_autoneg(hw);
2090 
2091 	/* Disable any previous flow control settings */
2092 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2093 	mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2094 
2095 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2096 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2097 
2098 	/*
2099 	 * The possible values of fc.current_mode are:
2100 	 * 0: Flow control is completely disabled
2101 	 * 1: Rx flow control is enabled (we can receive pause frames,
2102 	 *    but not send pause frames).
2103 	 * 2: Tx flow control is enabled (we can send pause frames but
2104 	 *    we do not support receiving pause frames).
2105 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2106 	 * other: Invalid.
2107 	 */
2108 	switch (hw->fc.current_mode) {
2109 	case ixgbe_fc_none:
2110 		/*
2111 		 * Flow control is disabled by software override or autoneg.
2112 		 * The code below will actually disable it in the HW.
2113 		 */
2114 		break;
2115 	case ixgbe_fc_rx_pause:
2116 		/*
2117 		 * Rx Flow control is enabled and Tx Flow control is
2118 		 * disabled by software override. Since there really
2119 		 * isn't a way to advertise that we are capable of RX
2120 		 * Pause ONLY, we will advertise that we support both
2121 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
2122 		 * disable the adapter's ability to send PAUSE frames.
2123 		 */
2124 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2125 		break;
2126 	case ixgbe_fc_tx_pause:
2127 		/*
2128 		 * Tx Flow control is enabled, and Rx Flow control is
2129 		 * disabled by software override.
2130 		 */
2131 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2132 		break;
2133 	case ixgbe_fc_full:
2134 		/* Flow control (both Rx and Tx) is enabled by SW override. */
2135 		mflcn_reg |= IXGBE_MFLCN_RFCE;
2136 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2137 		break;
2138 	default:
2139 		hw_dbg(hw, "Flow control param set incorrectly\n");
2140 		return IXGBE_ERR_CONFIG;
2141 	}
2142 
2143 	/* Set 802.3x based flow control settings. */
2144 	mflcn_reg |= IXGBE_MFLCN_DPF;
2145 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2146 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2147 
2148 	/* Set up and enable Rx high/low water mark thresholds, enable XON. */
2149 	for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2150 		if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2151 		    hw->fc.high_water[i]) {
2152 			fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2153 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2154 			fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2155 		} else {
2156 			IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2157 			/*
2158 			 * In order to prevent Tx hangs when the internal Tx
2159 			 * switch is enabled we must set the high water mark
2160 			 * to the maximum FCRTH value.  This allows the Tx
2161 			 * switch to function even under heavy Rx workloads.
2162 			 */
2163 			fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 32;
2164 		}
2165 
2166 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2167 	}
2168 
2169 	/* Configure pause time (2 TCs per register) */
2170 	reg = hw->fc.pause_time * 0x00010001;
2171 	for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2172 		IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2173 
2174 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2175 
2176 	return 0;
2177 }
2178 
2179 /**
2180  *  ixgbe_negotiate_fc - Negotiate flow control
2181  *  @hw: pointer to hardware structure
2182  *  @adv_reg: flow control advertised settings
2183  *  @lp_reg: link partner's flow control settings
2184  *  @adv_sym: symmetric pause bit in advertisement
2185  *  @adv_asm: asymmetric pause bit in advertisement
2186  *  @lp_sym: symmetric pause bit in link partner advertisement
2187  *  @lp_asm: asymmetric pause bit in link partner advertisement
2188  *
2189  *  Find the intersection between advertised settings and link partner's
2190  *  advertised settings
2191  **/
2192 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2193 			      u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2194 {
2195 	if ((!(adv_reg)) ||  (!(lp_reg)))
2196 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2197 
2198 	if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2199 		/*
2200 		 * Now we need to check if the user selected Rx ONLY
2201 		 * of pause frames.  In this case, we had to advertise
2202 		 * FULL flow control because we could not advertise RX
2203 		 * ONLY. Hence, we must now check to see if we need to
2204 		 * turn OFF the TRANSMISSION of PAUSE frames.
2205 		 */
2206 		if (hw->fc.requested_mode == ixgbe_fc_full) {
2207 			hw->fc.current_mode = ixgbe_fc_full;
2208 			hw_dbg(hw, "Flow Control = FULL.\n");
2209 		} else {
2210 			hw->fc.current_mode = ixgbe_fc_rx_pause;
2211 			hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2212 		}
2213 	} else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2214 		   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2215 		hw->fc.current_mode = ixgbe_fc_tx_pause;
2216 		hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2217 	} else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2218 		   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2219 		hw->fc.current_mode = ixgbe_fc_rx_pause;
2220 		hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2221 	} else {
2222 		hw->fc.current_mode = ixgbe_fc_none;
2223 		hw_dbg(hw, "Flow Control = NONE.\n");
2224 	}
2225 	return 0;
2226 }
2227 
2228 /**
2229  *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2230  *  @hw: pointer to hardware structure
2231  *
2232  *  Enable flow control according on 1 gig fiber.
2233  **/
2234 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2235 {
2236 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2237 	s32 ret_val;
2238 
2239 	/*
2240 	 * On multispeed fiber at 1g, bail out if
2241 	 * - link is up but AN did not complete, or if
2242 	 * - link is up and AN completed but timed out
2243 	 */
2244 
2245 	linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2246 	if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2247 	    (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2248 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2249 
2250 	pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2251 	pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2252 
2253 	ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2254 			       pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2255 			       IXGBE_PCS1GANA_ASM_PAUSE,
2256 			       IXGBE_PCS1GANA_SYM_PAUSE,
2257 			       IXGBE_PCS1GANA_ASM_PAUSE);
2258 
2259 	return ret_val;
2260 }
2261 
2262 /**
2263  *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2264  *  @hw: pointer to hardware structure
2265  *
2266  *  Enable flow control according to IEEE clause 37.
2267  **/
2268 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2269 {
2270 	u32 links2, anlp1_reg, autoc_reg, links;
2271 	s32 ret_val;
2272 
2273 	/*
2274 	 * On backplane, bail out if
2275 	 * - backplane autoneg was not completed, or if
2276 	 * - we are 82599 and link partner is not AN enabled
2277 	 */
2278 	links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2279 	if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2280 		return IXGBE_ERR_FC_NOT_NEGOTIATED;
2281 
2282 	if (hw->mac.type == ixgbe_mac_82599EB) {
2283 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2284 		if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2285 			return IXGBE_ERR_FC_NOT_NEGOTIATED;
2286 	}
2287 	/*
2288 	 * Read the 10g AN autoc and LP ability registers and resolve
2289 	 * local flow control settings accordingly
2290 	 */
2291 	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2292 	anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2293 
2294 	ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2295 		anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2296 		IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2297 
2298 	return ret_val;
2299 }
2300 
2301 /**
2302  *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2303  *  @hw: pointer to hardware structure
2304  *
2305  *  Enable flow control according to IEEE clause 37.
2306  **/
2307 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2308 {
2309 	u16 technology_ability_reg = 0;
2310 	u16 lp_technology_ability_reg = 0;
2311 
2312 	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2313 			     MDIO_MMD_AN,
2314 			     &technology_ability_reg);
2315 	hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2316 			     MDIO_MMD_AN,
2317 			     &lp_technology_ability_reg);
2318 
2319 	return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2320 				  (u32)lp_technology_ability_reg,
2321 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2322 				  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2323 }
2324 
2325 /**
2326  *  ixgbe_fc_autoneg - Configure flow control
2327  *  @hw: pointer to hardware structure
2328  *
2329  *  Compares our advertised flow control capabilities to those advertised by
2330  *  our link partner, and determines the proper flow control mode to use.
2331  **/
2332 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2333 {
2334 	s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2335 	ixgbe_link_speed speed;
2336 	bool link_up;
2337 
2338 	/*
2339 	 * AN should have completed when the cable was plugged in.
2340 	 * Look for reasons to bail out.  Bail out if:
2341 	 * - FC autoneg is disabled, or if
2342 	 * - link is not up.
2343 	 *
2344 	 * Since we're being called from an LSC, link is already known to be up.
2345 	 * So use link_up_wait_to_complete=false.
2346 	 */
2347 	if (hw->fc.disable_fc_autoneg)
2348 		goto out;
2349 
2350 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2351 	if (!link_up)
2352 		goto out;
2353 
2354 	switch (hw->phy.media_type) {
2355 	/* Autoneg flow control on fiber adapters */
2356 	case ixgbe_media_type_fiber:
2357 		if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2358 			ret_val = ixgbe_fc_autoneg_fiber(hw);
2359 		break;
2360 
2361 	/* Autoneg flow control on backplane adapters */
2362 	case ixgbe_media_type_backplane:
2363 		ret_val = ixgbe_fc_autoneg_backplane(hw);
2364 		break;
2365 
2366 	/* Autoneg flow control on copper adapters */
2367 	case ixgbe_media_type_copper:
2368 		if (ixgbe_device_supports_autoneg_fc(hw))
2369 			ret_val = ixgbe_fc_autoneg_copper(hw);
2370 		break;
2371 
2372 	default:
2373 		break;
2374 	}
2375 
2376 out:
2377 	if (ret_val == 0) {
2378 		hw->fc.fc_was_autonegged = true;
2379 	} else {
2380 		hw->fc.fc_was_autonegged = false;
2381 		hw->fc.current_mode = hw->fc.requested_mode;
2382 	}
2383 }
2384 
2385 /**
2386  * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2387  * @hw: pointer to hardware structure
2388  *
2389  * System-wide timeout range is encoded in PCIe Device Control2 register.
2390  *
2391  *  Add 10% to specified maximum and return the number of times to poll for
2392  *  completion timeout, in units of 100 microsec.  Never return less than
2393  *  800 = 80 millisec.
2394  **/
2395 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2396 {
2397 	s16 devctl2;
2398 	u32 pollcnt;
2399 
2400 	devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2401 	devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2402 
2403 	switch (devctl2) {
2404 	case IXGBE_PCIDEVCTRL2_65_130ms:
2405 		 pollcnt = 1300;         /* 130 millisec */
2406 		break;
2407 	case IXGBE_PCIDEVCTRL2_260_520ms:
2408 		pollcnt = 5200;         /* 520 millisec */
2409 		break;
2410 	case IXGBE_PCIDEVCTRL2_1_2s:
2411 		pollcnt = 20000;        /* 2 sec */
2412 		break;
2413 	case IXGBE_PCIDEVCTRL2_4_8s:
2414 		pollcnt = 80000;        /* 8 sec */
2415 		break;
2416 	case IXGBE_PCIDEVCTRL2_17_34s:
2417 		pollcnt = 34000;        /* 34 sec */
2418 		break;
2419 	case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2420 	case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2421 	case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2422 	case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2423 	default:
2424 		pollcnt = 800;          /* 80 millisec minimum */
2425 		break;
2426 	}
2427 
2428 	/* add 10% to spec maximum */
2429 	return (pollcnt * 11) / 10;
2430 }
2431 
2432 /**
2433  *  ixgbe_disable_pcie_master - Disable PCI-express master access
2434  *  @hw: pointer to hardware structure
2435  *
2436  *  Disables PCI-Express master access and verifies there are no pending
2437  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2438  *  bit hasn't caused the master requests to be disabled, else 0
2439  *  is returned signifying master requests disabled.
2440  **/
2441 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2442 {
2443 	u32 i, poll;
2444 	u16 value;
2445 
2446 	/* Always set this bit to ensure any future transactions are blocked */
2447 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2448 
2449 	/* Exit if master requests are blocked */
2450 	if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2451 	    ixgbe_removed(hw->hw_addr))
2452 		return 0;
2453 
2454 	/* Poll for master request bit to clear */
2455 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2456 		udelay(100);
2457 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2458 			return 0;
2459 	}
2460 
2461 	/*
2462 	 * Two consecutive resets are required via CTRL.RST per datasheet
2463 	 * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2464 	 * of this need.  The first reset prevents new master requests from
2465 	 * being issued by our device.  We then must wait 1usec or more for any
2466 	 * remaining completions from the PCIe bus to trickle in, and then reset
2467 	 * again to clear out any effects they may have had on our device.
2468 	 */
2469 	hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2470 	hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2471 
2472 	/*
2473 	 * Before proceeding, make sure that the PCIe block does not have
2474 	 * transactions pending.
2475 	 */
2476 	poll = ixgbe_pcie_timeout_poll(hw);
2477 	for (i = 0; i < poll; i++) {
2478 		udelay(100);
2479 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2480 		if (ixgbe_removed(hw->hw_addr))
2481 			return 0;
2482 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2483 			return 0;
2484 	}
2485 
2486 	hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2487 	return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2488 }
2489 
2490 /**
2491  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2492  *  @hw: pointer to hardware structure
2493  *  @mask: Mask to specify which semaphore to acquire
2494  *
2495  *  Acquires the SWFW semaphore through the GSSR register for the specified
2496  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2497  **/
2498 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2499 {
2500 	u32 gssr = 0;
2501 	u32 swmask = mask;
2502 	u32 fwmask = mask << 5;
2503 	u32 timeout = 200;
2504 	u32 i;
2505 
2506 	for (i = 0; i < timeout; i++) {
2507 		/*
2508 		 * SW NVM semaphore bit is used for access to all
2509 		 * SW_FW_SYNC bits (not just NVM)
2510 		 */
2511 		if (ixgbe_get_eeprom_semaphore(hw))
2512 			return IXGBE_ERR_SWFW_SYNC;
2513 
2514 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2515 		if (!(gssr & (fwmask | swmask))) {
2516 			gssr |= swmask;
2517 			IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2518 			ixgbe_release_eeprom_semaphore(hw);
2519 			return 0;
2520 		} else {
2521 			/* Resource is currently in use by FW or SW */
2522 			ixgbe_release_eeprom_semaphore(hw);
2523 			usleep_range(5000, 10000);
2524 		}
2525 	}
2526 
2527 	/* If time expired clear the bits holding the lock and retry */
2528 	if (gssr & (fwmask | swmask))
2529 		ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2530 
2531 	usleep_range(5000, 10000);
2532 	return IXGBE_ERR_SWFW_SYNC;
2533 }
2534 
2535 /**
2536  *  ixgbe_release_swfw_sync - Release SWFW semaphore
2537  *  @hw: pointer to hardware structure
2538  *  @mask: Mask to specify which semaphore to release
2539  *
2540  *  Releases the SWFW semaphore through the GSSR register for the specified
2541  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2542  **/
2543 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2544 {
2545 	u32 gssr;
2546 	u32 swmask = mask;
2547 
2548 	ixgbe_get_eeprom_semaphore(hw);
2549 
2550 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2551 	gssr &= ~swmask;
2552 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2553 
2554 	ixgbe_release_eeprom_semaphore(hw);
2555 }
2556 
2557 /**
2558  * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2559  * @hw: pointer to hardware structure
2560  * @reg_val: Value we read from AUTOC
2561  * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2562  *	    true in this the generic case.
2563  *
2564  * The default case requires no protection so just to the register read.
2565  **/
2566 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2567 {
2568 	*locked = false;
2569 	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2570 	return 0;
2571 }
2572 
2573 /**
2574  * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2575  * @hw: pointer to hardware structure
2576  * @reg_val: value to write to AUTOC
2577  * @locked: bool to indicate whether the SW/FW lock was already taken by
2578  *	    previous read.
2579  **/
2580 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2581 {
2582 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2583 	return 0;
2584 }
2585 
2586 /**
2587  *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2588  *  @hw: pointer to hardware structure
2589  *
2590  *  Stops the receive data path and waits for the HW to internally
2591  *  empty the Rx security block.
2592  **/
2593 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2594 {
2595 #define IXGBE_MAX_SECRX_POLL 40
2596 	int i;
2597 	int secrxreg;
2598 
2599 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2600 	secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2601 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2602 	for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2603 		secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2604 		if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2605 			break;
2606 		else
2607 			/* Use interrupt-safe sleep just in case */
2608 			udelay(1000);
2609 	}
2610 
2611 	/* For informational purposes only */
2612 	if (i >= IXGBE_MAX_SECRX_POLL)
2613 		hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2614 
2615 	return 0;
2616 
2617 }
2618 
2619 /**
2620  *  ixgbe_enable_rx_buff - Enables the receive data path
2621  *  @hw: pointer to hardware structure
2622  *
2623  *  Enables the receive data path
2624  **/
2625 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2626 {
2627 	int secrxreg;
2628 
2629 	secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2630 	secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2631 	IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2632 	IXGBE_WRITE_FLUSH(hw);
2633 
2634 	return 0;
2635 }
2636 
2637 /**
2638  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2639  *  @hw: pointer to hardware structure
2640  *  @regval: register value to write to RXCTRL
2641  *
2642  *  Enables the Rx DMA unit
2643  **/
2644 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2645 {
2646 	if (regval & IXGBE_RXCTRL_RXEN)
2647 		hw->mac.ops.enable_rx(hw);
2648 	else
2649 		hw->mac.ops.disable_rx(hw);
2650 
2651 	return 0;
2652 }
2653 
2654 /**
2655  *  ixgbe_blink_led_start_generic - Blink LED based on index.
2656  *  @hw: pointer to hardware structure
2657  *  @index: led number to blink
2658  **/
2659 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2660 {
2661 	ixgbe_link_speed speed = 0;
2662 	bool link_up = false;
2663 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2664 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2665 	bool locked = false;
2666 	s32 ret_val;
2667 
2668 	/*
2669 	 * Link must be up to auto-blink the LEDs;
2670 	 * Force it if link is down.
2671 	 */
2672 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
2673 
2674 	if (!link_up) {
2675 		ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2676 		if (ret_val)
2677 			return ret_val;
2678 
2679 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2680 		autoc_reg |= IXGBE_AUTOC_FLU;
2681 
2682 		ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2683 		if (ret_val)
2684 			return ret_val;
2685 
2686 		IXGBE_WRITE_FLUSH(hw);
2687 
2688 		usleep_range(10000, 20000);
2689 	}
2690 
2691 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2692 	led_reg |= IXGBE_LED_BLINK(index);
2693 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2694 	IXGBE_WRITE_FLUSH(hw);
2695 
2696 	return 0;
2697 }
2698 
2699 /**
2700  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2701  *  @hw: pointer to hardware structure
2702  *  @index: led number to stop blinking
2703  **/
2704 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2705 {
2706 	u32 autoc_reg = 0;
2707 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2708 	bool locked = false;
2709 	s32 ret_val;
2710 
2711 	ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2712 	if (ret_val)
2713 		return ret_val;
2714 
2715 	autoc_reg &= ~IXGBE_AUTOC_FLU;
2716 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2717 
2718 	ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2719 	if (ret_val)
2720 		return ret_val;
2721 
2722 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
2723 	led_reg &= ~IXGBE_LED_BLINK(index);
2724 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2725 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2726 	IXGBE_WRITE_FLUSH(hw);
2727 
2728 	return 0;
2729 }
2730 
2731 /**
2732  *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2733  *  @hw: pointer to hardware structure
2734  *  @san_mac_offset: SAN MAC address offset
2735  *
2736  *  This function will read the EEPROM location for the SAN MAC address
2737  *  pointer, and returns the value at that location.  This is used in both
2738  *  get and set mac_addr routines.
2739  **/
2740 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2741 					u16 *san_mac_offset)
2742 {
2743 	s32 ret_val;
2744 
2745 	/*
2746 	 * First read the EEPROM pointer to see if the MAC addresses are
2747 	 * available.
2748 	 */
2749 	ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2750 				      san_mac_offset);
2751 	if (ret_val)
2752 		hw_err(hw, "eeprom read at offset %d failed\n",
2753 		       IXGBE_SAN_MAC_ADDR_PTR);
2754 
2755 	return ret_val;
2756 }
2757 
2758 /**
2759  *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2760  *  @hw: pointer to hardware structure
2761  *  @san_mac_addr: SAN MAC address
2762  *
2763  *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2764  *  per-port, so set_lan_id() must be called before reading the addresses.
2765  *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2766  *  upon for non-SFP connections, so we must call it here.
2767  **/
2768 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2769 {
2770 	u16 san_mac_data, san_mac_offset;
2771 	u8 i;
2772 	s32 ret_val;
2773 
2774 	/*
2775 	 * First read the EEPROM pointer to see if the MAC addresses are
2776 	 * available.  If they're not, no point in calling set_lan_id() here.
2777 	 */
2778 	ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2779 	if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2780 
2781 		goto san_mac_addr_clr;
2782 
2783 	/* make sure we know which port we need to program */
2784 	hw->mac.ops.set_lan_id(hw);
2785 	/* apply the port offset to the address offset */
2786 	(hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2787 			 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2788 	for (i = 0; i < 3; i++) {
2789 		ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2790 					      &san_mac_data);
2791 		if (ret_val) {
2792 			hw_err(hw, "eeprom read at offset %d failed\n",
2793 			       san_mac_offset);
2794 			goto san_mac_addr_clr;
2795 		}
2796 		san_mac_addr[i * 2] = (u8)(san_mac_data);
2797 		san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2798 		san_mac_offset++;
2799 	}
2800 	return 0;
2801 
2802 san_mac_addr_clr:
2803 	/* No addresses available in this EEPROM.  It's not necessarily an
2804 	 * error though, so just wipe the local address and return.
2805 	 */
2806 	for (i = 0; i < 6; i++)
2807 		san_mac_addr[i] = 0xFF;
2808 	return ret_val;
2809 }
2810 
2811 /**
2812  *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2813  *  @hw: pointer to hardware structure
2814  *
2815  *  Read PCIe configuration space, and get the MSI-X vector count from
2816  *  the capabilities table.
2817  **/
2818 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2819 {
2820 	u16 msix_count;
2821 	u16 max_msix_count;
2822 	u16 pcie_offset;
2823 
2824 	switch (hw->mac.type) {
2825 	case ixgbe_mac_82598EB:
2826 		pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2827 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2828 		break;
2829 	case ixgbe_mac_82599EB:
2830 	case ixgbe_mac_X540:
2831 	case ixgbe_mac_X550:
2832 	case ixgbe_mac_X550EM_x:
2833 		pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2834 		max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2835 		break;
2836 	default:
2837 		return 1;
2838 	}
2839 
2840 	msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2841 	if (ixgbe_removed(hw->hw_addr))
2842 		msix_count = 0;
2843 	msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2844 
2845 	/* MSI-X count is zero-based in HW */
2846 	msix_count++;
2847 
2848 	if (msix_count > max_msix_count)
2849 		msix_count = max_msix_count;
2850 
2851 	return msix_count;
2852 }
2853 
2854 /**
2855  *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2856  *  @hw: pointer to hardware struct
2857  *  @rar: receive address register index to disassociate
2858  *  @vmdq: VMDq pool index to remove from the rar
2859  **/
2860 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2861 {
2862 	u32 mpsar_lo, mpsar_hi;
2863 	u32 rar_entries = hw->mac.num_rar_entries;
2864 
2865 	/* Make sure we are using a valid rar index range */
2866 	if (rar >= rar_entries) {
2867 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2868 		return IXGBE_ERR_INVALID_ARGUMENT;
2869 	}
2870 
2871 	mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2872 	mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2873 
2874 	if (ixgbe_removed(hw->hw_addr))
2875 		return 0;
2876 
2877 	if (!mpsar_lo && !mpsar_hi)
2878 		return 0;
2879 
2880 	if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2881 		if (mpsar_lo) {
2882 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2883 			mpsar_lo = 0;
2884 		}
2885 		if (mpsar_hi) {
2886 			IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2887 			mpsar_hi = 0;
2888 		}
2889 	} else if (vmdq < 32) {
2890 		mpsar_lo &= ~(1 << vmdq);
2891 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2892 	} else {
2893 		mpsar_hi &= ~(1 << (vmdq - 32));
2894 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2895 	}
2896 
2897 	/* was that the last pool using this rar? */
2898 	if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2899 		hw->mac.ops.clear_rar(hw, rar);
2900 	return 0;
2901 }
2902 
2903 /**
2904  *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2905  *  @hw: pointer to hardware struct
2906  *  @rar: receive address register index to associate with a VMDq index
2907  *  @vmdq: VMDq pool index
2908  **/
2909 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2910 {
2911 	u32 mpsar;
2912 	u32 rar_entries = hw->mac.num_rar_entries;
2913 
2914 	/* Make sure we are using a valid rar index range */
2915 	if (rar >= rar_entries) {
2916 		hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2917 		return IXGBE_ERR_INVALID_ARGUMENT;
2918 	}
2919 
2920 	if (vmdq < 32) {
2921 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2922 		mpsar |= 1 << vmdq;
2923 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2924 	} else {
2925 		mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2926 		mpsar |= 1 << (vmdq - 32);
2927 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2928 	}
2929 	return 0;
2930 }
2931 
2932 /**
2933  *  This function should only be involved in the IOV mode.
2934  *  In IOV mode, Default pool is next pool after the number of
2935  *  VFs advertized and not 0.
2936  *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2937  *
2938  *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2939  *  @hw: pointer to hardware struct
2940  *  @vmdq: VMDq pool index
2941  **/
2942 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2943 {
2944 	u32 rar = hw->mac.san_mac_rar_index;
2945 
2946 	if (vmdq < 32) {
2947 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 1 << vmdq);
2948 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2949 	} else {
2950 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2951 		IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 1 << (vmdq - 32));
2952 	}
2953 
2954 	return 0;
2955 }
2956 
2957 /**
2958  *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2959  *  @hw: pointer to hardware structure
2960  **/
2961 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2962 {
2963 	int i;
2964 
2965 	for (i = 0; i < 128; i++)
2966 		IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2967 
2968 	return 0;
2969 }
2970 
2971 /**
2972  *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2973  *  @hw: pointer to hardware structure
2974  *  @vlan: VLAN id to write to VLAN filter
2975  *
2976  *  return the VLVF index where this VLAN id should be placed
2977  *
2978  **/
2979 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2980 {
2981 	u32 bits = 0;
2982 	u32 first_empty_slot = 0;
2983 	s32 regindex;
2984 
2985 	/* short cut the special case */
2986 	if (vlan == 0)
2987 		return 0;
2988 
2989 	/*
2990 	  * Search for the vlan id in the VLVF entries. Save off the first empty
2991 	  * slot found along the way
2992 	  */
2993 	for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2994 		bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2995 		if (!bits && !(first_empty_slot))
2996 			first_empty_slot = regindex;
2997 		else if ((bits & 0x0FFF) == vlan)
2998 			break;
2999 	}
3000 
3001 	/*
3002 	  * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
3003 	  * in the VLVF. Else use the first empty VLVF register for this
3004 	  * vlan id.
3005 	  */
3006 	if (regindex >= IXGBE_VLVF_ENTRIES) {
3007 		if (first_empty_slot)
3008 			regindex = first_empty_slot;
3009 		else {
3010 			hw_dbg(hw, "No space in VLVF.\n");
3011 			regindex = IXGBE_ERR_NO_SPACE;
3012 		}
3013 	}
3014 
3015 	return regindex;
3016 }
3017 
3018 /**
3019  *  ixgbe_set_vfta_generic - Set VLAN filter table
3020  *  @hw: pointer to hardware structure
3021  *  @vlan: VLAN id to write to VLAN filter
3022  *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3023  *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3024  *
3025  *  Turn on/off specified VLAN in the VLAN filter table.
3026  **/
3027 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3028 			   bool vlan_on)
3029 {
3030 	s32 regindex;
3031 	u32 bitindex;
3032 	u32 vfta;
3033 	u32 bits;
3034 	u32 vt;
3035 	u32 targetbit;
3036 	bool vfta_changed = false;
3037 
3038 	if (vlan > 4095)
3039 		return IXGBE_ERR_PARAM;
3040 
3041 	/*
3042 	 * this is a 2 part operation - first the VFTA, then the
3043 	 * VLVF and VLVFB if VT Mode is set
3044 	 * We don't write the VFTA until we know the VLVF part succeeded.
3045 	 */
3046 
3047 	/* Part 1
3048 	 * The VFTA is a bitstring made up of 128 32-bit registers
3049 	 * that enable the particular VLAN id, much like the MTA:
3050 	 *    bits[11-5]: which register
3051 	 *    bits[4-0]:  which bit in the register
3052 	 */
3053 	regindex = (vlan >> 5) & 0x7F;
3054 	bitindex = vlan & 0x1F;
3055 	targetbit = (1 << bitindex);
3056 	vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
3057 
3058 	if (vlan_on) {
3059 		if (!(vfta & targetbit)) {
3060 			vfta |= targetbit;
3061 			vfta_changed = true;
3062 		}
3063 	} else {
3064 		if ((vfta & targetbit)) {
3065 			vfta &= ~targetbit;
3066 			vfta_changed = true;
3067 		}
3068 	}
3069 
3070 	/* Part 2
3071 	 * If VT Mode is set
3072 	 *   Either vlan_on
3073 	 *     make sure the vlan is in VLVF
3074 	 *     set the vind bit in the matching VLVFB
3075 	 *   Or !vlan_on
3076 	 *     clear the pool bit and possibly the vind
3077 	 */
3078 	vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
3079 	if (vt & IXGBE_VT_CTL_VT_ENABLE) {
3080 		s32 vlvf_index;
3081 
3082 		vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
3083 		if (vlvf_index < 0)
3084 			return vlvf_index;
3085 
3086 		if (vlan_on) {
3087 			/* set the pool bit */
3088 			if (vind < 32) {
3089 				bits = IXGBE_READ_REG(hw,
3090 						IXGBE_VLVFB(vlvf_index*2));
3091 				bits |= (1 << vind);
3092 				IXGBE_WRITE_REG(hw,
3093 						IXGBE_VLVFB(vlvf_index*2),
3094 						bits);
3095 			} else {
3096 				bits = IXGBE_READ_REG(hw,
3097 						IXGBE_VLVFB((vlvf_index*2)+1));
3098 				bits |= (1 << (vind-32));
3099 				IXGBE_WRITE_REG(hw,
3100 						IXGBE_VLVFB((vlvf_index*2)+1),
3101 						bits);
3102 			}
3103 		} else {
3104 			/* clear the pool bit */
3105 			if (vind < 32) {
3106 				bits = IXGBE_READ_REG(hw,
3107 						IXGBE_VLVFB(vlvf_index*2));
3108 				bits &= ~(1 << vind);
3109 				IXGBE_WRITE_REG(hw,
3110 						IXGBE_VLVFB(vlvf_index*2),
3111 						bits);
3112 				bits |= IXGBE_READ_REG(hw,
3113 						IXGBE_VLVFB((vlvf_index*2)+1));
3114 			} else {
3115 				bits = IXGBE_READ_REG(hw,
3116 						IXGBE_VLVFB((vlvf_index*2)+1));
3117 				bits &= ~(1 << (vind-32));
3118 				IXGBE_WRITE_REG(hw,
3119 						IXGBE_VLVFB((vlvf_index*2)+1),
3120 						bits);
3121 				bits |= IXGBE_READ_REG(hw,
3122 						IXGBE_VLVFB(vlvf_index*2));
3123 			}
3124 		}
3125 
3126 		/*
3127 		 * If there are still bits set in the VLVFB registers
3128 		 * for the VLAN ID indicated we need to see if the
3129 		 * caller is requesting that we clear the VFTA entry bit.
3130 		 * If the caller has requested that we clear the VFTA
3131 		 * entry bit but there are still pools/VFs using this VLAN
3132 		 * ID entry then ignore the request.  We're not worried
3133 		 * about the case where we're turning the VFTA VLAN ID
3134 		 * entry bit on, only when requested to turn it off as
3135 		 * there may be multiple pools and/or VFs using the
3136 		 * VLAN ID entry.  In that case we cannot clear the
3137 		 * VFTA bit until all pools/VFs using that VLAN ID have also
3138 		 * been cleared.  This will be indicated by "bits" being
3139 		 * zero.
3140 		 */
3141 		if (bits) {
3142 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3143 					(IXGBE_VLVF_VIEN | vlan));
3144 			if (!vlan_on) {
3145 				/* someone wants to clear the vfta entry
3146 				 * but some pools/VFs are still using it.
3147 				 * Ignore it. */
3148 				vfta_changed = false;
3149 			}
3150 		} else {
3151 			IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3152 		}
3153 	}
3154 
3155 	if (vfta_changed)
3156 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3157 
3158 	return 0;
3159 }
3160 
3161 /**
3162  *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3163  *  @hw: pointer to hardware structure
3164  *
3165  *  Clears the VLAN filer table, and the VMDq index associated with the filter
3166  **/
3167 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3168 {
3169 	u32 offset;
3170 
3171 	for (offset = 0; offset < hw->mac.vft_size; offset++)
3172 		IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3173 
3174 	for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3175 		IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3176 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3177 		IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3178 	}
3179 
3180 	return 0;
3181 }
3182 
3183 /**
3184  *  ixgbe_check_mac_link_generic - Determine link and speed status
3185  *  @hw: pointer to hardware structure
3186  *  @speed: pointer to link speed
3187  *  @link_up: true when link is up
3188  *  @link_up_wait_to_complete: bool used to wait for link up or not
3189  *
3190  *  Reads the links register to determine if link is up and the current speed
3191  **/
3192 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3193 				 bool *link_up, bool link_up_wait_to_complete)
3194 {
3195 	u32 links_reg, links_orig;
3196 	u32 i;
3197 
3198 	/* clear the old state */
3199 	links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3200 
3201 	links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3202 
3203 	if (links_orig != links_reg) {
3204 		hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3205 		       links_orig, links_reg);
3206 	}
3207 
3208 	if (link_up_wait_to_complete) {
3209 		for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3210 			if (links_reg & IXGBE_LINKS_UP) {
3211 				*link_up = true;
3212 				break;
3213 			} else {
3214 				*link_up = false;
3215 			}
3216 			msleep(100);
3217 			links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3218 		}
3219 	} else {
3220 		if (links_reg & IXGBE_LINKS_UP)
3221 			*link_up = true;
3222 		else
3223 			*link_up = false;
3224 	}
3225 
3226 	switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3227 	case IXGBE_LINKS_SPEED_10G_82599:
3228 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3229 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3230 			*speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3231 		else
3232 			*speed = IXGBE_LINK_SPEED_10GB_FULL;
3233 		break;
3234 	case IXGBE_LINKS_SPEED_1G_82599:
3235 		*speed = IXGBE_LINK_SPEED_1GB_FULL;
3236 		break;
3237 	case IXGBE_LINKS_SPEED_100_82599:
3238 		if ((hw->mac.type >= ixgbe_mac_X550) &&
3239 		    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3240 			*speed = IXGBE_LINK_SPEED_5GB_FULL;
3241 		else
3242 			*speed = IXGBE_LINK_SPEED_100_FULL;
3243 		break;
3244 	default:
3245 		*speed = IXGBE_LINK_SPEED_UNKNOWN;
3246 	}
3247 
3248 	return 0;
3249 }
3250 
3251 /**
3252  *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3253  *  the EEPROM
3254  *  @hw: pointer to hardware structure
3255  *  @wwnn_prefix: the alternative WWNN prefix
3256  *  @wwpn_prefix: the alternative WWPN prefix
3257  *
3258  *  This function will read the EEPROM from the alternative SAN MAC address
3259  *  block to check the support for the alternative WWNN/WWPN prefix support.
3260  **/
3261 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3262 					u16 *wwpn_prefix)
3263 {
3264 	u16 offset, caps;
3265 	u16 alt_san_mac_blk_offset;
3266 
3267 	/* clear output first */
3268 	*wwnn_prefix = 0xFFFF;
3269 	*wwpn_prefix = 0xFFFF;
3270 
3271 	/* check if alternative SAN MAC is supported */
3272 	offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3273 	if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3274 		goto wwn_prefix_err;
3275 
3276 	if ((alt_san_mac_blk_offset == 0) ||
3277 	    (alt_san_mac_blk_offset == 0xFFFF))
3278 		return 0;
3279 
3280 	/* check capability in alternative san mac address block */
3281 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3282 	if (hw->eeprom.ops.read(hw, offset, &caps))
3283 		goto wwn_prefix_err;
3284 	if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3285 		return 0;
3286 
3287 	/* get the corresponding prefix for WWNN/WWPN */
3288 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3289 	if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3290 		hw_err(hw, "eeprom read at offset %d failed\n", offset);
3291 
3292 	offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3293 	if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3294 		goto wwn_prefix_err;
3295 
3296 	return 0;
3297 
3298 wwn_prefix_err:
3299 	hw_err(hw, "eeprom read at offset %d failed\n", offset);
3300 	return 0;
3301 }
3302 
3303 /**
3304  *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3305  *  @hw: pointer to hardware structure
3306  *  @enable: enable or disable switch for anti-spoofing
3307  *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3308  *
3309  **/
3310 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3311 {
3312 	int j;
3313 	int pf_target_reg = pf >> 3;
3314 	int pf_target_shift = pf % 8;
3315 	u32 pfvfspoof = 0;
3316 
3317 	if (hw->mac.type == ixgbe_mac_82598EB)
3318 		return;
3319 
3320 	if (enable)
3321 		pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3322 
3323 	/*
3324 	 * PFVFSPOOF register array is size 8 with 8 bits assigned to
3325 	 * MAC anti-spoof enables in each register array element.
3326 	 */
3327 	for (j = 0; j < pf_target_reg; j++)
3328 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3329 
3330 	/*
3331 	 * The PF should be allowed to spoof so that it can support
3332 	 * emulation mode NICs.  Do not set the bits assigned to the PF
3333 	 */
3334 	pfvfspoof &= (1 << pf_target_shift) - 1;
3335 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3336 
3337 	/*
3338 	 * Remaining pools belong to the PF so they do not need to have
3339 	 * anti-spoofing enabled.
3340 	 */
3341 	for (j++; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3342 		IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), 0);
3343 }
3344 
3345 /**
3346  *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3347  *  @hw: pointer to hardware structure
3348  *  @enable: enable or disable switch for VLAN anti-spoofing
3349  *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3350  *
3351  **/
3352 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3353 {
3354 	int vf_target_reg = vf >> 3;
3355 	int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3356 	u32 pfvfspoof;
3357 
3358 	if (hw->mac.type == ixgbe_mac_82598EB)
3359 		return;
3360 
3361 	pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3362 	if (enable)
3363 		pfvfspoof |= (1 << vf_target_shift);
3364 	else
3365 		pfvfspoof &= ~(1 << vf_target_shift);
3366 	IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3367 }
3368 
3369 /**
3370  *  ixgbe_get_device_caps_generic - Get additional device capabilities
3371  *  @hw: pointer to hardware structure
3372  *  @device_caps: the EEPROM word with the extra device capabilities
3373  *
3374  *  This function will read the EEPROM location for the device capabilities,
3375  *  and return the word through device_caps.
3376  **/
3377 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3378 {
3379 	hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3380 
3381 	return 0;
3382 }
3383 
3384 /**
3385  * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3386  * @hw: pointer to hardware structure
3387  * @num_pb: number of packet buffers to allocate
3388  * @headroom: reserve n KB of headroom
3389  * @strategy: packet buffer allocation strategy
3390  **/
3391 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3392 			     int num_pb,
3393 			     u32 headroom,
3394 			     int strategy)
3395 {
3396 	u32 pbsize = hw->mac.rx_pb_size;
3397 	int i = 0;
3398 	u32 rxpktsize, txpktsize, txpbthresh;
3399 
3400 	/* Reserve headroom */
3401 	pbsize -= headroom;
3402 
3403 	if (!num_pb)
3404 		num_pb = 1;
3405 
3406 	/* Divide remaining packet buffer space amongst the number
3407 	 * of packet buffers requested using supplied strategy.
3408 	 */
3409 	switch (strategy) {
3410 	case (PBA_STRATEGY_WEIGHTED):
3411 		/* pba_80_48 strategy weight first half of packet buffer with
3412 		 * 5/8 of the packet buffer space.
3413 		 */
3414 		rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3415 		pbsize -= rxpktsize * (num_pb / 2);
3416 		rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3417 		for (; i < (num_pb / 2); i++)
3418 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3419 		/* Fall through to configure remaining packet buffers */
3420 	case (PBA_STRATEGY_EQUAL):
3421 		/* Divide the remaining Rx packet buffer evenly among the TCs */
3422 		rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3423 		for (; i < num_pb; i++)
3424 			IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3425 		break;
3426 	default:
3427 		break;
3428 	}
3429 
3430 	/*
3431 	 * Setup Tx packet buffer and threshold equally for all TCs
3432 	 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3433 	 * 10 since the largest packet we support is just over 9K.
3434 	 */
3435 	txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3436 	txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3437 	for (i = 0; i < num_pb; i++) {
3438 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3439 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3440 	}
3441 
3442 	/* Clear unused TCs, if any, to zero buffer size*/
3443 	for (; i < IXGBE_MAX_PB; i++) {
3444 		IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3445 		IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3446 		IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3447 	}
3448 }
3449 
3450 /**
3451  *  ixgbe_calculate_checksum - Calculate checksum for buffer
3452  *  @buffer: pointer to EEPROM
3453  *  @length: size of EEPROM to calculate a checksum for
3454  *
3455  *  Calculates the checksum for some buffer on a specified length.  The
3456  *  checksum calculated is returned.
3457  **/
3458 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3459 {
3460 	u32 i;
3461 	u8 sum = 0;
3462 
3463 	if (!buffer)
3464 		return 0;
3465 
3466 	for (i = 0; i < length; i++)
3467 		sum += buffer[i];
3468 
3469 	return (u8) (0 - sum);
3470 }
3471 
3472 /**
3473  *  ixgbe_host_interface_command - Issue command to manageability block
3474  *  @hw: pointer to the HW structure
3475  *  @buffer: contains the command to write and where the return status will
3476  *           be placed
3477  *  @length: length of buffer, must be multiple of 4 bytes
3478  *  @timeout: time in ms to wait for command completion
3479  *  @return_data: read and return data from the buffer (true) or not (false)
3480  *  Needed because FW structures are big endian and decoding of
3481  *  these fields can be 8 bit or 16 bit based on command. Decoding
3482  *  is not easily understood without making a table of commands.
3483  *  So we will leave this up to the caller to read back the data
3484  *  in these cases.
3485  *
3486  *  Communicates with the manageability block.  On success return 0
3487  *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3488  **/
3489 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u32 *buffer,
3490 				 u32 length, u32 timeout,
3491 				 bool return_data)
3492 {
3493 	u32 hicr, i, bi, fwsts;
3494 	u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3495 	u16 buf_len, dword_len;
3496 
3497 	if (length == 0 || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3498 		hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3499 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3500 	}
3501 
3502 	/* Set bit 9 of FWSTS clearing FW reset indication */
3503 	fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3504 	IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3505 
3506 	/* Check that the host interface is enabled. */
3507 	hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3508 	if ((hicr & IXGBE_HICR_EN) == 0) {
3509 		hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3510 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3511 	}
3512 
3513 	/* Calculate length in DWORDs. We must be DWORD aligned */
3514 	if ((length % (sizeof(u32))) != 0) {
3515 		hw_dbg(hw, "Buffer length failure, not aligned to dword");
3516 		return IXGBE_ERR_INVALID_ARGUMENT;
3517 	}
3518 
3519 	dword_len = length >> 2;
3520 
3521 	/*
3522 	 * The device driver writes the relevant command block
3523 	 * into the ram area.
3524 	 */
3525 	for (i = 0; i < dword_len; i++)
3526 		IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3527 				      i, cpu_to_le32(buffer[i]));
3528 
3529 	/* Setting this bit tells the ARC that a new command is pending. */
3530 	IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3531 
3532 	for (i = 0; i < timeout; i++) {
3533 		hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3534 		if (!(hicr & IXGBE_HICR_C))
3535 			break;
3536 		usleep_range(1000, 2000);
3537 	}
3538 
3539 	/* Check command successful completion. */
3540 	if ((timeout != 0 && i == timeout) ||
3541 	    (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3542 		hw_dbg(hw, "Command has failed with no status valid.\n");
3543 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3544 	}
3545 
3546 	if (!return_data)
3547 		return 0;
3548 
3549 	/* Calculate length in DWORDs */
3550 	dword_len = hdr_size >> 2;
3551 
3552 	/* first pull in the header so we know the buffer length */
3553 	for (bi = 0; bi < dword_len; bi++) {
3554 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3555 		le32_to_cpus(&buffer[bi]);
3556 	}
3557 
3558 	/* If there is any thing in data position pull it in */
3559 	buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3560 	if (buf_len == 0)
3561 		return 0;
3562 
3563 	if (length < (buf_len + hdr_size)) {
3564 		hw_dbg(hw, "Buffer not large enough for reply message.\n");
3565 		return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3566 	}
3567 
3568 	/* Calculate length in DWORDs, add 3 for odd lengths */
3569 	dword_len = (buf_len + 3) >> 2;
3570 
3571 	/* Pull in the rest of the buffer (bi is where we left off)*/
3572 	for (; bi <= dword_len; bi++) {
3573 		buffer[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3574 		le32_to_cpus(&buffer[bi]);
3575 	}
3576 
3577 	return 0;
3578 }
3579 
3580 /**
3581  *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3582  *  @hw: pointer to the HW structure
3583  *  @maj: driver version major number
3584  *  @min: driver version minor number
3585  *  @build: driver version build number
3586  *  @sub: driver version sub build number
3587  *
3588  *  Sends driver version number to firmware through the manageability
3589  *  block.  On success return 0
3590  *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3591  *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3592  **/
3593 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3594 				 u8 build, u8 sub)
3595 {
3596 	struct ixgbe_hic_drv_info fw_cmd;
3597 	int i;
3598 	s32 ret_val;
3599 
3600 	if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM))
3601 		return IXGBE_ERR_SWFW_SYNC;
3602 
3603 	fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3604 	fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3605 	fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3606 	fw_cmd.port_num = (u8)hw->bus.func;
3607 	fw_cmd.ver_maj = maj;
3608 	fw_cmd.ver_min = min;
3609 	fw_cmd.ver_build = build;
3610 	fw_cmd.ver_sub = sub;
3611 	fw_cmd.hdr.checksum = 0;
3612 	fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3613 				(FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3614 	fw_cmd.pad = 0;
3615 	fw_cmd.pad2 = 0;
3616 
3617 	for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3618 		ret_val = ixgbe_host_interface_command(hw, (u32 *)&fw_cmd,
3619 						       sizeof(fw_cmd),
3620 						       IXGBE_HI_COMMAND_TIMEOUT,
3621 						       true);
3622 		if (ret_val != 0)
3623 			continue;
3624 
3625 		if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3626 		    FW_CEM_RESP_STATUS_SUCCESS)
3627 			ret_val = 0;
3628 		else
3629 			ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3630 
3631 		break;
3632 	}
3633 
3634 	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3635 	return ret_val;
3636 }
3637 
3638 /**
3639  * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3640  * @hw: pointer to the hardware structure
3641  *
3642  * The 82599 and x540 MACs can experience issues if TX work is still pending
3643  * when a reset occurs.  This function prevents this by flushing the PCIe
3644  * buffers on the system.
3645  **/
3646 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3647 {
3648 	u32 gcr_ext, hlreg0, i, poll;
3649 	u16 value;
3650 
3651 	/*
3652 	 * If double reset is not requested then all transactions should
3653 	 * already be clear and as such there is no work to do
3654 	 */
3655 	if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3656 		return;
3657 
3658 	/*
3659 	 * Set loopback enable to prevent any transmits from being sent
3660 	 * should the link come up.  This assumes that the RXCTRL.RXEN bit
3661 	 * has already been cleared.
3662 	 */
3663 	hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3664 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3665 
3666 	/* wait for a last completion before clearing buffers */
3667 	IXGBE_WRITE_FLUSH(hw);
3668 	usleep_range(3000, 6000);
3669 
3670 	/* Before proceeding, make sure that the PCIe block does not have
3671 	 * transactions pending.
3672 	 */
3673 	poll = ixgbe_pcie_timeout_poll(hw);
3674 	for (i = 0; i < poll; i++) {
3675 		usleep_range(100, 200);
3676 		value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3677 		if (ixgbe_removed(hw->hw_addr))
3678 			break;
3679 		if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3680 			break;
3681 	}
3682 
3683 	/* initiate cleaning flow for buffers in the PCIe transaction layer */
3684 	gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3685 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3686 			gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3687 
3688 	/* Flush all writes and allow 20usec for all transactions to clear */
3689 	IXGBE_WRITE_FLUSH(hw);
3690 	udelay(20);
3691 
3692 	/* restore previous register values */
3693 	IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3694 	IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3695 }
3696 
3697 static const u8 ixgbe_emc_temp_data[4] = {
3698 	IXGBE_EMC_INTERNAL_DATA,
3699 	IXGBE_EMC_DIODE1_DATA,
3700 	IXGBE_EMC_DIODE2_DATA,
3701 	IXGBE_EMC_DIODE3_DATA
3702 };
3703 static const u8 ixgbe_emc_therm_limit[4] = {
3704 	IXGBE_EMC_INTERNAL_THERM_LIMIT,
3705 	IXGBE_EMC_DIODE1_THERM_LIMIT,
3706 	IXGBE_EMC_DIODE2_THERM_LIMIT,
3707 	IXGBE_EMC_DIODE3_THERM_LIMIT
3708 };
3709 
3710 /**
3711  *  ixgbe_get_ets_data - Extracts the ETS bit data
3712  *  @hw: pointer to hardware structure
3713  *  @ets_cfg: extected ETS data
3714  *  @ets_offset: offset of ETS data
3715  *
3716  *  Returns error code.
3717  **/
3718 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3719 			      u16 *ets_offset)
3720 {
3721 	s32 status;
3722 
3723 	status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3724 	if (status)
3725 		return status;
3726 
3727 	if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3728 		return IXGBE_NOT_IMPLEMENTED;
3729 
3730 	status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3731 	if (status)
3732 		return status;
3733 
3734 	if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3735 		return IXGBE_NOT_IMPLEMENTED;
3736 
3737 	return 0;
3738 }
3739 
3740 /**
3741  *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3742  *  @hw: pointer to hardware structure
3743  *
3744  *  Returns the thermal sensor data structure
3745  **/
3746 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3747 {
3748 	s32 status;
3749 	u16 ets_offset;
3750 	u16 ets_cfg;
3751 	u16 ets_sensor;
3752 	u8  num_sensors;
3753 	u8  i;
3754 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3755 
3756 	/* Only support thermal sensors attached to physical port 0 */
3757 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3758 		return IXGBE_NOT_IMPLEMENTED;
3759 
3760 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3761 	if (status)
3762 		return status;
3763 
3764 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3765 	if (num_sensors > IXGBE_MAX_SENSORS)
3766 		num_sensors = IXGBE_MAX_SENSORS;
3767 
3768 	for (i = 0; i < num_sensors; i++) {
3769 		u8  sensor_index;
3770 		u8  sensor_location;
3771 
3772 		status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3773 					     &ets_sensor);
3774 		if (status)
3775 			return status;
3776 
3777 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3778 				IXGBE_ETS_DATA_INDEX_SHIFT);
3779 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3780 				   IXGBE_ETS_DATA_LOC_SHIFT);
3781 
3782 		if (sensor_location != 0) {
3783 			status = hw->phy.ops.read_i2c_byte(hw,
3784 					ixgbe_emc_temp_data[sensor_index],
3785 					IXGBE_I2C_THERMAL_SENSOR_ADDR,
3786 					&data->sensor[i].temp);
3787 			if (status)
3788 				return status;
3789 		}
3790 	}
3791 
3792 	return 0;
3793 }
3794 
3795 /**
3796  * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3797  * @hw: pointer to hardware structure
3798  *
3799  * Inits the thermal sensor thresholds according to the NVM map
3800  * and save off the threshold and location values into mac.thermal_sensor_data
3801  **/
3802 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3803 {
3804 	s32 status;
3805 	u16 ets_offset;
3806 	u16 ets_cfg;
3807 	u16 ets_sensor;
3808 	u8  low_thresh_delta;
3809 	u8  num_sensors;
3810 	u8  therm_limit;
3811 	u8  i;
3812 	struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3813 
3814 	memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3815 
3816 	/* Only support thermal sensors attached to physical port 0 */
3817 	if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3818 		return IXGBE_NOT_IMPLEMENTED;
3819 
3820 	status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3821 	if (status)
3822 		return status;
3823 
3824 	low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3825 			     IXGBE_ETS_LTHRES_DELTA_SHIFT);
3826 	num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3827 	if (num_sensors > IXGBE_MAX_SENSORS)
3828 		num_sensors = IXGBE_MAX_SENSORS;
3829 
3830 	for (i = 0; i < num_sensors; i++) {
3831 		u8  sensor_index;
3832 		u8  sensor_location;
3833 
3834 		if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3835 			hw_err(hw, "eeprom read at offset %d failed\n",
3836 			       ets_offset + 1 + i);
3837 			continue;
3838 		}
3839 		sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3840 				IXGBE_ETS_DATA_INDEX_SHIFT);
3841 		sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3842 				   IXGBE_ETS_DATA_LOC_SHIFT);
3843 		therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3844 
3845 		hw->phy.ops.write_i2c_byte(hw,
3846 			ixgbe_emc_therm_limit[sensor_index],
3847 			IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3848 
3849 		if (sensor_location == 0)
3850 			continue;
3851 
3852 		data->sensor[i].location = sensor_location;
3853 		data->sensor[i].caution_thresh = therm_limit;
3854 		data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3855 	}
3856 
3857 	return 0;
3858 }
3859 
3860 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
3861 {
3862 	u32 rxctrl;
3863 
3864 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3865 	if (rxctrl & IXGBE_RXCTRL_RXEN) {
3866 		if (hw->mac.type != ixgbe_mac_82598EB) {
3867 			u32 pfdtxgswc;
3868 
3869 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3870 			if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
3871 				pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
3872 				IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3873 				hw->mac.set_lben = true;
3874 			} else {
3875 				hw->mac.set_lben = false;
3876 			}
3877 		}
3878 		rxctrl &= ~IXGBE_RXCTRL_RXEN;
3879 		IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
3880 	}
3881 }
3882 
3883 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
3884 {
3885 	u32 rxctrl;
3886 
3887 	rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3888 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
3889 
3890 	if (hw->mac.type != ixgbe_mac_82598EB) {
3891 		if (hw->mac.set_lben) {
3892 			u32 pfdtxgswc;
3893 
3894 			pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3895 			pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
3896 			IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3897 			hw->mac.set_lben = false;
3898 		}
3899 	}
3900 }
3901